
Query Management Facility™

Installing and Managing QMF for
VSE/ESA
Version 7

GC27-0721-00

���

Query Management Facility™

Installing and Managing QMF for
VSE/ESA
Version 7

GC27-0721-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under
“Appendix E. Notices” on page 277.

Second Edition (September 2000)

This edition applies to Query Management Facility, a feature of Version 7 Release 1 of DATABASE 2 Server for VM
and VSE, (DB2 for VM and VSE), 5697-F42, (VSE environment only), and to any subsequent releases and
modifications until otherwise indicated in new editions.

This edition replaces and makes obsolete the previous publications, GC26-9574-00.

© Copyright International Business Machines Corporation 1983, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

The QMF Library ix

About This Book xi
Terminology in This Guide xi
Locating Prerequisite Documentation xi
How to Use This Book xi
What You Should Know before You Begin . . xii
How National Language Feature Information
is Represented xiii

Part 1. Installing QMF on VSE/ESA 1

Chapter 1. Before You Begin 3
Hardware 3
Prerequisite Software 3
QMF Storage Requirements 4
Apply Service 6
Check Space Requirements 6

Library Space 6
VSAM Catalog 6
dbspace 7
Check Your CICS Partition Size 7
Partition Size for Installation 8

Other Planning Considerations 8
Tailoring GDDM for QMF and CICS . . . 8
Running DB2 Guest Sharing 8
Customizing DB2 for Double-Byte Character
Support 9

Installation Overview 9
Base Installation 9
Installing Language Support 10
CICS Tailoring 11

Chapter 2. Tailoring Your Installation . . . 13
Punch Members to an Editor 13
Install QMF Base 13

Catalog the Initialization Procedure . . . 13
Run the QMF Installation Job 15
Install QMF Base into DB2 Database . . . 16

Tailor QMF for NLF 18
Install NLF 18
Install QMF NLF into SQL Database . . . 19

Link-Edit Jobs for QMF 20
Link Jobs for NLF 21

Tailor CICS 21
Modify the DFHFCT and DFHDCT . . . 22
Define QMF Programs and Transactions to
CICS 23
Run CEDA 24
Modify the DFHPCT and DFHPPT . . . 25
Modify the CICS Startup Job 25

Install QMF for VSE/ESA into a Second CICS
System 26

Chapter 3. Installing QMF into Remote
Database Servers 27
Installing QMF Version 7 into a DB2
Universal Database® Remote Server 27

Prerequisites 27
Punch Members to an Editor 27
Installation steps 27

Installing QMF Version 7 into a DB2 for
AS/400® Server 29

Chapter 4. Run the Installation Verification
Procedure (IVP) 31
Before You Start QMF 31
Start and Test QMF 31
Run an IVP for NLF 34
What if It Didn’t Work? 34

Chapter 5. How to Maintain QMF 37
Adding New Components 37

Adding GDDM-PGF 37
Adding QMF to Another DB2 Database . . 37
Migrating to New Releases of DB2, CICS,
or GDDM 37
Binding QMF 7.1 Packages at a Remote
Server 37

Replacing Existing Components 38
Re-installing QMF 38
Re-installing an NLF 38
Applying Service Updates 39

Part 2. Managing QMF for
VSE/ESA 43

Chapter 6. Starting QMF 49

© Copyright IBM Corp. 1983, 2000 iii

|
||
|
||
||
||
||
|
||

|
||

Before You Start QMF 49
Quick Start 49
Add QMF to the VSE/ESA Function Selection
Menu 50
Starting QMF from a Cleared CICS Screen . . 51
Starting QMF from a CICS Application . . . 51

Starting a Noninteractive Session 52
Starting an Interactive Session 52

Chapter 7. Customizing Your Start
Procedure 55
Quick Start 55
Customizing Report Storage and Report
Performance 56

Adjusting GETVIS Storage Used for Report
Data (DSQSBSTG) 56
Acquiring Extra Temporary Storage
(DSQSPILL) 58
Specifying the Name of Spill Storage
(DSQSSPQN). 62
Controlling the Number of Report Rows
Retrieved for Display (DSQSIROW) . . . 63

Tracing QMF Activity at the Start of a Session 64
Setting the Level of Trace Detail
(DSQSDBUG) 65
Specifying the Type of CICS Storage for
Trace Data (DSQSDBQT) 66
Specifying the Name of CICS Storage for
Trace Data (DSQSDBQN) 66

Controlling Initial Activities during a Session 67
Connecting to the Database (DSQSUSER) 67
Starting a Noninteractive QMF Session
(DSQSMODE) 69
Naming a Procedure to Run When QMF
Starts (DSQSRUN) 69

Setting Printing for Double-Byte Character Set
Data (DSQSDBCS) 75

Chapter 8. The QMF Session Control
Facility 77
Installing or Removing Q.SYSTEM_INI . . . 77
When Does the Q.SYSTEM_INI Procedure
Run? 77
Using Q.SYSTEM_INI 77

Example Shipped with QMF 77
User Session Procedure Example 78
Procedure that Displays an Object list . . 79

Security and Sharing Session Procedure . . . 80
Diagnosis Considerations 80

Chapter 9. Establishing QMF Support for
End Users 81
Quick Start 81
Creating User Profiles to Enable User Access
to QMF 82

Using the Q User Profile, a Special QMF
Profile 82
Establishing a Profile Structure for Your
Installation 82
Adding a New User Profile to the
Q.PROFILES Table 83
Preventing Users Without Unique Profiles
from Using QMF 84
Reading the Q.PROFILES Table 84
Providing the Correct Profile for the User’s
Operating Environment 88
Storing Profiles in VM DB2 in a
Guest-Sharing Environment 89
Updating User Profiles 89
Deleting Profiles from the Q.PROFILES
Table 91

Controlling Access to QMF and Database
Objects 92

SQL Privileges Required to Access Objects 92
Granting and Revoking SQL Privileges . . 94
Sharing QMF Objects with Other Users . . 95
Allowing Uncommitted Read 96
Setting Standards for Creating Objects . . 96

Customizing a User’s Database Object List . . 97
Using the Default Object Lists 97
Changing the Default List 98
Object List Storage Requirement 100

Enabling Users to Create Tables in the
Database 100

Choosing and Acquiring a dbspace for
the User 102
Granting a User DB2 RESOURCE
Authority 102
Enabling Users to Confirm Table Changes
Before They are Made 103

Enabling Users to Support a Chart 104
Maintaining QMF Objects Using QMF
Control Tables 104

Reading the Q.OBJECT_DIRECTORY
Table 104
Reading the Q.OBJECT_DATA Table . . 105
Reading the Q.OBJECT_REMARKS Table 106
Listing QMF Queries, Forms, and
Procedures 107

iv Installing and Managing QMF for VSE/ESA

Displaying QMF Queries, Forms, and
Procedures 107
Transferring Ownership of Queries,
Forms, and Procedures 108
Deleting Obsolete Queries, Forms, and
Procedures 108
Enlarging the dbspace for the QMF Object
Control Tables 109

Maintaining Tables and Views Using DB2
System Tables 110

Listing Tables and Views 110
Transferring Ownership of a Table or
View 111
Deleting a Table or View from the
Database 111

Enabling English Support in an NLF
Environment 111
Using Global Variables to Define the
Currency Symbol 112

Chapter 10. Enabling Users to Print
Objects 113
Quick Start 113
Printing Objects 114
Deciding Whether to Use QMF or GDDM
Services for Printing 115
Using GDDM services to Handle Printing 116

Choosing a GDDM Nickname for Your
Printer 116
Updating the GDDM Defaults Module
(ADMADFC) with the Nickname . . . 120
Linking the Nickname with a Physical
Device 121
How QMF Interfaces with your GDDM
Nickname 122

Using QMF Services to Handle Printing . . 123
Choosing Between Temporary Storage
Queues and Transient Data Queues . . . 123
Using the PRINT Command to Route
Output to Queues. 123
Using Global Variables to Define Queues
for Printing 124
Printing to VSE POWER using QMF . . 124

Updating User Profiles to Enable GDDM
Printing 130

Chapter 11. Customizing QMF Commands 133
Quick Start 133
Creating the Command Synonym Table . . 133

Entering Command Synonym Definitions
into the Command Synonym Table 135

Choosing a Verb 136
Choosing an Object Name 137
Choosing the Synonym Definition . . . 137

Activating the Synonyms 141
Minimizing Maintenance of Command
Synonym Tables 142

Assigning One Synonym Table to All
Users 142
Assigning Views of a Synonym Table to
Individual Users 143

Chapter 12. Customizing QMF Function
Keys 145
Quick Start 145
Choosing the Keys You Want to Customize 145

Default Keys on Full-Screen Panels . . . 146
Default Keys on Window Panels 147

Creating the Function Key Table 148
Entering Your Function Key Definitions into
the Table 149

Linking a Command with a Function Key 149
Labeling the Function Key and
Positioning It on the Screen 150
Examples of Key Definitions 151

Identifying the Panel You Want to Customize 153
Full-Screen Panel Identifiers 153
Window Panel Identifiers 153

Activating New Function Key Definitions 156

Chapter 13. Creating Your Own Edit
Codes for QMF Forms 159
Quick Start 159
Choosing an Edit Code 160
Calling Your Exit Routine to Format the
Data 161
Passing Information To and From the Exit
Routine 164

Fields of the Interface Control Block . . 165
Fields That Characterize the Input Area 166
Fields That Characterize the Output Area 167

Passing Control to the Exit Routine When
QMF Terminates 167
Writing an Edit Routine in High-Level
Assembler (HLASM) 168

How an HLASM Edit Routine Interacts
with CICS 168
How an HLASM Edit Routine Interacts
with QMF 169

Contents v

Translating Your Program 172
Assembling Your Program 173
Link-Editing Your Program 173
Example JCL Statements 173
Defining the Edit Exit Phase to CICS . . 175

Writing an Edit Routine in VS COBOL II or
COBOL for VSE/ESA 175

Using Literal Values in a COBOL
Program 176
How a COBOL Edit Routine Interacts
with CICS 176
How a COBOL Edit Routine Interacts
with QMF 178
Translating Your Program 183
Compiling Your Program 184
Link-Editing Your Program 184
Example JCL Statements 184
Defining the Edit Exit Phase to CICS . . 186

Writing an Edit Routine in PL/I 186
Writing an Edit Routine in PL/I for CICS 186
How a PL/I Edit Routine Interacts with
CICS 187
Translating Your Program 188
Link-Editing Your Program 188
CICS Program Definition 188
Example JCL Statements 188
How a PL/I Edit Routine Interacts with
QMF 190

Handling Double-Byte Character Set Data 196
Edit Codes for DBCS Data 196
What the Edit Routine Receives 196
Ensuring the Edit Routine Returns the
Right Results 197

Chapter 14. Controlling QMF Resources
Using a Governor Exit Routine 199
Quick Start 199
Using the IBM-Supplied Governor Exit
Routine 199

Activating the Default Limits for Number
of Rows Retrieved 200
How a Governor Exit Routine Controls
Resources 202
Defining Your Own Resource Limits . . 204
Creating your own Resource Control
Table 206

Modifying the IBM-Supplied Governor Exit
Routine or Writing Your Own. 208

Program Components of the Governor
Exit Routine 208

How CICS Interfaces with the Governor
Exit Routine 209
How and When QMF Calls the Governor
Exit Routine. 211
Passing Resource Control Information to
the Governor Exit 215
Storing Resource Control Information for
the Duration of a QMF Session 227
Canceling User Activity 228
Providing Messages for Canceled
Activities 228

Translating, Assembling, and Link-Editing
Your Governor Exit Routine 229

Translating Your Governor Exit Program
for CICS 229
Assembling Your Governor Exit 230
Link-Editing Your Governor Exit Routine 230
Example JCL Statements 230

Chapter 15. Troubleshooting and Problem
Diagnosis 233
Quick Start 233
Troubleshooting Common Problems. . . . 234

Handling Initialization Errors 234
Handling Warning Messages 234
Handling GDDM Errors During Printing 235
Handling QMF Errors During Printing 237
Handling Display Errors 237
Solving Slow Performance Problems . . 238

Determining the Problem Using Diagnosis
Aids 240

Choosing the Right Diagnosis Aid for the
Symptoms 240
Diagnosing Your Problem Using QMF
Message Support 240
Using the QMF Trace Facility 242
Using CICS Diagnostic Facilities 248
Using Error Log Reports from the
Q.ERROR_LOG Table 250

Reporting a Problem to IBM 251
Using ServiceLink to Search for
Previously Reported Problems 251
Working with Your IBM Support Center 254

Part 3. Appendixes 255

Appendix A. QMF for VSE/ESA Version 7
Product Limitations 257

vi Installing and Managing QMF for VSE/ESA

Appendix B. Migrating from QMF VSE V1
to Version 7 259
Quick Start 259
Migrating Queries, Forms, and Procedures 260

Starting the Migration Utility 261
Specifying the Type of Object 262
Specifying the Owner of the Object . . . 263
Specifying the Name of the Object . . . 264
Migrating Version 1 Objects to Version 7
Control Tables 264
Viewing Messages from the Migration 265

Migrating User Profiles 265
Deleting QMF VSE V1 After You Migrate
Your Objects 266

Deleting QMF VSE V1 from the VSE
Sublibrary 266
Deleting QMF VSE V1 Information from
the History File 267
Deleting QMF VSE V1 Objects from the
VSE DB2 Database 268
Deleting QMF VSE V1 Definitions from
the CICS System Tables 270

Appendix C. How QMF and GDDM
Programs Are Defined to CICS 271
How QMF Programs Are Defined to
CICS/VSE 271

Resident QMF Programs 271
How Nonresident Programs Affect
Performance 271
Loading QMF to the 31-Bit Shared Virtual
Area 272

How GDDM Definitions Are Loaded During
QMF Installation 273

How Nonresident GDDM Programs
Affect QMF 273

How Chart Formats Are Defined. . . . 274
Adding Charting Function After QMF
Installation 274

Using Transaction Routing to Control
Resource Use 274

Appendix D. QMF Control Tables and
dbspaces Used by QMF 275

Appendix E. Notices 277
Trademarks 280

Bibliography 281
APPC Publications 281
CICS Publications 281
COBOL Publications 282
DATABASE 2 Publications 282
DCF Publications 283
DRDA Publications 283
DXT Publications 283
Graphical Data Display Manager (GDDM)
Publications. 283
HLASM Publications. 283
ISPF/PDF Publications 283
OS/390 Publications 284
PL/I Publications 284
REXX Publications 284
ServiceLink Publications 284
VM Publications 285
VSE Publications 285

Glossary of Terms and Acronyms . . . 287

Index 301

Contents vii

viii Installing and Managing QMF for VSE/ESA

The QMF Library

You can order manuals either through an IBM representative or by calling
1-800-879-2755 in the United States or any of its territories.

© Copyright IBM Corp. 1983, 2000 ix

x Installing and Managing QMF for VSE/ESA

About This Book

This book is intended to help database administrators and systems
programmers install and maintain the Query Management Facility (QMF)
product in the Virtual Storage Extended/Enterprise Systems Architecture
(VSE/ESA)™ environment.

You should be familiar with VSE/ESA, VSE/VSAM, CICS/VSE®,
GDDM/VSE, and DB2 for VSE. It is also helpful to know the Interactive
Interface of VSE/ESA, because it is used as the primary installation tool.

To install QMF, you must first install and test CICS®, DB2 for VSE or VM™,
and the Graphical Data Display Manager (GDDM)®.

Terminology in This Guide

To keep the installation task as simple as possible, many of the full IBM
product names and titles are shortened. Each product is referred to by its
generic, rather than specific, name. For example, VSE/ESA is just VSE;
VSE/VSAM is VSAM; CICS/VSE is CICS; and DB2 for VSE or DB2® for VSE
is DB2.

Locating Prerequisite Documentation

In addition to this guide, keep the QMF Program Directory and the QMF
Preventive Service Planning (PSP) document ready during the installation.

The QMF Program Directory documents changes to the install process after this
book is published. You’ll find it packed in the shipping carton with your
installation tape. The PSP document also has late-breaking information about
installation. PSP documentation is described further in “Apply Service” on
page 6.

For a complete list of QMF publications, see “The QMF Library” on page ix.

How to Use This Book

The management tasks in this book assume QMF was installed according to
the installation procedures in “Part 1. Installing QMF on VSE/ESA” on page 1.
If you decide to customize some default aspects of the installation, see
“Appendix C. How QMF and GDDM Programs Are Defined to CICS” on
page 271.

© Copyright IBM Corp. 1983, 2000 xi

Most of the administration and customization tasks shown in this book are
done using the QMF product itself. Therefore, before you begin the tasks in
this book, run the Installation Verification Procedure (IVP) to ensure that QMF
is properly installed and configured for your site’s needs. The IVP is the final
step of the QMF installation process presented in “Part 1. Installing QMF on
VSE/ESA” on page 1.

Most of these tasks require that you have DB2 database administrator (DBA)
authority. If you follow the default procedure in “Part 1. Installing QMF on
VSE/ESA” on page 1, the user ID Q is defined for you during QMF
installation. This user ID has DBA authority.

Each chapter in “Part 2. Managing QMF for VSE/ESA” on page 43 includes a
section called “Quick Start”. Use these sections to get an overview of how to
accomplish a certain task. After you read the quick start section to understand
all the steps involved in the task, see the page indicated if you need more
information on how to perform each step.

What You Should Know before You Begin

The tasks explained in this book assume you have a working knowledge of
the following products:
v Virtual Storage Extended/Enterprise Systems Architecture (VSE/ESA), an

operating system that supports QMF and its related products.
v Customer Information Control System (CICS), a general-purpose data

communication and online transaction processing system. CICS/VSE
provides the interface between QMF and VSE/ESA.

v Graphical Data Display Manager (GDDM), which makes it possible for
QMF to display panels on the user’s screen and create charts.

v DATABASE 2 (DB2)™, the database where users’ objects are stored.
v High-Level Assembler (HLASM) programming language, which you need if

you plan to modify the IBM-supplied governor exit routine or write one of
your own. You might also use HLASM if you plan to create your own edit
codes for QMF forms.

v VS COBOL II or COBOL for VSE/ESA, which you might use if you plan to
create your own edit codes for QMF forms.

v PLI for VSE/ESA, which you might use if you plan to create your own edit
codes for QMF forms.

Publications that discuss these products are listed in the bibliography at
page281.

Additionally, you might want to become familiar with some of the end-user
functions provided by QMF. The QMF end-user functions are explained in

xii Installing and Managing QMF for VSE/ESA

Using QMF. Order numbers for this and other QMF publications are listed on
page ix and the back cover of this book.

How National Language Feature Information is Represented

QMF is available in several different languages, each of which is provided by
a National Language Feature (NLF).

NLFs enable users to enter QMF commands, view help and other information,
and perform QMF tasks in languages other than English. NLFs are installed as
separate features of QMF. For more information about NLF installation, see
“Part 1. Installing QMF on VSE/ESA” on page 1.

All tasks discussed in this book can be performed for the base QMF product
(English language) and for any NLF. For the most part, the procedures for
both the base and NLF sessions are the same; however, any special
considerations for NLF users are preceded by the phrase: if you’re using an
NLF.

Some names of programs and phases shown in this book have an n symbol in
them, indicating that the name can vary. If you’re using an NLF, replace all n
symbols you see in this book with the one-character national language
identifier (NLID) from Table 3 on page 10 that matches the NLF you installed.
The table also shows the names by which QMF recognizes each language.

About This Book xiii

xiv Installing and Managing QMF for VSE/ESA

Part 1. Installing QMF on VSE/ESA

Chapter 1. Before You Begin 3
Hardware 3
Prerequisite Software 3
QMF Storage Requirements 4
Apply Service 6
Check Space Requirements 6

Library Space 6
VSAM Catalog 6
dbspace 7
Check Your CICS Partition Size 7
Partition Size for Installation 8

Other Planning Considerations 8
Tailoring GDDM for QMF and CICS . . . 8

Changing GDDM 2.3 Default Parameters 8
Run the Installation Verification
Procedure (IVP) for GDDM 8

Running DB2 Guest Sharing 8
Customizing DB2 for Double-Byte Character
Support 9

Installation Overview 9
Base Installation 9

Optional Job 10
Installing Language Support 10

NLF Install Process. 11
CICS Tailoring 11

Chapter 2. Tailoring Your Installation . . . 13
Punch Members to an Editor 13
Install QMF Base 13

Catalog the Initialization Procedure . . . 13
Run the QMF Installation Job 15
Install QMF Base into DB2 Database . . . 16

Tailor QMF for NLF 18
Install NLF 18
Install QMF NLF into SQL Database . . . 19

Link-Edit Jobs for QMF 20
Link Jobs for NLF 21

Tailor CICS 21
Modify the DFHFCT and DFHDCT . . . 22

Modify DFHFCT 22
Modify DFHDCT 22

Define QMF Programs and Transactions to
CICS 23

Update the CSD. 23
Run CEDA 24

Modify the DFHPCT and DFHPPT . . . 25
Modify the DFHPCT 25
Modify the DFHPPT 25

Modify the CICS Startup Job 25
Install QMF for VSE/ESA into a Second CICS
System 26

Chapter 3. Installing QMF into Remote
Database Servers 27
Installing QMF Version 7 into a DB2
Universal Database® Remote Server 27

Prerequisites 27
Punch Members to an Editor 27
Installation steps 27

Installing QMF Version 7 into a DB2 for
AS/400® Server 29

Chapter 4. Run the Installation Verification
Procedure (IVP) 31
Before You Start QMF 31
Start and Test QMF 31
Run an IVP for NLF 34
What if It Didn’t Work? 34

Chapter 5. How to Maintain QMF 37
Adding New Components 37

Adding GDDM-PGF 37
Adding QMF to Another DB2 Database . . 37
Migrating to New Releases of DB2, CICS,
or GDDM 37
Binding QMF 7.1 Packages at a Remote
Server 37

Replacing Existing Components 38
Re-installing QMF 38
Re-installing an NLF 38
Applying Service Updates 39

Replacing Text Decks or Phases . . . 39
Updating the QMF Panel File 39
Updating QMF GDDM Maps 40
Updating QMF SQL Packages 41

© Copyright IBM Corp. 1983, 2000 1

|
||
|
||
||
||
||
|
||

|
||

2 Installing and Managing QMF for VSE/ESA

Chapter 1. Before You Begin

This chapter helps you plan for QMF installation. The key to success is having
adequate resources. The following sections describe the hardware and
software requirements, your planning considerations, and an overview of the
installation task for QMF in the VSE/ESA environment.

Hardware

The required hardware consists of the following components:

Processor: You can install QMF for VSE/ESA on any processor supported by
VSE/ESA Version 2 Release 2 or later in ESA mode.

Tape drive: You need a tape drive for loading the installation tape. You can
use any tape drive supported by VSE/ESA Version 2 Release 2 or later.

System console: You can use any terminal supported by VSE/ESA Version 2
Release 2 or later.

Terminal: You need a terminal to install and test QMF. If you are installing
support for a national language that requires the double-byte character set
(DBCS), you’ll need a terminal that also supports DBCS to run the installation
verification procedure (IVP).

Prerequisite Software

The following table lists the program products with the minimum release
levels required to support QMF for VSE/ESA Version 7. Later releases that are
not available at the QMF Version 7 announcement time are not supported
unless specifically stated otherwise.

Table 1. Prerequisite Software For QMF For VSE/ESA Version 7

Required product Version and release Number

IBM Virtual Storage
Extended/Enterprise Systems
Architecture (VSE/ESA)

Version 2 Release 2 5690–VSE

CICS/VSE Version 2 Release 2 5686–026

GDDM/VSE Version 3 Release 1 5686–057

DB2 for VSE Version 7 5697-F42

© Copyright IBM Corp. 1983, 2000 3

|

||

|||

|
|
|

||

|||

|||

|||
|

The following table lists the program products with the minimum release
levels required to support optional functions for QMF for VSE/ESA Version 7.
Later releases that are not available at the QMF Version 7 announcement time
are not supported unless specifically stated otherwise.

Table 2. Prerequisite software for optional functions for QMF for VSE/ESA Version 7

Product Version and release Number

CHARTS (Interactive Chart Utility):

GDDM—PGF (for GDDM
Version 3 release 1.1)

Version 2 Release 1.2 5668–812

GDDM—PGF (for GDDM
Version 2 release 3)

Version 2 Release 1.1 5668–812

Callable Interface Programs using the callable interface can be written in:

IBM C/370 Compiler and Version 2 5688–187

C/370 Library Version 2 5688–188

IBM HLASM Version 1 Release 1 or Release 2 5696–234

VS COBOL II Compiler and
Library

Version 1 Release 4 5688–023

COBOL for VSE/ESA Version 1 Release 1 5686–068

PL/1 for VSE/ESA Version 1 Release 1 5686–069

User Edit Routines can be written in:

IBM HLASM Version 1 5696–234

VS COBOL II Compiler and
Library

Version 1 Release 4 5688–023

COBOL for VSE/ESA Version 1 Release 1 5686–068

PL/1 for VSE/ESA Version 1 Release 1 5686–069

Governor Exit Routine:

IBM HLASM Version 1 5696–234

QMF Storage Requirements

Before you start using QMF, you need to make sure that each CICS partition
that runs QMF has enough storage to accommodate QMF programs and the
QMF reports users create.

The partition must be large enough to accommodate:

All QMF phases: 2.8MB 31-bit storage, total

Before You Begin

4 Installing and Managing QMF for VSE/ESA

|

Storage for users to execute queries and
hold QMF report data:

Average of 0.5MB to 1MB GETVIS storage
per user. Some report options may require
additional storage.

You can allocate storage for both purposes above 16MB.

For a QMF system with up to 20 users, allocate at least 24MB virtual storage
for your CICS partition. The minimum acceptable partition size for any QMF
system is 18MB, regardless of the number of users.

To specify your partition size, use the VSE ALLOC statement in the
ALLOC.PROC data set of the IPL procedures, as shown in the following
example. For systems with more than 20 QMF users, increase the ALLOC
0.5MB to 1MB for each additional user.

Also allow 9MB, within the 24MB, for your programs. Specify this space with
the SIZE value in the IPL allocation data set:
// JOB ALLOC
// EXEC LIBR,PARM='MSHP'
ACC S=IJSYSRS.SYSLIB
CATALOG ALLOC.PROC DATA=YES REPLACE=YES
ALLOC S,F1=24M
SIZE F1=9M...

Some users might require more than 1MB of GETVIS storage if they use
complex formatting options for a report, or if a large amount of data is
returned from a query. “Adjusting GETVIS Storage Used for Report Data
(DSQSBSTG)” on page 56 explains how to calculate the desired allocation and
size.

If a QMF transaction runs out of storage in the CICS partition, it might time
out waiting for storage to become available. Therefore, when you adjust the
GETVIS values for each user using the method explained in “Adjusting
GETVIS Storage Used for Report Data (DSQSBSTG)” on page 56, ensure you
increase the ALLOC to accommodate that additional storage.

You might also consider allocating a spill file for certain users, by defining
CICS auxiliary temporary storage in DFHTEMP. The spill file is used for extra
storage for data and reports. For information about this option, see
“Acquiring Extra Temporary Storage (DSQSPILL)” on page 58.

The installation procedure in this book installs QMF to an individual CICS
partition. If you have several users using QMF in different CICS partitions,
you might consider loading QMF into the 31-bit shared virtual area, as
explained on page 272. Or, if the QMF users you support routinely use more
than 1MB of GETVIS storage for queries and reports, you might also consider

Before You Begin

Chapter 1. Before You Begin 5

using CICS multiregion operations or intersystem communications to provide
more efficient use of CICS resources at your site. For information about both
of these alternatives to the default QMF installation, see “Using Transaction
Routing to Control Resource Use” on page 274.

Apply Service

Ensure that the service level of your system is current. Call your IBM
Software Service Support or use IBMLink™ (ServiceLink) in the United States
or EMEA DIAL in Europe to request the latest program temporary fixes
(PTFs) for QMF and its prerequisite products. Additionally, request QMF’s
preventive service planning (PSP) bucket, SUBSET: QMFVSE under
UPGRADE QMF610. The bucket contains general hints, HIPER APARs and
documentation changes. Subscribers that have access to either
Information/Access or ServiceLink, can download the information directly.

Check Space Requirements

To ensure that there is adequate disk storage for QMF installation, you need
to account for three kinds of space requirements. You must calculate all three
requirements to get an accurate storage estimate.

Library Space
Your first task is to calculate your exact library space requirements, in blocks.
You perform this calculation as part of the QMF installation described in the
QMF Program Directory. The number of QMF library blocks can vary.
Although there is a set number of blocks for the QMF base product, the
library block number increases if you are adding support for a national
language in addition to English.

If you need a rough estimate for planning purposes only, the number of library
blocks is approximately 14,100, and the minimum number for each national
language feature (NLF) is approximately 4,100.

VSAM Catalog
In addition to the library requirement, QMF needs to define a file in VSAM
space. This file needs:

2.5MB of free VSAM space in a VSAM catalog.

0.5MB of free VSAM space in the catalog that holds the GDDM file, ADMF.
You need free storage in the user catalog where the ADMF file resides.

If you’re using an NLF: For each NLF, you’ll need an additional 2.5MB of
VSAM catalog space, and a corresponding 0.5MB
space in the ADMF file. For further information on

Before You Begin

6 Installing and Managing QMF for VSE/ESA

how to add VSAM space to an existing catalog or
how to define a new VSAM catalog, see VSE/ESA
Administration.

dbspace
When you installed DB2, you created public and private dbspaces. QMF
needs some of the public dbspaces for tables, queries, procedures, forms, and
data.

A dbspace is a logical allocation of space in the database, which consists of 4K
pages. To convert dbspaces to megabytes, cylinders and tracks, or to add
dbspaces to the database, see DB2 Server for VSE System Administration.

If QMF tries to acquire the dbspace and there is not an exact match, it will try
to acquire the next largest size available. To avoid wasting space, check that
you have:

One 5120-page public dbspace
Three 256-page public dbspaces
Six 128-page public dbspaces

QMF needs this amount of space for each DB2 database; if you have multiple
databases, you need to take that into account. To verify the size of the
dbspaces, you can enter the following SQL statement from ISQL:
SELECT * FROM SYSTEM.SYSDBSPACES WHERE DBSPACETYPE=1 AND OWNER=' '

Your disk storage allotment is the sum of the dbspace, VSAM catalog space,
and library block size calculated in cylinders or blocks.

Check Your CICS Partition Size
The minimum acceptable partition size for any QMF system is 18MB,
regardless of the number of users. For a QMF system with up to 20 users,
allocate 24MB virtual storage for your CICS partition. To specify your
partition size, use the VSE ALLOC statement in the IPL procedure
ALLOC.PROC, such as:
ALLOC F4=24M
SIZE F4=9M

For systems with more than 20 QMF users, increase the ALLOC by 0.5MB to
1MB for each additional user. Also allow 9MB, within the recommended
24MB, for your programs. You specify this space with the SIZE value in the
IPL allocation data set.

Because the size of the GETVIS area is the difference between the partition
size and the SIZE value, your GETVIS is 15MB. After installation, you can

Before You Begin

Chapter 1. Before You Begin 7

adjust GETVIS space to maximize storage for a user’s queries and reports. For
more information on adjusting GETVIS, see “Chapter 6. Starting QMF” on
page 49.

Partition Size for Installation
You need a partition to run the QMF installation job. This partition must have
a partition size of at least 1.5MB.

Other Planning Considerations

Not all QMF installations are the same. The following sections describe some
additional installation considerations that might apply to your situation.

Tailoring GDDM for QMF and CICS
Before you install QMF, GDDM must be fully installed, tailored, and tested. It
is important to do a complete GDDM installation and not merely restore to a
library. During QMF installation, QMF modifies GDDM’s ADMF file.
Additionally, you must define GDDM resources, such as programs and
transactions, to CICS.

Changing GDDM 2.3 Default Parameters
If you are using GDDM 2.3, you might need to modify a parameter in the
GDDM external defaults module. Ensure that the IOSYNCH parameter in
ADMADFC is set to YES.

Run the Installation Verification Procedure (IVP) for GDDM
Check that you have GDDM properly installed by running the IVP for
GDDM. The IVP minimizes installation problems and ensures that you are
installing QMF onto a clean system.

Running DB2 Guest Sharing
You have the option to connect your CICS partition to a DB2 database on
either VSE or VM. When VSE is a guest of VM and shares data with the
host’s applications through a common VM DB2 database, it is called guest
sharing. The benefit of SQL guest sharing is that both VM and VSE users can
use a common database. QMF requires minimum levels of VM/ESA® 1.1 and
DB2 6 to use QMF in an SQL guest sharing environment. You do not have to
install QMF for VM.

If you establish an SQL guest sharing environment and want to install QMF
on VSE, complete the installation as if VSE owned the database. The VM DB2
database is transparent to the VSE user.

However, if you have both DB2 and QMF installed under VM/ESA, and you
want to install an additional QMF product in VSE, you can skip the part of
the QMF installation that deals with database installation. During the install

Before You Begin

8 Installing and Managing QMF for VSE/ESA

process, you are told when to skip that step. Otherwise, the remainder of this
manual assumes that you are installing QMF into a DB2 for VSE database.

Customizing DB2 for Double-Byte Character Support
If you plan to install QMF with a national language that requires double-byte
character support, you need to complete the database customization before
installing QMF. For details on customizing DB2 for double-byte character
support, see DB2 Server for VSE System Administration.

Installation Overview

Every data center is different, and every system in each data center can be
configured numerous ways. You might have multiple DB2 databases, one or
more CICS systems, VSE running as a guest under VM/ESA, DB2 guest
sharing, another version of QMF (either on VM or VSE), or special national
language requirements. Because your VSE system might be unique, we have
designed the QMF installation so that you can easily install and re-install
using only a few simple jobs.

Some of these jobs you will run only once, others you will run multiple times,
depending on your configuration.

Base Installation
The base (English version) installation requires that you run the following
jobs:

DSQ3INIT
This job establishes the initialization criteria for the remainder of the
installation. The other installation jobs use the procedure cataloged by
DSQ3INIT to find information about installed products such as
GDDM, DB2, and VSAM. It also contains information about the QMF
installation. You run DSQ3INIT only once.

DSQ3EINS
This job defines and loads the QMF panel file (DSQPNLE) into VSAM
space. The panel file contains all of the panel definitions. DSQ3EINS
also loads maps and sample charts; you run it only once.

DSQ3EDBI
This job is the database installation job of QMF. DSQ3EDBI creates
QMF control tables, loads QMF packages, and defines and loads
sample tables into the DB2 database. You run DSQ3EDBI once for
each local SQL database that you are connecting to CICS.

Normally, DSQ3EDBI is a mandatory job. However, if you currently
have QMF for VM/ESA 7.1 or later installed, and you want to add a
QMF for VSE/ESA in an SQL guest sharing environment, you do not
need to run this job. This is because the database portion of QMF was

Before You Begin

Chapter 1. Before You Begin 9

|
|
|
|

installed during the QMF VM installation. However, if you want to
define a DB2 VSE database in addition to the DB2 VM database, you
do need to run DSQ3EDBI.

Optional Job

DSQ3ELNK
This job link-edits QMF with the current versions of GDDM, CICS,
and DB2. You do not need to run this job if you have installed:

GDDM/VSE 3.2
CICS for VSE/ESA 2.3
DB2 for VSE 7.1

QMF is already linked with those versions.

Installing Language Support
The QMF base installation loads all of the panels and maps in English. If you
require QMF in another or different language, you need to order one or more
of the National Language Features (NLFs) of QMF.

You can distinguish base installation members from NLF members by a single
character abbreviation known as the National Language Identifier (NLID). In this
manual, and throughout the QMF library, we use the letter n to represent the
NLID. As you proceed through the installation process, you are told when to
substitute the letter n in a member name with the NLID. For example, if you
are installing DSQ3FINS.Z for French support, you substitute F in place of the
n in member name DSQ3nINS.Z. The same member name for English support
is DSQ3EINS.Z. Table 3 lists all of the languages and their associated NLIDs.

Table 3. NLIDs representing QMF base (English) and National Language Features
(NLFs)

Language NLID (n)

Brazilian Portuguese P

Canadian-French C

English E

French F

German D

Italian I

Japanese K

Korean H

Simplified Chinese R

Spanish S

Swiss French Y

Before You Begin

10 Installing and Managing QMF for VSE/ESA

|
|
|

Table 3. NLIDs representing QMF base (English) and National Language Features
(NLFs) (continued)

Language NLID (n)

Swiss German Z

Uppercase English U

The uppercase feature (UCF) uses the English language, but converts all text
to uppercase characters. The uppercase characters allow users working with
Katakana terminals to use the product and get English online help and
messages. Terminals equipped with Katakana support include IBM® 3277,
3278, and 3279 terminals, as well as IBM 5550 Multistations.

NLF Install Process
You start an NLF installation by scanning the tape. You can do this when you
scan the tape for the base product. After the tape is restored to disk, you
continue through the installation procedures for the base install, up to the
point of CICS tailoring. You must complete the installation of the base
product, up to CICS tailoring, before you install the NLFs. While doing the
base installation, ignore the sections in the procedures that apply to NLFs.

After the base product is installed, go back through the same procedures and
follow the directions that apply for an NLF. Continue with CICS tailoring and
customize both the base and the NLFs at the same time. Last, run the
Installation Verification Procedures (IVPs) for the base product and for each
NLF.

The NLF-specific installation jobs are:

DSQ3nINS
This job is the same as DSQ3EINS, except that it loads the panel files
in your national language. It is a mandatory step.

DSQ3nDBI
This job is the same as DSQ3EDBI, except that it loads the sample
tables and profile table in your national language. It is a mandatory
step for each database that you connect to CICS.

DSQ3nLNK
This job is the same as DSQ3ELNK, except it link-edits the national
language parts of QMF. It is an optional step depending on the
product versions you have installed.

CICS Tailoring
After you install the product base and any NLFs, you are ready to tailor CICS.
You can tailor CICS for both the base and any NLFs at the same time.
However, you must make the modifications to every CICS system that works
with QMF.

Before You Begin

Chapter 1. Before You Begin 11

During CICS tailoring, you modify four CICS tables.
v Destination control table (DCT)
v File control table (FCT)
v PROGRAM resource (CSD) or processing program table (PPT)
v TRANSACTION resource (CSD) or program control table (PCT)

All four of the tables can be modified by assembling resource definition
tables, but some of the tables can also be modified by defining resources
online (RDO) in a CICS system definition (CSD) data set. You’ll use
copybooks and copy statements to change the tables. There are similar
copybooks and copy statements for the NLF versions.

When CICS tailoring is complete, you need to check the installation by
following the IVPs for the base product and for each NLF.

