
A Scenario - based
approach for
overcoming
the challenges
of team
collaboration

http://www.infoq.com
https://jazz.net/projects/collaborative-alm/

© Copyright 2009 IBM Rational

 All rights reserved

 No part of this publication may be reproduced, stored in or introduced into a

 retrieval system, or transmitted, in any form, or by any means (electronic,

 mechanical, phoTOCopying, recoriding or otherwise), with the prior permission

 of IBM.

http://www.infoq.com
http://www.ibm.com

Carolyn Pampino is a member of the C/ALM leadership team at IBM Rational’s Lexington lab, working closely with the Jazz team
leads to define the Collaborative ALM road map and strategy. Working from the ‘outside-in’ Carolyn defines user scenarios to identify
product integration opportunities. She is co-author of a Redbook titled Collaborative Application Lifecycle Management with Ratio-
nal products. She was a founding member of the team defining strategies for Rational and Tivoli product integrations, and contrib-
uted to Rational’s acquisition of Build Forge. Prior to IBM, Carolyn was the Director of Product Management, Development, and Com-
petitive Intelligence at BroadVision, Inc.

Erich Gamma is a Distinguished Engineer at IBM Rational Software’s Zurich lab. He is the technical lead of Rational Team Concert
and is a member of the C/ALM leadership team. He was the original lead of the Eclipse Java development environment and was a
founding member of the Project Management Committee for the Eclipse project. Erich is also a member of the Gang of Four, which is
known for its classical book, Design Patterns - Elements of Reusable Object-Oriented Software. Erich has collaborated with Kent Beck
on developing JUnit, the de facto standard testing tool for Java software, and on writing the book contributing to Eclipse: Principles,
Patterns, and Plug-ins.

John Wiegand is a Distinguished Engineer at IBM Rational’s Beaverton, Oregon lab and Rational Chief Architect. John is responsible
for defining the architectural and implementation aspects of Jazz as a platform for use in products across the software lifecycle. Prior
to John’s current assignment, he was the technical lead for the Jazz project. John was the principal architect for the Eclipse Platform
infrastructure and played a central role in the development of Eclipse and VisualAge for Java. John is a former member of the Eclipse
Foundation Board, and played a key leadership role in establishing Eclipse as a successful open source project. John strives to enable
teams to deliver high quality products on-time - pioneering, with Erich Gamma and others, an approach to software development
called “The Eclipse Way”.

About the Authors

TOC Overview Scenario Web We Wove ALM Ecosystems Open Sesame

Overview: Wasted words, or key to understanding?

A scenario tells a thousand stories

The WWW (Web We Wove)

ALM Ecosystems – one size fits no-one, or haute couture?

Open Sesame: A phrase uttered by a genie, or IBM Rational strategy?

1

2

3

4

5

http://www.ibm.com
http://www.infoq.com

TOC Overview Scenario ALM Ecosystems Open Sesame

Chapter 1
Overview: Wasted words, or key to understanding?
1.1	 Integrations enable collaboration
1.2	 A programmable C/ALM web
1.3	 A concrete example in the form of a scenario
1.4	 One example, generally applicable

Overview
Wasted words, or key to understanding?

Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

Overview:
Wasted words, or key to understanding?

Let’s face it; most software development teams indulge in tribal behavior. If you’re working in a large enterprise the
divisions between the business, development and testers can be deep enough that these three groups reject the idea
of being on the same team. Even within teams you can have deep divisions. For example, developers loyal to traditional
methods, and those committed to agile approaches. Each group has their own culture, their own rituals and their own
tools. Development and testing teams fluctuate between war and peace but for the most part have managed to come
to understand each other. Developers lob builds over the fortress wall, testers shoot defects back at them. Unless, you’re
part of an Agile team, but even in Agile shops some testers (e.g. integration, system, and deployment testers) are likely
to be outside the agile “whole team.”

But when it comes to “software teams versus the business,” it’s a completely different story. People representing the
business speak a different language that developers and testers struggle to understand. The testers quickly discovered
an ally for shooting arrows at the mighty fortress of development. The developers however, just think they’re crazy. Af-
ter all, what they want and what is realistic is often so far apart, it’s easier to just not talk. So the business throws require-
ments at the development teams. The development team tosses them in the trash. The test team validates the require-
ments against the builds and shoots defects at the development team. Much to everyone’s dismay, Agile and Agile@
Scale suggest these three groups collaborate as a cohesive unit.

Many books on Agile are written, and yet there are still many project managers left scratching their heads, wondering,
“how am I going to get my team to do that”?

This eBook is dedicated to all of the functional and dysfunctional organizations that are eager to break down the orga-
nizational and cultural silos, and become a finely tuned software delivery machine. The eBook describes a scenario that
is common to many development teams. Throughout the scenario, we encounter collaboration challenges followed
with examples of how these teams can interact without investing enormous effort in cultural change. We believe each
team member deserves to use a tool that best suits their needs, that enables them to collaborate across the software
delivery disciplines. All of this can be achieved in the open using open Internet inspired standards.

Agile@Scale
addresses one or
more of the
following scaling
factors:

Team size

Geographic
distribution

Organizational
distribution

Regulatory
compliance

Environmental
complexity

Enterprise discipline

TOC Web We Wove

Scaling Agile

http://www.ibm.com
http://www.infoq.com

Scenario ALM Ecosystems Open SesameOverview

Overview:
Wasted words, or key to understanding?

TOC Web We Wove

1.1	 Integrations enable collaboration
Without integrations across the lifecycle teams are left to operate in silos. When silos form, trust deteriorates, and software delivery
suffers. However, software delivery teams and their software development environments are fluid. Rather than provide a ‘one-size-
fits-no-one’ solution, the Jazz Integration Architecture follows the model of the World Wide Web where sites are loosely coupled
through the linking of resources and thereby making repository boundaries disappear.

Data integration•	 via linked artifacts across repositories using RESTful interfaces

Leads to increased •	 collaboration among team members who link, navigate and track the status of delivery
team artifacts

And enables •	 automation such as real-time reports and queries

Resulting in increased•	 transparency for everyone

By providing C/ALM integrations in a loosely coupled way, development tool vendors can provide you with the freedom to choose
the combination of products that best suits your needs.

http://www.ibm.com
http://www.infoq.com

Scenario ALM Ecosystems Open SesameOverview

Overview:
Wasted words, or key to understanding?

TOC Web We Wove

1.2	 A programmable C/ALM web
Many organizations cite the need for traceability across disciplines, but for the most part, you can’t do this today because your tools
don’t support it. There’s no doubt that members of the business, development and testing organizations know their disciplines and
have tools that help them perform their work. However, in many cases, each discipline uses their own tool with proprietary APIs, and
the data is locked away in the tool. The key to agile development, or any software development for that matter is not the collabora-
tion within an individual discipline, but collaboration across disciplines.

On agile teams, the feature is not considered done until testing is complete and defects are fixed. To accomplish this goal, however,
teams need traceability and transparency across disciplines. For example, having a test case linked to the development work item,
provides insight to when testing is complete, that is, all the test cases for the work item passed. Defects discovered during test execu-
tion should have relationships to both testing and development to inform both teams on the quality of the software.

