
© 2012 IBM Corporation
1

The Premier Event for Software and Systems Innovation

Agile Systems Engineering

Bruce Powel Douglass, Ph.D. Unleash the Labs
Chief Evangelist
IBM Rational
Bruce.Douglass@us.ibm.com

Graham Bleakley Ph.D, Unleash the Labs
IBM Rational
graham.bleakley@uk.ibm.com

mailto:Bruce.Douglass@us.ibm.com

© 2012 IBM Corporation

Software and Systems Engineering | Rational

State of the Practice for Systems Development

§ Systems and Software Engineering Environments, in general,
– Are document-centric

– Require huge investment in planning that doesn’t reflect actual project execution

– Have difficulty adapting to change.

– Require expensive and error-prone manual review and update processes.

– Require long integration and validation cycles to beat out many defects

– Are difficult to maintain over the long haul

§ Additional standards constraints
(eg DO-178C, ARP4761, ISO26262,
IEC 62304, AUTOSAR, DoDAF) add to
the challenge
– Tooling Selection

– Dependability engineering

• Safety

• Reliability

• Security

– System certification

2

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Modern Processes and Practices are Evolving

Past Future

Model-Based Engineering

Defect Avoidance

Defensive Design

Continuous Integration

Risk Management

Project Governance

Dynamic Planning

THE AGILE SE MODEL

Requirements
Definition &
Management

Analysis & Design

Quality
Management

Build & Release
Management

Construction

Configuration &
Change Mgmt

Asset
Management &
Reuse

Production

Moving from waterfall “ballistic” planning to incremental, adaptive approach

3

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Key Concepts for Agility

§ Improve quality through continuous feedback
– Verification (do it right)

• Analysis
• Review
• Testing via execution or simulation

– Customer feedback (meet the need)
• Correctness
• Appropriateness
• Usability

– Defensive Design
§ Efficiency through

– Concentrate on high-value tasks
– Avoid rework
– Paying attention to how you’re doing against goals

• Project retrospective
• Risk management

§ Planning
– Don’t plan beyond the fidelity of the information you have
– Plan enough but not more than that
– Adjust plans based on “truth on the ground” (metrics)

Primarily build executable things
Verify them continuously
Validate them with the customer early & often

Active and continuous risk mitigation

Dynamic planning

4

© 2012 IBM Corporation

Software and Systems Engineering | Rational

What does “agile” mean for Systems Engineering?

§ Do what you need to do, no more and no less
– This depends heavily on industry, regulation, and business environment
– Often requires detailed traceability links among work products (e.g. requirements traceability)
– Use tooling to automate manually-intensive, error-prone work

§ Work iteratively and incrementally
– Group requirements with user stories or use cases

§ Verify continuously
– With Q/A activities
– With testing
– With customer

§ Outcome contains textual specifications but linked to executable & verifiable specifications
§ Use dynamic planning to adjust project plans based on “truth on the ground”

– Use goal-based metrics (KPIs) to track project progress
– Continuously track progress against plan. Adjust planning frequently

§ Safety, Reliability, Security
– Not “done once” but continuously assessed

§ Model-based hand off to downstream engineering

5

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Best Practices for Agile Systems Engineering

§ High-fidelity model-based engineering (Hi-MBE)

§ Incremental functional analysis with use cases

§ Executable requirements modeling with SysML / UML

§ Test-driven development of system specifications

§ Integrated safety and reliability analysis

§ Model-based handoff to downstream engineering

§ Automated document generation from model artifacts

Note: a key difference between agile SW and agile SE
is that the outcome of SE is specifications and the
outcome of SW is implementation

6

© 2012 IBM Corporation

Software and Systems Engineering | Rational

But Why High-Fidelity Modeling???

§ Hi-MBE brings to engineering
– Precision

– Verification via executability or formal methods

– Stakeholder/Analysis-relevant viewpoints at any desired level of abstraction e.g.

• Functionality

• State-based behavior

• Algorithmic/control behavior

• Structure and Architecture

– Integration of engineering work, e.g.