Before You Begin

12 Installing and Managing QMF for VSE/ESA

Chapter 2. Tailoring Your Installation

Before anyone can use QMF, you need to customize it. This chapter leads you
through the necessary steps to tailor or customize QMF and CICS for your
system. You must have completed the QMF for VSE 7.1 installation from tape
per the program directory before proceeding with this chapter.

Punch Members to an Editor

Because you cannot edit members in a VSE sublibrary, you need to punch the
members to a facility that has an editor such as ICCF or Virtual Machine
(VM). The following procedure assumes you want to punch QMF jobs to an
ICCF library.
1. Return to the main VSE/ESA Function Selection panel.
2. Select the Command Mode option to allow you to enter commands directly.

You can switch to a secondary library by entering
/SWI nn

where nn represents the target ICCF library number.
3. Punch the following members to ICCF. Press Enter after typing each

command.
LIBRP PRD2.PROD DSQ3INIT.Z DSQ3INIT (REPLACE
LIBRP PRD2.PROD DSQ3EINS.Z DSQ3EINS (REPLACE
LIBRP PRD2.PROD DSQ3EDBI.Z DSQ3EDBI (REPLACE

4. For NLF:
Punch NLF installation members to ICCF. Using the NLID for your NLF
listed in Table 3 on page 10, substitute the n with the NLID before
punching the job. Press Enter after typing each command.
LIBRP PRD2.PROD DSQ3nINS.Z DSQ3nINS (REPLACE
LIBRP PRD2.PROD DSQ3nDBI.Z DSQ3nDBI (REPLACE

Install QMF Base

In this section you install the QMF base, which involves:
v Modifying and cataloging the initialization procedure
v Running the install job
v Installing to the DB2 database

Catalog the Initialization Procedure
DSQ3INIT is the QMF initialization procedure. It establishes the installation
criteria for the remainder of the installation, which is stored in

© Copyright IBM Corp. 1983, 2000 13

|
|
|
|

DSQ3INIT.PROC. Because the information stored in DSQ3INIT is critical to
the success of the installation, ensure your entries are correct before running
the job. An incorrect entry in this job causes errors in subsequent job steps.

You must edit DSQ3INIT before it can run.
1. Delete the first line of the file, which begins with CATALOG.
2. Change all instances of ..* to * with the following command:

ch /..*/*/ *

3. Delete the last two lines of the file, leaving the end-of-job statement.
4. Verify or change the name of the QMF library and sublibrary, if necessary.

If you are using anything other than the default library, PRD2.PROD,
change the name to your library name.
// EXEC LIBR,PARM='MSHP'

ACC S=PRD2.PROD
CATALOG DSQ3INIT.PROC

// SETPARM QMFLIB=PRD2 *-- QMF for VSE LIBRARY
// SETPARM QMFSLIB=PROD *-- QMF for VSE SUBLIBRARY

5. Check the default library and sublibrary for GDDM/VSE and DB2 for
VSE. Compare, and change if necessary, the defaults to actual library and
sublibrary names being used. The default values are:
// SETPARM ADMLIB=PRD2 *-- GDDM/VSE LIBRARY
// SETPARM ADMSLIB=PROD *-- GDDM/VSE SUBLIBRARY
// SETPARM SQLLIB=PRD2 *-- DB2 LIBRARY
// SETPARM SQLSLIB=DB2610 *-- DB2 SUBLIBRARY

6. Check the VSAM catalog name and ID. The catalog name and ID specify
the target VSAM catalog for the QMF panel file and any NLF panel files.
Compare the fields and change if necessary.
// SETPARM UCAT=VSESPUC *-- FILE NAME OF CATALOG
// SETPARM UCATID='VSESP.USER.CATALOG' *-- FILE ID OF CATALOG

7. Determine whether you changed any of the defaults for GDDM/VSE. You
defined ADMF in a VSAM catalog during the GDDM install. QMF
installation loads maps and forms to ADMF. QMF requires the file ID of
ADMF (ADMFID), the catalog name (ACAT), and the catalog ID
(ACATID).
If you changed the defaults, change the following statements to match
your naming convention.
// SETPARM ADMFID='ADMF' *-- FILE ID OF GDDM/VSE FILE ADMF
// SETPARM ACAT=VSESPUC *-- CATALOG NAME AND CATALOG ID IN
// SETPARM ACATID='VSESP.USER.CATALOG' *-- WHICH ADMF IS DEFINED

8. File the job and run DSQ3INIT. Check the system console to ensure that
the job ran with a return code of 0.
If the job did not run with a return code of 0:
a. Check for an error message on the system console.

Tailoring Your Installation

14 Installing and Managing QMF for VSE/ESA

b. Check the list output to find the cause of the problem.
c. Correct the problem.
d. Rerun DSQ3INIT.
e. Recheck the return code.

Run the QMF Installation Job
DSQ3EINS is the QMF installation job.
v It defines and loads the QMF panel file
v It loads sample charts
v It loads maps

During the initial installation, to successfully load and execute this job, you
must:
1. Edit DSQ3EINS to change or supply the required parameters.

a. Delete the first line of the file, starting with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
2. Return to the top of the job and ensure the four job steps are set to YES.

DSQ3EINS contains four job steps. When a SETPARM is set to YES, you
are indicating that you want to run that step; when set to NO, the step is
skipped. Under most circumstances, these steps are run only once, because
VSE can share files with multiple CICS systems. For subsequent
installations, or under error conditions, you might need to set some of the
job steps to NO.
// SETPARM STEP1=YES *-- DEFINE CLUSTER DSQPNLE
// SETPARM STEP2=YES *-- LOAD DSQPNLE
// SETPARM STEP3=YES *-- LOAD QMF CHARTS
// SETPARM STEP4=YES *-- LOAD QMF MAPS

3. Verify or change all instances of the library and sublibrary names. If you
installed QMF to a library other than PRD2.PROD, you need to change the
library and sublibrary names.

4. Supply one or more volume IDs for the VSAM cluster that holds the QMF
panel file. Locate this cluster definition under job step 1.
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER (-

NAME (QMF610.DSQPNLE) -
RECORDS (1200 50) -
SHAREOPTIONS (3) -
RECORDSIZE (1920 32756) -
VOLUMES (--V001--) -

Replace the variable --V001-- with the volume IDs, such as DOSRES or
SYSWK1. For example:
VOLUMES (DOSRES SYSWK1) -

Tailoring Your Installation

Chapter 2. Tailoring Your Installation 15

or
VOLUMES (DOSRES) -

5. File and run the job. Check the system console to ensure that the job ran
with a return code of 0.
If the job did not run with a return code of 0:
a. Check for an error message on the system console.
b. Check the list output to find the cause of the error.
c. Locate the job step that failed.
d. Correct the problem.
e. Reset the setparms that appear before the error to NO so that

successful job steps are not run again.
f. Rerun DSQ3EINS.
g. Recheck the return code.

Install QMF Base into DB2 Database
DSQ3EDBI is the database installation job; you run it once for each SQL
database that you are connecting to QMF.

Skip this procedure if you have a DB2 guest sharing environment and you
installed QMF for VM. Under these conditions, you can continue with “Tailor
QMF for NLF” on page 18, if you have an NLF to install, or skip to “Link-Edit
Jobs for QMF” on page 20 for a base installation.

DSQ3EDBI:
v Creates QMF control tables
v Loads QMF packages
v Defines and loads sample tables
1. Edit DSQ3EDBI (first use of the job only).

a. Delete the first line of the file, starting with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
2. Ensure that the first three job steps are set to YES.

// SETPARM STEP1=YES -- CREATE QMF CONTROL TABLES IN SQL DB
// SETPARM STEP2=YES -- LOAD QMF PACKAGES INTO SQL DB
// SETPARM STEP3=YES -- LOAD QMF SAMPLES INTO SQL DB

For subsequent installations, or under error conditions, you might need to
set some of the job steps to NO. By changing a setparm to NO, you skip the
step.

3. Locate the // SETPARM DBNAME=SQLDS parameter and verify or change
SQLDS to the name of the database that you are using.

Tailoring Your Installation

16 Installing and Managing QMF for VSE/ESA

DBNAME is the database name that is specified in the SQL DBNAME
directory.

4. Determine whether this database has an earlier version of QMF for VSE
installed. The possible earlier versions are QMF V1R1, QMF V3R1M1,
QMF V3R2, QMF V3R3, or QMF V6R1.
If there is an earlier version installed, locate the following statement and
change the value from NO to V1R1, V3R1M1, V3R2, or V3R3.
// SETPARM MIGRATE=NO
//

Using this parameter prevents you from creating duplicate control tables
for existing customers.

5. Verify or change all instances of the QMF library and sublibrary names. If
you installed QMF to a library other than PRD2.PROD, change the library
and sublibrary names.

6. Ensure that DB2 is up and running in multiple user mode.
7. Ensure the SQLDBA’s password is set to SQLDBAPW.

The QMF installation procedures assume that the password for SQLDBA is
set to SQLDBAPW. If the password is set to anything else, you need to
update DSQ3SETQ.A and re-catalog DSQ3SETQ.A into the QMF
installation library.
To update DSQ3SETQ.A:
a. Punch the member DSQ3SETQ.A to an editor, such as ICCF.
b. Modify the CONNECT statement by replacing SQLDBAPW with your

existing password for SQLDBA.
CONNECT SQLDBA IDENTIFIED BY 'new-SQLDBAPW'

c. Recatalog DSQ3SETQ.A into the QMF installation library
(PRD2.PROD).

8. File and run DSQ3EDBI. As the job runs, the system console displays
messages that indicate which job step is executing. At the end of the job,
check the system console to ensure that the job ran with a return code of
0. If you are migrating from an earlier version of QMF for VSE, you might
get a return code of 6 in job step 1. Under this condition, you can ignore
the return code and continue.
If the job did not run with a return code of 0 or 6:
a. Check for an error message on the system console.
b. Determine from the console the last job step that completed

successfully and the job step that failed.
c. Check the list output to find the cause of the problem.
d. Correct the problem.
e. Reset the setparms to NO that occur before the error so that successful

jobsteps are not run again.

Tailoring Your Installation

Chapter 2. Tailoring Your Installation 17

f. Rerun DSQ3EDBI.
g. Recheck the return code.

If you want to install QMF into additional DB2 databases, repeat this
procedure for each database, starting with step 3 on page 16. Otherwise, go
to “Tailor QMF for NLF”, or to “Link-Edit Jobs for QMF” on page 20.

Tailor QMF for NLF

If you are adding support for a national language, you punched two
additional members, DSQ3nINS and DSQ3nDBI. These jobs need to be edited
and executed.

Install NLF
As with DSQ3EINS, you run DSQ3nINS only once.
1. Edit DSQ3nINS for the following:

a. Delete the first line of the file, starting with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end of job statement.
d. Locate the three setparms and ensure that they are set to YES.

// SETPARM STEP1=YES *-- DEFINE CLUSTER DSQPNLn
// SETPARM STEP2=YES *-- LOAD DSQPNLn
// SETPARM STEP3=YES *-- LOAD QMF MAPS TO ADMF

e. Verify or correct the QMF library and sublibrary names. If you changed
from the default PRD2.PROD library, change the names accordingly.

f. Supply one or more volume IDs for the VSAM cluster that holds the
national language version of the QMF panel file. Locate this cluster
definition under job step 1.
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER (-

NAME (QMF610.DSQPNLn) -
RECORDS (1200 50) -
SHAREOPTIONS (3) -
RECORDSIZE (1920 32756) -
VOLUMES (--V001--) -

2. File DSQ3nINS and run the job. Check the system console to ensure that
the job ran with a return code of 0.
If the job did not run with a return code of 0:
a. Check for an error message on the system console.
b. Determine from the console the last job step that completed

successfully and the job step that failed.
c. Check the list output to find the cause of the problem.

Tailoring Your Installation

18 Installing and Managing QMF for VSE/ESA

d. Correct the problem.
e. Reset the setparms that appear before the error to NO so that

successful job steps are not run again.
f. Rerun DSQ3nINS.
g. Recheck the return code.

Install QMF NLF into SQL Database
Edit DSQ3nDBI for each database that needs NLF support:
1. Delete the first line of the file, starting with CATALOG.
2. Change all instances of ..* to * with the following command:

ch /..*/*/ *

3. Delete the last two lines of the file, leaving the end-of-job statement.
4. Ensure that the first three job steps are set to YES.:

// SETPARM STEP1=YES *-- Create Profile
// SETPARM STEP2=YES *-- Drop Sample Tables
// SETPARM STEP3=YES *-- Create and Load Sample Tables

For subsequent installations, or under error conditions you might need to
set some of the job steps to NO. By changing a setparm to NO, you skip
the step.

5. Locate the database name SQLDS, and verify that it is set for the correct
database.
// SETPARM DBNAME=SQLDS *-- TARGET DB2 DBNAME FOR QMF on VSE/ESA

6. Determine whether this database has an earlier version of QMF for VSE
installed. The possible earlier versions are QMF V1R1, QMF V3R1M1,
QMF V3R2 or QMF V3R3 or QMF V6R1. If there is an earlier version
installed, locate the following statement and change the value from NO to
V1R1, V3R1M1, V3R2, V3R3, or QMF V6R1.
// SETPARM MIGRATE=NO

Using this parameter prevents you for creating duplicate control tables
and samples.

7. Verify or correct the QMF library and sublibrary names. If you changed
from the default PRD2.PROD library, change the names accordingly.

8. Ensure that DB2 is up and running in multiple user mode.
9. File DSQ3nDBI and run the job. Check the system console to ensure that

the job ran with a return code of zero.
If the job did not run with a return code of 0:
a. Check for an error message on the system console.
b. Determine from the console the last job step that completed

successfully and the job step that failed.
c. Check the list output to find the cause of the problem.

Tailoring Your Installation

Chapter 2. Tailoring Your Installation 19

d. Correct the problem.
e. Reset the setparms that appear before the error to NO so that

successful jobsteps are not run again.
f. Rerun DSQ3nDBI.
g. Recheck the return code.

Repeat this procedure, starting with step 5 on page 19, for every database that
needs NLF support.

Link-Edit Jobs for QMF

QMF is prelinked with the following release levels of products:
GDDM/VSE 3.2
CICS/VSE 2.3
DB2 6

If you have different releases of these products, you need to run the following
job.
1. Punch DSQ3ELNK to a library, and edit the job. The following example

uses ICCF to perform the punch.
LIBRP PRD2.PROD DSQ3ELNK.Z DSQ3ELNK (REPLACE

Press Enter.

For NLF:

Punch and edit DSQ3nLNK.
LIBRP PRD2.PROD DSQ3nLNK.Z DSQ3nLNK (REPLACE

Press Enter.
2. Delete the first line of the file, starting with CATALOG.
3. Change all instances of ..* to * with the following command:

ch /..*/*/ *

4. Verify or change the name of the QMF library and sublibrary. If you are
using anything other than the default PRD2.PROD library, change the
name globally to your naming convention.

5. Verify or change the search chain so that it contains the library and
sublibrary for QMF, DB2, GDDM/VSE, and CICS.
// LIBDEF OBJ,SEARCH=(PRD2.PROD,PRD2.DB2610,PRD1.BASE)

6. File and run the job. Check the system console to ensure that the job ran
with a return code of 4. You do not receive a return code of 0 because of
weak external references (WXTRNs) that are not resolved during the
linkage editor run.

Tailoring Your Installation

20 Installing and Managing QMF for VSE/ESA

If the job did not run with a return code of 4, recheck the LIBDEF
statement for the above products, and rerun the link-edit job.
Following is an example of the kind of output you can expect from this
link-edit:
2165I WARNING - RMODE=ANY ASSIGNED TO PHASE, BUT THE PHASE

CONTAINS 2 AND/OR 3 BYTE RELOCATABLE ADDRESS CONSTRAINTS
UNRESOLVED EXTERNAL REFERENCES WXTRN ADMUFO

WXTRN GERHND
WXTRN ADME000C
WXTRN ADMADFC
WXTRN ADMACIN
WXTRN ADMUOFF
WXTRN DSQCLDQ
WXTRN LTTBAS
WXTRN LTTBASX
WXTRN DSNHLI
WXTRN DSQIRDB2

Additionally you will see several messages about the use of WXTRNs and
using 2- or 3-byte ADCONs. These messages are expected and should not
cause a problem for QMF.

Link Jobs for NLF
Repeat the procedure in “Link-Edit Jobs for QMF” on page 20 for your NLF
version of DSQ3nLNK.

Tailor CICS

You need to modify the following CICS tables for QMF to run in CICS:
v Destination control table (DCT)
v File control table (FCT)
v PROGRAM resource (CSD) or processing program table (PPT)
v TRANSACTION resource (CSD) or program control table (PCT)

These modifications need to be made for every CICS system that works with
QMF.

You must define resources, such as QMF programs and transactions, that
CICS controls for a particular run. You can define resources through two
methods: either by defining resources online (RDO) in a CICS system
definition (CSD) data set, or by assembling resource definition tables using
macros.

You must use the macro method to define the FCT and DCT. QMF supplies
copybooks for modifying these tables.

You can also modify your PCT and PPT by using the QMF supplied
copybooks. However, the recommended way to modify these tables is with

Tailoring Your Installation

Chapter 2. Tailoring Your Installation 21

RDO to a CSD data set. RDO allows you to interactively create resource
definitions and store them in a data set.

CICS offers a utility program (DFHCSDUP) to update the CSD with a batch
job. QMF provides a job to allow you to define the QMF programs and
transactions to CICS without reassembling the DFHPCT and DFHPPT.

In the following procedures you need to know how to locate tables and
assemble them using the Interactive Interface. Using the Interactive Interface
is described in IBM VSE/ESA Administration

Modify the DFHFCT and DFHDCT
Change these tables using the macro method.

Before editing, locate the source used to create the FCT and DCT for this CICS
system. In the following examples, we assume that you used the skeletons
provided with VSE/ESA to bring up another CICS system. If you did not use
those skeletons, you can use CICS for VSE/ESA Resource Definition (Macro) to
locate the appropriate place to insert the changes. Also note that these
examples have a suffix of C2; your tables might be different. The chapter on
installing a second predefined CICS in IBM VSE/ESA Administration gives
more details on using these skeletons.

Modify DFHFCT
Modify the source of your DFHFCT to define the QMF panel file to CICS.
1. Find the LIBDEF statement and ensure that the search chain contains the

library and sublibrary for QMF. Otherwise, VSE/ESA cannot find the
copybook.
// LIBDEF *,SEARCH=(PRD1.BASE,PRD2.PROD)

2. Add a local entry for the QMF panel file in the FCT. If you are adding an
NLF, also add a copy statement for the NLF member. For example:
*---
* LOCAL ENTRIES SHOULD BE PLACED BELOW THIS BOX
*---

COPY DSQ3EFCT
COPY DSQ3nFCT
SPACE 3

Substitute the appropriate NLID for the n.
3. Assemble and link-edit the member to create a new DFHFCTC2 phase.

Modify DFHDCT
Locate the source of your DFHDCTC2 and make the following changes:
1. Find the LIBDEF statement and ensure that the search chain contains the

library and sublibrary for QMF. Otherwise, VSE cannot find the copybook.
// LIBDEF *,SEARCH=(PRD1.BASE,PRD2.PROD)

Tailoring Your Installation

22 Installing and Managing QMF for VSE/ESA

2. Find the local entry for TYPE=SDSCI and add a copy statement for
DSQ3DCTS as shown in the following example:
*---
* LOCAL ENTRIES FOR TYPE=SDSCI SHOULD BE PLACED BELOW THIS BOX
*---

COPY DSQ3DCTS
SPACE 3

3. Install the QMF trace facility.
Find where local entries are specified and add a copy statement,
(DSQ3DCTE), for TYPE=EXTRA, as shown in the following example:
*---
* OTHER LOCAL ENTRIES SHOULD BE PLACED BELOW THIS BOX
*---

COPY DSQ3DCTE
SPACE 3

4. Assemble and link-edit the member to create a new DFHDCTC2 phase.

Ensure the job completes with a return code of 0 or 4. If you receive higher
return codes, check the list output and correct the error.

Define QMF Programs and Transactions to CICS
QMF provides help to define the QMF programs and transactions to CICS:
v By providing a batch job that defines the QMF resources to the CICS CSD
v By providing copybooks that can be included in the CICS PPT and PCT

We recommend that you define the QMF programs to the CSD using the job,
DSQ3ECSD (and DSQ3nCSD for NLF installs).

Update the CSD
This procedure creates a new LIST called QMF, which is defined in the CSD.
Additionally, for each language, a GROUP called QMF610n is defined in the
LIST QMF. QMF610n contains the definition of the QMF programs and
transactions (E for English).

The following procedure assumes you punch QMF jobs to an ICCF library.
1. Punch the following member to ICCF using this command:

LIBRP PRD2.PROD DSQ3ECSD.Z DSQ3ECSD (REPLACE

Press Enter.
2. Punch equivalent NLF members to ICCF. Substitute the NLID for the n in

the following example.
LIBRP PRD2.PROD DSQ3nCSD.Z DSQ3nCSD (REPLACE

Press Enter.
3. Edit DSQ3ECSD (or DSQ3nCSD for NLF)

Tailoring Your Installation

Chapter 2. Tailoring Your Installation 23

a. Delete the first line of the file, starting with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
4. Check that the file ID and catalog reflect your CSD.

// DLBL DFHCSD,'CICS.CSD',,VSAM,CAT=VSESPUC

5. Verify that the library and sublibrary names in the POWER statements are
the QMF library and sublibrary names.
* $$ SLI MEM=DSQ3ECDN.A,S=PRD2.PROD
* $$ SLI MEM=DSQ3BCDB.A,S=PRD2.PROD

For NLF:
* $$ SLI MEM=DSQ3nCDN.A,S=PRD2.PROD

6. File and run the job. Ensure the job completes with a return code of 0 or 4.
If you receive higher return codes, check the list output and correct the
error. If you are having difficulty with RDO, see CICS for VSE/ESA
Resource Definition (Online)

Run CEDA
CEDA is one of three interactive online transactions that comprise RDO.
Using CEDA, you can modify, delete, check, and browse definitions while
CICS is running. CEDA provides commands for managing groups and lists,
which include installing a group of resource definitions on an active system.

To activate your resource definitions from the main VSE/ESA Function
Selection panel:
1. Select 7 CICS - Supplied Transactions and press Enter.
2. Select 2 Invoke CEDA from the CICS-Supplied Transaction panel and press

Enter.
3. Type AP LIST(QMF) TO(VSELIST) and press Enter.

The VSELIST parameter must be the name specified for the GRPLIST
parameter specified in DFHSIT of this CICS. CEDA appends the LIST
QMF to the LIST VSELIST and ensures that the QMF definitions are
known to CICS after the next cold start.
To activate these QMF definitions immediately, you can either:
v Perform a CICS cold start, or
v Issue CEDA INSTALL GR(QMF710e) for a temporary (but immediate)

change

For NLF:
4. Repeat the procedure for applicable NLF members. Your CEDA command

looks like:
CEDA INSTALL GR(QMF710n)

Tailoring Your Installation

24 Installing and Managing QMF for VSE/ESA

|
|

|

Your next step is to modify the CICS startup job, as described in “Modify the
CICS Startup Job”.

Modify the DFHPCT and DFHPPT
If you didn’t define the QMF programs and transactions to the CSD, then you
need to make the following modifications.

Modify the DFHPCT
1. Locate the source deck of your DFHPCT.
2. Find where local entries are made and enter copy statements for

DSQ3EPCT and for any NLF PCT entries, as shown in the following
example:
*---
* LOCAL ENTRIES SHOULD BE PLACED BELOW THIS BOX
*---

SPACE 3
COPY DSQ3EPCT ***** QMF for VSE BASE ENTRIES

For NLF:
COPY DSQ3nPCT ***** QMF for VSE NLF ENTRIES

Substitute the appropriate NLID for the n.
3. Assemble and link-edit the member to create a new DFHPCTC2 phase.

Modify the DFHPPT
1. Locate the source of your DFHPPT.
2. Find where local entries are made and enter copy statements for

DSQ3EPPT and for any NLF PPT entries, as shown in the following
example:
*---
* LOCAL ENTRIES SHOULD BE PLACED BELOW THIS BOX
*---

SPACE 3
COPY DSQ3EPPT ***** QMF for VSE BASE ENTRIES

For NLF:
COPY DSQ3nPPT ***** QMF for VSE NLF ENTRIES

Substitute the appropriate NLID for the n.
3. Assemble and link-edit the member to create a new DFHPPTC2 phase.

Modify the CICS Startup Job
In this step, you modify the CICS startup job.
1. Locate the LIBDEF statement with the following search string and ensure

that it contains the QMF library and sublibrary.

Tailoring Your Installation

Chapter 2. Tailoring Your Installation 25

// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD1.BASE,PRD2.DB2610, -
PRD2.PROD),PERM

2. Define the labels for the base QMF panel file and for the NLF equivalent
member with your other CICS DLBL statements.
// DLBL DSQPNLE,'QMF710.DSQPNLE',,VSAM,CAT=VSESPUC

For NLF:
// DLBL DSQPNLn,'QMF710.DSQPNLn',,VSAM,CAT=VSESPUC

Optionally, you can include the above DLBL statement in the system
standard label procedure.

3. Ensure that you expanded virtual storage allocated to the CICS partition.
Partition size considerations are discussed under “Check Your CICS
Partition Size” on page 7.

Shut down and restart CICS to incorporate your changes to the CICS tables
and to the CICS startup job.

Install QMF for VSE/ESA into a Second CICS System

When installing QMF to several CICS systems, determine if you have a single
CSD that is shared among the CICS systems, or individual CSDs per CICS
system. You can determine if all the CICS systems use the same CSD by
comparing the GRPLIST parameter in the SIT for each CICS.

If you have a single CSD for all of your CICS systems, you can skip further
customization steps after you have initially defined QMF programs and
transactions to the CSD. You still need to modify the FCT and DCT of the
second CICS. These procedures begin with “Modify DFHFCT” on page 22 and
“Modify DFHDCT” on page 22. and continue through modifying the CICS
startup routine, as described in “Modify the CICS Startup Job” on page 25.

If you have individual CSDs for every CICS system, you need to repeat the
entire CICS customization procedure for each CICS system. These procedures
begin with “Modify the DFHFCT and DFHDCT” on page 22.

Tailoring Your Installation

26 Installing and Managing QMF for VSE/ESA

|

|

|

Chapter 3. Installing QMF into Remote Database Servers

In order to install QMF into remote database servers from VSE, TCP/IP
communications must be in place between the local DB2 for VSE requester
and the remote database server.

Installing QMF Version 7 into a DB2 Universal Database ® Remote Server

DB2 Universal Database V5 or higher is supported.

Prerequisites
TBD

Punch Members to an Editor
Because you cannot edit members in a VSE sublibrary, you need to punch the
members to a facility that has an editor such as ICCF or Virtual Machine
(VM). The following procedure assumes you want to punch QMF jobs to an
ICCF library.
1. Return to the main VSE/ESA Function Selection panel.
2. Select Command Mode option to allow you to enter commands directly.

You can switch to a secondary library by entering
/SWI nn

where nn represents the target ICCF library number.
3. Punch the following members to ICCF. Press Enter after typing each

command.
LIBRP PRD2.PROD DSQ3EDBU.Z DSQ3EDBU (REPLACE
LIBRP PRD2.PROD DSQ3BPKG.Z DSQ3BPKG (REPLACE

4. For NLF:
Punch NLF installation members to ICCF. Using the NLID for your NLF
listed in Table 3 on page 10, substitute the n with the NLID before
punching the job. Press Enter after typing each command.
LIBRP PRD2.PROD DSQ3nDBU.Z DSQ3nDBU (REPLACE

Installation steps
The steps listed here describe a QMF server installation to a remote DB2 UDB
V5 or higher database server. The QMF server installation utilizes DB2 for
VSE batch requester services and assumes that all connections are active and
working. These steps install QMF control and sample tables and reload
packages at the remote server.

© Copyright IBM Corp. 1983, 2000 27

|

|

|
|
|

|
|

|

|

|

|

|
|
|
|

|

|

|

|

|

|
|

|
|

|

|
|
|

|

|

|
|
|
|
|

1. Run job DSQ3EDBU - install QMF control tables and sample tables. You
must edit job DSQ3EDBU before it can be run.
a. Delete the first line of the file, which begins with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
d. Carefully read the detailed comments in the file and change all

appropriate values.
e. File and run DSQ3EDBU.

If the job did not run with a return code of 0:
a. Check for an error message on the system console.
b. Check the list output to find the cause of the problem.
c. Correct the problem.
d. Rerun DSQ3EDBU.
e. Recheck the return code.

2. Run job DSQ3BPKG - RELOAD QMF packages at remote server. You must
edit job DSQ3BPKG before it can be run.
a. Delete the first line of the file, which begins with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
d. Carefully read the detailed comments in the file and change all

appropriate values.
e. File and run DSQ3BPKG.

The job will not end with a return code of 0. This is expected. A successful
return code for this job will be 41 or less. If a return code of 42 or more is
received:
a. Check for an error message on the system console.
b. Check the list output to find the cause of the problem.
c. Correct the problem.
d. Rerun DSQ3BPKG.
e. Recheck the return code.

3. Install the QMF NLF at the remote DB2 UDB server. If you are adding
support for a national language, run DSQ3nDBU. You must edit job
DSQ3nDBU before it can be run.
a. Delete the first line of the file, which begins with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/*

Installing QMF into Remote Database Servers

28 Installing and Managing QMF for VSE/ESA

|
|

|

|

|

|

|
|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|
|
|

|

|

|

|

|

|
|
|

|

|

|

c. Delete the last two lines of the file, leaving the end-of-job statement.
d. Carefully read the detailed comments in the file and change all

appropriate values.
e. File and run DSQ3nDBU.

If the job did not run with a return code of 0:
a. Check for an error message on the system console.
b. Check the list output to find the cause of the problem.
c. Correct the problem.
d. Rerun DSQ3nDBU.
e. Recheck the return code.

Installing QMF Version 7 into a DB2 for AS/400 ® Server

The steps listed here describe a QMF server installation to a remote DB2 for
AS/400 4.4 or higher database server. The QMF server installation utilizes
DB2 for VSE batch requester services and assumes that all connections are
active and working. These steps install QMF control and sample tables and
reload packages at the remote server.
1. Run job DSQ3EDBA - install QMF control tables and sample tables. You

must edit job DSQ3EDBA before it can be run.
a. Delete the first line of the file, which begins with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
d. Carefully read the detailed comments in the file and change all

appropriate values.
e. File and run DSQ3EDBA.

If the job did not run with a return code of 0:
a. Check for an error message on the system console.
b. Check the list output to find the cause of the problem.
c. Correct the problem.
d. Rerun DSQ3EDBA
e. Recheck the return code.

2. Run job DSQ3BPKG - Reload QMF packages at remote server. You must
edit job DSQ3BPKG before it can be run.
a. Delete the first line of the file, which begins with CATALOG.
b. Change all instances of ..* to * with the following command: ch

/..*/*/ *

Installing QMF into Remote Database Servers

Chapter 3. Installing QMF into Remote Database Servers 29

|

|
|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|
|

|

|
|

c. Delete the last two lines of the file, leaving the end-of-job statement.
d. Carefully read the detailed comments in the file and change all

appropriate values.
e. File and run DSQ3BPKG.

The job will not end with a return code of 0. This is expected. A successful
return code for this job will be 41 or less. If a return code of 42 or more is
received:
a. Check for an error message on the system console.
b. Check the list output to find the cause of the problem.
c. Correct the problem.
d. Rerun DSQ3BPKG.
e. Recheck the return code.

3. Install the QMF NLF at the remote AS/400 server. If you are adding
support for a national language, run DSQ3nDBA.You must edit job
DSQ3nDBA before it can be run.
a. Delete the first line of the file, which begins with CATALOG.
b. Change all instances of ..* to * with the following command: ch

/..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
d. Carefully read the detailed comments in the file and change all

appropriate values.
e. File and run DSQ3nDBA.

If the job did not run with a return code of 0:
a. Check for an error message on the system console.
b. Check the list output to find the cause of the problem.
c. Correct the problem.
d. Rerun DSQ3nDBA.
e. Recheck the return code.

Installing QMF into Remote Database Servers

30 Installing and Managing QMF for VSE/ESA

|

|
|

|

|
|
|

|

|

|

|

|

|
|
|

|

|
|

|

|
|

|

|

|

|

|

|

|

Chapter 4. Run the Installation Verification Procedure (IVP)

This chapter leads you through the final testing of QMF, called the installation
verification procedure (IVP). To test that you have installed QMF for VSE
properly, you need to start QMF and issue a few QMF commands. Most
elements of the QMF product installation are tested by simply starting QMF.

Before You Start QMF

1. Complete all the installation and customization steps outlined in this book.
2. Start the database connection, if not already started, by issuing the CIRB

command.
3. Verify that the QMF Trace Facility is installed by checking the transient

data queue (DSQD). From a clear CICS screen, enter:
CEMT INQUIRE QUEUE(DSQD)

You should see a screen similar to this:

Ena Ope indicates that the queue is open and enabled. If you do not see
that DSQD is enabled and open, you need to review your modifications to
the CICS DCT. See “Modify DFHDCT” on page 22, for more details on
modifying the DCT.

Start and Test QMF

This procedure starts the QMF for VSE product and tests that the product is
properly installed. If you receive an error message during any part of the
procedure, it indicates that QMF did not start properly. Under these
circumstances, start by investigating some of the more common problems as
described in “What if It Didn’t Work?” on page 34.

STATUS: RESULTS - OVERTYPE to MODIFY
Que(DSQD) Ext Ena Ope

© Copyright IBM Corp. 1983, 2000 31

|

1. Sign on to the CICS system that is connected to QMF.
2. Press the Escape function key to begin a native CICS session.
3. Start QMF by issuing the CICS transaction, QMFE, and specifying the DB2

authorization ID and password that you want to use for your test. Also
specify the use of the temporary storage queue (DSQSDBQT) so that you
can view any warning messages online. To start QMF and use the Q user
ID, with the temporary storage queue name, DSQD, specify:
QMFE UID=Q/QMF,DSQSDBQT=TS,DSQSDBQN=DSQD

Where QMF is the password for Q.

You should see the QMF Home panel.

4. Verify existence of QMF online help.
Press the Help function key. You should see this Help panel:

Licensed Materials - Property of IBM
5675-DB2 5697-F42 (C) Copyright IBM Corp. 1982, 2000
All Rights Reserved.
IBM is a registered trademark of International Business Machines

QMF HOME PANEL Query Management Facility
Version 7 Release 1

****** ** ** ********* ____
Authorization ID ** ** *** *** ** ____
Q ** ** **** **** ******* ____

** ** ** ** ** ** ** ____
Connected to ** * ** ** **** ** ** ____
SQLDS ****** ** ** ** ** _______

** _______________________________________

Enter a command on the command line or press a function key.
For help, press the Help function key or enter the command HELP.

1=Help 2=List 3=End 4=Show 5=Chart 6=Query

7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, you may enter a command.
COMMAND ===>

Run the Installation Verification Procedure (IVP)

32 Installing and Managing QMF for VSE/ESA

Exit from the Help panel by pressing either PF3 or PF12.
5. Obtain a list of QMF-supplied sample tables.

Type the QMF command LIST TABLES (OWNER=Q) on the command line
and press Enter. Depending on whether you previously installed QMF, the
tables that have the owner Q might vary from the following screen:

If you press PF8, additional panels are shown. Return to the QMF Home
panel by pressing the Cancel function key. End the QMF session by
pressing the End function key.

The installation verification is now complete. You can browse the temporary
storage queue to determine if there are any QMF warning messages using the
CICS transaction:

__
Licensed Materials - Property of IBM
5675-DB2 5697-F42 (C) Copyright IBM Corp. 1982, 2000
All Rights Reserved.
IBM is a registered trademark of International Business Machines
+---+
| Help: Query Management Facility |
| |
| Select a topic. |
| 1 to 7 of 14 |
| 1. What's new in Version 7 |
| 2. Profile |
| 3. QMF commands |
| 4. Prompted Query |
| 5. SQL (Structured Query Language) |
| 6. Table Editor |
| 7. Forms |
+---+
| F1=Help F3=Exit F7=Backward F8=Forward F9=Keys F12=Cancel |
+---+

OK, HELP performed. Please proceed.

+---+
| Table List |
| |
| Action Name Owner |
| 1 to 7 of 36 |
| APPLICANT Q |
| DSQ_RESERVED Q |
| OBJECT_DATA Q |
| OBJECT_DIRECTORY Q |
| OBJECT_REMARKS Q |
| ORG Q |
| PARTS Q |
+---+
| F1=Help F4=Command F5=Describe F6=Refresh F7=Backward F8=Forward |
| F9=Clear F10=Comments F11=Sort F12=Cancel |
+---+
OK, BACKWARD performed. Please proceed.

Run the Installation Verification Procedure (IVP)

Chapter 4. Run the Installation Verification Procedure (IVP) 33

CEBR DSQD

If your IVP ran without any errors, your TS queue DSQD is empty.

Run an IVP for NLF

You can also test your installation of QMF with a national language feature.
Rerun the IVP, beginning with “Before You Start QMF” on page 31, and start
QMF by issuing a different transaction ID. Use QMFn, where n is the NLID
for the language, as given in Table 3 on page 10. For example, if you are
installing German, your transaction ID is QMFD.

If you are testing a language that uses the double-byte character set, such as
Japanese, Korean, or simplified Chinese, your terminal must be double-byte
enabled.

If you encounter problems, see the messages found in “What if It Didn’t
Work?”.

What if It Didn’t Work?

If QMF is unable to start, an error message is generated. Descriptions of some
of the more common errors follow. However, this list is not meant to replace
the messages and codes manual for QMF or for other products. If you do not
find the message on this list, consult the appropriate messages and codes
manual.

The following list includes some of the most common errors occurring when
running the IVP:

AEY9 ABEND
The database connection between the CICS partition and DB2 is not
active. Issue a CIRB command.

G050 ABEND
The release level of GDDM being used in CICS partition doesn’t
match the version with which QMF was link-edited. Follow the
procedure in “Link-Edit Jobs for QMF” on page 20.

Gxxx ABEND
Issued by GDDM, see GDDM Diagnosis for Version 3.2 and the GDDM
Diagnosis and Problem Determination Guide for Version 2.3.

DFH1599
Region/Partition size is insufficient to initialize CICS.

Increase the partition size.

Run the Installation Verification Procedure (IVP)

34 Installing and Managing QMF for VSE/ESA

DSQ40083
GDDM ERROR ADM0962 E MAPGROUP ’DXYKIMD5’ not found.
SEVERITY 8 FUNCTION MSQGRP.