Integration across the application lifecycle is perhaps the most important challenge facing software delivery teams. While it makes
sense to consolidate our repositories where possible, it is also true that important project resources already exist in a disparate set of
repositories across teams and organizations. For most, migrating sensitive enterprise data into a single ALM repository and retraining
the entire software delivery workforce on new tooling is not enticing, and may not be an option.

Rather than provide a one-size fits no one solution, many organizations prefer to allow each stakeholder to have a user interface that
suits their needs. The key to doing so is to unlock the data housed in these repositories and enable loosely coupled data sources to
share and present information in a cohesive way. Many attempts to resolve this challenge have been made by software development
tool vendors and even by teams creating home grown solutions.

It turns out that an architecture already exists that achieves this goal, the internet . It is resilient. Users can surf from site to site. The
ability to get and put data is fundamental in its design. It scales. It’s global. Using the Web as inspiration and metaphor, the Jazz proj-
ect was born. The Jazz project includes the following:

http://www.ibm.com
http://www.infoq.com

Scenario ALM Ecosystems Open SesameOverview

Overview:
Wasted words, or key to understanding?

TOC Web We Wove

Collaborative Application Lifecycle Management (C/ALM) Scenario•	 s –the C/ALM scenarios work from the outside-in
by providing real-world, role and task based user experiences that explore end-user goals and their needs to access data
throughout the lifecycle. They are designed to validate the Jazz Integration Architecture, Jazz Foundation, and OSLC speci-
fications.

Open Services for Lifecycle Collaboration (OSLC•) – to unlock the information buried within development tools, open and
agreed upon interfaces are needed that allow different tools to share and exchange the data that they produce. By agree-
ing on common specifications for lifecycle resources and the services to access them, the community behind OSLC seeks
to eliminate traditional barriers between tools and open the door to new forms of collaboration.

Jazz Integration Architecture (JIA•) – a set of inter-connected technologies and specifications, consisting of reference
architecture, API specifications, a set of common services and tool building blocks. At the center of JIA is the Jazz Founda-
tion Services which provides services to enable groups of tools to work together. Powering much of JIA are standard REST-
ful APIs and standard resource definitions which enable participating tools to easily share data.

Jazz Foundatio•	 n – an implementation of the Jazz Foundation Services, and optional toolkits to aid in the construction of
Jazz applications.

The Jazz project integrates and coordinates the architecture (JIA), the services (OSLC), and the C/ALM scenarios to allow the coordi-
nated flow of information essential to successful development. Moreover, since the tools and the foundation expose RESTful APIs, it is
possible for development teams to customize their integration to best suit their choice of development methodology.

http://www.ibm.com
http://www.infoq.com
https://jazz.net/wiki/bin/view/Main/WebHome
http://open-services.net/bin/view/Main/WebHome
https://jazz.net/projects/DevelopmentItem.jsp?&href=content/project/plans/jia-overview/index.html
https://jazz.net/projects/jazz-foundation/

Scenario ALM Ecosystems Open Sesame

1.3	 A concrete example in the form of a scenario
This eBook uses a scenario that specifically highlights integrations among Rational Team Concert, Rational Quality Manager, and Ra-
tional Requirements Composer. These integrations empower teams to collaborate across the application lifecycle.

Rational Requirements Compose•	 r provides a platform for collaborative requirements definition that enables business
analysts, client stakeholders and software development teams to define requirements using a variety of techniques, and
collaborate with each other using a suite of platform capabilities.

Rational Team Concert IBM Rational Team Concer•	 t is a team-aware software development platform that integrates work
item tracking, builds, source control, and agile planning. Rational Team Concert interoperates with other products by pro-
viding Visual Studio integration and connectors for ClearCase and ClearQuest.

Rational Quality Manage•	 r provides a centralized test management environment to help increase the efficiency and qual-
ity of software delivery by mitigating risk and lowering cost through collaborative ALM for test planning, workflow con-
trol, tracking and traceability, and metrics reporting capable of quantifying how project decisions impact and align with
business objectives. Rational Test Lab Manager, which is an extended component of Rational Quality Manager, helps to
improve the efficiency of the test lab environment and optimize its utilization, cutting workload and saving on test infra-
structure.

Jazz Foundatio•	 n provides a scalable, extensible team-collaboration platform that integrates tasks across the software life-
cycle. The platform also provides useful building blocks and frameworks that facilitate the development of new products
and tools.

Overview

Overview:
Wasted words, or key to understanding?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com
https://jazz.net/projects/rational-requirements-composer/
https://jazz.net/projects/rational-team-concert/
https://jazz.net/projects/rational-quality-manager/
https://jazz.net/projects/jazz-foundation/

Scenario ALM Ecosystems Open Sesame

Note this is not a one-size-fits-no one solution. The products are developed and shipped independently with the integrations built in.
This allows you to have an iterative approach to products adoption.

In addition to supporting a team’s ability to select and integrate their toolset, the C/ALM project enables delivery of important new
features. Some examples:

Surf the Collaborative ALM•	 web of artifacts. Users don’t always care about the tool that created the data, they just need
access to the information. Therefore links appear on artifacts just like any other link. By hovering over a link, users can get
a rich set of information about the target at the end of the link, helping them to make decisions on what to do next. Click-
ing, of course navigates to the artifact at the other end of the link.

With•	 In-context Collaboration users link to (or create) software artifacts in other software development repositories with-
out leaving their primary tool. Several examples of in-context collaboration are provided.

Mash it up!•	 Dashboards and widgets provide transparency across the disciplines. Throughout the lifecycle team members
are dependent on each other’s status to perform their own tasks, and yet they have very little insight into that work. Dash-
boards and widgets give team members instant access to each other’s status.

C/ALM Queries: Answers to a team’s more interesting questions.•	 In addition, a set of Collaborative ALM queries are provid-
ed that give users additional insight regarding their linked artifacts. For example, developers can use a dashboard widget
to see which stories have failing test cases. This query finds all open Stories with links to Rational Quality Manager test
cases, where the test status is failed. This helps a team determine when the “Story” is done – it is done when the tests pass.
In fact, in an integrated team it is the tester that sets a Story to the done state.

Enterprise Reporting•	 – Identify what works and what doesn’t by collecting real-time data from a wide variety of develop-
ment tools to track project health throughout the life cycle.

Learn more about the •	 Collaborative ALM project and supported scenarios at jazz.net

Overview

Overview:
Wasted words, or key to understanding?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com
https://jazz.net/projects/collaborative-alm/
http://www.jazz.net

Scenario ALM Ecosystems Open Sesame

1.4	 One example, generally applicable
The challenges presented in this eBook are independent of the tools or process a team uses. We selected a specific scenario and a set
of tools to provide a concrete, real-world example; however, the challenges presented can be resolved by a wide variety of tools.

Figure 1. Relationships between Software Development disciplines

Overview

Overview:
Wasted words, or key to understanding?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Scenario ALM Ecosystems Open Sesame

The scenario can be abstracted into relationships across three important disciplines: requirements management, change manage-
ment, and quality management. The abstraction is an important realization in our quest to integrate software development ecosys-
tems. Rather than looking at the solution as a monolithic software application, we view it as a set of services. C/ALM solutions can act
as providers and consumers of software delivery services that come from a variety of vendors. This is an open and flexible approach
that invites all software delivery tools vendors to provide public, and open APIs for providing and consuming services.

