WebSphereTM Studio Device Developer

User’s Guide for Service Management
Framework Toolkit

Version 3.1

<|ll

Note!
FBefore using this information and the product it supports, read the information in[“Notices” on page 49

1st Edition (September, 2002)
This product includes software developed by the Eclipse Project (http://www.eclipse.org/).

© Copyright International Business Machines Corporation 1999, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Concepts
OSGi specification contents
Service Management Framework
SMF execution environment .
OSGi™ Specification concepts.

Framework .

Bundles .

Bundle life cycle .

Manifest files .

Services .

Packages.

Bundle Actlvators
Prerequisites

Chapter 2. Getting Started with SMF
Toolkit

Starting the SMF Toolkit from the command 11ne
smf.properties .
SMF launching optlons
Batch files for starting SMF Toolk1t
Java command line arguments
Security . .
SMF Launcher command hne arguments
SMF Console commands .
Command argument definitions
SMF-defined Commands .
Commands for controlling SMF.
Commands for controlling bundles
Commands for displaying status
Commands for controlling the console
Miscellaneous commands.
Memory Space-related Commands.

Chapter 3. SMF Toolkit Reference .

Core Bundles

OSGi™ services .

System Bundle
Framework

Http Service .
handleSecurity plug—m
Configuring Http Service .

Log Service . .
Configuring Log Serv1ce .

Device Access

Preferences Service .

Configuration Admin Serv1ce

User Admin Service

Service Tracker .

SMFAdmin

FileAdmin .

XML parser APIs

Micro XML

XML4J . oL

Creating OSGi™" bundles . .
Understanding OSGi™" bundles .

© Copyright IBM Corp. 1999, 2002

B R WWNNNNNNR R -,

. 15
.15
. 16
. 16
.17
.17
.17
.17
.19
. 19
. 20
. 20
. 20
. 20
. 20
. 20
.21
.21
.21
.21
.22
.22

Manifest files .
Sample manifest file
Services

Registering and unreglstermg a service w1th

the OSGi Framework .

Getting and un-getting services from the OSG1

.25
. 26
. 26
. 26
. 26
.27
.27
.27
.27
. 28
. 28
.29
.29
. 30
. 30
.31
.31
.32
.32
. 33
. 33
. 34
. 35
. 36
. 36

Framework .o .
Conventions for creating bundles .
Sample applications
Pizza servlet .
Handle Security . .
Simple Permission Policy .
Simple Sample
Driver Locator Sample.
Calendar sample.
Platform
Default platform
SMF Memory Cons1derat10ns
Memory Allocation .
Other Memory Segments
Memory Deallocation .
Resource Management.
smfres.properties file

Enabling and disabling resource management .

Trace .
Memory Spaces .
Parameters
Multiple Memory Spaces
Threads .o
Socket management
File system management .

Chapter 4. Using the SMF Toolkit
Managing a toolkit .
Starting the SMF Toolkit .
Showing runtime properties .
Closing the SMF Toolkit .
Launching the framework
Shutting down the framework .
Managing bundles .
Installing a bundle .
Starting a bundle
Stopping a bundle .
Updating a bundle .
Uninstalling a bundle .
Viewing bundle properties
Viewing service properties

Chapter 5. Service Management
Framework Bundle Requirements .
Specification Version
IVEATTRS. :

Implementation Type .

Compatible Implementation Types
IVERES. L.

.22
. 23
.23

.23

. 37
. 37
. 37
. 37
. 37
. 38
. 38
. 38
. 38
. 38
. 39
. 39
. 39
. 40
. 40

.4
.41
.42
. 42
. 43
.43

iii

Defined Resource Names.44 Notices

Trademarks
Appendix. Service Management

Framework Files 45

iV WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

. 49
. 52

Chapter 1. Concepts

Service Management Framework (SMF) is an implementation of the Open Services
Gateway Initiative (OSGi") organization’s Service Platform Release 2 (SPR2)
specification. The OSGi organization is an industry group that defines and
promotes an open standard for the networked delivery of managed services to
local networks and devices. An open standard, meaning a standard that is created
and voluntarily adhered to by manufacturers, has the advantage of minimizing the
number of products that are incompatible and therefore exclusive of other
standards. The Open Services Gateway standard is intended to complement other
residential standards and is open to almost any protocol, transport or device layer,
and is therefore inclusive rather than exclusive of other standards.

OSGi specification contents

The OSGi " SPR2 specification defines a Framework on which applications can run.
Developers can write new applications and adapt existing applications to run on
the Framework. The Framework acts as a layer that allows operators to deploy
multiple applications on a single Java'" Virtual Machine (JVM). Application
developers partition applications into services and other resources. Services and
resources are packaged into bundles, which are files that serve as the delivery unit
for applications. Bundles have manifests with special headers that enable the
sharing of classes and services at the package level.

The OSGi Specification also defines a set of services for applications to use, which
run within the framework. These services include:

* Configuration Admin Service - allows an operator to set the configuration
information of deployed bundles.

* Device Access - supports automatic detection of attached and detached hardware
devices and can automatically download and start appropriate device drivers.

* HTTP Service - provides users with access to services on the Internet and other
networks.

* Log Service - provides a general purpose message logger for the OSGi
environment.

* Package Admin Service - allows a management bundle to provide the policies
for package sharing.

¢ Permission Admin Service - allows a management bundle to administer bundle’s
permissions and provides defaults for all bundles.

* Preferences Service - provides a persistent data store for bundles.

* User Admin Service - provides a lightweight authentication function.

Service Management Framework

IBM’s Service Management Framework (SMF) is a production-ready software
management framework for network-delivered applications, to better meet the
needs of internet ready device manufacturers and service providers, such as telcos,
ISPs, cable companies, and power utilities.

SMEF is the core technology. It is packaged within two products, the SMF Toolkit,
and SMF Bundle Developer. The SMF Toolkit is available as a free download from
lhttp:/ /www-3.ibm.com/pvc/products/wes_embedded]

© Copyright IBM Corp. 1999, 2002 1

www-3.ibm.com/pvc/products/wes_embedded

This document discusses only the SMF Toolkit.

SMF execution environment

SMF runs on any environment that supports Java 2 (for example, WSDD 5.0).

OSGi" Specification concepts

This section contains information on the following concepts defined by the OSGi "
Specification:

. ‘Frameworkl

* [Bundles
* [Manifest files|
* |Serviceq
. ‘Packagegl

« |Bundle Activator]

Framework

The framework is the core of the OSGi'" implementation. It manages the
installation and update of bundles in an OSGi environment, and manages the
dependencies between bundles and services.

Bundles

A bundle is the smallest unit of management for the Framework. It is a Java
Archive (JAR) file or a J9 Executable (JXE) with a manifest that contains special
headers. These headers describe the bundle to SMF and state the bundle’s
dependencies. A bundle can register services with SMF that can be used by other
bundles.

Like ordinary JAR files, JAR bundle files typically contain java class files and
resources. JXE bundle files do not contain individual java class files. Instead the
class files are pre-linked into a single file named rom.classes. JXE files can be
stored and executed in ROM, which minimizes application startup times and RAM
requirements.

Where bundles differ from ordinary JAR files is in the descriptive information
found in the manifest file. Non-bundle JAR files often keep very little information
in the manifest file. A bundle’s manifest will usually contain descriptive
information such as the bundle’s name and version. It will also frequently identify
packages and services the bundle requires or makes available to other bundles.

Bundle life cycle

The framework manages the life cycle of bundles. As you install and run a bundle,

it goes through various states. The possible states of a bundle are:

¢ INSTALLED - the bundle has been installed, but all it’s dependencies have not
been met. It requires packages that have not yet been exported by any currently
installed bundle.

* RESOLVED - the bundle is installed, and it’s dependencies have been met, but it
is not running. This state might be skipped when a bundle is started if all
dependencies are met.

* STARTING - a temporary state while a bundle is starting.

e ACTIVE - the bundle is running.

2 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

¢ STOPPING - a temporary state while a bundle is stopping.
* UNINSTALLED - the bundle no longer exists in the framework.

The following diagram demonstrates the relationship between the SMF console
commands and the bundle’s states.

INSTALLED

update
[UNINSTALLED J#———7— ! RESOLVED |
start
_STOPPING | [STARTING]

;’N /
—p explicit transition

—> automatic transition ACTIVE

Manifest files

Bundles must contain a manifest file. The bundle’s manifest file contains data that
the framework needs to correctly install and activate the bundle. The OSGi""
Specification defines a set of headers that you must use to define this data. You
must place the OSGi headers at the start of the manifest file. Any headers that are
not recognized are ignored by SMEF. Refer to the OSGi SPR2 specification for more
information about the OSGi Manifest file format and syntax.

Manifest files must reside in the META-INF directory inside the bundle and must
be named MANIFEST.MF Case sensitivity is important. For example, the
MANIFEST.MF file will not be found if it is in the meta-inf directory instead of the
META-INF directory.

Services

A service is defined by a Java interface. Any class that implements this interface is
a provider of the service. Services are used to decouple bundles that provide
services from bundles that make use of the services.

Chapter 1. Concepts 3

The only code a service provider and a service user must share is the service
definition itself.

A bundle that makes use of a service that it does not provide can make this fact
known to the framework by including an import-service header in its manifest.
However, this is not required. A service is actually imported into a bundle at
runtime when code within that bundle requests a provider of the service from the
framework.

A bundle that provides services can optionally include an export-service header in
its manifest. A service is exported by a bundle at runtime when code within that
bundle makes a provider available to the framework.

The import-service and export-service tags inform the SMF Bundle Server of a
bundle’s prerequisites. While these tags are optional, if the tags are not defined, the
installation of prerequisite bundles will not work.

Packages

Bundles can use code defined elsewhere by importing packages. Though it is
possible to construct a bundle that does not rely on any classes outside the Java
base packages, most bundles import code from other bundles or the base runtime
class path.

Any class used within a bundle that is neither defined in the bundle nor is a base
Java class (that is, those within packages beginning with java.) must be imported
into the bundle. To accomplish this, include an import clause for the class’s
package in the bundle’s manifest. You can only explicitly import whole packages;
individual classes cannot be explicitly imported.

A bundle can make classes it defines available to other bundles by exporting
packages. To allow other bundles to access a particular package, an export clause
for the package is included in the manifest of the bundle containing the package.

Bundie Activators

A bundle can include a class that implements the org.osgi.framework. BundleActivator
interface. This class is identified to the framework by a Bundle-Activator header in
the bundle’s manifest. At startup time, the framework creates an instance of this
class and calls its start() method. The activator can then publish services, start its
own threads, and so on.

At shutdown, the activator’s stop() method is called. The activator can take this
opportunity to release resources obtained since start() was received as well as
revoke published services.

Prerequisites

Developing bundles using SMF requires that you have the following:

* Runtime environnment that supports Java 2 (for example WebSphere Studio
Device Developer version 5.0)

* Runtime environnment that supports Java 2 (for example WebSphere Studio
Device Developer version 5.0), including a Java compiler

* Understanding of Java programming and servlets

4 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

The default development environment for SMF is Microsoft Windows 2000 and
WebSphere Studio Device Developer 5.0.