The double-byte character set language feature requires a terminal
that is also double-byte enabled. Before restarting QMF, ensure your
terminal can display double-byte characters. If your terminal is
double-byte enabled and you still have the error, check the CICS
Terminal Control Table (TCT) for proper entries.

DSQ51304
File DSQPNLn not found in CICS. *** CMD=HELP

The VSAM file that contains QMF screen images is not available.
Check the results of DSQ3EINS or DSQ3nINS for NLF. Also, verify
that the panel files were defined in the CICS startup and in the CICS
FCT.

DSQI0041
Unable to load module(s) nnnnnnn

If nnnnnn = ADMASP, verify that the GDDM product library was
available when running the QMF job DSQ3ELNK job. If nnnnnn =
ARIPRDI, verify that the DB2 product library was available when
running QMF job DSQ3ELNK job. Other modules should be available
from QMF product library.

What about warning messages? QMF generates warning messages for
conditions it detects while starting QMF. Your QMF trace data contains
helpful information for analyzing warning messages. For example, the
messages might concern the initialization of the QMF governor DSQUEGV3,
or the availability of the edit exit phase DSQUECIC.

You can use CEBR DSQD to browse the temporary storage queue for warning
messages.

Run the Installation Verification Procedure (IVP)

Chapter 4. Run the Installation Verification Procedure (IVP) 35

36 Installing and Managing QMF for VSE/ESA

Chapter 5. How to Maintain QMF

QMF maintenance includes adding new components (because they were not
installed initially) and replacing existing ones (because of service updates).
Both types of activities are described in this chapter. To effectively use the
following procedures, we assume that QMF and all of the prerequisite
products are installed.

Adding New Components

Because very few systems are static, you might want to add new products,
new versions or releases of products, or additional databases.

Adding GDDM-PGF
GDDM-PGF is an optional product that you might choose to install after
installing QMF. Because all GDDM objects (such as charts and forms) are
loaded into the ADMF file during QMF installation, no further action is
required on the QMF side.

Adding QMF to Another DB2 Database
As your system grows, you might want to connect QMF to another DB2
database. Simply repeat the procedures in Install QMF Base into DB2
Database starting with step 3 on page 16 to add your new database. If national
language support is also needed for this database, follow the procedure in
Install QMF NLF into SQL Database, beginning with step 4 on page 19.

Migrating to New Releases of DB2, CICS, or GDDM
Because QMF is prelinked to specific release levels of DB2, CICS, and GDDM,
you need to relink-edit anytime you migrate to a new release of those
products. See “Link-Edit Jobs for QMF” on page 20 for the supported release
levels and the procedures to link new releases to the QMF base and NLF
versions.

Binding QMF 7.1 Packages at a Remote Server
In order for a QMF Version 7 Release 1 requester installation to be able to
communicate to a server, QMF 7.1 packages must be present at the server. If a
complete QMF 7.1 new or migration installation was performed at the server,
communications can be started and nothing further needs to be done.

But, for those servers containing QMF 3.3 or above where migration is not a
current option, users can run the job DSQ3BPKG. This job binds QMF 7.1
packages at any server specified.

© Copyright IBM Corp. 1983, 2000 37

|

|
|
|
|

|
|
|

Read, tailor and submit job DSQ3BPKG to perform the binds. Check the job
output for error messages and re-run as necessary.

Scenerio for use: Local DB2 for VSE subsystem, DB2VSE, is migrated from
QMF 3.3 to QMF 7.1. QMF users in subsystem DB2VSE regularly
communicate with a DB2 for VM server, SQLV61A, which contains QMF 3.3.
The DB2 for VM DBA cannot perform a QMF migration to 7.1 at the VM
server. In order for the QMF 7.1 installation in DB2VSE to communicate with
QMF on SQLV61A, job DSQ3BPKG must be run to bind packages at the DB2
for VM server.

Replacing Existing Components

This section describes the steps necessary to replace or re-install QMF, and
how to apply service updates to QMF.

Re-installing QMF
To re-install QMF:
1. Install the tape as described in the QMF Program Directory.
2. Perform “Run the QMF Installation Job” on page 15 to re-install QMF.

You do not need to rerun the initialization procedure, DSQ3INIT, unless
you change product information from the last installation. For example, if
you are using another release of GDDM or installing to a different
sublibrary, then you would follow Catalog the Initialization Procedure
beginning at step 4 on page 14.
Begin the installation procedure at step 2 on page 15. When you run this
job, the panel file is deleted, redefined, and reloaded. QMF charts and
maps are also reloaded into the GDDM object file, ADMF.

3. Perform “Install QMF Base into DB2 Database” on page 16, to re-install
QMF packages.
Set the first three job steps as follows:
// SETPARM STEP1=NO -- CREATE QMF CONTROL TABLES IN SQL DB
// SETPARM STEP2=YES -- LOAD QMF PACKAGES INTO SQL DB
// SETPARM STEP3=NO -- LOAD QMF SAMPLES INTO SQL DB

Continue with the remaining procedure.
4. Determine whether you need to relink-edit your products, as described in

“Link-Edit Jobs for QMF” on page 20.
5. Skip the remaining steps, because it is not necessary to tailor CICS again.

Re-installing an NLF
To re-install a national language feature (NLF), follow the procedure in Install
NLF starting with step 1d on page 18. You do not need to run DSQ3nDBI.

Binding Packages at a Remote Server

38 Installing and Managing QMF for VSE/ESA

|
|

|
|
|
|
|
|
|

|

Determine whether you need to relink-edit your products, as described in
“Link-Edit Jobs for QMF” on page 20. You do not need to tailor CICS again.

Applying Service Updates
You might need to apply maintenance or service updates to QMF periodically.
These updates are in the form of a Program Temporary Fix (PTF) tape from
IBM. All QMF tapes are shipped in MSHP format for easy installation and
tracking. For more detail on how to apply PTFs using MSHP, see VSE/ESA
Installation and Service

When you receive your PTF tape from IBM, you also receive detailed
instructions for installation of that specific fix. To help you understand those
specific instructions, the following overview familiarizes you with some of the
unique aspects of applying service for QMF.

Like most IBM products, QMF consists of phases; but unlike most IBM
products, it also consists of objects such as panels, GDDM maps, and SQL
packages.

Replacing Text Decks or Phases
This is the most common and straight forward type of replacement. Simply
apply the PTF that contains the new text deck (object) or phase. The PTF
specifies to MSHP which link book to use, if necessary.

There are, however, QMF objects that require your handling, as they cannot be
handled automatically. The MSHP process does keep track of these changes
and restores the objects to the QMF sublibrary. The PTF documentation
provides details if one of the following steps is to be performed after the PTF
installation.

Updating the QMF Panel File
If changes are necessary to the QMF Panel file (DSQPNLn), you do not have
to replace the entire file. Instead, single panels are shipped using the
following naming convention:

DXYnname.N
where:

n is the NLID

DXYnname
is the complete name of the panel

1. Install the PTF; the panel (or panels) are restored in the QMF sublibrary.
2. Close the existing panel file using the CICS transaction, CEMT:

CEMT SET DA(DSQPNLn) CLOSE

3. Load the panels to the VSAM panel file DSQPNLn. Use the following
sample job to load the panel DSYnname to file DSQPNLn.

Binding Packages at a Remote Server

Chapter 5. How to Maintain QMF 39

* $$ JOB JNM=REPPANEL,DISP=D,CLASS=0
// JOB REPPANEL Replace panel in the QMF panel file
// DLBL DSQPNLn,'QMF610.DSQPNLn',,VSAM,CAT=VSESPUC
// LIBDEF *,SEARCH=(qmflib.sublib)
// EXEC DSQCVS80,SIZE=AUTO
* $$ SLI MEM=DXYnname.N S=qmflib.sublib

..........
/*
/&
* $$ EOJ

Check and modify if necessary the following values:

n NLID

The single character that represents the language of the panel.
QMF NLIDs are listed in Table 3 on page 10.

VSESPUC
VSAM catalog name where the panel file was originally defined
during QMF installation.

qmflib.sublib
Library and sublibrary for QMF

DXYnname
Name of the panel to be replaced. (This information is provided
with the PTF.)

........... Repeat, if necessary, the last statement for every panel being
replaced by the PTF.

4. Reopen the panel file with:
CEMT SET DA(DSQPNLn) OPEN

Updating QMF GDDM Maps
QMF GDDM maps can also be affected by a PTF. As with the panels, those
objects are restored to the QMF sublibrary when you apply the PTF. More
details are included with the PTF.
1. Install the PTF.
2. Modify the SETPARM statements in the QMF installation job, DSQ3EINS.

// SETPARM STEP1=NO *-- DEFINE CLUSTER DSQPNLE
// SETPARM STEP2=NO *-- LOAD DSQPNLE
// SETPARM STEP3=NO *-- LOAD QMF CHARTS
// SETPARM STEP4=YES *-- LOAD QMF MAPS

3. File and run the job. The first three job steps are skipped, and execution
begins with loading the QMF maps.

NLF Maps: Because GDDM maps are language dependent, your PTF might
require you to change those objects, as well.
1. Rerun the job DSQ3nINS, with the following SETPARM settings:

Binding Packages at a Remote Server

40 Installing and Managing QMF for VSE/ESA

// SETPARM STEP1=NO *-- DEFINE CLUSTER DSQPNLP
// SETPARM STEP2=NO *-- LOAD DSQPNLP
// SETPARM STEP3=YES *-- LOAD QMF MAP GROUPS TO ADMF

2. File and run the job. Check the system console to ensure that the job ran
with a return code of 0. If the return code is not 0, the console should
indicate the error. Correct the error and rerun DSQ3nINS.

Updating QMF SQL Packages
If QMF SQL packages are changed with a PTF, then the packages must be
loaded into each database where QMF is installed. Use the original
installation job, DSQ3EDBI, to update the packages.
1. Modify the SETPARMs in the QMF installation job, DSQ3EDBI, as follows:

// SETPARM STEP1=NO *-- CREATE QMF CONTROL TABLES INSQLDB
// SETPARM STEP2=YES *-- LOAD QMF PACKAGES INTO SQL DB
// SETPARM STEP3=NO *-- LOAD QMF SAMPLES INTO SQL D B

2. Locate the // SETPARM DBNAME=SQLDS parameter and verify or change
SQLDS to the name of the database that you are using.

3. File and run the job. Ensure that the job ran with a return code of 0. If the
job did not run with a return code of 0:
a. Check for an error message on the system console.
b. Check the list output to find the cause of the problem.
c. Correct the problem.
d. Rerun DSQ3EDBI.
e. Recheck the return code.

4. Repeat the procedure to load the packages into every database.

Binding Packages at a Remote Server

Chapter 5. How to Maintain QMF 41

Binding Packages at a Remote Server

42 Installing and Managing QMF for VSE/ESA

Part 2. Managing QMF for VSE/ESA

Chapter 6. Starting QMF 49
Before You Start QMF 49
Quick Start 49
Add QMF to the VSE/ESA Function Selection
Menu 50
Starting QMF from a Cleared CICS Screen . . 51
Starting QMF from a CICS Application . . . 51

Starting a Noninteractive Session 52
Starting an Interactive Session 52

Chapter 7. Customizing Your Start
Procedure 55
Quick Start 55
Customizing Report Storage and Report
Performance 56

Adjusting GETVIS Storage Used for Report
Data (DSQSBSTG) 56

Choosing the Right Amount of GETVIS
Storage for Each User 57
Performance Tradeoffs 58

Acquiring Extra Temporary Storage
(DSQSPILL) 58

Estimating the Space Required for a
Spill File 59
Using a Spill File in a Noninteractive
QMF Session 61
Solving Some Spill File Problems . . . 61

Specifying the Name of Spill Storage
(DSQSSPQN). 62
Controlling the Number of Report Rows
Retrieved for Display (DSQSIROW) . . . 63

Performance with Small DSQSIROW
Values 63
Performance with Large DSQSIROW
Values 64

Tracing QMF Activity at the Start of a Session 64
Setting the Level of Trace Detail
(DSQSDBUG) 65
Specifying the Type of CICS Storage for
Trace Data (DSQSDBQT) 66
Specifying the Name of CICS Storage for
Trace Data (DSQSDBQN) 66

Controlling Initial Activities during a Session 67
Connecting to the Database (DSQSUSER) 67

Starting a Noninteractive QMF Session
(DSQSMODE) 69
Naming a Procedure to Run When QMF
Starts (DSQSRUN) 69

Running an Initial Procedure
Noninteractively 70
Performing Interactive QMF Work with
an Initial Procedure 71
Passing Variable Values to an Initial
Procedure 72

Setting Printing for Double-Byte Character Set
Data (DSQSDBCS) 75

Chapter 8. The QMF Session Control
Facility 77
Installing or Removing Q.SYSTEM_INI . . . 77
When Does the Q.SYSTEM_INI Procedure
Run? 77
Using Q.SYSTEM_INI 77

Example Shipped with QMF 77
User Session Procedure Example 78
Procedure that Displays an Object list . . 79

Security and Sharing Session Procedure . . . 80
Diagnosis Considerations 80

Chapter 9. Establishing QMF Support for
End Users 81
Quick Start 81
Creating User Profiles to Enable User Access
to QMF 82

Using the Q User Profile, a Special QMF
Profile 82
Establishing a Profile Structure for Your
Installation 82
Adding a New User Profile to the
Q.PROFILES Table 83
Preventing Users Without Unique Profiles
from Using QMF 84
Reading the Q.PROFILES Table 84
Providing the Correct Profile for the User’s
Operating Environment 88
Storing Profiles in VM DB2 in a
Guest-Sharing Environment 89
Updating User Profiles 89

Using the SET PROFILE Command . . 89

© Copyright IBM Corp. 1983, 2000 43

Using SQL UPDATE Statements . . . 90
Updating the SYSTEM Profile 91

Deleting Profiles from the Q.PROFILES
Table 91

Controlling Access to QMF and Database
Objects 92

SQL Privileges Required to Access Objects 92
SQL Privileges Required for QMF
Commands 92
SQL Privileges Required for Prompted
and QBE Queries 93
SQL Privileges Required for the Table
Editor 94

Granting and Revoking SQL Privileges . . 94
Using the SQL GRANT Statement. . . 94
Using the SQL REVOKE Statement . . 95

Sharing QMF Objects with Other Users . . 95
Allowing Uncommitted Read 96
Setting Standards for Creating Objects . . 96

Customizing a User’s Database Object List . . 97
Using the Default Object Lists 97
Changing the Default List 98
Object List Storage Requirement 100

Enabling Users to Create Tables in the
Database 100

Choosing and Acquiring a dbspace for
the User 102

Using the SQL ACQUIRE Statement 102
Sizing a dbspace 102

Granting a User DB2 RESOURCE
Authority 102
Enabling Users to Confirm Table Changes
Before They are Made 103

Enabling Users to Support a Chart 104
Maintaining QMF Objects Using QMF
Control Tables 104

Reading the Q.OBJECT_DIRECTORY
Table 104
Reading the Q.OBJECT_DATA Table . . 105
Reading the Q.OBJECT_REMARKS Table 106
Listing QMF Queries, Forms, and
Procedures 107
Displaying QMF Queries, Forms, and
Procedures 107
Transferring Ownership of Queries,
Forms, and Procedures 108
Deleting Obsolete Queries, Forms, and
Procedures 108
Enlarging the dbspace for the QMF Object
Control Tables 109

Maintaining Tables and Views Using DB2
System Tables 110

Listing Tables and Views 110
Transferring Ownership of a Table or
View 111
Deleting a Table or View from the
Database 111

Enabling English Support in an NLF
Environment 111
Using Global Variables to Define the
Currency Symbol 112

Chapter 10. Enabling Users to Print
Objects 113
Quick Start 113
Printing Objects 114
Deciding Whether to Use QMF or GDDM
Services for Printing 115
Using GDDM services to Handle Printing 116

Choosing a GDDM Nickname for Your
Printer 116

Choosing the Right Type of GDDM
Device 117
Creating the Nickname Specification 117
Example Nickname for a Family 1 or 2
GDDM Printer 118
Example Nickname for a Family 3
GDDM Printer 119
Defining Multiple Nicknames with
One Definition 119
Examples of Nickname Definitions . . 119

Updating the GDDM Defaults Module
(ADMADFC) with the Nickname . . . 120
Linking the Nickname with a Physical
Device 121

Linking a Family 1 or 2 Nickname
with a Physical Device 121
Linking a Family 3 Nickname with a
Physical Device 121

How QMF Interfaces with your GDDM
Nickname 122

Using QMF Services to Handle Printing . . 123
Choosing Between Temporary Storage
Queues and Transient Data Queues . . . 123
Using the PRINT Command to Route
Output to Queues. 123
Using Global Variables to Define Queues
for Printing 124
Printing to VSE POWER using QMF . . 124

Modifying Your CICS Startup JCL . . 124

44 Installing and Managing QMF for VSE/ESA

Modifying Your DCT 125
Modifying Your Synonym and
Function Key Tables 125
Sample Program to Segment POWER
Output 126
Creating the QMF Procedures. . . . 129
Modifying Your User’s Profile. . . . 130
Using Your New Print Procedure . . 130

Updating User Profiles to Enable GDDM
Printing 130

Chapter 11. Customizing QMF Commands 133
Quick Start 133
Creating the Command Synonym Table . . 133
Entering Command Synonym Definitions
into the Command Synonym Table 135

Choosing a Verb 136
Rules for the VERB Column 136
Using Base QMF Verbs as Command
Synonym Verbs 136

Choosing an Object Name 137
Choosing the Synonym Definition . . . 137

Using a Linear Procedure in the
Synonym Definition 138
Using Variables in the Synonym
Definition 139
Keying Information into the
SYNONYM_DEFINITION Column . . 140

Activating the Synonyms 141
Minimizing Maintenance of Command
Synonym Tables 142

Assigning One Synonym Table to All
Users 142
Assigning Views of a Synonym Table to
Individual Users 143

Synonyms for Public or Private Use 143
Synonyms for Public or Group Use 143
Synonyms Paired with an
Authorization Table 144

Chapter 12. Customizing QMF Function
Keys 145
Quick Start 145
Choosing the Keys You Want to Customize 145

Default Keys on Full-Screen Panels . . . 146
Default Keys on Window Panels 147

Creating the Function Key Table 148
Entering Your Function Key Definitions into
the Table 149

Linking a Command with a Function Key 149

Labeling the Function Key and
Positioning It on the Screen 150
Examples of Key Definitions 151

Entering a Definition for a Key on a
Full-Screen Panel 151
Entering a Definition for a Key on a
Window Panel 152
Entering a Key Definition for a Help
or Prompt Panel 152

Identifying the Panel You Want to Customize 153
Full-Screen Panel Identifiers 153
Window Panel Identifiers 153

Command Windows 154
Forms Windows 154
Global Variable Windows 154
Help and Prompt Windows 154
Location Windows 154
Object List Windows 154
Prompted Query Windows. 155

Activating New Function Key Definitions 156

Chapter 13. Creating Your Own Edit
Codes for QMF Forms 159
Quick Start 159
Choosing an Edit Code 160
Calling Your Exit Routine to Format the
Data 161
Passing Information To and From the Exit
Routine 164

Fields of the Interface Control Block . . 165
Fields That Characterize the Input Area 166

How U-Type Edit Codes are
Represented in the Input Area . . . 167
How V-Type Edit Codes are
Represented in the Input Area . . . 167

Fields That Characterize the Output Area 167
Passing Control to the Exit Routine When
QMF Terminates 167
Writing an Edit Routine in High-Level
Assembler (HLASM) 168

How an HLASM Edit Routine Interacts
with CICS 168
How an HLASM Edit Routine Interacts
with QMF 169
Translating Your Program 172
Assembling Your Program 173
Link-Editing Your Program 173
Example JCL Statements 173
Defining the Edit Exit Phase to CICS . . 175

Part 2. Managing QMF for VSE/ESA 45

Writing an Edit Routine in VS COBOL II or
COBOL for VSE/ESA 175

Using Literal Values in a COBOL
Program 176
How a COBOL Edit Routine Interacts
with CICS 176
How a COBOL Edit Routine Interacts
with QMF 178
Translating Your Program 183
Compiling Your Program 184
Link-Editing Your Program 184
Example JCL Statements 184
Defining the Edit Exit Phase to CICS . . 186

Writing an Edit Routine in PL/I 186
Writing an Edit Routine in PL/I for CICS 186
How a PL/I Edit Routine Interacts with
CICS 187
Translating Your Program 188
Link-Editing Your Program 188
CICS Program Definition 188
Example JCL Statements 188
How a PL/I Edit Routine Interacts with
QMF 190

Handling Double-Byte Character Set Data 196
Edit Codes for DBCS Data 196
What the Edit Routine Receives 196

Data from Graphic Columns 196
Data from Character Columns . . . 196

Ensuring the Edit Routine Returns the
Right Results 197

Overflowing the ECSRSLT Field . . . 197
Printing the Report Column 197

Chapter 14. Controlling QMF Resources
Using a Governor Exit Routine 199
Quick Start 199
Using the IBM-Supplied Governor Exit
Routine 199

Activating the Default Limits for Number
of Rows Retrieved 200
How a Governor Exit Routine Controls
Resources 202

How the Governor Knows What the
Resource Limits Are 202
How the Governor Knows When You
Reach a Resource Limit 203
What Happens When You Reach a
Resource Limit 204

Defining Your Own Resource Limits . . 204

Creating your own Resource Control
Table 206

Modifying the IBM-Supplied Governor Exit
Routine or Writing Your Own. 208

Program Components of the Governor
Exit Routine 208
How CICS Interfaces with the Governor
Exit Routine 209
How and When QMF Calls the Governor
Exit Routine. 211

Points at Which QMF Calls the
Governor 211
What Happens Upon Entry to the
Governor Exit Routine 212
Establishing Addressability for
Function Calls 213

Passing Resource Control Information to
the Governor Exit 215

Structure of the DXEGOVA Control
Block 215
Addressing the Resource Control Table 219
Structure of the DXEXCBA Control
Block 220

Storing Resource Control Information for
the Duration of a QMF Session 227
Canceling User Activity 228
Providing Messages for Canceled
Activities 228

Translating, Assembling, and Link-Editing
Your Governor Exit Routine 229

Translating Your Governor Exit Program
for CICS 229
Assembling Your Governor Exit 230
Link-Editing Your Governor Exit Routine 230
Example JCL Statements 230

Chapter 15. Troubleshooting and Problem
Diagnosis 233
Quick Start 233
Troubleshooting Common Problems. . . . 234

Handling Initialization Errors 234
Handling Warning Messages 234
Handling GDDM Errors During Printing 235
Handling QMF Errors During Printing 237
Handling Display Errors 237

Using the HEX Function 237
Using QMF-Provided Hex and Bit Edit
Codes. 238
Handling Binary Data with
User-Written Edit Routines. 238

46 Installing and Managing QMF for VSE/ESA

Solving Slow Performance Problems . . 238
Resetting the Data Object to Improve
Performance 238
Increasing the User’s Report Storage 239
Increasing the Size of the CICS
Partition 239

Determining the Problem Using Diagnosis
Aids 240

Choosing the Right Diagnosis Aid for the
Symptoms 240
Diagnosing Your Problem Using QMF
Message Support 240

Determining which QMF Function
Issued an Error Message 241
Handling System Error Messages . . 242
Handling SQL Return Codes 242

Using the QMF Trace Facility 242
Allocating Storage for Trace Data . . 243
Starting the Trace Facility 244
Getting the Right Level of Detail in
Your Trace Output 244
Tracing at the Module Level 246
Viewing QMF Trace Data 247
Determining the QMF Service Level 247
Turning off the Trace Facility 248

Using CICS Diagnostic Facilities 248
Identifying QMF in CICS Diagnostic
Output 248
Defining the Display for a CICS Abend
Message 249

Using Error Log Reports from the
Q.ERROR_LOG Table 250

Reporting a Problem to IBM 251
Using ServiceLink to Search for
Previously Reported Problems 251
Working with Your IBM Support Center 254

Part 2. Managing QMF for VSE/ESA 47

48 Installing and Managing QMF for VSE/ESA

Chapter 6. Starting QMF

This chapter describes the methods you can use to start QMF. You can start
QMF from a cleared CICS screen or from a CICS application.

For information about starting QMF from the callable interface, see Developing
QMF Applications.

Before You Start QMF

Before you start QMF, you need to establish the connection between CICS and
DB2. The CIRB transaction connects a CICS partition to VSE DB2. It
establishes the DB2 online support, allowing users at CICS terminals to
communicate with the VSE DB2 application server through CICS.

CIRB is usually run as part of the job that starts the CICS partition. You can
also run CIRB as follows:
1. Start the VSE DB2 application server in multiple user mode, according to

instructions in DB2 Server for VSE System Administration.
2. Run the CICS CIRB transaction once for each CICS partition where QMF is

installed. You can run the transaction three ways:
v By starting it from any CICS terminal
v By starting it from the VSE console
v Automatically when CICS comes up, provided you make the

appropriate changes in the CICS startup facilities

For more information about online support and using the CIRB
transaction, see DB2 Server for VSE System Administration.

Quick Start

Table 4 outlines ways to start QMF. For information about the command
syntax for starting QMF with parameters, see “Chapter 7. Customizing Your
Start Procedure” on page 55.

The n symbol in each example represents the national language identifier
(NLID). Substitute the NLID from Table 3 on page 10 that corresponds to the
national language in which you want to start QMF. For example, to start an
English QMF session, enter QMFE.

For more information on any of the tasks listed, see the page shown at the
right of the table.

© Copyright IBM Corp. 1983, 2000 49

Table 4. Options for starting QMF

To do this task: See:

To start QMF from the VSE/ESA Function Selection Menu, using procedures
described in the VSE/ESA documentation for your VSE system. You can add QMF
to the VSE/ESA Function Selection Menu with or without values for the QMF
program parameters explained in “Chapter 7. Customizing Your Start Procedure” on
page 55.

Page 50

To start QMF from a cleared CICS screen, enter:
QMFn
Follow QMFn with values for the QMF program parameters explained in “Chapter 7.
Customizing Your Start Procedure” on page 55.

Page 51

To start QMF from a CICS application, use the command EXEC CICS START
TRANSID('QMFn') FROM('...') TERMID('name'), and enclose values for the QMF
program parameters in single quotes following the FROM keyword. You can use any
QMF program parameter in a CICS application. A terminal ID (TERMID) is required
for interactive sessions, optional for noninteractive.

Page 51

Add QMF to the VSE/ESA Function Selection Menu

QMF is provided as a standard CICS transaction. As such you can add the
invocation of QMF to the VSE/ESA Function Selection Menu. To add QMF,
you use procedures as described in the VSE/ESA documentation for your VSE
system. The basic steps are:
1. Create a new Application Profile for QMF.
2. Add or Change the QMF Application Profile.

a. Ensure that the CODE field specifies QMF as a NON-
CONVERSATIONAL transaction with data.

b. Specify the name of the QMF transaction ID, QMFn, in the ACTIVATE
field where n is the nlfid. The QMF transaction ID for English is
QMFE.

c. Specify any QMF program parameters that you want to use in the
″DATA″ field. See “Chapter 7. Customizing Your Start Procedure” on
page 55 for more information.

3. Add the new QMF application profile to a selection panel.

After you add QMF to the VSE/ESA function selection menu, the menu might
look like this:
Enter the number of your selection and press the ENTER key:

1 Operations
2 Problem Handling
3 Program Development
4 Command Mode
5 CICS-Supplied Transactions

Starting QMF

50 Installing and Managing QMF for VSE/ESA

6 CIRB - Start SQL Connection
7 ISQL - Interactive SQL Facility
8 QMF - Query Management Facility

Starting QMF from a Cleared CICS Screen

QMF runs as a conversational transaction in CICS, and is defined in CICS
resource tables during QMF installation. You can start QMF by issuing the
QMFn transaction from a cleared CICS screen, as shown in the example in
Figure 1.

The letters following QMFE represent abbreviated forms of some of the QMF
program parameters you can use to customize the behavior of a QMF session.
For example, the values shown here start an interactive English QMF session,
retrieve 200 rows of data before displaying the first screen of the report, and
activate extra storage for report data when the amount of data retrieved into
GETVIS storage reaches 600 000 bytes.

You can specify the parameters in any order on the QMFn transaction. Ensure
you:
v Specify each value in a parameter_name=value format. You can use the short

form if the parameter has one.
v Specify only one value for each parameter.
v Enter a blank, a comma, or both after each value.
v Capitalize all letters in the parameter string.

QMF uses default values explained in “Chapter 7. Customizing Your Start
Procedure” on page 55 for any parameter you don’t enter following the QMFn
transaction. The values you supply remain effective throughout the QMF
session, except for the parameter that specifies the level of detail in the trace
data. Users can change this trace parameter directly from their profiles using
the SET PROFILE command. See “Creating User Profiles to Enable User
Access to QMF” on page 82 for more information on user profiles.

Starting QMF from a CICS Application

QMF can interact with existing QMF applications you might have at your site.
You can use the EXEC CICS START command with the transaction ID QMFn to
start a QMF session from within a CICS application. An example of the
command is shown in Figure 2 on page 52. Replace the n symbol with the

QMFE B=600000,F=200,L=YES

Figure 1. Starting QMF from a cleared CICS screen

Starting QMF

Chapter 6. Starting QMF 51

NLID from Table 3 on page 10 that matches the national language you’re
using.

The command in Figure 2 starts a noninteractive QMF session, connects QMF
to DB2 using a user ID of Q and a password of QMF, then runs a QMF
procedure named START_PROC.

Use the same rules for passing QMF program parameters as you would to
start QMF from a cleared CICS screen, as discussed in “Starting QMF from a
Cleared CICS Screen” on page 51. You can use any QMF program parameter
in a CICS application.

A terminal ID (TERMID) is required for an interactive session (when
DSQSMODE = I), and optional for a noninteractive session (when
DSQSMODE = B). If the terminal ID specifies the terminal where the calling
CICS application is running, the QMF session starts when the CICS
application finishes. If you do specify a terminal ID, the terminal must exist
and be available. Also ensure the ID is defined as either a local or a remote
terminal on the system in which the START command is issued.

If you do not know the TERMID, issue the EXEC CICS ADDRESS EIB(xxx)
parameter to retrieve it.

Starting a Noninteractive Session
You might choose to run a noninteractive QMF session to conserve resources,
as explained in the example in “Running an Initial Procedure
Noninteractively” on page 70. In this case, use a value of B for the
DSQSMODE parameter and ensure you use the DSQSRUN parameter to pass
the name of an initial procedure to perform the necessary QMF tasks. These
parameters are explained in “Controlling Initial Activities during a Session”
on page 67. You might also choose to use the DSQSUSER parameter to ensure
you connect to the database using the appropriate SQL authorization ID and
password.

If you do not specify a terminal ID, the QMF session runs without a terminal.

Starting an Interactive Session
You might also choose to start an interactive QMF session from within a CICS
application. For example, the CICS application might be a menu application
that allows users to start QMF from a menu of other products.

EXEC CICS START TRANSID('QMFn') FROM('M=B,I=START_PROC,UID=Q/QMF') TERMID('MYT5')

Figure 2. Starting QMF from a CICS application

Starting QMF

52 Installing and Managing QMF for VSE/ESA

A terminal ID is required to start an interactive session. Because the session
runs interactively, you don’t need to supply an initial procedure that runs
when QMF starts, nor do you need to supply a value for the DSQSMODE
parameter. If you want to connect to DB2 explicitly, supply values for the
DSQSUSER parameter; otherwise, QMF connects to DB2 using the default
VSE operator ID and password defined in the system catalog.

Starting QMF

Chapter 6. Starting QMF 53

54 Installing and Managing QMF for VSE/ESA

Chapter 7. Customizing Your Start Procedure

This chapter describes the various methods you can use to pass parameters to
the program to help you customize a user’s QMF session.

Quick Start

Table 5 shows how to use the program parameters to customize aspects of the
QMF session. The command syntax in the examples applies to starting QMF
from a cleared CICS screen. If you start QMF from a CICS application, use the
same names and values for the program parameters, but use the command
syntax shown in “Starting QMF from a CICS Application” on page 51.

The n symbol in each example represents the national language identifier
(NLID). Substitute the NLID from Table 3 on page 10 that corresponds to the
national language in which you want to start QMF. For example, to start an
English QMF session, enter QMFE.

For more information on any of the tasks listed, see the page shown at the
right of the table.

Table 5. Passing parameters

To do this task: See:

To set limits on the amount of GETVIS storage used for QMF queries and reports,
use the DSQSBSTG parameter if you want any limit other than 500 000 bytes. For
example, to specify a limit of 1 000 000 bytes:
QMFn B=1000000

Page 56

To use temporary storage (a spill file) as extra storage for report data, use the
DSQSPILL parameter. For example, enter:
QMFn L=YES

Page 58

To name the spill file something other than DSQSnnnn (where nnnn is the CICS
terminal ID), use the DSQSSPQN parameter. For example, to indicate the name
MYSPILL, enter:
QMFn DSQSSPQN=MYSPILL

Page 62

To allow QMF to retrieve any number of rows other than 100 before QMF
displays the first screen of the report, use the DSQSIROW parameter. For example,
to allow QMF to retrieve 200 rows before displaying the first screen, enter:
QMFn F=200

Page 63

To log QMF activity in the trace data, including activity before the user’s profile is
established, use the DSQSDBUG parameter. For example, enter:
QMFn T=ALL

Page 65

© Copyright IBM Corp. 1983, 2000 55

Table 5. Passing parameters (continued)

To do this task: See:

To indicate that you want to use temporary storage (TS) rather than transient data
(TD) queues for trace data, use the DSQSDBQT parameter. For example, enter:
QMFn DSQSDBQT=TS

Page 66

To name the queue for trace data (whether temporary storage or transient data)
something other than DSQD, use the DSQSDBQN parameter. For example, to get a
temporary storage queue named MYTRACE, enter:
QMFn DSQSDBQN=MYTRACE

Page 66

To use an ID other than the default VSE operator ID to connect to the database
when starting QMF, use the DSQSUSER parameter to specify the user ID and
password. For example, for user JONES who has the password MYPW, enter:
QMFn UID=JONES/MYPW

Page 67

To run QMF without user interaction (either with or without a terminal ID), use
the DSQSMODE parameter and specify an initial procedure using the DSQSRUN
parameter. You might also choose to use the DSQSUSER parameter to ensure you
connect to the database using the proper ID. For example, to do some noninteractive
QMF work using the Q user ID and an example procedure named STARTPROC,
enter:
QMFn M=B, UID=Q/QMF, I=STARTPROC

Page 69

To run an initial procedure when QMF starts, use the DSQSRUN parameter. For
example, to run a procedure called STARTPROC, enter:
QMFn I=STARTPROC

Page 69

To print DBCS data from non-DBCS terminals, use the DSQSDBCS parameter. For
example, enter:
QMFn K=YES

Page 75

Customizing Report Storage and Report Performance

When a user performs a QMF task that retrieves data from the database, the
data is returned in a default report that is stored in GETVIS storage. This
section explains QMF program parameters that help you customize:
v The maximum amount of GETVIS storage used for report data
v Auxiliary storage used when GETVIS storage for reports is full
v How many rows of data are retrieved before QMF displays the first screen

of the report

Adjusting GETVIS Storage Used for Report Data (DSQSBSTG)
Parameter name

DSQSBSTG
Short form

B

Customizing Your Start Procedure

56 Installing and Managing QMF for VSE/ESA

Valid values
From 0 to 99 999 999 bytes

Default
500 000 bytes

To produce reports and temporarily store data, QMF uses GETVIS storage,
which is virtual storage within the CICS partition. VSE/ESA 1.3 limits
GETVIS storage according to the partition size you define for CICS. To ensure
each user has enough storage for QMF queries and reports, first adjust the
CICS partition size according to the number of QMF users and the size and
complexity of reports they are creating. “QMF Storage Requirements” on
page 4 provides guidelines for sizing the CICS partition.

After you size the CICS partition, use the DSQSBSTG parameter to specify the
maximum amount of GETVIS storage QMF uses to run queries and produce
reports. Specify the storage amount in bytes. The user can specify the GETVIS
storage from a cleared CICS screen.

For example, the following command starts QMF from a cleared CICS screen
and specifies that a maximum of 0.8 MB of GETVIS storage can be used to
store the user’s report data:
QMFn B=800000

Choosing the Right Amount of GETVIS Storage for Each User
QMF needs a minimum amount of GETVIS storage to display a report in the
default format. This minimum is between 15 000 and 31 000 bytes (15 to 31
KB), depending on how the storage in your CICS partition is distributed. Set
DSQSBSTG to zero when you want QMF to use the minimum value for
GETVIS storage.

The default value of 0.5 MB can accommodate most QMF transactions.
However, the amount of virtual storage needed varies for users using a report
format other than the default, or for users working with very large reports.
These users might need up to 1 MB or more of virtual storage. See QMF
Reference for information on report formatting options.

Important: QMF requires a minimum of 15 MB GETVIS storage for up to 20
users (24 MB total virtual storage for the partition). When you
increase a user’s GETVIS storage using the DSQSBSTG parameter
or when you add more QMF users, ensure you increase the value
of the CICS ALLOC parameter so each user has enough GETVIS
storage to run queries and produce reports. A QMF transaction
might time out waiting for storage to become available if there is
not enough GETVIS storage to support the activity of all QMF
users in the partition.

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 57

Performance Tradeoffs
You can use the DSQSPILL parameter to provide users with a spill file. If the
spill file is full, QMF continues to retrieve data into GETVIS storage in
amounts specified by the DSQSBSTG parameter. Thus, if you use too low a
value for DSQSBSTG, performance might be poor even if you use a spill file,
because QMF must return to the database many times to retrieve all the
requested data. For this reason, IBM recommends that you ensure your users
have enough GETVIS storage for the QMF work they need to do.

You might also consider using a governor exit routine to limit rows retrieved
from the database, so that less GETVIS storage is used for queries and reports.
For more information about governor exit routines, see “Chapter 14.
Controlling QMF Resources Using a Governor Exit Routine” on page 199.

Acquiring Extra Temporary Storage (DSQSPILL)
Parameter name

DSQSPILL
Short form

L
Valid values

YES or NO
Default

NO (no spill file is used)

Because large amounts of report data in GETVIS storage might affect the
operation of other CICS transactions, QMF allows you to allocate a spill file
(auxiliary temporary storage used when a user’s GETVIS storage is full).

A spill file can improve performance in an interactive QMF session. Buffers in
memory can store data so that QMF doesn’t need to return to the database for
multiple copies of the same data. Data the user needs to view several times
need not be retrieved from the database several times; the spill file can instead
be used to store it.

