
Thought Leadership White Paper
IBM Systems and Technology Group May 2013

Faster Oracle performance with
IBM FlashSystem

2 Faster Oracle performance with IBM FlashSystem

Executive summary
This whitepaper discusses methods for improving Oracle®
database performance using flash storage to accelerate the most
resource-intensive data that slows performance across the
board.

To this end, it discusses methods for identifying I/O
performance bottlenecks, and it points out components that
are the best candidates for migration to a flash storage
appliance. An in-depth explanation of flash technology and
possible implementations are also included.

The problem of I/O wait time
Often, additional processing power alone will do little or
nothing to improve Oracle performance. This is because the
processor, no matter how fast, finds itself constantly waiting on
mechanical storage devices for its data. While every other
component in the “data chain” moves in terms of computation
times and the raw speed of electricity through a circuit, hard
drives move mechanically, relying on physical movement
around a magnetic platter to access information.

In the last 20 years, processor speeds have increased at a
geometric rate. At the same time, however, conventional
storage access times have only improved marginally
(see Figure 1).

The result is a massive performance gap, felt most painfully
by database servers, which typically carry out far more I/O
transactions than other systems. Super fast processors and
massive amounts of bandwidth are often wasted as storage
devices take several milliseconds just to access the
requested data.

Figure 1: Comparing processor and storage performance improvements

IBM Systems and Technololgy Group 3

When servers wait on storage, users wait on servers. This is
I/O wait time. Flash storage systems are designed to solve the
problem of I/O wait time by offering 250 times faster access
times (.02 milliseconds instead of five) and 1333 times more
I/O transactions per second (400,000 instead of 300) than a
hard disk drive. Admittedly, multiple hard disk drives can be
stacked to obtain thousands of IOPS, but it soon reaches a
point of diminishing returns where the costs of power, floor
space and air conditioning become prohibitive. In a test by a
SAN manufacturer 496 disk drives were required to reach
100,000 IOPS in a RAID0 configuration, obviously something
which is not desired.

Traditional approaches to Oracle
performance
Decreasing application performance under heavy user loads
is not a new story for most enterprises. The last three years
have seen dramatic changes in demands placed upon
database servers. While the number of users of database
system has increased, so has the average amount of data stored
in databases. Additionally, the demand for more complex
business analysis has increased the complexity of the work
done by database servers. The combination of more users,
greater volume of data and more complex queries has
frequently resulted in slower database response. The knee-jerk
reaction to this problem is to look at two likely sources for
database performance problems:

•	 Server and processor performance: One of the first things that
most IT shops do when performance wanes is to add
processors and memory to servers or add servers to server
farms.

•	 SQL statements: Enterprises invest millions of dollars
squeezing every bit of efficiency out of their SQL statements.
The software tools that assist programmers with the
assessment of their SQL statements can cost tens of thousands
of dollars. The personnel required for evaluating and iterating
the code costs much more. Dozens of consulting firms have
appeared in the last decade that specialize in system tuning,
and their number one billable service is SQL tuning.

In many cases, the money spent in these two pursuits can be
significant, whereas the return is often disappointing. Server
performance and SQL tuning alone does not often detect the
true cause of poor database performance: the gap between
processor performance and storage performance. Adding
servers and processors will have minimal impact on database
performance and will compound the resources wasted, as more
processing power waits on the same slow storage. Tuning SQL
can result in performance improvements, but even the best
SQL cannot make up for poor storage I/O. In many cases,
features that rely heavily on disk I/O cannot be supported by
applications. In particular, programs that result in large queries
and those that return large data sets are often removed from
applications in order to protect application performance.

4 Faster Oracle performance with IBM FlashSystem

When system administrators look to storage they
frequently try three different approaches to resolve
performance problems:

•	 Increase the number of disks: Adding disks to JBOD
(just a bunch of disks) or RAID is one way to improve storage
performance. By increasing the number of disks, the I/O from
a database can be spread across more physical devices. As with
the other approaches identified, this has a trivial impact on
decreasing the bottleneck.

•	 Move the most frequently accessed files to their own disk:
This approach will deliver the best I/O available from a single
disk drive. As is frequently pointed out, the I/O capability of a
single hard disk drive is very limited. At best, a single disk
drive can provide 300 I/Os per second. Flash storage systems
are capable of providing hundreds of thousands of I/Os per
second within a single 1U appliance.

