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Extend functionality for test 
management by building 

integration with Rational RQM
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PROBLEM:
With fully automated tests, how do we
Populate RQM with test results?



Approach #1: Programmatic interaction through
RQM Reportable REST API



RQM Reportable REST API

- Available since RQM 2.0
- ”Object-based” REST API
- Can interact and create most entities in RQM

BUT:

- Highly convoluted XML messages (15+ schemas in most
messages)

- Threadbare (and sometimes incorrect) documentation
(https://jazz.net/wiki/bin/view/Main/RqmApi)



What we want to do:

1. Find Test Case
2. Find or create

Test Case Execution
Record

3. Create Test Case Result
4. (Add step results)



What we’ve done at FK IT

- Java library that connects to the RQM Reportable REST API
- Small Java-based UI to explore the API and test the library
- Open source, available at GitHub: 

https://github.com/jonasohrnell/rqmconnect.git

- Full implementation of the object model
- A small subset of tasks implemented in a programmer-friendly way







Approach #2: Scheduling tests from within RQM



Isn’t this part of RQM already?

- Well… kind of. 

BUT:

- No generic adapter pooling mechanism
- We’re looking at 1000+ test suites per night -> binding of test 

runs to specific clients is highly impractical

- We would like to build our own adapter which pools and 
distributes requests for execution



RQM Test Automation Adapter API
- Available since RQM 4.0.1
- ”Resource-based” API conformant to OSLC version 2
- Contains necessary functionality to implement a custom

automation adapter that RQM users can connect their test 
runs to

BUT:
- Uses RDF resources (not obsolete, but who else uses it?)
- Specification intermingled with OSLC v2 -> somewhat opaque
- Threadbare (and sometimes incorrect) documentation

(https://jazz.net/wiki/bin/view/Main/RQMTestAutomationAdapterAPI)
- Reference sample (Eclipse Lyo) consists of 14 interdependent Eclipse

projects – 300+ classes



What we want to do:

Test executor

Agent

RQM

Test script

Connect/register

Heartbeat

Check for work

Work available
Job

Report result

Test 
execution



Actually, it’s more like this:
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What we’ve done at FK IT

- Extended the RQMConnect library with Test Automation functionality
- Web application serves as work pool and UI
- Developed custom test runners due to security and networking constraints

- Still work in progress. Registration and handshake works; uploading of results
still not bug free. Will update GitHub continuously.



Reflections and wishes

- The API:s seem to be feature complete, which is nice
- We will be able to harness the powerful reporting and statistics capabilites of RQM,

as well as workflow and audit functionality

- Documentation is substandard and sometimes outright wrong – I wish that the
guys working on RQM would find the time to expand the documentation

- Unfortunate choices of information carrier (multi-schema XML and RDF) 

- We would like to get in touch with other organizations that face the same 
challenges so that we can share the workload



Thank you

jonas.ohrnell@forsakringskassan.se


