Agile Systems Engineering

Bruce Powel Douglass, Ph.D. Unleash the Labs
Chief Evangelist

IBM Rational

Bruce.Douglass@us.ibm.com

Graham Bleakley Ph.D, Unleash the Labs
IBM Rational
lB%raham.bleakley@uk.ibm.com

Innovate2012 vext 5 wom)

The Premier Event for Software and Systems Innovation

1

mailto:Bruce.Douglass@us.ibm.com

- Additional standards constraints

Software and Systems Engineering | Rational

State of the Practice for Systems Development

- Systems and Software Engineering Environments, in general,

- Are document-centric

- Require huge investment in planning that doesn’t reflect actual project execution
- Have difficulty adapting to change.

- Require expensive and error-prone manual review and update processes.

- Require long integration and validation cycles to beat out many defects

- Are difficult to maintain over the long haul

(eg DO-178C, ARP4761, 1SO26262,
IEC 62304, AUTOSAR, DoDAF) add to
the challenge

- Tooling Selection

- Dependability engineering
+ Safety
* Reliability
* Security

- System certification

2 © 2012 IBM Corporation

Software and Systems Engineering | Rational

Modern Processes and Practices are Evolving

Past

THE V MODEL

uuuuuuuuuuuuuu
aaaaaaaaaaaaa

PPPPPPPPPPPPP
EEEEEEEEEEEEEEEEEEEEEEE
PPPPPPP

eeeee

PREPARE
uuuuuuuu

Moving from waterfall “ballistic” planning to incremental, adaptive approach

3 © 2012 IBM Corporation

Software and Systems Engineering | Rational

Improve quality through continuous feedback
- Verification (do it right)
* Analysis
* Review
- Testing via execution or simulation Primarily build executable things
- Customer feedback (meet the need) Verify them continuously
- Correciness Validate them with the customer early & often
* Appropriateness
* Usability
- Defensive Design
Efficiency through
- Concentrate on high-value tasks
- Avoid rework
- Paying attention to how you’re doing against goals
* Project retrospective
* Risk management
Planning
- Don't plan beyond the fidelity of the information you have
- Plan enough but not more than that
- Adjust plans based on “truth on the ground” (metrics)

Active and continuous risk mitigation

Dynamic planning

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Do what you need to do, no more and no less
- This depends heavily on industry, regulation, and business environment
- Often requires detailed traceability links among work products (e.g. requirements traceability)
- Use tooling to automate manually-intensive, error-prone work
- Work iteratively and incrementally
- Group requirements with user stories or use cases
- Verify continuously
- With Q/A activities
- With testing
- With customer
* Outcome contains textual specifications but linked to executable & verifiable specifications
= Use dynamic planning to adjust project plans based on “truth on the ground”
- Use goal-based metrics (KPIs) to track project progress
- Continuously track progress against plan. Adjust planning frequently
- Safety, Reliability, Security
- Not “done once” but continuously assessed

Model-based hand off to downstream engineering

5 © 2012 IBM Corporation

Software and Systems Engineering | Rational

- High-fidelity model-based engineering (Hi-MBE)

" Incremental functional analysis with use cases

- Executable requirements modeling with SysML / UML
- Test-driven development of system specifications

" Integrated safety and reliability analysis

- Model-based handoff to downstream engineering

- Automated document generation from model artifacts

REAL-TIME AGILITY

Note: a key difference between agile SW and agile SE
IS that the outcome of SE is specifications and the
outcome of SW is implementation

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Hi-MBE brings to engineering

Precision

Verification via executability or formal methods

Stakeholder/Analysis-relevant viewpoints at any desired level of abstraction e.g.
* Functionality
* State-based behavior
* Algorithmic/control behavior
* Structure and Architecture
- Integration of engineering work, e.g.
* Functional requirements
* Dependability analysis
Safety
Reliability

Cyberphysical security and Information Assurance

* Architectural structure, behavior, and allocation

* Control modeling and analysis

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Models and Viewpoints in Model-Based Systems Engineering

Subsystems, interfaces,
Subsystem use cases/
gLirements

Model and text

Executable use casey
Functional and
QoS requirements

Architectural
Model

—

R
I

Dependability
Model

~

Safety, reliability,
and security analysis
FTA, FMEA, FEMCA,
Asset Diagram, SAD Control algorithms,
mathematical models

Model and text

Model and text

© 2012 IBM Corporation

8

Software and Systems Engineering | Rational

- A system-level use case

- Can be thought of as a comprehensive user story

- Is cross-discipline and usually results in mechanical, electronic and software implementation

- Is a coherent set of requirements clustered around a systems capability or usage

- Has bi-directional traceable links to system requirements

- While focusing on functionality, must also include quality of service requirements and constraints, such as

Safety

Reliability

Security

Performance (worst-case, throughput, average case, etc)
Maintainability

Parametric requirements (heat, weight, recurring cost, etc)

Three primary work flows for “detailing the use case”

- Scenario-driven

- Activity-driven

- State-driven

9

It should be noted that the use case state machine is really the normative specification of the system with

respect to that system capability
© 2012 IBM Corporation

Software and Systems Engineering | Rational

Coyote UAV O Process O
Execute Mission woincluders Surveillance
Use Cases ,,_, Data

Execute
Mission

Payload / Mission
Perform FLIR Operator Specialist
Survelliance /
<Zincludes> / <<mclude>>
T
Execute T Track Target

