
WebSphere

Web

Services

Application

Developer’s

Guide

���

Third

Edition

(March

2004)

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Chapter

1.

Introduction

.

.

.

.

.

.

.

. 1

Chapter

2.

Getting

Started

.

.

.

.

.

.

. 3

Planning

for

the

target

execution

environment

.

.

. 3

Prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Chapter

3.

Concepts

.

.

.

.

.

.

.

.

. 5

Web

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Web

Services

installation

options

.

.

.

.

.

. 5

Web

Services

plug-in

.

.

.

.

.

.

.

.

.

. 6

Runtime

support

for

the

target

environment

.

.

. 6

Support

for

OSGi

Services

.

.

.

.

.

.

.

.

. 6

Web

Services

security

.

.

.

.

.

.

.

.

.

.

. 7

Web

Services

security

specifications

.

.

.

.

.

. 7

Web

Services

security

architecture

.

.

.

.

.

. 7

Web

Services

security

features

.

.

.

.

.

.

. 8

Web

Services

security

supported

functions

.

.

. 9

Chapter

4.

Tasks

.

.

.

.

.

.

.

.

.

. 11

Creating

a

Web

Services

client

for

J2ME

.

.

.

.

. 11

Creating

a

J2ME

MIDP

project

.

.

.

.

.

.

. 11

Generating

a

Java

stub

and

sample

MIDlet

client

11

Creating

a

MIDlet

suite

.

.

.

.

.

.

.

.

. 12

Creating

a

MIDlet

suite

configuration

.

.

.

.

. 12

Running

the

client

in

the

MIDP

emulator

.

.

. 12

Running

the

client

on

a

PocketPC

device

.

.

. 12

Creating

a

Mobile

Web

Services

client

.

.

.

.

. 13

Setting

up

a

WECE

project

for

use

with

SMF

.

. 13

Creating

a

Web

Services

stub

and

interface

file

13

Creating

a

Web

Services

client

for

Extension

Services

(ESWE)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Creating

an

SMF

bundle

.

.

.

.

.

.

.

.

. 14

Using

Web

Services

with

SMF

.

.

.

.

.

.

. 16

Hosting

an

OSGi

Web

Services

provider

.

.

.

.

. 19

Using

OSGi

Web

Services

.

.

.

.

.

.

.

.

. 19

Registering

the

OSGi

Service

.

.

.

.

.

.

. 20

Creating

a

Web

Services

application

that

includes

WS-Security

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Creating

a

keystore

.

.

.

.

.

.

.

.

.

.

. 22

Using

the

Web

Services

wizard

to

create

an

application

that

uses

WS-Security

.

.

.

.

.

. 22

Programming

WS-Security

Properties

.

.

.

.

. 23

Chapter

5.

Reference

.

.

.

.

.

.

.

. 29

Soap

implementations

.

.

.

.

.

.

.

.

.

.

. 29

XML

Parser

.

.

.

.

.

.

.

.

.

.

.

.

. 29

SOAP

Binding

.

.

.

.

.

.

.

.

.

.

.

. 29

External

Interfaces

.

.

.

.

.

.

.

.

.

.

.

. 30

The

JAX-RPC

subset

interfaces

.

.

.

.

.

.

. 30

The

Web

Services

client

programming

model

.

. 31

Sample

Web

Services

stub

source

code

.

.

.

.

. 32

Web

Services

Samples

.

.

.

.

.

.

.

.

.

.

. 32

Release

notes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Enabling

MIDP

applications

to

run

.

.

.

.

. 33

Running

secure

Web

Service

clients

on

SMF

.

. 33

Migration

considerations

.

.

.

.

.

.

.

.

. 34

Appendix

A.

The

Web

Services

Gateway

Utility

(WSOSGI-UI)

.

.

.

.

. 35

Accessing

the

diagnostic

utility

.

.

.

.

.

.

.

. 35

Consuming

Web

Services

.

.

.

.

.

.

.

.

.

. 35

Listing

Web

Services

Clients

.

.

.

.

.

.

.

.

. 36

Using

the

Web

Services

Gateway

Utility

to

configure

WS-Security

properties

.

.

.

.

.

.

.

.

.

. 36

Testing

Web

Services

Gateway

Clients

.

.

.

.

. 37

Dynamic

testing

.

.

.

.

.

.

.

.

.

.

.

. 37

WSProxyTestService

.

.

.

.

.

.

.

.

.

. 37

Appendix

B.

Notices

.

.

.

.

.

.

.

.

. 39

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

©

Copyright

IBM

Corp.

2004

iii

iv

WebSphere:

Web

Services

Application

Developer’s

Guide

Chapter

1.

Introduction

You

can

use

the

Web

Services

client

plug-in

with

WebSphere®

Studio

Device

Developer

(WSDD)

to

develop

applications

that

consume

and

expose

Web

Services.

WSDD

provides

an

integrated

development

environment

(IDE)

that

you

can

use

to

create

and

test

applications

that

you

want

to

deploy

on

devices,

such

as

cellular

phones,

Personal

Data

Assistants

(PDA),

and

other

pervasive

devices.

WSDD

extends

the

WebSphere

product

suite

by

enabling

you

to

build

applications

based

on

J2ME™

profiles

and

use

configurations

for

running

on

″Java™

Powered™″

devices.

For

more

information

on

WSDD,

visit

http://www.ibm.com/pvc.

In

addition,

WSDD

provides

support

for

building

applications

that

use

the

IBM

WebSphere

Everyplace

Custom

Environment

(WECE)

class

libraries

and

the

OSGi

Service

Management

Framework.

The

Web

Services

support

is

an

implementation

of

the

Java

2

Micro

Edition

Web

Services

Specification

(JSR-172).

Further

details

on

this

specification

can

be

found

at

the

following

site:

http://jcp.org/jsr/detail/172.jsp.

To

enable

you

to

access

remote

web

services,

the

Web

Services

for

MIDP

plug-in

implements

the

features

detailed

in

the

specification.

The

Web

Services

for

ESWE

plug-in

also

allows

you

to

consume

web

services,

and

to

expose

OSGi

based

bundles

as

Web

Services.

An

application

that

consumes

Web

Services

needs

to

identify

the

service

end-point

and

use

the

interface

to

that

Web

Service

with

the

definition

specified

in

the

Web

Services

Description

Language

(WSDL)

document.

Web

Services

provides

support

for

the

following

Platform

Profiles

when

creating

Web

Services

consumers:

v

WebSphere

Everyplace

Micro

Environment

(WEME)

Foundation

and

Mobile

Information

Device

Profile

(MIDP)

v

WebSphere

Everyplace

Custom

Environment

(WECE)

Max

and

RM

Web

Services

provides

support

for

the

following

Platform

Profiles

when

creating

Web

Services

providers:

v

WebSphere

Everyplace

Micro

Environment

(WEME)

Foundation

on

SMF

v

WebSphere

Everyplace

Custom

Environment

(WECE)

Max

and

RM

on

SMF

©

Copyright

IBM

Corp.

2004

1

http://www.ibm.com/pvc
http://jcp.org/jsr/detail/172.jsp

2

WebSphere:

Web

Services

Application

Developer’s

Guide

Chapter

2.

Getting

Started

This

chapter

discusses

the

necessary

steps

to

enable

you

to

start

developing

applications

that

consume

Web

Services.

Planning

for

the

target

execution

environment

Using

Web

Services,

you

can

develop

Web

Services

consumer

applications

for

a

variety

of

target

environments.

Visit

the

following

URL

for

complete

information

on

the

platforms

supported

for

WebSphere

Everyplace

Custom

Environment

(WECE)

and

WebSphere

Everyplace

Micro

Environment

(WEME):

http://www-3.ibm.com/software/wireless/wsdd/features.html

You

can

also

develop

Web

Services

and

consumers

that

run

on

SMF.

WEME

and

WECE

Web

Services

clients

use

a

stub

to

interface

with

the

Web

Services

runtime.

However,

for

SMF

you

have

the

option

of

using

a

statically

generated

stub

and

the

Web

Services

runtime,

or

you

can

use

the

Web

Services

runtime

bundle

instead,

which

dynamically

creates

a

stub

when

the

service

is

accessed.

Because

Web

Services

clients

communicate

with

Web

Services

using

Hyper

Text

Transfer

Protocol

(HTTP),

you

need

an

Internet

connection

to

access

Web

Services.

Prerequisites

Web

Services

requires

the

following

software:

v

WebSphere

Studio

Device

Developer

5.7,

which

includes

the

SMF

runtime

v

Service

Management

Framework

Bundle

Development

Kit

5.7

v

WebSphere

Everyplace

Micro

Environment

Foundation

class

library

5.7

v

WebSphere

Everyplace

Custom

Environment

Max

class

library

5.7

v

WebSphere

Everyplace

Custom

Environment

RM

Class

library

5.7

Note:

Only

your

target

runtimes

need

to

be

installed

in

order

to

develop

your

application.

©

Copyright

IBM

Corp.

2004

3

http://www-3.ibm.com/software/wireless/wsdd/features.html

4

WebSphere:

Web

Services

Application

Developer’s

Guide

Chapter

3.

Concepts

This

chapter

helps

you

understand

Web

Services

client

plug-in

concepts.

Web

Services

Web

Services

are

applications

that

exist

in

a

distributed

environment,

such

as

the

Internet.

Web

Services

accept

a

request,

perform

a

function

based

on

the

request,

and

return

a

response.

The

request

and

the

response

can

be

part

of

the

same

operation,

or

they

can

occur

separately,

in

which

case

the

consumer

does

not

need

to

wait

for

a

response.

Both

the

request

and

the

response

usually

take

the

form

of

XML,

a

portable

data-interchange

format,

and

are

delivered

over

a

wire

protocol,

such

as

HTTP.

A

unique

attribute

of

Web

Services

is

that

their

implementation

details,

such

as

programming

language

used

to

develop

the

service,

are

hidden

from

the

clients

that

consume

the

service.

In

addition,

Web

services

publish

their

public

interfaces

in

a

standardized

method,

using

the

Web

Services

Description

Language

(WSDL).

Web

Services

transactions

are

usually

conducted

between

businesses

or

between

businesses

and

consumers.

A

business

that

is

a

provider

of

one

service

can

also

be

a

consumer

of

another

service.

A

Web

Services

consumer

can

be

a

client

device,

such

as

a

thin

client

connecting

to

the

Web

Services

provider

using

a

lightweight

protocol.

Web

Services

provides

the

following

components

that

you

can

use

to

develop

Web

Services

client

and

server

applications:

v

Web

Services

client

plug-in

that

enables

you

to

generate

an

application

stub

or

a

Java

Interface

file

v

Runtime

support

for

the

development

and

target

environments

Web

Services

installation

options

When

installing

the

Web

Services

support,

you

have

the

option

of

installing

either

the

MIDP,

the

ESWE

component,

or

both.

When

you

install

Web

Services

support

for

MIDP,

you

are

enabled

with

the

capability

to

develop

Web

Services

clients

that

use

statically

generated

stubs

using

the

Web

Services

wizard.

You

also

have

the

option

of

selecting

the

WS-Security

configuration

for

the

subject

service.

When

you

install

Web

Services

support

for

ESWE,

you

are

enabled

with

the

following

application

options:

v

Select

Mobile

Web

Service

Client

to

develop

Web

Services

consumer

applications

that

run

as

WEME,

WECE

applications

or

OSGi

bundles,

with

statically

generated

stubs

that

use

jclFoundation,

jclMax,

or

jclRM

class

libraries.

v

Select

Mobile

Web

Service

Client

for

Extension

Services

to

develop

Web

Services

consumer

applications

that

run

only

as

OSGi

bundles

with

dynamically

generated

stubs

that

use

jclFoundation,

jclMax,

or

jclRM

class

libraries.

©

Copyright

IBM

Corp.

2004

5

Web

Services

plug-in

The

Web

Services

plug-in

is

a

WebSphere

Studio

Device

Developer

(WSDD)

plug-in

that

you

can

use

to

generate

an

application

stub

or

an

Interface

file,

which

you

include

with

your

Java

application.

You

use

the

Web

Services

plug-in

wizard

to

generate

a

Java

stub

inside

an

existing

WSDD

project.

The

wizard

takes

a

WSDL

document

and

generates

a

Java

class

(stub)

that

a

program

can

call.

The

stub

handles

the

Web

Services

request

automatically

by

interfacing

with

the

Web

Services

runtime

and

returns

the

result

to

the

calling

program.

If

you

are

developing

MIDP

based

Web

services

clients,

then

you

must

install

the

Web

Services

for

MIDP

feature.

If

you

are

developing

ESWE

based

Web

services

client

or

server

applications,

then

you

must

install

the

Web

Services

for

ESWE

feature.