Chapter 1. Concepts 5

6 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Chapter 2. Getting Started with SMF Toolkit

This chapter contains information that will help you get started with the SMF
Toolkit.

Throughout this document SMFHOME refers to the directory where you installed
SME.

Starting the SMF Toolkit from the command line

This section describes how to start the SMF Toolkit from the command line.

smf.properties

You can specify properties for SMF in the directory where you installed SMF. If
you want to use a different properties file, start SMF with the Java command
option -Dcom.ibm.osg.smf.properties=properties file , where properties file
represents the path to the properties file you want to use. You can find
descriptions of other properties used by SMF in the smf.properties file.

The smf.properties file adds the properties contained within it to the system
properties. The values in the smf.properties file can be overridden at launch time
with the Java -D launch option.

SMF launching options

To launch the SMF Toolkit, use one of the batch files, as appropriate for your
environment that reside in the directory where you installed SMF.

Refer to the following sections for more information:
« [Batch files for starting the SMF Toolkif

+ [Java command line arguments|

.

* [SMF Launcher command line arguments|

Batch files for starting SMF Toolkit
Table 1. Batch files for starting SMF Toolkit

Batch file Platform Description

smf.bat Windows Windows® command that starts SMF using the
WebSphere® Studio Device Developer 5.0 toolkit.

smfjdk.bat Windows Windows command that starts SMF using the JDK
toolkit.

smf Linux Shell command that starts SMF using the WebSphere
Studio Device Developer 5.0 toolkit.

smfjdk Linux Shell command that starts SMF using the JDK toolkit.

The batch file invokes the com.ibm.osg.smf.SMFLauncher class. You can configure
launch options for SMF using command-line arguments, or by modifying the
smf.properties file. Command line arguments override the smf.properties file
contents. The smf.properties file resides in the directory where you installed SMF.

© Copyright IBM Corp. 1999, 2002

Java command line arguments

Table 2. Java command line arguments

Argument Description

-Djava.security.manager Sets the value of the java system property
java.security.manager to indicate that the
default security manager will be invoked.

Both this argument and the
java.security.policy argument must be used
to properly enable security within SMFE.

-Djava.security.policy=smf.policy Sets the value of the java system property
java.security.policy to indicate that the
security policy smf.policy should be used by
the security manager.

Both this argument and the
java.security.manager argument must be
used to properly enable security within SMFE.

-Dcom.ibm.osg.smf bundledir Defines the location where SMF stores
installed bundles and their data. SMF is
configured to use either of the following two
directories: jxebundles |jarbundles

You can also specify a custom directory.

Security

If you choose to start SMF with a SecurityManager (for example, with the Java
command options -Djava.security.manager -Djava.security.policy=smf.policy),
then SMF registers the Permission Admin service, provides bundles with their
configured permissions, and checks OSGi" permissions as specified. If you choose
not to start SMF with Security Manager, then SMF will not register the Permission
Admin service and will not check OSGi permissions.

The policy file, smf.policy, provides smf.jar with AllPermission.
See the Simple permission policy documentation for an example of setting bundle
permissions using the Permission Admin service. All SMF bundles include a

permission.info file describing the bundle’s requested permissions.

SMF Launcher command line arguments

Argument

Description

-con[sole][:port]

Starts SMF with a console window. Any command line arguments not recognized
are passed to the console for it to execute. If a port is specified the console will
listen on that port for commands. If no port is specified, the console will use
System.in and System.out.

-r[esourceManagement]

Enables resource management. If this option is not specified, resource
management is not enabled.

8 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Argument

Description

-platform[:platform-
name][platform-args]

[platform-name] := "" | fully qualified class name [platform-args] := *(
":" [value]) [value] := [token] | [quoted-string] For example: 1)
-platform::"bundledir=c:\jarbundles":reset DefaultPlatform is chosen with
args[]= {"bundledir=c:\jarbundles", "reset"} 2)
-platform:com.foo.MyPlatform

There are two platform classes:

-platform specifies the implementation class for the platform to be used. args
contains a list of platform arguments, separated by ":". Platform arguments format
is defined by the platform implementation class. They are passed to the platform
class as an array of Strings.

The DefaultPlatform class recognizes and handles the following options:

The FlashBundleStore class recognizes and handles the following options:

If -platform is not specified, or if no platform classname is specified,
DefaultPlatform will be used, which is file based and stores the files in the
\bundles directory relative to the current directory.

com..ibm..osg.smf.platform.DefaultPlatform.
Supports a file-based file system.
com.ibm.osg.smf.platform.flash.FlashBundleStore
Supports a flash file system.

bundledir=directory name The directory to be used by thte platform to store
data. If a directory name is specified, the platform initializes to store bundles in
that directory. This overrides values set in either the smf.properties file or with
a -D launch option. If this argument contains a blank space or the ":" character,
for example, "bundledir=c:\my dir”, then you must enclose this argument in

single or double quotation marks (" " or " ’).
reset Resets Perform the reset action to clear the bundledir.
Any other arguments are ignored.

filename=flashSimulatorFileNameFor running with the Flash Simulator on
development platforms. If fileName is not specified, then the file name is taken
from the FLASH_FILE environment variable and if that variable is not defined,
then the default name flash_file.dat is used. values set in either the
smf.properties file or with a -D launch option. If this argument contains a blank

space or the ":" character, for example, "filename=my file”, then you must
enclose this argument in single or double quotation marks (" " or " ’).

filesize=size The size in MB (default 4) in which the flash simulator file will be
created if it does not exist or the existing file with flashSimulatorFileName has a
different size.

resetClears the contents of the bundle store. (Flash simulator only.)

compactCompacts the bundle store. (flash simulator only.)

Any other command line arguments are passed on to the console window of the
framework if started with the -console option. If the console is not started, any
unrecognized arguments will be ignored and a message displayed.

Note: You can only issue console commands when running the toolkit on the
target device with the -console option.

If you do not specify any launch options, SMF is started with the following

¢ with the Default Platform
* without a console window

Chapter 2. Getting Started with SMF Toolkit 9

* without resource management
* without the remote agent

SMF Console commands

You can control the function of SMF from within the SMF Console. This section

describes the following:

+ |Command argument definitions|
* |[SMF-defined commands
* [Memory space-related commands|

Command argument definitions

The following table describes the arguments that you can use with SMF Console

commands:

Command arguments description

<id> The bundle ID. The unique number assigned
to the bundle. This id will not be reused
after the bundle is uninstalled.

<location> The bundle location string. This is the URL

from where the bundle was installed.

If this argument contains a blank space or
the ":" character, for example, "file:/c:/my
file”, then you must enclose this argument in
single or double quotation marks (" " or " ’).

10 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

SMF-defined Commands

This section describes each of the commands that you can use with SMFE. The
commands are grouped by the following functionality.

¢ |Commands for controlling SMF|

+ |Commands for controlling bundles|

+ |Commands for displaying status|

* Miscellaneous commands|

+ |Commands for controlling the console|

Commands for controlling SMF
Table 3. Commands for controlling SMF

Command Description

launch Starts the Service Management Framework.
Bundles that were running before the last
framework shutdown are restarted.

This command has no effect if the
framework is already running.

close Shut down and exit.
exit Exit immediately (System.exit(0))
gc Perform a garbage collection.

SMF shows the free memory before, the free
memory after and the amount of memory
gained with the GC.

init Uninstall all bundles. The framework must
be shut down.

shutdown Shutdown the Service Management
Framework. This command has no effect if
the framework is already stopped.

setprop <key>=<value> Set the SMF Property with the given key to
the given value.

Commands for controlling bundles

Table 4. Commands for controlling bundles

Command Description

install <url> {start} Install and optionally start a bundle from
the given URL. The URL can be any
protocol supported by the Java Virtual
Machine. Examples are:

e file:/<fully qualified path name to the
file>

¢ http://<remote location of the file>

* https://<secure remote location of the
file>

* smfbd:/<bundle name>

uninstall (<id> | <location>)+ Uninstall the specified bundle(s)
start (<id> | <location>)+ Start the specified bundle(s).
stop (<id> | <location>)+ Stop the specified bundle(s)

Chapter 2. Getting Started with SMF Toolkit 11

Table 4. Commands for controlling bundles (continued)

Command

Description

refresh (<id> | <location>)+

Refresh the packages of the specified
bundle(s).

update (<id> | <location>)+

Update the specified bundle(s).

Commands for displaying status

Table 5. Commands for displaying status

Command

Description

bundle (<id> | <location>)

Display details for the specified bundle(s).
The bundle can be specified with either its
bundle id or its location string.

The bundle details are the bundle id, the
location string, the bundle state and file
name, the services registered and used, the
packages imported and exported per bundle,
and if running with security enabled, the
permissions of the bundle.

bundles

Display details for all installed bundles like
the bundle command except that it does not
list the package and permission information
provided by the bundle command.

props

Display System, SMF and SMF Resource
Management properties.

threads

Display the current threads and thread
groups.

If SMF is launched with resource
management the memory space currently
assigned to the thread is shown as well.

SS

Display the short version of the bundle
status. Only the bundle id, bundle type (jar
or jxe), bundle state and the bundle name
are shown.

status

Display installed bundles and their state and
the registered services.

services {filter}

Display registered service details optionally
filtered by a string representation of as

specified by the OSGi technology in the
interface org.osgi.framework.Filter.

headers (<id> | <location>)+

Print bundle headers from the bundle’s
MANIFEST.MF file and bundle
characteristics from the bundle’s
IVEATTRS. XML file.

packages {<pkgname> | <id> | <location>}

Display imported /exported package details
optionally filtered by package name, bundle
id or bundle location string.

log{(<id> | <location>)}

Display log entries optionally filtered by
bundle ID or bundle location string. The
newest log entry is listed first.

12 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Commands for controlling the console

Table 6. Commands for controlling the console

Command Description

more Enable or disable the “--More” prompt to
temporarily halt the output in the console
window.

disconnect This command ends the telnet session. This
command is only available when SMF is
launched with the -console:port option

Miscellaneous commands

Table 7. Miscellaneous commands

Command Description

exec <command> Execute an OS command in a separate
process and wait for its completion.

fork <command> Execute an OS command in a separate
process and return immediately.

Memory Space-related Commands

SMF with resource management adds commands to create, destroy, and inspect
memory spaces. These commands are only available if SMFLauncher is launched
with the -console -r[esourcemanagement] options.

Table 8. Memory space related commands

Command Description

a <msName> [<0> [<n]] Allocate a memory space with the specified
name and oldSpace and newSpace sizes.

¢ <msName> Set the specified memory space as current
memory space of the thread that executes
the console commands.

d <msName>[, rmsName] Destroy the specified memory space(s) with
remnants space. The memory space will not
be removed if there are references to objects
in the memory space from objects in other
memory spaces and no remnant space has
been specified.

lc [<msName>] Display the classes that have instances in the
specified memory space or all memory
spaces if none was specified.

lo [<xmsName>] Display the objects in the specified memory
space or all memory spaces if none was
specified.