Reconnaissance
Mission

Perform
Surveillance

Perform Radar
Surveillance

Execute Remote
controlled
reconnaissance

‘L<<;in-:1ude}}

|

Perform
Optical
Surveillance

Execute
Preplanned
Reconnaissance

Identify Target

—
—_—

<<include>>

Execute ECM
Mission

Perform Area
search

Orbit paoint
target

Perform Route

ECM Target
9 search

© 2012 IBM Corporation

10

Software and Systems Engineering | Rational

Maklng It agile

Incrementally specify
I . Use cases/User stories
ootmnCae Gtetin e S . Specification nanocycles
k .. Continuously verify
=X Y . Build executable models
e . Frequently validate
l . Demonstrate to customer
Ca .« ldentify missing requirements
. Unspecified state transitions
l .. Unspecified scenarios
B @ — B . Incrementally add traceability
.. Annotate with qualities of service
lse] l .. Integrate with other specifications
Ce . Other use cases
e .. Non-functional requirements
it . Safety
. Security

. Reliability

© 2012 IBM Corporation

11

Software and Systems Engineering | Rational

- A key problem is ensuring the quality of requirements for complex systems

* This is not just a matter of making good stand alone “shall” statements
- Truly, most requirements specifications have poorly-specified “shall” statements that
* Are ambiguous
Lack precision
Inappropriately include design detail
- But the hard part is the subtle interactions of requirements
* Don'’t cover all cases, situations, or operational environments
* Don’t discuss system error and fault responses
* Missing data specification
* Missing performance properties
Inconsistent requirements
* The “state of the practice” for requirements is protracted manual review of textual documents
- The problem is this is error-prone and hugely expensive
* The “state of the art” is to create executable requirements models that demonstrate the system
black-box behavior

- The point is to clearly and unambiguously specify the control and data transformations (and their
constraints) to be performed by the system in all relevant situations, conditions, environments, and
operational scenarios

12

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Most common workflow

- Start with textual specifications

- Incrementally construct use case behavioral model

Test Driven Development

Nanocycle Iteration

Constrain with quality of service requirements
Continuous trace linking to textual requirements

Continuous safety, reliability, security assessment

Outcome

- Better requirements as workflow mitigates against

Incorrect requirements

Missing functionality

Missing QoS & performance requirements
Inconsistent requirements

Ambiguous requirements

- Validation with the customer via execution of the use case

- Model-based handoff to downstream engineering

- Traceability supports impact analysis, change management, and safety certification

13

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Validation of requirements through “what if” executions
- Virtual prototype / Panel graphics support

- Ideal communications aid for validation of customer requirements

- Clearly shows data and control transformations specified by requirements

¢~ nttps/nocalhost:90/ - Windows Internet Explorer ﬁ”g“x\ () Rhapsody in C++ by Telelogic - V71_RiCpp_BluetoothHeadset.rpy
@C . |g’|htu:|:moalhost:goj v| %)) |:::;5 File Edit Wew Code Layout Tools twindow Help

EEEEELEIEEIEEL Y Y

|aaEoBEE oo

i Links €| tot | Local Host Google #F Telelogic & iNotion & | ILogix » ”ﬂ ﬂ ﬁ ﬂ H ﬂ | E M |

= ——laa—_— N 1 i — = 2 |~
b ISB]-]thmﬂ...x l»[} @ . @ . » ”» ®reMVIi! 2 F 8 ”@ 0 130 s IHeadse{)\ndMob\leF‘honeWrthGuI JIWSUElCDD_DebUQ J ”|{D} = | N ”
fimermg MelE=seg@ M [NLLAOLeOAR [Tews o J- B |= :
i aiCitueteieads V71_RiCpp_BluetoothHeadset B statcchart of : Button - Builderj0] itsHeadsct-itsButton
= suider(0] Buider(0] 5] Entire Model View - ‘ + ¥ |
E!--ﬁ V71_RiCpp_BluetoothHeadset) evPress

[:l Component Diagrams
ED Components
. HeadsetAndMobilePhoneWithGui

evReleaze

evRelease! L
iteHeadset->GEN(evShortPress);

Presentation
% http: fflocalhost: 90/Mokia6210.htm
@ http:fflocalhost:92/Mokiz6 210.him
g http:/flocalhost: 20/BluetoothHeadset.h

tm(3000)
[].D Object Model Diagrams iteHead=et->GEN(evLongPress);
=-{23 Packages

£ AnalysisPkg

E PresentationPkg

E InterfacePkg

E' MobilePhonePkg

= b HeadsetPkg =
B Classes

Comments

[} Constraints

s} Dependendes

Events

E Statechart of : Headset - Builder[0]->itsHeadset

Eree]

g Esled GEMESImN, 100

ProBE+te0 - 0000,/ Ol

\ «eb Manageds evPress()
\ evLongPress()
«iWeb Manageds evRelease()
%, evshortPress()
\ evFlash(int aCount,int aFrequer

\ evon()
\ evOff])
Bluetooth Headset lokia 6210 . N <iieb Managed= evlﬂcﬂl il 2| Headset - B...| 7 |Button - Bu..
S| | S|
| 2 |
&) | &
Call Stack [Event Queue WL To T e) Comcic Mogel J, Configuration Mansgemant) Animation [Sesrch Resite [
% Local intranet #100% R lsmope [[[[Fa2Maraom 1135 Aam)

l 4 © 2012 IBM Corporation

Software and Systems Engineering | Rational

- The principle behind TDD is to develop and apply test cases as you develop a system to
demonstrate that it is correct

- This is done in parallel with the system development and not ex post facto

- This is about defect avoidance and less about defect identification and repair

- TDD applies to the development of complex system use case models
- During the nanocycle of a use case’s development
* Make small incremental changes (e.g. add a state, or a couple of actions, or a transition or two)
* ldentify what is the desired behavior of the system that you've specified so far
* Execute that incomplete use case model to ensure that it is correct