You

can

install

both

features

as

needed.

The

Web

Services

plug-in

contains:

v

Web

Services

Stub

generator

for

several

application

environments

v

This

guide

v

Sample

programs

Runtime

support

for

the

target

environment

Web

Services

provides

runtime

support

that

enables

you

to

run

a

Web

Services

consumer

on

the

following

target

platforms:

v

Pocket

PC

v

Microsoft®

Windows®

2000

v

Linux

Web

Services

includes

the

following

runtime

support

for

each

of

the

supported

target

platforms:

MIDP/CLDC,

WebSphere

Everyplace

Custom

Environment

(WECE),

and

the

OSGi

Service

Management

Framework

(SMF)

environment.

The

runtime

support

is

a

collection

of

Java

packages

that

you

must

install

in

the

target

environment.

The

packages

provided

in

each

runtime

environment

implement

interfaces

specified

in

the

Java

API

for

XML-based

Remote

Procedure

Call

(JAX-RPC)

subset

and

the

Java

API

for

XML-based

Parser

(JAXP)

subset

as

specified

in

the

JSR-172

Specification.

You

can

download

the

specification

from

www.jcp.org.

Note:

The

generated

Java

stub

uses

the

interfaces

specified

by

JSR-172.

In

Web

Services,

the

stub

and

the

interfaces

that

JAX-RPC

uses

are

exposed

to

application

developers.

However,

for

consistent

use

of

the

interfaces,

it

is

recommended

that

all

applications

use

the

automatically

generated

files,

rather

than

directly

using

the

JAX-RPC

interfaces.

This

release

includes

Web

Services

security

(WS-Security)

functions

for

use

by

Web

Services

clients

in

the

supported

platforms.

Support

for

OSGi

Services

Web

Services

allows

OSGi

bundles

to

consume

Web

Services

via

a

Web

Services

Gateway,

and

allows

OSGi

bundles

to

expose

their

interfaces

as

Web

Services.

6

WebSphere:

Web

Services

Application

Developer’s

Guide

http://www.jcp.org

The

limitations

imposed

by

JSR-172

for

J2ME

Web

Services

are

also

imposed

for

SMF

Web

Services

clients.

The

Web

Services

Gateway

dynamically

creates

a

Web

services

stub

for

an

OSGi

Web

services

consumer.

This

dynamically

generated

stub

is

used

by

your

OSGi

application

to

interface

with

the

Web

Services

runtime,

and

indirectly

with

the

actual

web

service,

regardless

of

where

the

service

is

running

(i.e.,

local

or

remote).

The

Web

Services

Gateway

bundle

is

also

capable

of

exposing

your

application

as

a

Web

Service

by

registering

your

application

bundle

with

the

Web

Services

Gateway

bundle.

Web

Services

security

Web

Services

security

(WS-Security)

provides

message

confidentiality

and

integrity

for

commercial

and

enterprise

customers.

For

example,

as

a

commercial

or

enterprise

customer,

you

might

use

Web

Services

security

for

financial

transactions

from

wireless

phones.

WS-Security

uses

the

following

encryption

and

key

management

technologies:

v

Asymmetric

encryption

WS-Security

uses

RSA

encryption

to

encrypt

the

symmetric

key.

The

receiver

provides

a

private

key,

and

the

sender

encrypts

the

symmetric

key

with

the

public

key.

In

most

cases,

the

public

key

resides

in

a

digital

certificate.

v

Symmetric

encryption

WS-Security

uses

DSA

encryption

to

encrypt

data

contained

in

a

SOAP

message.

Web

services

security

is

available

only

for

Web

services

client

applications.

Web

Services

security

specifications

WS-Security

is

a

standards-based

architecture.

The

standards

are

a

set

of

WS-Security

specifications

that

address

how

to

provide

protection

for

messages

that

Web

Services

consumers

exchange

in

a

Web

Services

environment.

WS-Security

defines

the

core

facilities

that

protect

the

integrity

and

confidentiality

of

a

message

and

provides

mechanisms

for

associating

security-related

claims

with

the

message.

To

secure

Web

Services,

you

must

consider

a

broad

set

of

security

requirements

including

authentication,

authorization,

privacy,

trust,

integrity,

confidentiality,

secure

communications

channels,

federation,

and

delegation.

Web

Services

security

architecture

The

Web

Services

client

wizard

enables

you

to

generate

a

client

stub

from

a

WSDL

file.

If

you

choose

to

configure

security,

the

wizard

creates

a

WS-Security

configuration

class.

Refer

to

the

following

steps

to

understand

how

the

Web

Services

runtime

and

the

WS-Security

runtime

communicate

securely

when

using

static

stubs.

1.

When

your

application

calls

the

Web

Service,

the

Web

Services

runtime

then

calls

the

WS-Security

configuration

class,

which

defines

the

WS-Security

configuration

to

the

WS-Security

runtime.

2.

The

Web

Services

runtime

then

constructs

a

SOAP

message

and

calls

the

WS-Security

runtime.

3.

The

WS-Security

runtime

processes

the

SOAP

message

according

to

the

WS-Security

configuration

information.

4.

The

Web

Services

runtime

then

sends

the

SOAP

message

to

the

Web

Services

provider.

Chapter

3.

Concepts

7

5.

When

the

Web

Services

runtime

receives

a

response

to

the

SOAP

message,

the

WS-Security

runtime

processes

the

security

information

in

the

SOAP

message.

For

example,

the

WS-Security

runtime

verifies

the

digital

signature

and

decrypts

the

data

accordingly.

6.

After

the

WS-Security

runtime

finishes

processing

the

security

information

in

the

SOAP

message,

the

Web

Services

runtime

finishes

processing

the

message

and

returns

the

results

to

your

application.

Web

Services

security

features

Web

Services

security

(WS-Security)

provides

a

set

of

mechanisms

that

you

can

use

to

secure

Simple

Object

Access

Protocol

(SOAP)

message

exchanges.

Specifically,

WS-Security

enhances

SOAP

messages

by

providing

quality

protection

through

the

following

features:

v

“Message

integrity”

with

“XML

digital

signatures”

on

page

10

v

“Message

confidentiality”

on

page

9

with

“XML

encryption

and

decryption”

on

page

10

v

“Single

message

authentication”

on

page

9

with

“Security

tokens”

on

page

10

You

can

combine

these

functions

in

different

ways

to

build

security

models

with

different

cryptographic

technologies.

The

Web

Services

security

support

for

WebSphere

Studio

Device

Developer

(WSDD)

is

based

on

the

WS-Security

Minimalist

Profile

specification

maintained

by

the

OASIS

technical

committee

for

Web

Services

security.

Message

integrity

WS-Security

provides

Simple

Object

Access

Protocol

(SOAP)

message

integrity

through

“XML

digital

signatures”

on

page

10

that

associate

a

key

with

data.

The

following

steps

describe

how

senders

generate

and

receivers

verify

XML

digital

signatures:

1.

The

WS-Security

runtime

generates

signatures

by

processing

the

elements

in

the

SOAP

messages

to

produce

Digests.

Note:

The

Digests

reside

in

an

XML

element

called

SignedInfo.

2.

The

sender

digests

the

data

in

the

SignedInfo

element

and

cryptographically

signs

the

element

to

produce

a

signature.

3.

WS-Security

uses

the

private

key

of

the

requester

to

cryptographically

sign

the

element.

4.

When

the

receiver

receives

the

signed

SOAP

message,

the

receiver

verifies

the

Digests

in

the

SignedInfo

element

by

recalculating

the

digests

of

the

elements

in

the

SOAP

message.

5.

The

receiver

verifies

the

signature

against

the

sender’s

public

key.

Because

the

SOAP

message

sender

signs

the

message

with

a

private

key

and

the

receiver

verifies

the

signature

using

the

public

key,

the

receiver

determines

that

only

the

private

key

holder

could

have

signed

the

message.

The

WS-Security

support

implements

XML

digital

signatures

with

the

Rivest,

Shamir,

Adleman

(RSA)

algorithm

with

Secure

Hash

Algorithm

1

(SHA1)

and

Digital

Signature

Algorithm

(DSA)

with

SHA1.

To

send

a

digitally

signed

message,

you

must

provide

a

keystore

that

contains

an

RSA

or

DSA

private

key

and

information

to

access

the

key.

When

the

receiver

receives

a

SOAP

message,

the

WS-Security

support

uses

a

public

key

to

verify

the

signature.

Because

the

received

message

contains

the

information

needed

to

reference

the

public

key,

you

do

not

8

WebSphere:

Web

Services

Application

Developer’s

Guide

need

to

provide

configuration

information

to

verify

the

signature

of

the

received

messages.

For

instructions

to

create

a

keystore,

refer

to

“Creating

a

keystore”

on

page

22.

Note:

The

WS-Security

support

in

Web

Services

does

not

permit

symmetric

key

signature

algorithms.

Message

confidentiality

WS-Security

protects

message

confidentiality

by

using

XML

encryption

to

encrypt

the

data

in

the

message

and

represent

the

result

in

XML.

The

WS-Security

support

uses

asymmetric

encryption,

also

known

as

key

exchange.

The

following

steps

describe

how

senders

encrypt

the

information

in

the

message

and

receivers

decrypt

the

information:

1.

During

symmetric

encryption,

the

sender

generates

a

secret

key

that

encrypts

the

data

in

the

message.

2.

The

sender

encrypts

the

secret

key

with

a

public

key

that

the

receiver

can

access.

3.

The

sender

sends

the

secret

key

in

the

SOAP

message

to

the

receiver.

4.

When

the

receiver

receives

the

SOAP

message,

the

receiver

uses

the

public

key

to

decrypt

the

secret

key

that

was

sent

with

the

message.

The

WS-Security

support

in

Web

Services

for

WSDD

uses

RSA

for

key

encryption

and

decryption.

To

send

an

encrypted

message,

you

must

provide

a

keystore

with

the

receiver

certificate

and

information

to

access

the

certificate.

The

certificate

contains

the

public

key

for

the

receiver.

To

decrypt

the

message

you

receive,

you

must

provide

a

keystore

that

contains

the

private

key

and

information

to

access

the

key.

For

instructions

to

create

a

keystore,

refer

to

“Creating

a

keystore”

on

page

22.

Note:

The

WS-Security

support

in

Web

Services

for

WSDD

does

not

support

symmetric

key

encryption

and

symmetric

message

encryption.

Single

message

authentication

WS-Security

supports

single

message

authentication

by

enabling

you

to

send

authentication

information

in

SOAP

messages.

Specifically,

the

authentication

information

resides

in

a

security

token

in

the

SOAP

message.

Security

tokens

can

be

X.509

certificates,

or

a

user

name

and

password.

The

WS-Security

support

for

WebSphere

Studio

Device

Developer

(WSDD)

permits

Basic

authentication

with

user

name

and

password

and

signature

authentication

with

an

X509-v3

certificate.

Web

Services

security

supported

functions

The

WS-Security

support

in

Web

Services

for

WSDD

is

an

implementation

of

the

SOAP

Message

Security

Minimalist

Profile

(MProf)

specification.

However,

the

WS-Security

support

differs

from

the

MProf

specification

in

the

following

ways:

v

To

support

XML

streaming,

MProf

prohibits

backward

references

for

signatures.

Because

Web

Services

is

not

a

streaming-based

architecture,

it

is

not

necessary

to

restrict

the

location

of

targeted

message

parts.

As

such,

the

WS-Security

support

permits

you

to

use

backward

references

for

signatures

by

intra-document

URIs.

v

MProf

assumes

that

the

sender

always

canonicalizes

SOAP

messages.

However,

no

servers

exist

that

always

canonicalize

all

of

the

targeted

message

parts

for

signatures.

As

such,

the

WS-Security

support

enables

you

to

canonicalize

SOAP

messages

for

the

messages

you

send

and

receive.

v

WS-Security

does

not

support

MProf

awareness.

v

WS-Security

supports

only

intra-document

URIs

for

signatures.

Enveloped

signatures

and

SOAP

attachment

signatures

are

not

supported.

Chapter

3.

Concepts

9

XML

digital

signatures

The

WS-Security

support

in

Web

Services

for

WebSphere

Studio

Device

Developer

(WSDD)

supports

the

following

algorithms

and

transforms:

v

Digest

method

algorithm

including

the

US

Secure

Hash

Algorithm

1

(SHA1)

v

Signature

method

algorithm

–

RSA

with

SHA1

–

DSA

with

SHA1
v

Canonicalization

method

algorithm

including

the

Exclusive

XML

Canonicalization

(xml-exc-c14n)

Note:

XSLT,

XPath,

and

enveloped

signatures

are

not

supported.