•	 Implement RAID: A common approach is to move from a
JBOD implementation to RAID. RAID systems frequently
offer improved performance by placing a cached controller
in front of the disk drives and by striping storage across
multiple disks. The move to RAID will provide additional
performance, particularly in instances where a large amount of
cache is used. However, in order to reach high IOPS and meet
user concurrency requirements the required number of hard
disk drives soon becomes prohibitive.

Introduction to flash storage
Strictly, a solid state disk (or SSD) is any storage device that
does not rely on mechanical parts to input and output data.
However, SSD has come to mean a form-factor solid state
device meant to take the place of an existing HDD, Flash
storage is not to be confused with form-factor technology.
Form factor SSDs use traditional infrastructure connections
and controllers that were designed for hard disk drives and
their high latency, low throughput limitations. Flash storage
systems are designed from the flash chip up using fast FPGA
controller technology to minimize latency and maximize
bandwidth.

IBM® FlashSystem™ only uses the highest quality Flash
available: single level cell (SLC) and enterprise multi level cell
(eMLC). Most SSDs utilize less reliable, lower endurance
MLC flash. eMLC flash has 10 times the life of MLC, and
SLC flash has 33 times the working life of MLC, technology.
MLC flash has a lifetime of 3000 write operations per flash
storage cell location (designated as p/e cycles), eMLC has
30,000 and SLC over 100,000. Figure 2 shows this relationship
between the various types of flash chip.

IBM Systems and Technololgy Group 5

Figure 2: P/E cycles for various flash types

All-flash storage systems
All-flash storage systems offer higher capacity than any earlier
forms of memory storage. This is because the all-flash storage
systems do not require the additional batteries to allow
flushing of the DDR cache during power outages and does not
include large amounts of expensive DDR memory. Instead, a
small amount of DDR is used to act as buffering for the flash

Figure 3: Example flash storage appliance architecture

for writes and to act as a meta-data repository during
operation. Small batteries are used to provide electricity during
loss-of-power situations to allow the flush of the small cache
and metadata areas to Flash. With an All-Flash solution, 20
terabytes of addressable, high availability storage fit into a 1U
form factor. Figure 3 shows the architecture of an all-flash flash
storage appliance.

6 Faster Oracle performance with IBM FlashSystem

Identifying I/O wait time
Looking at operating system performance is the best way to
identify I/O wait time. The tools to evaluate operating system
performance vary by operating system. The following text
gives some idea of the tools available.

Windows based systems
For Microsoft® Windows® operating systems the best tool
for system performance analysis is PerfMon. Unfortunately,
PerfMon does not provide actual I/O Wait Time statistics. It
does, however, include real time processor performance levels.
Processor: % Processor Time measures the actual work being done
by the processor. If a system is hit hard by transactions and yet
% Processor Time is well under 100 percent it is possible to infer
severe I/O wait time. Systems that implement solid state disks
will typically show high % Processor Time numbers.

As an example, two screen shots are included from Windows
Performance Monitor. The tested system has dual Intel®
Xeon® 2.8 GHz processors, 1 GB RAM and is running
Windows Server® 2000.

Figure 4 shows the Processor: % Processor Time for a Server 2000
system with Intel’s IOMeter performing 100 percent random
writes to a hard disk drive. Here, you can see that the processor
utilization averages around 1.8 percent. However, if you try to

Figure 4: Processor performance when writing to hard disk

run additional applications on this system, the processor
utilization would only marginally increase because the
processor is tied up waiting on I/O from the hard disk drive. In
this example, IOMeter shows that on an average there were
150 writes per second (150 IOPS) to the disk drive.

Figure 5 shows the same system and same access specifications
in the IOMeter program running against FlashSystem. In this
example, the processor averages 68 percent utilization. The
IOMeter shows that 37,000 writes per second are going to the
RamSan (37,000 IOPS). The flash storage has provided a 3677

IBM Systems and Technololgy Group 7

Figure 5: Processor performance when writing to FlashSystem storage
appliance

percent increase in server CPU utilization with total saturation
of the Fibre Channel Host Bus Adaptor, and since this
performance, higher than the best RAID, is only a fraction of
RamSan’s capabilities, several similar servers could be hooked
up to receive similar results.