Ip [<xmsName>] Display references (pointers) from the

specified (or all) memory space(s) to objects
that live in other memory spaces.

Ir <msName> [,<n>] Display the references to objects in the
specified memory space. Optionally specify
how many levels should be shown.

memory Display memory space status.

Chapter 2. Getting Started with SMF Toolkit 13

14 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Chapter 3. SMF Toolkit Reference

This chapter describes the bundles that are included with the SMF Toolkit. It also
provides instruction on how to develop bundles, example applications, and
important concepts for developing bundles.

Core Bundles

The bundles included with the toolkit framework provide a collection of basic
services, which other bundles can use. Some of these are implementations of
services defined by the OSGi " specification. A subset of core bundles is installed
into the SMF Runtime when launched. You can install all of the core bundles from
the bundlefiles directory.

The interface specifications of the OSGi standard services are provided in the 0SGi
Service Platform Release 2 Service Interfaces bundle (osgi-
services.jar/osgi-services.jxe) bundle. The implementations of these services
are provided in SMF bundles that are included in this SMF release.

Table 9. Services

Standard Service Bundle-Name
org.osgi.service.cm.ConfigurationAdmin Configuration Admin
org.osgi.service http.HttpService HTTPService
org.osgi.service.log.LogService LogService
org.osgi.service.log.LogListenerService LogService
org.osgi.service.prefs. PreferencesService Preference Service
org.osgi.service.useradmin.UserAdmin User Admin

Table 10. Packages

Standard Package Bundle-Name
org.osgi.service.device DeviceManager
org.osgi.util.tracker tracker

These packages and services are documented in the OSGi Service Platform, Release
2 Specification.

The following sections describe the following SMF-specific core bundles:

* |0SGi serviceél
. :Sistem bundlel
* |Http servica

* |Log service

+ [Device Accesd

* [Preferences service]

* |Configuraton Admin service]

* |[User Admin service

e |Service Tracke

© Copyright IBM Corp. 1999, 2002 15

* |SMFAdmi
ile Admin
XML Parser APIs|
MicroXML|
* (XMLA4

.
ii

|

OSGi'" services

The bundles included with the toolkit framework provide a collection of basic
services and packages that other bundles can use. Some of these are
implementations of services defined by OSGi specifications.

The interface specifications of the OSGi standard services are provided in the OSGi
Service Release 2 Service Interfaces bundle, (for example, the osgi-services.jar or
osgi-services.jxe file).

Table 11. Services exported by osgi-services.jar

Standard Service Bundle-Name Implementation File
Name (*.jar or
*_le.jxe or *_be.jxe)
org.osgi.service.cm.ConfigurationAdmin Configuration Admin |cm
org.osgi.service http.HttpService HTTPService httpservice
org.osgi.service.log.LogService LogService logservice
org.osgi.service.LogReaderService LogService logservice
org.osgi.service.prefs.PreferencesService Preference Service prefs
org.osgi.service.useradmin.UserAdmin User Admin useradmin

Table 12. Packages exported by osgi-services.jar

Standard Service Bundle-Name Implementation File
Name (*.jar or *_le.jxe or
*_be.jxe)

org.osgi.service.device DeviceManager deviceaccess

Table 13. Packages exported by tracker.jar

Standard Service Bundle-Name Implementation File
Name (*.jar or *_le.jxe or
*_be.jxe)

org.osgi.util.tracker OSGi Service Tracker tracker

System Bundle

The toolkit framework defines its system bundle in the META-INF/SYSTEMBUNDLE.MF
file.

The system bundle registers the following services at startup:
* org.osgi.service.packageadmin.PackageAdmin
* org.osgi.service.permissionadmin.PermissionAdmin

The standard java.* packages that are contained in the base class libraries are not
included in this list. The ImplType definition is used for this purpose.

16 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Framework
In smf.jar, SMF implements the OSGi " specifications for Framework, Package
Admin, and Permission Admin.

Http Service

In httpservice.jar and servlet.jar, SMF implements the OSGi' specification for
Http Service and provides an HTTP 1.0 Web server with a Java Servlet 2.1 engine.
Http Service enables other bundles to dynamically register and unregister servlets
and other static resources such as GIF files. You can register HTML files, GIF files,
class files, or any resources that can be read through a URL.

handleSecurity plug-in

When you register a resource or a servlet with the Http Service, an Http Context
must be provided. The Http Context defines how resources are accessed and how
access to the resources is authenticated. The handleSecurity method of Http
Context performs the authentication for servlets and resources.

IBM’s Http Service implementation supports a plugable default handleSecurity
method. This method defines the behavior of the default Http Context
handleSecurity method.

Configuring Http Service
Http Service configurations described here are specific to the IBM® implementation
of Http Service that is included with SMFE.

The IBM implementation of Http Service has several configuration parameters.
There are general configuration parameters that affect all of Http Service and there
are additional parameters which are used to configure individual ports. These
additional parameters allow Http Service to be configured to register multiple Http
Service objects, with each object listening on a unique port.

The Http Service manages its configuration parameters with the Configuration
Admin Service. The Configuration Admin Service relies on a PID (Persistent
Identity) to identify which service to configure. The PID resides in a service
property called service.pid.

General configuration: These parameters affect all of Http Service and are
configured with a Managed Service.

The PID for the Managed Service for Http Service’s general configuration is:
com.ibm.osg.service.http.Http

Table 14. Http Service General Configuration Parameters

Parameter Name Java Type Definition Valid Values

http.minThreads Integer Specifies the minimum | Valid values are between
number of threads in 0 and 63. The default
the thread pool. value is 4.

http.maxThreads Integer Specifies the maximum | Valid values are between
number of threads in 0 and 63. The default
the thread pool. value is 20.

Chapter 3. SMF Toolkit Reference 17

Table 14. Http Service General Configuration Parameters (continued)

Parameter Name Java Type Definition Valid Values

http.threadPriority Integer Specifies the priority of | A valid value is any
threads in the thread integer with a valid
pool. Thread priority. Refer to

the Thread class for
valid values. The default

value is
Thread.NORM_PRIORITY.

Port configuration: The individual ports are configured with a Managed Service
Factory. A Managed Service Factory allows multiple instances of a configuration
for a given service. Each configuration that you make under the Managed Service
Factory PID directs Http Service to register another Http Service object with the
configured parameters.

Note: If no individual configuration exists, then Http Service will not register an
Http Service object and therefore, will not listen on any port unless the
property, com.ibm.osg.service.http.defaultports, is set. Refer to the
smf.properties file for more information.

The PID for the Managed Service Factory for the individual port configuration is:
com.ibm.osg.service.http.HttpFactory

Table 15. Http Service Individual instance parameters

Parameter Name Java Type Definition Valid Values

http.port Integer Specifies the port to The default value is 80.
listen to for HTTP
requests.

http.scheme String Specifies the scheme to | Valid values are http
use. and https. The default

value is http.

Note: The evaluation
release of SMF does not
include support for
https.

http.timeout Integer Specifies the number of | Valid values are
seconds to wait before |between 0 and 600. The
reclaiming a Keep-Alive | default value is 30.
thread. Specify 0 to disable
Keep-Alive support.

Configuring the parameters using SMFAdmin:

Bundles configure the parameters with the Configuration Admin APIL You can also
configure the parameters with the SMFAdmin User Interface. To configure Http
Service using SMFAdmin, under Bundles find and click the bundle file with the
name file:bundlefiles/httpservice. Then, under Registered Services, click
org.osgi.service.cm.ManagedService to modify the general configuration or click
org.osgi.service.cm.ManagedServiceFactory to modify, add, or delete individual
port configurations.

Configuring the HTTPService for multiple ports:

18 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

You can configure the HTTPService for multiple ports. Each port configured is
represented by a different HttpService registration. An application that uses the
HTTPService must register with each port to be accessible on that port.

For example, you might only want to register a Servlet with sensitive data with the
HttpService which supports HTTPS on port 443. You might want to register a
Servlet that does not contain sensitive data with both the 80 and the 443 port
HttpServices.

To ensure that you register a servlet with the correct HttpService, use a
ServiceTracker with a Filter. A Filter enables your bundle to specify exactly which
services you want to know about to the ServiceTracker. Your BundleActivator can
extend the ServiceTracker class or implement the ServiceTrackerCustomizer
interface to provide the addingService(), modifiedService(), and removingService()
methods. ServiceTracker will call these methods to notify your bundle when these
service registration events occur. For example, if your bundle is tracking
HttpService registrations, it would be notified when HttpServices are registered
and unregistered and your bundle can then use these services accordingly.

The following example shows how to create the Filter and ServiceTracker:

//To track any HttpService registrations using port 80. We would Took for the property "http.port

public void start(BundleContext context)

{

Filter filter = context.createFilter("(&(objectClass=org.osgi.service.http.HttpService) (

ServiceTracker httpServiceTracker = new ServiceTracker(context,filter,this);

}

//To track any HttpService registrations using HTTPS. We would Took for the property "http.scheme

public void start(BundleContext context)

{

Filter filter = context.createFilter("(&(objectClass=org.osgi.service.http.HttpService) (

ServiceTracker httpServiceTracker = new ServiceTracker(context,filter,this);

}

For an example on how to write a ServiceTrackerCustomizer, see the PizzaServlet
Bundle sample source code included in the SMF Toolkit.

For additional documentation, please see the OSGi "~ Service Platform release 2
specification.

Log Service
In logservice.jar, SMF implements the OSGi' Log Service specification.

Configuring Log Service

Log Service configurations described here are specific to the IBM implementation
of Log Service that is included with SMF. Log Service has a number of
configuration options. You can control the log size and the log threshold (Error,
Warning, Informational, or Debug severity level). When a threshold level is
specified, only entries that are less than or equal to the current threshold are
logged. Error is the lowest threshold level and Debug is the highest level.

The Log Service manages its configuration parameters with the Configuration
Admin Service.

Chapter 3. SMF Toolkit Reference 19

The PID for the Managed Service for Log Service’s configuration parameters is:
com.ibm.osg.service.log.Log

Table 16. Log Service Configuration Parameters

Parameter Name |Java Type Definition Valid Values

log.size Integer Specifies the maximum Valid values are between
number of entries in the 10 and 2000. The default
log. Old entries are value is 100.

discarded after the log
reaches this number.

log.threshold Integer Specifies the lowest level Valid values are:
that you want to retain LogService. LOG_ERROR
entries in the log. Any LogService. LOG_WARNINC

level higher than what is | LogService. LOG_INFO
specified will not be kept | LogService. LOG_DEBUG
in the log.

Configuring the parameters using SMFAdmin: Bundles configure these
parameters with the Configuration Admin APL You can also configure these
parameters with SMFAdmin. To configure Log Service using SMFAdmin, under
Bundles find and click the bundle file with the name file:bundlefiles/logservice.
Then, under Registered Services click org.osgi.service.cm.ManagedService to
modify the general configuration.