XML

encryption

and

decryption

The

WS-Security

support

in

Web

Services

for

WebSphere

Studio

Device

Developer

(WSDD)

supports

the

following

algorithms:

v

RSA-v1.5

for

key

transport

v

TripleDES

for

block

encryption

Security

tokens

The

WS-Security

support

for

WebSphere

Studio

Device

Developer

(WSDD)

supports

the

following

security

tokens:

v

X509-v3

as

binary

security

tokens

v

User

name

token

10

WebSphere:

Web

Services

Application

Developer’s

Guide

Chapter

4.

Tasks

This

chapter

provides

instructions

for

creating

Web

Services

clients.

Creating

a

Web

Services

client

for

J2ME

To

develop

a

Web

Services

client

for

Java

2

Micro

Edition

(J2ME),

complete

the

tasks

described

in

the

following

sections.

Creating

a

J2ME

MIDP

project

Before

you

can

use

the

wizard

to

generate

the

client

stub

and

sample

MIDlet,

refer

to

the

following

steps

to

create

a

Java

2

Micro

Edition

(J2ME)

Mobile

Information

Device

Profile

(MIDP)

project

with

the

JCL

MIDP

library:

1.

Select

File

->

New

->

Project.

2.

In

the

left

frame,

select

J2ME.

In

the

right

frame,

select

J2ME

Project.

Click

Next.

3.

Specify

a

name

for

your

new

project.

Click

Next.

4.

Select

WEME

jclMidp

as

the

class

library,

and

click

Finish.

Generating

a

Java

stub

and

sample

MIDlet

client

After

you

finish

creating

your

Java

2

Micro

Edition,

Mobile

Information

Device

Profile

(MIDP)

project,

refer

to

the

following

steps

to

create

a

Java

stub

and

MIDlet

client:

1.

Select

File

->

New

->

Other.

2.

In

the

left

frame,

select

Mobile

Web

Services

Client.

In

the

right

frame,

select

Mobile

Web

Services

Client

for

MIDP.

Click

Next.

The

Web

Services

Client

Stub

Generator

is

displayed.

3.

Specify

the

following

information

on

the

Web

Service

Client

Stub

Generator

dialog:

v

Specify

the

source

folder

where

you

want

the

stub

you

generate

and

the

sample

MIDlet

files

to

reside.

Note:

In

most

cases,

select

the

src

folder

you

created

in

“Creating

a

J2ME

MIDP

project.”

v

Specify

the

name

of

the

Java

package

where

you

want

the

code

you

generate

to

reside.

For

example,

you

might

name

your

package

com.mysample.webservice.

Note:

This

is

an

optional

field,

and

it

is

suggested

that

you

leave

this

field

blank.

v

Specify

the

address

of

the

Web

Services

Description

Language

(WSDL)

document

that

describes

the

Web

Service

for

which

you

want

to

generate

the

stub.

v

Select

the

Generate

Midlet

checkbox

if

you

want

the

wizard

to

create

a

sample

midlet.

v

Select

the

Configure

security

checkbox

if

you

want

to

enable

security.

©

Copyright

IBM

Corp.

2004

11

Creating

a

MIDlet

suite

Refer

to

the

WebSphere

Studio

Device

Developer

documentation

for

instructions

to

create

a

MIDlet

suite

that

you

can

deploy

to

your

device

or

emulator.

The

MIDlet

suite

enables

you

to

execute

the

sample

MIDlet.

Creating

a

MIDlet

suite

configuration

Before

you

can

run

your

MIDlet

suite

on

the

MIDP

emulator,

refer

to

the

WebSphere

Studio

Device

Developer

documentation

for

instructions

to

create

a

MIDlet

suite

configuration.

Running

the

client

in

the

MIDP

emulator

You

can

use

the

build

you

created

in

“Creating

a

MIDlet

suite

configuration”

to

launch

the

MIDlet

suite

in

the

MIDP

emulator.

Refer

to

the

following

instructions

to

launch

your

sample

Web

Services

MIDlet

on

the

WebSphere

Studio

Device

Developer

(WSDD)

MIDP

emulator:

1.

On

the

main

menu,

select

Run

->

Run

to

display

the

Run

Configuration

dialog.

2.

In

the

left

frame,

select

MIDlet

suite

and

click

New.

The

MIDP

run

configuration

editor

is

displayed.

3.

Specify

the

name

you

want

to

assign

to

this

configuration.

4.

Verify

that

the

Project

field

lists

the

name

of

your

project.

If

the

Project

field

does

not

list

your

project,

click

Browse

and

navigate

to

your

project.

5.

Verify

that

the

MIDlet

suite

field

lists

the

name

of

your

JAD

file.

6.

Click

Run.

The

MIDP

Emulator

window

is

displayed.

You

can

use

the

Emulator

to

run

the

application

you

created.

Running

the

client

on

a

PocketPC

device

You

can

use

the

build

you

created

in

“Creating

a

MIDlet

suite

configuration”

to

launch

the

MIDlet

suite

on

a

PocketPC

device.

Before

you

can

launch

the

MIDlet

suite

on

a

PocketPC

device,

verify

that

the

PocketPC

device

connects

to

the

host

machine

with

ActiveSync

and

install

the

J9

Java

Virtual

Machine

(JVM)

on

the

device

using

the

instructions

in

the

WebSphere

Studio

Device

Developer

(WSDD)

documentation.

Refer

to

the

following

instructions

to

launch

your

sample

Web

Services

MIDlet

on

a

PocketPC

device:

1.

On

the

main

menu,

select

Run

->

Run

to

display

the

Run

Configuration

dialog.

2.

In

the

left

frame,

select

MIDlet

Suite

and

click

New.

The

MIDP

run

configuration

editor

is

displayed.

3.

Specify

the

name

you

want

to

assign

to

this

configuration.

4.

Verify

that

the

Project

field

lists

the

name

of

your

project.

If

the

Project

field

does

not

list

your

project,

click

Browse

and

navigate

to

your

project.

5.

Verify

that

the

your

PocketPC

device

is

selected

in

the

Device

or

JRE

field.

If

your

PocketPC

device

is

not

listed,

complete

the

following

steps:

a.

Click

Configure.

12

WebSphere:

Web

Services

Application

Developer’s

Guide

b.

Select

PocketPC

Handheld

and

click

New.

c.

Click

Browse

next

to

J9

runtime

location

to

select

the

directory

where

the

J9

resides.

d.

Click

Browse

next

to

Application

install

location

to

select

the

directory

where

you

want

your

application

to

reside.

e.

Click

Browse

next

to

Shortcut

install

location

to

select

the

directory

where

you

want

the

shortcut

to

reside.

f.

Click

OK.
6.

Verify

that

the

MIDlet

suite

field

lists

the

name

of

your

JAD

file.

7.

Click

Run.

WSDD

transfers

your

build

to

the

PocketPC

device

under

the

directory

you

selected

in

the

Application

install

location

field.

Your

application

executes

automatically

after

WSDD

transfers

the

application

to

the

device.

Note:

If

your

application

does

not

execute

successfully

on

the

device,

refer

to

“Enabling

MIDP

applications

to

run”

on

page

33

for

additional

information.

Creating

a

Mobile

Web

Services

client

You

can

develop

a

Mobile

Web

Services

client

application

that

uses

statically

generated

stubs

that

use

the

WECE

environment

jclMax

library.

Setting

up

a

WECE

project

for

use

with

SMF

Set

up

a

project

into

which

to

add

a

generated

Web

Services

client

stub

by

performing

the

following

procedure:

1.

From

the

WSDD

toolbar,

click

Open

New

Wizard.

The

New

dialog

is

displayed.

2.

In

the

left

frame,

select

WECE

for

J9.

In

the

right

frame,

select

Create

WECE

Project.

Then

click

Next.

The

New

Project

dialog

is

displayed.

3.

Type

a

name

for

your

new

project,

for

example:

My_Web_Service_Project.

Click

Next.

4.

Select

the

WECE

jclMax

class

library

configuration.

5.

Click

Finish

to

create

the

WECE

project.

6.

In

the

WSDD,

expand

the

+

sign

to

the

left

of

My_Web_Service_Project

to

view

the

following

files

and

folders:

v

src:

Your

Java

code,

including

the

stub

should

reside

in

this

directory.

v

VEHOME/lib/Max/*:

The

required

libraries

that

are

supplied

with

Max.

The

″jar″

icon

signifies

that

these

libraries

are

in

the

Java

build

path

(and

not

in

your

project).

v

wsddbuild.xml:

This

is

the

Ant

script

file

that

defines

builds

and

launches.

This

file

will

be

used

in

subsequent

sections.

Creating

a

Web

Services

stub

and

interface

file

You

must

add

Web

Services

to

an

existing

project.

To

do

so,

create

a

Web

Services

stub

and

interface

file

by

performing

the

following

procedure:

1.

Select

My_Web_Service_Project

in

the

package

explorer.

Click

Open

New

Wizard

in

the

workbench

toolbar,

then

select

Other.

The

Web

Services

wizard

is

under

the

Other

category.

The

New

dialog

is

displayed.

Chapter

4.

Tasks

13

2.

In

the

left

frame

of

the

New

dialog,

select

Mobile

Web

Services

Client.

In

the

right

frame,

select

Web

Services

Client.

Then

click

Next.

The

Stub

Generator

dialog

is

displayed.

3.

Enter

the

following

information

into

the

Stub

Generator

Dialog:

v

Browse

to

the

source

directory

of

the

project

you

want

the

stub

to

be

placed.

This

example

uses

My_Web_Service_Project.

v

The

Package

is

the

name

of

the

Java

package

in

which

you

want

the

stub

to

be

created,

for

example,

mysample.webservice.com.

v

WSDL

Location

is

the

URL

of

the

WSDL

document

that

describes

the

Web

Services

for

which

you

want

to

generate

a

stub.

This

example

uses

the

a

Web

Services

from

www.acrosscommunications.com.
4.

If

the

Web

Service

requires

security,

then

select

the

Configure

Security

checkbox.

If

you

choose

to

enable

security,

click

Next

to

complete

the

security

information

on

the

dialog

windows.

Refer

to

“Creating

a

Web

Services

application

that

includes

WS-Security”

on

page

21

for

instructions

to

complete

the

security

information.

If

you

choose

not

to

enable

security,

click

Finish.

The

wizard

generates

the

Java

classes

in

the

package

you

specified

in

the

wizard.

The

class

names

reflect

the

binding

you

specified

in

the

Web

Services

Description

Language

(WSDL)

document.

5.

Click

Finish.

After

you

have

created

the

stub

and

interface

file,

you

need

to

create

the

rest

of

your

WECE-based

application

to

interface

with

the

generated

stub.

Please

refer

to

the

help

document

for

building

ad

running

a

WECE

application

for

more

information.

A

Java

class

is

created

with

the

binding

name

taken

from

the

WSDL

document.

Creating

a

Web

Services

client

for

Extension

Services

(ESWE)

A

Web

Services

client

for

ESWE

enables

SMF

bundles

to

consume

Web

Services

using

a

Web

Services

Gateway

bundle

that

dynamically

creates

a

Web

Services

stub.

To

create

a

Web

Services

client

running

as

an

SMF

bundle,

complete

the

tasks

in

this

section.

After

you

have

completed

these

steps,

see

“Using

Web

Services

with

SMF”

on

page

16

for

more

information.

SMF

is

the

IBM®

implementation

of

the

OSGi

Alliance

standard.

SMF

uses

a

single

Java

Virtual

Machine

(JVM)

instance

to

run

multiple

applications.

These

applications

are

delivered

to

a

device

over

a

network

as

bundles.

SMF

Bundle

Developer

is

a

component

of

SMF

that

enables

you

to

package

bundles

and

create

manifest

files

that

contain

the

application’s

information.

Creating

an

SMF

bundle

The

following

steps

describe

how

to

develop

an

example

bundle

called

My_Web_Service_Bundle:

1.

Create

a

new

project

for

My_Web_Service_Bundle.

When

you

use

WSDD

to

create

bundles,

your

bundle

is

contained

in

a

WSDD

project.

The

project

stores

the

environment

and

all

of

the

necessary

files

to

build

an

SMF

bundle.

Use

the

following

steps

to

create

the

project

for

the

Web

Services

bundle.

14

WebSphere:

Web

Services

Application

Developer’s

Guide

a.

Click

File

->

New

->

Project.

Select

Java

->

Java

Project.

Click

Next.

b.

Type

a

name

for

the

new

project,

for

example:

My_Web_Service_Bundle.

Click

Next.

c.

Click

Source.

Select

Use

the

project

as

source

folder.

d.

Click

Finish.

2.

Create

a

new

Bundle

Folder

for

the

My_Web_Service_Bundle

project.

SMF

provides

tools

and

files

that

can

assist

you

in

developing

SMF

bundles.

In

this

example

we

will

use

the

Manifest

Editor

and

the

Submit

Bundle

tools.