* Repeat until all requirements for the use case and all scenarios defined for the use case have been
met in the normative specification

- TDD may be realized
- By “instrumenting the actors” — specifying behavior of the actors to perform tests
- Tooling implementing the UML Profile for Test (e.g. Test Conductor™ and Automatic Test Generator™)

- Manually writing test scripts

© 2012 IBM Corporation

15

Software and Systems Engineering | Rational

1]
RFoadRunner Trafic Light
Syatem Use Cazes

Configure System

D Operatar @

|

Remaote Maonitor

Detect
Pedestrian

Safe
Intersection
hode

Pedestrian
Manage Traffic
includes

Detect Priority
Wehicle

Evening Lowy
Yalume Mode

Fixed Cycle

Time Mode

Detect Yehicle

Adaptive Mode

Pricrity “ehicle

Responzive

ginciudes x/
Cycle Mode

Detect Emergency
“ehicle

Emergency Yehicle

16

© 2012 IBM Corporation

Software and Systems Engineering | Rational

1]
RoadRunner Trafic Li
Syatem Use Cazes

Priority %ehi

Emergency Yehicle

17

PrimaryP:Pedestrian

Primary "ehicle

:Responsive Cycle Mode

Secondaryy: Vehicle

PrimaryP:Pedestrian

-
Use Case: Responsive Cycle
Mode

Sceanario 1. Mo Trafiic

Preconditions:

Mode: Responsive Cycle Time
Primary and secondary roads
parameters setthe same
Foad directions: DUAL
Tumlanes: TRUE

Turmlane mode; Sk
Pedestianlights: TRUE
Green Time 30

Yelow Time &

Fed Delay Time 2

Walk tme 20

YWam Time 10

Green Turn Time 20

Green Yellow Time 2

Primary light is Green.
Secondarylight is Red.

[EEE]

T

Dontiialk() |

&

A A ey

T S o o o

| Redry

[Dontyvalkgy

trn(30000}
el
|

Primary is “elow

trn(5000)
Feed()

Primary is Red

tm({2000)
Greent)

Secondary is Green

P
-

t' trn{ 30000}
el

Secondary is Yelow

tn{ 50007
[Redo)

¥

Secondary is Red

tr(2000)

Greeni™ |

A R R I D T R R R R

¥

ey

© 2012 IBM Corporation

Software and Systems Engineering | Rational

PrimaryP: Pedestrian Pritmary': Wehicle :Responzive Cycle Mode Secondary:Vehicle SecondaryP:Pedestrian
- ref Scenario 2 Detail

RoadRunner Trafic Li
Syatem Use Cazes

| Red()
| Dortaalkn)

1
= User Case: Respondve Cycle
Use C/Mode
Mode

Scenario 2 Cross Trafic
Sceng .
Preconditions
Mode: Responsive Cycle Time
| Primary and secondary rosds set
C::} quE. the zame

Priman Road directions: DUAL

Param| Tum lanes: TRUE
Foad 0 Tumn lane mode; SIM
Tum |3 P edestrian lights: TRUE
Turm |3 Green Time 30
Pedes YellowTime 5
Green Red Delay Time 0
el oy Walk time 20

Watn Time 10
\I?"facljk% Green Tum Time 20
Wam 1 Green YellowTime 3
Green Starting comliions
GIBEN Frimary is Green
Primar primary walklight is WALk
Secon

¥
NN

hJ

A Y

Green(l |
Wialk() |

Primary is Green, Walk

F 9

A

Preco

WA

“Yehicle() detes

|J
it

| |lm(2IJDDE|)
FlashingDortsalk() |

|
Primary iz Green, Flazhing Don't Walk

f 3

T
m(10000)

Darntysak() |

f

|
Primary iz Green, Don't Walk

m:5000)
Yellow() |

&

I
Primary i Yellow, Dont Walk

Priority %ehi m(S000)

Redr) |
1

F

1
Primary iz Red

@mzzuom
| reen()

¥

A T

1
Secondary is Green

]

AXUEAARREA AR AR RR RN RN
T D D iy

Emergency Yehicle

18 © 2012 IBM Corporation

Software and Systems Engineering | Rational

w5y stems
- Pritnary Pedestrian Primary: Wehicle Roadrunner_TLCS Secondaryy:Vehicle SecondaryP: Pedestrian
. ref Scenario 3 Details
RoadRunner Trafic Li
System Use Cases [Reany
@ 7 0 > 7
. User Case: Respons ,4 % | Dardinizlke) /// ..L/
se C|Mode Dartialke) | 7
Lo Z . % 0, 7 7
Mode _ = _ 7 7 | 7 Z
Scenario 20 Cross Tr User Case: Responsive Cycle Mode % 7 Green() | //{// /
s 7 f - | % PedestrianDetect %
cans N] . / / edestrianDetect) /
Preconditions Scenario 3 Pedestrian Cross Traffic / / [t /
p Mode: Responzie Cy % i / /
jeco Primary and secondal Preconditions / % / %
_ 7 Z | tm(30000) 7 Z
C:} MD,dE' the same Mode: Responsive Cycle Time /// / % /
PriMat Road directions: DU Primary and secondary roads et the “ % Yellow() “ %
Param Tum lanes: TRUE same /4 Z /// %
Foad i Tum lane mode: SIM | Road directions: DUAL /// % % %
Tum |3 P edestrian lights: TRL Turn lanes: TRUE ? % | tmE000) % /
Tum |3 Green Time 30 Turm lane mode: SiM 7 7 7 %
Pedes| WellowTime 5 P edestrian lights: TRUE f f Red() % %
Green| Fed Dgla\; Time O Green Time 30 % %4 /// %
vl ooy | VWl time 20 vellow Time 5 % “ /// o
Red O] ¥am Time 10 Red Delay Time 0 o % ALY “ %
JGreen Tum Time 20 wyalk time 20 % / % /
walk § Sreen Tum Tin _ Z TGreeng 7
i 1 51een VellowTime S yyam Time 10 % % I 77 %
Green . . Green Tum Time 20 /4 7 Wialki) _;/
Starting comliions Green vellowTime 5 / % / %
Green| primary is Green “ i / /
Prima pri T o, “ 200007 % 7
5 Primary walklight i= ¥ g g ¢ onditions: /// ? / %
BCON Primary is Green % 7 | FlashinaDortwWalkr) 27 %
Primary walklight is Dont W alk % Z % *%
% % tltmm 000 /// f
7 7 Z 7
Z % | Dontalk() _%
LU Z 7 ' "7
F'r||:|rrt§.-' e Z Z trne 5000 g é
7 7 7
g Z | Yellowe) -.? é
I [
7z Z Z Z
g Z tm(5000) /Z/ é
Z 7
. . ._,/; %
Z Z Z Z
? Z tm(20007 ? é
Emergency Yehicle) 4 2% Greent] | B é %/