In addition, tools that integrate the Jazz Foundation provide the additional benefit of a common UI framework, link-types describing
cross-discipline relationships, rich hovers, queries, dashboards that host cross-repository widgets, and much more.

In this eBook we present one representative approach and example for how a team might address and resolve a particular challenge.
We acknowledge different teams will choose different tools or emphasize different aspects of the same tools we chose for our illustra-
tion. Our example and the specific tools we chose to highlight are not intended to be “The Only Answer,” rather, our presentation is
intended to illustrate a generally applicable issue or problem that can be solved by tools vendors in an open, and resilient way.

Overview

Overview:
Wasted words, or key to understanding?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

2.1	 Requirements: dirty word or diamond in the rough?
2.2	 Sprint Backlog: Creative Exercise or Reflection of Reality?
2.3	 Testers: Third wheel or Magic Number?
2.4	 “The Build”: A present from an eccentric relative, or something I want?
2.5	 Defects: Odd game, fiction or fact?
2.6	 Sprint Review: Rorschach test or view of Reality

Chapter 2		 A scenario tells a thousand stories

A scenario
tells a thousand stories

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

The ideas presented in this section are generally applicable to any team. To provide concrete examples of
working software in the context of a team, we will use one of the C/ALM scenarios to illustrate the utility of
scenario-based development (Figure 2). This scenario assumes an integrated team with analysts, developers
and testers interacting within the same iteration. The scenario also provides the structure to communicate the
overall value of Collaborative Application Lifecycle Management (C/ALM). Throughout the scenario we come
face to face with common collaboration challenges and present an approach for overcoming them.

The challenges the team encounters are as follows:

Requirements: How a team establishes a shared vision using a rich definition.•	

Sprint backlogs: How a team can align their shared vision with a dynamic, up-to-date agreed upon plan.•	

Testers: How teams incorporate the test plan. •	

The build: How do testers know the quality and contents of a build coming from development? •	

Defects: How to link test execution results with defects, How can developers reproduce test failures easily?•	

Sprint Review: Throughout the sprint the team can assess their progress and, using live-data, assess when •	
they are done, done, done.

According to the scenario, our team is a geographically distributed agile team using Scrum. Any management
process could have been applied, but for this example, we will use Scrum. In addition, our team integrates a set
of tools that forms their C/ALM delivery environment.

For more informa-
tion on scrum see:

Scrum Adoption
in China

Scrum at Dutch
Railways

Kanban and
Scrum

Scrum and XP
Minibook

Scrum Checklists
Minibook

2 A scenario tells a thousand stories

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com
http://www.infoq.com/articles/Agile-adoption-study-china

http://www.infoq.com/articles/Agile-adoption-study-china

http://www.infoq.com/articles/Agile-adoption-study-china

http://www.infoq.com/articles/dutch-railway-scrum

http://www.infoq.com/articles/dutch-railway-scrum

http://www.infoq.com/articles/dutch-railway-scrum

http://www.infoq.com/news/2009/05/kniberg-kanban-v-scrum
http://www.infoq.com/news/2009/05/kniberg-kanban-v-scrum
http://www.infoq.com/news/2009/05/kniberg-kanban-v-scrum
http://www.infoq.com/minibooks/scrum-xp-from-the-trenches

http://www.infoq.com/minibooks/scrum-xp-from-the-trenches

http://www.infoq.com/minibooks/scrum-xp-from-the-trenches

http://www.infoq.com/minibooks/scrum-checklists
http://www.infoq.com/minibooks/scrum-checklists
http://www.infoq.com/minibooks/scrum-checklists

Overview ALM Ecosystems Open Sesame

FIGURE 2. A Sprint in the day of the life of a distributed agile team

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

Our team and the tools they use are as follows:

Bob: •	 Product owner, responsible for representing the business and stakeholder needs. His goal is to effectively commu-
nicate his vision for the development team and to prioritize the backlog items. Bob collaborates with Scott and Tanuj on
the product and sprint backlogs. Bob uses Rational Requirements Composer to define and manage his requirements. (For
non-agile teams, the role is typically represented as an “analyst” or “business analyst.”)

Scott:•	 Scrum Master, responsible for coordinating the development team, tracking impediments, running the daily stand-
ups and moderating the sprint planning session. He uses Rational Team Concert together with the Scrum process tem-
plate for managing the product backlog and for planning and tracking sprint backlogs. Scott collaborates with everyone
on the sprint backlog.

Marco and Deb: •	 Team lead, Developer, responsible for developing and building the software. They use Rational Team
Concert for sprint planning, source code management, work-item and defect management, and continuous builds. They
collaborate with Bob & Scott on the sprint backlog and with Tanuj when he submits a defect. There are other developers
on the team, but they play the same roles as Deb or Marco and can be considered as role instances.

Tanuj:•	 Tester, responsible for exploratory testing and an integral member of the team. He uses Rational Quality Manager
to manage his test plans, cases, scripts and to track and report against test execution status. Tanuj collaborates on the
product backlog with Bob and Scott, and he also collaborates with Deb on fixing a defect.

Let’s see their collaboration challenges and how they overcome them.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.1 Requirements: dirty word or diamond in the rough?
Agile teams don’t like the word requirement, and frankly when we think of the days of terse, incomprehensible, un-prioritized, ever
changing, line-item requirements, neither do we! It’s important to involve members from the business because they have the best un-
derstanding of the goals for the software that is to be built. When done well, requirements provide a rich vision of what the enterprise
and all of its constituencies require from software applications. In this section we’ll show you why we believe “requirements” are like
diamonds in need of a little polish.

2.1.1 Collaborating toward a Shared Vision

Bob is the product owner responsible for defining the needs of the business and its stakeholders. Bob listens to many stakeholders,
each one with their own specific needs, finds commonality and negotiates a concerted approach to defining needs. Unfortunately, it
can be really hard to summarize this rich vision in a set of line-item requirements, crammed into a single row in a spreadsheet rep-
resenting a ‘backlog’ … especially when Bob “sees” things,– insights that arise because Bob is so conversant with the “Big Picture,” –
insights that he visualizes as images and models. To effectively collaborate with his software development team, Bob needs a require-
ments definition tool.

In an ideal agile world, that tool would be a story card. Bob’s team is geographically distributed and working in multiple time zones.
To provide an electronic depiction of his interactions, Bob chose Requirements Composer, (Figure 3) which has features to help him
capture his ideas in the form of sketches, storyboards, business processes, rich text, glossaries and use cases.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

FIGURE 3. Bob “sees things” using Rational Requirements Composer

Using Requirements Composer, Bob
collaborates with the business domain
experts until he is ready to initiate a
dialog with the developers. By using
the Web interface provided by Require-
ments Composer, developers and
stakeholders can be geographically
distributed, while seamlessly accessing
and commenting on the data. Bob can
review and respond to the comments as
they are submitted, or conduct reviews
until the team comes to a shared vision.

This dialog addresses multiple goals.
One, Bob needs to confirm his ability
to articulate the business vision, ideally
using the same models and artifacts
he used to extract that vision from the
domain experts. Second, Bob needs
feedback - a healthy dose of reality in
terms of time and cost to develop – that
he can use to negotiate and prioritize
activities with the business side of the
house.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.1.2 Requirements are diamonds in need of a little polish

A simple example of web-based stakeholder collaboration using comments and reviews was used to show the value of communica-
tion across silos, specifically enabling communication between members of the business silo and the development silo – with Bob as
our facilitator.