Device Access

In deviceaccess.jar, SMF implements the OSGi" Device Access specification for
the driver manager.

Preferences Service

In prefs.jar, SMF implements the OSGi Preferences Service specification. For
more information on prefs.jar, refer to the OSGi specification provided in the
SMFHOME\docs\osgi directory, or Visit

Configuration Admin Service

In cm. jar, SMF implements the OSGi" Configuration Admin Service specification.
For more information on cm. jar, refer to the OSGi specification provided in the
SMFHOME\docs\osgi directory, or visit

User Admin Service

In useradmin. jar, SMF implements the OSGi " User Admin Service specification.
For more information on useradmin.jar, refer to the OSGi specification provided in
the SMFHOME\docs\osgi directory, or visit .

Service Tracker

In tracker.jar, SMF implements the OSGi™ Service Tracker specification. For more
information on tracker. jar, refer to the OSGi specification provided in the
SMFHOME\docs\osgi directory, or Visit

SMFAdmin

smfadmin.jar is a servlet that provides simple administrative access to SMF. It
enables you to manage the life cycle of bundles and view the installed bundles and

20 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

www.osgi.org
www.osgi.org
www.osgi.org
www.osgi.org

registered services. You can also use SMFAdmin to configure the IBM
implementation of Http Service and Log Service. You can access SMFAdmin at
http://localhost:nn/smfadmin.

FileAdmin

fileadmin.jar is a servlet that provides simple administration access to the file
system of the device that hosts SMF. You can access FileAdmin at
http://localhost:nn/fileadmin.

XML parser APIs

xmlParserAPls.jar is a library that simply exports the APIs for XML parsing
defined by org.W3c.dom for DOM parsing, org.xml.sax for SAX parsing, and
javax.xml.parsers for JAXP. The packages exported are:

* org.W3c.dom.html; specification-version="2.0"

* org.W3c.dom.traversal; specification-version="2.0"

* org.xml.sax.ext; specification-version="2.0"

* org.w3c.dom.ranges; specification-version="2.0"

* org.w3c.dom.events; specification-version="2.0"

* org.w3c.dom; specification-version="2.0"

* javax.xml.parsers; specification-version="2.0"

* org.xml.sax; specification-version="2.0"

* org.xml.sax.helpers; specification-version="2.0"

Micro XML

MicroXML.jar provides a very small, lightweight XML parsing service designed to
run in the embedded space. In order to achieve its small size, there are trade-offs
in function. MicroXML supports SAX version 1.0 and DOM version 1.0. For the
most part, it assumes well-formedness, checking for only the most basic errors in
form. It is non-validating and non-namespace aware. It does not support DOM
entities.

MicroXML registers the javax.xml.parsers.SAXParserFactory and
javax.xml.parsers.DocumentBuilderFactory services. These services are an extension
of the Java API for XML Parsing (JAXP) 1.1. Bundles wishing to use an XML parser
can find one by requesting Service References for these services. Bundles do not
have to tie themselves to a particular parser at development time -- they can
choose at runtime.

MicroXML is installed as part of the SMF Toolkit, but another larger but more
robust parser is available for installation. See |"XML4J”|for more details.

XML4J

XML4] jar provides a heavyweight XML parsing service. It supports SAX version
2.0 and DOM version 2.0. It is validating and namespace aware. It is based on the
Apache Xerces XML Parser.

XMLA4] registers the javax.xml.parsers.SAXParserFactory and
javax.xml.parsers.DocumentBuilderFactory services. These services are an extension
of the Java API for XML Parsing (JAXP) 1.1. Bundles wishing to use an XML parser
can find one by requesting Service References for these services. Bundles do not
have to tie themselves to a particular parser at development time -- they can
choose at runtime.

Chapter 3. SMF Toolkit Reference 21

Creating OSGi' bundles

This section describes how to create an OSGi" bundle. For more detailed
information about writing bundles, refer to the OSGi Service Platform Release 2
specification.

For an example that demonstrates how to write a bundle, refer to the Pizza servlet
bundle that is included with SME. The Pizza servlet bundle is a simple bundle that
registers a servlet with the HTTP Service.

Note: The pizza bundle code resides in the \samples\source directory.

Refer to the following sections for information about writing bundles with SMEF:
« |Understanding OSGi bundles|
* [Manifest files

* |Sample manifest file|

.

+ |Conventions for using SMF|

Understanding OSGi"" bundles

OSGi™ bundles consist of a jar file that contains Java classes, resources, and a
manifest file. Bundles can register services for other bundles to use, use services
registered by other bundles, export Java packages for other bundles to use, and
import Java packages from other bundles.

Manifest files

Bundles must contain a manifest file. The bundle’s manifest file contains data that
the framework needs to correctly install and activate the bundle. When you specify
data in a manifest file, you must use the headers that were defined by the OSGi""
specification. Because the framework ignores any headers that it does not
understand, manifest files do not allow user-defined headers. In addition, you
must place the OSGi headers at the beginning of the manifest file. Refer to the
OSGi Service Platform Release 2 specification for more information about the OSGi
Manifest file format and syntax.

When you create the manifest file for your bundle, you manifest file must be
named Manifest.mf and must reside in the META-INF directory inside the bundle.

Refer to the following list of headers that you will use in your Manifest file.
e Import-Package

This header specifies any package that a bundle imports from another bundle. If
you do not specify the packages you need in this header, you will get a
noClassDefFound exception.

Note: You must also specify the package you want to import in the
Export-Package header of the bundle that provides the package.

* Export-Package

If you want your bundle to export its packages so other bundles can import
them, you must specify the packages with the Export-Package header. If you do
not specify the correct packages, the dependent bundles will not resolve.

* Bundle-Activator
This is the fully qualified name of the BundleActivator class.

22 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

A bundle designates a special class to act as a Bundle Activator. The Framework
must instantiate this class and invoke the start and stop methods to start or stop
the bundle respectively. The bundle’s implementation of the BundleActivator
interface enables the bundle to initialize a task, such as registering services,
when the bundle starts and to perform clean-up operations when the bundle
stops.

Note: BundleActivator is not a mandatory header. If the purpose of your bundle
is only to export packages for use by other bundles, then you do not need
to specify a BundleActivator.

Refer to the OSGi"" Service Platform Release 2.0 specification for descriptions of
other bundle headers, such as the following, which provide bundle description
information:

* Bundle-Name

* Bundle-Description

¢ Bundle-Copyright

* Bundle-Vendor

* Bundle-Version

* Bundle-DocUrl

* Bundle-ContactAddress

Sample manifest file

The following sample manifest file was taken from the Pizza Servlet bundle, which
is one of the SMF sample bundles.

Import-Package: javax.servlet; specification-version=2.1,

javax.servlet.http; specification-version=2.1,

org.osgi.framework; specification-version=1.0,

org.osgi.service.http; specification-version=1.1,

org.osgi.service.log; specification-version=1.0,

org.osgi.util.tracker; specification-version=1.0

Bundle-Activator: com.ibm.osg.sample.pizza.PizzaBundle

Bundle-Name: Pizza Servlet

Bundle-Description: A demonstration bundle containing a simple servlet
Bundle-Copyright: Licensed Materials - Property of IBM. (C) Copyright IBM

Corp. 2000-2001 A11 Rights Reserved. IBM is a registered trademark of IBM Corp.
Bundle-Vendor: IBM Pervasive Computing

Bundle-Version: 3.0

Bundle-DocUrl: http://www.ibm.com/pvc/

Bundle-ContactAddress: pervasive@us.ibm.com

Services

In the OSGi " environment, bundles are built around a set of cooperating services
that are available from a shared service registry. The service interface defines the
OSGi service, which is implemented as a service object.

Registering and unregistering a service with the OSGi
Framework

When the framework invokes your BundleActivator’s start method, it passes a
BundleContext object to your bundle. You bundle can use the BundleContext object
to interact with the framework by calling the BundleContext object’s methods. One
method that you bundle calls is registerService, which uses a service object and
an interface name to register a service with the framework’s service registry.

Chapter 3. SMF Toolkit Reference 23

In the following example, a service called
com.ibm.osg.example.mtservice.MyTestService registers with the framework. This
service prints a debugging message to standard out.

The following is the interface that our service registers with. Ideally, you should
create one package that contains all of the classes and interfaces that will be
exported to the OSGi framework. For our example, the
com.ibm.osg.example.mtservice package will be exported.

[*x%%s%%% START OF com/ibm/osg/example/mtservice/MyTestService.java *xxxxss*/
package com.ibm.osg.example.mtservice;

public interface MyTestService {

// One method is provided by the service. This method will simply print
// the message to standard out.

public void printMessage(String message);

1

[xxx%%%% END OF com/ibm/osg/example/mtservice/MyTestService.java **xxxxx/

The following is the class that will provide the implementation for our service. The
class is not a part of the exported package com.ibm.osg.example.mtservice. Ideally,
you should not export the packages that contain classes that provide
implementation to services.

[#%*xxxx START OF com/ibm/osg/example/mytestservice/MyTestService.java *xxx%x/
package com.ibm.osg.example.mytestservice;
public class MyTestService implements com.ibm.osg.example.mtservice.MyTestService{
public void printMessage(String message) {

System.out.printin("MyTestService - " + message);

}
}

[#%*xxxx END OF com/ibm/osg/example/mytestservice/MyTestService.java x**xxx/

The following is the BundleActivator class that will register the
com.ibm.osg.example.mtservice.MyTestService service with the framework.

[*%xx%% START OF com/ibm/osg/example/mytestservice/MyBundleActivator.java *xxxxx/
package com.ibm.osg.example.mytestservice;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

public class MyBundleActivator implements BundleActivator {
ServiceRegistration registration;

/*Create a new instance of the TestService and then use the BundleContext object to register it.*\
/*Store the registration object to use to unregister the service when the bundle is stopped by the framework.x\
public void start(BundleContext context) {
MyTestService testservice = new MyTestService();
if(registration == null){
registration = context.registerService("com.ibm.osg.example.mtservice.MyTestService",testservice,null);
1
}
public void stop(BundleContext context) {
if (registration != null){
registration.unregister();
}
registration=null;

}

[*x%%%% END OF com/ibm/osg/example/mytestservice/MyBundleActivator.java ##xxxx/

24 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Getting and un-getting services from the OSGi Framework

Bundles register and unregister services. Because bundles are volatile, bundles that

depend on services must account for the possibility that the requested service
might not be present. The service can be registered or unregistered at any time.

You can use a ServiceTracker to enable your bundles to query or listen for service

registrations and to react accordingly.

