
36 1092-3063/99/$10.00 © 1999 IEEE IEEE Concurrency

JavaCard—
From Hype to Reality

functionality would significantly extend
smart card possibilities. However, until very
recently, such promises have not been
backed by real implementations; JavaCard
existence has been limited to reference
implementations—better known as simu-
lations. However, JavaCard implementa-
tions now exist and the technology is begin-
ning to live up to the hype.

A JavaCard is a typical smart card: it
conforms to all smart card standards and
thus requires no change to existing smart
card-aware applications. However, JavaC-
ard has a twist that makes it unique: a Java
Virtual Machine is implemented in its
read-only memory (ROM) mask. The
JVM controls the access to all smart card
resources, such as memory and I/O, and
thus essentially serves as the smart card’s
operating system. The JVM executes a Java
bytecode subset on the smart card, ulti-
mately providing the functions accessible
from outside, such as signature, log-in, and
loyalty applications.

The advantages of this are obvious:
Instead of programming the card’s code in
hardware-specific assembler code, new
applications can be developed in portable
Java. Moreover, applications can be securely
loaded to the card post-issuance—after it’s
been issued to the customer. This lets ven-

dors enhance JavaCards with new functions
over time. For example, banking cards that
initially give customers secure Internet
access to their bank accounts might be
upgraded to include e-cash, frequent flier
miles, and e-mail certificates (see Figure 1).

The main reason it took three years to
get real, interoperable cards into developers
hands was a knowledge chasm between the
developers of Java and those who under-
stood the resource-constrained smart card
environment. A primary discussion area was
how to shrink Java to make it fit on a smart
card. The chasm closed only recently, with
the advent of real implementations and
their deployment in customer scenarios.
Competitive technologies, such as the Win-
dows card, have also helped to bring
together the different entities working on
the JavaCard specification. Real JavaCards
are now being produced in volume.

Here we outline the JavaCard basics,
including its history and technology, and
describe our experience shaping JavaCard
technology.

Background

The basic idea of the JavaCard is not
new. Starting in 1996, Schlumberger, a
smart card manufacturer, demonstrated a

In this final of three

related articles about

smart card technology,

the authors discuss the

JavaCard, a much-hyped

technology that is

finally taking off as a

multiapplication smart

card.

Mobile Computing

I
n the smart card world, JavaCard has been one of the most hyped

products around for years. The main reason for the hype is Java-

Card’s potential. Not only would it let all Java programmers develop

smart card code, but such code could be downloaded to cards that

have already been issued to customers. This flexibility and post-issuance

Michael Baentsch, Peter Buhler, Thomas Eirich,
Frank Höring, and Marcus Oestreicher

IBM Zurich Research Laboratory

© 1999 Institute of Electrical and Elec-

tronics Engineers. Reprinted, with per-

mission, from IEEE Concurrency.

This material is posted here with

permission of the IEEE. Such per-

mission of the IEEE does not in any

way imply IEEE endorsement of any

of IBM’s products or services. Inter-

nal or personal use of this material is

permitted. However, permission to

reprint/republish this material for

advertising or promotional purposes

or for creating new collective works

for resale or redistribution must be

obtained from the IEEE by sending

a blank e-mail message to info.pub.

permissions@ieee.org.

By choosing to view this docu-

ment, you agree to all provisions of

the copyright laws protecting it.

October–December 1999 37

Java-based smart card by adding a light-
weight Java bytecode interpreter to a
smart card’s OS and downloading Java
class files, which were converted to a
smaller, proprietary format. The origi-
nal OS functionality was used to down-
load, manage, and execute the applica-
tion code and its data. There were at
least two major drawbacks to this initial
effort. First, a Java application could only
access a few system methods, which was
insufficient to build a card that anyone
could program. Second, it had to rely on
the underlying card’s file system to load
and store data persistently—an approach
clearly unsuitable for an object-oriented
runtime system.

EVOLVING STANDARDS
Even though it was still unclear what

the platform-neutral abstractions of a Java
smart card should look like, Sun Micro-
systems issued a first JavaCard specifica-
tion in October 1996 (java.sun.com/
products/javacard), based on Schlum-
berger’s experience. The specification
limited its description to the JavaCard’s
general goals and architecture: it should
provide support for a Java-language sub-
set and offer APIs for smart card-specific
functions like cryptographic operations.