To

begin,

create

a

Bundle

Folder

for

the

My_Web_Service_Bundle

project

with

the

following

steps.

a.

Right-click

the

My_Web_Service_Bundle

project

in

the

Java

perspective.

Select

New

->

Other.

b.

Select

SMF

->

Bundle

Folder.

Click

Next.

c.

Select

the

/My_Web_Service_Bundle

bundle

folder

container.

Click

Finish.

3.

Create

a

package

for

the

bundle

with

the

following

steps.

a.

Right-click

the

My_Web_Service_Bundle

project

in

the

Java

perspective.

b.

Select

New

->Package.

c.

Name

the

package,

for

example

com.example.smf.web.service,

in

the

Package

field.

d.

Click

Finish.

4.

Create

the

BundleActivator

for

the

test

service

bundle

with

the

following

steps.

a.

Right-click

the

My_Web_Service_Bundle

project

in

the

Java

perspective.

b.

Select

New

->

Class.

c.

Type

com.example.smf.web.service

in

the

Package

field.

d.

Type

MyBundleActivator

in

the

Name

field

and

click

Finish.

e.

Type

the

source

for

com/ibm/osg/example/My_Web_Service_Bundle/MyBundleActivator.java.

Refer

to

the

code

example

in

″

Registering

and

unregistering

a

service

with

the

OSGi

Framework″

in

the

Service

Management

Framework

Bundle

Developer

Tools,

5.5.2

User’s

Guide.

f.

Click

Save

to

compile

the

class.

5.

Modify

the

manifest

file

for

the

My_Web_Service_Bundle

project.

The

Manifest

Editor

helps

you

to

prevent

errors

when

you

create

a

manifest

file

for

a

bundle,

and

provides

a

user

interface

that

you

can

use

to

create

a

manifest

file.

To

use

the

Manifest

Editor,

use

the

following

steps.

a.

In

the

My_Web_Service_Bundle

project,

double-click

the

META-INF

folder

and

then

double-click

the

MANIFEST.MF

file.

The

GUI

for

the

manifest

editor

is

displayed.

If

the

manifest

editor

does

not

display,

close

the

MANIFEST.MF

file

and

right-click

the

MANIFEST.MF

file

from

the

My_Web_Service_Bundle

project.

Select

Open

With

->

Bundle

Manifest

Editor.

b.

Type

com.example.smf.web.service.MyBundleActivator

in

the

Bundle-Activator

field.

Alternatively,

you

can

use

the

pull-down

menu

in

the

Bundle-Activator

field

to

select

the

correct

BundleActivator

instead

of

typing

it

in.

c.

In

the

Import

Packages

area,

click

Add.

Use

the

default

(checked)

values

that

are

provided

and

click

OK.

Chapter

4.

Tasks

15

d.

In

the

Export

Packages

area,

click

Add.

Select

the

com.ibm.osg.example.My_Web_Service_Bundle

package

and

click

OK.

e.

Click

Save

to

save

the

manifest

file.

6.

Create

the

bundle

jar

for

My_Web_Service_Bundle

with

the

following

steps.

a.

Right-click

on

My_Web_Service_Bundle

in

the

Package

Explorer

panel.

Select

SMF

->

Submit

Bundle....

b.

Select

Submit

Jar.

Click

Add

Directory

and

select

the

directory

to

output

the

bundle

jar

file

and

click

OK.

Select

the

directory

under

Export

Targets.

Click

Finish.

c.

The

bundle

jar

is

placed

in

the

directory

you

specify.

For

example,

the

jar

file

is

MyTestService+1_0_0.jar.

Rename

the

file

MyTestService.jar.

Note:

You

can

rename

the

jar

file

with

a

different

name.

However,

this

example

assumes

that

you

rename

the

file

MyTestService.jar.

7.

Start

the

SMF

Bundle

Server

from

a

command

prompt

as

described

in

the

Service

Management

Framework

Help.

You

should

then

be

able

to

view

details

about

the

server

from

the

SMF

Bundle

Servers

tab

of

the

SMF

perspective.

8.

Submit

the

bundles

to

the

server

with

the

following

steps:

a.

Right-click

on

the

My_Web_Service_Bundle

project

and

select

SMF->Submit

Bundle.

b.

Check

the

Submit

jar

checkbox,

select

the

SMF

Bundle

Server

and

click

Finish.

The

MyTestService

bundle

is

uploaded

to

the

SMF

Bundle

Server.

9.

Start

the

SMF

Runtime

with

the

following

steps:

a.

Select

Run

->

Run....

b.

Double-click

SMF

Runtime.

c.

Click

Run.

The

SMF

Runtime

starts.

Note:

From

the

SMF

Runtime

view

of

the

SMF

perspective

you

can

now

view

details

about

the

currently

running

SMF

Runtime.
10.

Install

the

bundles

from

the

SMF

Bundle

Server

to

the

SMF

Runtime

with

the

following

steps:

a.

Bring

up

the

SMF

Bundle

Servers

view

of

the

SMF

perspective

(this

is

usually

tabbed

with

the

Package

Explorer

view).

b.

Expand

Bundles.

c.

Right

click

on

the

Web_Service_Bundle

bundle

and

select

Install

Bundle.
11.

View

Output

-

You

can

view

the

output

of

the

Bundles

from

the

Console

view

(from

the

SMF

or

Debug

perspective).

Using

Web

Services

with

SMF

SMF

provides

a

service

registry

to

enable

bundles

to

provide

services

to

each

other.

A

bundle

registers

a

service

using

a

class

name,

an

object

that

is

an

instance

of

that

class,

and

a

set

of

properties.

Other

bundles

can

then

look

up

that

service

using

the

class

name,

a

query,

or

both

against

the

set

of

properties.

Generally,

services

are

registered

under

the

class

name

of

a

well

defined

interface.

Because

only

local

bundles

can

register

a

service,

the

service

registry

will

contain

only

local

services.

16

WebSphere:

Web

Services

Application

Developer’s

Guide

The

Web

Services

Gateway

bundle

(WSOSGi)

enables

bundles

to

use

Web

Services

as

though

they

were

local

bundles.

Subject

to

the

limitations

of

Web

Services,

bundles

using

Web

Services

need

not

be

aware

that

the

service

is

not

a

local

service.

Installing

the

Web

Services

Gateway

bundle

To

use

wsosgi,

you

must

install

and

start

the

wsosgi

bundle

in

the

framework.

For

wsosgi

to

work,

it

must

be

run

on

a

framework

that

supports

the

DynamicImport-Package

manifest

tag.

This

tag

is

part

of

the

“OSGi

R3

Framework

Specification”

and

is

implemented

in

SMF.

Preparing

to

register

Web

Services

In

SMF

you

can

only

register

services

that

implement

an

exported

class

in

the

service

registry.

When

wsosgi

parses

the

WSDL

for

Web

Service,

it

generates

the

name

of

the

class

to

be

registered

using

the

port

name,

and

calculates

the

package

name

of

the

class

using

the

host

name

of

the

namespace

of

the

port.

wsosgi

will

then

dynamically

import

the

package

corresponding

to

the

class.

If

the

class

is

not

already

exported,

the

Web

Services

will

not

be

registered.

You

must

use

another

tool,

such

as

WSDL2java

(which

is

included

with

Apache

AXIS),

to

generate

the

needed

classes,

or

you

must

construct

the

classes

by

hand.

You

should

generate

the

classes

before

wsosgi

tries

to

register

a

service,

because

any

client

bundle

that

uses

the

service

is

compiled

against

the

classes

that

correspond

to

the

service.

You

must

install

and

export

the

classes

so

that

the

client

bundle

can

be

resolved

and

started.

Registering

Web

Services

For

a

programmatic

interface

to

registering

Web

Services,

you

can

use

the

WSProxyService.

After

the

wsosgi

bundle

is

started,

it

registers

the

com.ibm.pvcws.osgi.proxy.WSProxyService.

This

service

uses

two

methods

to

register

services:

boolean

register(String

url);

boolean

register(String

url,

Dictionary

properties);

Both

methods

take

the

URL

of

a

WSDL

resource

that

describes

the

Web

Services

to

be

registered

in

the

framework.

The

WSDL

will

be

retrieved

and

parsed

to

figure

out

the

location

of

the

Web

Services

provider,

the

names

of

the

interfaces

to

register,

and

the

data

structures

and

methods

used

by

the

interfaces.

A

service

will

then

be

registered

using

the

class

names

of

the

interfaces

derived

from

the

WSDL.

After

the

service

is

registered,

it

can

be

retrieved

from

the

service

registry

and

used

just

as

any

other

local

service.

If

the

Web

Services

are

accessed

using

a

user

name

and

password,

the

two

argument

version

of

the

register

method

must

be

used.

Web

Services

will

stay

registered

until

the

virtual

bundle

for

that

service

is

stopped

or

uninstalled.

If

the

unregister

method

of

WSProxyService

is

used,

the

bundle

registering

the

service

will

be

started.

To

register

Web

Services,

install

and

start

the

wsosgi

bundle

and

go

to

the

http://server:port/wsman

Web

page.

Chapter

4.

Tasks

17

Prepackaging

Web

Services

You

can

also

prepackage

Web

Services

in

a

bundle

that

you

can

install

using

bundle

deployment

methods

rather

than

the

WSProxyService.

The

prepackaged

bundle

must

contain

the

ProxyActivator

class

and

a

Manifest

in

the

following

format:

Bundle-Activator:

ProxyActivator

DynamicImport-Package:

*

WSDL-URL:

url

If

the

WSDL_URL

is

present,

the

WSDL

used

to

define

the

service

to

be

registered

will

be

obtained

from

the

given

URL.

Otherwise,

the

WSDL

will

be

drawn

from

a

resource

in

the

bundle

at

/wsdl.

Properties

needed

to

access

the

service

provided

will

be

drawn

from

a

resource

in

the

bundle

at

/wsdl-props.

For

convenience,

WSProxyServiceImpl.createVirtualBundle

is

a

public

static

method

you

can

use

to

create

a

prepackaged

bundle.

Using

Web

Services

Although

wsosgi

proxies

the

Web

Services

as

a

local

service,

and

bundles

use

this

service

in

the

same

way

as

any

other

local

service,

there

are

still

some

limitations

when

using

these

services.

Briefly,

these

limitations

are

as

follows:

v

Method

parameters

must

be

able

to

be

serialized

into

primitive

types.

This

means

that

remote

references

cannot

be

passed

to,

or

returned

from

a

method.

A

specific

example

of

such

a

reference

would

be

an

object

passed

to

a

method

that

has

non-accessor

type

methods

that

can

be

invoked

by

the

called

class.

v

If

non

primitive

data

types

are

to

be

returned

by

a

method,

or

set

in

an

output

parameter,

the

data

types

must

have

default

constructors

and

public

member

variables

or

public

accessors

for

all

members

that

are

described

the

WSDL.

v

Currently,

self

referential

data

structures

are

not

supported.

An

example

of

such

a

structure

is

a

circular

linked

list.

Input

parameters

to

the

methods

of

Web

Services

work

as

expected

subject

to

the

preceding

limitations.

Output

methods

present

a

problem

because

Java

does

not

have

the

concept

of

output

parameters.

wsosgi

enables

more

flexible

handling

of

output

parameters

than

JSR-101.

In

addition

to

supporting

Holder

classes,

it

also

enables

instantiated

output

parameters

to

be

passed

to

a

method

and

then

have

its

members

filled

in

directly.

An

example

of

this

follows:

If

there

is

a

class

named

Coord:

class

Coord

{

int

x;

int

y;

}

And

if

there

is

a

method

void

getCoord(Coord

coord),

you

would

normally

need

to

use

a

Holder

class

with

a

member

named

value

that

would

be

set

when

getCoord

returns.

Rather

than

requiring

these

extra

classes

and

logic,

getCoord

can

be

passed

an

instance

of

Coord

whose

members,

x

and

y,

will

be

set

on

return.

The

decision

to

use

Coord

directly

or

use

a

Holder

is

made

when

the

Java

interface

is

defined.

wsosgi

will

base

its

handling

of

output

parameters

at

runtime

by

evaluating

whether

or

not

the

parameter

is

an

instance

of

Holder.

18

WebSphere:

Web

Services

Application

Developer’s

Guide

Creating

a

Web

Services

interface

file

To

create

a

Web

Services

interface

file,

you

must

have

already

created

an

SMF

bundle.

A

Web

Services

client

must

be

added

to

an

existing

project.

These

instructions

describe

how

to

generate

an

interface

file

for

the

My_Web_Service_Bundle

project

created

in

“Creating

an

SMF

bundle”

on

page

14.

1.

Select

My_

Web_Service_Project

in

the

Package

Explorer.

