
Jonas Öhrnell
Försäkringskassan IT

Extend functionality for test 
management by building 

integration with Rational RQM



Where we’re at now

Git StashDEV

Jenkins

Automated
unit tests

Test 
EnvironmentQA

RQM

Automated
functional tests

OPS



PROBLEM:
With fully automated tests, how do we
Populate RQM with test results?



Approach #1: Programmatic interaction through
RQM Reportable REST API



RQM Reportable REST API

- Available since RQM 2.0
- ”Object-based” REST API
- Can interact and create most entities in RQM

BUT:

- Highly convoluted XML messages (15+ schemas in most
messages)

- Threadbare (and sometimes incorrect) documentation
(https://jazz.net/wiki/bin/view/Main/RqmApi)



What we want to do:

1. Find Test Case
2. Find or create

Test Case Execution
Record

3. Create Test Case Result
4. (Add step results)



What we’ve done at FK IT

- Java library that connects to the RQM Reportable REST API
- Small Java-based UI to explore the API and test the library
- Open source, available at GitHub: 

https://github.com/jonasohrnell/rqmconnect.git

- Full implementation of the object model
- A small subset of tasks implemented in a programmer-friendly way







Approach #2: Scheduling tests from within RQM



Isn’t this part of RQM already?

- Well… kind of. 

BUT:

- No generic adapter pooling mechanism
- We’re looking at 1000+ test suites per night -> binding of test 

runs to specific clients is highly impractical

- We would like to build our own adapter which pools and 
distributes requests for execution



RQM Test Automation Adapter API
- Available since RQM 4.0.1
- ”Resource-based” API conformant to OSLC version 2
- Contains necessary functionality to implement a custom

automation adapter that RQM users can connect their test 
runs to

BUT:
- Uses RDF resources (not obsolete, but who else uses it?)
- Specification intermingled with OSLC v2 -> somewhat opaque
- Threadbare (and sometimes incorrect) documentation

(https://jazz.net/wiki/bin/view/Main/RQMTestAutomationAdapterAPI)
- Reference sample (Eclipse Lyo) consists of 14 interdependent Eclipse

projects – 300+ classes



What we want to do:

Test executor

Agent

RQM

Test script

Connect/register

Heartbeat

Check for work

Work available
Job

Report result

Test 
execution



Actually, it’s more like this:

RQM

Pooling
Adapter

Testrunner
Test 

Environment

Test 
Environment

Test 
Environment

Testrunner

Testrunner

Testrunner

Testrunner

…



What we’ve done at FK IT

- Extended the RQMConnect library with Test Automation functionality
- Web application serves as work pool and UI
- Developed custom test runners due to security and networking constraints

- Still work in progress. Registration and handshake works; uploading of results
still not bug free. Will update GitHub continuously.



Reflections and wishes

- The API:s seem to be feature complete, which is nice
- We will be able to harness the powerful reporting and statistics capabilites of RQM,

as well as workflow and audit functionality

- Documentation is substandard and sometimes outright wrong – I wish that the
guys working on RQM would find the time to expand the documentation

- Unfortunate choices of information carrier (multi-schema XML and RDF) 

- We would like to get in touch with other organizations that face the same 
challenges so that we can share the workload



Thank you

jonas.ohrnell@forsakringskassan.se