This represents a major leap forward in business-development relations, and it’s great that the tool allows everyone to review and
comment on the requirements, but what is the relationship between these models and artifacts (often annotated drawings at this
point) and the developer stories on the product backlog?

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.2 Sprint Backlog:
Creative Exercise or Reflection of Reality?
Big plans, little plans, shifting plans, stagnant plans they all have the potential for becoming creative exercises rather than reflections
of reality. Many Agile teams have learned to execute against realistic plans by working with public task boards and moving a story
and its related tasks through their phases to completion.

If you are part of a geographically dispersed team, or even a co-located team coordinating with other co-located teams in the con-
text of a larger project, traditional approaches are inadequate. Planning in such circumstances tends towards an exercise in creative
writing. In addition teams have multiple sources of information to work with – defects in one tool, requirements in another, resource
information in another – making it challenging to coordinate a plan.

Through the use of in-context collaboration for linking artifacts across disciplines and the use of dynamic plans where the data is
coming directly from the work-items owned by the team members, we’ll show you how the plan can be a reflection reality.

2.2.1 From vision to execution: updating the product backlog

Bob’s development team uses Rational Team Concert’s planning feature to manage the backlog. Bob’s challenge is to link the rich
set of requirements he defined in Rational Requirements Composer with a set of work-items prioritized on a backlog maintained by
Rational Team Concert.

This separation between requirements and development plans is a common challenge that all teams must overcome. Using in-con-
text collaboration the product owner, Bob, will bridge this gap by linking requirements and development work-items without having
to leave Composer, the tool with which he has become accustomed; nor will Bob be required to learn Team Concert features in order
to make this transition.

Bob has two choices. He can link his requirement to an existing work-item in Team Concert, as shown in as shown in Figure 4, or he
can create a new work-item.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

FIGURE 4. Bob uses Team Concert’s ‘link picker’ to link to an existing work-item

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

Notice, Bob did not leave the Requirements Composer user interface. Instead, a dialog with
information coming from Team Concert came to him! When he types a keyword, such as ‘mort-
gage’ the matching Work-items field is automatically populated with work-items managed by
Team Concert. When he clicks the ok button, links are created between the two artifacts that
identify the relationship.

Bob’s requirement is now linked to a story work-item type on the backlog in Rational Team
Concert. Clicking the link opens the work-item in the Rational Team Concert Web user inter-
face. Bob can rank the stories on the back log, or use the mini editor, which is shown in Figure
5, to change the properties, summary or description of each of the stories. Once he’s finished
prioritizing the backlog, Bob saves the plan and exits the browser.

This use of delegated user interface
greatly reduces the number of times
Bob has to change tools, simpli-
fies the integration points between
tools, while leaving all of the power
and semantics of each tool available
to the users. The two repositories
are communicating using RESTful
interfaces and this interchange is an
implementation of the Open Services
for Lifecycle Collaboration change
management specification. Whether
he’s linking or creating work-items,
the dialog in Composer looks like
all the other dialogs to which Bob is
accustomed. Additional information
is provided in Section 3.5, How it’s
woven

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.2.2 Sprint Planning, Goals
and Backlog

Scott is the Scrum master responsible for mak-
ing the team as productive as possible. He
understands Scrum, is accustomed to using a
public task board, but now his team has grown
and is geographically distributed. Scott chose to
use Rational Team Concert for planning, source
control and continuous builds. He likes the idea
of having dynamic transparent plans and team
dashboards that are driven from the data pro-
duced by the team.

To conduct a geographically distributed plan-
ning meeting Scott and his team mates use
the Web user interface to view the product
backlog. The team uses the mini-editor to view
the description of each story of interest. The
mini-editor, shown in Figure 5, allows the team
to quickly view and update each item without
leaving the view of the backlog. This provides
a context for their discussion and helps assure
that decisions made in one story do not con-
tradict decisions made when working with a
second. FIGURE 5. Reviewing the backlog with the mini editor open

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

The team comes across the story cre-
ated by Bob in the previous section and
sees the link to a requirement. Clicking
the link, as shown in Figure 6, opens
the Requirements Composer Web user
interface allowing the team to discuss
the sketch Bob has provided. Note how
this conversation provides many of the
advantages of having an on-site cus-
tomer. The integration and traceability
offered by the tool allows the team to
interact with the same models and have
very similar conversations as they would
have if a human user was in the room.

FIGURE 6. Traversing a requirement link from Rational Team Concert

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

After reviewing the requirement, the team jointly agrees on the number of story points and Scott saves the changes. As the team
moves through the backlog they can easily see the number of stories and story points they are committing to for the sprint. Upon
reviewing a sufficient number of backlog items, the team is ready to create the sprint backlog.

Next Scott creates the Sprint plan and the team collectively agrees upon the goals and themes of the sprint, all of which are captured
in the plan. Using the planned items tab (shown in Figure 7), Scott drags and drops items from the Product backlog onto the Sprint
backlog.

FIGURE 7. Scott drags and drops items onto the Sprint backlog

As the sprint backlog
comes together, the
team may have second
thoughts or additional
insights regarding each
of the work-items. They
can easily drag items
into the sprint backlog,
or drag them back onto
the product backlog,
until they reach an
agreement. Scott saves
the Sprint backlog, and
the team is ready to get
to work.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

As Deb works on the Story provided by Bob, she can navigate the requirement link to view Bob’s sketch and requirements informa-
tion. Doing so helps Deb determine which tasks are needed to complete the story. Using the task board view in Team Concert she
decomposes the Story into developer Tasks.

The next time Scott views the plan he will see the progress made by the team. As each developer takes ownership of and begins
working on their tasks, everyone will be able to see their progress. When they conduct their daily stand-ups they can collectively re-
view the plan status, whether they’re in the same room or distributed in multiple locations. The plan cannot only be reviewed but the
state of work items can be updated as well.

2.2.3 Working
with the Task
board

Marco and Deb prefer using
the Task Board view of the
Sprint (Figure 8). With an elec-
tronic task board, teams can
be geographically distributed
and remain up to date with
each other’s progress. The task
board is simply another view
of the sprint backlog that Scott
created. The data is the same,
allowing each team member to
choose the view that best suits
their needs. FIGURE 8. Marco and Deb work with the Developers Task Board

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.2.4 Sprint backlogs are a reflection of reality.

We showed a simple way to link a sketch, a depiction of what the business sees as a requirement, to a story, a unit of work recognized
by the development team, and place it on a product backlog. An example specific to Scrum teams was used to show the value of link-
ing across silos, specifically enabling communication between members of the business silo and the development silo – with Bob as
our facilitator.

The teams come together during the planning meeting to review and refine the items on the backlog. Requirement links on work-
items provide additional detail which the team can navigate by clicking the link. The team can collectively agree to the items for the
Sprint backlog, and can work with any number of plan views, such as the backlog or developer task board view. Collectively the team
creates a shared vision for the software and these two groups that typically operate in silos can finally begin to collaborate!

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

Concurrent testing adopts testing
throughout an iteration, con-
current with development. This
prevents teams from compressing
testing into a separate activity at
the end of an iteration or release.
Concurrent testing reinforces the
concept of feature teams working
in parallel.