In February 1997, GemPlus and
Schlumberger founded the JavaCard
Forum (www.javacardforum.org). Smart
card manufacturers such as De La Rue,
Bull, and Gieseke & Devrient (G&D)
joined the forum and released a new spec-
ification at the end of 1997. This JavaCard
2.0 specification contained more concrete
details on both API specifications—such
as those for accessing the underlying mem-
ory and cryptographic functions—and the
JavaCard Virtual Machine (JCVM), a
smaller and simpler JVM that sheds many
of standard Java’s features, as we describe
below.

However, portability and interoper-
ability of JavaCard code (also known as
applets), among different JavaCards was
still nonexistent, even on a source code
level. For example, the file system API
specification was not generic enough to
accommodate various vendors’ propri-
etary file systems, and the crypto API
lacked functionality and was not flexible

enough to enforce the export restrictions
of different countries. Even worse, the
class file conversion, download process,
and executable instructions were still up
to the JavaCard implementor. Finally,
because the API specifications lacked
detail, a reasonably complex JavaCard
application was impossible to port from
one card to another.

VISA’S OPENPLATFORM
To move the multiapplication smart

card area forward, Visa introduced the
Visa OpenPlatform smart card specifi-
cation in April 1998 (www.visa.
com/nt/suppliers/open/main.html).1
VOP defined an architecture for man-
aging applications on multiapplication
smart cards—that is, it specified stan-
dards for securely download and installing
new applications.

From the start, VOP was geared
toward the JavaCard, going as far as to
define on-card Java APIs for accessing
the security controlling objects from
within applets. In 1999, Visa opened the
standard, renaming it OpenPlatform 2.0
(OP) and relinquishing sole control.
This let the ETSI standardization com-
mittee, for example, choose OP for man-
aging SIM cards in GSM mobile phones.

Given that neither Sun nor the Java-
Card Forum had established an open
standard for secure applet download,
Visa’s OP has become a de facto stan-
dard for managing multiapplication
smart cards; currently, it is all but
mandatory that vendors implement
JavaCard and OP on the same chip.

However, OP does not define the
JavaCard application code’s file format
or instruction set, as this was still under
discussion throughout 1998. Such ques-
tions about a standard for JavaCard byte-

code touched upon one of the main sell-
ing points of JavaCard at that time,
namely the emphasis on Java’s underly-
ing security architecture, including the
JCVM’s bytecode verification. Although
no suggestions were forthcoming as to
how to implement this in the resource-
restricted smart card environment, many
JavaCard vendors considered on-card
verification capabilities necessary; they
wanted future cards to contain all infor-
mation required for on-card bytecode
verification—regardless of the practical
consequences, such as the inability to
actually implement such features on the
cards.

JAVACARD 2.1
The JavaCard 2.1. specification (JC21),

released in March 1999, offers JavaCard
bytecode verification as an optional fea-
ture supported by the load-file format, but
favors a different security model, known
in the PC world as code signing. Using the
secure download process as specified in
OP, applet code is run through a secure
converter and evaluated, then signed with
the card-issuer’s secret key prior to down-
loading. Primarily for marketing reasons,
JC21 does not claim to completely trust
this external verification and the enforced
Java language safety mechanisms known
as sandboxes.

Therefore, JC21 introduces an addi-
tional concept: a software firewall mecha-
nism unique in the Java world. Objects are
explicitly associated with their owning
applets, and several additional checks in the
JVM must verify proper access rights on
each object access. The file system API has
been dropped completely due to the huge
differences between different established
file system formats. The cryptographic API
has been extended to numerous classes.

eCash
applet

eCheck
applet

Loyalty
applet

Log-on
applet

ROM/EEPROM

JavaCard class
Library (JavaCard 2.1)

Secure applet install
VISA OpenPlatform

ROM

JavaCard Virtual Machine
ROM

Smart card hardware Hardware

Device drivers for communication, cryptography

Figure 1. JavaCard includes a Java Virtual Machine, which lets vendors add
new applications even after the card has been issued to customers.

38 IEEE Concurrency

CURRENT ISSUES
The end point of the JavaCard specifi-

cation process has yet to be reached; more
and more standard Java concepts are now
finding their way into JavaCard Forum
discussions. To highlight the difficulties
this raises, we briefly recap a smart card’s
underlying hardware constraints.

An inexpensive (and thus mass-mar-
ketable) smart card chip has 256 Bytes of
random-access memory (RAM), 16
KBytes of ROM, and 4-8 KBytes of elec-
trically erasable, programmable ROM
(EEPROM). The Rolls Royce of smart
card hardware currently has 4 KBytes of
RAM, 64 KBytes of ROM, and 64
KBytes of EEPROM. The “middle class”
smart card hardware falls somewhere in
between, and differs mostly in whether it
provides a cryptographic coprocessor for
RSA and DES encryption.