Set the DSQSPILL parameter to YES to activate the spill file:
QMFn L=YES

Data is written to the spill file until:
v You use the RESET DATA command to reset the data object.
v You replace the data object by running another query.
v Your query has finished (all rows requested have been retrieved) and the

data object is complete.
v Storage you defined for the spill file (using the DFHTEMP file) is full.

Customizing Your Start Procedure

58 Installing and Managing QMF for VSE/ESA

v The data retrieved into the spill file exceeds 32 767 rows, the maximum
amount a CICS temporary storage queue can hold. (Each row can hold 4K
of data.)

Estimating the Space Required for a Spill File
Temporary storage for the spill file is limited to 32 767 buffers of size 4 KB
each. If the data written to the spill file goes over this limit, QMF does not
use the data from the spill file, but instead retrieves it again from the
database, using GETVIS storage to hold it.

To accommodate QMF’s storage requirements, ensure CICS temporary storage
file DFHTEMP is large enough to hold the individual spill files for all
concurrent QMF users, in addition to any other transaction requirements for
auxiliary temporary storage.

Use the following procedure to calculate the amount of space required for an
individual spill file. Then enlarge DFHTEMP according to how many
individual spill files you’ll need to accommodate all concurrent users of QMF.
1. Calculate the width (W) of one row of the largest table that can appear

in the data object by adding field widths in bytes (use Table 6 on page 60).
See Table 7 on page 60 for sample calculations.
v All the rows of an individual table are the same width, regardless of the

data each row contains. A row cannot be wider than 32 768 bytes.
v Defined columns do not get written to the spill file.

2. If W is 4096 or less, calculate the number of rows per page (R) using R =
4096/W, and round the result down to the next lowest integer.
When W is 4096 or less, QMF fits as many rows as it can into a page,
without spanning pages.

3. If W is greater than 4096, calculate the number of pages per row (P),
using P = W/4096, and round up to the next highest integer.
When W is greater than 4096, QMF uses the minimum number of pages to
hold a row, spanning pages regardless of column boundaries. Each row
begins at the start of a page.

4. Calculate the number of pages required for the spill file, according to
the value of W:
v If W is 4096 or less, calculate the number of pages required for the spill

file by dividing the number of rows in the table by R.
v If W is greater than 4096, calculate the number of pages required for the

spill file by multiplying the number of rows in the table by P.

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 59

Table 6. Lengths of types of fields (use to estimate spill file size)

Field Type Field Length in Bytes

CHAR(n) n+2

DATE 12

DECIMAL(n,m) (n+1)/2+2, n odd (n+2)/2+2, n even

FLOAT(21) 10

FLOAT(53) 10

GRAPHIC(n) n*2+2

INTEGER 6

SMALLINT 4

TIME 10

TIMESTAMP 28

VARCHAR(n) n+4

LONG VARCHAR

LONG VARGRAPHIC

VARGRAPHIC(n) n*2+4

If a row contains LONG VARCHAR or LONG VARGRAPHIC fields, space is
first allotted for all other fields. Then the remaining space is divided by the
number of fields, and each LONG VARCHAR or LONG VARGRAPHIC field
is truncated to that length.

Table 7 shows a sample calculation for a spill file.

Table 7. Sample row width calculation for a spill file

Content of Row Calculation Contribution to Width

Two SMALLINT columns 2 x 4 = 8 bytes

One INTEGER column 6 bytes

One DECIMAL(3,2) column (3+1)/2+2 = 4 bytes

One DECIMAL(6,0) column (6+2)/2+2 = 6 bytes

One FLOAT column 10 bytes

One CHAR(10) column 10 + 2 = 12 bytes

One VARCHAR(16) column 16 + 4 = 20 bytes

Total width of row 59 bytes

The following sample calculations provide two ways to calculate the spill file
space.

Customizing Your Start Procedure

60 Installing and Managing QMF for VSE/ESA

When R=4096/540 = 7 multiple rows/buffer:
600 000 rows 1 track 1 cylinder
------------ * --------- * ---------- = 571 cylinders

7 10 blocks 15 tracks

When R=6000, 2 buffers/row:
6000 rows * 2 blocks/row * 1 track 1 cylinder

--------- * ---------- = 800 cylinders
10 blocks 15 tracks

Using a Spill File in a Noninteractive QMF Session
A spill file is most useful for improving performance in an interactive QMF
session, when the DSQSMODE parameter is set to I. However, if you are
running QMF noninteractively (the DSQSMODE parameter is set to B), using
a spill file can also improve performance when multiple passes of the data are
required to produce the report. A spill file might also be necessary to
complete the data object, as when a RUN QUERY command is followed by a
SAVE DATA command.

Multiple passes of the data are required when:
v You need to print several reports with different formats for the same data.
v You use PCT, CPCT, TCPCT, or TPCT edit codes with the report.
v You print a report that requires QMF to split the pages, because the report

is wider than the print width.

For more information on noninteractive QMF sessions, see “Starting a
Noninteractive QMF Session (DSQSMODE)” on page 69.

QMF Reference explains each of the QMF forms used to format reports and
provides examples of how to use the forms.

Solving Some Spill File Problems
If you have sufficient storage available to QMF after your data is retrieved a
first time, QMF does not need to reaccess the database to obtain rows a
second time.

If you have memory constraints and have defined a DSQSPILL file, part of the
processing time is writing the data to DSQSPILL so it can be fetched later.

The performance is affected by several things:
v The value of DSQSIROW (initial number of rows to fetch). This primarily

affects the initial display of the report only.

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 61

v Whether or not you do something that requires multiple passes of the data.
(Certain usage codes, such as PCT, require that all the data be read before
the first report screen displayed.) This primarily affects the initial display of
the report only.

v The amount of memory required to hold one row of data. The effect of this
is usually small.

v Whether, when multiple passes are required, the data is fetched from the
database the second time (not all data fits in memory and DSQSPILL), or
from memory and DSQSPILL, or just from virtual memory.

v Whether you are scrolling backward or forward. Successive FORWARD
commands usually perform best. BACKWARD commands might require
starting over at the start of the answer set. This depends on the amount of
memory, how far backward you want to scroll, the complexity of the report,
and other factors.
For very large answer sets with small memory and insufficient DSQSPILL
allocation, the entire answer set might be read from row 1 to the new
current row, every time the BACKWARD command is used.

You get the best performance when there is sufficient memory to hold all data
and DSQSPILL is not used.

Although it might not reduce the total amount of resource consumed to
process your data, if you are able to get the complete answer set into virtual
memory before the first display (DSQSIROW is large), the database locks are
released and scrolling around the displayed report performs fastest. This
slows the display of the first report screen. Releasing the locks might have the
effect of improving performance for other users.

Specifying the Name of Spill Storage (DSQSSPQN)
Parameter name

DSQSSPQN
Short form

(no short form)
Valid values

Any name that follows CICS naming conventions for queues
Default

DSQSnnnn (nnnn is the CICS terminal ID)

When you choose to use a spill file, you can also specify a name for the CICS
temporary storage queue to use for QMF spill data. For example, to specify
the name MYDATA:
QMFn DSQSSPQN=MYDATA

If you start a noninteractive QMF session from within a CICS application and
you choose not to specify a CICS terminal ID, then you need to code the

Customizing Your Start Procedure

62 Installing and Managing QMF for VSE/ESA

DSQSSPQN parameter. You must explicitly specify a value for DSQSSPQN, or
QMF does not start. For more information on starting QMF without a
terminal ID, see “Starting a Noninteractive Session” on page 52.

Controlling the Number of Report Rows Retrieved for Display
(DSQSIROW)

Parameter name
DSQSIROW

Short form
F

Valid values
Any number from 0 through 99 999 999

Default
A minimum of 100 rows retrieved before first screen of report is
displayed

Use DSQSIROW to specify the maximum number of rows QMF retrieves into
the data object before displaying the first screen of the report to the user.
DSQSIROW applies only to the initial load of a new data object, created by:
v Executing queries that use SQL SELECT statements
v Displaying a database table with the QMF DISPLAY command

To determine the proper value for this parameter, use step 1 of the algorithm
in “Estimating the Space Required for a Spill File” on page 59 to estimate the
size of a block of rows for the largest table a user is likely to query. A block is
the number of rows that fit into one 4096-byte buffer.

After every block of rows is retrieved, QMF compares the total number of
retrieved rows to the value of DSQSIROW to determine whether to display
the first screen of data. For example, suppose a block in your installation is 62
rows and you set DSQSIROW to 50. QMF retrieves 62 rows of data and, upon
comparing 62 to 50, stops retrieving rows and displays the first screen of data.

Some report formatting options, such as percent (%) usage codes and
ACROSS reports, require that all the data be retrieved before QMF displays
the first screen. QMF ignores the DSQSIROW value in these situations. See
QMF Reference for more information about these formatting options.

Performance with Small DSQSIROW Values
If you use too small a value for DSQSIROW, QMF might not be able to
complete the data object before the first screen of data is displayed. An
incomplete data object causes share locks on the data, which can prevent
other users’ attempts to update the data.

Many users might be affected if a QMF control table or a part of the system
catalog is locked.

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 63

You can release the locks in one of the following ways:
v Use the BOTTOM command to retrieve the remaining rows into the data

object, then release the locks.
v Use the RESET DATA command to release these locks and clear the data

object, whether or not all requested rows were retrieved.
v Use any SAVE command (for example, SAVE DATA or SAVE FORM) to

retrieve and save the remaining rows into the data object, then release the
locks.

See “Resetting the Data Object to Improve Performance” on page 238 for a list
of commands that complete the data object.

To get the best performance in a noninteractive session (when the
DSQSMODE parameter is set to B), use a value of zero for DSQSIROW unless
you want to minimize the number of open read locks while QMF is retrieving
or formatting data. See “Starting a Noninteractive QMF Session
(DSQSMODE)” on page 69 for more information about noninteractive QMF
sessions.

Do not use DSQSIROW to limit the number of rows that QMF displays on the
screen. Although you can specify a small value, QMF retrieves enough rows
to fill the screen display in an interactive session.

Performance with Large DSQSIROW Values
If you use too large a value for DSQSIROW, QMF might take a long time to
display the first screen of data. If you set DSQSIROW higher than you set the
DSQSBSTG parameter, for example, QMF might display a message indicating
that there is insufficient storage available to satisfy the user’s request.

When GETVIS storage for the partition is full, QMF waits for virtual storage
to become available to finish retrieving rows for the database. When you plan
your values for DSQSBSTG and DSQSIROW, remember that QMF might time
out waiting for storage to become available.

Tracing QMF Activity at the Start of a Session

QMF provides a trace facility that helps you trace user activity and any errors
that might occur during a user’s session. The program parameters explained
in this section help you control:
v The level of detail at which QMF activity is traced, including activity before

the user’s profile is established
v Where the trace data is stored

Customizing Your Start Procedure

64 Installing and Managing QMF for VSE/ESA

Setting the Level of Trace Detail (DSQSDBUG)
Parameter name

DSQSDBUG
Short form

T
Valid values

ALL or NONE
Default

NONE (no trace data)

Use DSQSDBUG to specify the level of detail at which you want to trace QMF
activity. If you specify NONE, no trace is performed unless you load a profile
with a saved value of ALL. If you specify ALL, ALL overrides the profile
values and remains at ALL.

The tracing you set with this parameter is effective until the user issues a SET
PROFILE (TRACE=value command to change it, or, in the case of NONE, until
the profile is loaded. For more information on valid trace values, see “Getting
the Right Level of Detail in Your Trace Output” on page 244.

Set DSQSDBUG to ALL when you want to trace QMF activity at the highest
level of detail, including program initialization errors and other errors that
might occur before the user’s profile is established:
QMFn T=ALL

When you use a value of ALL, ensure the type of storage queue you choose is
large enough to hold the trace output. “Specifying the Type of CICS Storage
for Trace Data (DSQSDBQT)” on page 66 explains how to specify the queue
type when you start QMF.

When you set DSQSDBUG to NONE, the level of detail in the trace output
depends on whether the QMF session is running interactively or
noninteractively:
v Only system error tracing is done during initialization, before the user’s

profile is established. The only way to turn off this initial tracing is to not
allocate or define storage for the trace data.

v In a noninteractive session, all messages and commands are traced at the
most detailed level.

“Starting a Noninteractive QMF Session (DSQSMODE)” on page 69 explains
interactive and noninteractive sessions in more detail.

After QMF starts, you can turn tracing off by using the command SET PROFILE
(TRACE=NONE. You can also set more specific levels of trace detail using this

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 65

command, by replacing NONE with various values that represent different QMF
functions. See “Using the QMF Trace Facility” on page 242 for more
information.

Specifying the Type of CICS Storage for Trace Data (DSQSDBQT)
Parameter name

DSQSDBQT
Short form

(no short form)
Valid values

TD or TS
Default

TD (transient data queue)

Use DSQSDBQT to indicate the type of CICS storage you want to use for
trace data. Specify the value TS to use a CICS auxiliary temporary storage
queue for tracing:
QMFn DSQSDBQT=TS

IBM recommends that you use temporary storage (TS) for message-level
tracing. For other types of tracing, such as ALL, consider using a transient
data queue if you think the trace output might exceed 32 767 rows of data
(the limit for CICS temporary storage queues).

A transient data queue named DSQD is predefined for you during QMF
installation. If you use the DSQSDBQN parameter to name the transient data
queue something other than DSQD, you must predefine the queue to CICS
before you use it for the first time. Use the definition shown in Figure 101 on
page 243 as an example.

For more information on specifying the amount of detail in the QMF trace
and viewing trace data, see “Using the QMF Trace Facility” on page 242.

Specifying the Name of CICS Storage for Trace Data (DSQSDBQN)
Parameter name

DSQSDBQN
Short form

(no short form)
Valid values

Any name that follows CICS naming conventions for queues
Default

DSQD

DSQSDBQN specifies the name of the transient data or temporary storage
queue that holds trace data. A transient data queue named DSQD is
predefined for you in the CICS DCT.

Customizing Your Start Procedure

66 Installing and Managing QMF for VSE/ESA

If you specify transient data for DSQSDBQT and you want to name the queue
something other than DSQD, define the queue in the CICS DCT if it is not yet
available. Figure 101 on page 243 shows the DCT entries for the DSQD queue.

Ensure the queue name conforms to CICS specifications for the type of queue
specified by DSQSDBQT. TD queues have names from 1 to 4 characters. TS
queues have names from 1 to 8 characters.

You do not need to predefine temporary storage queues to CICS. For example,
the following statement dynamically allocates a temporary storage queue
named MYTRACE to hold trace data for the QMF session:
QMFn DSQSDBQN=MYTRACE

QMF issues CICS ENQ and DEQ commands around single trace entries in the
queue, so that a single queue can be used by more than one user. See
“Viewing QMF Trace Data” on page 247 for information on how to view the
trace after it is written to the queue.

Controlling Initial Activities during a Session

This section explains program parameters that help you control initial QMF
activities, such as:
v Specifying an ID and password for the connection to the database
v Starting a noninteractive session (with or without a CICS terminal ID)
v Running an initial procedure that does the predetermined amount of work

defined in the procedure and then exits QMF

Using the parameters explained in this section, you can customize a QMF
session to do work without user interaction, so that fewer resources are used.
For example, you might start a noninteractive session without a CICS terminal
ID, specify a CONNECT ID and password for the connection to the database,
and run a QMF procedure that queries an inventory table and prints a report
to a temporary storage queue for later analysis.

Although these parameters are most useful for noninteractive QMF sessions,
they can also be used interactively.

Connecting to the Database (DSQSUSER)
Parameter name

DSQSUSER
Short form

UID
Valid values

ID and password that conform to CONNECT command rules

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 67

Default
3-character VSE operator ID and password defined in the DB2 system
catalog

When a user starts QMF, DB2 uses an authorization ID to determine whether
the user is authorized to connect to the database. DB2 uses this same ID to
determine a user’s authorization to access objects and perform database
activities.

You can use the DSQSUSER parameter to provide DB2 with an authorization
ID and password to use for the database connection. For example, the
following command connects user JONES, who has a password of MYPW:

QMFn UID=JONES/MYPW

When you specify the DSQSUSER parameter, QMF issues a CONNECT
command to connect to the database. Thus, the rules for this parameter are
the same as for the CONNECT command:
v The ID you supply for the DSQSUSER parameter must have DB2

CONNECT authority, or the QMF session will not start. Use the SQL
GRANT statement to grant this authority:
GRANT CONNECT TO userid IDENTIFIED BY password

v The DB2 authorization ID and password you supply for DSQSUSER must
conform to the rules for the CONNECT command for VSE DB2. For more
information about these rules, see the explanation of the CONNECT
command in DB2 Server for VSE & VM SQL Reference.

v The SQL authorization ID and password must both be in the DB2 system
table SYSTEM.SYSUSERAUTH. For more information about this table, see
DB2 Server for VSE & VM SQL Reference.

If you don’t supply an SQL authorization ID and password, DSQSUSER
defaults to the 3-character default VSE operator ID and password defined in
the DB2 system catalog. You can issue the following SQL statements from the
SQL query panel at any time during the QMF session to determine the ID that
DB2 is currently using for database authorization:
SELECT DISTINCT USER FROM Q.ORG

If you supply a user ID but no password, QMF displays an error message.
The password you supply doesn’t have to be identical to the password
associated with the VSE logon ID.

For more information on setting up a DB2 authorization ID, see DB2 Server for
VSE System Administration.

Customizing Your Start Procedure

68 Installing and Managing QMF for VSE/ESA

Starting a Noninteractive QMF Session (DSQSMODE)
Parameter name

DSQSMODE
Short form

M
Valid values

B (noninteractive) or I (interactive)
Default

I

Some query and report-writing tasks users need to perform might not require
interaction with QMF. For example, a salesperson might use the same QMF
procedure every few days to query a set of tables for account status. Although
the data changes, the procedure and tasks required to access the data remain
the same.

Using the QMF program parameter DSQSMODE, you can save resources and
time by starting a noninteractive session to perform your QMF work. Your
terminal is then free for you to do other work while the transaction is
running.

Use a value of B to start a noninteractive session:
QMFn M=B,I=STARTPROC

Although a value of B specifies QMF batch mode, the QMF session does not
run in the BG partition in CICS and cannot use VSE’s Batch Utility services.

Because a noninteractive session displays no QMF panels, use the DSQSRUN
(I) parameter to run an initial procedure that does the required QMF work
and exits the program. “Naming a Procedure to Run When QMF Starts
(DSQSRUN)” explains this parameter in more detail.

Additionally, use the DSQSUSER parameter to specify an ID and password for
the database connection, if you do not want to use the default VSE operator
ID and password.

When you use the DSQSMODE parameter from a cleared CICS screen, as
shown in Figure 1 on page 51, the QMF session runs using the ID of the CICS
terminal where the command was issued. You can run a noninteractive QMF
session without a terminal if you start QMF from a CICS application. For
more information, see “Starting a Noninteractive Session” on page 52.

Naming a Procedure to Run When QMF Starts (DSQSRUN)
Parameter name

DSQSRUN

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 69

Short form
I

Valid values
Any valid procedure name (see QMF Reference)

Default
No initial procedure is run

Use the DSQSRUN parameter to pass the name of a QMF procedure that runs
as soon as QMF starts. In a noninteractive session, use this procedure to
perform the QMF work you need to do, then exit the program.

For example, to run an initial procedure named STARTPROC, enter:
QMFn I=STARTPROC

Qualify the procedure name with the SQL authorization ID of its owner if
other users are using it to start QMF. For example, if user JONES owns the
STARTPROC procedure, enter:
QMFn I=JONES.STARTPROC

When you pass the name of an initial procedure, QMF issues a RUN PROC
command, which runs the procedure you name.

Important: QMF does not allow blanks in the user ID and procedure syntax.
For example, QMF doesn’t recognize:
DSQQMFn I=JONES. STARTPROC

To use a procedure name with an imbedded blank, you must
enclose the name in quotes:
DSQQMFn I=JONES.'START PROC'

Use DSQSRUN to help you:
v Automate noninteractive QMF work so you can conserve resources

normally used when running interactively.
v Allow users to perform interactive QMF work within the confines of a

predefined procedure, then exit when they are finished with the work
specified in the procedure.

Running an Initial Procedure Noninteractively
To conserve resources, you can run a procedure noninteractively by using a
value of B for the DSQSMODE parameter and naming a procedure using the
DSQSRUN parameter. For example, suppose that every Monday morning you
need to produce an inventory status report. Each Sunday night you need to
run a query that retrieves data from the same columns of a table called

Customizing Your Start Procedure

70 Installing and Managing QMF for VSE/ESA

INVENTORY. Your query might look something like the query in the
following example. For this example, we’ll call this query
INVENTORY_QUERY:
SELECT * FROM INVENTORY
WHERE STOCK < 20

The procedure you use to run this query and print the status report might
look something like the query in the following example. For this example,
we’ll call this QMF procedure INVENTORY_PROC:
RUN QUERY INVENTORY_QUERY
PRINT REPORT (QUEUENAME=Q1,QUEUETYPE=TS)
EXIT

The procedure includes an EXIT command because, when QMF is running
noninteractively, no user is present to end the QMF session. EXIT ends the
QMF session and frees the resources being held by QMF. Always use an EXIT
command in an initial procedure that runs noninteractively.

Because the tasks involved in creating the report do not change (only the data
changes), you could use the DSQSRUN parameter to query the INVENTORY
table off-shift Sunday night and print the report to the storage queue named
Q1, so you can have it Monday morning:
QMFn I=INVENTORY_PROC, M=B

You might later use the CICS CEBR transaction to browse the Q1 temporary
storage queue.

Performing Interactive QMF Work with an Initial Procedure
You can use an initial procedure in an interactive QMF session to predefine
data access tasks for end users, making it easy for them to access only the
data they need. For example, suppose a QMF end user has the responsibility
of producing an inventory status report every Monday morning. The user
might know the value that indicates low stock but might not know exactly
how to produce the status report. In this case, you might put a variable in the
query so that the user needs only to enter the value that indicates low stock.
For this example, we’ll call this query INVENTORY_QUERY:
SELECT * FROM INVENTORY
WHERE STOCK < &LOWSTOCK;

The procedure you use to run this query might look something like the query
in the following example. For this example, we’ll call this QMF procedure
INVENTORY_PROC. Because the user might want to view the data before
printing it, your INVENTORY_PROC procedure might not include the EXIT
command:
RUN QUERY INVENTORY_QUERY

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 71

You could then use the DSQSRUN parameter without specifying the
DSQSMODE parameter, so that you start an interactive session for the user:
QMFn I=INVENTORY_PROC

The INVENTORY_PROC procedure prompts the user for the &LOWSTOCK
variable value. For additional examples of how to use variables with an initial
procedure, see “Passing Variable Values to an Initial Procedure”. QMF
Reference explains variables in more detail.

As soon as the user provides the value, QMF displays the report and the user
can then view the report and issue a QMF PRINT command to print it.

For interactive sessions, instruct users to enter EXIT on the command line
when they are finished viewing the report. The initial procedure runs
repeatedly until an EXIT command is issued. Thus, pressing the End function
key from the report panel reruns the initial procedure; it does not display the
QMF Home panel.

Additionally, when you use the DSQSRUN parameter, ensure that the
DSQEC_RERUN_IPROC global variable is set to 0 and that the current object
is not the QMF Home panel. Developing QMF Applications provides more
information on this global variable, as well as information about how to write
procedures that help users perform QMF activities specified in predefined
procedures and applications.

Passing Variable Values to an Initial Procedure
When you supply the name of an initial procedure on the DSQSRUN
parameter, you can also supply values for variables contained in the
procedure. You can specify one or more variables and their values following
the procedure name on the DSQSRUN parameter.

Follow these rules when you specify variables for DSQSRUN:
v Put parentheses around the variable parameter list, as shown in the

examples in this section.
v Precede the variable name with an ampersand, and ensure the string is in a

variable_name=value format.
v Ensure the combined total of characters for the procedure name and the

variable parameter list is 98 characters or less.
v Separate the variable parameter specifications using a single comma, one or

more blanks, or a combination of a comma and blanks.

When you specify the name of an initial procedure, QMF issues a RUN PROC
command that runs the procedure. When you use variables in your procedure,

Customizing Your Start Procedure

72 Installing and Managing QMF for VSE/ESA

the values you supply for these variables must conform to the syntax used for
passing variables on a RUN command. For information about this syntax, see
QMF Reference.

For example, suppose you frequently need two pieces of information about
employees in your organization. One piece of information is the name of the
employee, and the other varies. You might define a query that includes
NAME and uses a variable for the other column. Figure 3 shows an example
query and procedure. The figure also shows how to pass a value for the
variable when you enter the DSQSRUN parameter, and shows the RUN
PROC command that QMF issues.

Figure 4 shows a similar example, but instead of passing one column name to
the procedure, it allows you to pass several, which return the employee’s
name, the department, and the employee’s salary.

The next four examples show how to pass information you normally supply
after the WHERE keyword in a query. (See QMF Reference for more
information about the WHERE keyword.)

These examples contain character strings, for which special syntax is required
because of how QMF evaluates the values when it processes the RUN PROC

Query (named JONES.QUERY2)
SELECT NAME, &COL
FROM Q.STAFF

Procedure (named JONES.PROC2)
RUN QUERY JONES.QUERY2 (&&COL=&COL

DSQSRUN parameter
QMFn I=JONES.PROC2(&COL=YEARS)

Resulting RUN command
RUN PROC JONES.PROC2 (&COL=YEARS)

Figure 3. Passing a QMF column name using DSQSRUN

Query (named JONES.QUERY3)
SELECT &COLS
FROM Q.STAFF

Procedure (named JONES.PROC3)
RUN QUERY JONES.QUERY3 (&&COLS=&COLS

DSQSRUN parameter
QMFn I=JONES.PROC3(&COLS=((DEPT,NAME, SALARY))

Resulting RUN command
RUN PROC JONES.PROC3(&COLS=((DEPT,NAME,SALARY)))

Figure 4. Passing several QMF column names using DSQSRUN

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 73

command. Special characters (comma, blank, parentheses, quotes, apostrophe
or single quote, and equal sign) can also be included in the string, as shown.

For example, if you need to know the names and employee numbers of all the
managers in your organization, you might run a query like the one in
Figure 5. When you pass the character string MGR on the DSQSRUN parameter,
be sure to enclose the value in single quotes.

Figure 6 shows how to pass variable values that contain commas. Enclose the
value SAN JOSE, CA in single quotes because it contains a comma.

Figure 7 on page 75 shows how to pass variable values that contain single
quotes (for example, an apostrophe in a name). When you pass the value on
the DSQSRUN parameter, be sure to enclose the value in single quotes and
use two single quotes for the apostrophe instead of one.

Query (named JONES.QUERY4)
SELECT JOB, NAME, ID
FROM Q.STAFF
WHERE JOB=&JOB

Procedure (named JONES.PROC4)
RUN QUERY JONES.QUERY4 (&&JOB=&JOB

DSQSRUN parameter
QMFn I=JONES.PROC4(&JOB='MGR')

Resulting RUN command
RUN PROC JONES.PROC4 (&JOB='MGR')

Figure 5. Passing a string within single quotes using DSQSRUN

Query (named JONES.QUERY5)
SELECT *
FROM Q.APPLICANT
WHERE ADDRESS=&CITY

Procedure (named JONES.PROC5)
RUN QUERY JONES.QUERY5 (&&CITY=&CITY

DSQSRUN parameter
QMFn I=JONES.PROC5(&CITY='SAN JOSE,CA')

Resulting RUN command
RUN PROC JONES.PROC5 (&CITY='SAN JOSE,CA')

Figure 6. Passing a comma within a string using DSQSRUN

Customizing Your Start Procedure

74 Installing and Managing QMF for VSE/ESA

Figure 8 shows how to pass values for variables in two different parts of the
query.

Setting Printing for Double-Byte Character Set Data (DSQSDBCS)
Parameter name

DSQSDBCS
Short form

K
Valid values

YES or NO
Default

NO

If you use the Uppercase or Japanese NLF, you might need to print
double-byte character set (DBCS) data. You can set the DSQSDBCS program
parameter to YES to print DBCS data from non-DBCS terminals.

For example, suppose a user you support uses an IBM 3279 display terminal
and needs to print a table (DBCSTABLE) whose nonnumeric columns contain

Query (named JONES.QUERY6)
SELECT *
FROM Q.STAFF
WHERE NAME=&NAME

Procedure (named JONES.PROC6)
RUN QUERY JONES.QUERY6 (&&NAME=&NAME

DSQSRUN parameter
QMFn I=JONES.PROC6(&NAME='O''BRIEN')

Resulting RUN command
RUN PROC JONES.PROC6 (&NAME='O''BRIEN')

Figure 7. Passing an apostrophe as part of a string using DSQSRUN

Query (JONES.QUERY7)
SELECT *
FROM Q.STAFF
WHERE DEPT IN &DEPT
AND JOB = &JOB

Procedure (named JONES.QUERY7)
RUN JONES.QUERY7 (&&DEPT=&V1 &&JOB=&V2

DSQSRUN parameter
QMFn I=JONES.PROC7(&V1=(((10,38))) &V2='MGR')

Resulting RUN command
RUN PROC JONES.PROC7(&V1=(((10,38))) &V2='MGR')

Figure 8. Passing multiple variable parameters and values using DSQSRUN

Customizing Your Start Procedure

Chapter 7. Customizing Your Start Procedure 75

DBCS data. The following statement starts the Uppercase NLF from a cleared
CICS screen and allows the user to print DBCSTABLE using a command such
as PRINT DBCSTABLE (PRINTER=DBCSPRT.
QMFU K=YES

For more information on how to establish a GDDM nickname for the
DBCSPRT printer, see “Chapter 10. Enabling Users to Print Objects” on
page 113.

Customizing Your Start Procedure

76 Installing and Managing QMF for VSE/ESA

Chapter 8. The QMF Session Control Facility

The session control facility provides a method for initializing a QMF session
by executing a specific QMF procedure when QMF is started. The name of the
QMF procedure is Q.SYSTEM_INI. With this facility, the Q.SYSTEM_INI
procedure can run any QMF command or any stored query that the user is
authorized to run, prior to the user seeing the QMF home screen.

Installing or Removing Q.SYSTEM_INI

Create and save the Q.SYSTEM_INI procedure into the database like any
other QMF procedure. The procedure must be named ″SYSTEM_INI″ and be
saved under the authorization ID of ″Q″. This QMF procedure should be
shared among all QMF users. You can make the procedure sharable by
specifying the SAVE command option ″SHARE=YES″. It’s also a good idea to
add a comment describing the procedure. For example:
SAVE PROC AS Q.SYSTEM_INI (SHARE=YES,COMMENT='QMF System Initialization Procedure')

When Does the Q.SYSTEM_INI Procedure Run?

The Q.SYSTEM_INI procedure runs just before the QMF initial procedure
specified by the DSQSRUN parameter and just after QMF has completed
initialization. All of the QMF functions available to QMF procedures are also
available for use by the Q.SYSTEM_INI procedure.

Using Q.SYSTEM_INI

Your QMF session procedure Q.SYSTEM_INI, can be as simple as setting
some QMF global variables or profile values or as complex as a complete
front end to QMF. Each user can have their own session procedure called
from, but not replacing Q.SYSTEM_INI.

Example Shipped with QMF
The sample Q.SYSTEM_INI proc provided with QMF makes SHARE=YES the
default for all users.

© Copyright IBM Corp. 1983, 2000 77

Q.SYSTEM_INI is located in the QMF product as DSQ0BINI.

User Session Procedure Example
The session procedure can call another procedure. The procedure being called
can be a user procedure that is created, owned and updated by a QMF user.
You can use the same named procedure for different users if each user has a
unique SQLID. When each user starts QMF they are running under their own
SQLID. That SQLID is the default object owner when the object owner is not
otherwise specified when accessing a QMF object or database object. For
example, the QMF session procedure Q.SYSTEM_INI, could set global
variables or company wide global variables and then call a user session
procedure. In the following example, the user session procedure is called
USER_INI.

--
-- QUERY D S Q 0 B I N I
-- MANAGEMENT ---------------
-- FACILITY
--
-- Q M F S Y S T E M I N I T I A L I Z A T I O N P R O C
-- ----- ----------- --------------------------- -------
--
-- FUNCTION: PROVIDE AN EXAMPLE QMF SYSTEM INITIALIZATION PROCEDURE
-- THAT CAN BE ADDED AFTER QMF INSTALLATION. YOU MAY MOD-
-- IFY OR REPLACE THIS PROCEDURE WITH YOUR OWN VERSION.
--
-- THE PROCEDURE MUST BE STORED IN THE DATABASE UNDER THE
-- NAME OF Q.SYSTEM_INI BEFORE IT WILL RUN AUTOMATICALLY.
-- ------------
--
-- THE COMMAND BELOW IS AN EXAMPLE OF ESTABLISHING A NEW DEFAULT
-- FOR THE SHARE OPTION OF THE SAVE COMMAND THAT WILL APPLY TO ALL
-- QMF USERS. (REMOVE THE LEADING COMMENT SYMBOLS "--" TO ACTIVATE
-- IT.)
--
-- SET GLOBAL (DSQEC_SHARE=1 -- MAKE SHARE=YES THE DEFAULT FOR ALL

Note: The actual example shipped with QMF may vary from the above example.

Figure 9. The Q.SYSTEM_INI shipped with QMF

The QMF Session Control Facility

78 Installing and Managing QMF for VSE/ESA

Procedure that Displays an Object list
The following is an example of a SYSTEM_INI procedure that displays a list
of objects instead of the QMF Home screen:

PROC Q.SYSTEM_INI LINE 1

-- This QMF procedure example shows how to setup QMF session defaults for
-- every QMF user and then calls a user procedure called USER_INI that will set
-- individual QMF session defaults
--

QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands
QMF RESET PROC -- Hide Contents of this PROC
QMF SET PROFILE (WIDTH=80,LENGTH=66) -- Set Default Report Page Size
QMF SET PROFILE (SPACE=COMMON) -- Set Default Space for Save Data Command
QMF SET GLOBAL (DSQDC_LIST_ORDER=5D) -- Object List Sorted by Date Modify
QMF SET GLOBAL (DSQEC_RESET_RPT=1) -- Prompt for Report Completion
RUN USER_INI -- Run Users Session Procedure
QMF END -- Display QMF Home screen first
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language

Figure 10. Q.SYSTEM_INI example that calls a user defined procedure

PROC WILLIAMS.USER_INI LINE
1

-- This QMF procedure example shows how to setup QMF session defaults for
-- A QMF user. The following settings replace any settings set by the
-- SYSTEM_INI proc.

--
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands
QMF RESET PROC -- Hide Contents of this PROC
QMF SET PROFILE (SPACE=MYSPACE) -- Store data in MYSPACE.
QMF SET PROFILE (PRINTER=MYROOM) -- Print reports at My Printer
QMF SET GLOBAL (DSQDC_LIST_ORDER=3A) -- Object List Sorted by Object Name
QMF SET GLOBAL (DSQEC_RESET_RPT=2) -- Always ResetReports
QMF SET GLOBAL (DSQEC_SHARE = 1) -- Always Share My QMF Objects
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language

Figure 11. User session procedure example: user.USER_INI

The QMF Session Control Facility

Chapter 8. The QMF Session Control Facility 79

Security and Sharing Session Procedure

The QMF session procedure Q.SYSTEM_INI and other objects used or called
by this procedure take on the same security as any other QMF object or
database object does during a QMF session. The Q.SYSTEM_INI procedure is
not special, other than QMF tries to execute it each time a QMF session is
started. If the procedure doesn’t exist, then QMF doesn’t try to run it.

If the Q.SYSTEM_INI procedure exists but is restricted or not shared, the
result is the same as with any other QMF procedure object. If the SQLID
starting QMF is ″Q″, the procedure can run. Any SQLID other than ″Q″
receives a message that it is not authorized to run the procedure
″Q.SYSTEM_INI″.

Diagnosis Considerations

The QMF session procedure Q.SYSTEM_INI is run in the same environment
as any other QMF procedure. All of the diagnosis procedures used for existing
QMF procedures can also be used for the Q.SYSTEM_INI procedure. In
addition to normal procedure execution, consider that this procedure is run
before the QMF startup procedure named in the DSQSRUN parameter when
QMF is started. If you have session controls in the procedure specified by the
DSQSRUN parameter, consider moving them to the Q.SYSTEM_INI
procedure.

You can use the QMF L2 tracing option to see commands and messages
issued. Session procedure commands and messages are distinghished from
others. See “Using the QMF Trace Facility” on page 242 for more information
on QMF trace options.

PROC Q.SYSTEM_INI LINE 1

-- This QMF procedure example shows how to set up QMF session defaults for
-- every QMF user to display a list of objects instead of the QMF Home
-- screen.
--

QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands
QMF RESET PROC -- Hide Contents of this procedure
QMF SET GLOBAL (DSQDC_LIST_ORDER=3A) -- Object List sorted by object name
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language
QMF LIST ALL -- LIST OBJECTS FOR ENGLISH

Figure 12. Using Q.SYSTEM_INI to display a list of objects rather than the QMF Home screen

The QMF Session Control Facility

80 Installing and Managing QMF for VSE/ESA

Chapter 9. Establishing QMF Support for End Users

After you start QMF and the Home panel is displayed, you can use QMF
facilities to help you customize support for end users. This chapter discusses
how to set up QMF so that your end users are able to access QMF and work
with data in the database.

Before you set up user access to QMF as explained in this chapter, you need
to make sure the user is known to CICS. Define a 3-character CICS terminal
operator ID by:
v Defining a VSE user ID and mapping it to a CICS terminal operator ID
v Redefining the CICS IDin the default sign-on table (SNT) shipped with VSE

Both methods are explained in VSE/ESA Planning.

If your users need to connect to DB2 explicitly, as explained in 67, grant them
DB2 CONNECT authority:

GRANT CONNECT TO userid IDENTIFIED BY password

Quick Start

Use the steps in Table 8 to guide you in setting up and maintaining the QMF
environment for users. If you need more information, see the page shown at
the right of the table.

Table 8. Establishing QMF support for end users

To do this task: See:

Ensure users have a QMF profile either by allowing them to use the
SYSTEM row of the Q.PROFILES table, or by inserting a unique row into
Q.PROFILES based on the user’s SQL authorization ID.

Page 82

Provide access to database and QMF objects your users need to work with,
using SQL GRANT statements for tables and views, and the SHARE
parameter of the QMF SAVE command for QMF queries, forms, and
procedures.

Page 92

Customize a user’s database object list, using the DSQEC_TABS_SQL and
DSQEC_COLS_SQL global variables.

Page 97

Enable users to create tables (if necessary) by assigning a private dbspace or
by granting DB2 RESOURCE authority and assigning a public dbspace.