19 © 2012 IBM Corporation

Software and Systems Engineering | Rational

Example: Traffic Light Control Fixed Cycle Mode Spec

1]
RoadRunner Trafic Li
Syatem Use Cazes

1
User Case: Respons
Mode

o]
UseC
Mode -

Scenario 2: Crosz Tr User Case: Responsive Cycle Mode
Scen3 -
Preconditions
Mode: Responsive Cy
Primary and secondal Preconditions

the same M ode: Responsive Cycle Time

Foad directions: DUA primary and secondary roads set the
Tum lanes: TRUE same

Tum lane mode: 5M | Road directions: DUAL

P edestrian light=: TRL Tum lanes: TRUE

Green TimE 30 Turn lane mode: Sk

YellowTime 5 P edestrian lights: TRLE

Red Delay Time 0 Green Time 30

Wwalk time 20 Yellowe Time 5

Warn Time 10 Red Delay Time 0

Green Tum Time 20 wyalk time 20

Green YellowTime 5 ywam Time 10

Scenario 3 Pedestrian Cross Traffic

Preco
Mode:
Prima
pararm
Foad

Tumla
Tumla
FPedes
Green
el o
FedD
Yalk i
YWiram
Green
Green
Prima
Secon

i o Green Tum Time 20
Starting comliions Green Yellow Time 5
Primary iz Green
Primary walklight i= ¥ g g ¢ onditions:
Primary is Green
Primary walklight i= Don't Walk

Priority %ehi

Emergency Yehicle

20

Pritnary

| ManageSecondaryTraffic

tm{SecondaryyellowTime)

evPRed

RedRed2 tm({SecondaryRedTime)
setSecondary(Green)

setSecondaryRed); Redvellow
GEN(evERed) _tm{SecondaryGreenTime) RedGreen]
L
E setSecondary(Green);
WaitingForPRed
-
] [ekse] i

[I5_IN(SecondaryTurnWWaitipg

ev3TurnDone

“WaitForSTurnCycle

L

f2etSTurn(Red)
evSTGreen/zetSTurn{Green)
STurnRed

STurnelow

tm(SecondaryTurnGreenTime)/
=etSTurn(vellow)

tmiSTurnyellowTime)
setSTurn(Red);
GEN{gvETurnDone};

SecondaryDontWalk @

"k setSecond aryWalk(DontW...

evSTDone[lS_IN{SecondaryPedestrianiVaiting)]

SecondaryWalk &

& setSecendanyVWalk(Walk);

tmiFlashingWalkTime)
GEN({evSecondaryPedestrianDone);
GEN{evSecondaryPedestrianClear);

tmVWalkTime)

GEN{evSTGreen) -

SecondaryTurnidle

evSecTurnArmive evEecTurnClear

| SecondaryTurnWaiting |

SecondaryPedestrianidle

]

eviecondaryPedestrianArrive

evSecondaryPedestrianClgar

| SecondaryPedestrian\Watting |

SecondaryFlashingDont\Walk L'%*)
"k sevSeconda ryWalk(FlashingDontiV...
I e e

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Integrated Safety and Reliability Analysis

Fault Tree Analysis
(FTA) connects hazards
with logical
combinations of events,
conditions, errors, and
faults