Click

Open

the

New

Wizard

in

the

workbench

toolbar,

then

select

Other.

The

Web

Services

wizard

is

under

the

Other

category.

The

New

dialog

is

displayed.

2.

In

the

left

frame

of

the

New

dialog,

select

Mobile

Web

Services

Client.

In

the

right

frame,

select

Web

Services

Client

for

Extension

Services.

Then

click

Next.

The

Generator

dialog

is

displayed.

3.

Enter

the

following

information

into

the

Stub

Generator

Dialog:

v

Browse

to

the

source

directory

of

the

project

where

you

want

the

stub

to

be

placed.

This

example

uses

My_Web_Service_Bundle.

v

The

Package

is

the

name

of

the

Java

package

in

which

you

want

the

output

files

to

be

created,

for

example,

com.example.smf.web.service.

v

WSDL

Location

is

the

URL

of

the

WSDL

document

that

describes

the

Web

Services

for

which

you

want

to

generate

a

stub.

This

example

uses

Web

Services

from

www.acrosscommunications.com.
4.

Click

Finish.

5.

An

interface

file

and

a

stub

is

generated

that

you

can

use

with

your

application

for

interfacing

with

the

Web

Services.

Using

Web

Services

directly

Bundle

programmers

can

also

use

Web

Services

directly

rather

than

indirectly

through

the

service

registry.

This

is

accomplished

using

WSDLProxy

class.

The

simplest

way

to

use

WSDLProxy

is

the

public

static

method

getProxy,

which

returns

an

object

of

the

requested

type

that

corresponds

to

a

service

described

by

the

WSDL.

To

get

more

precise

information

and

implementations

you

must

use

the

non-static

methods

of

WSDLProxy.

Hosting

an

OSGi

Web

Services

provider

Hosting

OSGi

Web

Services

allows

OSGi

services

to

be

designated

as

having

a

Web

Services

interface

during

service

registration.

This

support

is

patterned

after

the

capabilities

specified

in

the

J2ME

Web

Services

specifications.

At

present,

there

is

no

WS-Security

server

model

for

using

the

Web

Services

Gateway

bundle.

To

host

non-secured

OSGi

Web

Services,

perform

the

following

steps:

1.

Create

an

OSGi

service.

This

is

the

service

that

you

are

about

to

expose

as

a

Web

Service.

2.

Register

the

OSGi

service

and

add

any

additional

properties

by

referring

to,

“Registering

the

OSGi

Service”

on

page

20

below.

3.

Deploy

the

bundle

containing

the

OSGi

service,

as

well

as

the

Web

Services

Gateway

bundle.

For

more

information,

refer

to

the

SMF

documentation.

Using

OSGi

Web

Services

To

use

the

OSGi

Web

Services

provided

by

the

above

steps,

perform

the

following

procedure:

1.

Retrieve

the

WSDL

for

the

service.

Refer

to,

“Registering

the

OSGi

Service”

on

page

20

for

more

information.

2.

Use

the

WSDL

to

develop

the

client

for

the

service.

Chapter

4.

Tasks

19

The

Web

Services

Gateway

bundle,

wsosgi,

enables

bundles

to

use

Web

Services

as

though

they

were

local

services.

Subject

to

the

limitations

of

Web

Services,

bundles

using

Web

Services

need

not

be

aware

that

the

service

is

not

a

local

service.

Registering

the

OSGi

Service

All

procedures

for

registering

the

OSGi

Service

takes

place

in

the

start()

method.

Note:

You

are

not

limited

to

performing

these

steps

in

the

start()

method,

providing

you

have

a

reference

to

the

BundleContext

object

for

registering

a

service

at

a

later

time.

There

are

two

properties

to

set

on

the

OSGi

service:

v

com.ibm.pvcws.wsdl

The

value

for

this

property

is

either

an

empty

String,

or

a

String

containing

the

actual

WSDL

(not

a

URL

to

the

WSDL,

as

above).

com.ibm.pvcws.wsdl

is

an

empty

String

indicating

that

the

service

should

be

exposed

as

a

Web

Service.

You

can

also

pass

a

String

containing

the

WSDL

that

describes

the

service

if

the

WSDL

must

be

of

a

form

that

cannot

be

autogenerated.

If

you

do

not

use

the

empty

String,

the

WSDL

must

have

a

location

attribute.

The

value

of

the

location

attribute

is

unimportant

since

wsosgi

will

correct

the

location

when

it

is

served

to

clients.

v

Constants.SERVICE_PID

Constants.SERVICE_PID

is

an

optional

String

that

can

be

used

to

construct

a

predetermined

URL

to

the

service.

The

registerService

method

takes

the

following

three

arguments:

1.

The

name

of

the

interface

or

class

that

the

service

is

registered

under.

The

service

must

be

an

instance

of

this

interface

or

class.

This

argument

allows

other

bundles

to

use

the

service

as

a

local

service.

If

the

service

is

only

being

exposed

as

a

web

service,

java.lang.Object

can

be

used.

2.

An

instance

of

the

service.

3.

The

service

properties.

Refer

to

the

following

example:

package

com.ibm.wstkmd.bundle;

import

java.util.Hashtable;

import

org.osgi.framework.BundleActivator;

import

org.osgi.framework.BundleContext;

import

org.osgi.framework.Constants;

import

org.osgi.framework.ServiceReference;

import

com.ibm.pvcws.osgi.proxy.WebServiceProvider;

public

class

Activate

implements

BundleActivator

{

public

void

start(BundleContext

context)

throws

Exception

{

//Register

the

properties

Hashtable

props

=

new

Hashtable(3);

//

This

property

indicates

that

the

service

should

be

exposed

//

as

a

web

service.

If

the

property

is

the

empty

string,

//

the

WSDL

will

be

autogenerated.

20

WebSphere:

Web

Services

Application

Developer’s

Guide

props.put("com.ibm.wstkmd.bundle",

"");

//This

allows

us

to

access

the

service

as

/ws/pid/getMean

props.put(Constants.SERVICE_PID,

"getMean");

context.registerService(MeanProvider.class.getName(),

new

GetMeanProvider(),

props);

WebServiceProvider

provider

=

getProvider(context);

provider.exportPid("getMean");

}

public

void

stop(BundleContext

context)

throws

Exception

{

}

private

WebServiceProvider

getProvider(BundleContext

context)

{

String

providerName

=

"com.ibm.pvcws.osgi.proxy.WebServiceProvider";

ServiceReference

ref

=

context.getServiceReference(providerName);

if

(ref

==

null)

{

return

null;

}

WebServiceProvider

provider

=

(WebServiceProvider)

context.getService(ref);

return

provider;

}

}

Once

the

bundle

is

deployed,

the

WSDL

for

the

service

can

be

retrieved

at

the

URL

http://localhost:6080/ws/pid/<servicepid>?wsdl

Note:

<service_pid>

is

the

value

of

the

Constants.SERVICE_PID

property

set

in

the

above

example.

For

the

example

above,

the

URL

would

be:

http://localhost:6080/ws/pid/GetMean/wsdl/GetMean.wsdl

As

a

development

aid,

you

can

use

Web

Services

tools

to

generate

the

stub

for

the

service.

The

tools

create

the

stub

with

an

endpoint

referring

to

your

machine

address.

Since

it

is

unlikely

that

your

machine

address

will

match

the

deployed

machine

address,

change

the

endpoint

address

used

by

the

generated

stub

using

the

<stub>._setProperty(

Stub.ENDPOINT_ADDRESS,

<string>

)

method.

Note:

The

Web

Services

provider

runs

on

port

6080.

This

is

not

configurable

at

this

time.

Creating

a

Web

Services

application

that

includes

WS-Security

Web

Services

applications

must

contain

the

following

items

for

WS-Security

to

function

properly:

v

A

keystore

v

A

WS-Security

configuration

file

v

An

application

stub

To

create

a

Web

Services

application

that

includes

WS-Security,

create

a

keystore

with

the

instructions

in

“Creating

a

keystore”

on

page

22.

Then,

refer

to

“Using

the

Web

Services

wizard

to

create

an

application

that

uses

WS-Security”

on

page

22

for

Chapter

4.

Tasks

21

instructions

to

use

the

wizard

to

create

a

configuration

file

and

application

stub.

You

can

use

the

Web

Services

wizard

to

configure

the

security

attributes

when

using

static

web

services

stubs.

If

your

web

services

client

application

uses

the

Web

Services

Gateway

bundle

on

SMF,

then

you

need

to

programmatically

set

the

Web

Services

Security

properties,

described

in

“Using

the

Web

Services

wizard

to

create

an

application

that

uses

WS-Security.”

If

you

use

the

Web

Services

Gateway

Utility

(described

in

Appendix

A,

“The

Web

Services

Gateway

Utility

(WSOSGI-UI),”

on

page

35),

then

you

can

set

the

web

services

client

configuration

in

a

similar

way

to

using

the

Web

Services

wizard.

Creating

a

keystore

To

send

a

digitally

signed

message,

you

must

provide

a

keystore

that

contains

private

and

public

keys

to

sign,

encrypt,

and

decrypt

messages.

You

can

use

the

WebSphere

Device

Developer

Keytool

to

create

a

keystore.

Refer

to

the

WebSphere

Device

Developer

documentation

for

instructions

to

create

a

keystore.

Web

Services

supports

only

JKS

type

keystores,

and

the

keystore

name

must

end

with

a

.jks

extension,

such

as

client.jks.

Refer

to

the

following

list

to

determine

the

requirements

for

the

keystore

you

want

to

create:

1.

To

digitally

sign

a

request

message,

the

keystore

must

contain

the

RSA

or

DSA

private

key

for

your

client.

2.

To

encrypt

a

request

message,

the

keystore

must

contain

the

certificate

for

the

RSA

public

key

of

the

receiver

of

the

message.

3.

To

decrypt

a

response

message,

the

keystore

must

contain

the

RSA

private

key

to

decrypt

the

secret

key.

Using

the

Web

Services

wizard

to

create

an

application

that

uses

WS-Security

After

you

create

a

keystore

with

the

WebSphere

Application

Server

Keytool,

refer

to

the

following

instructions

to

use

the

Web

Services

client

wizard

to

create

an

application

that

uses

WS-Security:

1.

Select

the

Configure

Security

checkbox

on

the

Web

Service

Client

Stub

Generator

window.

2.

Click

Next

to

specify

information

about

the

keystore.

3.

Specify

the

file

name

of

the

keystore

that

you

created

with

the

Web

server

keytool

and

specify

the

password

for

the

keystore.

Note:

You

can

use

the

Browse

button

to

navigate

to

the

location

where

the

file

resides.

4.

Click

Next.

5.

Specify

whether

or

not

Web

Services

requires

a

digital

signature

for

the

messages

it

receives.

If

the

Web

Service

requires

digital

signatures,

select

the

appropriate

signature

algorithm

for

your

application.

Note:

If

you

specify

DSA

for

the

signature

algorithm,

the

WS-Security

wizard

will

not

permit

the

SOAP

message

to

be

encrypted.

6.

Specify

the

alias

and

password

of

the

key

that

the

Web

service

will

use

for

the

signature.

22

WebSphere:

Web

Services

Application

Developer’s

Guide

Note:

You

do

not

need

to

provide

configuration

information

to

verify

the

signature

of

the

received

messages

because

the

received

message

contains

the

information

needed

to

reference

the

public

key.

7.

Click

Next

to

specify

the

authentication

data

for

sending

messages.

8.

Complete

the

following

information

on

the

Authentication

Data

for

Sending

Messages

window

to

add

authentication

information

to

the

SOAP

messages

you

send:

a.

Select

Yes

next

to

Authentication

to

add

the

authentication

information.

b.

Select

either

Basic

Authentication

or

Signature

Authentication

if

you

require

authentication.

Refer

to

the

following

table

for

the

authentication

method

options:

Table

1.

Authentication

method

options

Method

User

name

Password

Other

Basic

Authentication

yes

yes

no

Signature

Authentication

no

no

X.509

certificate

Note:

To

authenticate

messages

using

the

Signature

Authentication

method,

the

message

must

be

digitally

signed

by

the

sender

and

you

must

specify

the

alias

on

the

XML

Digital

Signature

for

Sending

Messages

dialog

to

retrieve

the

X.509

Certificate.

9.

Click

Next

to

specify

the

XML

encryption

for

sending

messages.

10.

Complete

the

following

information

on

the

XML

Encryption

for

Sending

Messages

window

to

specify

how

to

encrypt

the

SOAP

messages

you

send.

a.

Click

Yes

to

Encryption

to

encrypt

the

message.

b.

Specify

the

alias

for

the

RSA

public

key

that

will

be

used

for

key

encryption.

Note:

WS-Security

supports

only

RSA-1.5

as

the

key

encryption

method.

