

JCOP Tools Technical Brief

Overview : This document contains a simple overview about the functionality and benefits of the JCOP
Tools development environment. Requests for further information may be directed at
javacard@zurich.ibm.com .

Basic specifications
The JCOP Tools provide a set of development tools for the successful development, deployment and
testing of applications for any generic OpenPlatform JavaCard, with specific support for the IBM JCOP
platform. JCOP itself is the IBM BlueZ implementation of the basic specifications [1] and [2] including
refinements from Visa International set in the Visa OpenPlatform Card Implementation Guides
(http://www.visa.com/nt/suppliers/vendor). Applications for a generic OpenPlatform compliant
JavaCard can be fully and conveniently developed using the JCOP Tools development kit. It provides
both a set of command line tools as well as a fully integrated, graphical development environment, the
IDE, allowing for all the individual development steps to be performed in a single application. The IDE
allows for the creation, modification and management of project data and application source code,
simplifies error detection and trouble shooting during the compilation and conversion process, and
offers a powerful testing and debugging environment for JCOP applications. The JCOP tools feature

(1) JCOP simulation programs which are executed on the development host, but behave very similar to
physical JCOPs and cards

(2) Debugger, allowing for the debugging of JCOP applications at the source code level,

(3) Powerful shell for either issuing interactive commands or executing long-running batch scripts to
auto-test the application.

Thus, the JCOP tools enable a flexible and time-efficient development process on the fast and
convenient development host, while still allowing for the final deployment and testing of JCOP
applications on real smart cards compliant with [1] and [2]. With the support of PC/SC and contactless
readers, the JCOP Tools can communicate with a wide range of available card readers and terminals.

Additionally, JCOP Tools do not only support the Microsoft Windows operating system family, but can
also be deployed on Linux systems or even Mac OS X computers.

JCOP, BlueZ and all BlueZ-based trademarks and logos are trademarks or registered trademarks of International Business Machines Corp. in the US and
other countries. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems in the US and other countries.

JCOP Tools – Technical Brief Revision 1.0

 Page 2

2 Requirements

2.1 Supported host operating systems

Microsoft Windows

RedHat Linux 7.x or similar systems

Mac OS X

2.2 Java Runtime

The JCOP Tools are based on the Java Development Kit 1.3.x or similar. The IBM Java
Development Kit 1.3 is included in the JCOP Tools shipped on CD.

2.3 Drivers

The JCOP Tools do not come with a smart card reader, but support the usual smart card
reader standards, such as PC/SC for Windows or Linux. PC/SC is fully installed for
Windows 2000 and XP, hence adding a PC/SC compliant reader to the PC will activate the
physical reader interface of the JCOP Tools for interaction with real cards. For Linux, the
optional Muscle PC/SC driver system [3] must be installed prior to interaction with real
cards.

Revision 1.0 JCOP Tools – Technical Brief

Page 3

3 Component Overview

3.1 Highlights

Portability: The JCOP Tools are available for Windows, Linux and Mac OS X and thus
provide a portable development platform for JCOP applications.

Completeness: The JCOP Tools assist in all necessary development steps of a
JavaCard/OpenPlatform application (applet). Project management, source code editor,
compilation and build tools, source-level debugger, simulation environment, APDU shell
and scripting environment are all integral parts of the JCOP Tools.

Development Views : The JCOP Tools on the one hand offer an Integrated Development
Environment (IDE) managing all development steps in a single application. On the other
hand, they also allow for the execution of the individual tools from the command line. This
allows for a better integration into other development environments and for more flexibility
in the case of advanced projects.

Full JCOP support: The JCOP Tools fully support all members of the JCOP family. The
different JCOPs can either be simulated in detail, or can be integrated via the PC/SC
interface in case of contact-based JCOPs or via the Philips Mifare interfaces in case of
contact-less JCOPs.

Exported APIs : The JCOP Tools are shipped with an off-card API allowing for the
development of off-card, i.e., terminal applications. The API which is used by the JCOP
Tools themselves allows for both extending the JCOP Tools as well as the development of
stand-alone applications.

3.2 Components

3.2.1 Overview

The IDE integrates most of the individual JCOP Tools in a single application with a modern
graphical user interface, and thus is operated like state-of-the-art integrated development
environments.

3.2.2 Project -Oriented Development

The IDE enforces project-oriented development. An IDE project encapsulates all
application source files, test scripts, compilation options and target settings like AIDs,
version information, etc. Both project- and IDE-related settings can be easily and
conveniently modified in typical graphical dialogs. Users of other IDEs feel quickly familiar
with the JC OP Tools.

3.2.3 Source Code Editor

The IDE provides a state-of-the-art editor component which supports both the editing of
JCOP applet sources as well as shell scripts. Find, Find/Replace, syntax-highlighting,
source-code formatter, and keyboard shortcuts are standard features.