[*%%xx%x START OF com/ibm/osg/example/mygetservice/MyBundleActivator.java ##xxxx*/
package com.ibm.osg.example.mygetservice;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.util.tracker.ServiceTracker;

import com.ibm.osg.example.mtservice.MyTestService;

public class MyBundleActivator implements BundleActivator, Runnable{
private boolean done=false;
private ServiceTracker testServiceTracker;

// Bundle Activator Start Method
public void start(BundleContext context){
/* Here we initialize and open our ServiceTracker. It will track any service registering under
the "com.ibm.osg.example.mtservice.MyTestService" interface. *\
testServiceTracker = new ServiceTracker(context,"com.ibm.osg.example.mtservice.MyTestService",null);
testServiceTracker.open();
// Here we start a thread that will continue to use the our service until
// the bundle is stopped.
Thread t=new Thread(this);
t.setName("mygetservice thread");
t.start();

/*Bundle Activator Stop Method -- here we stop the thread and close the
ServiceTracker*\

public void stop(BundleContext context) {
done=true;
testServiceTracker.close();
}
//Here is a method that uses the service we are tracking. First we get
//the service from the tracker, then we call it's printMessage method.
public void useService(String message) {
MyTestService testService = (MyTestService)testServiceTracker.getService();
if(testService != null){
// 1f the service is available then use it.
testService.printMessage (message);
1
else{
// If the service is not available then perform an acceptable action.
// Here we just print the message to standard out and indicate the service
// was not available.
System.out.printIin("No MyTestService available - " + message);
1
}

// Simply continues to use the test service every second until the done flag is set.
public void run(){
int i = 0;
done = false;
while (!done){
useService("message from test " + i++);
try{
Thread.sleep(1000);
1
catch(InterruptedException ie){

}

Chapter 3. SMF Toolkit Reference

25

}
}
}

[*%%xx% END OF com/ibm/osg/example/mygetservice/MyBundleActivator.java xx*¥xx/

For an example of using ServiceTrackers and getting services, refer to the Pizza
servlet sample source code (PizzaBundle.java), which is located in
SMFHOME\samples\source\src-pizza.zip.

Conventions for creating bundles

When you create SMF bundles, use the following conventions:

* Clean up objects and threads properly during your stop method. SMF does not
terminate lingering threads.

* Do not use a lot of time for your bundle’s start and stop methods. Services are
started and stopped one at a time. If your start or stop method uses a lot of
time, it prevents other services from stopping and starting.

* Do not assume that a service will always be present. The bundles that register
these services might not be available at all times.

Sample applications

Sample bundles are located in the SMFHOME\samples directory. You can use the
sample code to develop your own bundles. The following sections include
high-level descriptions of the samples:

e |Pizza servlet

+ |Handle security|

+ |Simple permission policy]

+ |Driver locator sample|

* |Calendar sample|

Pizza servlet

The Pizza servlet uses the Http Service to show the results of input from radio
buttons and the output of a calculation viewed through a browser. This sample
also demonstrates the use of the ServiceTracker and ServiceTrackerCustomizer. You
can access this sample at http://localhost:nn/pizza.

Handle Security

This sample demonstrates the use of the User Admin Service and the Service
Tracker.

The handleSecurity sample provides an example of a default handleSecurity
plug-in. The handleSecurity method implements basic authentication and uses the
UserAdmin Service to validate user names and passwords. After you have
installed this plug-in, any resource or servlet registered with the default Http
Context will be authenticated using the handleSecurity method of the plug-in.

This sample provides an implementation of the handleSecurity method for the
Default Http Context in the IBM Http Service. Both smfadmin and fileadmin use
the Default Http Context. If this sample is installed and active, which is the default
state of the SMF Toolkit, the sample will authenticate access to smfadmin and
fileadmin using the User Admin Service to authenticate the supplied user name
and password. If this sample is not active (because it has been stopped or
uninstalled), then access to smfadmin and fileadmin will not be authenticated.

26 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Simple Permission Policy

This sample uses the Permission Admin service to configure the permission of a
bundle. This sample reads the META-INF/permission.info resource in each
installed bundle and calls Permission Admin to set those permissions for the
bundle.

Simple Sample

The simple sample demonstrates how a BundleActivator that sends a log message
to the standard OSGi"" LogService when started and stopped. If the LogService is
not available then the message is written to System.out instead.

Driver Locator Sample

A DriverLocator returns a list of driver IDs based on a given device’s properties,
and it returns the input stream for a given driver ID. The following sample maps a
property name to a value, driver ID and location in an XML input file. You can
map multiple DriverIDs to a single property name/value pair. Following is a
sample device.properties configuration file:
<?xml version="1.0" encoding="UTF-8"?>
<driverlocator>
<devicepropertypair property="FooAppliances" value="Oven">
<driveridlocation driverID="3430ven" driverlLocation="http://www.foo.com/drivers/3430ven" />
<driveridlocation driverID="2930ven" driverLocation="http://www.foo.com/drivers/2930ven" />
</devicepropertypair>
<devicepropertypair property="FooAppliances" value="Toaster">
<driveridlocation driverID="400Toaster" driverLocation="http://www.foo.com/drivers/400Toaster"
</devicepropertypair>
</driverlocator>

This file will be stored in the SimpleDriverLocator bundle.

Calendar sample

This sample bundle provides an example of how to use the jdbc related services
provided by other bundles. The sample also demonstrates the use of various
proven design patterns in the developing of a servlet 2.1-based application.

The overall application follows the Model-View-Controller (MVC) design pattern.
This design pattern divides the application into distinct parts, which enables you
to maintain, enhance, and expand the code. The three parts are:

* Model - consists of a business logic, databases, and so on.

The model portion of the code utilizes the jdbc interface and stores its data in
the DB2e " database. A trial version of DB2e is available as a bundle, along with
a database_enabler bundle, which provides the java.sql.* interface. The calendar
servlet illustrates how to set up the Manifest file to reference the services
provided by these other bundles.

* View - consists of the text, graphics, links, forms, and various layout related
items.
The view portion of the code is targeted toward a 1/4 VGA screen with only
HTML 3.0.2 support. Since the view is separated from the model, other views
could be provided without any effect on the model code - easing the
maintenance burden.

* Controller - consists of the services as the linkage between the model and the
view.

The controller implementation illustrates several design patterns: including the
"Front Controller” patter and the "Command Controller Pattern”.

Chapter 3. SMF Toolkit Reference 27

Platform

SMF provides an abstraction between the OSGi " framework and the underlying
platform where the framework runs. SMF uses the Platform interface described in
\docs\smf. The Platform interface provides SMF with a platform specific
implementation of some framework APIs as well as persistent storage for bundles
and permission configurations.

Default platform

SMF includes a DefaultPlatform class, which enables SMF to run on any standard
platform that includes a file system. You can write a custom Platform
implementation for SMF to use for other non-standard platforms, such as platforms
that do not include a file system.

28 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

SMF Memory Considerations

When running SMF on the]9 VM you must consider the following special issues
regarding memory usage:

¢ Memory allocation: The extra memory that is allocated by the VM per bundle.

Refer to[“Memory Allocation”| for more information.

* Memory deallocation: When this extra memory is freed. Refer to

[Deallocation” on page 30| for more information.

Memory Allocation

Each bundle has its own class loader allocating memory segments of two types.

Table 17. Memory Segment Types

Segment Type

Description

ROM classes

ROM Classes contain the read-only part (i.e., code) of the classes
loaded by a class loader. All memory segments of this type are
allocated in the same size as defined with the -Xmco:<n> option (n *
1024) if they hold classes loaded from JAR bundles. If a segment fills
up, then another segment of the same size and type is created.

“ROM Classes” memory segments that hold classes from JXE bundles
on the other hand are allocated in the size of the rom.classes file in
the JXE file. In case SMF is configured to use the Flash Manager to
store the bundles in flash memory then the J9 VM just points to the
memory location in of rom.classes file in the flash and therefore does
not require any extra RAM for the ROM portion of the classes.

RAM classes

“RAM Classes” contain the space to hold the pointers to the super
class, implemented interfaces, static objects and other data for all
classes loaded by a class loader. The size of all the memory segments
of this type are set with the -Xmca:<n> option (n * 1024). If a segment
fills up then another segment in the same size and type is created for
the class loader.

The defaults for the -Xmca and -Xmco options are different from platform to
platform, in many cases it is set to 1 MB. The default sizes might be far to too high
for your application. If there are many bundles installed and used then the
available memory is used up quickly.

Use MicroAnalyzer to determine the best size of either segment type for your

application.

Chapter 3. SMF Toolkit Reference 29

Other Memory Segments
Other memory segments to consider are the “NewSpace” (-Xmn<n>), where the new

objects are allocated, and the “OldSpace”, which holds “long lived” objects. The
“NewSpace” segment is fixed size, but take into account that there is another
memory segment of the same size as the “NewSpace” called the “SurvivorSpace”.
The “OldSpace” segment grows when the garbage collector cannot free enough
space to hold new objects as set with the -Xmoi<n> parameter. If <n> is 0 then an
OutOfMemoryError is thrown.

Memory segments used by the Garbage Collector are the “Remembered Class Set”
and “Remembered Object Set” (-Xmr<n> for both) and the “IGC Scan Queue”
(-Xgc:agcgs=<n> (n *8)). All these memory segments must fit into the memory
reserved with -Xmx<n> option.

The following is an example of how the J9 VM’s memory options can be used:

REM Set J9 memory segment sizes to simulate the target device
J9-Xmca8k -Xmco8k -Xmo2m -Xmoi® -Xmn256k -Xmx8m -Jxe:smf.jxe

Memory Deallocation

When a bundle is uninstalled or updated* the bundle class loader’s memory
segments are freed automatically if there is not another reference to any type or to
an object that extends or implements any type. *If a bundle is updated then a new
bundle class loader is created with a new set of memory segments. Object
instances are “garbage collected” when there is no more reference to the object
from any other object, from a class loaded by another class loader, or from a VM
internal data structure like the thread stacks and the finalize queue. There is the
potential that the “ROM Classes” and “RAM Classes” memory segments of a
bundle class loader are never freed even though the bundle was uninstalled a long
time ago. For example a bundle defines its own Exception class and appends an
instance of this Exception in a log message and sends it to the LogService bundle.
If the LogService collects all log entries in an internal data structure then the
LogService references the Exception and the bundle’s class loader memory
segments cannot be freed.

30 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Resource Management

You can enable resource management using the -resourceManagement launch
option. When you enable resource management SMF manages the following
resources:

* The bundle storage space. For example a bundle will not be installed if not
enough flash memory is available to store it. The required amount of bundle
storage is defined by the size of the bundle’s JAR or JXE file.

¢ The amount of object memory that a bundle gets when it is started and which it
cannot exceed. A bundle is assigned to its separate memory space where its
threads will allocate their objects. If the memory space is full and the garbage
collector cannot release any objects the thread(s) will receive an
OutOfMemoryError. For more information about memory spaces, refer to the
class libraries documentation.

* Timeout values for the bundle activator’s start and stop calls. A bundle activator
running in an endless loop will not block the framework’s master thread.

¢ The maximum number of threads for the whole device and per bundle. In an
embedded device threads are an expensive commodity. A bundle that creates too
many threads can easily render a device useless.