Prac tice: Concurrent Testing

Mom always warned me about threesomes. If a third friend came along, she’d warn me that
one always gets left out. On the other hand, there’s a lot of folklore regarding the magic em-
bodied in the number three. So far we have seen how to break down the silos between the
business and development and now we need to explore how we can add a third set of col-
leagues – testers – to the mix.

Agile teams look to integrate testers as an integral part of the team, part of which involves “con-
current testing” which brings testers closer to development and requires tighter collaboration.
Testers can provide valuable insights as we try to understand requirements, they can help the
team define useful and valuable developer tests, and they can pave the way to smooth integra-
tion, regression, system, and deployment testing.

Yet, typically there’s little transparency in the test effort. Every self-respecting tester knows
what they’ve done and what they haven’t, and that’s great, but what about everyone else on
the team? All too often test scripts and the execution results are either in the heads of the test
team or buried in static documents where some of the text is up to date, some is stale, and no
one can determine the difference. Knowing when testing is ‘done’ becomes one of the harder
questions to answer.

Agile best practices suggest that we include test teams in the planning meeting. But how else
can we involve them in the development process in productive ways? What testers and devel-
opment teams need is a tool that can manage the test effort and link it to development efforts,
all within the context of development sprints. We hope to convince you that it can be done in a
manner that will lead to the magic power of the number three.

Scenario

2.3 Testers: Third wheel or Magic Number?

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com
http://epf.eclipse.org/wikis/openup/practice.tech.concurrent_testing.base/guidances/practices/concurrent_testing_AF686531.html

Overview ALM Ecosystems Open Sesame

2.3.1 Linking requirements and testing

With Quality Manager, test plans move from being dusty old documents to active, dynamic plans reflecting the current status of the
test effort. To ease the transition from dusty to dynamic, a Quality Manager test plan is organized like a document with configurable
Table of Contents that describes key aspects of the plan.

The plan can be as simple or complex as needed for any given project. For example, a test plan can have a section for linking to
the requirements defined by Bob in Requirements Composer. Linking to requirements helps Tanuj understand what to test. A test
plan consists of a list of test cases that the team will need to construct and execute. To align the test effort with the business needs,
Tanuj ensures that every requirement has at least one test case. When creating these links, Tanuj has a similar in-context collabora-
tion experience as Bob did when he linked his requirement to a developer work-item. When Tanuj chooses to “Link to” an existing
requirement, a dialog appears within Quality Manager that contains the user interface and semantics for selecting requirements from
Requirements Composer. Tanuj chooses the same requirement that Bob worked with in the first part of this scenario. Just as Bob did
not have to leave Composer to create a link, Tanuj does not have to leave Quality Manager to create a link. Both users can collaborate
in-context of the work they are completing.

2.3.2 Linking test cases with developer plan items

Now Tanuj knows what to test (by linking to requirements), but next he needs to know when to test. He can do this by linking test
cases to development work-items in Rational Team Concert. Sure he was included in the Sprint Planning meeting and that helps, but
plans are dynamic. To stay up to date with the development effort, he can link his test cases to work-items in the Rational Team Con-
cert Sprint backlog without leaving the Quality Manager user interface.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

FIGURE 9. Tanuj links Test cases with Stories in the Sprint backlog

Once again, notice the dialog
that appears as illustrated in
Figure 9. Tanuj is in Quality
Manager, but the Team Con-
cert user interface for selecting
work items appears in the dia-
log. Tanuj searches the Team
Concert repository, selects a
work-item and links to it.

At any time, Tanuj can hover
over the link to see the status
of the work-item in Team Con-
cert, which is shown in Figure
10. The status information is
live and coming from Rational
Team concert providing, Tanuj
with real-time information
about of the work-item, such
as its status, owner, and when
it is planned for implementa-
tion.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

FIGURE 10. Rich hovers provide insight into artifacts behind the link

At the same time, when
Scott uses Rational Team
Concert, he can see which
Sprint backlog items have
links to test cases and which
do not. On his team, stories
are complete when testing
is complete. Therefore, Scott
and Tanuj can work together
to ensure every Story has at
least one test case. The link
is also beneficial to develop-
ment. It helps to determine
whether the tests associated
with the Story have passed
and to assess the “Done” state
of the story.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.3.3 Bob is curious about coverage

To demonstrate the power of the number three, Bob, working in Composer, can see which requirements have links to test cases. Bob
also has a widget on his dashboard that shows him all requirements without a link to a test case in Quality Manager. This gives Bob
immediate insight into the test coverage for his requirements. He has a similar widget that shows him all requirements without a link
to a work-item in Team Concert. This lets Bob see the status of both the development and test teams enabling a rich collaboration
across the teams.

2.3.4 There is magic in the number three.

The requirements, development and test efforts are linked and aligned giving all members of the delivery team the ability to sprint as
a ‘whole team.’ The increased transparency enables concurrent testing, and reduces wait time -- one of the obstacles of lean develop-
ment.

This cross-discipline linking frees each team member to use a tool tailored to their needs. In addition, all members of the team can
collaborate, in-context, with the toolset providing non-intrusive integration. It is very important to note that information is not cop-
ied, everyone is viewing the same, live, data and therefore each is viewing a real-time reflection of reality, not yesterday’s or last year’s
data.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

You know which relative we’re talking about. The
one that, year after year, sends the gift where you
wonder, do I want to open this? To testers, the build
coming from development can be like that present
from the eccentric relative. The perpetual ques-
tion for testers is, “is the build ready for test?” This is
quickly followed by “What features are implement-
ed?” and “What defects are fixed?” Hopefully we’ll
persuade you that builds can be presents worth
receiving..

2.4.1 The build bridges
development and test

Tanuj uses widgets on his dashboard to monitor
the status of the builds in Team Concert. Figure 11
shows a feed of Team Concert builds.

2.4 “The Build”:
A present from an eccentric relative, or something I want?

FIGURE 11. A build feed widget in Rational Quality Manager

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

At any time Tanuj can click on the link to view the contents of the build or use the rich hover which is illustrated in Figure 12.

The build results are presented in a web user interface. Here Tanuj can see what changes went into the build thus helping him deter-
mine what to test.

FIGURE 12. Rich hover showing the Build status from a dashboard widget

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

FIGURE 13. Filtering builds using tags

Figure 13 shows another form of in-context collaboration, where developers tag a build ready for test and testers can filter the builds
to those builds that have this tag.

In addition, Quality Manager provides a feature for running a ‘test sequence’ when a build completes. The test sequence can be used
to automate traditionally manual tasks such as test environment setup or tear down, or test case or suite execution. The sequence is
automated, captures an audit log, and can be triggered by the completion of a build running in Team Concert. This automation re-
moves the manual and error prone process of deploying a build into a test lab. Just as agile teams have automated the build process,
testers can now automate the deployment of builds into the test lab.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.4.2 The build is package you can look forward to receiving

By viewing the build as a bridge between development and test, we begin to provide clarity into the status, contents and quality of
the build. Providing this clarity is fundamental to developer and tester relations. Agile teams promote the idea of automating every-
thing. By adding test suites to the test sequence testers can finally automate smoke and regression tests, thus freeing themselves
to spend more time on exploratory testing. In doing so, the build becomes a package the testers are eager to receive. But once the
build is deployed, what happens when the testers begin to test?