• Functional requirements

• Dependability analysis
Safety

Reliability

Cyberphysical security and Information Assurance

• Architectural structure, behavior, and allocation

• Control modeling and analysis

7

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Models and Viewpoints in Model-Based Systems Engineering

Functional
Model

Executable use cases
Functional and
QoS requirements

Dependability
Model

Safety, reliability,
and security analysis
FTA, FMEA, FEMCA,
Asset Diagram, SAD

Control
Model

Control algorithms,
mathematical models

Architectural
Model

Subsystems, interfaces,
Subsystem use cases/
Requirements

Model-
based
handoff

Subsystem
Model(s)

Mechanical
Specification

Electronic
Specification

Software
Specification Model and text

Model and text

Model and text

8

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Use Cases for Systems Engineering

§ A system-level use case
– Can be thought of as a comprehensive user story

– Is cross-discipline and usually results in mechanical, electronic and software implementation

– Is a coherent set of requirements clustered around a systems capability or usage

– Has bi-directional traceable links to system requirements

– While focusing on functionality, must also include quality of service requirements and constraints, such as

• Safety

• Reliability

• Security

• Performance (worst-case, throughput, average case, etc)

• Maintainability

• Parametric requirements (heat, weight, recurring cost, etc)

§ Three primary work flows for “detailing the use case”
– Scenario-driven

– Activity-driven

– State-driven

• It should be noted that the use case state machine is really the normative specification of the system with
respect to that system capability

9

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Detailing Use Cases with Statecharts and Scenarios

10

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Scenario Driven Use Case Construction / Validation

[more requirements]

[else]

Making it agile
1. Incrementally specify

1. Use cases/User stories
2. Specification nanocycles

2. Continuously verify
1. Build executable models

3. Frequently validate
1. Demonstrate to customer

4. Identify missing requirements
1. Unspecified state transitions
2. Unspecified scenarios

5. Incrementally add traceability
6. Annotate with qualities of service
7. Integrate with other specifications

1. Other use cases
2. Non-functional requirements

1. Safety
2. Security
3. Reliability

11

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Executable Requirements?
§ A key problem is ensuring the quality of requirements for complex systems

§ This is not just a matter of making good stand alone “shall” statements
– Truly, most requirements specifications have poorly-specified “shall” statements that

• Are ambiguous

• Lack precision

• Inappropriately include design detail

– But the hard part is the subtle interactions of requirements

• Don’t cover all cases, situations, or operational environments

• Don’t discuss system error and fault responses

• Missing data specification

• Missing performance properties

• Inconsistent requirements

§ The “state of the practice” for requirements is protracted manual review of textual documents
– The problem is this is error-prone and hugely expensive

§ The “state of the art” is to create executable requirements models that demonstrate the system
black-box behavior
– The point is to clearly and unambiguously specify the control and data transformations (and their

constraints) to be performed by the system in all relevant situations, conditions, environments, and
operational scenarios

12

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Executable Requirements
§ Most common workflow

– Start with textual specifications

– Incrementally construct use case behavioral model

• Test Driven Development

• Nanocycle Iteration

• Constrain with quality of service requirements

• Continuous trace linking to textual requirements

• Continuous safety, reliability, security assessment

§ Outcome
– Better requirements as workflow mitigates against

• Incorrect requirements

• Missing functionality

• Missing QoS & performance requirements

• Inconsistent requirements

• Ambiguous requirements

– Validation with the customer via execution of the use case

– Model-based handoff to downstream engineering

– Traceability supports impact analysis, change management, and safety certification

13

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Validation of requirements through “what if” executions
§ Virtual prototype / Panel graphics support

– Ideal communications aid for validation of customer requirements

– Clearly shows data and control transformations specified by requirements

14

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Test-Driven Development isn’t just for software anymore

§ The principle behind TDD is to develop and apply test cases as you develop a system to
demonstrate that it is correct
– This is done in parallel with the system development and not ex post facto

– This is about defect avoidance and less about defect identification and repair

§ TDD applies to the development of complex system use case models
– During the nanocycle of a use case’s development

• Make small incremental changes (e.g. add a state, or a couple of actions, or a transition or two)

• Identify what is the desired behavior of the system that you’ve specified so far

• Execute that incomplete use case model to ensure that it is correct

• Repeat until all requirements for the use case and all scenarios defined for the use case have been
met in the normative specification

§ TDD may be realized
– By “instrumenting the actors” – specifying behavior of the actors to perform tests

– Tooling implementing the UML Profile for Test (e.g. Test Conductor™ and Automatic Test Generator™)

– Manually writing test scripts

15

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Example: Traffic Light Control Fixed Cycle Mode Spec