* The maximum number of sockets for the whole device and per bundle.

¢ The maximum number of files and directories in the bundle’s private data area
(as available to the bundle with BundleContext.getDataFile(” ")) and the total
size of these files.

* Trace resource consumption, like socket and file I/O.

For more information on managing resources, refer to the following sections:

* |smfres.properties file

* [Enabling and disabling resource management|

e [Trace

* [Memory spaces|

.

* |Socket management]

« [File system management|

smfres.properties file

The resource smfres.properties contains the parameters that control the resource
manager of the Service Management Framework. These are the defaults and
maximum values for the bundles and the device.

You can copy the smfres.properties resource to the working directory of the
toolkit environment. If an smfres.properties file resides in the current working
directory, it supersedes the resource in the class path.

The smfres.properties resource also contains parameters to enable or disable the
management of the various resources. If all resource management is disabled then
the system will behave exactly like the standard Service Management Framework,
except that the footprint is a little larger and slightly slower due to some extra
checking and method calls.

If the resourcemanagement launch option is not set, then the SMF Resource
manager is not installed and the smfres.properties file is not used. If the

resourcemanagement launch option is set, then the SMF Resource Manager reads

Chapter 3. SMF Toolkit Reference 31

the smfres.properties file and adds them to the System properties. If the
com.osg.smf.reman.enabled property is false, no memory spaces are created and
the resource limits of the bundle are not checked; however, if is possible to enable
the trace functionality on the different resources and to use the commands
provided by the Resource Manager console extensions.

Enabling and disabling resource management

The smfres.properties file contains a parameter to enable or disable the resource

management. If the resource management is disabled, then the system will behave
exactly like the standard SMF, except that the footprint is a little larger and slightly
slower because of some extra checking and method calls.

The resource management parameter starts with com.ibm.osg.smf.resman

Table 18. Parameter Suffixes Related to Enabling and Disabling Resource Management

Parameter suffix

Description

Default

.enabled

parameter is set to false, all other

not applicable.

Enables resource management. If this

parameters in the following tables are

true

Trace

Enable the tracing of resource consumption by bundles, like the creation of threads
and sockets, socket and file I/O, and memory space usage.

Trace parameters start with com.ibm.osg.smf.resman.trace

Table 19. Parameter Suffixes Related to Tracing

Parameter suffix

Description

Default

.memoryspcae.creation
.memoryspace.removal
.memoryspace.switching
.thread.creation
.socket.creation
.socket.input
.socket.output
.file.output

Individual parts of the system that can
be traced

false

.file

The file name for the trace output. If
not specified, then the trace is written
to system.out.

system.out

32 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Memory Spaces

Service Management Framework resource management uses the functionality that
is provided by memory spaces, which are installed with the Service Management
Framework. This implementation sets up a memory space for every resolved
bundle if so instructed in the smfres.properties file. Bundle groups are not yet
supported.

Note: For more information about memory spaces, refer to the class libraries
documentation.

Parameters
All memory-related parameters begin with com.ibm.osg.smf.resman.memory.

Table 20. Parameter Suffixes Related to Memory

Parameter suffix Description Default

.default.oldspacesize The default OldSpace memory segment | 128000
size for a bundle that does not specify
it in the bundle’s resource
requirements file.

.default.newspacesize The default NewSpace memory 128000
segment size for a bundle that does
not specify it in the bundle’s resource
requirements file.

.default.enforced Use default memory space sizes for all | false
bundles, regardless of the specification
in the bundle’s resource requirements
file.

.remnantsspace.name The remnants memory space (RMS). Base

When a memory space is removed the
objects which have references from
objects in other memory spaces are
moved to the RMS. Objects in the
NewSpace of the memory space are
moved to the RMS NewSpace and
objects in the OldSpace of the memory
space are moved to the RMS OldSpace.

If
com.ibm.osg.smf.resman.memoryspace.remnantsspace Jname
is empty then no remnants memory
space will be created and the remove
will fail if there are references to
objects in the memory space that is to
be removed.

Note that the name "Base” is reserved
for the base memory space. In this

.remnantsspace.oldspacesize The size of the OldSpace memory 128000
segment of the remnants memory
space.

.remnantsspace.newspacesize The size of the NewSpace memory 128000
segment of the remnants memory
space.

Chapter 3. SMF Toolkit Reference 33

Multiple Memory Spaces

Some bundles need to be aware that they run in a system with multiple memory
spaces. For example:

* A bundle (like the HttpService) that creates a thread on behalf of another bundle
(servlet) must make sure that this thread is assigned to the memory space of the
servlet, otherwise the Http service itself would be charged with all objects that
are created by the servlet.

* The user interface shell (like the SampleShell) that manages applications
provided by other bundles must make sure that its thread is assigned to the
memory space of the currently active application.

* A bundle that does not create objects, like a Service definition bundle that only
contains interfaces, can specify 0 as the size for their NewSpace and their
OldSpace memory segments.

* A bundle that only exports packages, like Bundle Class Libraries (IveLib), needs
to specify an appropriate amount of NewSpace or better OldSpace to
accommodate the static objects of its classes. Use the MicroAnalyzer tool to
determine the proper memory space segment sizes.

* A bundle that creates a thread should check for the toolkit exception
com.ibm.ive.eccomm.osg.smf.ResourceException or any of its superclasses if the
thread creation was allowed by the resource manager.

For more information about memory spaces, refer to the class libraries
documentation.

34 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Threads

Besides managing the maximum number of threads of the device and per bundle,
the resource manager can also terminate a thread safely by moving it to the

DeathRow memory space, a memory space with no NewSpace and an OldSpace
with no extra space for objects.

All thread related parameters start with com.ibm.osg.smf.resman.threads.

Table 21. Parameter Suffixes Related to Threads

Parameter suffix

Description

Default

.max

The maximum number of user threads that can be
active at any one time on this device. These are all
the threads that belong to the 'SMF-Master’ thread
group or any of its children groups, excluding the
threads that start or stop bundle’s asynchronously.

No check is done if -1 is specified.

-1

.bundle.max

The maximum number of threads a bundle can
create at any one time regardless of what is
specified in the bundles’ IVERES. XML file.

No check is done if -1 is specified.

.bundle.max.default

The maximum number of threads a bundle can
create at any one time, if there is no "Threads” entry
i the bundle’s IVERES.XML file and
com.ibm.osg.smf.resman.threads.bundle.max = -1.

No check is done if -1 is specified.

.bundle.max.priority

The maximum priority of a bundle’s thread group.

10

.bundle.start.priority

Bundles are started asynchronously with a thread
with this priority. The thread priority cannot be
higher then the maximum priority
(com.ibm.ive.res.threads.bundle.max.priority).
Threads created by bundles will default to this
priority.

.bundle.start.timeout

The timeout value assigned to the bundles start
thread. If the timeout exceeded then the start thread
is terminated.

No check is done if 0 is specified.

.bundle.stop.priority

Bundles are stopped asynchronously with a thread
with this priority. The thread priority cannot be
higher then the maximum priority
(com.ibm.ive.res.threads.bundle.max.priority).
Threads created by bundle’s stop() routine will
default to this priority.

.bundle.stop.timeout

The timeout value assigned to the bundles stop
thread. If the timeout is exceeded, then the stop
thread is terminated.

No check is done if 0 is specified.

Chapter 3. SMF Toolkit Reference

35

Socket management

All socket related parameters start with com.ibm.osg.smf.resman.sockets.

Table 22. Parameter Suffixes Related to Sockets

Parameter suffix

Description

Default

.max

The maximum number of sockets that can be
created by all bundles at any one time on this
device.

No check is done if -1 is specified.

-1

.bundle.max

The maximum number of sockets a bundle can open
at any one time regardless of what is specified in
the bundles’ IVERES. XML file.

No check is done if -1 is specified.

.bundle.max.default

The default number of sockets a bundle can open at
any one time if there is no "Sockets” entry in the
bundle’s IVERES. XML file and
com.osg.smf.resman.sockets.bundle.max.

File system management
All file system related parameters start with com.ibm.osg.smf.resman.files.

Table 23. Parameter Suffixes Related to Files

Parameter suffix

Description

Default

.bundle.max

The maximum number of files and directories a
bundle can create in it’s private data area
(BundleContext.getDataFile(String)) regardless of
what is specified in the bundle’s IVERES. XML file.

No check is done if -1 is specified.

-1

.bundle.max.default

The default number of files and directories a bundle
can create in its private data area
(BundleContext.getDataFile(String)) if there is no
"Files” entry in the bundle’s IVERES. XML file and
com.osg.smf.resman.sockets.bundle.max = -1.

No check is done if -1 is specified.

.bundle.quota

The maximum size of all files a bundle can create in
its data area regardless of what is specified in the
bundles” IVERES. XML file.

No check is done if -1 is specified.

.bundle.quota.default

The default maximum size of all files a bundle can
create if there is no "Quota” entry in the

IVERES. XML file and
com.ibm.osg.smf.resman.files.bundle.quota = -1

No check is done if -1 is specified.

36 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Chapter 4. Using the SMF Toolkit

Managing a toolkit

You can manage the SMF Toolkit from a command line. You can perform the
following management tasks:

* |Starting the SMF Toolkit|

* [Showing runtime properties|
* |Closing the SMF Toolkit
+ |Launching the frameworki

* |Shutting down the framework]

Starting the SMF Toolkit

You can start the SMF Toolkit from the command line with several options. The
options are:

* -ide

e -console

* -resourceManagement
* -platform

If you want to manage the SMF Toolkit from the command line, you must launch
SMEF with the -console option. See|“Starting the SMF Toolkit from the command|
for more information.

Showing runtime properties

You can view and modify the current values of the properties of a running client.
Thes properties consist of the System properties and the smf properties. The props
command enables you to view the current property values. The setprop command
enables you to set the value of any property.

The props command takes no parameters.

The following example of the props command sets the default port property. There
must not be any spaces between the key and value. If the property is set, it will be
repeated back as shown below:

smf> setprop org.osgi.service.http.port=80
Setting Properties:
org.osgi.service.http.port=80

Closing the SMF Toolkit

You can close the SMF Toolkit using any of the following command line options:
* close - shutdown and exit

* exit - exit immediately (System.exit(0))

See [“SMF-defined Commands” on page 11|

© Copyright IBM Corp. 1999, 2002 37

Launching the framework

You can launch the framework from the SMF Toolkit command line with
the launch command. This attempts to start all bundles that were running before
the framework was last shutdown. See [‘SMF-defined Commands” on page 11}

Shutting down the framework

You can shut down the framework without exiting with the shutdown command.
[“SME-defined Commands” on page 11}

Managing bundles

If you launched SMF with the -console option, you can manage the bundles in the
SMF Toolkit from within the SMF console. You can perform the following
management tasks:

* [“Installing a bundle”]

+ [“Starting a bundle”]

+ |“Stopping a bundle” on page 39

+ [“Updating a bundle” on page 39

* [“Uninstalling a bundle” on page 39|

+ |“Viewing bundle properties” on page 40|

+ |“Viewing service properties” on page 40|

Installing a bundle

You can install a bundle from the SMF console using the install console
command. You must specify the protocol to use and the bundle to be installed.