Page 100

Enable users to support a chart using the Interactive Chart Utility (ICU) of
GDDM.

Page 104

© Copyright IBM Corp. 1983, 2000 81

Table 8. Establishing QMF support for end users (continued)

To do this task: See:

Maintain your users’ queries, forms, and procedures by updating and
reorganizing the QMF object control tables (Q.OBJECT_DIRECTORY,
Q.OBJECT_DATA, and Q.OBJECT_REMARKS).

Page 104

When necessary, enlarge the dbspace for the QMF object control tables
using the DB2 DBS utility UNLOAD and RELOAD commands. Recreate
indexes and any views you defined on the tables.

Page 109

Maintain your users’ database tables and views by updating and
reorganizing DB2 system tables.

Page 110

Creating User Profiles to Enable User Access to QMF

All QMF users need access to a user profile, which determines how QMF
handles individual input of specific users. Use the profile to control certain
aspects of a user’s environment, such as where printer output is routed or
whether terminal input is converted to uppercase.

Each aspect of a user’s QMF session maps to a value in a column of the
Q.PROFILES control table. Each row of the Q.PROFILES table is an individual
user profile. “Reading the Q.PROFILES Table” on page 84 shows the
Q.PROFILES table in detail and discusses possible profile values.

Using the Q User Profile, a Special QMF Profile
QMF installation automatically grants DBA authority to the user ID Q. The
user Q owns and manages these QMF resources:
v All QMF control tables, shown in “Appendix D. QMF Control Tables and

dbspaces Used by QMF” on page 275.
v The sample tables shipped with QMF. (For descriptions of the sample

tables, see QMF Reference.)
v Default views for the database object list, explained in “Customizing a

User’s Database Object List” on page 97.

For the discussions and procedures throughout this book, we assume you’re
administering QMF using the Q user ID or another ID with DBA authority.

Establishing a Profile Structure for Your Installation
Provide users with a profile using one of these methods:
v Allow users to use the default QMF profile, which is the row of the

Q.PROFILES table where the CREATOR column has a value of SYSTEM.
The Q.PROFILES table is shipped with default profile values predefined in
this row. The defaults used by this SYSTEM profile are discussed in

Establishing QMF Support for End Users

82 Installing and Managing QMF for VSE/ESA

“Reading the Q.PROFILES Table” on page 84. You can change these values
to create a generic profile that meets the needs of your site.

v Create a unique row in Q.PROFILES for the user, as shown in “Adding a
New User Profile to the Q.PROFILES Table”. Set the CREATOR column of
Q.PROFILES to the SQL authorization ID of the user and customize other
column values according to individual needs.

You can create unique profiles for some users at your installation and allow
other users to use the SYSTEM default profile; you can also delete the
SYSTEM profile for security and tracking reasons, thus preventing those who
don’t have unique profiles from using QMF.

Adding a New User Profile to the Q.PROFILES Table
You can use SQL INSERT queries or the QMF Table Editor (described in Using
QMF) to add new user profiles to the Q.PROFILES table. Figure 13 shows
sample SQL that creates unique profiles for users with SQL authorization IDs
of JONES (base QMF, or English) and SCHMIDT (German NLF). Use the
TRANSLATION column of Q.PROFILES, as shown, to distinguish between an
English and an NLF environment.

The values shown in the figure are examples of profile values you can use.
See Table 9 on page 85 for other valid profile values.

Important: Always specify a TRANSLATION value when inserting a row into
Q.PROFILES, or the TRANSLATION value defaults to a null value
and the profile row is automatically ignored. Figure 13 shows only
a subset of all possible profile values. Use “Reading the
Q.PROFILES Table” on page 84 for guidance in specifying
additional values.

To enroll many users, set up a template query that describes a standard
profile and uses a substitution variable value for any value that commonly

Base QMF (English) German NLF

INSERT INTO Q.PROFILES INSERT INTO Q.PROFILES
(CREATOR, LANGUAGE, SPACE, TRANSLATION, (CREATOR, LANGUAGE, SPACE, TRANSLATION,
PFKEYS, SYNONYMS, RESOURCE_GROUP, PFKEYS, SYNONYMS, RESOURCE_GROUP,
ENVIRONMENT) ENVIRONMENT)
VALUES ('JONES', 'PROMPTED', 'SAVEIT' VALUES ('SCHMIDT', 'MENUE', 'STUT2BER'
'ENGLISH', 'PFKEYS', 'COMMAND_SYNONYMS' 'DEUTSCH', 'DEUTASTEN'
'NONPRIME', 'CICSVSE') 'COMMAND_SYNONYM_D', 'SCHICHT'

'CICSVSE')

Figure 13. Creating a user profile

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 83

changes (such as the value for the CREATOR column) with each new user
you enroll. For more information on using substitution variables, see QMF
Reference .

If you’re using an NLF: You can establish different profiles for the same user
according to the national language environment. A
user can have a profile with one set of values in one
national language, and a profile with a different set
of values in another national language.

Preventing Users Without Unique Profiles from Using QMF
It can be difficult to track individual resource use if several people use QMF
under the common, default SYSTEM profile. To restrict use of QMF to users
who have unique profiles, delete the SYSTEM row of Q.PROFILES. Figure 14
shows SQL statements that delete this row. You can also use the Table Editor,
as explained in Using QMF.

Important: For both base QMF and NLF environments, always specify a
TRANSLATION value when deleting rows from Q.PROFILES, or
more rows (across different national language environments)
might be deleted than you intend. Additionally, always use a
WHERE clause, or all rows of Q.PROFILES are deleted.

After you delete the SYSTEM row of Q.PROFILES, create a unique profile for
every QMF user; otherwise, your users won’t be able to use QMF. An example
of creating a unique profile is shown in Figure 13 on page 83.

Reading the Q.PROFILES Table
Table 9 on page 85 shows the columns of the Q.PROFILES control table. Each
column of the table represents an aspect of a user’s QMF session you can
customize. The defaults shown are for the English QMF environment.

If you’re using an NLF: Default values might be different for the English
environment and for some NLFs. For example, do
not assume that the default for all NLFs is UPPER

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR='SYSTEM'
WHERE CREATOR='SYSTEM'

AND TRANSLATION='ENGLISH'
AND TRANSLATION='DEUTSCH'

Figure 14. Restricting use of QMF to users who have unique profiles

Establishing QMF Support for End Users

84 Installing and Managing QMF for VSE/ESA

because the English default is UPPER. The default
value for the CASE field in the German NLF is
MIXED, and might also vary for other NLFs. Browse
the DSQ3nPRO phase to see the default values for
each NLF. (Replace the n symbol with an NLID from
Table 3 on page 10.)

The Q.PROFILES table has the index Q.PROFILEX, with the attribute
UNIQUE. The keyed columns are CREATOR, TRANSLATION, and
ENVIRONMENT. No three rows can have identical values for these three
columns.

Table 9. Structure of the Q.PROFILES table

Column Name
Data Type and
Length Nulls Allowed Function and Possible Values

CREATOR CHAR (8) No Function: Specifies the SQL authorization
ID (the user) who owns the profile.

Values: SQL authorization ID or SYSTEM
(default). The SYSTEM row is shipped
with Q.PROFILES for English and each
NLF; users who don’t have unique
profile rows can use the SYSTEM row.

CASE CHAR (18) Yes Function: Specifies whether terminal
input is converted to uppercase.

Values: UPPER (default), STRING, or
MIXED. See QMF Reference for
descriptions of these values. CASE might
have a different default for NLF users.

DECOPT CHAR (18) Yes Function: Specifies what separators QMF
puts in numeric report columns.

Values: PERIOD (default), COMMA, and
FRENCH. See QMF Reference for more
information. DECOPT is translated and
might have a different default for NLF
users.

CONFIRM CHAR (18) Yes Function: Controls display of
confirmation panels.

Values: YES (default) if you want
confirmation panels displayed before
database changes; NO if you don’t. See
page 103 for information on confirming
table changes.

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 85

Table 9. Structure of the Q.PROFILES table (continued)

Column Name
Data Type and
Length Nulls Allowed Function and Possible Values

WIDTH CHAR (18) Yes Function: Controls number of printed
columns per page.

Values: 22 to 999. Default = 132.

LENGTH CHAR (18) Yes Function: Controls number of printed
lines per page.

Values: 1 to 999, or CONT if you want
no page breaks. Default = 60.

LANGUAGE CHAR (18) Yes Function: Controls which query language
QMF uses after a RESET QUERY
command is issued.

Values: SQL (default), QBE (for
Query-by-Example), or PROMPTED (for
Prompted Query).

SPACE CHAR (50) Yes Function: Specifies a dbspace that holds
tables created using SAVE DATA and
IMPORT commands.

Values: Any valid dbspace name. See
page 102 for more information on using
dbspaces.

TRACE CHAR (18) Yes Function: Controls the level of detail in
trace output.

Values: ALL traces all functions at the
most detailed level. NONE (default)
inhibits normal levels of tracing. A
character string of function codes and
numbers indicates the level of tracing for
individual QMF functions. See page 242
for more information on the QMF trace
facility. See page 65 to specify a trace
value when QMF starts. Only the values
ALL and NONE are translated in NLFs.

Establishing QMF Support for End Users

86 Installing and Managing QMF for VSE/ESA

Table 9. Structure of the Q.PROFILES table (continued)

Column Name
Data Type and
Length Nulls Allowed Function and Possible Values

PRINTER CHAR (8) Yes Function: Controls where printer output
is routed.

Values: Use a null (default) or blank
value to route print output to CICS
temporary storage or transient data
queues. Use a GDDM nickname to direct
output to a GDDM-defined printer. See
Chapter 10 on page 113 for information
on choosing and specifying values.

TRANSLATION CHAR (18) No Function: Indicates English or NLF
environment.

Values: English (default) or the name of
an NLF. The right-hand column of
Table 3 on page 10 shows the translated
names you need to use in this column.

PFKEYS VARCHAR (31) Yes Function: Indicates the table or view (if
any) where user’s customized function
key definitions are stored.

Values: Any valid DB2 table or view
name. If blank or null (default), QMF’s
default keys are used. “Chapter 12.
Customizing QMF Function Keys” on
page 145 describes how to create this
table.

SYNONYMS VARCHAR (31) Yes Function: Indicates the table or view (if
any) where user’s customized command
definitions are stored.

Values: Any valid DB2 table or view
name. If blank or null (default), no
customized definitions are used.
“Chapter 11. Customizing QMF
Commands” on page 133 describes how
to create this table.

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 87

Table 9. Structure of the Q.PROFILES table (continued)

Column Name
Data Type and
Length Nulls Allowed Function and Possible Values

RESOURCE_GROUP CHAR (16) Yes Function: Controls how the governor exit
routine limits user’s resources or
commands.

Values: Any valid resource group name.
If blank or null (default), QMF attempts
to use the user’s SQL authorization ID
here, and the user’s session is not
governed (unless the authorization ID is
a valid resource group name). See
“Chapter 14. Controlling QMF Resources
Using a Governor Exit Routine” on
page 199 for more information.

MODEL CHAR (8) Yes Function: Specifies the model for data
access.

Values: Always use the value REL for
this column, indicating relational data.

ENVIRONMENT CHAR (8) Yes Function: Indicates the operating
environment.

Values: This value is CICSVSE if you
access the profiles through CICS/VSE. If
profiles are stored in DB2 for VSE but are
being accessed from a DB2 for OS/390®

or DB2 for VM application requester, the
value can be any one of the following:
CMS, TSO, CICSMVS, or CICS.

Providing the Correct Profile for the User’s Operating Environment
When QMF is started, it determines which users are authorized to establish a
QMF session by searching the CREATOR, ENVIRONMENT, and
TRANSLATION columns of the Q.PROFILES table. You need to add the
correct values to the user’s profile to ensure that QMF recognizes them and
starts.

QMF searches for specific profile values in the following order:
1. CREATOR=SQL ID, ENVIRONMENT=current operating environment
2. If running in CICS, CREATOR=SQL ID, ENVIRONMENT=CICS
3. CREATOR=SQL ID, ENVIRONMENT=NULL
4. CREATOR=SYSTEM, ENVIRONMENT=current operating environment
5. If running in CICS, CREATOR=SYSTEM, ENVIRONMENT=CICS
6. CREATOR=SYSTEM, ENVIRONMENT=NULL

Establishing QMF Support for End Users

88 Installing and Managing QMF for VSE/ESA

SQL ID is the DB2 authorization ID of the user trying to log on to QMF. DB2
uses this ID to determine if the user is authorized to use the database.

Current operating environment is CICSVSE if the profiles are stored in VSE DB2
and are being accessed through CICS/VSE.

The value for current operating environment can also be CICSMVS, CICS, or TSO
if the profiles are stored in VSE DB2 but are being accessed from an OS/390
DB2 application requester. The value can be CMS if the profiles are stored in
VSE DB2 but are being accessed from a VM DB2 application requester.

QMF must find values for CREATOR and ENVIRONMENT that match one of
the pairs in the preceding list, or QMF initialization ends in an error before
the QMF Home panel is displayed.

Storing Profiles in VM DB2 in a Guest-Sharing Environment
If you store QMF VSE profiles in a VM DB2 database, add the value

CICSVSE to the ENVIRONMENT column of the user’s QMF VM profile to
ensure that your users can access QMF.Figure 15 shows how a site using DB2
guest sharing might use QMF VSE to access profiles and other objects stored
in VM DB2.

Updating User Profiles
You can change the values in a user’s profile by using either the SET
PROFILE command or SQL UPDATE statements.

Using the SET PROFILE Command
Using this command is quicker than using SQL UPDATE statements, because
you can enter it from the QMF command line with minimal typing.

Figure 15. Possible guest-sharing scenario for profiles

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 89

Values set using SET PROFILE remain effective only until the user’s session
ends; use the SAVE PROFILE command to save values you changed. For more
information on the SET PROFILE command and its parameters, see QMF
Reference.

Because no special SQL privileges are required to use this command, your
users can easily update their own profiles. However, they cannot use SET
PROFILE to update fields you might use to customize their QMF sessions.
These fields are PFKEYS, SYNONYMS, and RESOURCE_GROUP. You can use
SQL UPDATE statements or the QMF Table Editor to update these
Q.PROFILES fields. The Table Editor is explained in Using QMF.

Using SQL UPDATE Statements
SQL UPDATE statements can be used to update all fields of the Q.PROFILES
table, including SYNONYMS, PFKEYS, and RESOURCE_GROUP. See Table 9
on page 85 for descriptions of these columns, including consequences of not
specifying their values.

For more information about how to choose values for these columns, see:
v “Chapter 11. Customizing QMF Commands” on page 133
v “Chapter 12. Customizing QMF Function Keys” on page 145
v “Chapter 14. Controlling QMF Resources Using a Governor Exit Routine”

on page 199

Use an SQL UPDATE query similar to the one in Figure 16 to update existing
user profiles. This example changes the name of the table that stores a user’s
command synonyms. On the left is an example query for user JONES in base
(English) QMF; on the right is the same query for user SCHMIDT in the
German NLF.

Important: When running UPDATE, DELETE, and INSERT queries on the
Q.PROFILES table, always include the TRANSLATION column in
the query; otherwise, QMF applies the changes you make in all
language environments.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET SYNONYMS='COMMAND_SYNONYMS'
SET SYNONYMS='GUMMOW.XYZ'

WHERE CREATOR='JONES' AND
WHERE CREATOR='SCHMIDT' AND

TRANSLATION='ENGLISH'
TRANSLATION='DEUTSCH'

Figure 16. Updating user profiles using UPDATE query on Q.PROFILES table

Establishing QMF Support for End Users

90 Installing and Managing QMF for VSE/ESA

Updating the SYSTEM Profile
You can change the default values provided in the SYSTEM row of
Q.PROFILES. However, any user who needs different values than those you
assigned for the SYSTEM row must have a unique profile row.

For example, suppose that your system has two resource groups defined,
named PRIME and NONPRIME. Suppose PRIME is the default value for the
RESOURCE_GROUP field of the SYSTEM row in Q.PROFILES. You must
formally enroll the users who are in the NONPRIME group by giving them
unique profile rows as shown in the example in Figure 13 on page 83.

Deleting Profiles from the Q.PROFILES Table
Periodically, you might need to delete obsolete user profiles from the
Q.PROFILES table. Delete a user profile from Q.PROFILES when you are sure
that objects created by the SQL authorization ID in that profile have been
either deleted or safely transferred to other users:
v For how to perform these tasks for QMF queries, forms, and procedures,

see “Maintaining QMF Objects Using QMF Control Tables” on page 104.
v For instructions for database tables and views, see “Maintaining Tables and

Views Using DB2 System Tables” on page 110.

When you delete a user profile, all SQL privileges the user had on objects are
deleted, as well as all privileges that user granted to other users. To ensure
other users won’t be affected, query the SYSTEM.SYSTABAUTH table to see
what SQL privileges have been granted to the user. Query the
SYSTEM.SYSUSERAUTH table to see what DB2 authorities have been
granted. For sample queries you can use, see “Transferring Ownership of
Queries, Forms, and Procedures” on page 108.

Use a query similar to the one shown in Figure 17 to delete a user profile.

If you’re using an NLF: Include a value for the TRANSLATION column if
you want to delete the user profile in a single NLF

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR='JONES'
WHERE CREATOR='SCHMIDT'

AND TRANSLATION='ENGLISH'
AND TRANSLATION='DEUTSCH'

Figure 17. Deleting a QMF user profile

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 91

environment. If you don’t specify a value for
TRANSLATION, QMF deletes the profile in all NLF
environments.

If the user whose profile you deleted had a private dbspace, use the SQL
DROP DBSPACE statement from the SQL query panel if the space contains
nothing you want to save. Also, you can use the SQL DROP TABLE statement
or QMF ERASE commands if you want to delete specific QMF or database
objects. DB2 Server for VSE & VM SQL Reference explains the DROP statement.
QMF Reference explains the ERASE command.

Controlling Access to QMF and Database Objects

QMF objects, such as queries and procedures, and functions such as the Table
Editor, allow users to access and manipulate data stored in tables in the
database. Because this data might be sensitive, you might need to control
users’ access to certain objects:
v You can use SQL GRANT and REVOKE statements from QMF’s SQL query

panel to control access to tables and views, as discussed in “Granting and
Revoking SQL Privileges” on page 94. “SQL Privileges Required to Access
Objects” explains privileges required to use specific QMF commands or
functions on objects.

v You can use the SHARE parameter of the QMF SAVE command to control
access to queries, forms, and procedures, as discussed in “Sharing QMF
Objects with Other Users” on page 95.

SQL Privileges Required to Access Objects
Before users can use certain SQL statements with tables or views, you need to
grant them the SQL privileges they need. For example, if user JONES enters
DISPLAY TABLE SALES_TOTALS but does not have the SQL SELECT privilege for
the SALES_TOTALS table, QMF displays the following message:
You lack the authorization needed for this DISPLAY command.

To prevent JONES from getting this kind of error message, grant him the SQL
SELECT privilege on the SALES_TOTALS table.

Different SQL privileges are required, depending on whether the user is
executing a QMF command, running a prompted or QBE query, or using the
Table Editor.

SQL Privileges Required for QMF Commands
Using Table 10 on page 93, locate the QMF command your users need to use
and grant them the required SQL privilege on the table or view they’re
working with. See “Granting and Revoking SQL Privileges” on page 94 for
examples of SQL GRANT statements.

Establishing QMF Support for End Users

92 Installing and Managing QMF for VSE/ESA

Table 10. QMF commands and their SQL equivalents

This QMF
command:

Requires this SQL privilege on objects referenced by the
command:

DISPLAY table/view SELECT

DRAW table/view SELECT

EDIT TABLE
table/view

The necessary privileges depend on the Table Editor mode. See
“SQL Privileges Required for the Table Editor” on page 94 for
this information.

EXPORT TABLE
table/view

SELECT

IMPORT TABLE
table/view

If the table exists, SELECT, DELETE, and INSERT. If the table
does not exist, INSERT. Authority is also required to use the
CREATE TABLE statement for the dbspace specified in the
SPACE field of the user’s profile.

PRINT table/view SELECT

RUN query Whatever privileges are used in the query.

RUN procedure Whatever privileges are used in the commands in the
procedure.

SAVE DATA If the table exists, SELECT, DELETE, and INSERT. If the table
does not exist, CREATE TABLE.

LIST table/view SELECT

Not all users can use the SAVE command to create a new table. For more
information, see “Enabling Users to Create Tables in the Database” on
page 100.

For more information on SQL privileges, such as SELECT, INSERT, UPDATE,
or DELETE, see DB2 Server for VSE & VM SQL Reference.

SQL Privileges Required for Prompted and QBE Queries
Using Table 11, locate the type of query your users need and grant them the
SQL privilege on the table or view against which the query runs.

Table 11. QMF query types and their SQL equivalents

Users using this type of query: Need this SQL privilege:

PROMPTED SELECT

QBE I. INSERT

QBE P. SELECT

QBE U. UPDATE

QBE D. DELETE

For more information on prompted queries or QBE queries, see Using QMF.

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 93

SQL Privileges Required for the Table Editor
Using Table 12, locate the Table Editor function your users need to use and
grant them the SQL privilege on the table or view they need to edit.

Table 12. Table Editor commands and their SQL equivalents

Users using this Table Editor function:
Need this SQL privilege on tables or
views being edited:

ADD INSERT

SEARCH SELECT

CHANGE UPDATE

DELETE DELETE

For more information on the Table Editor, see Using QMF.

Granting and Revoking SQL Privileges
Users automatically own any objects they create and save in the database. The
owner of an object automatically has all SQL privileges on objects he or she
owns, and can grant (or revoke) these privileges to other users. Anyone with
DB2 DBA authority can grant or revoke SQL privileges for any object in the
database. The user Q has this authority, and is predefined to DB2 during QMF
installation.

When granting or revoking privileges on objects you do not own, qualify the
object with the SQL authorization ID of the owner:
JONES.ORDER_BACKLOG

Using the SQL GRANT Statement
Use the SQL GRANT statement to grant SQL SELECT, UPDATE, INSERT, and
DELETE privileges. For example, suppose user JONES needs to issue the
following command:
EDIT TABLE ORDER_BACKLOG (MODE=CHANGE

Assuming you are the owner of the table, use the statement in Figure 18 to
grant JONES the SQL UPDATE privilege he needs to edit the
ORDER_BACKLOG table in change mode:
WITH GRANT OPTION indicates that JONES can grant to other users any of

the SQL privileges you granted him for the ORDER_BACKLOG table.

If you need to run GRANT queries often, use QMF variables in place of parts
of the query that frequently change, such as UPDATE, ORDER_BACKLOG,

GRANT UPDATE ON ORDER_BACKLOG TO JONES WITH GRANT OPTION

Figure 18. Granting SQL privileges to a single QMF user

Establishing QMF Support for End Users

94 Installing and Managing QMF for VSE/ESA

and JONES. Variables are explained in QMF Reference. You might also consider
using a QMF procedure to do the task if there is more than one query. Using
QMF explains how to create procedures.

Use the keyword PUBLIC to grant SQL privileges to all QMF users. For
example, use the statement in Figure 19 to grant INSERT authority on the
ORDER_BACKLOG table to all users, and allow each of those users to grant
INSERT authority to other users:

For more information on the GRANT statement, see DB2 Server for VSE & VM
SQL Reference.

Important: If you grant more than one person INSERT, UPDATE, or DELETE
privileges on a database object, and two or more users try to
access that object at the same time, there might be contention for
resources, causing performance or other problems. If a user is
editing a table required during QMF initialization, that table can
be locked to prevent QMF from starting for other users.

Using the SQL REVOKE Statement
Use the SQL REVOKE statement to remove privileges:

Use the PUBLIC keyword to revoke privileges from all QMF users.

DB2 privileges have a cascading structure; privileges revoked from a user are
automatically revoked from any additional users to whom that user granted
them.

For more information on the REVOKE statement, see DB2 Server for VSE &
VM SQL Reference.

Sharing QMF Objects with Other Users
You or any QMF user can enable access to QMF queries, forms, and
procedures by using the SHARE parameter of the QMF SAVE command.

Specify SHARE=YES when saving an object to allow any other user to display
the query and use it in a QMF command that does not replace or erase it. For

GRANT INSERT ON ORDER_BACKLOG TO PUBLIC WITH GRANT OPTION

Figure 19. Granting an SQL privilege to all QMF users

REVOKE UPDATE ON ORDER_BACKLOG FROM JONES

Figure 20. Revoking an SQL privilege from a QMF user

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 95

example, the command in Figure 21 saves the current query as
ORDER_QUERY and allows any other user to display and run it:

The default is defined by the global variable DSQEC_SHARE. See the QMF
Reference for more information.

The owner of an object can change its shared status at any time, using a
DISPLAY command followed by a SAVE command, as shown in Figure 22:

For more information on the SAVE command, see QMF Reference.

Allowing Uncommitted Read
If you want your QMF session to allow uncommitted read, you can specify a
value for the global variable DSQEC_ISOLATION in the Q.SYSTEM_INI
procedure.

Uncommitted read can be useful in a distributed environment. However,
allowing uncommitted read can introduce non-existent data into a QMF
report. Do not allow uncommitted read if your QMF reports must be free of
non-existent data.

Values can be:

'0' Isolation level UR, Uncommitted Read.

'1' Isolation level CS, Cursor Stability. This is the default.

For QMF V7R1 the value ’0’ is only effective with DB2 for VM/VSE V5 or
higher.

Setting Standards for Creating Objects
The objects in your installation might be shared among many users, so each
should have a name that indicates what the object is and how it should be
used. Encourage users to provide comments for queries, forms, procedures,
and tables to describe for other users the purpose of the object. Tables and
views require more maintenance and administration, so consider establishing
special guidelines for creating these objects.

SAVE QUERY AS ORDER_QUERY (SHARE=YES

Figure 21. Sharing a QMF object

DISPLAY ORDER_QUERY
SAVE QUERY AS ORDER_QUERY (SHARE=NO

Figure 22. Changing the shared status of a QMF object

Establishing QMF Support for End Users

96 Installing and Managing QMF for VSE/ESA

For information on how to create comments for QMF and database objects
using the SAVE command, see QMF Reference.

Customizing a User’s Database Object List

QMF users periodically need to list objects they have saved in the database or
to view comments that show them what purpose a table serves or what type
of data a column in the table contains. The QMF LIST and DESCRIBE
commands perform these functions.

When a user issues a LIST or DESCRIBE command for a table, QMF uses a
view defined on a set of DB2 system tables to obtain information about the
table. The name of this view is stored in the global variable
DSQEC_TABS_SQL. When users issue these commands for a column within a
table, QMF uses the global variable DSQEC_COLS_SQL to obtain the name of
the view.

QMF provides a set of default views, loaded during installation, that return
only the tables and column information the user is authorized to see. Because
processing for authorization takes extra time and resources, QMF also allows
you to customize the table lists and column information by creating your own
views.

Using the Default Object Lists
QMF provides two default views and automatically assigns these views to the
user Q during QMF installation:

Q.DSQEC_TABS_SQL
Q.DSQEC_COLS_SQL

The view Q.DSQEC_TABS_SQL selects only the database tables the user is
authorized to see. Figure 23 on page 98 shows the type of information the
view provides.

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 97

To override the default view Q.DSQEC_TABS_SQL, issue the command:
SET GLOBAL (DSQEC_TABS_SQL = userid.your_local_sql_table

The view Q.DSQEC_COLS_SQL selects only the column information a user is
authorized to see. Figure 24 shows the type of information the view provides.

To override the default view Q.DSQEC_COLS_SQL, issue the command:
SET GLOBAL (DSQEC_COLS_SQL = userid.your_local_sql_columns

Changing the Default List
Using the QMF-provided default views for your table lists and column
information might increase processing time, because DB2 gathers
authorization information from the SYSTEM.SYSCATALOG and
SYSTEM.SYSCOLUMNS tables. If you don’t need the extra security provided
by these authorization checks, consider creating your own views that generate
a list of objects stored in the database.

Use a query similar to the one in Figure 25 on page 99 to create your own
view. This query eliminates duplicate rows in the view and, although DB2
spends more time before returning rows to QMF, there is less data transfer
between the database and the user machine, producing better performance.

CREATE VIEW Q.DSQEC_TABS_SQL
(OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
CREATED,MODIFIED,LAST_USED,LABEL,LOCATION,OWNER_AT_LOCATION,
NAME_AT_LOCATION)
AS SELECT

CREATOR,TNAME,'TABLE',TABLETYPE,' ',' ',REMARKS,' ',' ',' ',
TLABEL,' ',' ',' '

FROM SYSTEM.SYSCATALOG, SYSTEM.SYSTABAUTH
WHERE CREATOR = TCREATOR AND TNAME=TTNAME AND GRANTEETYPE = ' ' AND

GRANTEE IN (USER,'PUBLIC');
COMMENT ON TABLE Q.DSQEC_TABS_SQL IS

'QMF VIEW FOR DB2 TABLES/VIEWS LIST';
GRANT SELECT ON Q.DSQEC_TABS_SQL TO PUBLIC;

Figure 23. Default view that provides a list of tables for the LIST command

CREATE VIEW Q.DSQEC_COLS_SQL
(OWNER,TNAME,CNAME,REMARKS,LABEL)

AS SELECT
CREATOR,TBNAME,CNAME,REMARKS,CLABEL
FROM SYSTEM.SYSCOLUMNS, SYSTEM.SYSTABAUTH
WHERE TCREATOR = CREATOR AND TTNAME=BNAME AND GRANTEETYPE = ' '

AND GRANTEE IN (USER,'PUBLIC')

Figure 24. Default view that provides column information for the DESCRIBE command

Establishing QMF Support for End Users

98 Installing and Managing QMF for VSE/ESA

You can name your customized view any name that is valid in QMF. See QMF
Reference for information on QMF naming conventions.

To override the view you created, you can issue a command similar to the
following:
SET GLOBAL (DSQEC_TABS_SQL = userid.your_local_sql_objects

If you want to create a view that shows only the tables for which a user has
privileges, but does not require a join, consider defining a view that selects
only from SYSTEM.SYSTABAUTH, but does not return values for REMARKS
or LABEL.

Follow these rules if you’re creating a list view of your own:
v All columns must have a data type of CHAR or VARCHAR. QMF returns

errors upon finding other data types.
v Do not exceed the following maximum lengths for columns in the view:

– 18 characters for TNAME, CNAME, and NAME_AT_LOCATION
– 254 characters for REMARKS
– 30 characters for LABEL
– 1 character for RESTRICTED
– 16 characters for LOCATION
– 8 characters for OWNER, TYPE, SUBTYPE, MODEL, and

OWNER_AT_LOCATION
v Always supply values for OWNER, TNAME, TYPE, and CNAME. These

columns cannot be null.

DSQEC_TABS_SQL and DSQEC_COLS_SQL are part of a set of global
variables that help you control aspects of a user’s QMF session. For more

CREATE VIEW Q.DATABASE_OBJECTS
(OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
CREATED,MODIFIED,LAST_USED,LABEL,LOCATION,OWNER_AT_LOCATION,
NAME_AT_LOCATION)

AS SELECT CREATOR,TNAME,
'TABLE',TABLETYPE,' ',' ',REMARKS,

' ',' ',' ',TLABEL,
' ',' ',' '

FROM SYSTEM.SYSCATALOG A
WHERE TNAME IN (SELECT TTNAME

FROM SYSTEM.SYSTABAUTH
WHERE TCREATOR = A.CREATOR

AND GRANTEETYPE = ' &'
AND GRANTEE IN (USER, 'PUBLIC'))

Figure 25. Customizing your object lists using global variables

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 99

information on using global variables in procedures, see Using QMF. For a list
of global variables and information on using them in applications, see
Developing QMF Applications.

Object List Storage Requirement
For the LIST command, there are two sets of storage requirements for each
row of the object list.
v The QMF internal RPT record collection requires:

– Object OWNER key information, 50 bytes
– REMARKS, up to 254 bytes
– TABLE with a LABEL, up to 30 bytes
– ALIAS, 42 bytes
– Object information for QUERY, PROC, and FORM, 63 bytes

v The storage to hold displayed data and control information requires 130
bytes plus the actual number of bytes for REMARKS, up to 254 bytes and
the actual number of bytes for the LABEL associated with a table, up to 30
bytes.

Enabling Users to Create Tables in the Database

A QMF user can create a table using any of these methods:
v SQL CREATE TABLE statement

Enter the SQL CREATE TABLE statement from a QMF SQL query panel or
run it from a saved query.

v QMF DISPLAY TABLE (or DISPLAY viewname) command, followed by the
SAVE DATA command
All SQL privileges on the underlying table or view are required. If the
name you specify on the SAVE DATA command is the name of an existing
table, QMF replaces or appends the existing data object. If you use a new
name, a new table is created. The SAVE command might be rejected if table
attributes don’t match. For more information on the SAVE DATA command,
see QMF Reference or the online help.

v QMF IMPORT TABLE or IMPORT VIEW command
All SQL privileges on the table or view being imported are required. If the
name the user specifies on the IMPORT command is the name of a table
that already exists, QMF replaces or appends the data in the existing table.
The IMPORT command might be rejected if table attributes don’t match.
For more information on the IMPORT command, see QMF Reference or the
online help.

Depending on the needs of your installation, you might need to create tables
for your users or enable them to create their own tables. Both methods are
shown in Table 13 on page 101.

Establishing QMF Support for End Users

100 Installing and Managing QMF for VSE/ESA

Table 13. Creating tables in the database
If you’re creating tables for your users: If users are creating tables themselves:
Step 1:

Acquire a dbspace as shown in Figure 26 on
page 102 and define it to DB2 beforeits first use.
Use DB2 Server for VSE Database Administration to
help you decide on a private or public dbspace.

Step 1:

Acquire a dbspace as shown in Figure 26 on
page 102 and define it to DB2 before its first use.
Use DB2 Server for VSE Database Administration to
help you decide on a private or public dbspace.

Step 2:

Issue an SQL CREATE TABLE statement, a QMF
DISPLAY command followed by a SAVE DATA
command, or an IMPORT TABLE command to
create the table. See Using QMF for examples of
creating tables.

Step 2:

Assign the dbspace in the user’s QMF profile,
using an SQL UPDATE statement for the SPACE
field. Updating profiles is explained in “Updating
User Profiles” on page 89. You can update the
SYSTEM profile if you need to change its default
values.

Step 3:

Create one or more indexes on the tables you
create, to improve DB2 performance. See DB2
Server for VSE & VM SQL Reference for information
on the CREATE INDEX statement and details on
logical design of tables.

Step 3:

Grant DB2 RESOURCE authority to users creating
their own tables in public dbspaces, or acquire a
private dbspace for the user. Users automatically
have all SQL privileges on tables they create.

Step 4:

Fill the tables with data. Use the DB2 DBS Utility,
QMF IMPORT commands (for transferring small
tables), or other methods. DB2 Server for VSE &
VM Database Services Utility explains how to use
the DBS Utility. Using QMF explains exporting and
importing objects in QMF.

Step 4:

Provide education on the SQL CREATE TABLE
statement, QMF SAVE DATA and IMPORT
commands, and other guidelines your site has for
creating tables. See QMF Reference for more
information on these commands.

Step 5:

Grant SQL privileges for the tables to users who
need them, as discussed in “SQL Privileges
Required to Access Objects” on page 92.

Step 5:

Grant SQL privileges on any table or view on
which users issue SAVE DATA or IMPORT
commands to create new tables. Grant at least the
SELECT privilege, or QMF can’t read the data to
create a new table.

SQL privileges for QMF functions and commands
are discussed starting in “SQL Privileges Required
to Access Objects” on page 92.

For more information on the CREATE TABLE, CREATE INDEX, and other
SQL statements related to creating tables, see DB2 Server for VSE & VM SQL
Reference.

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 101

Choosing and Acquiring a dbspace for the User
A dbspace can be either private or public. Any QMF user with DB2
RESOURCE authority can create tables in a public dbspace. If the dbspace is
private, only the assignee is allowed to create tables in it. For additional
guidance on types of dbspaces, see DB2 Server for VSE Database Administration.

Using the SQL ACQUIRE Statement
After you decide whether a public or private dbspace best suits your needs,
acquire the dbspace using a statement similar to the one in Figure 26. You can
enter this statement from the QMF SQL query panel, then press the Run
function key to run the query.

Substitute PRIVATE for PUBLIC in the statement if you’re acquiring a private
dbspace, and be sure to qualify dbspacename with the SQL authorization ID of
the user for whom you’re acquiring the dbspace.

Sizing a dbspace
The size of the dbspace in an ACQUIRE statement is given in pages, where
one page is 4096 bytes. If you don’t specify a page size, a default value of 128
pages is assumed. Estimate the size you need by estimating the size of the
tables the dbspace must hold, as though the tables are reports and you’re
estimating the size of a spill file to hold them. “Estimating the Space Required
for a Spill File” on page 59 shows an algorithm for estimating the size of a
spill file.

Whatever size you choose, first search the DB2 storage pools for an existing
dbspace close to the size you need. If no dbspace of convenient size already
exists, use the ADD DBSPACE statement to create a dbspace. Instructions for
adding dbspaces are provided in DB2 Server for VSE System Administration.

Granting a User DB2 RESOURCE Authority
You need to grant DB2 RESOURCE authority to any user who needs to create
tables in a public dbspace. To grant a user RESOURCE authority, issue the
SQL statement shown in Figure 27, where userid1, userid2, and userid3,
represent SQL authorization IDs.
A user with RESOURCE authority can:

v Acquire a private dbspace for his or her own use

ACQUIRE PUBLIC DBSPACE NAMED dbspacename
(PAGES = 1024)

Figure 26. Acquiring a dbspace

GRANT RESOURCE TO userid1, userid2, userid3, ...

Figure 27. SQL statements to grant RESOURCE authority to more than one user

Establishing QMF Support for End Users

102 Installing and Managing QMF for VSE/ESA

v Create tables in a public dbspace, in addition to those created in a private
dbspace

If you want to allow a user to create tables, but need to maintain control over
how much resource is used, acquire a private dbspace for the user rather than
granting RESOURCE authority. That way, you can control the size of the
dbspace and the amount of resource used.

For more information on acquiring a dbspace and a discussion of DB2
authority levels, see DB2 Server for VSE Database Administration.

Enabling Users to Confirm Table Changes Before They are Made
Using the QMF Table Editor, a user can add, delete, or update information in
a database table. If the value of the CONFIRM field of a user’s QMF profile is
YES, QMF displays a panel before making database changes. This panel asks
users if they are sure they want to change the database.

To enable users to confirm their database changes, first make sure the dbspace
you choose for the user is recoverable. Because changes to DB2 tables stored
in nonrecoverable dbspaces cannot be rolled back, or canceled, answering NO
on the Table Editor confirmation prompt panel for database changes doesn’t
prevent the changes to the table from taking place.