Given that the cost of a single smart
card—and thus a JavaCard built on it—
is critical because of the number of cards
issued, the lower end of the hardware
spectrum is the most interesting for a
JavaCard implementation. To accom-
modate the hardware limitations, Sun
and JavaCard Forum have defined sev-
eral restrictions of standard Java. For
example, several data types (including
Float, Double, and Long) are not sup-
ported; the bytecode is slightly differ-
ent; and threading is not supported.
Such limitations do not seriously affect
the ability to write OO programs or

applets for the card, primarily because
the JavaCard has a simple, server-like
operation mode, which we will now
describe.

JavaCard basics

JavaCard operates like a typical smart
card: When the smart card reader sends a
command, the JavaCard processes it and
returns an answer (see Figure 2). To main-
tain compatibility with existing applica-
tions for smart cards, a single JavaCard can
process only one command at a time.

INTERNAL OPERATIONS
The JavaCard’s internal JVM boots up

when a smart card terminal activates the
hardware and returns the Answer To Reset
(ATR), indicating its communications
capabilities. The system then enters a loop,
waiting for commands from the smart card
terminal. When a command arrives, it is
decoded and either activates (selects a par-
ticular applet) or is forwarded to a previ-
ously selected applet. In the latter case, con-
trol passes to the Java code, invoking the
applet’s process() method. The JVM
then executes any operations sequence pro-
grammed into the applet. This might
include reading further data from the smart
card terminal, decrypting some data using
the JavaCard Cryptography API calls, or
storing data in objects allocated in the smart
card’s EEPROM area. Once the method
terminates, the JavaCard’s runtime envi-

ronment returns a status word to the ter-
minal, along with all the data the applet has
written to the I/O interface.

During bytecode execution, JavaCard
honors all critical Java concepts. In terms
of bytecode execution security, the Java
Card enforces known runtime Java
virtues. For example, illegal array accesses
are prohibited and type-safe object
assignments are ensured. On the pro-
gramming level, JavaCard includes sup-
port for class hierarchies, instance-of
relationships, and exceptions. In this
respect, the JavaCard is not different
from standard Java. However, in other
areas, JavaCard is distinctly different.

The differences are clearly visible on the
application level. One example is in trans-
action safety, which must be accounted for
by both applet programmers and JCVM
designers. Because the JavaCard can always
be extracted from the power-supplying
smart card terminal, the applet’s internal
data structures must change in a logically
atomic manner—that is, all-or-nothing.
The JavaCard specification provides a spe-
cific API for this problem, and the JCVM
design must take this into account—by
checking a transaction recovery buffer each
time it boots, for example.

Another difference is that a smart card
can access RAM and EEPROM. RAM
is fast, small, and nonpersistent, and
EEPROM is slow, big, and persistent.
The JavaCard APIs visibly distinguish
between the two memory types at the
application level so that programmers can
develop applets to perform at a level com-
parable to traditional smart cards pro-
grammed in hardware-specific C or
assembler code.

IMPLEMENTATION
JavaCard applets can be imple-

mented using familiar Java development
environments such as VisualCafe or
Java Developer’s Kit. Such environ-
ments often offer a JavaCard simulator,
which lets applet developers concentrate
on application functionality and the cor-
rect API usage. To this end, the applet
is run in a typical desktop JVM but
accessed only over the smart card-specific
communications interface. Thus, code
that will later interact with the card’s

ResponseProcess

Selected

Terminal
application

Applet card
management

JavaCard 2.1
Class library

Smart card hardware
Response APDU

T = 0, T = 1, T = CL driver, cryptography

Command APDU

Loyalty
applet

eCheck
applet

eCash
applet

APDU
router

JavaCard Virtual Machine

Figure 2. The JavaCard has a simple, server-like operation mode. Once a command
arrives, it is decoded and either selects a particular applet or is forwarded to a
preselected applet, passing control to the Java code. (APDU = application data
protocol units.)

October–December 1999 39

applet can be tested during applet devel-
opment. In practice, however, the simu-
lation environment is of dubious value
as it often tempts developers to disregard
the constraints of a real smart card.