JCOP Tools – Technical Brief Revision 1.0

 Page 4

3.2.4 Build Tools

The IDE uses the Java compiler shipped with all modern Java development kits for the
class file generation and exploits an integrated converter for the generation of applet cap
files and export files. Within the IDE, a single click on an error message after a project
build sets the cursor at the offending line. The converter can also be driven from the
command line allowing for flexible deployment in different development environments.

3.2.5 Simulation Environment

The JCOP Tools are shipped with simulations for all important members of the JCOP
family, currently JCOP10, JCOP20 and JCOP30. These simulations are executed on the
development host, but behave almost exactly the same as real, physical JCOP cards.
JCOP applet development can then fully proceed in the simulation environment.
Especially, the simulations can be driven at much higher execution rates allowing for faster
development processes. The simulations still offers the same limited RAM, EEPROM and
ROM sizes and features as the physical JCOPs. Additionally, the simulations can be
executed in a speed-emulation mode where the limited execution speeds of the real chips
are simulated.

3.2.6 Source level debugging

Applets can be downloaded, installed and executed on the JCOP simulation with the ability
to watch and trace the progress of an application in detail. The JCOP Tools therefore offer
BugZ, the JCOP application debugger, whose execution is either triggered by the IDE, but
can also be executed stand-alone from the command line. BugZ offers the many features
typically expected from a modern source-level debugger, for instance class browser,
breakpoints, line stepping, local variable watch, object inspection etc. Additionally, BugZ
reports about the memory and/or transaction buffer usage giving the developer important
details about the application and how to optimize it.

3.2.7 Shell environment

Smartcards react on the requests sent by a terminal and/or a card reader. Thus, the
flexible definition and handling of APDU traffic is central for a smartcard application
development environment. The JCOP Tools offer a programmable and extensible shell
which can be used both interactively as well as in batch mode. The latter allows to run
complex shell scripts for instance to test your JCOP application against complex test suites
or execute complex JCOP personalization schemes. The interactive mode is typically used
during application development or card management. The Shell does not only allow
sending and receiving APDUs, but offers a large set of commands extremely simplifying
the handling of an OpenPlatform card. For instance, authentication to the card, package
download, applet instantiation and deletion are all a matter of simple, easy-to-learn
commands. Additionally, the shell can be extended by plug-ins which can implement any
kind of complex off-card command for a specific applet. The JCOP Tools are shipped with
powerful plug -ins for OpenPlatform applets, security domains etc. Further plug-ins, for
instance for PKCS#15, can be made available on demand.

3.2.8 Off-card, Terminal APIs

The shell and shell plug-ins all make use or are even part of the base APIs which are
shipped with the JCOP Tools and which allow for the convenient development of powerful
off-card and terminal applications. Especially, all OpenPlatform-related services, including

Revision 1.0 JCOP Tools – Technical Brief

Page 5

the necessary cryptographic computations, are encapsulated in simple-to-use, but
powerful APIs.

For instance, a terminal application having to download, install and communicate with a
JCOP applet is simple to implement. Advanced terminal applications can make use of the
plug-in mechanism to either extend the functionality offered in the base API or make use of
advanced plug-ins like PKCS#15 to handle complex JCOP applications.

The JCOP Tools APIs are fully supported on all host platforms, including Windows, Linux
and Mac OS X.

3.2.9 PCSC/Reader/Hardware Support

The JCOP Tools API supports all readers/terminals obeying the PC/SC standard on the
three supported platforms, Linux, Mac OS X and Windows. Additionally, the JCOP Tools
APII seamlessly supports the contact-less Mifare readers manufactured by Philips
Semiconductors. On demand, the JCOP Tools API can also drive a number of
readers/terminals adhering to the CT-API standard. The JCOP Tools thus support a large
varie ty of readers/terminals and their protocols (ISO 7816 T=0, T=1; ISO14443 T=CL).

3.2.10 Command Line Tools

The different JCOP Tools do not always have to be operated from within the IDE. The
shell, debugger BugZ, converter and off-card APIs can be used totally independent from it.
This allows for using the tools in other development environments, for instance in UNIX-
like environments. Additionally, the JCOP Tools are shipped with a number of tools which
are expected to be used from the command-line. For instance, the CardMan application
represents a powerful, easy-to-use command line application for executing all simple, and
typical JCOP management tasks in a quick manner.

JCOP Tools – Technical Brief Revision 1.0

 Page 6

4 Feature List

4.1 IDE

Project -View : projects encapsulate application and script sources, build settings, applet
and package properties and preferences. All settings and preferences can be easily set
and modified intuitively in graphical dialogs.

Built-in-Editor: supports find, find/replace, syntax-highlighting, cut/copy/paste, pretty-print
(source co de formatter), undo/redo.

IDE-Preferences: the IDE is configurable regarding fonts, colors and keyboard-settings.

Build-Process: dependency check, source compilation and class conversion in a single
step, error/message window, jump-to-error on single click, information dialog about code
size/code dependencies/component sizes.