As end users become more comfortable changing data in the database, they
might not need QMF to display these confirmation panels. You can use the
following global variables to disable the panels for specific categories of
actions allowed by the Table Editor:
v DSQCP_TEADD for the ADD category
v DSQCP_TECHG for the CHANGE category
v DSQCP_TEDEL for the DELETE category
v DSQCP_TEEND for the END/CANCEL category
v DSQCP_TEMOD for the MODIFY category

The Table Editor loads values for these variables when it is initialized. The
possible values for each variable are:
0 Disables the confirmation panel for the category
1 Enables the confirmation panel for the category
2 (the default)

Either disables or enables the panel for the category, depending on
how the SAVE keyword of the EDIT command is set:
v When SAVE=IMMEDIATE, the confirmation panel displays
v When SAVE=END, the confirmation panel displays for the DELETE,

MODIFY, and END/CANCEL categories, but does not display for
the ADD and CHANGE categories

For more information about functions provided by the QMF Table Editor, see
Using QMF.

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 103

Enabling Users to Support a Chart

QMF creates charts using the Interactive Chart Utility (ICU) supplied by the
GDDM-PGF product. Chart formats are templates for various types of charts
(such as pie charts or histograms) that don’t contain data. When a user creates
a chart, QMF associates the data used with the chart format. Then, when the
user enters a QMF DISPLAY CHART or EXPORT CHART command, the chart
format and the data are merged to produce graphics data file (GDF) data.

User-defined chart objects are saved in the GDDM file ADMF. This file is
defined during GDDM tailoring for CICS.

Maintaining QMF Objects Using QMF Control Tables

Periodically, you need to condense and reorganize the QMF control tables that
store QMF queries, forms, and procedures. Regular maintenance of the QMF
control tables might involve tasks such as transferring objects to new owners
or enlarging the dbspace for the tables when it is no longer large enough to
hold existing QMF objects.

All QMF queries, forms, and procedures are stored among three QMF control
tables:
v The Q.OBJECT_DIRECTORY table, which is described in “Reading the

Q.OBJECT_DIRECTORY Table”
v The Q.OBJECT_DATA table, which is described in “Reading the

Q.OBJECT_DATA Table” on page 105
v The Q.OBJECT_REMARKS table, which is described in “Reading the

Q.OBJECT_REMARKS Table” on page 106

Keep QMF and the database running efficiently by periodically listing,
displaying, or deleting QMF objects from these tables and reorganizing them
when necessary. You might also need to use the information in these tables to
transfer an object from one owner to another.

Reading the Q.OBJECT_DIRECTORY Table
This table contains a row for each QMF query, form, and procedure in the
database. The table has the index Q.OBJECT_DIRECTORYX, with the
UNIQUE attribute. The keyed columns are OWNER and NAME. No two rows
can have identical values for these columns.

The Q.OBJECT_DIRECTORY table has the structure shown in Table 14 on
page 105:

Establishing QMF Support for End Users

104 Installing and Managing QMF for VSE/ESA

Table 14. Structure of the Q.OBJECT_DIRECTORY table

Column name Data type
Length
(bytes)

Nulls
allowed? Function/values

OWNER CHAR 8 No Shows the SQL authorization ID of the
creator of the object.

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of object: FORM, PROC, or
QUERY.

SUBTYPE CHAR 8 Yes Shows SQL, QBE, or PROMPTED when
TYPE is QUERY. Null or blank if TYPE is
not QUERY.

OBJECTLEVEL INTEGER 4 No QMF uses this number to reconstruct an
object from its defining text in the
Q.OBJECT_DATA table.

RESTRICTED CHAR 1 No YES if the object has not been shared (using
the SHARE parameter of the QMF SAVE
command); NO if the object has been
shared with other users.

MODEL CHAR 8 Yes This value is always REL for QMF VSE 3.2,
indicating relational data.

CREATED TIMESTAMP Yes Shows the timestamp value for when an
object was created. The value is recorded
after SAVE or IMPORT commands.

MODIFIED TIMESTAMP Yes Shows the timestamp value for when an
object was last modified. The value is
recorded after SAVE or IMPORT
commands.

LAST_USED TIMESTAMP Yes Shows the date value for when an object
was last used. The value is updated once
each day the object is accessed. Note that
the LAST_USED value may not be updated,
for performance reasons, when using a
QMF object while the current QMF report
is not yet complete.

Reading the Q.OBJECT_DATA Table
This table contains one or more rows for each query, form, and procedure in
the database. Each row contains all or part of the defining text for one of
these objects. Objects are reconstructed from this text by combining the text
with the corresponding format number in the OBJECTLEVEL column of the
Q.OBJECT_DIRECTORY table.

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 105

The Q.OBJECT_DATA table has the index Q.OBJECT_DATAX, with the
UNIQUE attribute. Keyed columns are OWNER, NAME, and SEQ.

The table has the structure shown in Table 15:

Table 15. Structure of the Q.OBJECT_DATA table

Column
name Data type

Length
(bytes)

Nulls
allowed? Function/values

OWNER CHAR 8 No Shows the SQL authorization ID of the creator of
the object.

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of object: FORM, PROC, or QUERY.

SEQ SMALLINT 2 No Indicates the sequence that this text occupies within
the entire text of the object. For example, if this row
is the first row of text in the object, SEQ is 1; if it is
the second, SEQ is 2, and so on.

APPLDATA LONG
VARCHAR

3600 Yes Contains all or a portion of text that defines the
object. Text appears in an internal QMF format. The
OBJECTLEVEL column in Q.OBJECT_DIRECTORY
defines this format.

Reading the Q.OBJECT_REMARKS Table
This table contains one row for each query, form, and procedure in the
database. The row contains comments entered using the QMF SAVE command
when the object was created or last replaced. (See the description of the SAVE
command in QMF Reference.)

The Q.OBJECT_REMARKS table has the index Q.OBJECT_REMARKSX, with
the UNIQUE attribute. Keyed columns are OWNER and NAME.

The table has the structure shown in Table 16:

Table 16. Structure of the Q.OBJECT_REMARKS table

Column
name Data type

Length
(bytes)

Nulls
allowed? Function/values

OWNER CHAR 8 No Shows the SQL authorization ID of the user who
created the object

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of the object: FORM, PROC, or
QUERY.

REMARKS VARCHAR 254 Yes Contains the comment that was saved with the
object when it was created or replaced.

Establishing QMF Support for End Users

106 Installing and Managing QMF for VSE/ESA

Listing QMF Queries, Forms, and Procedures
To get the information you need to help you maintain the QMF environment,
you need to list the queries, forms, and procedures that QMF users have
saved in the database. With DBA authority you can list QMF objects you do
not own using the query in Figure 28.

This query returns a list of objects sorted by type (FORM, PROC, QUERY)
and further by subtype (SQL, QBE, or PROMPTED) if TYPE is query. Enclose
the value you supply for userid in single quotation marks. Objects of each
type are further sorted by whether they’ve been shared by the owner. Shared
status is reflected in the RESTRICTED column of the Q.OBJECT_DIRECTORY
table.

Displaying QMF Queries, Forms, and Procedures
If listing the objects doesn’t provide enough information in the REMARKS
column, try displaying the object by:
v Connecting to the database using the user’s SQL authorization ID. For

example, to connect as user JONES who has a password of MYPW:
CONNECT JONES (PA=MYPW

Then issue the QMF DISPLAY command for each object you want to
display.

v Running the following query to share the user’s objects, then displaying
them from your own ID:

Enclose the value you supply for userid in single quotes.

Important: Run this query only if you don’t need to track which of the
user’s objects are restricted and which are not. After you run

SELECT D.NAME, D.TYPE, D.SUBTYPE, D.RESTRICTED, R.REMARKS
FROM Q.OBJECT_DIRECTORY D,

Q.OBJECT_REMARKS R
WHERE D.OWNER = 'userid'

AND D.OWNER = R.OWNER
AND D.NAME = R.NAME

ORDER BY D.TYPE, D.SUBTYPE, D.RESTRICTED

Figure 28. Listing queries, forms, and procedures owned by a particular user

UPDATE Q.OBJECT_DIRECTORY
SET RESTRICTED = 'N'
WHERE OWNER = 'userid'

Figure 29. Sharing another user’s objects with all users

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 107

this query, you can set RESTRICTED back to Y, but you won’t
know which objects were originally restricted.

Transferring Ownership of Queries, Forms, and Procedures
Use the queries shown in Figure 30 to transfer QMF objects from one user to
another. Ensure you run all three queries.

Important: First make sure that the new owner has no objects saved with the
name of the object you’re transferring, or QMF replaces the
existing object with the object you transfer.

In the queries shown in Figure 30, namelist is a list of the object names to be
transferred; the list must be set off by parentheses, with each name separated
by a comma and surrounded by single quotes. For example:
('QUERY1','QUERY2','FORMA','PROCB')

For queries or procedures that name objects qualified with the old SQL
authorization ID, be sure to change the qualifier. For example, if you transfer
MYQUERY from BAXTER to JONES, change the name from
BAXTER.MYQUERY to JONES.MYQUERY.

Use an SQL query like the one in Figure 29 on page 107 to change the
RESTRICTED column value to Y if you decide you want to share the object
after transferring it.

Deleting Obsolete Queries, Forms, and Procedures
Use the SQL in Figure 31 to delete all of a particular user’s QMF queries,
forms, and procedures. Ensure you run all three queries, because the internal
representation of each object spans the three QMF control tables
Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and Q.OBJECT_REMARKS.
Surround values you supply for the user ID variables with single quotes.

Unpredictable results can occur if the tables are not properly updated.

UPDATE Q.OBJECT_DIRECTORY UPDATE Q.OBJECT_REMARKS UPDATE Q.OBJECT_DATA
SET OWNER = 'newuserid' SET OWNER = 'newuserid' SET OWNER = 'newuserid'
WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid'
AND NAME IN namelist AND NAME IN namelist AND NAME IN namelist

Figure 30. Transferring QMF objects to another user

DELETE FROM Q.OBJECT_DIRECTORY DELETE FROM Q.OBJECT_REMARKS DELETE FROM Q.OBJECT_DATA
WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid'

Figure 31. Deleting unnecessary objects from the QMF control tables

Establishing QMF Support for End Users

108 Installing and Managing QMF for VSE/ESA

You can also delete obsolete objects by using the date and time sorting
capabilities in Q.OBJECT_DIRECTORY. You can select every object where the
data last used was before 06/01/95 and delete all the appropriate rows from
the three control tables.

Enlarging the dbspace for the QMF Object Control Tables
Periodically, QMF objects might become too large for the dbspace that
contains the QMF object control tables Q.OBJECT_DIRECTORY,
Q.OBJECT_DATA, and Q.OBJECT_REMARKS.

Use the DB2 DBS utility to enlarge the dbspace for these tables:
1. Archive the database, so that a backup copy is available for recovery if

you need it.
2. Unload the dbspace using the UNLOAD dbspace command of the DBS utility.

Table 17 shows the dbspace names and default sizes for the QMF object
control tables. Dbspace names for other QMF control tables are shown in
“Appendix D. QMF Control Tables and dbspaces Used by QMF” on
page 275.
All dbspaces for the QMF control tables are public. The sizes are given in
pages, where each page is one 4096-byte block.

Table 17. Dbspaces for control tables that store QMF objects

Dbspace
name Contents

Default
size

DSQTSCT1 Q.OBJECT_DIRECTORY table 256 pages

DSQTSCT2 Q.OBJECT_REMARKS table 256 pages

DSQTSCT3 Q.OBJECT_DATA table 5120 pages

3. Drop the dbspace using the DBS utility or ISQL.
4. Acquire a larger public space for the dbspace using either the DBS utility

or ISQL. For example:
ACQUIRE PUBLIC DBSPACE NAMED PUBLIC.DSQxxxxx

(PAGES=xxx, PCTFREE=25, LOCK=ROW)

5. Use the DBS utility to reload the QMF object control tables into the new
dbspace using as the input file the file you specified when you unloaded
the tables. Use the NEW keyword for the RELOAD dbspace command.

6. Recreate indexes for the reloaded tables using the DBS utility or ISQL.
Make sure that:
v The indexes are unique.
v The index name for the Q.OBJECT_DIRECTORY table is

OBJECT_DIRECTORYX and is keyed on the OWNER and NAME
columns.

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 109

v The index name for the Q.OBJECT_DATA table is OBJECT_DATAX and
is keyed on the OWNER, NAME, and SEQ columns.

v The index name for the Q.OBJECT_REMARKS table is
OBJECT_REMARKSX and is keyed on the OWNER and NAME
columns.

7. Recreate views if the dbspaces for Q.OBJECT_DIRECTORY or
Q.OBJECT_REMARKS were dropped. For example:
To provide access to this view to all QMF users, grant SELECT authority

to PUBLIC:
GRANT SELECT ON Q.DSQEC_QMFOBJS TO PUBLIC

8. Alter the dbspace to allow the free space on occupied pages to be used.
For example:
ALTER DBSPACE PUBLIC.DSQTSCT1 (PCTFREE=5)

For more information on enlarging dbspaces, see DB2 Server for VSE Database
Administration. For instructions and syntax of the DBS utility and ISQL
commands, see DB2 Server for VSE & VM Database Services Utility and DB2
Server for VSE & VM SQL Reference.

Maintaining Tables and Views Using DB2 System Tables

Anyone with DBA authority can access the DB2 tables to list, display, transfer,
or delete tables and views. For complete information on using these DB2
system tables, see DB2 Server for VSE & VM SQL Reference.

Listing Tables and Views
The query in Figure 33 on page 111 returns a list of tables with columns
TABLETYPE (R indicates a table, V indicates a view), TNAME (tablename),
DBSPACENAME, and REMARKS.

CREATE VIEW Q.DSQEC_QMFOBJS
(OWNER, TNAME, TYPE, SUBTYPE, MODEL, RESTRICTED, REMARKS, LABEL,
LOCATION, OWNER_AT_LOCATION, NAME_AT_LOCATION)

AS SELECT
A.OWNER, A.NAME, A.TYPE, SUBTYPE, MODEL, RESTRICTED,

REMARKS, ' ', ' ', ' ', ' '
FROM Q.OBJECT_DIRECTORY A, Q.OBJECT_REMARKS B
WHERE A.OWNER = B.OWNER AND A.NAME = B.NAME
AND (A.OWNER = USER OR RESTRICTED = 'N')

Figure 32. Recreating a view after dropping dbspaces

Establishing QMF Support for End Users

110 Installing and Managing QMF for VSE/ESA

Transferring Ownership of a Table or View
Transferring ownership of a table or view is not recommended. However, for
more information on this task, see DB2 Server for VSE & VM Database Services
Utility.

Deleting a Table or View from the Database
Use the SQL DROP TABLE statement or the QMF ERASE command to delete
tables or views from the database. Only the creator of the table or someone
with DBA authority can delete it.

When you delete the row of the SYSTEM.SYSCATALOG table that defines the
table, all views, synonyms, and indexes associated with the table are also
deleted. Before you drop a table from the database, ensure that no other user
relies on it (for example, for command synonym or function key definitions).

For more information on erasing tables, see DB2 Server for VSE Database
Administration.

Enabling English Support in an NLF Environment

Every NLF has a complete set of translated verbs, keywords, messages, and
panels for QMF. The global variable DSQEC_NLFCMD_LANG allows you to
change the language in which the user enters commands.

Set DSQEC_NLFCMD_LANG to 1 to allow users to enter commands in only
English.

The default value, 0, allows users to enter commands and keywords only in
the national language of the current session, except for the following
commands:

SET
GET
INTERACT
MESSAGE
START

QMF allows you to enter these commands in either English or the NLF,
regardless of how you set DSQEC_NLFCMD_LANG.

SELECT TABLETYPE, TNAME, DBSPACENAME, REMARKS
FROM SYSTEM.SYSCATALOG
WHERE CREATOR = 'userid'
ORDER BY TABLETYPE, TNAME

Figure 33. Listing DB2 tables and views owned by a particular user

Establishing QMF Support for End Users

Chapter 9. Establishing QMF Support for End Users 111

Use the DSQEC_FORM_LANG variable to enable users working in an NLF
environment to store their form objects in the English language. The
LANGUAGE option on the SAVE, EXPORT, and IMPORT commands allows
users to specify the national language of the saved form. The values for this
option are ENGLISH and SESSION, and are controlled by the global variable
DSQEC_FORM_LANG.

Set DSQEC_FORM_LANG to 0 to use the language of the current session as
the national language of the saved form.

The default value is 1, which specifies English as the language of the saved
form.

If the user specifies the LANGUAGE keyword on the IMPORT or EXPORT
command, that value overrides the current value of the
DSQEC_FORM_LANG variable.

To change the national language displayed during a QMF session, the QMF
user must end the current QMF session and begin another. You cannot change
the language from within the QMF session.

Using Global Variables to Define the Currency Symbol

If you need to use a non-keyboard character for your currency symbol, you
can specify the currency symbol by using the HEX value in a Procedure with
Logic. For example, the following PROC sets the currency symbol to HEX
’9F’:
/* */
"SET GLOBAL (DSQDC_CURRENCY =" '9F'X

If you need trailing blanks for the currency symbol,you can put the currency
symbol in single quotes as follows:
SET GLOBAL (DSQDC_CURRENCY = 'FR '

The command can be used in either the command line or in a linear PROC.

Establishing QMF Support for End Users

112 Installing and Managing QMF for VSE/ESA

Chapter 10. Enabling Users to Print Objects

QMF end users frequently need to print data they retrieve from the database.
This data might be in the format of a report, a chart, a database table, or some
other QMF or database object.

How you set up printing for your end users depends on what type of printer
you have and which QMF objects you need to print. This chapter helps you
decide whether it’s most efficient for you to handle printing using QMF
services or Graphical Data Display Manager (GDDM) services. It also
provides instructions on how to print objects using either method.

If you need to print double-byte character set (DBCS) data, you can use the
DSQSDBCS program parameter when you start QMF to allow users to print
DBCS data from non-DBCS terminals. See “Setting Printing for Double-Byte
Character Set Data (DSQSDBCS)” on page 75 for more information.

Quick Start

Use Table 18 to guide you in printing QMF objects to a print or display
device. If you need more information on any of the steps, see the page listed
at the right of the table.

If you receive errors during printing, see “Troubleshooting Common
Problems” on page 234 to help you solve the problem.

Table 18. Printing QMF objects

To do this task: See:

Use the QMF PRINT command or a command synonym to print a QMF
object. How QMF prints the object depends on what type of object you’re
trying to print.

Pages 114 and 123

Choose either QMF services or GDDM services to handle printing, or
combine the two to suit your needs. GDDM can print to any device that
supports the display of graphics. QMF prints to CICS temporary storage
queues or transient data queues and allows printing only to devices that
support the American National Standards Institute (ANSI) code of carriage
control characters.

Page 115

To print using GDDM services: Define a GDDM nickname for your printer
and update the GDDM defaults module ADMADFC with the nickname.
Update CICS resource definition tables so CICS can link the nickname with a
physical device.

Page 116

© Copyright IBM Corp. 1983, 2000 113

Table 18. Printing QMF objects (continued)

To do this task: See:

To print using QMF services: Define a transient data queue or use a
temporary storage queue to receive output. If you’re using temporary storage
queues, consider writing a program to route output from the queue to the
VSE POWER LST queue. A sample program is provided with QMF, and is
located in the QMF sublibrary under the name DSQCRPT2.Z.

Page 123

Update the LENGTH and WIDTH values in the user’s profile to specify a
page size. To activate GDDM services for printing, provide a valid nickname
for the PRINTER field in Q.PROFILES.

Page 130

Printing Objects

The rules for printing QMF and database objects vary, depending on the type
of object. Table 19 summarizes the requirements for each object.

Table 19. Summary of print requirements for QMF and database objects

Object type Nickname
required

GDDM gets
control when...

Where output is routed

Chart Yes GDDM ICU always
gets control when
the PRINT
command is issued.

Destination associated with TONAME in the
ADMMNICK specification.

Form Yes GDDM always gets
control when the
PRINT command is
issued.

Destination associated with TONAME in the
ADMMNICK specification.

QBE query No Only if the
nickname is
supplied on the
PRINT command or
in profile.

Temporary storage or transient data queue. If a
nickname is supplied, output goes to the
destination associated with TONAME in the
ADMMNICK specification.

Procedure No Only if the
nickname is
supplied on the
PRINT command or
in profile.

Temporary storage or transient data queue. If a
nickname is supplied, output goes to the
destination associated with TONAME in the
ADMMNICK specification.

Profile No Only if the
nickname is
supplied on the
PRINT command or
in profile.

Temporary storage or transient data queue. If a
nickname is supplied, output goes to the
destination associated with TONAME in the
ADMMNICK specification.

Enabling Users to Print Objects

114 Installing and Managing QMF for VSE/ESA

Table 19. Summary of print requirements for QMF and database objects (continued)

Object type Nickname
required

GDDM gets
control when...

Where output is routed

Prompted query Yes GDDM always gets
control when the
PRINT command is
issued.

Destination associated with TONAME in
ADMMNICK specification.

Report No Only if the
nickname is
supplied on the
PRINT command or
in profile.

Temporary storage or transient data queue. If a
nickname is supplied, output goes to the
destination associated with TONAME in the
ADMMNICK specification.

SQL query No Only if the
nickname is
supplied on the
PRINT command or
in profile.

Temporary storage or transient data queue. If a
nickname is supplied, output goes to the
destination associated with TONAME in the
ADMMNICK specification.

Table No Only if the
nickname is
supplied on the
PRINT command or
in profile.

Temporary storage or transient data queue. If a
nickname is supplied, output goes to the
destination associated with TONAME in the
ADMMNICK specification.

Deciding Whether to Use QMF or GDDM Services for Printing

Whether you print using GDDM services or QMF services depends on what
type of objects you need to print and what types of printers and other
resources are available to you. Use this section to help you decide which
method suits your needs.
v If you need to print charts, forms, or prompted queries, use GDDM.

QMF uses GDDM services to display these objects; GDDM must be used to
print these objects as well. If you don’t use GDDM services, you can print
only reports, tables, QBE and SQL queries, procedures, and the QMF
profile.

v If your site is set up to route output to named printers, use GDDM services
for printing.
GDDM allows you to link a name with a physical device. If you do not use
GDDM and use exclusively QMF services, you need to print objects by
specifying the type and name of the storage queue through which those
objects are routed to the printer.

v If you need to handle routing automatically (rather than writing a program
to route output), use GDDM or define transient data queues for use with
QMF.

Enabling Users to Print Objects

Chapter 10. Enabling Users to Print Objects 115

GDDM does the routing for you by using the transient data queue
definitions you define to CICS. QMF takes care of the routing in the same
way if you’re using transient data queues to hold your output. If you print
to temporary storage, you need to write a program to send the temporary
storage queue to the printer or display the printed output online with the
CICS-supplied transaction CEBR.

v If you need to print more than 32 767 rows of output, use GDDM or define
transient data queues for use with QMF.
Temporary storage queues cannot handle more than 32 767 rows of data.

Both QMF and GDDM handle printer input asynchronously, which means
that QMF can return messages indicating that the object is printed before it is
actually printed.

Using GDDM services to Handle Printing

Important: The explanations in this section apply only if you’re using the
GDDM default values shipped with the GDDM product. For more
information on changing these values, see one of the following
books:

v GDDM Installation and System Management for VSE (for GDDM 2.3)
v GDDM System Customization and Administration (for GDDM 3.1)

To use GDDM services for printing QMF objects, you need to:
1. Choose a GDDM nickname for the print device, as explained in 116.

Nicknames enable you to predefine complex print or display devices to
simplify the work of your end users. Nicknames define device
characteristics that indicate to GDDM how to format and direct your
printed output to a file, printer, or VSE POWER queue. Nicknames can
define both local and remote devices.

2. Update the GDDM defaults module, ADMADFC, with the specifications of
your nickname. This is explained in “Updating the GDDM Defaults
Module (ADMADFC) with the Nickname” on page 120.

3. Update CICS resource definitions with the values in the nickname
specification, so that CICS can link the nickname with the physical device
it manages. This is explained in “Linking the Nickname with a Physical
Device” on page 121.

4. Update the PRINTER field of the user’s row in the Q.PROFILES table, as
explained in “Updating User Profiles to Enable GDDM Printing” on
page 130.

Choosing a GDDM Nickname for Your Printer
When a user enters a printer name on the PRINTER keyword of the QMF
PRINT command, GDDM searches the defaults module, ADMADFC, for a

Enabling Users to Print Objects

116 Installing and Managing QMF for VSE/ESA

matching nickname that defines how and where to direct the output. GDDM
uses nicknames to recognize all the devices with which it can communicate
(including terminals).

Choosing the Right Type of GDDM Device
The printer nickname you use depends on the type of device:
v Family 1 devices specify auxiliary devices attached to a workstation using

GDDM-PCLK or GDDM-OS/2® Link. A Family 1 device can also include
display devices, such as 3270 data-stream terminals.

v Family 2 devices include devices such as IBM 3270 terminals and queued
printers.

v Family 3 devices are system printers that support the ANSI code of
carriage control characters.

v Family 4 devices are advanced function printers for which you need to use
the ADMUPRTC utility to print output. This utility is provided by GDDM.

This chapter explains how to define nicknames for Family 1, 2, and 3 devices.
For more information on how to set up a nickname for a Family 4 printer and
use the ADMUPRTC utility, see GDDM System Customization and
Administration for GDDM 3.1 or GDDM Installation and System Management for
VSE for GDDM 2.3. These publications also provide more information on each
type of GDDM device.

Creating the Nickname Specification
To create a nickname, first define a GDDM ADMMNICK specification. This
specification indicates the device characteristics to GDDM, such as the number
of lines per page the printer can handle, and how the printer is managed by
CICS.

Use the format shown in Figure 34 for your ADMMNICK specification.

v Use NAME to indicate a 1-character to 8-character printer nickname to use
with the QMF PRINT command. For example, if MYPRTR is the nickname,
users can enter the command: PRINT REPORT (PRINTER=MYPRTR. NAME can
be a single name, a list of names separated by commas, or a name with a
leading or trailing ? used as a wild card to send output to multiple printers
that have similar names.

v Use TOFAM to indicate the type of device you’re using. GDDM recognizes
four families of devices, and handles each differently.

ADMMNICK NAME=nickname,TOFAM=family_type,DEVTOK=device_token,TONAME=name

Figure 34. Using the ADMMNICK specification to define a nickname

Enabling Users to Print Objects

Chapter 10. Enabling Users to Print Objects 117

v Use DEVTOK to indicate a valid GDDM device token, which uniquely
identifies a device and its print configuration (for example, a 3820 printer
that prints 60 rows by 85 columns, 6 lines per inch). For a list of valid
device tokens, see:

GDDM System Customization and Administration for GDDM 3.1
GDDM Installation and System Management for VSE for GDDM 2.3

v The TONAME field points to entries in the TCT or DCT so that CICS is
able to properly manage communication between GDDM and the printer.
Use TONAME to point to the name of a 1-character to 4-character printer
definition name with a value that depends on the type of device:
– If the nickname defines a Family 1 or 2 printer, TONAME points to a

matching entry in the CICS terminal control table (TCT), which defines
the printer to CICS. In the matching TCT entry, the TRMIDNT field has
the same value as TONAME.
If you define the printer to CICS using CICS resource definition online
(RDO) to update the CICS system definition (CSD) file, the TERMINAL
attribute has the same value as TONAME.

– If the nickname defines a Family 3 printer, TONAME points to a
matching entry in the CICS destination control table (DCT), which
defines the printer to CICS. In the matching DCT entry, the DESTID field
has the same value as TONAME.

Example Nickname for a Family 1 or 2 GDDM Printer
To define the nickname GRAPHIC for a Family 1 or 2 GDDM printer, you
might use an ADMMNICK specification similar to the one in Figure 35. This
specification is for a Family 2 GDDM printer (use TOFAM=1 for a Family 1
GDDM printer). It uses the device token R87S, an example of a token for a
remotely attached 3287 printer.

After you create the ADMMNICK specification, link the name with a physical
device by updating the TCT, as shown in the example in Figure 37 on
page 121. Make sure TONAME in the ADMMNICK specification and
TRMIDNT in the TCT have matching values.

You can also use CICS RDO facilities to update the CSD online. If you define
the printer this way, make sure the TERMINAL attribute in the CSD and
TONAME in the ADMMNICK specification have matching values.

ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S,TONAME=GRAP

Figure 35. Using the ADMMNICK specification to define a nickname for a Family 2 printer

Enabling Users to Print Objects

118 Installing and Managing QMF for VSE/ESA

Example Nickname for a Family 3 GDDM Printer
To define the nickname 370PRINT for a Family 3 GDDM printer, you might
use an ADMMNICK specification similar to the one in Figure 36.

After you create the ADMMNICK specification, link the name with a physical
device by updating the DCT, as shown in the example in Figure 39 on
page 122. Make sure TONAME in the ADMMNICK specification and DESTID
in the DCT have matching values.

Defining Multiple Nicknames with One Definition
You can use a single nickname to define multiple printer addresses by
including the wild card ? in your nickname definition, like this:
ADMMNICK TOFAM=3,NAME=MYPRINT?,PROCOPT=((PRINTCTL,0))

The nickname MYPRINT? allows you to route print output to printers named
MYPRINT1, MYPRINT2, MYPRINTA, and so on. For example, when you
enter:
PRINT REPORT (PRINTER=MYPRINT2

GDDM uses the nickname definition for the MYPRINT? nickname to direct the
output from the PRINT command to the printer named MYPRINT2.

Examples of Nickname Definitions
This section shows examples of nicknames you might use for Family 1, 2, or 3
devices. For examples on defining nicknames for Family 4 devices, see:

GDDM System Customization and Administration for 3.1
GDDM Installation and System Management for VSE for 2.3

v 3800, 3812, or 3820 printer, 6 lines per inch: Use the following definition to
define the nickname GDDMPRT1 for a Family 3 printer:
ADMMNICK NAME=GDDMPRT1,TOFAM=3,DEVTOK=S3800N6,TONAME=PRT1

v 3800, 3812, or 3820 printer, 8 lines per inch: Use the following definition to
define the nickname GDDMPRT2 for a Family 3 printer:
ADMMNICK NAME=GDDMPRT2,TOFAM=3,DEVTOK=S3800N8,TONAME=PRT2

v Non-3800 system printer, 132 columns, 8 lines per inch: Use the following
definition to define the nickname GDDMPRT3 for a Family 3 printer:
ADMMNICK NAME=GDDMPRT3,TOFAM=3,DEVTOK=S1403W8,TONAME=PRT3

v A remotely attached 3287 (suitable for printing charts): Use the following
definition to define the nickname GDDMPRT4 for a Family 2 printer:
ADMMNICK NAME=GDDMPRT4,TOFAM=2,DEVTOK=R87S,TONAME=PRT4

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=R87S,TONAME=370P

Figure 36. Using the ADMMNICK specification to define a nickname for a Family 3 printer

Enabling Users to Print Objects

Chapter 10. Enabling Users to Print Objects 119

v Any destination without print control options: Use the following
definition to define the nickname GDDMPRT5 for a Family 3 printer:
ADMMNICK NAME=GDDMPRT5,TOFAM=3,PROCOPT=((PRINTCTL,0)),TONAME=PRT5

The PROCOPT parameter specifies processing options using a print control
(PRINTCTL) keyword, which allows you to specify a number of print control
options. For example, you can use PRINTCTL to specify a page heading to be
printed, the number of copies to print, and the width of margins. The zero
in this example suppresses page headings.

For a list of print control options and how to use them, see GDDM System
Customization and Administration for 3.1 or GDDM Installation and System
Management for VSE for 2.3.

v A PC printer using GDDM-PCLK (for DOS users): Use the following
definition to define the nickname PCPRINT for a Family 1 printer:
ADMMNICK NAME=PCPRINT,TOFAM=1,FAM=0,TONAME=(*,ADMPCPRT)

where * indicates the user’s current device or the default value.

To print to a PC printer connected to DOS, GDDM-PCLK must be installed
on your workstation.

v A PC printer using GDDM-OS/2 Link (for OS/2 users): Use the following
definition to define the nickname GDDMOS2P for a Family 1 printer:
ADMMNICK TOFAM=1,NAME=GDDMOS2P,FAM=0,TONAME=(*,ADMOS2P)

where * indicates the user’s current device or the default value.

To print to a PC printer connected to OS/2, GDDM-OS/2 Link must be
installed on your workstation.

Updating the GDDM Defaults Module (ADMADFC) with the Nickname
The ADMMNICK nickname specifications reside in the GDDM external
defaults module ADMADFC, which is supplied with the GDDM product. The
ADMADFC module also contains default values for the GDDM product. It is
stored as an A-type member in the GDDM sublibrary.

To update the ADMADFC module with your nickname specification:
1. Punch ADMADFC to ICCF or another editor, and edit the member to

update it with the nickname specification.
2. Enter your ADMMNICK specification after the ADMMDFT statements in

the module.
3. Reassemble and link-edit ADMADFC.

Enabling Users to Print Objects

120 Installing and Managing QMF for VSE/ESA

4. Use the CEMT transaction to load a new copy of the ADMADFC phase
into CICS storage. Use a statement similar to the following example:
CEMT S PROG(ADMADFC) NEW

For more information on the ADMADFC defaults module, see:
v GDDM System Customization and Administration for GDDM 3.1
v GDDM Installation and System Management for VSE for GDDM 2.3

Linking the Nickname with a Physical Device
After you update the ADMADFC module, you need to update the CICS
resource definitions so that CICS can link the nickname with a physical device
it manages.

Linking a Family 1 or 2 Nickname with a Physical Device
For a Family 1 or 2 printer, you can use macros to update CICS resource
definitions in the TCT, or use CICS resource definition online (RDO) to update
the CICS system definition (CSD) file.

For example, for this nickname specification:
ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S,TONAME=GRAP

you can update the CICS TCT using a macro similar to the example shown in
Figure 37.

All Family 1 and 2 devices must be described to CICS as queued.

For more information on using macros to update the TCT, see CICS/VSE
Resource Definition (Macro). For more information on using RDO to update the
CSD file, see CICS/VSE Resource Definition (Online).

Linking a Family 3 Nickname with a Physical Device
For a Family 3 printer, you need to update the DCT using macros. For
example, for this nickname specification:
ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=S3800N6,TONAME=S04E

you can update the CICS DCT using entries similar to the examples shown in
Figure 38 on page 122 and Figure 39 on page 122.

GRAP DFHTCT TYPE=TERMINAL,
ACCMETH=VTAM,
TRMIDNT=GRAP,
TRMTYPE=SCSPRT,

. . .

. . .

. . .

Figure 37. Defining to CICS a nickname for a Family 2 GDDM printer

Enabling Users to Print Objects

Chapter 10. Enabling Users to Print Objects 121

Add the TYPE=SDSCI entry shown in Figure 40 on page 125 after all other
TYPE=SDSCI entries in the DCT. The device address (SYS097) corresponds to
the printer 04E, according to the assign statement in the startup JCL. If you
use SYSLST, CICS STATS is part of your QMF report. Instead, use an alternate
printer.

Add the TYPE=EXTRA entry shown in Figure 41 on page 125 after all other
TYPE=EXTRA and TYPE=INDIRECT DCT entries. The TYPE=EXTRA entry
corresponds to the preceding TYPE=SDSCI entry by the matching value for
DSCNAME.

How QMF Interfaces with your GDDM Nickname
QMF interfaces with GDDM nicknames through the standard interface
provided by GDDM, which issues a call that allows QMF to open a GDDM
print file.

The following defaults are provided by QMF on the DSOPEN call when the
PRINT command begins:
v The device type is set to Family 2
v The device token is set to *
v No processing options are in place (PROCOPT is set to zero)
v The only entry in the name list is the nickname

* SYSTEM PRINTER FOR QMF OUTPUT. *
* BLKSIZE: 132 + 1 FOR CTLCHR=ASA + 4 FOR RECFORM=VARUNB *

DFHDCT TYPE=SDSCI, +
BLKSIZE=137, +
DSCNAME=UTMS04E, +
RECFORM=VARUNB, +
DEVADDR=SYS097, +
DEVICE=1403, +
TYPEFLE=OUTPUT, +
CTLCHR=ASA

Figure 38. TYPE=SDSCI entry for the DCT

* SYSTEM PRINTER FOR QMF OUTPUT. *

DFHDCT TYPE=EXTRA, +
DESTID=S04E, +
DSCNAME=UTMS04E,RSL=1

Figure 39. TYPE=EXTRA entry for the DCT

Enabling Users to Print Objects

122 Installing and Managing QMF for VSE/ESA

The print operation is carried out one page at a time using the ASCPUT and
FSFRCE GDDM services. When printing is complete, QMF closes the print
operation with a DSDROP statement.

Using QMF Services to Handle Printing

To use QMF services to handle printing, specify the type of storage you want
to use and provide CICS with a name for the storage.

Choosing Between Temporary Storage Queues and Transient Data
Queues

CICS temporary storage queues are limited to 32 767 rows of output. They
route data only to local print destinations. If you use temporary storage, you
need to write a program that routes the data from the queue to the VSE
POWER LST queue.

CICS transient data queues are limited only by the amount of storage you
specify in the CICS DCT before CICS is started. You can define the transient
data queue as an intrapartition or extrapartition data queue. You can use a
transient data queue that is defined as an extrapartition data queue to print
data to a file, SYSLST, or SYSPCH. A transient data queue that you define as
an intrapartition data queue is limited to 32 767 rows and can be used only to
print data to a file.

Using the PRINT Command to Route Output to Queues
You can specify on the QMF PRINT command both the name of the queue
and the type of storage defined for that queue. For example, to print a report
to a temporary storage queue named XYZ, enter this command:
PRINT REPORT (QUEUET=TS,QUEUEN=XYZ

To print from a transient data queue named XYZ, you can enter the following
command. Ensure that the transient data queue is defined to CICS before its
first use.
PRINT REPORT (QUEUET=TD,QUEUEN=XYZ

QUEUET and QUEUEN are abbreviations for QUEUETYPE and QUEUENAME.

QMF issues an ENQ statement on the queue name to prevent writing to the
queue if another program is using it. If the name is enqueued by another
application, CICS indicates to QMF that the queue is unavailable at that time.
Use the SUSPEND (S) keyword to tell QMF what to do when the queue is
unavailable. Use the value YES (or Y) to hold the report until the queue is
available, then write to it. For example:
PRINT REPORT (QUEUET=TS,QUEUEN=XYZ,S=YES

Enabling Users to Print Objects

Chapter 10. Enabling Users to Print Objects 123

The value NO is the default and cancels the PRINT command.