Allows you to identify

- Effects of combinations of

conditions and events on
safety

- Safety measures

- Safety requirements
* DO 178BI/C
* |[EC 61508
* ISO 26262

- Impacts of architectural,
technological, and design
choices on safety

21

DEE & B & % # By & QS 00 v s)R E BE VY B B 5 S
i ¥ Y 4% NomalBrkComp in NommalBraking Pke v: DefaultCorfig V E A I i
H @Arial Unice
X B ==l
«Hazard» select
Entire Model View -+ g Stamp
=)] 5EBrakeMadel @ ’
D Components L—-—
= {0 Packages 7 Normal
= RequirementsAnalysisPkg Failure b?\Elrake oo BasicE
= (0] Packages asic Fa
£ requirementsPkg | ¢ Undevel
E UseCaseDiagramsPkg = Require
=By safetyanalysis?g 3 ‘< — —— —) Resultin
D AND Operators [| & Hazard
<> Basic Faults | | azard
[T Fault Tables D AND tak
= E: FTADiagrams | | Q OR opel
FTA '
% FTA Failure to Brake | |)) NOTop:
<%, FTA Uneven Braking | | = A Transfer
g FTA Braking Too Fast aBasicFault» —
FI# FTA Unintended Braking qResuItinanndninnn S — . NAaNDo
% FTA Pedal Input Fault — e e = BF £ NORop
T8 FTA Internal Fault [e ———— =
. iy xORtak
I FTA Wheel Actuator Fault | A | N
[7] Hazard Tables Wheel Sensor By, Logicflc
A& Hazards i | ‘ | | Fault MN Manifes
\ Logic Flows Driver 'meTS braking ‘ | | DN Detects:
[Normal Events | ‘y Edenua
[\ OR Operators | ‘ | R.\.A TraceTol
=== Required Conditions ‘ | «Tradsfer»
[_J Resulting Conditions —— > < — 7 ¥ Require
/N, Transfer Operators | ‘ | 2|
E FunctionalAnalysisPkg | ‘ ‘ | B
ﬁ DesignSynthesisPkg ‘
E InterfacesPkg | ‘ |
E _.Ia—cborPPkkgEI | “ «Trafsfers «Trarsfers
Ypes : ; «NormalEvents
«RequiredCondition»
(0 Profies q Wheel Actuator Fault T
@ Tags
Caris moving
Brake pedal is
depressed
Pedal Input Fault T Internal Fault T
=
< 1il *
P i || wel [BSemk [BSnor [Z5aps [ZHaBs [mjuc_ [m[us_ [m[ssu zwh Taera . [TAFTA [TAFTA [TAFTA [TAFTA |TAFTA |TAFTA |

For Help, press F1

GEMODE CAP NUM SCRL Thu, 9, Sep 2010 | 9:35 AM

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Integrated Safety and Reliability Analysis

22

EF"E Edit View Code Layout Tools Window Help - |5 %
D™ & &% % MHE

BN N N R

% | NomalBrkComp in Nonﬂalekinng;l'/] DefaultCorfig ‘ = =
| E eTransfers IA] ==l
Select
Entire Model View M g = "
am
=8 BrakeManagementSubsystem [A_ P
= Attributes Diag og
L, connectors Q Normal
=0 FlowPorts P
asic Fa
& Operations Pedal InpuFault T
g 5 <> Undevel
itsSSUC_ABSBraking | = Require
itsSSUC_MormalBraking D Resultin
-0 Standard Ports aRﬁun\ngq‘,nndﬂinn» & H +
Comments azard
{32 Internal Block Diagrams “Reguiremants 1 ANDtak
-] Packages FreeFlow Movement £\ ORopel
ABSBrakingSSUCP
716 ABSrakinaSsLCPig Pedal hut Faul O noTop
=] Q blacks The system shall have free A\ Transfer
=8 55UC_ABSBraking movement of the braking pedal | .
E Attributes with pressure feedback | . MNANDo
-0 FlowPorts proportional to the braking force Q NOR op
a Operations R sRequirements m ¥OR tak
(®) Statechart \ —_ f———— SensePedalPosition \ D
\ Events | ‘ agictie
=-{2 Internal Block Diagrams \ | 4 e sysfem SN2 CE D “‘g Manifes
ABS Braking subsystem use cz— \ | | to netetm tpenualpnsmﬂn D, Deteds:
£ MormalBrakingssUCPkg | accurate e 0.2 cm. = Y BT
D Use Case Diagrams \ uEESIEI:aU eEEslclfaun» o PN . o
O Use Cases / \ <Requieige raceTal
= EPEdaISEnsurAssemblyPkg B WultiplePositionSigsor E? Require
=B blocks -1 % Common |
=8 PedalSensorAssembly The system shall profide pe Shapes
= attributes Pedal Mo: Pedaistuck on Polial position sehg! muttiple sensors to dgtsct
L, connectors ault / fault fault pedal position
=0 FlowPorts \
S Perts A ! i eManifestes
itsPositionIntegrator = eRequirements «Brtenu?{esu «Detectys \\
. . ablocks
itsPositionSensor 1 etectStuckPedal E&i PositionSensor
itsPositionSensor2 / \
B itsPositionSensor3 Thefleystem shall detect / A""_b"'es
=0 Standard Forts a sflick pedal and report = nncitinnn
=8 PositionSensor \Lt Operations
B attributes eblocks <
=0 FlowPorts BrakeManagementSubsystem Positioni§egrator
{8 PositionIntegrator
h = rearLeftSpeed:int
) E Internal Block Diagrams = rearRightSpest:int U
ar
frontLeftSpeed:int Ope
rearleftwheelActuator 8 ° \ & j
frontRightWheelActuator B computelheelacoeleration...
FrontleftWheelActuator B computeWheelerkiwheel...
rearRightWheslActuator IR R
itsBrakeManagementSubsystem [v]
tsPedalsensorAssembly & < i EY)
rearRinhtSnesdsensnr [oo] oo oo 7} 7} A A A A 7}
< | s | B ||ewe |BS Bk |25 Nor. [B5aBs . JB8aBs | uc_ |l ue .| B[ssu | mwhe [TAFTA | TAFTA [FAFTa JTAFTA . Thera. [TAFTA [TAFTA]

For Help, press F1 GEMODE CAP MUM SCRL Thu, 9, Sep 2010 9:51 AM

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Security Analysis Diagram (SAD)
is like a Fault Tree Analysis (FTA)
but for security, rather than safety

- It looks for the logical relation
between assets, vulnerabilities,
attacks, and security violations

- Permits reasoning about security
* What kind?
* How much?

