
 
IBM Pervasive Computing 
February 2003 
 
 
 
 
 
 
 
 
 
 
 
 

X+V and Speech Considerations 
 
 
 
 
 
 
 
 
 
 

 
 



X+V and Speech Considerations 
Page 2 

 
Executive Summary 
XHTML+Voice (X+V) is a markup language for writing 
multimodal applications, combining visual and voice 
interfaces.  It is based on a number of W3C standards, 
most notably XHTML and VoiceXML. 
 
Each X+V platform includes technologies for performing 
speech recognition and speech output.  In order to 
create effective multimodal applications, it helps to 
understand some of the issues involved in using these 
voice technologies.   
 
This paper discusses practical grammars, speech 
recognizer properties, speech output, and TTS 
customization.  It is written for application developers 
who may be interested in creating X+V enabled 
multimodal applications. 

_________________________ 

Contents 
_________________________ 
 
3 Practical grammars 
3 Engine accuracy 
4 Application accuracy 
5 Efficiency 
6 Usability considerations 
6 Speech recognizer 

properties 
8 Speech output 
8 Formant TTS 
9 Concatenative TTS 
9 Phrase-splicing TTS 
9 Recorded audio 
10 TTS Customization 
11 Exception dictionary 
11 Summary 
12 Credits and resources 
12 References 
12 Trademarks 
 
 
 
 



X+V and Speech Considerations 
Page 3 

Practical grammars 
In an X+V application, each field or form can specify 
one or more speech recognition grammars.  These 
grammars determine the utterances (words and 
phrases) that can be understood by the speech 
recognition engine.  Grammars can be inline (contained 
within the X+V code) or external (stored in a separate 
file). 
 
Each X+V platform supports one or more grammar 
formats, which can include the XML Form of the SRGS 
(W3C Speech Recognition Grammar Specification), the 
Augmented BNF (ABNF) Form of the SRGS, and the 
Java Speech API Grammar Format (JSGF).  Figure 1 is 
an example of a JSGF grammar: 
 
#JSGF V1.0; 
grammar command; 
public <command> = <action> <object>; 
<action> = open | close | delete | move; 
<object> = [the | a] (window | file | menu); 
Figure 1—Example of a JSGF Grammar 
 
When this grammar is active, open a menu, close 
window, and delete the file are all valid utterances.  In 
fact, this simple grammar enables 36 phrases.   Add 
just one more choice to the <action> rule, and the total 
number of phrases becomes 45.  As grammar 
complexity increases, the number of phrases grows 
quickly.  The number of phrases can have a significant 
impact on engine and application accuracy, as well as 
efficiency. 
 
 
Engine accuracy 
One way to measure accuracy is by how often the 
speech recognition engine returns the correct phrase, 
exactly as spoken.  This is also known as engine 
accuracy.  For example, if a user speaks 50 phrases, 
and 46 are recognized correctly, the engine accuracy is 
92%. 
 



X+V and Speech Considerations 
Page 4 

Engine accuracy is directly affected by the number of 
phrases that are enabled at any given time.  In general, 
the more phrases that are enabled, the more phrases 
that can be confused with each other, and therefore the 
lower the engine accuracy. 
 
Some utterances are more easily confused than others.  
For example, show games and show gains are likely to 
be mistaken for each other, whereas display puzzles 
and graph stocks are not.  Worse yet, homonyms such 
as to, two, and too cannot be distinguished at all. 
 
 
Application accuracy 
From the end user’s standpoint, the real measure of 
accuracy is how often the application performs the 
desired result.  This is called the application accuracy.  
For example, if the user says open my file, but the 
engine recognizes this as open file, the application 
might still perform the desired result. 
 
In that case, the engine was not technically accurate, 
but the application was.  If the user speaks 50 phrases, 
and 46 are recognized correctly, but an additional two 
phrases are handled correctly by the application, the 
application accuracy is 48 out of 50, or 96%. 
 
In general, application accuracy can be improved by 
conducting usability tests to determine the phrases that 
users are likely to say, and then adding those phrases 
to the active grammar.  For example, in Figure 1, the 
optional grammar piece [the | a] may increase 
application accuracy.  However, the more phrases that 
are enabled, the more likely the engine will 
misrecognize one phrase for another.  Here are some 
suggestions: 
 

• Enable phrases that are as long and 
distinctive-sounding as possible. 

• Start with as few phrases as possible, in 
order to maximize engine accuracy. 

• Include alternative phrases that users are 
likely to say. 



X+V and Speech Considerations 
Page 5 

• Avoid similar-sounding phrases that have 
different meanings. 

 
 
Efficiency   
Another consideration when writing grammars is 
efficiency.  Two components of grammar efficiency are 
reco time and compile time. 
 
Reco time is the time it takes for the user’s utterance to 
be recognized and converted to text.  This depends on 
many factors, including the speech recognition engine, 
the spoken utterance, and the complexity of the 
grammar.  The only factor that can be controlled by the 
grammar author is the complexity of the grammar, so 
keep in mind that the simpler the grammar, the shorter 
the reco time. 
 