Following are examples of the install command:

* The following example installs mybundle jar from the specified location on the
local file system:

smf> install file:/c:/bundlefiles/mybundle.jar

* The following example installs mybundle jar from the local file system and
marks it to start when the framework is launched:

smf> install file:/c:/bunlefiles/mybundle.jar start
* The following example installs yourbundle.jxe from the specified URL:
smf> install http://bundlesite.com/yourbundle.jxe

Starting a bundle

You can start a bundle that is in INSTALLED or RESOLVED state. The framework
will attempt to resolve all dependencies and start the bundle. If all dependencies
cannot be resolved, the bundle will fail to start and it will stay in RESOLVED state.

To start a bundle, use the start console command. You must specify the bundle
number or bundle location. See [“SME-defined Commands” on page 11}

The following are examples of using the start command:

* The following example starts the bundle with the ID of 5:
smf> start 5

* The following example starts the bundle with the specified location:
smf> start file:bundlefiles/mybundle.jar

38 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Stopping a bundle

You can stop a bundle that is in ACTIVE state with the stop console command.
You must specify the bundle number or bundle location. See|“SMF-defined

[Commands” on page 11}

Following are examples of using the stop command:

* The following example stops the bundle with the ID of 5:
smf> stop 5

* The following example stops the bundle with the specified location:
smf> stop file:bundlefiles/mybundle.jar

Updating a bundle

You can request that a bundle be updated with the update console command. You
must specify the bundle number or bundle location. The bundle will be stopped,
replaced with a new bundle if one exists, and restarted.

Following are examples of using the update command:

* The following example updates the bundle with the ID of 5 from the location
from which it was installed:

smf> update 5

* The following example updates the bundle with the specified location from
which it was installed:

smf> update file:bundlefiles/mybundle.jar

* The following example updates all bundles from the locations from which they
were installed:

smf> update *

You can request that the packages that a bundle imports be refreshed with the
refresh console command. You must specify the bundle number or bundle
location. See [‘SMF-defined Commands” on page 11}

Following are examples of using the refresh command:

* The following example refreshes the bundle with the ID of 5:
smf> refresh 5

* The following example refreshes the bundle with the specified location:
smf> refresh file:bundlefiles/mybundle.jar

Uninstalling a bundle

To uninstall a bundle, use the uninstall console command. You must specify the
bundle number or the bundle location. The bundle will be removed from the
framework. See ['SMF-defined Commands” on page 11}

Following are examples of using the uninstall command:

* The following example uninstalls the bundle with the specified bundle ID and
any prerequisite bundles that are no longer needed:

smf> uninstall 5

* The following example uninstalls the bundle with the specified location and any
prerequisite bundles that are no longer needed:

smf> uninstall file:bundlefiles/mybundle.jar

Chapter 4. Using the SMF Toolkit 39

Viewing bundle properties

You can view the properties of a bundle with the bundle console command. You
must specify the bundle number or bundle location.

Following are examples of using the bundle command:
* The following example displays information for the bundle with the ID of 5:
smf> bundle 5

* The following example displays information for the bundle with the specified
location:

smf> bundle file:bundlefiles/mybundle.jar

You can view the properties of all bundles with the bundles console command.
This command takes no arguments.

You can view the bundle’s manifest headers, IVEATTRS. XML and IVERES. XML file
with the headers console command. You must specify the bundle number or
bundle location. See [“SMF-defined Commands” on page 11}

Following are examples of using the headers command:

* The following example displays header information for the bundle with the ID
of 5:

smf> headers 5

* The following example displays header information for the bundle with the
specified location:

smf> headers file:bundlefiles/mybundle.jar

Viewing service properties
You can view the properties of one or more services with the services console
command. The default is to show all services properties but you can optionally
specify a filter to reduce the output. The filter is of the form
(service.property=value).

Following are examples of using the services command:
* The following example displays information for all services:
smf> services

* The following example displays information for all services whose
service.vendor property value = "IBM":

smf> services (services.vendor=IBM)

See [“SMF-defined Commands” on page 11}

40 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Chapter 5. Service Management Framework Bundle
Requirements

Bundles can be managed by an SMF Bundle Server, which is part of WebSphere
Device Developer 5.0.

In order for a bundle to be fully managed by a Service Management Framework
bundle server, additional information about the bundle is required.

* The bundle must specify the [specification-version| for every package that it
exports.

¢ The bundle must include an |IVEATTRS . XML| file.
The bundle can also include an |IVERES. XML{file.

In an SMF Toolkit environment, IVEATTRS . XML and IVERES.XML are ignored.

Specification Version

All bundles must express a specification-version for all exported packages. This is
because this information is required by the algorithm which finds the set of all
prerequisite bundles for a given bundle.

Without this information, the bundle server will be unable to ensure that a package

exported by one bundle is adequate to support another. It will also be unable to
tell if a bundle already on the Runtime needs to be updated or not.

© Copyright IBM Corp. 1999, 2002 41

IVEATTRS

The IVEATTRS. XML file is used by the bundle server in selecting the best bundle
for a particular platform. A JXE bundle, for example, would be inappropriate for a
non-J9 VM.

Note: A JXE bundle is an optimized JAR format that contains prelinked Java
classes.

Similarly, if a JXE bundle has been created for a little-endian architecture, it should
not be provided to a Runtime running on a big-endian processor; all the words
and long words would be the wrong endianness. The IVEATTRS.XML file is placed
within the META-INF directory. The file name must be in all upper-case letters. An
example is shown here.

<?xml version="1.0" standalone="yes"?>
<IVEAttrs>
<Processor/>
<Endian>le</Endian>
<AddressLength>32</AddressLength>
<0S/>
<0SVersion/>
<VM>J9v14</VM>
<Imp1Type>JCL_Gateway 1 3</Imp1Type>
<Language>en</Language>
<Country>us</Country>
<Replaces/>
</IVEAttrs>
DTD for IVEATTRS.XML Files
<!-- Name: -//com-ibm-ive-eccomm//DTD IVEATTRS//EN -->
<!-- Version: 1.0 4/12/2000 -->
<!ELEMENT IVEAttrs (Processor,0S,0SVersion,VM,Imp1Type,
Language,Country,Replaces,RAMRequirements)>
<l-- Processor identifies the target's architecture. Wherepossible draw from OSD specification-->
<!ELEMENT Processor (#PCDATA)>
<l-- 0S identifies the target's operating system. Where possible draw from 0SD specification-->
<!ELEMENT 0S (#PCDATA)>
<!-- 0SVersion identifies the version of the target's operating system.-->
<!ELEMENT Endian (#PCDATA)>
<!-- Endian identifies whether the client is operating as a big or Tittle endian processor-->
<!ELEMENT AddressLength (#PCDATA)>
<!-- AddressLength specifies the length of the target processor architecture's address-->
<!ELEMENT 0OSVersion (#PCDATA)>
<l-- VM identifies the JVM running on the target-->
<!-- Imp1Type is a code which identifies the base Java class
libraries available on the client-->
<!ELEMENT Imp1Type (#PCDATA)>
<!-- Language specifies the target's ISO 639 language code-->
<!ELEMENT Language (#PCDATA)>
<l-- Specifies the target's A2 ISO 3166 country code-->
<!ELEMENT Country (#PCDATA)>
<l-- Interpretation of the Replaces tag is reserved-->
<!ELEMENT Replaces (#PCDATA)>

* [Implementation typ€|

+ [Compatible implementation types|

Implementation Type

The ImplType tag is used to identify the base class library support required by the
bundle. Since the base configuration will vary greatly amongst targets of differing
capabilities, there is no predefined list of acceptable values for this attribute. If a
new custom base configuration is defined for a new platform, it must be assigned
a new implementation type code.

42 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Compatible Implementation Types

Some base configurations will be compatible with others. For example, a bundle
designed for jclGwp can reasonably be expected to run on jclMax. jclGwp is said to
be compatible with jcIMax. The bundle server must keep a list for each ImplType
of those ImplTypes with which it is compatible. Having such a list will allow the
bundle server to determine that a bundle targeted at jclGwp is also appropriate for
a Runtime running jclMax. All things being equal, if an exact match for ImplType
is available it should be chosen over a different but compatible ImplType.

Making the bundle server aware of compatible implementation types allows
developers to make bundles available to multiple target types without having to
create multiple bundles which differ only in their ImplTypes.

IVERES

A bundle developer uses the IVERES. XML file to record a bundle’s expected
impact on its host’s resources. The bundle server can use this information to ensure
that bundles are not provided to Runtimes with insufficient resources to run them.
The Runtime framework may use the IVERES. XML file to enforce resource
constraints.

Like IVEATTRS. XML, the IVERES. XML file is placed in the META-INF directory.
The filename must be all uppercase.

The format of the IVERES. XML is open-ended to allow specification and
management of resource requirements for resources not yet identified. A typical
IVERES. XML file might look like the following:

<?xml version="1.0" standalone="yes"?>
<IVERes>

<Resource>

<Name>RAM</Name>
<Requirement>19507</Requirement>
</Resource>
<Resource>
<Name>Threads</Name>
<Requirement>6</Requirement>

</Resource>
</IVERes>
DTD for IVERES.XML Files
The DTD for the IVERES.XML File is:
<!l-- Name: -//com-ibm-ive-eccomm//DTD IVERES//EN -->
<l-- Version: 1.0 4/5/2000 -->
<!ELEMENT IVERes (Resourcex)>
<IELEMENT Resource (Name, (Requirement|Available))>
<IELEMENT Name (#PCDATA)>
<!ELEMENT Requirement (#PCDATA)>
<IELEMENT Available (#PCDATA)>

Refer to[|“Defined Resource Names” on page 44|for more information.

Chapter 5. Service Management Framework Bundle Requirements 43

Defined Resource Names

The following resource names are reserved:

Table 24. Reserved Resource Names

Resource Name

Description

NewSpaceSize

The number of bytes to be allocated in each new space region of
the bundle’s memory space

OldSpaceSize

The number of bytes to be allocated for tenured objects in the
bundle’s memory space

Files

The total number of files a bundle can create in its data directory.