Using Global Variables to Define Queues for Printing
If you don’t specify a value on the PRINT command, QMF uses values stored
in the global variables DSQAP_CICS_PQNAME and DSQAP_CICS_PQTYPE.

If you’re using temporary storage queues for printing, set the global variable
DSQAP_CICS_PQTYPE to TS. If you’re using transient data queues, set
DSQAP_CICS_PQTYPE to TD. TS is the default.

Use the global variable DSQAP_CICS_PQNAME to define the name of the
temporary storage or transient data queue. Names for transient data queues
can be from 1 to 4 bytes. Names for temporary storage queues can be from 1
to 8 bytes. The default temporary storage queue name is DSQPnnnn, where
nnnn is the user’s 4-byte CICS terminal ID. For example, DSQPA085 is a valid
name.

Printing to VSE POWER using QMF
You can print to a POWER-controlled printer using QMF. To do this, you need
to write a program (see Figure 43 on page 127) that segments the POWER
output queue. You also need a QMF procedure to execute the QMF PRINT
command and execute a CICS transaction that will execute the program. You
can then run the QMF procedure using the PRINT PF key from the QMF
Report screen.

You need to customize your CICS startup JCL, the DCT, and your synonym
and function key tables to print using the LST POWER queue.

(In your JCL and DCT entries, you may modify the references to POWER
printer 04E, print class P, and logical unit SYS097, to values that are
appropriate for your installation. Be sure that you make the modifications to
all of the steps. Remember that printer 00E (usually print class A and logical
unit SYSLST) is not recommended for QMF printing, because CICS statistics
are routed there and would be segmented with your QMF report.)

Modifying Your CICS Startup JCL
The following POWER LST statements need to be in the CICS startup JCL.
04E is the printer address for the QMF output.
* $$ LST LST=04E,CLASS=P

Include the following assignment in the CICS startup JCL.
// ASSGN SYS097,04E

You don’t need printer DLBLs/EXTENTs in the CICS startup JCL for the QMF
printer destination

Enabling Users to Print Objects

124 Installing and Managing QMF for VSE/ESA

Modifying Your DCT
Add the TYPE=SDSCI entry shown in Figure 40 after all other TYPE=SDSCI
entries in the DCT. The device address (SYS097) corresponds to the printer
04E, according to the assign statement in the startup JCL.

Add the TYPE=EXTRA entry shown in Figure 41 after all other TYPE=EXTRA
and TYPE=INDIRECT DCT entries. The TYPE=EXTRA entry corresponds to
the preceding TYPE=SDSCI entry by the matching value for DSCNAME.

Modifying Your Synonym and Function Key Tables
Run the job shown in Figure 42 on page 126 to create and initialize two tables.
The tables define a user-defined command synonym and a function key
setting.

Ensure that column definitions that can contain nulls are not changed to NOT
NULL, or QMF does not process the table entry properly.

* SYSTEM PRINTER FOR QMF OUTPUT. *
* BLKSIZE: 132 + 1 FOR CTLCHR=ASA + 4 FOR RECFORM=VARUNB *

DFHDCT TYPE=SDSCI, +
BLKSIZE=137, +
DSCNAME=UTMS04E, +
RECFORM=VARUNB, +
DEVADDR=SYS097, +
DEVICE=1403, +
TYPEFLE=OUTPUT, +
CTLCHR=ASA

Figure 40. TYPE=SDSCI entry for the DCT

* SYSTEM PRINTER FOR QMF OUTPUT. *

DFHDCT TYPE=EXTRA, +
DESTID=S04E, +
DSCNAME=UTMS04E,RSL=1

Figure 41. TYPE=EXTRA entry for the DCT

Enabling Users to Print Objects

Chapter 10. Enabling Users to Print Objects 125

Sample Program to Segment POWER Output
The CICS program shown in Figure 43 on page 127 issues the POWER
SEGMENT macro. You need to add a PCT entry for transaction S04E and a

* $$ JOB JNM=QMFPRINT,CLASS=0
* $$ LST CLASS=A
// JOB QMFPRINT SQL TABLES
// LIBDEF *,SEARCH=PRD2.SQL340
// EXEC ARIDBS
CONNECT Q IDENTIFIED BY ????????; -- MODIFY PASSWORD
SET AUTOCOMMIT ON;
--
CREATE TABLE Q.UTM_SYN

(VERB CHAR(18) NOT NULL,
OBJECT VARCHAR(31) ,
SYNONYM_DEFINITION VARCHAR(254) NOT NULL)
IN PUBLIC.TEMP1;

--
CREATE UNIQUE INDEX Q.UTM_SYN_IDX1 ON Q.UTM_SYN (VERB, OBJECT);
--
GRANT SELECT ON Q.UTM_SYN TO PUBLIC;
--
INSERT INTO Q.UTM_SYN

(VERB,SYNONYM_DEFINITION)
VALUES ('SYSPRINT','RUN PROC Q.SYSPRINT_PROC');

--
CREATE TABLE Q.UTM_PFK

(PANEL CHAR(18) NOT NULL,
ENTRY_TYPE CHAR(1) NOT NULL,
NUMBER SMALLINT NOT NULL,
PF_SETTING VARCHAR(254))
IN PUBLIC.TEMP1;

--
CREATE UNIQUE INDEX Q.UTM_PFK_IDX1 ON Q.UTM_PFK

(PANEL, ENTRY_TYPE, NUMBER);
--
GRANT SELECT ON Q.UTM_PFK TO PUBLIC;
--
INSERT INTO Q.UTM_PFK

(PANEL, ENTRY_TYPE, NUMBER, PF_SETTING)
VALUES ('REPORT','K',2,'SYSPRINT');

--
INSERT INTO Q.UTM_PFK

(PANEL, ENTRY_TYPE, NUMBER, PF_SETTING)
VALUES ('REPORT','L',1,
'1=Help 2=Sys Print 3=End 4=Dflt Print 5=Chart 6=Query');

/*
/&
* $$ EOJ

Figure 42. User-defined command synonym and function key setting

Enabling Users to Print Objects

126 Installing and Managing QMF for VSE/ESA

PPT entry for assembler program SAMSEGMP. This is command-level
assembler, so TWASIZE is zero in the PCT. This program segments the 04E
POWER printer output.

* $$ JOB JNM=SAMSEGMP,CLASS=0,DISP=D
* $$ LST CLASS=A
// JOB SAMSEGMP ASSEMBLER CMD LEVEL CICS
// LIBDEF PHASE,CATALOG=????.?????? -- your target library
* **
* STEP 1: CICS COMMAND LEVEL TRANSLATION
* **
// DLBL IJSYSPH,'ASM.TRANSLATION',0,SD
// EXTENT SYSPCH,,1,0,??????,???? -- specify start, length
ASSGN SYSPCH,DISK,VOL=DOSRES,SHR
// EXEC DFHEAP1$,SIZE=512K
*ASM XOPTS(NOEPILOG)
**
* *
* PROGRAM NAME: SAMSEGMP *
* TRANSID: S04E *
* *
* PURPOSE: SEGMENT POWER-CONTROLLED PRINTER OUTPUT. *
* TRANSID IDENTIFIES THE DCT TYPE=EXTRA ENTRY *
* THAT CORRESPONDS TO A SPECIFIC SYSTEM PRINTER. *
* *
* NOTES: STARTED BY QMFE, TO RUN AS ASYNC TRANS. *
* THEREFORE, NO TERMINAL MESSAGES ARE DISPLAYED. *
**

EJECT
* ***
* REGISTER USEAGE
* ***
*
R1 EQU 1
R2 EQU 2
R11 EQU 11 EXEC INTERFACE BLOCK
R12 EQU 12 PROGRAM BASE
R13 EQU 13 EIB DYNAMIC STORAGE
*
* ***

SPACE
DFHEISTG EIB DYNAMIC STORAGE
EJECT
PRINT NOGEN

Figure 43. Program to issue the POWER segment MACRO (Part 1 of 3)

Enabling Users to Print Objects

Chapter 10. Enabling Users to Print Objects 127

* ***
* PROGRAM ENTRY
* ***
*
SAMSEGMP DFHEIENT DATAREG=R13,CODEREG=R12,EIBREG=R11
*

B STRT ==> BRANCH AROUND
DC CL8'SAMSEGMP' PROGRAM NAME.
DC CL8'01/20/94' LAST MOD DATE.

STRT DS 0H
EXEC CICS ENQ RESOURCE(EIBTRNID) LENGTH(4).
MVC USERNM(8),BLANKS * CLEAR SAVE AREA * 9/94
EXEC CICS RETRIEVE INTO(USERNM) LENGTH(USERLEN)
MVC JOBJECL,JOBINIT
MVC JOBJECL+13(8),USERNM * MOVE QMF USERID TO JOB STATEMENT

*
CLC EIBTRNID,=C'S04E' SEGMENT LST=04E ?
BE SEG04E
DC H'0' ABEND IF NOT 04E.

*
SEG04E DS 0H

SEGMENT DEVADDR=SYS097,JECL=JOBJECL
SEGMENT DEVADDR=SYS097,JECL=S04EJECL
B DONE

DONE DS 0H
EXEC CICS DEQ RESOURCE(EIBTRNID) LENGTH(4).
EXEC CICS RETURN.

*
S04EJECL DC CL71'* $$ LST LST=04E,CLASS=P'
JOBINIT DC CL71'* $$ JOB JNM= '
JOBJECL DS CL71
USERNM DS CL8
BLANKS DC CL8' '
USERLEN DC H'8'

*
LTORG ,

*

SPACE
END SAMSEGMP

/*

Figure 43. Program to issue the POWER segment MACRO (Part 2 of 3)

Enabling Users to Print Objects

128 Installing and Managing QMF for VSE/ESA

Creating the QMF Procedures
Create two procedures to send your report to a specified printer.

The first procedure is:
SET GLOBAL (Q='
RUN Q.SYSPRINT_PROC2

Save the procedure using SHARE=YES to enable your users to access the
segmenting program.
SAVE PROC AS Q.SYSPRINT_PROC (SHARE=YES

Create the following two-line QMF procedure. The first line is a QMF
command; the second line causes QMF to start the transaction S04E
asynchronously. After QMF routes a report to the printer destination,
transaction S04E causes POWER to segment the output and print it
immediately. Without segmentation, you don’t get the printout until CICS is
shut down (like waiting for CICS STATS).
PRINT REPORT (QUEUENAME=S04E QUEUETYPE=TD LENGTH=62 WIDTH=132
CICS S04E (FROM=&Q&DSQAO_CONNECT_ID&Q)

Save the procedure using SHARE=YES:
SAVE PROC AS Q.SYSPRINT_PROC2 (SHARE=YES

* ***
* STEP 2: ASSEMBLE PRINT SEGMENTING PROGRAM
* ***
CLOSE SYSPCH,00D
// DLBL IJSYSIN,'ASM.TRANSLATION',0,SD
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=DOSRES,SHR
// OPTION CATAL

PHASE SAMSEGMP,*
INCLUDE DFHEAI
INCLUDE DFHEAI0

// EXEC ASSEMBLY
CLOSE SYSIPT,SYSRDR
/*
* ***
* STEP 3: LINKEDIT PRINT SEGMENTING PROGRAM
* ***
// EXEC LNKEDT
/*
/&
* $$ EOJ

Figure 43. Program to issue the POWER segment MACRO (Part 3 of 3)

Enabling Users to Print Objects

Chapter 10. Enabling Users to Print Objects 129

Modifying Your User’s Profile
Modify your user’s profile to ensure that the SYNONYM column name is the
name of the created synonym table (Q.UTM_SYN) and the PFKEY column
name is the name of the created function key table (Q.UTM_PFK). To update
one or more profiles in the QMF control table Q.PROFILE, run an SQL
command. For example, to enable JONES to use the synonym, run the
following command:

UPDATE Q.PROFILES
SET SYNONYM = 'Q.UTM_SYN',

PFKEYS = 'Q.UTM_PFK'
WHERE CREATOR = 'JONES'

Using Your New Print Procedure
To produce the startup JCL and DCT changes, you need to cycle CICS.
(Recycling CICS also replaces your old PCT and PPT tables with your
changed tables, unless you used CEDA.) All other changes can be made
before or after CICS is cycled, but we suggest that you do the table definition
job and the segmentation program assembly before restarting CICS. Also, if a
user is using QMF when the profile is updated, the changes won’t take effect
until the user exits QMF and starts a new session. You can test your changes
as follows:
1. User logs on to QMF, runs a query, and the report screen is displayed.
2. User sees customized function key line, and presses PF2 (instead of PF4).
3. QMF associates PF2 with the synonym SYSPRINT.
4. Synonym SYSPRINT becomes the command RUN PROC

Q.SYSPRINT_PROC.
5. Q.SYSPRINT_PROC sets a global then invokes Q.SYSPRINT_PROC2.
6. Q.SYSPRINT_PROC2 issues the print report command.
7. Q.SYSPRINT_PROC2 also starts transaction S04E to segment printer.
8. User sees message: OK, Your procedure was run.

Updating User Profiles to Enable GDDM Printing

When a user enters a QMF PRINT command, QMF references the LENGTH,
WIDTH, and PRINTER fields of the user’s row in the Q.PROFILES table. Use
these fields of the profile to specify the size and destination for the user’s
output.

To activate GDDM services for printing, specify a default GDDM printer
nickname in the PRINTER column of the profile. Ensure the values you
supply for LENGTH and WIDTH are the same as the width and length
specified by the device token in the ADMMNICK specification. Also ensure
the printer name you use matches one of the entries in the ADMADFC
defaults module, or QMF displays an error message.

Enabling Users to Print Objects

130 Installing and Managing QMF for VSE/ESA

If you don’t specify a printer name in the profile and the user tries to print a
chart, form, or prompted query without specifying a printer name, QMF
displays the message Please supply a nickname for your printer. Pressing
Enter displays a prompt for a printer name. Instruct users to enter a printer
name that matches one of the entries in the nickname file.

If the PRINTER field in the user’s profile does not contain a GDDM
nickname, QMF services are used for printing. You can specify defaults for
LENGTH and WIDTH even if PRINTER is blank.

If you specified a default GDDM printer name in your profile but you want to
use QMF services for printing, supply a blank value for the PRINTER
keyword to override the GDDM printer nickname in the user’s profile:
PRINT REPORT (PRINTER=' '

Enabling Users to Print Objects

Chapter 10. Enabling Users to Print Objects 131

Enabling Users to Print Objects

132 Installing and Managing QMF for VSE/ESA

Chapter 11. Customizing QMF Commands

QMF command synonyms help you customize the base set of QMF
commands by allowing you to define your own terms and link them to QMF
or CICS commands. A synonym might simply be another word for a QMF or
CICS command, or it can be a term that does the work of several commands.

After you create a command synonym, QMF end users can enter the synonym
on the command line in the same way they normally enter a QMF command.

Quick Start

Follow the steps in Table 20 to create a command synonym. If you need more
information on any step, see the page listed at the right.

Table 20. Creating synonyms for QMF commands

To do this task: See:

1. Create a command synonym table that has the columns VERB, OBJECT,
and SYNONYM_DEFINITION. The table links the synonyms you choose
with the commands or procedures they represent.

Page 133

Enter synonyms and their definitions into the table. VERB and OBJECT
store your synonym; SYNONYM_DEFINITION is the command or procedure
that runs when you enter the synonym. Follow the guidelines for valid
verbs, object names, and synonym definitions.

Page 135

Activate the synonyms for users. Update the SYNONYMS field of the user’s
row in Q.PROFILES with the name of the synonym table. Then instruct users
to reconnect to the database to initialize the new synonyms.

Page 141

Minimize maintenance of your site’s command synonym tables by creating
a single synonym table for all users or by creating different types of views on
the synonym table.

Page 142

Creating the Command Synonym Table

When a user starts a QMF session, QMF loads a command synonym table
whose name you specify in the SYNONYMS field of the user’s profile. When
you enter a command, QMF first checks the synonym table for a match. If
there is no match, QMF assumes the command is a base QMF command.

© Copyright IBM Corp. 1983, 2000 133

When you enter the letters QMF in front of any command, QMF automatically
assumes the command is a base QMF command and does not check the
synonym table for a match.

Use the following procedure to create a command synonym table. Then see
“Entering Command Synonym Definitions into the Command Synonym
Table” on page 135 for instructions on entering your synonyms and their
definitions.
1. If necessary, acquire or add a dbspace to hold the command synonyms

table. Figure 26 on page 102 shows how to acquire a dbspace. If you need
to add a dbspace, see DB2 Server for VSE System Administration.

2. From the QMF SQL query panel, run an SQL CREATE TABLE statement
similar to the one in Figure 44 on page 135 to create the table. Substitute
your own table name in place of COMMAND_SYNONYMS and your own
dbspace name for DBSPACE1. Type the other portions of the query exactly
as shown.
The VERB and OBJECT columns store your synonym. The
SYNONYM_DEFINITION column stores the command or procedure that
runs when you enter the synonym.
The columns can be in any order, and you can add a column for
comments so users know what function each synonym performs.

3. Add comments to the SYSTEM.SYSCATALOG table that describe the
table’s purpose. The following is an example for the
COMMAND_SYNONYMS table created with the query in Figure 44 on
page 135 .
COMMENT ON TABLE COMMAND_SYNONYMS IS 'SYNONYMS FOR RESEARCH DEPT'

The phrase 'SYNONYMS FOR RESEARCH DEPT' appears in the
REMARKS column of the SYSTEM.SYSCATALOG table.

4. Create an index to maximize performance at initialization time, when
QMF processes the command synonym table. Use a statement similar to
the following:
CREATE UNIQUE INDEX SYNONYMS_INDEX

ON COMMAND_SYNONYMS (VERB, OBJECT)

Index both the VERB and OBJECT columns with the UNIQUE keyword to
prevent duplicate synonym definitions. If you choose not to use the
UNIQUE keyword, QMF allows duplicate synonyms in the table; QMF
uses the first synonym it locates in the table and displays a warning
message on the QMF Home panel after initialization.

Customizing QMF Commands

134 Installing and Managing QMF for VSE/ESA

If you use DB2 for VSE as a server for a DB2 for OS/390 or DB2 for VM
database, ensure that you use separate synonym tables for each operating
environment. If the synonym table stored in DB2 for VSE has TSO, CMS, or
MVS/CICS commands meant for use with DB2 for OS/390 or DB2 for VM,
QMF issues warning messages for each TSO or CMS command it finds. See
either Installing and Managing QMF for MVS or Installing and Managing QMF
for VM/ESA for examples of command synonyms specific to the OS/390 and
VM operating environments.

Entering Command Synonym Definitions into the Command Synonym Table

After you create a command synonym table, use an SQL INSERT statement
similar to the one in Figure 45 to enter your synonyms into the table. You can
also use the Table Editor to update the table, as explained in Using QMF.

After it is activated according to the procedure in “Activating the Synonyms”
on page 141, the synonym COMPUTE MONTHLY_SALES runs a QMF linear
procedure called SALES_FIGURES, owned by user JONES.

The query in Figure 46 shows an example of a synonym that has no entry in
the object column:

After it is activated, the synonym EXECUTE runs the query currently in the
QMF temporary storage area.

The synonyms in Figures 45 and 46 follow guidelines that allow QMF to
process each synonym correctly. The rest of this section explains these

CREATE TABLE COMMAND_SYNONYMS
(VERB CHAR(18) NOT NULL,
OBJECT VARCHAR(31),
SYNONYM_DEFINITION VARCHAR(254) NOT NULL)
IN DBSPACE1

Figure 44. Creating a command synonym table

INSERT INTO COMMAND_SYNONYMS (VERB,OBJECT,SYNONYM_DEFINITION)
VALUES('COMPUTE', 'MONTHLY_SALES', 'RUN PROC JONES.SALES_FIGURES')

Figure 45. Creating a command synonym definition

INSERT INTO COMMAND_SYNONYMS (VERB,SYNONYM_DEFINITION)
VALUES('EXECUTE','RUN QUERY')

Figure 46. Creating a command synonym definition

Customizing QMF Commands

Chapter 11. Customizing QMF Commands 135

guidelines, which you need to follow to ensure that QMF correctly processes
your entries for the VERB, OBJECT, and SYNONYM_DEFINITION columns in
the table.

Choosing a Verb
Every command synonym definition must have a verb. Only the object name
is optional.

The verb is your own word for the QMF RUN command or CICS command
stored in the SYNONYM_DEFINITION column. For example, you might
create the synonym COMPUTE for the QMF base verb RUN if your company
has financial analysts who run only procedures that return financial results.

Rules for the VERB Column
Ensure entries in the VERB column of the synonym table:
v Are 1 to 18 characters long.
v Do not contain blanks.
v Do not include the verb QMF (other base QMF commands are allowed).
v Have an alphabetic or national character as the first character. (In English,

national characters are #, @, and $.)

Characters after the first letter can be alphabetic, national characters, decimal
digits, or the underscore. No other characters are allowed.

The following examples demonstrate these rules. QMF ignores rows that have
invalid entries in the VERB column, and displays a warning message.

Valid Verbs:
Invalid Verbs:

COMPUTE
DO SALES (blanks not allowed)

DISPLAY
ADJ%AGE (% not allowed)

PRINT
PRINT_PRODUCTIVITY_TOTALS (more than 18 characters)

Using Base QMF Verbs as Command Synonym Verbs
You can use base QMF commands, such as PRINT, as synonyms. For example,
you might choose to define a synonym that automatically routes print output
to a GDDM-defined printer.

When you define a synonym that is also a base QMF command, instruct users
to precede the command with the letters QMF when they want to use the
base QMF command. For example, the synonym DISPLAY might represent a
synonym definition that executes the QMF command RUN PROC
SALES_REPORT. The SALES_REPORT procedure runs a query and prints a
report on a GDDM-defined printer. Users who forget to enter QMF in front of

Customizing QMF Commands

136 Installing and Managing QMF for VSE/ESA

DISPLAY might get a formatted, printed report of data they didn’t necessarily
want. Using base verbs in verb-object synonyms has a similar impact.

Some base QMF commands must be followed by a parameter. For example,
you need to follow the IMPORT command with an object type, such as
TABLE. If you are using a verb such as IMPORT in a verb-object pair, choose
an object name that is not one of these parameters to prevent users from
inadvertently running the synonym. For other base commands you use, see
the syntax diagrams in QMF Reference to find out if the command requires a
parameter.

Choosing an Object Name
An object name is optional in a command synonym. When you do use an
object name, however, ensure users specify both the verb and the object name;
otherwise, QMF can’t find a match in the synonym table.

Entries in the OBJECT column must follow these rules:
v Must be 1 to 18 characters long.
v Must conform to rules for naming DB2 tables.
v Must be surrounded by double quotes if the object name has blanks or

other special characters. (Both QMF and the database manager remove the
double quotes when the name is processed.)

The following examples show valid and invalid objects.

Valid Objects:
Invalid Objects:

PFKEYS
80CAT (first character is numeric)

MONTH_2_REPORT
ADJ%AGE (% not allowed)

“User x”.“Net Sales”
JANUARY_PRODUCTIVITY (over 18 characters)

“Net Sales”
JONES GROSS (double quotes required for blanks)

Choosing the Synonym Definition
The synonym definition is the QMF command or procedure that runs when
the user enters the command synonym. An entry in the
SYNONYM_DEFINITION column can include:
v A RUN command that calls a QMF procedure or query. For example, RUN

PROC JONES.SALES_DATA might be a synonym definition for the
command synonym COMPUTE MONTHLY_SALES.

v A CICS command that starts another CICS transaction.

Your synonym definition can even include both types of commands if the
definition runs a QMF linear procedure.

Customizing QMF Commands

Chapter 11. Customizing QMF Commands 137

For information about developing complex applications to run in a command
synonym, see Developing QMF Applications.

Using a Linear Procedure in the Synonym Definition
A linear procedure is a QMF procedure that executes QMF commands
sequentially. Your synonym definition can include a linear procedure that does
the work of several QMF commands. For example, the procedure in Figure 47
performs the following tasks:
1. Runs the following query, called SALES_DATA, which creates a report that

shows all the customers handled by sales representative number 20:
SELECT QUANTITY, CUSTNO
FROM Q.SALES
WHERE SALESREPNO = 20

2. Routes the report from QMF to CICS temporary storage. In Figure 47, XYZ
is the name of the temporary storage queue.

3. Runs a CICS transaction to route the report from temporary storage to a
predefined print destination. In Figure 47, RPTX is the transaction name. It
runs asynchronously with QMF to route output to a destination named
REPORTX.

Your definition for a synonym that runs this procedure might look similar to

the one in Figure 48:

If you’re using an NLF: Make sure that the QMF commands in the queries,
forms, and other objects included in the procedure
are translated before you use the command synonym
that calls the procedure. Also ensure these
components are suitable for the NLF you’re using.
Unless your procedure sets the
DSQEC_NLFCMD_LANG variable to 1, ensure the
commands are translated before you use the
command synonym. The DSQEC_NLFCMD_LANG

-- Procedure name: SALES_PROC
RUN QUERY SALES_DATA
PRINT REPORT (QUEUENAME=XYZ,QUEUETYPE=TS)
CICS RPTX (FROM=('REPORTX, XYZ'))

Figure 47. Sample procedure to run using a command synonym

SYNONYM
VERB OBJECT DEFINITION
----------- --------------- -------------------
SHOW SALES RUN PROC SALES_PROC

Figure 48. Using a command synonym to run a linear procedure

Customizing QMF Commands

138 Installing and Managing QMF for VSE/ESA

variable is discussed in “Enabling English Support in
an NLF Environment” on page 111.

Using Variables in the Synonym Definition
You can use variables in the synonym definition to pass values for like-named
variables present in objects (such as queries) named in the definition. For
example, Figure 49 shows a definition that passes the value Q.STAFF for the
table name, which is evaluated when MYQUERY runs.

MYQUERY might look something like:
SELECT * FROM &TABLENAME

Ampersands are doubled in a variable name in the synonym definition
because they become single ampersands when QMF executes the RUN
command.

Use double ampersands in the synonym definition for all variables except the
variable &ALL. &ALL is a special QMF variable that allows you to enter
variable values when you enter the synonym, rather than including them in
the synonym definition. When you use the variable &ALL in a synonym
definition, QMF uses as variable values any information you enter to the right
of the synonym. You can use the variable &ALL to show where the
information is located within the synonym definition.

The synonym definition in Figure 50 shows an example of a synonym defined
using &ALL.

The query named STAFFQUERY might look something like the following:
SELECT * FROM Q.STAFF
WHERE DEPT=&DEPT and JOB=&EMPLOYEE_JOB

SYNONYM
VERB OBJECT DEFINITION
---------- --------- --------------------------------------
EXECUTE - RUN QUERY MYQUERY (&&TABLENAME=Q.STAFF

Figure 49. Using variables in command synonym definitions

SYNONYM
VERB OBJECT DEFINITION
---------- --------- ------------------------
SHOW_INFO - RUN QUERY STAFFQUERY (&ALL)

Figure 50. Using the variable &ALL in a command synonym definition

Customizing QMF Commands

Chapter 11. Customizing QMF Commands 139

After activating the defined SHOW_INFO synonym, you can enter the
following statement from the QMF command line to display information
about all the managers in Department 10:
SHOW_INFO &DEPT=10 &EMPLOYEE_JOB='MGR'

Rules for &ALL: When you use the variable &ALL in a synonym definition:
v Use &ALL only once in a synonym definition.
v Always write &ALL in uppercase.
v Never follow &ALL with a number or letter.
v Any value you substitute for &ALL must be syntactically correct when

QMF evaluates the entire command. For more information on syntax of
QMF commands, see QMF Reference.

If a user does not supply a value following the command synonym, QMF
substitutes a null value for &ALL. In the synonym definition shown in
Figure 50 on page 139, QMF prompts the user for values for the &DEPT and
&EMPLOYEE_JOB variables if the user enters SHOW_INFO by itself on the
command line.

Keying Information into the SYNONYM_DEFINITION Column
Follow these rules when keying your synonym definitions into the synonym
table:
v Add single quotes around a variable in your synonym definition.

Single quotes around a variable eliminate the need for the user to add
quotes to the command synonym when running a query. For example,
&ALL has single quotes in this synonym definition:
RUN MYQUERY (&NAMEVALUE='&ALL'

If you search for the name O’BRIEN, you do not need to enter 'O'BRIEN',
because QMF does this for you.

v Enter base verbs and keywords in uppercase.
Literal information in the synonym definition is not converted to uppercase.

v Qualify all object names if their owners are different from the SQL
authorization ID of the user who uses the synonym.
QMF leaves names unqualified when searching for a synonym that contains
the object name specified. For example, if your synonym definition includes
a query named MY_SALES owned by user ID JONES, ensure that the object
name in the synonym definition reads JONES.MY_SALES. Otherwise,
JONES is the only user that can use that command synonym.

v Use only capital letters for letters that lie outside of delimited identifiers.
If QMF converts user input (the synonym) to uppercase and the synonym
definition is in lowercase, QMF can’t find the synonym definition that
matches the synonym the user entered. The CASE value of the user’s QMF

Customizing QMF Commands

140 Installing and Managing QMF for VSE/ESA

profile controls whether input is converted to uppercase. Use the SET
PROFILE command to change the CASE value. This command is explained
in QMF Reference.

Activating the Synonyms

To activate the command synonym table for your users:
1. Update the SYNONYMS field of the user’s profile with the proper

command synonym table name.
For example, to assign the COMMAND_SYNONYMS table to the user
JONES in the English language and the table GUMMOW.XYZ to the user
SCHMIDT in the German NLF environment, use the query in Figure 51:

Important: Always specify a value for TRANSLATION when you’re
updating Q.PROFILES, or you might change more rows than
you intend.

The query in Figure 51 applies to users who are already enrolled in QMF.
You can use a similar query to update the SYSTEM profile. If you are
enrolling a new user, use an INSERT query similar to the one shown in
Figure 13 on page 83.

2. Grant the SQL SELECT privilege to PUBLIC so that assigned users can
access the synonyms. For example:
GRANT SELECT ON COMMAND_SYNONYMS TO PUBLIC

If you are using a view on a synonym table rather than the table itself,
grant SELECT on only the view to prevent users from accessing synonyms
not meant for their use. Views are discussed in “Minimizing Maintenance
of Command Synonym Tables” on page 142.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET SYNONYMS='COMMAND_SYNONYMS'
SET SYNONYMS='GUMMOW.XYZ'

WHERE CREATOR='JONES'
WHERE CREATOR='SCHMIDT'

AND TRANSLATION='ENGLISH'
AND TRANSLATION='DEUTSCH'

AND ENVIRONMENT='CICSVSE'
AND ENVIRONMENT='CICSVSE'

Figure 51. Activating a user’s QMF command synonyms

Customizing QMF Commands

Chapter 11. Customizing QMF Commands 141

3. Instruct users to use the QMF CONNECT command to reconnect to the
database to activate the new synonyms. For example, user JONES who has
the password MYPW needs to enter:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See Table 8 on page 81 for how to grant a user authority to connect to the
database. Users who do not have DB2 CONNECT authority can end the
current QMF session and start another to activate the synonyms.

Command synonyms follow the same rules for abbreviation as QMF
commands. Any abbreviation must indicate a unique QMF command or
command synonym. For example, the minimum valid abbreviation for the
synonym EXECUTE is EXE. If you enter only EX, QMF can’t distinguish the
command synonym EXECUTE from the base QMF command EXPORT. See
QMF Reference for the proper abbreviations for QMF commands.

Minimizing Maintenance of Command Synonym Tables

The command synonym table is initialized before the QMF Home panel is
displayed. If you notice that QMF initialization time is increasing, you might
need to reorganize the command synonym table. To monitor the table’s
statistics, refer to DB2 Server for VSE Database Administration.

To minimize the time you spend maintaining users’ command synonym
tables, consider either assigning one synonym table to all users or assigning a
variety of different views of the same table. Both methods are discussed in
this section.

Assigning One Synonym Table to All Users
The more command synonym tables you create for individual users, the more
time you spend on maintenance. One way to reduce maintenance is to create
a single command synonym table and assign it to every user. The query in
Figure 52 assigns to every user of base (English) QMF a table named
COMMAND_SYNONYMS.

UPDATE Q.PROFILES
SET SYNONYMS='Q.COMMAND_SYNONYMS'
WHERE TRANSLATION='ENGLISH' and ENVIRONMENT='CICSVSE'

Figure 52. Assigning a single command synonym table to all QMF users

Customizing QMF Commands

142 Installing and Managing QMF for VSE/ESA

Assigning Views of a Synonym Table to Individual Users
To enable users to have synonyms unique to their needs and still keep table
maintenance at an acceptable level, consider creating several views of one
synonym table, and assigning the views to individual users or groups of
users. There are three types of views you can create.

Synonyms for Public or Private Use
If you have few synonyms that will be used by individuals, consider creating
and assigning a view that flags each synonym for either public use (by all
users) or private use (by individual users):
1. Add an AUTHID column to the synonym table when you create the table.

A null value in the AUTHID column indicates a public synonym; a user
ID in the AUTHID column indicates a private synonym. You can have
many entries for the same synonym, each assigned to a different user.

2. Use a query similar to that in Figure 53 to create a view on the synonym
table. This query allows a user (indicated by userid in the figure) to use
all public synonyms in the table and any synonyms assigned privately to
his or her SQL authorization IDs.

Synonyms for Public or Group Use
If you support a large group of end users, consider creating and assigning a
view that flags certain synonyms to be used by certain groups of users.

The synonym table used to create the view contains a single row for each
synonym that belongs to a user group, and a single row for each public
synonym. AUTHID is either null or has a value that uniquely identifies the
user group.
1. Add an AUTHID column to the synonym table if it doesn’t have one.
2. Use a query similar to the one in Figure 54 on page 144 to create the view

on the synonym table. The example in the figure shows a view created for
a group of users that have a common user ID, DEPTD02. All users in the
DEPTD02 group can use all public synonyms in the table and any
synonyms assigned specifically to the group.

CREATE VIEW SYNVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM_DEFINITION

FROM COMMAND_SYNONYMS
WHERE AUTHID='userid' OR AUTHID IS NULL

Figure 53. Creating a view that controls individual and public use of synonyms

Customizing QMF Commands

Chapter 11. Customizing QMF Commands 143

Synonyms Paired with an Authorization Table
Consider creating a separate table that holds in one column SQL authorization
IDs and in the other column the values of a key. If the keyed value for a
particular SQL authorization ID matches a keyed value in a row of the
command synonym table, the synonym described in that row is available to
the user.

Use a query similar to the one in Figure 55 to implement this method of
maintaining command synonyms. The query creates a view called KEYVIEW
on the table COMMAND_SYNONYMS, incorporating in the view only the
synonyms that have keyed matches between COMMAND_SYNONYMS and
the auxiliary table, KEYTABLE.

CREATE VIEW GROUPVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM_DEFINITION

FROM COMMAND_SYNONYMS
WHERE AUTHID='DEPTD02' OR AUTHID IS NULL

Figure 54. Creating a view that controls group and public use of synonyms

CREATE VIEW KEYVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM_DEFINITION

FROM COMMAND_SYNONYMS
WHERE AUTHID IS NULL OR AUTHID IN

(SELECT KEYS FROM KEYTABLE WHERE USER=userid)

Figure 55. Creating a view that uses an extra table to control use of synonyms

Customizing QMF Commands

144 Installing and Managing QMF for VSE/ESA

Chapter 12. Customizing QMF Function Keys

The default settings and labels for function keys on each QMF panel describe
a common set of QMF tasks that end users are likely to perform. Because
every site’s needs are unique, however, QMF provides a way for you to
customize both the label that displays on the screen and the command QMF
executes when a user presses the key.

Quick Start

Follow the steps in Table 21 to customize a default QMF function key. If you
need more information on any step, see the page listed at the right of the
table.

Table 21. Customizing QMF function keys

To do this task: See:

Choose the panels and function keys you want to customize. You can
change function key settings on all panels except table editor panels and
database status panels. Your flexibility in customizing the keys depends on
what type of panel you choose.

Page 145

Create a table to hold the customized definitions of your function keys.
Include at least four columns: PANEL, ENTRY_TYPE, NUMBER, and
PF_SETTING. These columns have information about the command QMF
issues when the key is pressed and the label text that is displayed beside the
key number on the screen.

Page 148

Insert your customized key definitions into the function key table. To
insert a definition, reference the panel ID of the panel you’re customizing;
the QMF command issued when the key is pressed; the text displayed on the
screen next to the number of the key; and where the key is positioned on the
screen.

Page 149

Activate the new function key definitions by updating the PFKEYS field of
the user’s row in Q.PROFILES with the name of the function key table you
created.

Page 156

Choosing the Keys You Want to Customize

QMF function keys appear on two types of panels: primary panels, which are
full-screen panels such as FORM.MAIN and REPORT; and secondary panels,
which appear as window dialog panels. Help, prompt, and Prompted Query
panels are examples of secondary panels.

© Copyright IBM Corp. 1983, 2000 145

The tables in “Default Keys on Full-Screen Panels” show the default QMF
function key labels and commands for both full-screen and window panels;
use them to decide which function keys you want to change.

You cannot customize function keys on Table Editor panels. On other panels,
you can choose QMF or installation-defined commands to associate with any
function key label you modify.

Default Keys on Full-Screen Panels

Key Executed Command

Backward BACKWARD

Cancel CANCEL

Change CHANGE

Chart DISPLAY CHART or SHOW CHART

Check CHECK

Clear CLEAR

Command SHOW COMMAND

Comments SWITCH COMMENTS

Delete DELETE

Describe DESCRIBE

Draw DRAW

Edit Table EDIT TABLE

End END

Enlarge ENLARGE

Form DISPLAY FORM or SHOW FORM

Forward FORWARD

Help HELP

Insert INSERT

Left LEFT

List LIST

Print PRINT

Proc DISPLAY PROC or SHOW PROC

Profile DISPLAY PROFILE

Query DISPLAY QUERY or SHOW QUERY

Reduce REDUCE

Refresh REFRESH

Customizing QMF Function Keys

146 Installing and Managing QMF for VSE/ESA

Key Executed Command

Report DISPLAY REPORT or SHOW REPORT

Retrieve RETRIEVE

Right RIGHT

Run RUN QUERY or RUN PROC

Save SAVE PROFILE

Show SHOW

Show Field SHOW FIELD

Show SQL SHOW SQL

Sort SORT

Specify SPECIFY

Specify View SPECIFY VIEW

Default Keys on Window Panels

Key Executed Command

Attribute SPECIFY ATTRIBUTES

Backward BACKWARD

Cancel CANCEL

Clear CLEAR

Command SHOW COMMAND

Comments SWITCH COMMENTS

Condition SPECIFY CONDITION

Delete DELETE

Describe DESCRIBE

End END

Exit END

Forward FORWARD

Help HELP

Index HELP INDEX

Keys HELP KEYS

List LIST

Menu HELP MENU

More Help HELP MORE

Next Column NEXT COLUMN

Customizing QMF Function Keys

Chapter 12. Customizing QMF Function Keys 147

Key Executed Command

Next Definition NEXT DEFINITION

Previous Column PREVIOUS COLUMN

Previous Definition PREVIOUS DEFINITION

Refresh REFRESH

Show Entity SHOW ENTITY

Show Field SHOW FIELD

Show View SHOW VIEW

Sort SORT

Specify Attributes SPECIFY ATTRIBUTES

Specify Condition SPECIFY CONDITION

Switch HELP SWITCH

On the global variable list panel, RESET GLOBAL is the command executed
when the Delete key is pressed.