* Risk assessments

23

wSecurityiolation:

Infarmation

A 4

«Threats

svulnerabilitys f

Dy g — Thiet accegzes data in

M

DocumT Stolen
Q <
T

s

sWLInetEbility s

vulnerabiifh,_ 20070

(f‘"'\ «Thtpats

A 4
M

P Thief enters room

sRequiredCondition:s l_
o]

Classified Documert

Document left out on
desk

]

Dioor iz left unlocked

dochiment
wCoLntermeasUres
“= i
™ ~
Document Encryption
«Threats «Courtermeasures

Thiet detests lock
Lock has guard plate to make
halt inacgessible

w*ulnerabilitys

Q

Lock car| be defestedd
with gpedit cared
#Threats

<—®f—A

Thief opens door

ahulnefakilitys «Courtertreasures:

Qi) o

Lock design ensures lock iz
always engaged

Software and Systems Engineering | Rational

An Asset Diagram looks
at the semantic relations
between roles,
authentication,
vulnerabilities, and
countermeasures. It is a
way of representing the
security-relevant design
elements.

- Here it is shown with

traceability links to
requirements

Assets are things you
want to protect, e.qg.

- Physical

- Informational
- Currency

- Resource

- Security

24

«Holes

&1

Janitor
«Roles

Project Lead

«Role»

C

Rl?] iewer

«Authentication:

External Read
ACCESS

«Authentications

1

Janito

«Authentications»

=
«AS5ELS

o
ial Access
1

. «Countermeasures
«yvulnerabilitys

—>

Document can be read
Document Encryption

«Countermeasure:
«vulnerability

e

Door is left unlocked Lock design ensures lock is

alway's engage\d

«TraceTDI;\iq»

«Countermeasure: \
«vulnerabilitys

Classified Document

Lock can be defeated with

st G2 /t;:ult inaccessible

«Trace'deeq»

(2

«Requirement:
requirernent_110114

«Requirement:
requirement_110116

All classified
documents shall be
stared in an encrypted
form with at least 236
hit key length.

«TraceToReg»

¢TraceToReq:»
T

«Requirement:
requirement_110115

The door lock shall
be designed so that
it continuoushy
protects the room
from access when
the door is closed.

Lock has/guard plate to make \

N

«Requirement:

reguirement_110117

Classified documents shall

be stored in a room with 3
locking door that requires

The door assembly

shall protect the lock
from attacks using a
simple straight edge.

a physical key for entry.

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Auto-generation of dependability-relevant summary data

Fault Source Matrix, Fault Detection Matrix, Fault-Requirement Matrix, FMEA, Hazard Analysis...

S3pUN UOIpLO7 paIbay Juarg [EIoN ‘e oSt Woiq

To: Class, SafetyMeasure

Scope: DesignModel

B AlarmManager

| B GasFlowsensor

|%Pump |§ PressureSensor

| E=h, spO2Sensor

|8 sasvaive |B Pumpcontrolier

|8 ozsensor | PowersupplyReguiator

<= Gas Supply Fault

<= Ventilator Pump Fault

<> Wentilator Parameter Setting wrong

~yj Pump

“x) GasValve

“s) PumpController_o

<> ventilat 7

To: Class, Sa

<> Power & Y = |§ GasFlowSensor | B Pressuresensor |§ PumpController | B casMixer | B PowersupplyRegulator |§ Battery | B ProtectedCRCClass | B coz2sensor
==
= 3 | < Gas Supply Fault E
<> Failure = =t) To: Regi Scope: R ly
23 | <> Breathing Circuit Leak s
<Z> 02 Sup| §—‘ s e ? a“: E REQ_BCM_09 | B REQ_BCM_11 | B REQ_VD_03 | B REQ_VD_04 | B REQ_VD_06 ‘ E REQ_Sp02_01 | B REQ_VD_08 ‘ E REQ_VD_10 ‘ E REQ_VWD_11
<> ventilat] e rearas 3 | <> Gas Supply Fault “yREQ VD03 | “yREQ WD 04 | “yREQVD_05 ~y REQ_VD_08
<> Gas Flof g(<= Ventilator Computation Incorrect % <=3 Breathing Circuit Leak *y REQ_VD_03 *y REQ_VD_04 *y REQ_VD_08
5 a
<> Backup % == Eaacenl I hanen :1; <= Ventilator Pump Fault “s) REQ_VD_06
& spozs _3‘ == Patient disconnect from Breathing Circ _g T e
= | == Power Supply Fault Ew F
S L 5‘ Quenn\fmr l":umuuiahun Incorrect ') REQ_BCM_02 e
< Inspira E <> Redundant computational Chanmel Faild '; = e o REQVE
> Espirat| § > ventilator Parametar Limiting Fails % <=3 Patient disconnect from Breathing Circuit
S | <& ventiator Parameter CRC check fails = | <> Power Supply Fauit *v) REQ_VD_11
E 2
< | <& Backup Power Fails o= Failure to Alarm
§ <> 5pO2 Sensor Fault ; > 02 Supply Fadlt &
g <> Breathing Circuit O2 Sensor Fault g © Redundant jore
= | <& Expiratory Limb CO2 sensor fault El oo Fault Safety
= 8 | © Ventiator Parameter Limiting F2 Fault tolerance Probabi | Sever integrit
% <> Gas Flow Sensor Fault Hazard Description teolerance time | time units lity ity Risk y level
2| < ventistor Parameter CRC chedt
E =
G| IR R The hypoxia hazard occurs when the
"= | ¢ 5002 sensor Fauit brain and other organs receive
=l e insufficient oxygen. In a normal 21%
2| ixcatna ok on et 0, environment, death or ireversible
5 | © tnspiratory Pressure Sensor Fa injury occurs after five minutes of no
H| e . oxygen. If the patient is breathing . 1.00E- & 00E-
SO R | Hypoxia 100% for a significant period of time, 5 | minutes 02 8 02 3
this time is about 10 minutes.
y bility imp y bility
Traceability improves your ability to Overpressure can camage the ngs. milisecond | 1.00E+0 3 0020
- Overpressure This is an especially severe trauma, 200 | s 4 4 4 3
make your safety/security case possibl fatal o neonetes.
Hynerovia problems are usually limited . 1.00E+0 4.00E+0
Hyperoxia to neonates, where it can cause 10 | minutes 5 4 5 4
blindness.
Dependability metadata guides Inacequate anesthesa leacs o patent
- discomiort and memory retention of the
- S stem recaul rements surgical procedures. This is normally 1.00E+0 2 0DE+0
Inadequate anesthesia notlife threatening but can be severely 5 | minutes 4 2 4 2
= = discomforting.
- Downstream engineering work THET THED
Over anesthesia 3 | minutes 3 4 3 4
- Regulatory approval submissions Over ancetnesia can ead b cealh
Anesthesia leak can lead to shortor, in 1.00E+0 4 DOE+0
Anesthesia leak into ER smaller doses, to long-term poisoning 10 minutes il a 5 b
of medical staff.