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.5 Defects: Odd game, fiction or fact?
Hopefully by now you’ve had the unique opportunity to play the game ‘whack-a-mole.’ It’s kind of like finding and fixing defects,
wouldn’t you say? Upon defect discovery, a tester logs a defect report including a detailed set of steps needed to recreate the defect.
In turn, the developers can’t recreate the defect. Despite our efforts to improve defect reports and reproducibility it remains a chal-
lenge that creates more friction than lean, mean software delivery machines need.

When a tester executes a test, the results are captured by Quality Manager, which is very important information to the testers. But the
key question is how can you share it with the developers when reporting defects? Next we’ll demonstrate why finding and fixing a
defect doesn’t have to feel like playing ‘whack-a-mole.’

2.5.1 Finding and submitting a defect

In Rational Quality Manager, a test case has a test script, which can be a manual set of steps, or an automated test script which agile
teams prefer. For each test case there may be one or more test execution records. A test execution record binds a script with a partic-
ular test environment. For example, conducting the test using three different browsers would constitute three test execution records.

The approach to submitting defects is similar to those that we demonstrated as Bob linked requirements to development work-items.
Tanuj can create a new defect or link to an existing defect managed by Team Concert. The OSLC change management service is called
and presents the user interface in a dialog with which Tanuj interacts.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

FIGURE 14. Using Quality Manager to create a defect in Team Concert

As shown in Figure 14, the
dialog is primed with work-
items of type defect. When
Tanuj clicks ok, a defect is
linked to the exact step in
the test script where the
failure occurred. In addition,
the defect in Team Concert
has a link back to the execu-
tion result in Quality Man-
ager. At any time, Testers
can navigate the link to
view the defect. Submitting
the defect required only 3
clicks. 1 to open the dialog,
1 set the “Filed Against”
attribute, and 1 to click ok.
When compared to the
task of opening a separate
tool, logging in, and labori-
ously detailing every step
performed to reproduce
the defect, the testers
experience is profoundly
improved!

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.5.2 Knowing when the test team is blocked

When the defect is submitted by
Tanuj, Scott can notice it from
several locations in Rational Team
Concert: the events view, the re-
cently submitted query, or using a
new widget which shows “Defects
blocking Test.” This widget pres-
ents the results of a C/ALM query
that leverages the links between
Rational Team Concert and Qual-
ity Manager. The query presents
all open defects in Team Concert
with “Blocked by” link type. In this
case, Scott can see which defects
are blocking the test team, and tri-
age them appropriately. By acting
on them immediately, Scott can
reduce the wait time for testers
and ensure the highest quality and
team productivity. FIGURE 15. Defects blocking tests widget, and a rich hover over a link

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.5.3 Recreating the defect
Deb is a member of Scott’s team and is responsible for fixing the defect. When she receives the defect, she has a rich description
of the test which was automatically provided by Rational Quality Manager via the integration. She also sees there’s a link to the
execution result. Figure 19 illustrates the use of the Affects and Blocks link types.

There is another nice collaboration at work here, when a tester files a defect against a particular build, a developer can easily
reconstruct the source set-up that matches the state of the tester. When submitting a defect, Tanuj sets the Found In field as
shown in Figure 16.

Next Deb opens the
build result, and from
the build result tra-
verses the link to the
snapshot, as shown
in Figure 17.

FIGURE 16. Filing defect against a milestone build

FIGURE 17. Link to soFigure 17urce snapshot

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

FIGURE 18. Create a workspace from a snapshot

FIGURE 19. A defect with links to test execution results

On the snapshot user interface,
Deb clicks the link to create a
workspace, which is highlighted in
Figure 18.

Once her workspace is created,
Deb is ready to recreate the de-
fect. She reviews the defect report,
and if needed can traverse the
link to view the execution result,
test script and test case. The link is
shown in Figure 19

By traversing the link, Deb can see
exactly what happened and can
use the same steps to recreate and
debug the problem. This removes
any doubt as to how to recreate
the defect and contributes to over-
all developer productivity. When
the defect is fixed, Deb delivers
the code and marks the defect as
resolved.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.5.4	Knowing when defects are fixed

In this team, the process set-up in Team Concert defines that only testers can mark a defect ‘verified.’ Therefore, Tanuj leverages a
cross-repository widget on his dashboard to show which of the defects he submitted are marked as resolved. Alternatively, hovering
over the link in the execution result provides up-to-date information about the status of the defect. When the build containing the fix
is deployed to the test lab, Tanuj can re-run the test execution record for that defect, and update the defect accordingly.

2.5.5	Recreate defects from fact

When a developer reviews the defect, the link to the test execution is provided. The developer can navigate the link and view the very
same script the tester used in finding the defect. If the test is a manual test, the defect is linked at the exact step where it occurred in
the script. This lets the developer review the exact same steps the tester used to recreate the defect. This reduces the frustration felt
by both developers and testers when defects cannot be reproduced.

In addition, the testers and the developers need to keep track of the status of the defects and testing effort. To help them, new wid-
gets are provided in Team Concert and Quality Manager. The testers using Quality Manager can see which Tests are blocked by De-
fects. Developers using Team Concert can add a widget to their dashboard that shows “Defects blocking Test.” At a glance, developers
can see new defects submitted by the test team and respond accordingly.

Imagine no more countless hours training testers on how to create a good defect report. No more wasted hours attempting to recre-
ate a defect. No more wondering whether the test team is blocked, or when defects will be fixed. Defect handling can be grounded in
reproducible fact.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview ALM Ecosystems Open Sesame

2.6 Sprint Review: Rorschach test or view of Reality
By linking the business, development and testing artifacts, teams can align on sprint backlogs and sprint execution. By managing
plans and execution results teams have an up-to-date reflection of reality to help them make decisions throughout the sprint. The
combination of using links across artifacts, rich hovers, and cross-repository widgets hosted in user dashboards provides unprec-
edented team awareness.

The links between requirements, development and testing establish transparency and agreement across these two traditional silos.
By seeing that the requirement is linked to a work-item on a development plan, and hovering over the link to see the status of the
work-item, product owners become active participants on the team. By seeing what defects are blocking test, development leads can
actively triage defects to keep the test team productive. If change to any of the artifacts is necessary, the impact can be noticed as it
is being considered, and the agreement can be collaboratively revised – because the link is in place. The traceability between require-
ment, development and testing can help to reduce thrash, build trust, and establish a shared vision for execution.

This live data helps the team understand when they are done, done, done. They can compare their result to their sprint goals, confirm
that all requirements are implemented and tested, and defects are fixed.

Scenario

tells a thousand stories
A scenario

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

3.1	 The web Bob wove
3.2	 The web Scott and his team wove
3.3	 The web Tanuj wove
3.4	 The secret web of a defect
3.5	 How it’s woven

Chapter 3		 The WWW (Web We Wove)

The WWW
(Web We Wove)

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

3 The WWW (Web We Wove)
The story we told is simple but powerful. It may help if we summarize the links created by each of the team members.

3.1 The web
Bob wove
Without leaving the Composer
user interface, Bob linked his
requirement to a “Story” work-
item in Rational Team Concert,
thus establishing a relationship
between them. The image in
Figure 20 illustrates the link
types between resources: the
work-item implements the
requirement; the requirement is
implemented by the work-item.