In integrated development environ-
ments, the only visible differences between
applet development for the PC and the
JavaCard are the particular set of API calls
for JavaCard applets and a post-process-
ing stage, which is required to adapt the
Java bytecode to the resource-constrained
smart card environment. To this end, after
compiling the applet’s code, a converter is
run on the Java class files preparing them
for download (see Figure 3). Conversion
removes a significant amount of data that
is necessary only for supporting the
dynamic download of new classes at run-
time. The JavaCard platform has no need
to support such runtime downloads as a
smart card’s primary purpose is to obviate
the need for online connectivity.

In place of dynamic class download,
the JavaCard specification prescribes a
closed-package concept in which all
classes of one package—either a library
or application—are downloaded to a
card at the same time. To accomplish
this, classes are packaged and converted
into a JavaCard CardletPackage (CAP)
file. In this step, the off-chip converter
removes the space-intensive link infor-
mation of a typical Java class file: the
field, method, and class names. Thus, a
standard Java class file created by the ini-
tial compilation step must first be parsed
and converted into an internal represen-
tation. It can then be bound against ref-
erenced classes, which might cause the
other classes to load and bind. For more
detail on conversion techniques, see the
sidebar, “Optimizing conversion.”

Creating such linkable JavaCard code
images raises a second issue: Java class ini-
tialization code must be executed in stan-
dard Java after it has been loaded and
bound, but before its code or elements are
initially accessed. The JavaCard environ-
ment therefore must simplify the load,
bind, and initialization model, which is
accomplished by removing the require-
ment for class initialization at runtime and
prescribing a one-step execution for down-
loading and linking all classes.

Following these off-card preparations
in the development environment, an
automated, combined load-link proce-
dure is executed on the card. If all classes
are perfectly known at convert time and a
fixed JavaCard code image is desired, this
step can be omitted. However, this is typ-
ically the case only for the system classes
going into the JavaCard’s ROM image,
such as the JavaCard API or OP classes.
With post-issuance applet upload, this
technique cannot be applied because each
JavaCard might have its own system class
implementation in different physical loca-
tions. The converter would thus need a
detailed knowledge of the destination
card, the system-class implementation
and version, the object layout, and so on.
Besides the logistical problem, this infor-
mation is unavailable in disconnected
applet downloads, which is one of the
JavaCard environment’s main goals.

With online downloads, where mini-
mizing the size of on-card code has a
higher priority than disconnected applet
download, omitting the link process is
possible. However, because it is ques-
tionable whether the size benefit justi-
fies a total departure from the original
Java idea—to load new functionality—
online download and related concepts
are not prescribed for the JavaCard.

OPENPLATFORM ARCHITECTURE
As we discussed, the JavaCard specifi-

cation does not define how to load pre-
processed applets into the card. All actual
communication formats as well as secu-
rity-related procedures for this are
defined by OP.

The OP security concept focuses on
the defined roles of the different software
providers for multiapplication cards:

• the card’s OS provider (the entity that
implements the JavaCard),

• the card manufacturer (the entity that
physically embeds the smart-card
chip and personalizes the card on a
logical level),

• the card issuer (the entity offering the
cards to its customers), and

• the applet provider (the entity pro-
viding post-issuance functionality).

The goal of OP is to separate concerns.
Once the cards leave the manufacturer’s
premises, for example, only the card issuer
should be able to control the card’s behav-
ior and contents. This becomes particu-
larly important in a legal sense, once the
cards have been issued to customers.

To this end, OP introduced CardDo-
main, an on-card abstraction represent-
ing the card issuer that uses cryptography

Standard Java
environment

Simulation environment

Test
driver

Applet
sandbox

JavaCard VM

Device drivers

Javac

Applet sourcecode (Java)

Conversion

Applet bytecode (Java)

Installation

Applet install file (cap)

System classes

AppletAppletAppletApplet

AppletJavaCard
framework

Applet

Applet

Applet

Run and debug

AP
DU

s

APDUs

Emulation point

+

Figure 3. Applet development and lifecycle. Once applet code is compiled and
debugged, a converter removes data needed for dynamic class download,
which is not required in the JavaCard. Converted applets are then installed on
the JavaCard.

40 IEEE Concurrency

to control access to the card’s functional-
ity. Thus, the owner of the CardDomain’s
keys ultimately determines such things as
whether new applets can be downloaded,
which applets are active at any one time,
or whether a card is altogether disabled.

OP also accommodates different
applet providers on the same card. For
example, an airline might provide loyalty
applets—such as frequent flyer miles—to
a card typically designated for banking
applications. OP facilitates such cohost-
ing with an on-card abstraction called
SecurityDomain. Comparable to the Card-
Domain, SecurityDomain keys are in the
sole possession of an authorized applet
provider. Thus, not even the card issuer
may know the actual code of the applet.