The

wizard

generates

a

TripleDES

key

automatically.
11.

Click

Next

to

specify

the

XML

Decryption

for

Receiving

Messages

window.

12.

Complete

the

following

information

on

the

XML

Decryption

for

Receiving

Messages

window

to

specify

how

to

decrypt

the

SOAP

messages

you

receive

in

your

application:

a.

Select

whether

or

not

to

enable

decryption.

b.

Specify

the

alias

and

password

for

the

key.

c.

Click

Add

to

register

the

key.

Note:

You

can

register

additional

keys

by

repeating

the

previous

steps.

13.

Click

Finish

to

generate

the

WS-Security

configuration

file

and

the

Web

Services

application

stub.

Programming

WS-Security

Properties

When

developing

secured

Web

Services

clients

that

use

the

Web

Services

Gateway,

WS-Security

properties

need

to

be

customized

as

appropriate.

The

example

below

illustrates

a

simple

forms

based

dialog

for

setting

WS-Security

properties.

You

may

also

refer

to

the

Web

Services

examples

included

with

the

Web

Services

tooling

for

complete

working

examples.

Chapter

4.

Tasks

23

The

following

list

properties

can

be

set,

followed

by

an

example

that

illustrates

the

method

of

setting

these

properties.

Table

2.

Keystore

list

properties

Name

of

WS-Security

property

required/

optional

value

WSSAttributeType.REQUESTER_KEYSTORE_FILE

required

key

content

encoded

by

Base64

WSSAttributeType.REQUESTER_KEYSTORE_PASS

required

Table

3.

Digital

Signature

(dsig)

list

properties

Name

of

WS-Security

property

required/

optional

value

WSSAttributeType.REQUESTER_SIG_ALIAS

WSSAttributeType.REQUESTER_SIG_PASS

optional:

if

applied

dsig,

required

WSSAttributeType.REQUESTER_SIG_ALG

optional:

if

applied

dsig,

required

either

WSSAttributeType.URI_DSIG_RSA_SHA1

or

WSSAttributeType.URI_DSIG_DSA_SHA1

WSSAttributeType.REQUESTER_DIGEST_ALG

optional:

if

applied

dsig,

required

WSSAttributeType.URI_DSIG_SHA1

Table

4.

Authentication

list

properties

Name

of

WS-Security

property

required/

optional

value

WSSAttributeType.REQUESTER_LOGIN_UNAME

optional:

if

applied

basic

auth,

required

WSSAttributeType.REQUESTER_LOGIN_PASS

optional:

if

applied

basic

auth,

required

Table

5.

Encryption

list

properties

Name

of

WS-Security

property

required/

optional

value

WSSAttributeType.REQUESTER_ENC_ALIAS

optional:

if

applied

encryption,

requied

WSSAttributeType.REQUESTER_ENC_PASS

optional:

if

applied

encryption,

requied

WSSAttributeType.REQUESTER_ENC_DATA_ALG

optional:

if

applied

encryption,

requied

WSSAttributeType.URI_ENC_3DES

WSSAttributeType.REQUESTER_ENC_KEY_ALG

optional:

if

applied

encryption,

requied

WSSAttributeType.URI_ENC_RSA15

Table

6.

Decryption

Keys

list

properties

Name

of

WS-Security

property

required/

optional

value

WSSAttributeType.REQUESTER_DEC_KEY_NUM

optional:

may

set,when

user

has

private

keys

if

0,

it

is

unnecessary

to

set.

WSSAttributeType.REQUESTER_DEC_ALIAS

+

count(1,2,3,...)

optional:

may

set,when

user

has

private

keys

WSSAttributeType.REQUESTER_DEC_PASS

+

count(1,2,3,...)

optional:

may

set,when

user

has

private

keys

24

WebSphere:

Web

Services

Application

Developer’s

Guide

The

following

example

illustrates

a

method

of

setting

WS-Security

properties

for

a

Web

Service

client

that

uses

OSGi

Web

Services:

package

com.ibm.webservices.timeformat;

import

java.io.InputStream;

import

java.util.Hashtable;

import

org.osgi.framework.BundleActivator;

import

org.osgi.framework.BundleContext;

import

org.osgi.framework.ServiceReference;

import

org.osgi.util.tracker.ServiceTracker;

import

com.ibm.pvcws.jaxrpc.encoding.PrimitiveSerializer;

import

com.ibm.pvcws.osgi.proxy.WSProxyService;

import

com.ibm.pvcws.wss.proxy.WSSAttributeType;

/**

*

@author

admin

*

*

To

change

the

template

for

this

generated

type

comment

go

to

*

Window>Preferences>Java>Code

Generation>Code

and

Comments

*/

public

class

TimeFormatBundle

implements

BundleActivator

{

private

BundleContext

context;

private

ServiceTracker

tracker;

private

static

String

WSDL

=

"http://localhost/TimeFormat/services

/TimeFormat/wsdl/TimeFormat.wsdl";

/*

(non-Javadoc)

*

@see

org.osgi.framework.BundleActivator#start

(org.osgi.framework.BundleContext)

*/

public

void

start(BundleContext

context)

throws

Exception

{

System.out.println("log:

TimeFormatBundle");

this.context

=

context;

Hashtable

properties

=

new

Hashtable();

//

set

WS-Security

configuration

//

two

essential

properties

for

WS-Security

properties.put("com.ibm.pvcws.jaxrpc.msg.handler",

"com.ibm.pvcws.wss.WSSHandler");

properties.put("com.ibm.pvcws.jaxrpc.msg.config",

"com.ibm.pvcws.wss.proxy.WSSConfigProxyImpl");

//

set

keystore

properties

String

KEYSTORE_CONTENTS

=

convert("client.jks");

properties.put(WSSAttributeType.REQUESTER_KEYSTORE_FILE,

KEYSTORE_CONTENTS);

properties.put(WSSAttributeType.REQUESTER_KEYSTORE_PASS,

"client");

//

set

DSignature

properties

properties.put(WSSAttributeType.REQUESTER_SIG_ALIAS,

"client_rsa");

properties.put(WSSAttributeType.REQUESTER_SIG_PASS,

"client_rsa");

properties.put(WSSAttributeType.REQUESTER_SIG_ALG,

WSSAttributeType.URI_DSIG_RSA_SHA1);

properties.put(WSSAttributeType.REQUESTER_DIGEST_ALG,

WSSAttributeType.URI_DSIG_SHA1);

//

set

Authentication

properties

-

not

apply

in

this

case

//

properties.put(WSSAttributeType.REQUESTER_LOGIN_TYPE,

WSSAttributeType.REQUESTER_AUTH_SIGNATURE);

//

properties.put(WSSAttributeType.REQUESTER_LOGIN_UNAME,

"admin");

//

properties.put(WSSAttributeType.REQUESTER_LOGIN_PASS,

"tester");

//

set

Encryption

properties

Chapter

4.

Tasks

25

properties.put(WSSAttributeType.REQUESTER_ENC_ALIAS,

"server_rsa");

properties.put(WSSAttributeType.REQUESTER_ENC_PASS,

"server_rsa");

properties.put(WSSAttributeType.REQUESTER_ENC_DATA_ALG,

WSSAttributeType.URI_ENC_3DES);

properties.put(WSSAttributeType.REQUESTER_ENC_KEY_ALG,

WSSAttributeType.URI_ENC_RSA15);

//

set

properties

of

private

key

for

Decryption

properties.put(WSSAttributeType.REQUESTER_DEC_KEY_NUM,

"1");

properties.put(WSSAttributeType.REQUESTER_DEC_ALIAS

+

"1",

"client_rsa");

properties.put(WSSAttributeType.REQUESTER_DEC_PASS

+

"1",

"client_rsa");

//

properties.put(WSSAttributeType.REQUESTER_DEC_ALIAS

+

"2",

"server_rsa");

//

properties.put(WSSAttributeType.REQUESTER_DEC_PASS

+

"2",

"server_rsa");

String

service

=

"com.ibm.pvcws.osgi.proxy.WSProxyService";

ServiceReference

ref

=

context.getServiceReference(service);

if

(ref

==

null)

{

System.err.println("Error:

WSManService

does

not

exist.");

return;

}

WSProxyService

wsManImpl

=

(WSProxyService)

context.getService(ref);

//

consume

WSDL

if

(!wsManImpl.register(WSDL,

properties))

{

System.err.println("Unable

to

consume

wsdl.");

return;

}

tracker

=

new

ServiceTracker(context,

TimeFormat.class.getName(),

null);

tracker.open();

Object

svcs[]

=

tracker.getServices();

if

(svcs

!=

null)

for

(int

i

=

0;

i

<

svcs.length;

i++)

{

TimeFormat

dsvc

=

(TimeFormat)

svcs[i];

String

[]

argu

=

{"CHINA","JAPAN","GERMAN","FRANCE","ITALY","US"};

for(int

j

=

0;

j

<

argu.length;

j++){

String

temp

=

dsvc.getFormat(argu[j]);

System.out.println(temp);

}

}

}

/*

(non-Javadoc)

*

@see

org.osgi.framework.BundleActivator#stop

(org.osgi.framework.BundleContext)

*/

public

void

stop(BundleContext

context)

throws

Exception

{

}

/**

*

This

method

is

used

to

convert

a

jks

keystore

into

a

base64

*

encoding

that

can

be

understood

by

the

WS-Security

*

runtime

in

the

web

services

gateway

*

The

keystore

should

be

accessible

in

the

classpath

*

@param

The

URI

of

the

keystore

*

@return

*/

public

String

convert(String

uri)

{

26

WebSphere:

Web

Services

Application

Developer’s

Guide

InputStream

istream

=

this.getClass().getResourceAsStream(uri);

int

kssize

=

0;

byte[]

buffer

=

null,

ksenc

=

null;

String

kscontents

=

null;

try

{

kssize

=

istream.available();

buffer

=

new

byte[kssize

+

2];

int

ret

=

istream.read(buffer);

istream.close();

ksenc

=

PrimitiveSerializer.encode_base64(buffer);

kscontents

=

new

String(ksenc,

"utf-8");

}

catch(Exception

e)

{

}

System.out.println("KeystoreConverter:

uri="

+

uri

+

"

keystore="

+

kscontents);

return

kscontents;

}

}

Chapter

4.

Tasks

27

28

WebSphere:

Web

Services

Application

Developer’s

Guide

Chapter

5.

Reference

This

chapter

contains

reference

information

that

you

might

find

useful

when

you

develop

an

application

that

consumes

Web

Services.

Soap

implementations

This

section

describes

the

XML

Parser

and

SOAP

binding.

XML

Parser

The

J2ME

SOAP

stack

implementation

includes

an

optional

XML

parsing

component.

For

more

information,

see

http://www.jcp.org.

This

component

conforms

to

a

subset

of

Java

API

for

XML-based

Parser

(JAXP)

and

offers

a

Simple

API

for

XML

(SAX)

callback

interface.

SOAP

Binding

The

soap:body

binding

element

in

WSDL

provides

information

on

how

to

assemble

the

different

message

parts

in

the

Body

element

of

the

SOAP

message.

Both

RPC-oriented

and

document-oriented

messages

use

the

soap:body

element;

however,

the

style

of

the

enclosing

operation

has

important

effects

on

the

structure

of

the

Body

section:

v

If

the

operation

style

is

document,

there

are

no

wrappers.

The

message

parts

display

directly

under

the

soap:body

element.

v

If

the

operation

style

is

RPC,

each

part

is

a

parameter

or

return

value

that

appears

inside

a

wrapper

element

within

the

body.

The

operation

name

and

the

wrapper

element

are

named

identically

and

its

namespace

is

the

value

of

the

namespace

attribute.

Each

message

parameter

is

represented

under

the

wrapper

by

an

accessor

that

is

named

identically

to

the

corresponding

parameter

of

the

call.

J2ME

Web

Services

support

document/literal,

and

do

not

support

the

RPC

operation

style.

The

required

use

attribute

indicates

whether

or

not

the

message

parts

are

encoded,

or

the

parts

define

the

concrete

schema

of

the

message.

If

use

is

encoded,

each

message

part

references

an

abstract

type

using

the

type

attribute.

These

attributes

apply

an

encoding

that

is

specified

by

the

encodingStyle

attribute

to

produce

a

concrete

message.

If

use

is

literal,

then

each

part

references

a

concrete

schema

definition

using

either

the

element

or

type

attribute.

For

document

style

bindings,

if

a

part

references

the

element

attribute,

the

element

referenced

by

the

part

is

displayed

directly

under

the

Body

element.

For

RPC

style

bindings,

the

element

attribute

is

displayed

under

the

accessor

element

named

the

same

as

the

message

part.

If

a

part

references

a

type

attribute,

the

type

referenced

becomes

the

schema

type

of

the

enclosing

element,

which

is

Body

for

document

style,

or

part

accessor

element

for

RPC

style.