In addition to processor indicators, Texas Memory Systems, an
IBM Company recommends looking at the Physical Disk:

“Average Disk Queue Length” and “Physical Disk: Disk Bytes
per Second” to detect bottlenecks in the disk subsystem. If
these values are consistently high, consider moving files that
are located on that disk to the solid state disk. A Disk Queue
Length greater than 3 indicates a problem. Texas Memory
Systems has developed an extensive whitepaper with
suggestions for collecting and analyzing Windows
Performance data from the PerfMon utility. Additionally,
contact your IBM® sales person for a free I/O analysis of your
report.

UNIX
For UNIX operating systems, the following commands are
useful: top, iostat and sar. Depending on the command,
you will receive slightly different output.

The top command, when executed on a Solaris system,
produces results that have the following format:

load averages: 0.09, 0.04, 0.03 16:31:09

66 processes: 65 sleeping, 1 on cpu

CPU states: 69.2% idle, 18.9% user, 11.9% kernel, 0.0%
iowait, 0.0% swap

Memory: 128M real, 4976K free, 53M swap in use, 542M
swap free

The key is that this command provides the % iowait for
the system. It is important to note that top provides a
snapshot of performance.

8 Faster Oracle performance with IBM FlashSystem

It is also reasonable to look at the vmstat command. This
command will tell you how frequently your system is paging
to virtual memory (disk). If you have frequent paging, it makes
sense to consider adding RAM to your system or using
flash storage appliance for paging. Paging to disk is another
way that hard disk drives can introduce bottlenecks into
system performance.

Oracle
Every version of Oracle since version 8.1.7.2 comes with the
Statspack utility to monitor database performance. In version
10g, Oracle introduced the Automatic Workload Repository
(AWR) along with Automatic Database Diagnostic Monitor
(ADDM) as an extra cost option to their Enterprise Manager
Tool partly in response to the growing complexity and cost of
managing and tuning large databases. While AWR/ADDM was
a significant enhancement to Statspack, even the best database
tuning cannot fix slow disk subsystems. A Statspack report or
AWR report must be captured during peak performance
periods and can provide I/O related statistics to assist in
determining which files would benefit from placement on
solid state disks.

Oracle uses multiple database (or dirty buffer) writer processes
to write changed data and rollback/undo data to disk, as well as
log writer processes to write redo log data and archive log

processes to write archived logs to secondary storage locations.
However, each user process in Oracle does its own read from
the disks; in large Oracle systems this can mean hundreds if
not thousands of concurrent disk read requests. This
requirement for large amounts of concurrent read access to the
storage system is usually poorly understood by system
administrators and is a major cause of disk contention issues in
improperly configured disk RAID setups.

With regard to Oracle IO issues, the latest version of Oracle
has added to the demands placed upon storage. In the good old
days, Oracle had a database, some redo logs, archive logs and
backups. Now, along with these, Oracle provides flashback
functionality which while greatly enhancing the ability of the
database DBA or developer to react to changes, it is one more
area where data is being stored. The change from rollback
segment to the new undo tablespace was a great benefit, but
there are undo tablespaces in production systems that exceed
800 GB and rapid IO is critical to healthy system performance.
In-memory-undo (IMU) was added in Oracle10g and has
greatly reduced undo related disk operations, however, there
are bugs which require turning IMU off and some special
features (such as the logging required by change data capture)
that will turn IMU off silently.

IBM Systems and Technololgy Group 9

Figure 6: Sample Oracle Statspack

As mentioned at the beginning of this paper, one of the ways
that system performance improvement was approached was to
add more systems. Oracle’s clustered database, Real Application
Clusters (RAC), is one approach to add more systems to meet
the demands of some of these massive database systems. One
key point to this architecture is that all of these individual
computers may be adding more computer power, but they
all access the same shared disk systems increasing any existing
IO stress.

The “Top 5 Timed Events” is the first place to look to begin
understanding if the database is I/O bound. Figure 6 shows the
top five events from a sample Statspack report.

The “Top 5 Timed Events” provide a snapshot of the database
activity during the time period that a Statspack report covers.
If these top events show that a majority of the database time is
spent handling disk I/O, then Flash storage could provide a
dramatic performance improvement. Table 1 provides a partial
list of common events that indicate flash storage must be
investigated and the database components that will benefit
from use of a flash storage system.