The code’s good behavior on a card is
guaranteed in part by business agree-
ments, as well as by the technical provi-
sions build into the JCVM interpreter
and the off-chip converter described
above. Installing SecurityDomain is the
sole responsibility of the card issuer and
is technically controlled through knowl-
edge of the correct CardDomain keys.

Through these two basic means, OP
clearly enforces the card issuer’s sole
responsibility for a card’s fate. No other
entity involved in developing a multiap-
plication card and its code can manipulate
cards once they are in customers’ hands.
Moreover, OP is not only bound to the
JavaCard, but has been defined on differ-
ent abstraction levels. At the highest level
are language-specific on-card APIs, which
need minor adaptations to work on other
multiapplication cards, like the Microsoft
Windows Card. At the lowest abstraction
level are communication level commands,
which are fixed in the specification to
guarantee interoperability.

OP’s influence on JavaCard develop-
ment tools is minimal. In development,
a program is required to transform the
JavaCard CAP files into (possibly en-
crypted or signed) smart card communi-
cation command sequences (application
data protocol units, or APDUs). These
are sent through a standard smart card
terminal to the JavaCard, where the
CardDomain accepts the data, and loads
and links the new applet into the card. In

addition to such a download tool, further
programs can execute general OP tasks,
like activating or removing an applet,
installing SecurityDomain, or blocking
a card for use. In a GUI-driven develop-
ment environment for JavaCards, tools
such as those for Java class file conver-
sion, static safety checks, applet signing,
and download can be neatly hidden be-
hind one ‘Download Applet’ button.

JAVACARD ARCHITECTURE
With a JavaCard conforming to JC21,

the lowest level of the card’s ROM code
consists of memory access (RAM, ROM,
and EEPROM) and device drivers for the
I/O. Drivers for accessing the crypto-
coprocessor are sometimes required.
Such drivers are collectively used by the
assembler or C implementations of the
native methods of the respective API calls.
An example of this is sendBytes() in the
APDU class, which manages smart card
communications behavior over APDUs
for all JavaCard applets.

A significant part of the overall ROM
code already consists of JavaCard byte-

There are two basic techniques for
optimizing the JavaCard byte code set
in a conversion step executed prior to
downloading applets to the card. The
first technique is to optimize the instruc-
tion set; the second, to optimize the
overall data layout.

INSTRUCTION SET OPTIMIZATION

Changing the standard Java instruc-
tion set alone may not be sufficient to
obtaining an efficient, high-perfor-
mance JavaCard instruction set, but it is
a valid way to achieve better overall
JavaCard system performance. The first
step is to remove all instructions operat-
ing on unsupported data types. You
then reorder the remaining Java opera-
tion codes (opcodes) to suit an efficient
JavaCard Virtual Machine implementa-
tion. Next, because the JavaCard’s
default supports only short integer arith-
metic, you define and use a short inte-
ger instruction instead of the standard
Java integer instruction set. This limits
the stack operands to short integers and
thus saves stack space at runtime. Thus,
the optional integer arithmetic in the

JavaCard instruction set always operates
on multiple stack slots similar to the long
instruction set in standard Java.

You can obtain additional code sav-
ings by limiting the argument size of var-
ious instructions. For example, the table
jump instructions are only given non-
aligned short integer arguments. You
may also introduce a new JavaCard
instruction for instruction sequences that
occur often in standard Java bytecode.
For example, JavaCard 2.1 introduces a
new opcode that loads a field of the
object referenced by the first local vari-
able (usually the reference to “this”). This
avoids the opcode sequence of first load-
ing the local variable on the operand
stack and then accessing the field using
the operand pushed onto the stack.

DATA LAYOUT

When defining a JavaCard file format,
structuring and laying out the linking
information is a complex task. The goal
is to provide a format that optimizes the
timing and memory limitations of smart
card hardware.

Time limitations require minimizing
the size of output files that will be down-
loaded over the slow smart card com-
munications link, as well as the number

of writes to the persistent, but slow EEP-
ROM memory required during code
download and applet installation.

Memory limitations require minimiz-
ing the RAM-based temporary resources
needed to download the JavaCard CAP
file and the EEPROM-based applet exe-
cution information, which cannot be
discarded.

The first problem is in deciding how
to map the symbolic information in the
standard class files to short identifiers
for their classes, members, and fields.
Because a global name space is difficult
to manage, each identifier should only
be valid relative to its defining package.
In JC21, the identifiers for given classes
and class members are indices or offsets
into class or method tables in the desti-
nation package.