The

J2ME

Web

Services

JAX-RPC

Subset

implementation

must

use

the

document

style

literal

use

operation

mode.

©

Copyright

IBM

Corp.

2004

29

http://www.jcp.org

The

JAX-RPC

Subset

specification

requires

support

for

the

following

default

representation

of

the

SOAP:Body

element

for

document

style

operations:

v

The

SOAP:Body

element

marshals

to

contain

at

most

one

message

part

(wsdl:part),

defined

by

the

element

form

at

the

abstract

level.

v

All

message

parts

(either

parameters

or

return

value)

appear

inside

a

single

wrapper

element,

which

is

the

first

child

element

of

the

SOAP:Body

element.

The

wrapper

element

for

the

request

has

a

name

identical

to

the

unique

operation

name.

The

name

of

the

wrapper

element

for

a

request

is

used

on

the

server

side

to

resolve

the

method

on

the

target

service

endpoint.

The

message

part

has

an

accessor

with

name

corresponding

to

the

name

of

the

parameter

and

type

corresponding

to

the

type

of

the

parameter.

SOAP

predefines

one

body

element,

which

is

the

fault

element

used

for

reporting

errors.

The

soap:fault

element

is

patterned

after

the

soap:body

element

in

terms

of

literal

uses

and

contains

only

a

single

message

part.

The

fields

of

the

fault

element

are

defined

as

follows:

–

Faultcode

is

a

code

that

indicates

the

type

of

the

fault.

SOAP

defines

the

following

set

of

faults:

-

SOAP-ENV:Client,

indicates

incorrectly

formatted

messages.

-

SOAP-ENV:Server

indicates

delivery

problems.

-

SOAP-ENV:VersionMismatch

reports

any

invalid

namespace

for

the

envelope

element.

-

SOAP-ENV:MustUnderstand

reports

errors

regarding

the

processing

of

header

content.

-

Faultstring

is

a

human-readable

description

of

the

fault.

It

must

be

present

in

the

fault

element.

-

Faultactor

is

an

optional

field

that

indicates

the

URL

of

the

source

of

the

fault.

It

is

similar

to

the

SOAP

actor

attribute

except

that

it

does

not

indicate

the

destination

of

the

header

entry.

A

SOAP

fault

is

mapped

to

either

a

service

specific

exception

class,

or

to

a

java.rmi.RemoteException.

The

only

exception

returned

to

an

application

is

a

JAXRPCException.

If

there

is

a

service

specific

exception

thrown

on

the

server

that

contains

the

web

service,

a

message

contained

within

the

JAXRPCException

will

contain

the

service

specific

message.

Currently

there

is

no

provision

in

the

interface

to

return

a

RemoteException

to

the

caller.

v

The

implementation

of

JAX-RPC

does

not

use

SOAPAction.

The

Web

Services

for

J2ME

specification

does

not

require

support

of

the

SOAPAction,

however,

to

inter-operate

with

some

servers,

and

in

particular,

.NET

hosted

services,

it

is

necessary

to

set

SOAPAction

within

the

HTTP

header.

External

Interfaces

The

external

interfaces

supported

by

Web

Services

comprise

the

JAX-RPC

subset,

and

the

JAXP

subset.

The

JAX-RPC

subset

interfaces

The

JAX-RPC

subset

APIs

are

packaged

in

the

javax.xml.rpc

package

as

follows:

v

The

javax.xml.rpc.Stub

interface.

30

WebSphere:

Web

Services

Application

Developer’s

Guide

–

The

interface

javax.xml.rpc.Stub

is

the

common

base

interface

for

the

stub

classes.

All

generated

stub

classes

implement

the

javax.xml.rpc.Stub

interface.

An

instance

of

a

stub

class

represents

a

client

side

proxy

or

stub

instance

for

the

target

service

endpoint.

–

The

javax.xml.rpc.Stub

interface

provides

an

extensible

property

mechanism

for

the

dynamic

configuration

of

a

stub

instance.
v

The

javax.xml.rpc.JAXRPCException

class.

Refer

to

the

javadoc

description

for

the

specific

API

description.

IBM

extensions

The

IBM

implementation

of

the

JAXRPC

subset

provides

additional

configuration

properties

that

you

can

specify.

Normally,

these

are

used

only

by

the

stub,

and

do

not

require

the

application

change

them.

SOAPAction:

SOAPAction

is

an

HTTP

Header

key

required

by

some

Web

Services

servers.

The

value

required

for

SOAPAction

is

obtained

from

the

WSDL,

and

set

correctly

within

the

stub

class.

If

this

value

needs

to

be

updated,

you

can

change

the

value

using

the

_setProperty

method

and

specifying

a

property

name

of

com.ibm.pvcs.jaxrpc.SOAPAction.

HTTPContentType:

The

HTTP

Content

type

defaults

to

a

String

of

text/xml;

charset="utf-8".

Normally,

this

is

sufficient

for

most

Web

Services

servers.

In

the

event

that

the

content

type

needs

to

be

changed,

you

can

specify

a

valid

content

type

string

by

using

the

_setProperty

method

and

specifying

a

property

name

of

com.ibm.pvcs.jaxrpc.HTTPContentType.

The

Web

Services

client

programming

model

The

Web

Services

client

programming

model

uses

a

WSDD

plug-in

to

generate

the

required

stub

classes

to

access

a

Web

service.

In

accordance

with

the

programming

model

specified

in

the

Web

Services

for

J2ME

specification,

Web

Services

provides:

1.

A

generated

stub

from

the

Web

Services

Description

Language

(WSDL)

description

of

the

service.

The

WSDD

Web

Services

plug-in

generates

the

stub.

The

stub

generator

uses

the

WSDL

that

is

exported

from

the

web

service

as

its

input.

The

stub

is

generated

during

the

development

phase

of

the

client

application.

The

code

generated

by

the

stub

uses

the

runtime

Service

Provider

Interface

(SPI),

which

interacts

with

the

runtime

component.

2.

Instantiation

of

the

stub

The

client

application

uses

an

instance

of

the

stub

to

indirectly

access

the

Web

service

from

which

the

WSDL

definition

was

derived.

It

is

imperative

that

the

WSDL

definition

reflects

the

actual

interface

to

the

Web

service

at

runtime.

The

JAX-RPC

subset

does

not

perform

any

version

control.

Any

differences

between

the

defined

WSDL

and

the

instance

of

the

Web

service

may

produce

unpredictable

results.

3.

Invocation

of

stub

methods

that

correspond

to

the

implementation

of

service

endpoint

operations

The

Web

Services

client

application

uses

an

instance

of

the

stub

to

set

stub

properties,

including

the

service

endpoint.

4.

Packaging

the

stub

with

the

client

application

Chapter

5.

Reference

31

The

generated

stub

is

provided

in

source

form.

It

is

used

during

application

development.

Sample

Web

Services

stub

source

code

To

define

the

WS-Security

configuration

to

the

WS-Security

runtime,

the

Web

Services

client

wizard

includes

WS-Security

information

in

the

Web

Services

stub.

Refer

to

the

following

code

fragment

for

a

sample

of

the

stub

source

code

generated

by

the

Web

Services

client

wizard.

Note:

Because

the

you

typically

use

the

WS-Security

wizard

after

you

develop

the

Web

service

on

the

server,

you

do

not

need

to

consider

the

WS-Security

implications

when

you

develop

the

service

client.

Public

class

Ping_Stub

implements

javax.xml.rpc.Stub,

com.ibm.wstkme.demonidlet.PingPort1{

public

javax.microedition.xml.rpc.Operation

operation=null;

public

java.util.Hashtable

typeMap

=

new

java.util.Hashtable();

public

java.util.Hashtable

properties

=

new

java.util.Hashtable();

{

properties.put(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,

"http://localhost:9081/PingServerEJB/services/PingPort1");

//properties.put(javax.xml.rpc.Stub.USERNAME_PROPERTY,

"");

//properties.put(javax.xml.rpc.Stub.PASSWORD_PROPERTY,

"");

//properties.put(javax.xml.rpc.Stub.SESSION_MAINTAIN_PROPERTY,

new

java.lang.Boolean(true));

/*

The

following

two

lines

are

includes

from

the

WS-Security

configuration.

*/

properties.put("com.ibm.pvcws.jaxrpc.msg.handler"

,

"com.ibm.pvcws.wss.WSSHandler");

properties.put("com.ibm.pvcws.jaxrpc.msg.config"

,

"xxx_wssConfig");

Web

Services

Samples

You

can

use

the

following

sample

applications

to

get

started

writing

Web

Services

clients:

v

RSAwithSHA1

This

sample

application

connects

to

a

secured

Web

service

using

a

digital

signature

with

RSAwithSHA1.

v

Stock

Quote

This

sample

application

demonstrates

a

Web

Services

client

that

connects

to

a

stock-quote

service.

v

Signed_Encryption

This

sample

application

connects

to

a

secured

Web

service

by

using

digital

signature

and

encryption.

v

Distance

client

This

example

demonstrates

a

client

application

that

connects

to

a

calculator

service

in

another

location.

v

BabelFish

This

example

demonstrates

a

client

language

dictionary

application.

v

Temperature

This

sample

application

requests

temperature

information

from

a

service

at

a

given

location.

v

Signed_DSAwithSHA1

This

sample

application

connects

to

a

secure

service

using

DSAwithSHA1

signature.

32

WebSphere:

Web

Services

Application

Developer’s

Guide

v

Authentication_Encryption

This

sample

application

connects

to

a

secure

service

using

authentication

and

encryption.

Release

notes

This

section

contains

additional

information

if

you

were

unable

to

successfully

execute

your

application.

Enabling

MIDP

applications

to

run

The

Web

Services

library

extends

the

base

java.rmi

package

library.

To

enable

applications

to

execute

successfully

on

midp

devices,

you

might

choose

to

disable

Java

security

by

modifying

the

security.policy.

The

security

policy

definitions

reside

in

the

security.policy

file

in

the

lib

directory

of

the

midp

runtime

libraries.

For

WSDD,

this

file

is

located

in

the

<wsdd_dir>\wsdd5.0\ive-
2.2\runtimes\win32\x86\midp20\lib

directory.

By

default

this

file

contains

the

following

rules

for

the

untrusted

domain:

...

domain:

untrusted

session(blanket):

NetAccess

blanket(session):

LocalConnectivity

oneshot(oneshot):

WriteUserData

oneshot(oneshot):

ReadUserData

blanket(session):

FileConnection

oneshot(oneshot):

AppAutoInvoke

...

In

order

for

Web

Services

to

work,

you

need

to

modify

this

section

to

the

following:

domain:

untrusted

session(blanket):

NetAccess

blanket(session):

LocalConnectivity

oneshot(oneshot):

WriteUserData

oneshot(oneshot):

ReadUserData

blanket(session):

FileConnection

oneshot(oneshot):

AppAutoInvoke

Note:

You

might

choose

to

modify

the

security.policy

file

according

to

your

needs;

however,

the

domain

where

your

MIDP

resides

is

named

untrusted.

In

order

to

execute

Web

Service

Applications

on

MIDP

devices,

the

WebServicesMIDP.jar

file

needs

to

be

placed

in

the

ext

directory

of

the

MIDP

runtime

library.

The

default

location

is

<wsdd_dir>\wsdd5.0\ive-
2.2\runtimes\win32\x86\midp20\lib\jclMidp20\ext.

Note:

In

order

to

execute

Web

Service

Applications

on

Palm

devices,

the

WebServices.prc

and,

optionally,

the

WS-Security.prc

files

need

to

be

installed

on

the

Palm

device.

These

.prc

files

can

be

found

in

the

wsdd5.0\ive-
2.2\runtimes\palmos50\arm\midp20\prc

directory,

located

in

your

installation

of

WSDD

5.7

Running

secure

Web

Service

clients

on

SMF

In

order

to

run

a

secure

Web

Service

client

on

the

SMF

platform

using

static

stubs

and

the

*_wssConfig

object,

WS-Security.jar,

WebServicesME.jar,

and

the

client

bundle

need

to

be

added

to

the

bootclasspath

of

the

SMF

runtime.

Chapter

5.

Reference

33

In

order

to

run

a

secure

Web

Service

client

on

the

SMF

platform

using

the

Web

Services

Gateway,

the

WS-Security.jar

file

and

the

WebServicesME.jar

file

need

to

be

placed

on

the

bootclasspath

of

the

SMF

runtime.

Migration

considerations

When

migrating

a

project

containing

a

Web

Service

client

to

the

WSDD

5.7

platform,

the

build

path

will

need

to

be

manually

updated.

In

earlier

releases,

the

Web

Services

Runtime

libraries

were

in

the

folder

designated

by

the

classpath

variable

WS_RUNTIME.