10 Faster Oracle performance with IBM FlashSystem

Event Description

db file sequential readl The sequential read event is caused by reads of single blocks by the Oracle Database of a table or index. This

is generally caused by an index read. The amount of time spent waiting for this event can be greatly reduced by

moving the indexes to flash storage.

db file scattered read The scattered read event is caused by reads of multiple blocks by the Oracle Database of a table or index. This

is generally caused by a full table scan of the data tables. The amount of time spent waiting for this event can be

greatly reduced by moving some of the data files to flash storage.

CPU time This is the amount of time that the Oracle database spent processing SQL statements, parsing statements or

managing the buffer case. Tuning the SQL statements and procedures, or increasing the server’s CPU resources

generally best reduce this event. It is an event that is generally not helped by flash storage.

log file parallel write This event is caused by waiting for the writes of the redo records to the redo log files. This event can be greatly

alleviated by using flash storage for all copies of the redo logs.

log file sync This event is caused by waiting for the LGWR to post after a session performs a commit. This can be tuned by

reducing the number of commits. Placing the redo logs flash storage can also alleviate this wait.

log file single write This event is caused by waiting for the writes of the redo records to the redo log files. This event can be greatly

alleviated by using flash storage for some or all copies of the redo logs.

free buffer wait This wait occurs when a session needs a free buffer and cannot find one. A slow DBWR process that cannot

quickly flush dirty blocks from the buffer cache can cause this. Moving the files that are receiving the majority of

the writes to flash storage can help to alleviate the wait event. If poor I/O does not cause this wait write capacity,

you can tune your instance by increasing the buffer cache.

control file parallel write This wait is caused by waiting on writes to the control files. Moving the control files onto flash storage can help

alleviate this wait.

IBM Systems and Technololgy Group 11

Event Description

buffer busy waits The primary cause of these waits is contention for a block that is being used in a non-sharable way so that a

read/write cannot be performed until the process that is using it is complete. Increasing the speed of the IO

subsystem by using flash storage can alleviate this.

direct path read This wait event is caused by reads that skip the database buffer. If there are a number of sorts and hashes taking

place, then this can be caused by slow access to the TEMP space. Moving the TEMP space to flash storage can

reduce this event.

direct path write This wait event is caused by writes that skip the database buffer. If there are a number of sorts and hashes taking

place, then this can be caused by slow access to the TEMP space. Moving the TEMP space to flash storage can

help reduce this event.

Table 1: AWR events

Components to move to a flash storage
system
Once you determine that your system is experiencing I/O
subsystem problems, the next step is to determine which
components of your Oracle database are experiencing the
highest I/O and in turn causing I/O wait time. The following
database components must be looked at:

Entire database: There are some databases that should have
all their files moved to flash storage. These databases tend to
have at least one of the following characteristics:

•	 High concurrent access: Databases that are being hit by a
large number of concurrent users should consider storing all
their data on flash storage since, as we know from the previous
section, each user process in Oracle does its own disk reads.
This will ensure that storage is not a bottleneck for the
application and maximize the utilization of servers and
networks. I/O wait time will be minimized and servers and
bandwidth will be fully utilized.

•	 Frequent random accesses to all tables: For some databases,
it is impossible to identify a subset of files that are frequently
accessed. Many times these databases are effectively
large indices.

12 Faster Oracle performance with IBM FlashSystem

•	 Small to medium size databases: Given the fixed costs
associated with buying RAID systems, it is often economical
to buy a flash storage system to store small to medium sized
databases. A RamSan-710, for example, can provide 1 terabyte
of database storage for less than the price of most enterprise
RAID systems.

•	 Large read-intensive databases: Given the fixed costs
associated with architecting a RAID system for performance:
buying a large cache and buying a lot of spindles for striping,
it is economical and much faster to buy a RamSan-820 pure
flash solution in order to accelerate large read-intensive
databases. A single RamSan-820 can scale to 20 TB of capacity
in a 1U form-factor.

•	 Database performance is the key to company profitability.
There is some subset of databases that help companies make
more money, lose less money or improve customer satisfaction
if they process faster. Flash storage will help make these
companies more profitable.