25

© 2012 IBM Corporation

11 Glossary |

Introduction to IBM®& Rational® Harmony™ for Systems Engineering
Introduction to IBM® Rational® Harmony ™ for Systems Engineering

(@) Getting Started with Harmony

i Core Principles

Relationshi
%, Harmony for Systems Engines

[E] Disciplines

(2 Domains

/25 Roles

“%, IBM@ Rational® Tools
References

4+ About IBM@ Rational® Harmo
IBME& Rational® Harmony™ fc

1

26

Expand All Sections Collapse &ll Sections

Contents = The IBME& Rational® Harmony ™ Library of Best Practices

i Back to top

B G @

Getting Core Roles Work Disciplines Delivery
Principles Products Process

Welcome to IBM® Rational® Harmony ™ for
Systems Engineering

Harmany for Systems Engineering is a member of the The IBM& Rational® Harmony™ Library of Best Practices
specifically for Systems Engineering development The Harmony for Systems Engineering process focusses

around integrated systems and software development. The process provides systems engineers with a step-by-step
guide on using SysML in a way that allows a seamless transition to subsequent system development.

Harmany far Systems Engineering is model-based systems engineering process that leverages industry standard SysML language to develop executable
requirements and architecture models in order to create verified and validated inputs to the system development and V&Y activities.

Harmany for Systems Engineering may be used "out-ofthe-box" or as the starting point for process tailoring and continuous improvement.

W | & = @

Getting Care Roles Woark Disciplines Delivery
Started Principles Products Process
i Back to top
IBM® Rational® Harmony™ for Systems Engineering Process Plug-in Copyright

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Harmony Systems Engineering Workflows

IBM Rational Harmony for Systems Engineering

Harmony/SE

[Jintroduction to
) Getting Started with Harmony

= Core Principles

5 Harmony for Systems Enginet

Disciplines

(& Domains

/5 Roles

4 IBM® Rational® Tools
References
<+ About IBM@ Rational® Harmo
IBM® Rational® Harmony™ fc

Feedback | @ About

Harmony for Systems Engineering Lifecycle > Requirements Analysis = Perform Initial Safety and Reliahility Analysis
Task: Perform Initial Safety and Reliability Analysis

Systems Engineering:
Requirements Analysis

!
I
B3

Refine and deploy the development environment

J

L_(%, This task creates performs initial safety and reliability analysis and captures the results in a hazard analysis document.

r Expand All Sections Collapse All Sections

e

The purpose of this task is to identify and clarify the initial safety and reliability issues of the system for the purpose of identifying relevant safety and reliability requirements.

!
=Y

Plan Work

\ i+ Back to top ‘
2 Relationships

)
Roles Main: Additional Assisting: ==
» Safety Czar » Reliability Czar >
Wanage Work

L5

Manage Change

nandatory.

- Generate System Reguirements.
* System Requirements Specification

* Failure Modes and Effect Analysis (FMEA)
+ Fault Tree Analysis (FTA)
» Hazard Analysis

Review Draft System Requirements

The hazard analysis is a key document that captures hazards, risks, faults, and control measures together. The control measures mitigate the risks and so must be captured
as requirements on the system to manage the risks to an acceptable level.

4 Back to top

7

Expand All Steps Collapse All Steps

[+ Create initial hazard analysis
[# ldentify hazards

_ I+ Quantify risks

< Back to top

7

U

Properties

Key Considerations

=2 More Information

Guidelines o Fault Tree Analysis Guideline

+ Hazard Analysis Guideline

27

i Back to top

IBM& Rational® Harmony ™ for Systems Engineering Context Plug-in Copyright

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Harmony/SE: Design Synthesis

== &5

', L

Plan Work Refine and :Beul_cuv the
development environment

=Y
li_ Update Verification Pian
E3

Archiectural Analysis (Trade
Study)

Y

Update Safety Analysis

Manage Change

Architectural Design
&

Manage Work

[further optimization needed]

Lo

Develop Control Laws

Detailed Architectural Design
Lo

Derive Subsystem Requirements

Create Allocated Baseline

La
Review Architecture

|

=Y
28

v
it

Architectural Analysis (Trade
Shudy)

‘L' i
E9

Architectural Design

[further optimization needed]