FIGURE 20. A requirement is linked to a work-item across development tools

The WWW
(Web We Wove)

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

FIGURE 21. Artifacts links within and across tool boundaries

3.2 The web
Scott and his
team wove
Scott’s team navigated the links
that Bob created between the re-
quirements and stories. By viewing
Bob’s sketches and storyboards,
they had clearer insight into the
amount of work involved. Here,
Bob’s requirements were treated
like a resource at the end of a URL.
The development team simply
navigated the links and viewed the
requirements.

As shown in Figure 21, Scott and
his team worked with the Product
and Sprint backlogs, and decom-
posed story work-items into Tasks.
These are all local to Rational Team
Concert.

The WWW
(Web We Wove)

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

3.3 The web Tanuj
wove
Tanuj creates test cases as part of the test
plan, and has links to requirements to pro-
vide clarity on what to test. Test cases also to
link to the planning-level work-items pro-
viding clarity on when the features will be
available to test. Tanuj uses a tool tailored for
his discipline and also has unprecedented
alignment with the product owner and de-
velopment team.

Figure 22 illustrates how a single test case
can have a “test” link to a work-item in Team
Concert, and a ‘validates’ link to a require-
ment in Composer. This gives the tester im-
mediate access to the “what” (requirement)
and the “when” (plan-item). In addition, Ratio-
nal Quality Manager provides a Quality Man-
agement service that other OSLC compatible
products can consume. In the scenario we
showed the tester linking to the requirement;
however the inverse can also occur, where
Bob, the product owner links a requirement
to a test case.

FIGURE 22. Testing aligns with requirements and development

The WWW
(Web We Wove)

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

FIGURE 23. Test execution results link to defects

3.4 The secret web
of a defect
In Quality Manager 2.0, a tester can link an
execution result to a defect report managed
in Team Concert. Quality Manager automati-
cally populates the fields in the defect report
with information from the test execution. The
execution result has a link to the defect, the
defect has a link to the execution result.

The “Affects” and “Blocks” link types indicate
the severity of a defect which helps the
development team when triaging defects.
Figure 23 shows the relationships between
test execution and defects.

The WWW
(Web We Wove)

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

3.5 How it’s woven
Behind the scenes the Jazz Foundation and Open Services for Lifecycle Collaboration are quietly at work providing a rich user experi-
ence. The Jazz Foundation provides the common web framework, dashboards with the ability to host cross-repository widgets, rich
hovers and link types for easily recognizing the related artifacts.

Open Services for Lifecycle Collaboration provides open, public descriptions of resources and interfaces for sharing artifacts across
the software lifecycle. The scenario demonstrated implementations of the completed change management specification. The scenar-
io also provided previews what’s to come with the requirements management and quality management specifications. In the sce-
nario, the term artifact is used to describe the content the users interact with. In the programmable web, this is called a resource. The
strategy treats all development artifacts as resources at the end of the URI, where both XML and JSON are supported formats. RESTful
interfaces are used to GET, PUT, POST or DELETE data in each of the repositories. Each tool implements the OSLC specification for their
domain (e.g. change management, requirements management, quality management)

The WWW
(Web We Wove)

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

FIGURE 24. OSLC Delegation

In the example, when Bob chooses to link
to, or create an artifact in Rational Team
Concert, Requirements Composer calls the
change management service using the
public OSLC change management speci-
fication. Per the specification (Figure 24),
Composer delegates the user interface
to Rational Team Concert, meaning, the
details and semantics provided by Team
Concert are consumed by and displayed in
a Composer dialog. When Bob clicks OK, the
Composer sends a PUT request to the Team
Concert change management service. Links
are created between both artifacts using
link support provided by the Jazz Founda-
tion. This same strategy is employed when
Tanuj chooses to link to a work-item in Team
Concert; Quality Manager calls the change
management service using the OSLC speci-
fication.

The WWW
(Web We Wove)

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com
http://open-services.net/bin/view/Main/CmRestApiV1
http://open-services.net/bin/view/Main/CmRestApiV1

Overview Scenario ALM Ecosystems Open Sesame

This provides a powerful and resilient integration which supports independent evolution of the products. The URL integrating the
two tools can stay the same with each new upgrade, and changes can be made to the user interface (coming from the provider appli-
cation) without compromising the consumer’s integration. The delegating UI is helpful to the end user but it is even more helpful to
developer. Without delegating the UI the product developers would have to have in depth knowledge about how to create a particu-
lar artifact. For example, creating a defect would require knowing which of the attributes are required and this would require knowl-
edge about the used process and so on. This would increase the coupling between the products and increased coupling has a nega-
tive impact on independent evolution. This demonstrates two important architectural decisions to delegate complex capabilities to
the provider and provide a simple way to discover a resource. Delegating the UI results in a coarse grained coupling only. Another
benefit of this approach is that it keeps the barrier of entry low for existing products.

The WWW
(Web We Wove)

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

Chapter 4	�
ALM Ecosystems – one size fits no-one, or haute couture?

We provided a single scenario that aligned business, development and testing efforts in a consistently open way. We also asserted
that this is not the only answer. Let’s look at a different set of tools and a new scenario. In this scenario a large enterprise has standard-
ized on Rational ClearQuest as their change management system. They use Rational DOORS for Requirements. One of development
teams uses Rational Team Concert integrated with a different SCM system (SVN). The testing team uses Rational Quality Manager.
This scenario uses a mix of OSLC and traditional integrations and is shown in Figure 25.

ALM Ecosystems
– one size fits no-one, or haute couture?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

FIGURE 25. An alternate scenario using OSLC and traditional integrations

The Rational DOORS (and Rational
RequisitePro) teams plans to con-
tribute to the OSLC specification
for Requirements Management,
and at some point will consume the
OSLC interfaces for Change Man-
agement.

ALM Ecosystems
– one size fits no-one, or haute couture?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario Open Sesame

This time let’s start with the testers. Linking requirements and tests is a highly valued and commonly requested feature of any soft-
ware development management tool. In a distributed collaborative environment this ability is an essential component of any auto-
mated tool. DOORs and RequisitePro are two products in the Rational stable that are moving toward OSLC support, that also provide
integrations with Rational Quality Manager. But yet again we remind the reader that as additional products and vendors add support
for the OSLC interfaces, the possibilities begin to open for any requirements management vendor.

The testers use Rational Quality Manager integrated with DOORs for Requirements Management. Testers can align their test effort
with the requirements specified in DOORS by linking requirements to test plans and test cases.

When defects are found, they are submitted to the Enterprise Change Management system, which in this case is Rational ClearQuest.
Because ClearQuest also supports the OSLC Change Management specification, the user experience remains familiar for the tester.

ALM Ecosystems

ALM Ecosystems
– one size fits no-one, or haute couture?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario Open Sesame

FIGURE 26. Quality Manager uses the ClearQuest change management provider

As shown in the next
figure (Figure 26), Qual-
ity Manager calls the
change management
service provided by
ClearQuest, and the
ClearQuest user inter-
face appears in a dialog
hosted by Quality Man-
ager. Testers can enter
information about the
defect and submit it to
ClearQuest without leav-
ing the Quality Manager
user interface.

ALM Ecosystems

ALM Ecosystems
– one size fits no-one, or haute couture?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario Open Sesame

Users of ClearQuest triage all incoming
defects. The first triaged defect belongs
to the development team that uses Team
Concert. The challenge is communicating
and tracking a defect managed by Clear-
Quest but assigned to a team using Team
Concert.