Compile time is the time it takes for the grammar to be 
compiled, or converted to a form that is usable by the 
speech recognition engine.  Again, the simpler the 
grammar, the shorter the compile time.  However, X+V 
platforms may provide a couple of additional features 
that can be used to shrink compile time: 
 
Pre-compiled grammars are grammars that can be 
compiled ahead of time, so that X+V applications can 
reference already-compiled grammars.  That avoids the 
compilation step completely, but may lengthen load 
time, if the compiled version is much larger than the 
uncompiled version.  Efficiency then becomes more 
dependent on the speed of the network connection. 
 
Application-specific pronunciation dictionaries.  If a 
speech recognition engine does not have built-in 
pronunciations for some of the words in a grammar, it 
may generate pronunciations for those words when the 
grammar is compiled.  X+V platforms may allow 
grammar authors to specify a pronunciation dictionary, 
which contains pronunciations for words appearing in 
the grammar.  That keeps pronunciations from having 
to be generated at compile time.  Furthermore, 
pronunciation dictionaries can be used to customize 



X+V and Speech Considerations 
Page 6 

pronunciations for unusual words (such as proper 
names), thereby improving engine accuracy. 
 
 
Usability considerations 
Annotations are symbolic representations that 
grammars can return when certain words or phrases 
are recognized.  For example, in a flight reservation 
system, the user may say the name of a city, but the 
grammar can return the airport abbreviation code.  
Virtually all grammar formats support some form of 
annotations.  That allows users to say what comes 
naturally, and have the grammar convert this to the 
form needed by the X+V application. 
 
 
Speech recognizer properties 
X+V applications can specify a number of speech 
recognizer properties.  These properties affect the 
performance of the speech recognition engine, and 
therefore the X+V application.  Speech recognizer 
properties can be set at the form or field level, via the 
<property> element, as shown in Figure 2. 
 
<vxml:form id="example"> 
 <property name="confidencelevel" value="0.8"/> 
 . 
 . 
 . 
</vxml:form> 
Figure 2 – Example of the <property> element 
 
Here are descriptions of some of the speech recognizer 
properties. 
 
 
confidencelevel 
This property sets the confidence level (also known as 
rejection threshold) of the speech recognition engine, 
on a scale from 0.0 to 1.0.  Each result from the engine 
has a confidence score, which indicates how certain the 
engine is of that result.  Results whose confidence 



X+V and Speech Considerations 
Page 7 

score is at or above the specified confidence level are 
accepted, but results below that level are rejected. 
 
The higher the confidence level, the less likely the 
engine is to return an incorrect result.  The lower the 
confidence level, the less likely the engine is to reject a 
correct result.  The appropriate tradeoff depends on the 
X+V application.  If an incorrect result would be 
disastrous, it is important to specify a high confidence 
level.  Otherwise, the default or a lower confidence 
should work well under most conditions.  
 
 
sensitivity 
The sensitivity of the speech recognition engine is set 
on a scale from 0.0 to 1.0.  The higher the sensitivity, 
the more sensitive the engine is to quiet input.  That is, 
quiet input is more likely to be recognized correctly.  
The lower the sensitivity, the less sensitive the engine 
is to noise.  That is, the engine is less likely to 
misinterpret background noise as valid input. 
 
Again, the appropriate tradeoff depends on the X+V 
application.  If an incorrect result would cause harm, or 
if users are likely to be in a noisy environment, specify 
a low sensitivity.  Otherwise, the default or a higher 
sensitivity should work well under most conditions. 
 
 
speedvsaccuracy 
Some speech recognition engines have the ability to 
trade speed for accuracy, or vice versa.  That is, they 
can operate in a mode that optimizes for speed, in 
which case accuracy is reduced, or in a mode that 
optimizes for accuracy, in which case speed is reduced.  
The speedvsaccuracy property allows an X+V 
application to request optimization for speed, accuracy, 
or somewhere in between. 
 
The value can range from 0.0 to 1.0.  Higher values 
mean greater accuracy and slower speed; lower values 
mean lower accuracy and faster speed.  High values 
are good if incorrect results would be difficult to correct 



X+V and Speech Considerations 
Page 8 

or reverse.  Low values are good if it is important for the 
user to see results quickly.  Although higher values 
mean slower speed, they may actually yield greater 
efficiency in the long run, since it can be time-
consuming for users to reverse the effects of incorrect 
engine results. 
 

completetimeout  
 
incompletetimeout  
 
maxspeechtimeout 

 
These timeout properties affect when the engine 
considers an utterance to be finished.  Not all speech 
recognition engines support these properties.  See the 
VoiceXML specification for details. 
 
 
Speech output 
X+V applications can output speech by using either 
text-to-speech (TTS) or pre-recorded audio.  Speech 
output can provide: 
 

• Verbal prompts without being limited by screen 
or window size, 

• Additional details about the field requiring input, 
• Help when requested, and 
• Feedback on data entered via speech 

recognition. 
 
Several technologies exist for producing TTS output, 
and X+V platforms may or may not provide a choice.  
Each TTS technology has its own set of pros and cons, 
as does recorded audio. 
 