Quota

The number of bytes of storage within the local filesystem
required by the bundle

Sockets

The maximum number of socket connections the bundle may
have open at any one time

Threads

The number of threads the bundle may create at any one time

44 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Appendix. Service Management Framework Files

The following tree shows the directory of SMF.

bundTle.jxeLinkOptions
bundlefiles/
bundlesdata

docs/
flashplatform.jar
jarbundles/
jxebundles/

makejxes

makejxes.bat

osgi.jar
resmanconsole.jar
resmanimpl.jar
samples/

servlet.jar

smf

smf.bat

smf.jar
smf.jxeLinkOptions
smf.policy
smf.properties
smfbd.jar
smfconsole.jar

smfjdk

smfjdk.bat
smfres.properties
smftoolkit.readme
smf-foundation.jxeLinkOptions
smf-foundation_be.jxe
smf-foundation_le.jxe
smf-rm. jxeLinkOptions
smf-rm_be. jxe
smf-rm_le.jxe

A brief description of the contents of the SMF follows, in alphabetical order:

bundlefiles/
The bundlefiles folder is the source directory that contains a collection of
bundles which may be installed into SMF. SMF includes the following
bundles:

cm
deviceaccess
driverreaper
fileadmin
httpservice
logservice
prefs
servlet
smfadmin
tracker
useradmin

bundlesdata
bundlesdata is the default directory where the bundle natives and the
bundle data files are stored when the Flash platform is used.

© Copyright IBM Corp. 1999, 2002 45

docs/ The Service Management Framework Guide document includes
information about where to find the information you need to develop
applications and how to develop and deploy bundles. The docs/ directory
contains SMF and OSGi documentation.

flashplatform.jar
flashplatform jar contains the class for the flash platform.

jarbundles/
This folder contains an SMF installation using JAR format bundles. This
installed bundle set can be used by SMF when running under both
WebSphere Studio Device Developer 5.0 and Java Development Kit (JDK).
This installation is used by the smfjdk command.

jxebundles/
This folder contains an SMF installation using J9 Executable (JXE) format
bundles. This installed bundle set can be used by SMF only when running
under WebSphere Studio Device Developer 5.0. See the WebSphere Studio
Device Developer 5.0 documentation for more information on JXEs. This
installation is used by the smf command.

makejxes
makejxes is a shell command that rebuilds JXE files for SMF Toolkit. The
smf jxeLinkOptions file is used to make SMF jxes. The
bundle.jxeLinkOptions file is used to make bundle jxes.

makejxes.bat
makejxes.bat is a Windows command that rebuilds JXE files for SMF
Toolkit. The smf.jxeLinkOptions file is used to make SMF jxes. The
bundle.jxeLinkOptions file is used to make bundle jxes.

osgi.jar
osgi.jar contains Application Programming Interfaces (APIs) for the OSGi
standards used in SMEF, allowing you to compile your code against the
APIs so that the bundles can run on any device that follows the OSGi
standard. osgi.jar must be available in the class path when compiling, but
must not be in the class path when running SMF.

resmanconsole.jar
resmanconsole. jar provides commands to create, analyze, and destroy
memory spaces independent from the SMF Resource Manager. It requires
the J9 JCL RM class library.

resmanimpl.jar
resmanimpl.jar provides the SMF Resource Manager that controls the
resource conumption by bundles (memory, threads, sockets, and files). It
requires the J9 JCL RM class library.

samples/
The samples folder includes sample bundles that demonstrate how to
write bundles that run on the Framework. The samples included with SMF
are:
Handle Security

Pizza
Simple Permission Policy

servlet.jar
The servlet.jar file defines the Java Servlet 2.1 APIs. The servlet.jar file is
needed in the class path when compiling bundles that contain servlets, and

46 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

must not be in the class path when running SMFE. The servlet.jar file is also
a bundle which is installed in SMF to provide the servlet API to other
bundles.

smf smf is a shell command that starts SMF using the WebSphere Studio
Device Developer 5.0 runtime.

smf.bat
smf.bat is a Windows command that starts SMF using the WebSphere
Studio Device Developer 5.0 runtime.

smf.jar
smf.jar is the Service Management Framework and contains the class files
for SME. This file is used by the smfjdk command.

smf.policy
smf.policy grants smf.jar AllPermissions so the Framework can run in a
secure environment.

smf.properties
smf.properties is the file that contains properties for SMF. You can edit this
file.

smfbd.jar
Contains the classes needed by SMF to interact with the SMF Bundle
Server, including snapshot support. It also contains the IDEAgent, which
enables SMF to communicate with the IDE.

smfconsole.jar
Contains all classes needed to launch SMF with a command line console.

smfjdk
smfjdk is shell command that starts SMF using the JDK runtime.

smfjdk.bat
smfjdk.bat is a Windows command that starts SMF using the JDK runtime.

smftoolkit.readme
The smftoolkit.readme file includes last minute information about SMFE.

smf-foundation.jxeLinkOptions
Contains the smart linker options to create the smf-foundation-be.jxe and
smf-foundation.jre files.

smfres.properties
smfres.properties is the file that contains the properties for the SMF
Resource Manager. You can edit this file.

smf-foundation_be.jxe
smf-foundation_be.jxe is the big endian SMF Toolkit in the JXE format.
This]XE contains the WebSphere Studio Device Developer 5.0 jclMax Java
class libraries.

smf-foundation_le.jxe
smf-foundation_le.jxe is the little endian SMF Toolkit in the JXE format.
This JXE contains the WebSphere Studio Device Developer 5.0 jclMax Java
class libraries.

smf-rm.jxeLinkOptions
smf-rm jxeLinkOptions contains the smartlinker options to create the
smf-rm_be jxe and smf-rm_le.jxe files.

smf-rm_be.jxe
smf-rm_be.jxe is the big endian SMF Toolkit that contains pre-loaded Java

Appendix. Service Management Framework Files 47

classes and resources in the JXE format. This file is used to run SMF on
big-endian platforms (such as PowerPC® or ARM) using the WebSphere
Studio Device Developer 5.0 runtime. This JXE contains the WebSphere
Studio Device Developer 5.0 jclGwp Java class libraries.

smf-rm_le.jxe
smf-rm_le.jxe is the little endian SMF Toolkit that contains pre-loaded Java
classes and resources in the JXE format. This file is used to run SMF on
little-endian platforms (such as x86) using the WebSphere Studio Device
Developer 5.0 runtime. This JXE contains the WebSphere Studio Device
Developer 5.0 jclGateway Java class libraries.

48 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

Notices

This information was developed for products and services offered in the U.S.A.
IBM might not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM might have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not

apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2002 49

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written.

50 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

These examples have not been thoroughly tested under all conditions.
No warranty

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, IBM MAKES NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, THE
WARRANTY OF NON-INFRINGEMENT AND THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY. IBM
MAKES NO WARRANTY REGARDING THE CAPABILITY OF THE
PROGRAM TO CORRECTLY PROCESS, PROVIDE AND/OR RECEIVE DATE
DATA WITHIN AND BETWEEN THE 20TH AND 21ST CENTURIES. The
exclusion also applies to any of IBM’s subcontractors, suppliers, or program
developers (collectively called “Suppliers”).

Limitation of Liability

NEITHER IBM NOR ITS SUPPLIERS WILL BE LIABLE FOR ANY DIRECT OR
INDIRECT DAMAGES, INCLUDING WITHOUT LIMITATION, LOST
PROFITS, LOST SAVINGS, OR ANY INCIDENTAL, SPECIAL, OR OTHER
ECONOMIC CONSEQUENTIAL DAMAGES, EVEN IF IBM IS INFORMED OF
THEIR POSSIBILITY. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY
TO YOU.

You may copy, modify, and distribute these sample programs in any form without
payment to IBM for the purposes of developing, using, marketing, or distributing
application programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 2002 All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

For the XML Parser:The Apache Software License, Version 1.1 Copyright (c)
1999-2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment: "This product includes software developed

by the Apache Software Foundation (http://www.apache.org/).”

Notices 51

Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear.

4. The names "Xerces” and "Apache Software Foundation” must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.5. Products
derived from this software may not be called "Apache”, nor may "Apache” appear
in their name, without prior written permission of the Apache Software
foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation and was originally based on software
copyright (c) 1999, International Business Machines, Inc., http://www.apache.org.
For more information on the Apache Software Foundation, please see

<http:/ /www.apache.org/>.

Trademarks

This product includes software developed by the Eclipse Project
(http:/ /www.eclipse.org/).

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, or other countries, or both:

IBM, PowerPC DB2, WebSphere, and VisualAge®

Other company, product or service names may be trademarks or service marks of
others.

OSGi'" is a trademark of the Open Service Gateway Initiative.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corp. in the
U.S., or other countries or both.

Java and all Java-based marks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and/or other countries.

Other company, product and service names may be trademarks or service marks of
others.

52 WebSphere™ Studio Device Developer: User’s Guide for Service Management Framework Toolkit

	Contents
	Chapter 1. Concepts
	OSGi specification contents
	Service Management Framework
	SMF execution environment
	OSGi™ Specification concepts
	Framework
	Bundles
	Bundle life cycle

	Manifest files
	Services
	Packages
	Bundle Activators

	Prerequisites

	Chapter 2. Getting Started with SMF Toolkit
	Starting the SMF Toolkit from the command line
	smf.properties
	SMF launching options
	Batch files for starting SMF Toolkit
	Java command line arguments
	Security
	SMF Launcher command line arguments

	SMF Console commands
	Command argument definitions
	SMF-defined Commands
	Commands for controlling SMF
	Commands for controlling bundles
	Commands for displaying status
	Commands for controlling the console
	Miscellaneous commands

	Memory Space-related Commands

	Chapter 3. SMF Toolkit Reference
	Core Bundles
	OSGi™ services
	System Bundle
	Framework

	Http Service
	handleSecurity plug-in
	Configuring Http Service
	General configuration
	Port configuration
	Configuring the parameters using SMFAdmin
	Configuring the HTTPService for multiple ports

	Log Service
	Configuring Log Service
	Configuring the parameters using SMFAdmin

	Device Access
	Preferences Service
	Configuration Admin Service
	User Admin Service
	Service Tracker
	SMFAdmin
	FileAdmin
	XML parser APIs
	Micro XML
	XML4J

	Creating OSGi™ bundles
	Understanding OSGi™ bundles
	Manifest files
	Sample manifest file
	Services
	Registering and unregistering a service with the OSGi Framework
	Getting and un-getting services from the OSGi Framework

	Conventions for creating bundles

	Sample applications
	Pizza servlet
	Handle Security
	Simple Permission Policy
	Simple Sample
	Driver Locator Sample
	Calendar sample

	Platform
	Default platform

	SMF Memory Considerations
	Memory Allocation
	Other Memory Segments

	Memory Deallocation

	Resource Management
	smfres.properties file
	Enabling and disabling resource management
	Trace
	Memory Spaces
	Parameters
	Multiple Memory Spaces

	Threads
	Socket management
	File system management

	Chapter 4. Using the SMF Toolkit
	Managing a toolkit
	Starting the SMF Toolkit
	Showing runtime properties
	Closing the SMF Toolkit
	Launching the framework
	Shutting down the framework

	Managing bundles
	Installing a bundle
	Starting a bundle
	Stopping a bundle
	Updating a bundle
	Uninstalling a bundle
	Viewing bundle properties
	Viewing service properties

	Chapter 5. Service Management Framework Bundle Requirements
	Specification Version
	IVEATTRS
	Implementation Type
	Compatible Implementation Types

	IVERES
	Defined Resource Names

	Appendix. Service Management Framework Files
	Notices
	Trademarks