The name mapping for a published
API is part of the API specification and
is distributed as an export file. This gives
developers the API so they can correctly
convert packages on any converter. The
export file contains only information
about the package’s externally visible
items, but includes additional informa-
tion like a method’s access right or the
values of final static fields.

The second problem is in deciding

Optimizing conversion

October–December 1999 41

code implementing the various APIs
defined in the JavaCard specification. As
we discussed earlier, the OP functional-
ity must be provided in ROM as well if
card control that conforms to multiappli-
cation standards is desired. Because OP
requires DES cryptography, an impres-
sive list of functions must be implemented
and—most importantly—must fit into the
20 KBytes of a simple smart card.

Real-world JavaCard

We have built two JavaCards: one con-
forming to the lower end of the hardware-
capability and price spectrum and the
other in the middle, with 32 KBytes
ROM and 1200 Bytes of RAM. To test
the cards, we measured real-world applets
running on them. Our results show that a
functioning JavaCard can be built if the
right abstractions and APIs are chosen.

As a reference application, we imple-
mented Visa’s e-cash protocol, VisaCash,
as a JavaCard applet. The applet has a
code size of 5 KBytes and performs all
VisaCash operations, including the load-

ing and spending of electronic money
secured by DES and triple-DES cryp-
tography; the storing and retrieving of
logfile information; and Visa’s manda-
tory, cryptographically secure personal-
ization procedure. The VisaCash applet
is certified by Visa to operate in total
accordance to specifications and has
been rolled out to customers.

For a baseline comparison, we tested
our “middle class” card against a dedi-
cated, conventional VisaCash card, which
is in production use; and a card using
another implementation of the JavaCard
specification.

RESULTS
We programmed our card in smart

card specific native code, following to the
greatest extent possible the intermediate
JavaCard specification of mid-1998. The
complete virtual machine code is writ-
ten in C, the device drivers are assembly,
and the OpenPlatform implementation
is mostly Java. We took all measure-
ments on the same smart card terminal
type, thus guaranteeing that identical

clock rates drove the cards during the
experiments. The JavaCards ran on
identical hardware platforms. Table 1
shows the results for the three most typ-
ical operations: Select application, Load
money, and Purchase goods.

DISCUSSION
Provided that card APIs are perfectly

tuned to the specifics of the resource-
limited smart card environment, our
experience shows that the JavaCard can
run at performance levels akin to con-
ventional cards. This is primarily due to
the fact that the most time-consuming
operations are written in assembly code.
These operations include the crypto-
graphic operations, communications, and
EEPROM writing. The reasons for the
Reference JavaCard’s poor performance
on the identical hardware can only be
guessed—it’s possible that developers
used the wrong APIs or that it was simply
a bad implementation, or that it was some
combination of these and other factors.

We have submitted solutions to the two
most important issues for a high-perfor-

how to efficiently organize the file for-
mat so that locations containing iden-
tifiers to be bound are easy to find. One
way to achieve this is to expect the
card’s loader to parse the CAP file, find
the identifiers, and bind them. Another
way is to provide a table for the loca-
tion needing a fix-up.

The JavaCard specification uses both
approaches. The card’s loader, for exam-
ple, is expected to load the class descrip-
tors on the fly, bind them, and write
them into the persistent memory. For
the various bytecode instructions that
reference classes or class members, the
second scheme is used: A CAP-file table
references the various instructions,
which in turn refer to items in the con-
stant pool that contain target identifiers.

This combined scheme is quite diffi-
cult and expensive to implement, but it
does let you discard the constant pool
after instructions are bound. However,
this technique also requires that you
load the instructions before you load
the location table, and apply binding
on the fly—that is, as the download
commands arrive piecemeal in the card.
Unfortunately, the persistent memory,
which ultimately contains the instruc-
tions, must therefore be written twice,

leading to a less-than-optimal perfor-
mance during applet upload. We have
shown in our implementation that it is
also possible to base the whole file for-
mat on an on-the-fly binding scheme,
with only one EEPROM access per mem-
ory location during the download.

In any case, the CAP file must contain
as much pre-resolved information as pos-
sible to save expensive card resources.
Because the converter leaves out infor-
mation from the original class files, you
must ensure that the CAP file contains
all the necessary execution information
as the card cannot recompute them at
runtime. JC21, for example, distinguishes
internal and exported items, which per-
mits a faster binding on the card. Also,
link information for applications that are
not a link target later, is separated and
can be eliminated.