 
Formant TTS 
Formant TTS produces speech output algorithmically 
from scratch.  This has several advantages.  First, it 
does not require a lot of memory or disk space.  It has 
an unlimited vocabulary and will attempt to pronounce 



X+V and Speech Considerations 
Page 9 

any word.  It is also highly configurable and easy-to-
understand.  However, the resulting speech does not 
sound very natural. 
 
 
Concatenative TTS 
Concatenative TTS produces speech output by piecing 
together segments of recorded speech.  Each of these 
segments is typically smaller than a syllable.  The 
advantage is that this sounds more natural than 
formant.  And as with formant, concatenative has an 
unlimited vocabulary.  However, concatenative requires 
more memory and disk space than formant, and is not 
as configurable as formant. 
 
 
Phrase-splicing TTS 
Phrase-splicing TTS produces speech output by 
piecing together entire pre-recorded phrases.  The 
advantage is that this sounds very natural, possibly 
even indistinguishable from recorded audio.  However, 
phrase-splicing systems must rely on concatenative 
technology for any words or phrases that were not pre-
recorded.  Therefore, phrase-splicing works best with a 
fixed set of phrases, rather than an unlimited 
vocabulary.  If the X+V application’s prompts change in 
the future, new phrases would need to be recorded.  
Furthermore, phrase-splicing requires even more 
memory and disk space than concatenative. 
 
 
Recorded audio 
Recorded audio sounds more natural than TTS 
(especially formant), but must be recorded ahead of 
time.  This means that, as with phrase-splicing TTS, if 
the X+V application’s prompts change in the future, 
new recordings would need to be made.  Additional 
tradeoffs involved with recorded audio include larger 
consumption of storage space, and additional file I/O 
management.  On the other hand, pre-recorded files 
require less memory and CPU processing. 
 



X+V and Speech Considerations 
Page 10 

 
TTS customization 
There are several ways that X+V applications may be 
able to customize TTS, depending on the X+V platform. 
 
 
Voice characteristics 
X+V platforms may allow applications to configure a 
number of characteristics of the TTS voice.  Examples 
include gender, age, speed, volume, pitch, and pitch 
fluctuation. 
 
Formant TTS tends to be highly configurable.  
However, configuring concatenative TTS may cause 
distortions that diminish pleasantness and intelligibility. 
 
Audio format 
X+V platforms may provide a choice of audio formats 
for TTS.  An example of an audio format might be 11k 
16-bit mono PCM, where: 
 
11k is the sample rate, or the number of audio samples 
per second.  Each sample provides a digital snapshot 
of the sound waves, so the more samples per second, 
the higher the potential quality.  An 11k sample rate 
actually provides 11,025 samples per second.  Other 
common sample rates include 8k (8,000 samples per 
second), 16k (16,000 samples per second), and 22k 
(22,050 samples per second). 
 
16-bit is the number of bits per sample.  The number of 
bits per sample is usually 8 or 16.  Again, the more bits 
per sample, the higher the potential quality. 
 
Mono indicates that there is one audio channel, and is 
sometimes called “single-channel.”  Support for two 
audio channels would be called “stereo” or “dual-
channel.”  TTS is normally mono. 
 
PCM stands for pulse code modulation, which is a 
standard method of encoding digital audio. 



X+V and Speech Considerations 
Page 11 

 
 
Exception dictionary 
X+V platforms may support an exception dictionary, 
which is a list of words and their pronunciations.  This is 
useful for words that are not known by TTS system, or 
that have unusual pronunciations. 
 
The X+V application developer creates an exception 
dictionary using a text editor or special tool, and the 
X+V application tells the TTS system (either through a 
configuration file or an X+V language extension) to load 
that exception dictionary.  Then the TTS system uses 
the pronunciations in the exception dictionary to 
override the default pronunciations. 
 
 
Summary 
X+V gives applications a great deal of flexibility 
regarding the use of speech recognition and speech 
output.  For speech recognition, it is important to create 
grammars that take into account accuracy and 
efficiency, and to choose suitable speech recognizer 
properties.  For speech output, it is important to know 
when to use recorded audio or one of the TTS 
technologies, and to take advantage of customization 
features provided by the X+V platform.  The result will 
be X+V applications that can perform well and satisfy 
end-users. 



X+V and Speech Considerations 
Page 12 

  

References 
 
This paper discusses strategy and plans which are subject to change because of IBM business and technical judgments. 
 
All statements regarding IBM future direction or intent are subject to change or withdrawal without notice and represent goals and objectives 
only. 
 
References in this publication to IBM products or services do not imply that IBM intends to make them available in any other countries. 
 
Performance results obtained in other environments may vary significantly from your results. There is no guarantee that these 
measurements will be the same on your systems. 

 
 

Trademarks 
 
IBM, the IBM logo and WebSphere are trademarks of International Business Machines Corporation in the United States, other countries, or 
both. 
 
Other company, product, and service names may be trademarks or service marks of others. 
 
© Copyright IBM Corporation 2003 
 
IBM Corporation 
Route 100 
Somers, NY 10589 
U.S.A. 
 
Produced in the United States of America 
2-03 
All Rights Reserved 
 

 