Redo logs: Redo logs are one of the most important factors in
the write performance of Oracle databases. Whenever a
database write occurs, Oracle creates a redo entry. Redo logs
are used in sequence with the best practice configuration using
mirrored redo log groups, a minimum of two groups is
required. Each redo entry is written to the two or more
mirrored redo logs. Oracle strongly encourages the use of
mirrored redo logs so that a backup redo log is available in the
event of a failure. The operation is considered committed once
the write to the redo logs is complete. Redo logs are used with

linear output, if desired; the administrator can also configure
redo logs to automatically archive. Archiving makes a copy of a
filled log to another location before it can be reused. Archiving
can be another source of waits in a slow disk based system.

The redo logs are a source of constant I/O during database
operation. It is important that the redo logs are stored on the
fastest possible storage. Writing a redo log to flash storage is a
natural way to improve overall database performance. For
additional reliability, it is useful to use mirroring to mirror
flash storage systems.

Indices: An index is a data structure that speeds up access to
database records. An index is usually created for each table in a
database. These indices are updated whenever records are
added and when the identifying data for a record is modified.
When a read occurs, an index is consulted so that Oracle can
quickly get to the correct record. Furthermore, many
concurrent users may read any index simultaneously. The
activity to the disk drive is characterized by frequent, small and
random transactions. Under these conditions, disk drives are
unable to keep up with demand and I/O wait time results.

By storing indices on flash storage, performance of the entire
application can be increased. For online transaction processing
(OLTP) systems with a high number of concurrent users this
can result in faster database access. Because indices can be
recreated from the existing data, they have historically been a
common Oracle component to be moved to flash storage.

IBM Systems and Technololgy Group 13

Temporary tablespace: When there cannot be enough server
memory allocated, temporary segments are used to support
temporary data during certain Oracle operations. The
temporary tablespace segments support complex sort, hash,
global temporary table and bitmap index operations.
Other SQL execution operations wait on temporary operations
to complete, therefore it is only logical to place the temporary
tablespaces on as fast a storage system as possible such as flash
storage to reduce waits.

When complex operations occur they will complete faster if
the temporary tablespace is moved to flash storage. Since the
I/O to the temporary tablespaces can be frequent, disk drives
cannot easily handle them.

Undo data: In databases with a high number of concurrent
users undo segments can be a cause of contention. Undo data
is created any time an Oracle transaction changes a record. In
other words, if a delete command is issued, all the original data
is stored in memory or in an undo segment stored in an undo
tablespace until the operation commits. If the transaction is
rolled back or undone, then the data is moved from memory
or the undo segment back to the tables from where it was
removed.

Because there is a possibility that the undo tablespace is hit
with every change operation, it is useful to have the undo
tablespace stored on flash storage. This will provide fast
writes when the update transaction is created and will make
the involved undo segment available more quickly for the
next operation.

Frequently accessed tables: It is estimated that only 5 - 10
percent of data stored in OLTP systems is frequently accessed.
These tables typically account for a large percentage of all
database activity and thus I/O to storage. When a large
number of users hit a table, they are likely going after different
records and different attributes. As a result, the activity on that
table is random. Disk drives are notoriously bad at servicing
random requests for data. In fact, the peak performance of a
disk drive drops as much as 95 percent when servicing random
transactions. When a table experiences frequent access,
transaction queues develop where other transactions are
literally waiting on the disk to service the next request. These
queues are another sign that the system is experiencing I/O
wait time.

It makes sense to move the frequently accessed tables to flash
storage. Flash storage performance is not impacted if
performance is random. Additionally, flash storage systems by
definition have faster access times than disk drives. Therefore,
application performance can be improved up to 25 times if
frequently accessed tables are moved to flash.

Notes

Notes

For more information
To learn more about IBM FlashSystem, please contact your
IBM sales representative or IBM Business Partner, or visit the
following website: ibm.com/storage/flash

© Copyright IBM Corporation 2013

IBM Corporation
Systems and Technology Group
Route 100
Somers, NY 10589

Produced in the United States of America
May 2013

IBM, the IBM logo, ibm.com, FlashSystem and Texas Memory Systems are
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is
available on the web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel
Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium
are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

The performance data discussed herein is presented as derived under
specific operating conditions. Actual results may vary. THE
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”
WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND ANY WARRANTY OR CONDITION OF NON-
INFRINGEMENT. IBM products are warranted according to the terms
and conditions of the agreements under which they are provided.

Actual available storage capacity may be reported for both uncompressed
and compressed data and will vary and may be less than stated.

Please Recycle

TSW03191-USEN-01

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/storage/flash