&

Develop Control Laws

Detaded Architectural Design

Lo

Derive Subsystem Requiremenis

3

Co

Update Safety Analyzis

Ca

|Update Verification Plan

W

=i

Manage Chan

W
—e

Manage YWork

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Model-Based Hand-off to Downstream Engineering

Y
Le

Gather Subsystern Specification
Data

!
Ca

Review Handoff Specification Data

o—

*

J

— . ke

’_—\ Create Mew Subsystem Model
<
Create Shared Model

Ca

Import System Engineering
Specification

Lo

Lo
Define Subsystem Physical
Interfaces Define Interdisciplinary _>
Interfaces
’_— —
o<
X o
e

Allacate Reguiremens to

Establish Handoff Baseline Engineering Disciplines

La
[—\ Estahlish Subsystemn Baseline
Lo

Review Physical Interfaces

for all subsystems

done

29

Task: Allocate Requiremens to Engineering Disciplines

This task takes the requirements allocated to a subsystem as a whole and allocates them to the different engineering disciplines
inolved (e.g. software, electronics. mechanical, optical, hydraulic).

(D

Expand All Sections [-] Collapse All Sections

|=| Purpose

The purpose is to clearly delinate the required contributions of different engineering disciplines to the engineering development of a subsystem by
allocating the requirements allocated to the subsystem by the system engineering team.

4 Back to top

I=I Relationships

Roles Primary Performer: Additional Performers:
« Control Engineer o Architect
« Developer o Reliability Czar
« Electrical Engineer o Safety Czar
« Mechanical Engineer
« Miscellaneous Engineer
|I1|JU15 Mandatory: Optional:
« Requirements Traceability « Failure Modes and Effect Analysis
* Subsystem Model « Fault-Tree Analysis
« Systemns Requirements Specification « Hazard Analysis
Qutputs s Requirements Traceability
s Subsystem Requirements Specification
Process Usage e handoff_cp = Allocate Requiremens to Engineering Disciplines

4 Back to top

|=I Main Description

A subsystem team is usually comprised of engineers within different disciplines, such as software. digital electronics, analog electronics, hydraulic,
pneumatic, control, and mechanical. Once the subsystem specification is handed off, certain of the requirements will belong to one discipline or the
other. Other requirements will require decomposition into derived requirements, allocating portions of a subsystem-level requirement to different
discipline. This is particularly true of quality-of service requirements.

4 Back to top

[Subsyaen_ e |
£ Steps S A
[Collapse Al Steps
[#] Review subsystem requirements SUSYSIE_2_Model | /
+ Allocate single-disc.ipline: requir : t /Tqr;\\'§§ — A //
[+ Decompose multi-discipline requireme IRARN /
- LAY /
[# Allocate derived requirements \ \\ AN ; /
— . \ \ /
[#! Update traceability record VN N ,/ /
- . . \
[+ Review allocations asager \‘Usa;éa S, N — /«/Usage»
awsagen
\ s”a'W”\"e‘ N] N n 4 Back to top
\ \ \ /
e [A
TyePka |\

\
[(AdtersPrg A\ hmeﬁa:sspkg

\

[| ‘]

© 2012 IBM Corporation

Software and Systems Engineering | Rational

Systems Engineering capability can be greatly enhanced with two key technologies

- Use of SysML/UML Modeling to capture system

Behavior (executable use cases)

Structure (architecture)

Data and performance modeling

Model-based hand off to downstream engineering

Automatic generation of documentation from model-based work products

- Agile methods employing

Incremental construction of use cases
Test Driven Development nanocycle-level iteration
Incorporating dependability analysis with the use case development

Harmony best practice workflows embody agile for embedded systems engineering

- Rational provides the services

R&D Capability Assessment
“Agile Systems Engineering” and “Agile Embedded Software Development” courses

Rapid Deployment Package (training, mentoring, frequent design reviews by modeling experts)

- Rational has the tools

30

Rational DOORS provides requirements management with great traceability
Rational Rhapsody provides tooling for best practice realization

Rational Method Composer manages process and practice definitions

Rational Team Concert provides a project enactment & governance environment

Rational Quality Manager manages test cases and procedures

© 2012 IBM Corporation

31

|I1I10V8t€2012 The Premier Event for Software and Systems Innovation

DUESTIU

www.ibm.com/software/rational

Innovate=o12

|I1I10V8t€2012 The Premier Event for Software and Systems Innovation

www.ibm.com/softwarel/rational

© Copyright IBM Corporation 2012. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor sha ve
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IB
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or cap
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feattire
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

32 Innovate=o12

	Slide 1
	State of the Practice for Systems Development
	Modern Processes and Practices are Evolving
	Key Concepts for Agility
	What does “agile” mean for Systems Engineering?
	Best Practices for Agile Systems Engineering
	But Why High-Fidelity Modeling???
	Models and Viewpoints in Model-Based Systems Engineering
	Use Cases for Systems Engineering
	Detailing Use Cases with Statecharts and Scenarios
	Scenario Driven Use Case Construction / Validation
	Executable Requirements?
	Executable Requirements
	Validation of requirements through “what if” executions
	Test-Driven Development isn’t just for software anymore
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Example: Traffic Light Control Fixed Cycle Mode Spec
	Integrated Safety and Reliability Analysis
	Integrated Safety and Reliability Analysis
	Model-Based Threat Analysis
	Model-Based Threat Analysis
	Auto-generation of dependability-relevant summary data
	Slide 26
	Harmony Systems Engineering Workflows
	Harmony/SE: Design Synthesis
	Model-Based Hand-off to Downstream Engineering
	Summary
	Slide 31
	Slide 32