Using OSLC and the ClearQuest bridge to
Team concert, users can link ClearQuest
records to Team Concert work-items.
Figure 27 shows the ClearQuest bridge in
action. Notice the ClearQuest queries are
available in the left hand navigation bar,
and a full view of the ClearQuest record is
presented on the right..

FIGURE 27. Viewing a ClearQuest record in Team Concert using the Clear-
Quest Bridge

ALM Ecosystems

ALM Ecosystems
– one size fits no-one, or haute couture?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario Open Sesame

Any ClearQuest record can be linked to a
Team Concert work-item. Figure 28 shows
the menu that appears in the upper right
corner of the ClearQuest record from the
previous figure. The user interface is del-
egated to Team Concert and the ‘Create
Defect’ dialog is presented, in-context to the
user. Setting the required fields and clicking
OK links the ClearQuest and Team Concert
records.

FIGURE 28. Link to or create Team
Concert work-item links to Clear-

Quest records

FIGURE 29. The ClearQuest record and Team Concert work-item are linked

Figure 29 shows the Team
Concert work-item with a
link to the ClearQuest record.
Team concert users act on
work-items like they always
do, and when needed, can
traverse the link to view the
original ClearQuest record or
use the rich hover with little
interruption.

ALM Ecosystems

ALM Ecosystems
– one size fits no-one, or haute couture?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario Open Sesame

FIGURE 30. Tasktop integrates with ClearQuest and Team Concert via OSLC

Another example is Tasktop’s Mylyn.
Mylyn supports task-focused program-
ming. With Mylyn users can select the
task they are focused on in their work
from a change management system.
Mylyn leverages OSLC to interface
with different change management
systems. OSLC helps Tasktop to reduce
the number of integrations they have
to provide for Mylyn. In (Figure 30) you
can see how Mylyn connects to differ-
ent change management systems. It
accesses to RTC work items and Clear-
Quest records by consuming their
OSLC change management services.

By using traditional integrations in
combination with the OSLC specifi-
cations for requirements, change or
quality management, any vendor can
provide open mechanisms for linking
resources across silos.

ALM Ecosystems

ALM Ecosystems
– one size fits no-one, or haute couture?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

5.1	 OSLC facilitates communication, behind the scenes
5.2	 The Jazz Foundation reduces total cost of ownership
5.3	 Jazz.net: A open, innovative, collaborative, community

Chapter 5		
Open Sesame:
A phrase uttered by a genie from a bottle,
or IBM Rational strategy?

Open Sesame
A phrase uttered by a genie from a bottle, or IBM

Rational strategy?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems Open Sesame

5 Open Sesame: A phrase uttered by a genie from a bottle, or IBM
Rational strategy?
Software delivery teams that are considering consolidating on a single tool must ask whether that tool will honestly suit the needs of
every constituent in the lifecycle over the long run. We believe that no vendor could possibly do that, and few if any software devel-
opment teams would want to. First, a tremendous amount of information already exists in development repositories throughout the
enterprise. Second, each discipline and each team has its own culture and has probably settled on their tool of choice. Third, as you
cross business units, the decision making authority is spread across organizational lines. Under these circumstances it is nearly im-
possible to get all groups to agree on, and become trained on a single tool. Last, every delivery team in every enterprise works with a
different set of tools, new tools come to market at a rapid pace, and there are always requests to integrate some other tool, whether
purchased or home grown.

Perhaps an absurd comparison will help make the case. Would you expect all information on the world wide web to be consolidated
into a single repository? Of course not! But what you do expect is to be able to navigate the web to access and view the information
regardless of where in the world it is stored.

We believe the software delivery ecosystem should be treated in the same way. The data can be housed anywhere. But what you ex-
pect is the ability to link, navigate and track artifacts regardless of where they are stored. The goal is for software development tools
to become viewers and editors of commonly used data - to open the silos between the business, development and test tools. This
belief led us to launch the Jazz project.

We started this eBook by introducing OSLC, Jazz Integration Architecture, Jazz Foundation and C/ALM scenarios. The scenario pre-
sented is an example of C/ALM scenario, and we hope you can see the value of using an ‘outside-in’ approach to driving C/ALM inte-
grations. The integrations in the scenario are powered by OSLC implementations and the Jazz Foundation.

Open Sesame
A phrase uttered by a genie from a
bottle, or IBM Rational strategy?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems

FIGURE 31. We invite you to join the community at open-services.net

The community at Open Services for
Lifecycle Collaboration is working to
provide open public descriptions of
development artifacts (resources) and
the interfaces for sharing information
across the development lifecycle. We
saw examples of OSLC providers and
consumers throughout this eBook, but
that was just the beginning.

Imagine building a software delivery
ecosystem with providers of services
where all you needed to add is a single
URL to consume the service, and your
users could create and navigate a Col-
laborative ALM web of artifacts! It’s a
tremendously powerful opportunity.
Calls for participation are listed on the
open-services.net web site (Figure 31),
and we invite everyone to join.

5.1 OSLC facilitates communication, behind the scenes

Open Sesame

Open Sesame
A phrase uttered by a genie from a
bottle, or IBM Rational strategy?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems

FIGURE 32. The Jazz Foundation provides a common UI Framework

The Jazz Foundation also provides a set of
services that help drive a common user expe-
rience in the reference example. Note how the
web user interfaces, pictured in Figure 32, for
Team Concert and Quality Manager (and soon,
Requirements Composer) share a common
look through the use of banners, rich hovers,
dashboards and cross-repository widgets.

In the reference scenario, we briefly men-
tioned the use of project timelines and pro-
cess templates. Each of the products uses a
Project time line, with process templates that
provide process enactment within each tool,
which are a service provided by the Jazz Foun-
dation. The Jazz Foundation also provides
delegated authorization, which was not ap-
parent in the scenario. Subsequent versions of
the foundation will include additional services
such as user administration, cross-repository
query, and many more services aimed at re-
ducing the total cost of creating, maintaining,
and owning a C/ALM solution.

5.2 The Jazz Foundation reduces total cost
of ownership

Open Sesame

Open Sesame
A phrase uttered by a genie from a
bottle, or IBM Rational strategy?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com

Overview Scenario ALM Ecosystems

5.3 Jazz.net: An open, innovative, collaborative, community
Thanks to many of you, Jazz.net is a huge success. We have completely re-launched the site and added more projects, downloads,
forums and media to help you get started with this new generation of C/ALM products and integrations. (See Figure 33)

The project section contains detailed information about each of the products highlighted in this eBook along with additional projects
that were not covered.

We develop our products in the open and invite you to contribute your ideas or concerns. You can browse the forums to see what
other community members are discussing. The library is full of articles, videos, and tech notes that you can read.

Project plans and dashboards are public so you can see what our teams are planning to deliver and how they are tracking against
their goals. Early milestone builds, source code, and completed projects are available for download on a trial basis. You can even com-
ment on, or submit work-items to the development teams.

The project list is growing, and the action never stops, so be sure to join us at Jazz.net.

FIGURE 33. A great new experience at Jazz.net

Open Sesame

Open Sesame
A phrase uttered by a genie from a
bottle, or IBM Rational strategy?

TOC Web We Wove

http://www.ibm.com
http://www.infoq.com
http://jazz.net/
http://jazz.net/