In

WSDD

5.7,

the

Web

Services

runtime

libraries

are

stored

in

different

locations.

When

you

install

the

Web

Services

for

MIDP

feature

and

start

the

tooling

for

the

first

time,

the

classpath

variable

WS_RUNTIME_MIDP

will

be

create.

This

classpath

variable

will

be

added

to

a

project

when

a

new

Web

Services

for

MIDP

client

is

generated

using

the

tooling.

For

existing

MIDP

projects

containing

Web

Services,

you

must

edit

the

build

classpath

to

use

the

WS_RUNTIME_MIDP

classpath

variable

instead

of

the

WS_RUNTIME

classpath

variable.

Additionally,

the

Web

Services

for

MIDP

runtime

library

is

now

packaged

as

WebServicesMIDP.jar

rather

then

WebServicesWME.jar.

WS-Security.jar

for

use

with

MIDP

can

be

found

in

the

directory

designated

by

the

WS_RUNTIME_MIDP

classpath

variable

as

well.

When

you

install

the

Web

Services

for

Extension

Services

feature,

as

part

of

the

Extension

Services

feature,

the

classpath

variables

ESWE_BUNDLES

and

ESWE_FILES

will

be

create.

These

classpath

variables

will

be

added

to

projects

when

a

new

Web

Services

for

Extension

Services

client

is

generated

using

the

tooling.

For

existing

projects

containing

Web

Services,

you

must

edit

the

build

classpath

to

use

the

ESWE_BUNDLES

classpath

variable

instead

of

the

WS_RUNTIME

classpath

variable

to

locate

the

Web

Services

runtime

library.

The

Web

Services

for

Extension

Services

runtime

library

is

now

packaged

as

WebServicesME.jar

rather

then

WebServicesWCE.jar.

WS-Security.jar

for

use

with

SMF

can

be

found

in

the

directory

designated

by

the

ESWE_FILES

classpath

variable,

in

the

webservices

directory.

34

WebSphere:

Web

Services

Application

Developer’s

Guide

Appendix

A.

The

Web

Services

Gateway

Utility

(WSOSGI-UI)

The

Web

Services

Gateway

utility

(wsosgi-ui)

is

a

diagnostic

tool

that

runs

on

SMF,

and

is

used

in

conjunction

with

the

Web

Services

Gateway.

The

purpose

of

the

utility

is

to

provide

limited

access

to

certain

web

services

with

some

limitations

without

having

to

write

any

code

at

all.

You

may

find

this

diagnostic

utility

useful

before

you

write

any

code

to

consume

your

specific

web

service.

Although

the

diagnostic

utility

can

consume

most

web

services,

it

is

certainly

not

a

substitute

for

your

production-level

web

service

client.

Limitations

in

accessing

secured

webservices

via

this

diagnostic

utility

may

limit

its

usefulness.

The

utility

is

uninstalled

into

the

bundle

server

by

default.

v

Consume

Web

Service

clients

v

List

the

Web

Services

clients

that

are

currently

being

proxied

via

the

Web

Services

Gateway

v

Configure

web

service

security

for

client

Web

Services

It

has

the

ability

to

list

local

services

that

have

been

exposed

as

Web

Services

via

the

Web

Services

Gateway.

Additionally,

the

diagnostic

utility

provides

indirect

access

to

almost

all

the

functionality

of

the

wsosgi

com.ibm.pvcws.osgi.proxy.WSProxyService.

The

diagnostic

utility

provides

a

simple

mechanism

for

creating

web

based

tests

of

Web

Services

by

implementing

the

com.ibm.wsosgi.proxy.test.WSProxyTestService

interface.

Finally,

by

enabling

on-the-fly

class

generation

when

consuming

wsdl

and

using

the

DynamicTest

functionality,

the

diagnostic

utility

allows

you

to

consume

and

test

remote

Web

Services

without

writing

any

code.

Accessing

the

diagnostic

utility

In

order

to

access

the

diagnostic

utility,

the

’wsosgi’,

’wsosgi-ui’,

and

standard

’HttpService’

bundles

must

be

installed

and

started.

The

’wsosgi-ui’

bundle

creates

a

servlet

using

the

HttpService

and

registers

itself

as

’wsman’.

To

access

the

utility,

use

the

url:

http://smfserver:httpPort/wsman,

where

smfserver

is

the

SMF

server

name,

and

httpPort

is

the

port

#

configured

for

the

SMF

server.

Consuming

Web

Services

The

process

of

consuming

a

Web

Service

takes

a

valid

WSDL

URL,

parses

it,

and

creates

and

installs

a

virtual

SMF

bundle

that

proxies

the

Web

Service.

This

is

done

using

the

wsosgi

com.ibm.pvcws.osgi.proxy.WSProxyService

service.

The

virtual

bundles

that

are

created

remain

installed

on

the

SMF

system

until

they

are

unregistered.

That

means

that

they

will

be

present

and

started

even

when

you

restart

SMF.

To

consume

Web

Services,

select

the

Create

a

Web

Service

Client

link.

You

need

to

specify

the

URL

to

the

WSDL

for

this

service.

This

can

be

an

http

URL

or

a

file

based

URL.

You

can

either

paste

the

WSDL

URL

into

the

URL

field

or

use

the

Quick

Selection

drop-down.

Every

WSDL

that

is

successfully

consumed

will

go

into

the

Quick

Selection

drop-down

for

future

access.

You

can

use

the

Clear

Selected

or

Clear

All

to

remove

items

from

the

quick

selection

box.

©

Copyright

IBM

Corp.

2004

35

The

Optional

Parameters

allow

you

to

specify

a

username/password

for

the

service

or

override

the

target

endpoint

that

comes

from

the

WSDL.

Select

Generate

client

class

files

in

virtual

bundle

parameter.

If

this

is

set

to

Yes

(default),

then

the

set

of

all

classes

that

the

Web

Service

uses

will

be

generated

dynamically

and

exported

from

that

bundle.

This

allows

you

to

create

an

SMF

bundle

Web

Services

client

bundle

without

writing

any

code.

Listing

Web

Services

Clients

Select

the

’List

Consumed’

link

to

list

all

Web

Services

that

have

been

registered

with

the

Web

Services

Gateway

bundle.

For

each

Web

Service

client,

the

following

actions

can

be

performed:

unregister

Stops

and

uninstalls

the

virtual

bundle

for

this

web

service.

test

If

a

com.ibm.wsosgi.proxy.test.WSProxyTestService

is

registered

for

this

service

then

this

allows

you

to

use

that

to

interactively

test

the

Web

Service.

If

none

is

registered

then

this

reverts

to

dynamic

test.

dynamic

test

This

allows

you

to

run

a

dynamically

created

test

for

any

of

the

methods

of

the

Web

Service.

You

will

be

able

to

choose

which

method

to

run

and

then

fill

in

all

of

parameters

via

html

forms.

You

can

then

execute

the

method

and

view

the

results.

Using

the

Web

Services

Gateway

Utility

to

configure

WS-Security

properties

To

configure

WS-Security

properties

with

the

Web

Services

Gateway

Utility,

perform

the

following

steps:

1.

From

the

drop

down

menu,

select

Yes

for

Set

Web

Service

Signature

configurations.

2.

Enter

the

Keystore

Contents

location.

3.

For

Keystore

Password

enter

client.

4.

From

the

drop

down

menu,

select

Yes

for

Do

you

need

authentication.

5.

For

Signature

Algorithm,

select

RSA-SHA1.

6.

For

Option,

select

basic

auth.

7.

For

Username,

enter

Admin.

8.

For

Password,

enter

tester.

9.

From

the

drop

down

menu,

select

Yes

for

Do

you

need

encryption.

10.

For

Alias,

enter

server

rsa.

11.

If

desired,

create

a

Public

Key

by

choosing

and

entering

an

Alias

and

Password.

Each

Alias/Password

set

creates

one

Public

Key.

12.

Click

set

configuration

to

complete

the

configuration

process.

Note:

In

order

to

successfully

register

a

secure

WSDL,

you

must

add

the

WebServicesME.jar

and

WS-Security.jar

to

the

bootclasspath

of

the

SMF

runtime.

36

WebSphere:

Web

Services

Application

Developer’s

Guide

Testing

Web

Services

Gateway

Clients

Testing

Web

Services

Gateway

clients

can

be

done

in

one

of

two

ways.

The

first

method

is

by

running

a

dynamically

generated

test

for

the

Web

Services

Gateway

client.

This

works

in

most

cases

and

is

sufficient

for

testing

simple

Web

Services.

If

you

prefer

a

customized

test

for

the

service,

you

can

also

implement

the

com.ibm.wsosgi.proxy.test.WSProxyTestService.

The

test

subsystem

is

designed

to

assist

testing

your

Web

Services

Gateway

clients.

It

remembers

all

previously

used

arguments

for

a

given

test

in

order

to

lessen

the

complexity

of

html

forms

based

testing.

Dynamic

testing

The

dynamic

test

also

implements

the

WSProxyTestService

interface.

It

uses

java

reflection

to

attempt

to

dynamically

generate

a

test

for

each

of

the

web

service’s

methods.

Currently,

dynamic

test

does

not

handle

the

input

of

all

arrays.

Rather,

it

defaults

to

array

size

of

three

every

time.

It

is

recommended

that

you

try

dynamic

test

before

implementing

a

special

WSProxyTestService,

as

this

may

be

sufficient

in

many

cases.

In

order

to

use

this

type

of

testing,

from

the

List

of

OSGi

Web

Services

Clients

Consumed

page

simply

click

on

the

dynamic

test

link

of

the

desired

Web

Service.

WSProxyTestService

WSProxyTestService

allows

you

to

create

a

test

with

various

degrees

of

customization.

In

order

to

use

this

form

of

testing,

from

the

List

of

OSGi

Web

Services

Clients

Consumed

page

simply

click

on

the

test

link

of

the

desired

Web

Services

Gateway

client.

Appendix

A.

The

Web

Services

Gateway

Utility

(WSOSGI-UI)

37

38

WebSphere:

Web

Services

Application

Developer’s

Guide

Appendix

B.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

might

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

might

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

information.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

information

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

©

Copyright

IBM

Corp.

2004

39

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Department

LZKS

11400

Burnet

Road

Austin,

TX

78758

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

All

IBM

prices

shown

are

IBM’s

suggested

retail

prices,

are

current

and

are

subject

to

change

without

notice.

Dealer

prices

may

vary.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

40

WebSphere:

Web

Services

Application

Developer’s

Guide

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

2004

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Trademarks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

IBM

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

Appendix

B.

Notices

41

	Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	Planning for the target execution environment
	Prerequisites

	Chapter 3. Concepts
	Web Services
	Web Services installation options
	Web Services plug-in
	Runtime support for the target environment
	Support for OSGi Services

	Web Services security
	Web Services security specifications
	Web Services security architecture
	Web Services security features
	Message integrity
	Message confidentiality
	Single message authentication

	Web Services security supported functions
	XML digital signatures
	XML encryption and decryption
	Security tokens

	Chapter 4. Tasks
	Creating a Web Services client for J2ME
	Creating a J2ME MIDP project
	Generating a Java stub and sample MIDlet client
	Creating a MIDlet suite
	Creating a MIDlet suite configuration
	Running the client in the MIDP emulator
	Running the client on a PocketPC device

	Creating a Mobile Web Services client
	Setting up a WECE project for use with SMF
	Creating a Web Services stub and interface file

	Creating a Web Services client for Extension Services (ESWE)
	Creating an SMF bundle
	Using Web Services with SMF
	Installing the Web Services Gateway bundle
	Preparing to register Web Services
	Registering Web Services
	Prepackaging Web Services
	Using Web Services
	Creating a Web Services interface file
	Using Web Services directly

	Hosting an OSGi Web Services provider
	Using OSGi Web Services
	Registering the OSGi Service

	Creating a Web Services application that includes WS-Security
	Creating a keystore
	Using the Web Services wizard to create an application that uses WS-Security
	Programming WS-Security Properties

	Chapter 5. Reference
	Soap implementations
	XML Parser
	SOAP Binding

	External Interfaces
	The JAX-RPC subset interfaces
	IBM extensions

	The Web Services client programming model

	Sample Web Services stub source code
	Web Services Samples
	Release notes
	Enabling MIDP applications to run
	Running secure Web Service clients on SMF
	Migration considerations

	Appendix A. The Web Services Gateway Utility (WSOSGI-UI)
	Accessing the diagnostic utility
	Consuming Web Services
	Listing Web Services Clients
	Using the Web Services Gateway Utility to configure WS-Security properties
	Testing Web Services Gateway Clients
	Dynamic testing
	WSProxyTestService

	Appendix B. Notices
	Trademarks