16

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Example: Traffic Light Control Fixed Cycle Mode Spec

17

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Example: Traffic Light Control Fixed Cycle Mode Spec

18

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Example: Traffic Light Control Fixed Cycle Mode Spec

19

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Example: Traffic Light Control Fixed Cycle Mode Spec

20

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Integrated Safety and Reliability Analysis

§ Fault Tree Analysis
(FTA) connects hazards
with logical
combinations of events,
conditions, errors, and
faults

§ Allows you to identify
– Effects of combinations of

conditions and events on
safety

– Safety measures

– Safety requirements

• DO 178B/C

• IEC 61508

• ISO 26262

– Impacts of architectural,
technological, and design
choices on safety

21

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Integrated Safety and Reliability Analysis

22

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Model-Based Threat Analysis

§ Security Analysis Diagram (SAD)
is like a Fault Tree Analysis (FTA)
but for security, rather than safety
– It looks for the logical relation

between assets, vulnerabilities,
attacks, and security violations

– Permits reasoning about security

• What kind?

• How much?

• Risk assessments

23

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Model-Based Threat Analysis

§ An Asset Diagram looks
at the semantic relations
between roles,
authentication,
vulnerabilities, and
countermeasures. It is a
way of representing the
security-relevant design
elements.
– Here it is shown with

traceability links to
requirements

§ Assets are things you
want to protect, e.g.
– Physical

– Informational

– Currency

– Resource

– Security

24

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Auto-generation of dependability-relevant summary data

Fault Source Matrix, Fault Detection Matrix, Fault-Requirement Matrix, FMEA, Hazard Analysis…

• Traceability improves your ability to
make your safety/security case

Dependability metadata guides
- System requirements
- Downstream engineering work
- Regulatory approval submissions

25

© 2012 IBM Corporation

Software and Systems Engineering | Rational

26

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Harmony Systems Engineering Workflows

Systems Engineering:
Requirements Analysis

27

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Harmony/SE: Design Synthesis

28

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Model-Based Hand-off to Downstream Engineering

29

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Summary

§ Systems Engineering capability can be greatly enhanced with two key technologies
– Use of SysML/UML Modeling to capture system

• Behavior (executable use cases)

• Structure (architecture)

• Data and performance modeling

• Model-based hand off to downstream engineering

• Automatic generation of documentation from model-based work products

– Agile methods employing
• Incremental construction of use cases
• Test Driven Development nanocycle-level iteration
• Incorporating dependability analysis with the use case development

§ Harmony best practice workflows embody agile for embedded systems engineering

– Rational provides the services

• R&D Capability Assessment

• “Agile Systems Engineering” and “Agile Embedded Software Development” courses

• Rapid Deployment Package (training, mentoring, frequent design reviews by modeling experts)

– Rational has the tools

• Rational DOORS provides requirements management with great traceability

• Rational Rhapsody provides tooling for best practice realization

• Rational Method Composer manages process and practice definitions

• Rational Team Concert provides a project enactment & governance environment

• Rational Quality Manager manages test cases and procedures

30

© 2012 IBM Corporation
31

The Premier Event for Software and Systems Innovation

www.ibm.com/software/rational

© 2012 IBM Corporation
32

The Premier Event for Software and Systems Innovation

© Copyright IBM Corporation 2012. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

www.ibm.com/software/rational

	Slide 1
	State of the Practice for Systems Development
	Modern Processes and Practices are Evolving
	Key Concepts for Agility
	What does “agile” mean for Systems Engineering?
	Best Practices for Agile Systems Engineering
	But Why High-Fidelity Modeling???
	Models and Viewpoints in Model-Based Systems Engineering
	Use Cases for Systems Engineering
	Detailing Use Cases with Statecharts and Scenarios
	Scenario Driven Use Case Construction / Validation
	Executable Requirements?
	Executable Requirements
	Validation of requirements through “what if” executions
	Test-Driven Development isn’t just for software anymore
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Integrated Safety and Reliability Analysis
	Integrated Safety and Reliability Analysis
	Model-Based Threat Analysis
	Model-Based Threat Analysis
	Auto-generation of dependability-relevant summary data
	Slide 26
	Harmony Systems Engineering Workflows
	Harmony/SE: Design Synthesis
	Model-Based Hand-off to Downstream Engineering
	Summary
	Slide 31
	Slide 32