The converter should also sort the
fields of references and primitive types
to permit an efficient garbage-collec-
tion scheme—that is, to let the JavaCard
reclaim objects no longer in use for
future memory allocations. The con-
verter can save additional space by com-
pacting the various class and method
descriptors. For example, it can reduce
attribute size, such as the number of

local variables, or leave out unnecessary
information, such as access attributes.
These can then be converted into a form
that is close to the execution layout. This
technique for improving runtime-effi-
ciency is comparable to that used in
standard Java’s Just-in-Time compiler.

FURTHER OPTIONS

Because of the JavaCard’s closed-
package concept, the converter can also
apply more sophisticated optimizations.
These include, for example, inlining
methods—typically constructors or sim-
ple accessor methods that might then be
left out of the resulting CAP file. As
another example, a class hierarchy analy-
sis offers the opportunity to replace vir-
tual method invocations by direct invo-
cations and to compact method tables.
This results in an overall performance
improvement and an overall code size
reduction. However, these optimizations
can change the Java semantics and
might make it impossible for an exter-
nal application to verify the CAP file
without having access to the original
Java class files. As external CAP-file ver-
ifiers are announced, such optimiza-
tion options will have to be considered
carefully.

42 IEEE Concurrency

mance JavaCard implementation to the
JavaCard Forum, Sun, and scientific con-
ferences. The first issue is the need to effi-
ciently handle transient memory (RAM)2

and will soon appear as an amended Java-
Card specification version. The second
issue, transaction support, is still under
consideration (www.javacardforum.org).

Our JavaCard implementation experi-
ences are also telling in the impact of var-
ious optional features in the JavaCard
specification. Table 2 shows rough esti-
mates of the ROM code size necessary to
provide the different components of a
fully functional OP JavaCard. We imple-
mented a JavaCard with full public-key
support on a “middle-class” smart card
with about 1 KByte RAM and 32 KBytes
ROM. Depending on a developer’s skill,
it may or may not be possible to include—
as we did—an optional Java garbage col-
lector, public key cryptography support
(signing, encrypting/decrypting/hashing
data, generating keys on the card), or fur-

ther applets of general value, such as
PKCS#11-type data stores.

In the end, the market will ultimately
decide which features will be required
from a JavaCard, and how much they
should cost—that is, how big and expen-
sive the JavaCard’s smart card chip will
be. The comparison with other multi-
application smart card technologies, like
the Multos or Windows cards will drive
this development.

APPLICATIONS
The proof-of-concept software we

developed over two years during the con-
stant redefinition of the JavaCard standard
has proven valuable in several field pilots,
including the JavaCard installation at the
US General Services Administration (pol-
icyworks.gov/org/main/me/smartgov/info
rmation/holcombe_pp0599/sld018.htm).
At the US GSA, the JavaCard provides a
biometric-driven secure login, Netscape
e-mail signing and encryption, as well as

mundane tasks such as storing frequent-
flier miles.

Although our card is not fully compli-
ant with the March 1999 JC21 specifica-
tion, our experiences did heavily influence
the JavaCard specification process. We
are now in the process of having our soft-
ware commercialized—under the GemX-
presso brand name—through a licensing
agreement by GemPlus, the world’s lead-
ing smart card manufacturer. Other, fully
JC21 compliant cards are expected by the
end of this year from Schlumberger,
DeLaRue, and Bull.

JAVACARD SPECIFICATIONS have sig-
nificantly improved since the hype began
three years ago. The time has now come
to see how well different implementa-
tions will interoperate given the differ-
ence in functionality and options for
improvements we discussed here.

Ultimately, performance, price, and
interoperability will be the litmus test for
JavaCard’s success in the real world. If
applet developers can write their own code
for one particular, inexpensive card and
run it unchanged on any other JC21 com-
pliant card, the JavaCard hype will finally
be a reality you can buy and rely on.

ACKNOWLEDGMENTS

We thank VISA International, and in partic-
ular, Gavin Shenker of Visa’s OpenPlatform
team for his input to our work, which led to
many fruitful discussions within the JavaCard
community. At IBM, we thank our former
manager, Francois Dolivo, for his diligence
in pushing through our work. Finally, we
thank Eric Alzai’s JavaCard technology eval-
uation team at GemPlus for preparing the
decision to license our work and making it the
basis of GemPlus’ JavaCard products.

Table 1. VisaCash performance benchmark (numbers in milliseconds).