Package-/Key-Management: JCOP Tools offer graphical dialogs to define OpenPlatform
key-sets and the AIDs to use for packages, applets and instance at download and
installation time. This package and key information can then be used transparently from
the Shell.

Test -Modes: the IDE can be configured to restart or reuse a running simulation, debugger
and shell automatically after every applet build. This allows for flexible and fast
edit/ build/debug -cycles.

4.2 Simulation Environment

The JCOP Tools ship with different simulations for the different JCOP families, JCOP10,
JCOP20 and JCOP30.

Strong simulation of JCOP versions: extremely similar behavior to the physical JCOPs,
for instance the amount of available RAM, EEPROM and ROM is exactly reproduced.
Optional speed-emulation allows for simulating the real execution speed of JCOPs, the
default, faster execution mode speeds up development and testing on the host PC.

Transparent communication : all JCOP Tools being able to talk to a real card, can also
communicate with a simulation. Also, all applications being based on the JCOP Tools API
can transparently communicate with a simulation process.

4.3 Debugger BugZ

• Allows for the debugging of JCOP applications at the source level.

• Integrated in IDE and/or executable from the command line.

• Features class browser and application source browser.

• Breakpoints, single-step-execution, stack-trace window, local variables window,
object inspector, memory statistics.

Revision 1.0 JCOP Tools – Technical Brief

Page 7

4.4 Shell

The JCShell presents the environment to send/receive APDUs from cards/simulations; the
target can be any physical JCOP/smartcard and/or simulation.

4.4.1 Operation Modes

Interactive: commands can be sent interactively to cards/simulations during the
development or management of a card.

Batch: the shell allows the execution complex scripts, for instance test suites or
personalization/initialization scripts.

Script language: the script language supports variables, variable substitution, command
help, echo, APDU tracing.

4.4.2 Plugins

The shell offers the possibility to register plug -ins for different applets which may provide
advanced, specialized commands for this applet.

Built-in plugins : the shell is shipped with a number of powerful plug-ins, especially for
OpenPlatform applets, security domain and/or card manager. Key-management, package
download, applet deletion, authentication, secure messaging, pin handling is simple to
achieve by few script lines.

4.4.3 Graphical user -interface:

The basic development-related shell functions can be executed by single mouse clicks, for
instance specification of AIDs, download of packages, applet instantiation, key-set
configuration etc.

4.5 Off-card APIs

These APIs are an integral part of the JCOP Tools, but accessible and open to any kind of
terminal application .

These offer all basic and many advanced functions offered by the JCOP Tools, for
instance OpenPlatform management functions, secure messaging etc. Documentation and
Samples for their use is included in the distribution.

Three main packages:

• com.ibm.jc offering basic functionality like opening a card connection and sending
an APDU

• com.ibm.jc.tools contains the various, powerful plug-ins for advanced functions like
OpenPlatform management

• com.ibm.jc.terminal to access all the different physical terminals supported and/or
the many virtual terminals (for debugging, connections via the Internet).

The APIs are portable across Windows, Linux and Mac OS X.

JCOP Tools – Technical Brief Revision 1.0

 Page 8

4.6 Communication

The JCOP Tools support PC/SC reader/terminals on Windows, Mac OS X and Linux.
Various readers adhering to the CT-API standard can be integrated on demand as well.

Seamless support for the contact -less Mifare readers by Philips is given. Both IDE and
Shell detect the presence of the Philips tools and then automaticall y offer the access to
contact-less interfaces.

JCOP as well as JCOP Tools are able to communicate over T=0, T=1 and/or T=Cl.

4.7 Command Line Tools

Converter, Shell, and BugZ can be integrated into and used in command line
environments.

The JCOP Tools also ship with tools to access certain functionality on Mifare chips. This
software is provided by Philips Semiconductors.

Also included in the distribution is CardMan, a simple, standalone command line
application allowing for the hassle-free management of a OpenPlatform/JavaCard in a
simple manner.

Revision 1.0 JCOP Tools – Technical Brief

Page 9

5 Screen Shots

5.1 IDE

A typical view of the Integrated Development environment is shown below. Active is one of
the sample projects shipped with the JCOP Tools.

5.2 BugZ

For the same project as above, the screen shot below shows the graphical source level
debugger for applets active. Also shown is the JCShell driving a test run

JCOP Tools – Technical Brief Revision 1.0

 Page 10

Revision 1.0 JCOP Tools – Technical Brief

Page 11

A Revision History
1.0 Initial Version

JCOP Tools – Technical Brief Revision 1.0

 Page 12

B References
[1] Sun Microsystems: JavaCard 2.1.1 http://java.sun.com/products/javacard

[2] Global Platform Consortium: OpenPlatform 2.0.1’ http://www.globalplatform.org/

[3] Muscle PC/SC for Linux http://www.linuxnet.com

	Specifications
	Requirements
	Components
	Features
	IDE
	Simulation Environment
	Source-Level Debugger
	JCShell
	Off-card Support APIs
	Communication
	Command Line Tools

	Screen Dumps

