
© 2013 IBM Corporation

Tuning TM1 to get the most out of your
investment

Ronnie Rich TM1 Product Management

Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change or

withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,

promise, or legal obligation to deliver any material, code or functionality. Information

about potential future products may not be incorporated into any contract. The

development, release, and timing of any future features or functionality described

for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks
in a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon many factors, including considerations such as the
amount of multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve results similar to those stated here.

Problems Solved by TM1 Multi-Threaded

Query

Present Customer Complaints
 CPU Utilization: “I’ve got 16 cores and my CPU utilization is at 15%”

 Server PVU Value: “More cores do not make my queries faster”

 Data Scale: “TM1 Solutions have a data volume ceiling”

 Rule Caution: “Rules slow down my queries to an unacceptable performance
level”

New Multi-Threaded Query Approach

 Simple Configuration: tm1s.cfg -> MTQ = <total number of server cores>

 All UIs can leverage MTQ: TM1 multi-threads stargate cache creation

 High Performance: Query speed improves relative to available cores

 Manages Concurrency: Available cores are load balanced across queries

Single Threaded
MTQ = 32

Single Threaded
MTQ = 32

192 second queries run
in 28 seconds –

85% Performance Gain
or 7X Faster !

50 concurrent users

95% Performance Gain
or 36X Faster !

 1 User

 28G Model

 AIX64 / WAS

 32 Cores

 50 Users

 28G Model

 AIX64 / WAS

 32 Cores

MTQ Benchmark Test #1 Results

Background
Customers frequently use the TI Function SaveDataAll() to serialize in-memory data to disk

when they have updated a cube with logging off …. To make the TI data update run faster.

The SaveDataAll is an expensive operation as it basically locks the entire server for the

duration of the serialization process.

Cube1.cub

Cube2.cub

Cube3.cub

Cube4.cub

Cube5.cub

Cube6.cub

Before: TM1 (in memory) Disk

SaveDataAll()

Cube3.cub

Now: TM1 (in memory) Disk

CubeSaveData

(Cube3)

State of the art Turbo Integrator
Per Cube SaveData operation

Faster

Easier

CubeSaveData

• The CubeSaveData(‘CubeX’) TI Function allows customers to designate selective
cube objects to serialize, to prevent unnecessary serilization of all cubes on the
server, and therefore reducing contention.

Keep In Mind

•SaveData operations are

blocking events (we’re working

on this…ETA Q4 2013)

•TM1 Data files must NOT be

accessed externally during

SaveData (backups, Copys,

Scans…

TM1RunTI.exe is a command line interface tool that can initiate a TI

process from within any application capable of issuing operating

system commands.

OS> tm1runti –server MyTM1Server –username John –pwd "my secret“

 -process “Run Sales Processing” OverwriteParam=yes UpdateParam=32.5

TM1RunTI.exe can be deployed to enable

 Better user responsiveness for long running, Action Button driven

TI Processes.

And

 More efficient, controlled synchronization of overnight processing.

State of the art Turbo Integrator
TM1RunTI.exe Bigger

Faster

State of the art Turbo Integrator

TM1RunTI.exe – Improved Overnight Processing

 NOW: Use TM1RunTI.exe for efficient process triggering and multi-
threading. Resulting in earlier system availability.

Faster

1

System Available Time much sooner!

Bigger

External Load 1

(15-45 minutes)

2:00 4:00 6:00 8:00 3:00 5:00 7:00 9:00

2a

TI 1 Load Metadata

then launch multiple

thread via TM1RunTI

BLOCKING

2b

2…

2j

TI 2 (10 threads)

Data Load

(~20 minutes)

NON-BLOCKING

3a

3b

TI 3 (12 threads)

CubeSaveData(2 cubes)

(~30 minutes)

Partially Blocking

4

TI 4 Security Update

(45 minutes)

BLOCKING

TM1RunTI.exe

State of the art Turbo Integrator

Multi-Commit Chores

Meta

Data
Data Update

Save

Data

Meta

Data
Data Update

Cube

Save

Data

BEFORE: Chore with Single Commit Mode

NOW: Chore with Multi Commit Mode

Locks are held for the duration of the Chore

Locks are committed when each TI in the

Chore is complete resulting in shorter locks

and less opportunity for contention

TI 1 TI 2 TI 3

TI 1 TI 2 TI 3

Easier

Calculations & Cache – The Basics

 IBM Cognos TM1 uses two types of calculations:

1. Cube Rule Calculations FAST

 [‘Cost’]=N:[‘Price’]*[‘Quantity’];

 Rules are critical to real time calculations/modeling based on dynamically changing data

and attributes

1. Dimension Aggregation Calculations VERY FAST

 And two types of caching:

1. Calculation Cache for cube rule populated cells

2. View (Stargate) Cache for aggregations

Calculations & Cache

 It’s not really that simple…

•Stored, Leaf Level Cells

•Rule Calculated Cells

•View/Stargate Cache Cells

Nothing

Cached

Calculations

Cache

Stargate

Cache

Real World Mixed Caches

 Caching made simple

Calculations & Cache - Differences

 Rule Calculation Cache is pretty simple. The first time a rule calculated cell is evaluated

the resulting answer is stored in calculation cache and reused until it is invalidated.

 View/Stargate Cache is a bit trickier:

– Created When Queries are Run

– Dependent on:

• VMT (minimum time to create)

• VMM (maximum RAM to use)

– Defined by Query

• Title selections

• Axis dimensions

Calculations & Cache - Similarities

 Both Cache types are automatically used by virtually all clients (Excel, Insight, Web,

BI, TI*…)

 Both Cache types are Invalidated by any input to the cube. So what is “invalidation”

to TM1?

Cached

Fast Query

Every Manual or TI Input

Invalidates Caches

Nothing Cached

Slower Query

 And there’s more, Cube Dependencies
relationships cause multi-cube cache invalidation
on cell update…

Calculations & Cache Optimization
Monitoring Cache Utilization with Performance Cubes

Step 1 – Turn on

Performance Monitor
Step 2 – View Control

Objects
Step 3 – Open Stats

By Cube

Analyze Caching

Calculations & Cache Optimization

Pre-Caching With Turbo Integrator

 Turbo Integrator’s ViewConstruct function can by used to pre-populate Cache.

VIEWCONSTRUCT(CUBENAME, VIEWNAME);

Cached

Fast Query

TI with ViewConstruct()

Nothing Cached

Slower Query

 Execute Pre-Cache TI’s at Server Startup or after
data/meta-data imports

Keep In Mind •VIEWCONSTRUCT is a locking event (we’re working on this)

•Populating Cache for use as a TI Process source requires calling

VIEWCONSTRUCT in a sub-process via EXECUTEPROCESS

Calculations & Cache Optimization

Reporting Cubes

Reporting Cubes allow fast queries by

removing rule calculation at query time.

Plan Reporting Cube

• Limited Rules (C: only)

•On Demand Invalidation

Very high speed

Aggregate Reporting!

Plan Summary Cube

•Rule Intensive

•Constant Invalidation

Slower Aggregate Reporting

Due to high volume of rule calcs

Before aggregation.

Drivers
Assumptions

Plan

Module A

Plan

Module B

TI Process to move

stored cells and

“Materialize” Rule

Calculated Values

•Stored Cells

•Rule Calculated Cells

•View/Stargate Cells

•Materialized Reporting Cells

Keep In Mind Not Quite Real Time

Thank you