VISACASH CARD IBM JAVACARD REFERENCE JAVACARD

Select 24.6 15.0 107.3
Load 203.4 220.2 932.8
Purchase 207.9 217.8 823.9

Table 2. JavaCard component sizes in kilobytes.

Virtual machine 4.0
Memory management subsystem (including transaction support) 4.0
Garbage collector for RAM and EEPROM 1.5
DES implementation (no hardware) 1.4
RSA/DSA implementation (PK coprocessor) 2.4
On-card RSA/DSA private-key generation 0.6
PK hash algorithm (SHA1) 0.6
T = 1 protocol 1.0
T = 0 protocol 0.5
T = CL (contactless) protocol 0.5
JavaCard system classes (no crypto) 2.5
JavaCard crypto classes (IBM proposal) 0.7
JavaCard crypto classes (JC21) ca. 5.0
OP implementation (mixed native/Java code) 8.0
Full-fledged SecurityDomain support 1.0
Applets required to be in ROM for VOP compliance 1.2

October–December 1999 43

References
1. M. Oestreicher and K. Ksheeradbhi, “Object

Lifetimes in JavaCard,” Proc. Usenix Work-
shop Smart Card Technology, Usenix Assoc.,
Berkeley, Calif., 1999, pp. 129–137.

2. M. Oestreicher, “Transactions in JavaCard,”
Proc. Annual Computer Security Applica-
tions Conf., IEEE Computer Society Press,
Los Alamitos, Calif., to appear, Dec. 1999.

Michael Baentsch is a research staff mem-
ber in the Secure Systems Group at IBM
Zurich Research Laboratory. His interests
include secure hardware tokens, as well as
practical aspects of security, such as protocols

or applications requiring cryptographic func-
tionality. He received a PhD in computer sci-
ence at the University of Kaiserslautern, Ger-
many, and is a member of the ACM. Contact
him at baentsch@acm.org.

Peter Buhler is manager of the Secure Sys-
tems Group at IBM Zurich Research Labo-
ratory. His interests include cryptography,
secure protocols, and embedded systems. He
received a PhD in computer science at the
University of Kaiserslautern, Germany. Con-
tact him at bup@zurich.ibm.com.

Thomas Eirich is a research staff member in
the Secure Systems Group at IBM Zurich
Research Laboratory, where he develops
applications for cryptographic algorithms,
such as advanced software distribution mech-
anisms. Eirich received a PhD in computer

science at the University of Erlangen, Ger-
many. Contact him at eir@zurich.ibm.com.

Frank Höring is a research staff member and
software engineer in the Secure Systems
Group at IBM Zurich Research Laboratory.
His interests include cryptographic APIs and
PKCS#11 security tokens, as well as low-level
operating system functionality. He received
an MS in computer science at the University
of Erlangen-Nuremberg, Germany. Contact
him at fhr@zurich.ibm.com.

Marcus Oestreicher is a PhD student in the
Secure Systems Group at IBM Zurich Research
Laboratory. His interests are in advanced vir-
tual-machine design and bytecode optimization
techniques. He received an MS in Computer-
Science at the University of Erlangen, Ger-
many. Contact him at oes@zurich.ibm.com.

ConcurrencyConcurrencyIEEE

CACHING IN DISTRIBUTED SYSTEMS
Caching has increased in importance with the widespread use of large-scale distributed systems, such as the
Internet-based World Wide Web. Here, source data is centralized, and updates (at the server) are typically infrequent
compared with reads. Servers can become bottlenecks and client systems routinely cache data to avoid server or network delay. More
generally, components of distributed systems can cache data for local read and update, introducing the need to maintain consistency
between clients.

For this special issue of IEEE Concurrency, of particular interest are papers that present practice, experience, and quantifiable
results. One of the main goals of this special issue is to expose readers to caching-related problems and solutions at various system
levels. The rationale behind such an approach is to enable researchers from various domains to exchange their experiences and to
benefit from each other’s experiences.

RELEVANT TOPICS INCLUDE:

☛ performance evaluation of cache-based systems
☛ protocols for cache management
☛ active cache management
☛ cache consistency maintenance
☛ caching in multiprocessors
☛ caching in DSM systems
☛ caching in distributed file systems
☛ caching on the Internet
☛ caching for specific application areas
☛ modeling and classification of caching at all levels

U p c o m i n g I s s u e . . .

Please, submit abstracts
to:

the Guest Editor, Veljko Milutinovic
(vm@etf.bg.ac.yu)

and full papers (with abstracts)
in PDF format to:

Shani Murray
(smurray@computer.org).