For more information on the commands associated with these function keys,
see QMF Reference.

Creating the Function Key Table

After you decide which function keys you want to customize, follow these
steps to create a table that links your customized function key definitions with
the appropriate panels:
1. Use an SQL CREATE TABLE statement similar to the one shown in

Figure 56 to create the table. Substitute your own name for MY_PFKEYS
and your own dbspace for DBSPACE1.

See “Choosing and Acquiring a dbspace for the User” on page 102 for
information on acquiring a dbspace to hold the table. See DB2 Server for
VSE Database Administration for information on creating a new dbspace.

CREATE TABLE MY_PFKEYS
(PANEL CHAR(18) NOT NULL,
ENTRY_TYPE CHAR(1) NOT NULL,
NUMBER SMALLINT NOT NULL,
PF_SETTING VARCHAR(254))
IN DBSPACE1

Figure 56. Creating a function key table

Customizing QMF Function Keys

148 Installing and Managing QMF for VSE/ESA

2. Add comments to the SYSTEM.SYSCATALOG table using an SQL
statement similar to the following:
COMMENT ON TABLE MY_PFKEYS IS 'PF KEYS RESERVED FOR FINANCIAL ANALYSTS'

The phrase PF KEYS RESERVED FOR FINANCIAL ANALYSTS appears in the
REMARKS column of the SYSTEM.SYSCATALOG table. For more
information on adding comments to the system catalog, see DB2 Server for
VSE Database Administration.

3. Create an index using an SQL statement similar to the following:
CREATE UNIQUE INDEX MY_PFKEYSX

ON MY_PFKEYS (PANEL, ENTRY_TYPE, NUMBER)

Use the UNIQUE keyword to index the PANEL, ENTRY_TYPE, and
NUMBER columns to ensure that no two rows of the table can be
identical.

If you choose not to use the UNIQUE keyword, QMF allows duplicate key
definitions. QMF displays warning messages on the Home panel if it finds
more than one key definition for the same key, and writes information
about the warning messages to the user’s trace data. Multiple key
definitions for window panels cause no messages; QMF uses the last
definition it finds.

Entering Your Function Key Definitions into the Table

You can use SQL INSERT statements or the QMF Table Editor to insert
customized key definitions into the function key table. Each function key
definition spans two rows in the table:
v One row specifies the command QMF issues when a user presses the key.
v The other row specifies the label text that appears on the screen.

Enter both rows for each key you want to customize. A function key
command without an associated label doesn’t appear on the user’s screen.
Similarly, a label with no associated command is inactive.

The next two sections discuss the values you need to enter for each row.

Linking a Command with a Function Key
Each function key on a QMF panel is linked with a QMF command that runs
when the function key is pressed. To ensure your customized function keys
also work this way, make sure one of the two rows you enter into the table
has the following values:

Customizing QMF Function Keys

Chapter 12. Customizing QMF Function Keys 149

Table 22. Values to customize your function key table

Column Value Information

PANEL ID of the
QMF panel
you’re
customizing

“Full-Screen Panel Identifiers” on page 153 shows the IDs you need to
use for full-screen panels. “Window Panel Identifiers” on page 153 shows
the IDs you need to use for specific window panels.

If you want to define the same set of keys to appear on every panel in a
class of window panels, use the class ID shown at the bottom of the
tables. For example, to customize the Specify panel of a Forms window,
use the panel ID FOSPEC if you want the Specify panel to have different
keys than the rest of the panels in the forms class. Otherwise, use the
panel ID FOXXXX, which characterizes all panels in that class.

Changes you make using a class ID apply to all panels customized by
that class ID. Help and prompt windows don’t have a set of unique IDs;
they can be customized only by using class IDs.

ENTRY_TYPE K K indicates that this row defines the command QMF issues when the
key is pressed

NUMBER Number of
the function
key you’re
customizing

If you’re changing the definition for PF5, enter a 5 in this column.

PF_SETTING Text of the
command that
runs when the
key is pressed

Make sure this command is appropriate for the panel on which it
appears. For example, the ENLARGE command is appropriate only for
the QUERY panel in a QBE query. Because QMF doesn’t check if the
command is appropriate for the panel until the user presses the key, test
each of your new function keys before your end users need them.

Enter the command in uppercase, because QMF does not convert
terminal input to uppercase when it retrieves the commands associated
with function keys. The command won’t run if this value is lowercase
and the CASE field of the user’s profile has the value UPPER.

Ensure that each panel you customize has a key set to END or CANCEL.
Without a key defined to one of these commands, users might not be
able to exit the panel.

If you’re using an NLF: Ensure the underlying command has the correct
national language translation; additionally, it’s
helpful if the label text for each key is written in the
language of the NLF you’re using.

Labeling the Function Key and Positioning It on the Screen
The function keys on each QMF panel have labels next to the function key
numbers. To ensure the label appears on the screen, you need to add a second
row to the table. In this row, make sure the columns of the function key table
have the following values:

Customizing QMF Function Keys

150 Installing and Managing QMF for VSE/ESA

Table 23. Values to label your function key table

Column Value Information

PANEL ID of the
QMF panel
you’re
customizing

This is the same ID you used for the first row of the definition,
explained in “Linking a Command with a Function Key” on page 149.

ENTRY_TYPE L L indicates that the row defines the label associated with the function
key.

NUMBER Number of
the row
where the key
appears on
the display, if
you are
customizing a
full-screen
panel

If you are customizing a window or help panel, NUMBER represents the
number of the function key (as it does in the first row you added to the
table in “Linking a Command with a Function Key” on page 149). For
example, on the Home panel, PF5 appears in row 1 and PF12 appears in
row 2.

PF_SETTING Text of the
function key
labels.

For full-screen panels, QMF displays on the screen exactly what you
enter in this column, and does not adjust for spacing. For example, if
you’re customizing the QMF Home panel, you need to enter all the keys
that appear on that panel, whether or not you customized them. QMF
does not automatically fill in the default key settings for keys you
choose not to customize. See Figure 57 on page 152 for an example.

For window panels, you need to type only the label of the key in this
column. See Figure 58 on page 152 and Figure 59 on page 153 for
examples.

Examples of Key Definitions
Use the examples in this section to see how to enter a complete function key
definition for each type of QMF panel. The examples show how to update a
full-screen panel, a window panel, and a help panel.

The examples shown use panel IDs from the tables in “Identifying the Panel
You Want to Customize” on page 153. Use these tables to get the proper
values for the PANEL column of the function key table.

Entering a Definition for a Key on a Full-Screen Panel
Use the SQL queries shown in Figure 57 on page 152 to change PF2 on the
Home panel from EDIT TABLE to IMPORT. Identify the Home panel with the
panel ID HOME, and indicate with the number 2 (in the first query in Figure 57
on page 152) that you want to customize the command executed when a user
presses PF2.

Customizing QMF Function Keys

Chapter 12. Customizing QMF Function Keys 151

The QMF Home panel now displays Import for PF2:

In the PF_SETTING column of the second query, be sure to type exactly what
will appear in the top row of keys on the Home panel, even if you haven’t
customized each key. For example, if you specify only the word Import in the
PF_SETTING column for the second query, the Home panel looks like this:

Entering a Definition for a Key on a Window Panel
The SQL queries in Figure 58 add a PF3 key to the Tables panel in Prompted
Query. The function key executes the CANCEL command, and is labeled
CancelMe.

Entering a Key Definition for a Help or Prompt Panel
The SQL queries in Figure 59 on page 153 add a PF13 key to all help panels.
The function key executes the CANCEL command, and is labeled CancelMe.

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HOME', 'K', 2, 'IMPORT')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HOME','L',1,'

1=Help 2=Import 3=End 4=Show 5=Chart 6=Query')

Figure 57. Changing a function key for a QMF command on the Home panel

Type command on command line or use PF keys. For help, press PF1 or type HELP.
__
1=Help 2=Import 3=End 4=Show 5=Chart 6=Query
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, cursor positioned.
COMMAND ===>

Type command on command line or use PF keys. For help, press PF1 or type HELP.
__
Import
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, cursor positioned.
COMMAND ===>

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('QPTABL', 'K', 3, 'CANCEL')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('QPTABL', 'L', 3, 'CancelMe')

Figure 58. Changing a function key on the Specify panel of Prompted Query

Customizing QMF Function Keys

152 Installing and Managing QMF for VSE/ESA

All help and prompt panels are customized using a single class ID. Because
any changes you make to one panel in the class appear on all panels that are
defined with that class ID, ensure changes you make to one help or prompt
panel are appropriate for all the help and prompt panels in that class.

Identifying the Panel You Want to Customize

Use the tables in this section to help you determine what ID to enter in the
PANEL column of your function key table. The panel ID appears in the upper
left corner of the panel, when the global variable DSQDC_SHOW_PANID is
set to 1, using the following command:
SET GLOBAL (DSQDC_SHOW_PANID=1

Full-Screen Panel Identifiers
The full-screen panel identifiers are listed in Figure 60. Enter the identifiers in
the PANEL column of the function key table exactly as they are shown here.

Window Panel Identifiers
Use the tables in this section to reference window panel IDs. If you set the
global variable DSQDC_SHOW_PANID to display the panel IDs, you’ll notice
that each ID shown in these tables is prefaced by four characters when it
appears on the screen.

Window panels not named in the tables do not have unique panel IDs, and
can be customized using the class ID shown at the bottom of each table. All
class IDs have the character string XXXX in them. These characters are not
variable characters; they are actually part of the ID.

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HEXXXX', 'K', 13, 'CANCEL')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HEXXXX', 'L', 13, 'CancelMe')

Figure 59. Changing a function key on a help panel or prompt panel

PROMPTED QUERY FORM.BREAK1 FORM.COLUMNS
SQL QUERY FORM.BREAK2 FORM.CONDITIONS
QBE QUERY FORM.BREAK3 FORM.DETAIL
PROC FORM.BREAK4 FORM.FINAL
PROFILE FORM.BREAK5 FORM.MAIN
REPORT FORM.BREAK6 FORM.OPTIONS
GLOBALS FORM.CALC FORM.PAGE
HOME

Figure 60. Full-screen panel identifiers

Customizing QMF Function Keys

Chapter 12. Customizing QMF Function Keys 153

Command Windows

Panel Identifier Title or Description

COENTR Command Entry

COXXXX Command Window Class

Forms Windows

Panel Identifier Title or Description

FOALIG Alignment

FODFIN Definition

FOSPEC Specify

FOXXXX Form Window Class

Global Variable Windows

Panel Identifier Title or Description

GLADVA Add Variables

GLSHVA Show Variables

GLXXXX Global Variables Window Class

Help and Prompt Windows

Panel Identifier Title or Description

HEXXXX Help Window Class

PRXXXX Prompt Window Class

Location Windows

Panel Identifier Title or Description

PLLOCA Location Window List

Object List Windows

Panel Identifier Title or Description

OBDESC Object Description

OBLIAC Object List: Action

OBLIMU Object List: Multi-selection

Customizing QMF Function Keys

154 Installing and Managing QMF for VSE/ESA

Panel Identifier Title or Description

OBLISI Object List: Single-selection

OBSORT Object List Sort

OBXXXX Object List Window Class

Prompted Query Windows

Panel Identifier Title or Description

QPCDCH Condition Connector - Change

QPCDIT Condition Connector

QPCOCH Column - Change

QPCODE Column Description

QPCOFU Column Summary Function Items

QPCOFU Column Summary Functions

QPCOLI Column Names List

QPCOLU Columns

QPDUCH Duplicate Rows - Change

QPDUPL Duplicate Rows

QPEXPR Expression

QPJOCO Join Columns

QPJOTA Join Tables

QPROBE Rows - Between

QPROCH Rows - Change (left side)

QPROCT Rows - Containing

QPROC1 Rows - Comparison Operators 1

QPROC2 Rows - Comparison Operators 2

QPROEN Rows - Ending With

QPROEQ Rows - Equal To

QPROGQ Rows - Greater Than or Equal To

QPROGR Rows - Greater Than

QPROLQ Rows - Less Than or Equal To

QPROLS Rows - Less Than

QPROST Rows - Starting With

QPROWS Rows (Row Conditions)

QPSHFI Show Field

Customizing QMF Function Keys

Chapter 12. Customizing QMF Function Keys 155

Panel Identifier Title or Description

QPSHSQ Show SQL

QPSOCH Sort - Change

QPSORT Sort

QPSPEC Specify

QPTABL Tables

QPXXXX PQ Window Class

Activating New Function Key Definitions

To enable users to use the customized function key definitions you created:
1. Update the PFKEYS field of the user’s profile with the name of your

function key definitions table.
For example, use a query like the one in Figure 61 to assign to English
QMF user JONES the table MY_PFKEYS, and to German NLF user
SCHMIDT the table MEIN_PFKY. Always include a value for the
TRANSLATION and ENVIRONMENT columns in a query that updates
the Q.PROFILES table.

2. Grant the SQL SELECT privilege to users who need to access the table.
To allow any user to whom the table is assigned to use it, grant the
SELECT privilege to PUBLIC. For example:
GRANT SELECT ON MY_PFKEYS TO PUBLIC

To minimize maintenance of function keys at your site, you can assign a
view of the table. Grant the SELECT privilege on only the view to prevent
users from accessing function keys not meant for their use.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET PFKEYS = ’MY_PFKEYS’
SET PFKEYS = ’MEIN_PFKY’

WHERE CREATOR='JONES'
WHERE CREATOR='SCHMIDT'

AND TRANSLATION = ’ENGLISH’
AND TRANSLATION = ’DEUTSCH’

AND ENVIRONMENT = ’CICSVSE’
AND ENVIRONMENT = ’CICSVSE’

Figure 61. Making customized function keys accessible to a user

Customizing QMF Function Keys

156 Installing and Managing QMF for VSE/ESA

The procedures for assigning views of a function key table are the same as
those for command synonym tables, discussed in “Minimizing
Maintenance of Command Synonym Tables” on page 142. Use the
strategies discussed in that section to decide whether to assign a table or a
view to individual users or groups of users.

3. Instruct users to reconnect to the database to initialize a QMF session with
the new function key definitions.
For example, user JONES who has the password MYPW needs to enter:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See Table 8 on page 81 for how to grant a user authority to connect to the
database. Users who do not have DB2 CONNECT authority can end the
current QMF session and start another to activate the new function keys.

Customizing QMF Function Keys

Chapter 12. Customizing QMF Function Keys 157

Customizing QMF Function Keys

158 Installing and Managing QMF for VSE/ESA

Chapter 13. Creating Your Own Edit Codes for QMF Forms

This chapter contains General Use Programming Interface and Associated
Guidance Information.

QMF forms help users control the format of data returned from the database.
Use edit codes in the EDIT column of the MAIN and COLUMNS panels of
the QMF form to format report data in different ways. For example, use a
decimal edit code for a column that returns salary data. This edit code
formats the numeric data into a decimal with a currency symbol.

If the edit codes supplied with QMF do not meet the report editing needs of
your site, you can use the information in this chapter to create your own edit
codes to be used in the EDIT column of the FORM.MAIN and
FORM.COLUMNS panels. QMF Reference shows the edit codes supplied with
QMF.

This chapter also shows you how to write an edit exit routine in High-Level
Assembler (HLASM), VS COBOL II, COBOL for VSE/ESA, or PLI for
VSE/ESA to format the data described by your edit code. QMF provides both
a standard interface to your edit exit routine and a sample edit exit program
you can use as a starting point for writing your own.

Before you begin the tasks in this chapter, consider reviewing the sections of
QMF Referencethat describe QMF’s functions for report formatting and edit
codes.

Quick Start

Use the steps in Table 24 to guide you in creating a user edit exit routine. If
you need more information on any step, see the page listed at the right of the
table.

Table 24. Creating a user edit exit routine

To do this task: See:

Decide what you want your routine to do and choose an edit code that
identifies the routine. Use either Uxxxx or Vxxxx for your edit code, where
xxxx is zero to four letters with no embedded blanks or null values.

Page 160

Request that your exit routine format the data by using fields of the
IBM-supplied interface control block.

Page 161

© Copyright IBM Corp. 1983, 2000 159

Table 24. Creating a user edit exit routine (continued)

To do this task: See:

Accept parameters from and return formatted results to the exit routine
using the standard input and output fields provided in the interface control
block.

Page 164

Request that control be passed to your edit exit routine when QMF
terminates by setting a termination switch in a field of the interface control
block. You might pass control to the edit exit routine if the routine needs to
perform cleanup activities, such as releasing storage.

Page 167

To write your edit exit routine in HLASM, start with the sample HLASM
program provided by IBM. After you write your program, translate,
assemble, and link-edit the program and define it to CICS.

Page 168

To write your edit exit routine in VS COBOL II or IBM COBOL for
VSE/ESA start with the sample COBOL program provided by IBM. COBOL
refers to either VS COBOL II or IBM COBOL for VSE/ESA. After you write
your program, translate, compile, and link-edit the program and define it to
CICS.

Page 175

To write your edit exit routine in PLI for VSE/ESA start with the sample
PLI program provided by IBM. After you write your program, translate,
compile, and link-edit the program and define it to CICS.

Page 186

Choosing an Edit Code

Create either a Uxxxx or a Vxxxx edit code to be handled by your edit exit
routine. For U codes, data passed to the edit routine has the internal database
representation of the source data. For V codes, numeric data is converted to a
character string, and this character string is passed to the edit program.

Both codes can indicate processing for either character or numeric data. U and
V must be in uppercase. Replace xxxx with zero to four characters (letters,
digits, or special characters) that can be entered from a terminal; embedded
blanks or nulls are not allowed. The following examples show valid U-type
and V-type edit codes:
U1 UAB42 V_1 VX%5

When the source data is character, codes of either type are equally easy to
process. If the formatting requires arithmetic operations, consider using U
codes for numeric sources; otherwise, use V codes. If the data type is
extended floating point, ensure that the programming language supports it.
For example, COBOL doesn’t handle extended floating point data. In this case,
IBM recommends using V codes.

For V codes containing numeric data, QMF converts the data to character
format and then calls the user edit routine. The length of the converted

Creating Your Own Edit Codes for QMF Forms

160 Installing and Managing QMF for VSE/ESA

number varies depending upon its original data type, as shown in Table 25.

Table 25. How QMF converts numeric data according to data type

If data type of original
numeric data is:

QMF converts it to this length:

Small integer 5

Integer 11

Decimal Equal to the precision of the original data (raised to an
odd number if the original data is even)

Floating point 15 or more depending on the base 10 exponent

Extended floating point 30 or more depending on the base 10 exponent

You need not restrict an edit code to the processing of numeric data, or to the
processing of character data. The sample edit routines supplied with QMF
process one edit code for both numeric and character data.

If the CASE field of a user’s profile has the value UPPER or STRING, QMF
converts all input entered from the terminal to uppercase, and the edit code
might not be recognized. If your user edit routine is written to accept edit
codes in mixed case, enter the edit codes when case is set to mixed.

Locally defined date and time edit codes (TTL and TDL) available in other
QMF operating environments are not available in QMF VSE. If you choose to
write an edit exit routine to carry out these functions that are not supplied by
IBM, you cannot use TTL and TDL as the edit codes; instead, use Uxxxx or
Vxxxx edit codes to identify your local date and time exit routines.

Calling Your Exit Routine to Format the Data

Figure 62 on page 162 shows how QMF and your edit exit routine work
together to format data using the edit codes you define.

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 161

When you enter your own code in a column of FORM.MAIN or
FORM.COLUMNS, QMF passes certain characteristics of the data into the first
interface control block shown at the left of Figure 62. These characteristics
reside in specific fields of the control block, which are discussed in “Fields of

Figure 62. How a user edit routine works with QMF

Creating Your Own Edit Codes for QMF Forms

162 Installing and Managing QMF for VSE/ESA

the Interface Control Block” on page 165. QMF also passes into the input area
the data to be formatted and an output area that holds the formatted result.

IBM supplies three different versions of a sample edit exit routine. One
version is for HLASM (named DSQUXCTA), one is for PLI for VSE/ESA
(named DSQUXCTP), and the other is for VS COBOL II (named DSQUXCTC).
The sample program supports two edit codes:
VSS Adds dashes to a social security number or a character string.
UDN Transforms a department number into its department name, using a

table internal to the program.

The sample program is commented so you can more easily see how a user
edit routine works. You can use the sample as a template for creating your
own program.

The DSQUECIC phase supplied with QMF is a sample meant to be used with
the sample edit programs. Because of this, the phase simply returns an error
code when it is called, and QMF displays a message indicating you attempted
to use an unsupported edit code.

After you write your edit exit program, name it DSQUECIC. Then translate,
assemble (or compile), and link-edit the program to form the edit exit phase
named DSQUECIC. You need to replace the IBM-supplied phase with your
new phase. Do not change the name of the phase; it remains DSQUECIC.

Figure 63 on page 164 shows the general program structure for edit routines.

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 163

Passing Information To and From the Exit Routine

To format the data returned from the database, QMF calls your edit exit
routine and passes information through fields of the interface control block.
Information is also passed to and from the exit routine using the input and
output areas, which contain the database data to be formatted and
information about where to put the formatted result.

The data to be formatted can be a column value, the result of a built-in
function, a defined column, a calculation, or a value represented by a variable
in a heading, a footing, or a final-summary line.

Upon receiving control for formatting, your edit routine takes the parameters
in the following list.
v The interface control block
v The value of ECSINPT, the data from the input area to be formatted
v The value of ECSRSLT, the output area containing the formatted result.

ECSRLEN contains the amount of storage actually passed to this output
area on each call.

Important: Do not use more memory in the output area than is indicated in
the ECSRLEN field, or results could be unpredictable.

Figure 63. General program structure for edit routines

Creating Your Own Edit Codes for QMF Forms

164 Installing and Managing QMF for VSE/ESA

ECSINPT, ECSRSLT, and ECSRLEN are fields of the interface control block,
explained in Table 26.

Fields of the Interface Control Block
Use the fields of the interface control block to pass information to and from
your exit routine. Although there are separate interface control blocks that
interface with HLASM, COBOL, or PLI, the fields of the interface control
block are standard regardless of the programming language your edit exit
routine is written in. These fields are shown in Table 26. Unless otherwise
stated, each field relates to all formatting calls.

These same fields appear in each sample program shipped with QMF. You can
include these field names in your own source program. The sublibrary where
QMF is installed contains the sample programs.

Table 26. Fields of the QMF interface control block

Name Contents

ECSDECPT Contains the current decimal point symbol as determined by the DECOPT option of
PROFILE (period or comma).

ECSECODE Contains the user edit code.

ECSERRET Contains a zero at the point of call. Set this to a nonzero return code to record an
error. Use one of the values in the following list for an error of the indicated type:

Number
Error

99101 Unrecognized edit code
99102 Improper input data type for edit code
99103 Invalid input value for item to be formatted
99104 Item to be formatted is too short
99105 Not enough room for result in ECSRSLT (result is too wide for the space

allotted)

The error codes listed (and their associated messages and help panels) are specific to
the error. For any other code, a general error message, with a general backup help
panel, is displayed.

ECSFREQ Holds E for a formatting call, T for a termination call.

ECSINLEN Contains the length, in bytes, of the value to be formatted.

ECSINNUL Holds an N if the value to be formatted is null. These values are not passed to a user
edit routine: overflow, undefined, no instance, no rel data.

ECSINPRC Contains the precision of the value to be formatted. Applies only to U-type codes
when the data type is DECIMAL, or to V-type codes when the character string to be
formatted was derived from numeric data.

ECSINSCL Contains the scale of the value to be formatted. Applies only to U-type codes when
the data type is DECIMAL, or to V-type codes when the character string to be
formatted was derived from numeric data.

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 165

Table 26. Fields of the QMF interface control block (continued)

Name Contents

ECSINSGN Holds the sign of a converted numeric value (blank or -). Applies only to V codes
when the character string to be formatted was derived from numeric data.

ECSINTYP Indicates, in database terms, how the value to be formatted is represented. Applies to
edit codes of every type. Values can be:
384 DATE data type
388 TIME data type
392 TIMESTAMP data type
448 VARCHAR data type
452 CHAR data type
456 LONG VARCHAR data type
464 VARGRAPHIC data type
468 GRAPHIC data type
472 LONG VARGRAPHIC data type
480 FLOAT data type
484 DECIMAL data type
496 INTEGER data type
500 SMALLINT data type
940 Extended floating point data type
The extended floating point data type is not supported by the database (or by VS
COBOL II); it is limited to functions such as AVERAGE and STDEV. Extended
floating point values are precise to more than 30 digits.

ECSNAME Contains the name of the control block, which is DXEECS. Serves as an eye catcher in
storage dumps.

ECSRQMF Set this to T to request a termination call.

ECSRSLEN Contains the length of the output area, in bytes.

ECSTHSEP Contains the thousands separator as determined by the DECOPT option of PROFILE
(blank or a comma).

ECSUSERS A 256-byte scratchpad area where your exit routine can record information that
persists from one call to the next. On the first call after the edit routine is loaded, this
field contains binary zeros.

Fields That Characterize the Input Area
In addition to the fields in the interface control block, your edit exit routine
receives, in the input field, information about the data to be formatted.

The value to be formatted appears in the field ECSINPT. How it is
represented depends on two factors:
v Whether the value to be formatted is numeric or character, as determined

by the ECSINTYP field.
v Whether the edit code is a U code or a V code, as determined by the

ECSECODE field.

Creating Your Own Edit Codes for QMF Forms

166 Installing and Managing QMF for VSE/ESA

How U-Type Edit Codes are Represented in the Input Area
Numeric values are represented in internal database format. For example, if
ECSINTYP is equal to 496 (INTEGER data type), the value is a full-word
integer. If it is 484 (DECIMAL data type), the value is in decimal format. Scale
and precision for the decimal format are in the ECSINSCL and ECSINPRC
fields. Length (in bytes) is in ECSINLEN.

Numeric data from certain summary values is returned as extended floating
point values, a data type not explicitly supported by VSE DB2. The length (16
bytes) is in the ECSINLEN field.

Character or graphic values are represented in their internal, character-string
format, with one exception: for variable-length strings (for example,
VARCHAR data type), only the string itself appears and not the preceding
length field. For all character values, the string length (in bytes) is in the
ECSINLEN field.

How V-Type Edit Codes are Represented in the Input Area
Numeric values are represented by a numeric character string. The length is
contained in the field ECSINLEN. Leading or trailing zeros fill out the string
if required.

The string contains no sign or decimal point. Instead, the sign appears as a
blank or a minus sign in the field ECSINSGN, and the position of the decimal
point is in the field ECSINSCL. For example, suppose that the string in
ECSINPT is 12345, that ECSINSGN is blank, and that ECSINSCL is equal to 3;
then the value represented is +12.345.

Fields That Characterize the Output Area
The ECSRSLT field receives the formatted output in the form of a character
string that completely fills the field. Upon input, this field is always blank.
The length of this field, in bytes, is in ECSRSLEN. QMF blanks out ECSRSLT
before calling the edit routine. The output area is temporary storage and can
hold no more than 32 767 rows of output.

Passing Control to the Exit Routine When QMF Terminates

Use the ECSRQMF field of the control block to indicate that you want your
exit routine to receive control whenever QMF terminates. The ECSRQMF
value should be updated the first time the edit exit routine receives control.

When your edit exit routine receives control upon termination of QMF, the
parameters passed to the routine are the control block, the input area, and the
output area. Only the control block contains usable information.

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 167

Writing an Edit Routine in High-Level Assembler (HLASM)

The QMF edit exit interface for HLASM consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSA.A. Use a

COPY statement to include the interface control block in your source deck.
v CICS prolog macro DFHEIENT, shipped with CICS. (The CICS epilog

macro, DFHEIRET, is not needed for an EXEC CICS RETURN.)
v CICS command interface modules DFHEAI and DFHEAI0, supplied by IBM

(shipped with CICS).
v Your edit exit program (named DSQUECIC).

Figure 64 shows the program structure of an HLASM edit exit routine for
CICS.
The IBM-supplied sample edit program for HLASM, DSQUXCTA.Z, is located

in the sublibrary where QMF is installed. The sample program is commented
so that you can modify it to suit your needs. If you plan to use this program,
copy it to your program sublibrary and change its name to DSQUECIC.

How an HLASM Edit Routine Interacts with CICS
The user edit program is called by using the standard CICS LINK command
interface. Your program executes on a different program level than the main
QMF program. Upon entry to your edit exit program, the following conditions
exist:

Figure 64. Program structure of an HLASM edit exit routine for CICS

Creating Your Own Edit Codes for QMF Forms

168 Installing and Managing QMF for VSE/ESA

v Register 1 contains the address of a standard CICS parameter list suitable
for processing by the CICS-supplied macro DFHEIENT, as shown in
Figure 65.

v Register 13 contains the address of a standard CICS working storage area as
described by CICS-supplied macro DFHEISTG.

An HLASM DSECT for DXEECS is shipped with QMF as DXEECSA.A and is
located in the sublibrary where QMF is installed. Include DXEECSA.A in your
program using the HLASM COPY statement.

Return control to QMF by using the standard CICS RETURN command.

How an HLASM Edit Routine Interacts with QMF
The interface control block between QMF and the user edit interface
DSQUECIC is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result, and provides a scratchpad
area for the user edit routine. This control block is persistent between calls to
the user edit routine. The scratchpad area is not modified by QMF after the
initial invocation of the exit routine.

Figure 66 on page 170 shows the DXEECS control block for HLASM.

Figure 65. Registers of the program interface in HLASM

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 169

*** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEECS (ASSEMBLER VERSION) * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* THE USER EDITING INTERFACE, DSQUEDIT (TSO/CMS), OR * 00008000
* DSQUECIC (CICS). * 00009000
* * 00010000
* IT CONTAINS THE USER'S EDIT CODE, IDENTIFIES THE SOURCE * 00011000
* DATA AND THE TARGET LOCATION FOR THE EDITED RESULT * 00012000
* AND PROVIDES A SCRATCHPAD AREA FOR THE USER EDIT * 00013000
* ROUTINE'S USE. * 00014000
* * 00015000
* THIS CONTROL BLOCK IS PERSISTENT BETWEEN CALLS TO THE * 00016000
* USER EDIT ROUTINE. * 00017000
* * 00018000
* THE SCRATCHPAD AREA WILL NOT BE MODIFIED BY QMF AFTER * 00019000
* THE INITIAL INVOCATION OF THE EXIT ROUTINE. * 00020000
* * 00021000
* * 00022000
* STATUS: VERSION 7 RELEASE 1 LEVEL 0 * 00023000
* * 00024000
* INNER CONTROL BLOCKS: NONE * 00025000
* * 00026000
* CHANGE ACTIVITY: * 00027000
* * 00028000
* CHANGE DATE: * 00029000
* * 00030000
*** 00031000
* 00032000
DXEECS DSECT 00033000
ECSNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00034000

SPACE 00035000
ECSEDCTL DS XL40 -- EDIT CONTROL 00036000

ORG ECSEDCTL 00037000
ECSFREQ DS CL1 ----- FUNCTION REQUEST 00038000
ECSFEDIT EQU C'E' -------- EDIT FUNCTION 00039000
ECSFTERM EQU C'T' -------- TERMINATE FUNCTION 00040000
* (TO FREE RESOURCES... QMF 00041000
* WILL CALL THE USER EDIT 00042000
* ROUTINE FOR THIS FUNCTION 00043000
* ONLY IF THE USER EDIT ROUTINE 00044000
* HAS PREVIOUSLY REQUESTED IT. 00045000
* SEE ECSRQMF BELOW.) 00046000
ECSPAD10 DS CL3 ----- RESERVED FIELD 00047000
ECSECODE DS CL5 ----- EDIT CODE FROM FORM OBJECT 00048000

Figure 66. User edit routine field definitions for HLASM version of DXEECS control block (Part 1 of
3)

Creating Your Own Edit Codes for QMF Forms

170 Installing and Managing QMF for VSE/ESA

ECSPAD20 DS CL3 ----- RESERVED FIELD 00049000
ECSDECPT DS CL1 ----- SYMBOL FOR DECIMAL POINT 00050000
* (AS DEFINED BY DECIMAL OPTION IN 00051000
* CURRENT PROFILE OBJECT 00052000
ECSTHSEP DS CL1 ----- SYMBOL FOR THOUSANDS SEPARATOR 00053000
* (AS DEFINED BY DECIMAL OPTION IN 00054000
* CURRENT PROFILE OBJECT 00055000
ECSPAD30 DS CL6 ----- RESERVED FIELD 00056000
ECSQMF DS CL20 ----- AREA RESERVED FOR QMF'S USE 00057000

SPACE 00058000
ECSINDTA DS XL16 -- DESCRIPTION OF THE INPUT DATA 00059000

ORG ECSINDTA 00060000
ECSINTYP DS F ----- DATA TYPE OF THE INPUT AS IT 00061000
* EXISTS IN THE DATA BASE. 00062000
ECSFLT EQU 480 ------- FLOATING POINT DATA TYPE CODE 00063000
ECSDEC EQU 484 ------- DECIMAL DATA TYPE CODE 00064000
ECSINT EQU 496 ------- INTEGER DATA TYPE CODE 00065000
ECSSINT EQU 500 ------- SMALL INTEGER DATA TYPE CODE 00066000
ECSVCHR EQU 448 ------- VARCHAR DATA TYPE CODE 00067000
ECSFCHR EQU 452 ------- (FIXED) CHARACTER DATA TYPE CODE 00068000
ECSLCHR EQU 456 ------- LONG VARCHAR DATA TYPE CODE 00069000
ECSVG EQU 464 ------- VARGRAPHIC DATA TYPE CODE 00070000
ECSFG EQU 468 ------- (FIXED) GRAPHIC DATA TYPE CODE 00071000
ECSLG EQU 472 ------- LONG VARGRAPHIC DATA TYPE CODE 00072000
ECSDATE EQU 384 ------- DATE DATA TYPE CODE 00073000
ECSTIME EQU 388 ------- TIME DATA TYPE CODE 00074000
ECSTS EQU 392 ------- TIMESTAMP DATA TYPE CODE 00075000
ECSFLTX EQU 940 ------- EXTENDED FLOATING PT CODE 00076000
* 00077000
ECSINLEN DS F ----- LENGTH OF INPUT DATA 00078000
ECSINPRC DS H ----- PRECISION OF INPUT DATA IF IT IS 00079000
* DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00080000
* OR IF IT WAS ANY NUMERIC DATA TYPE 00081000
* (V-TYPE EDIT CODE)... 00082000
* ZERO OTHERWISE 00083000
ECSINSCL DS H ----- SCALE OF INPUT DATA IF IT IS 00084000
* DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00085000
* OR IF IT WAS ANY NUMERIC DATA TYPE 00086000
* (V-TYPE EDIT CODE)... 00087000
* ZERO OTHERWISE 00088000
ECSINSGN DS CL1 ----- SIGN OF CONVERTED NUMERIC DATA 00089000
* (V-TYPE EDIT CODE ONLY)... 00090000
ECSPLUS EQU C' ' -------- POSITIVE SIGN 00091000
ECSMINUS EQU C'-' -------- NEGATIVE SIGN 00092000
* 00093000
ECSINNUL DS CL1 ----- NULL INPUT DATA INDICATOR 00094000
ECSNULL EQU C'N' -------- INPUT DATA IS NULL 00095000
* 00096000
ECSPAD40 DS CL10 ----- RESERVED FIELD 00097000

SPACE 00098000
ECSRSDTA DS XL16 -- DESCRIPTION OF THE RESULT BUFFER 00099000

Figure 66. User edit routine field definitions for HLASM version of DXEECS control block (Part 2 of
3)

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 171

&rbl;

Translating Your Program
Translate your program using the CICS translator for HLASM. When you
translate your program, CICS normally supplies the standard CICS prolog
DFHEIENT, which sets up addressability and saves registers in the standard
CICS working storage area.

Return control to QMF by using the CICS return command EXEC CICS
RETURN.

ORG ECSRSDTA 00100000
ECSRSLEN DS F ----- LENGTH OF RESULT AREA 00101000
* (EQUIVALENT TO COLUMN WIDTH IN THE 00102000
* FORM OBJECT 00103000
ECSPAD50 DS CL12 ----- RESERVED FIELD 00104000

SPACE 00105000
ECSUCTL DS XL16 -- USER CONTROL AREA 00106000

ORG ECSUCTL 00107000
ECSERRET DS F ----- EDIT ROUTINE ERROR RETURN CODE 00108000
ECSERR01 EQU 99101 -------- UNRECOGNIZED EDIT CODE 00109000
ECSERR02 EQU 99102 -------- IMPROPER INPUT DATA TYPE 00110000
ECSERR03 EQU 99103 -------- INVALID INPUT DATA VALUE 00111000
ECSERR04 EQU 99104 -------- INPUT DATA LENGTH IS TOO SHORT 00112000
ECSERR05 EQU 99105 -------- RESULT BUFF LENGTH IS TOO SHORT 00113000
* 00114000
ECSRQMF DS CL1 ----- REQUEST FOR QMF 00115000
ECSRTERM EQU C'T' -------- REQUEST INVOCATION FOR 00116000
* TERMINATION FUNCTION 00117000
* 00118000
ECSPAD60 DS CL11 ----- RESERVED FIELD 00119000

SPACE 00120000
ECSUSERS DS CL256 -- USER SCRATCH PAD AREA 00121000

SPACE 2 00122000
ECSINPT DSECT -- EDIT ROUTINE INPUT DATA 00123000
ECSINPTC DS CL32767 ----- CHARACTER STRING 00124000

ORG ECSINPTC 00125000
ECSINSIN DS H ----- SMALL INTEGER 00126000

ORG ECSINPTC 00127000
ECSININT DS F ----- INTEGER 00128000

ORG ECSINPTC 00129000
ECSINFLT DS D ----- FLOATING POINT 00130000

SPACE 2 00131000
ECSRSLT DSECT -- EDIT ROUTINE RESULT BUFFER 00132000
ECSRSLTC DS CL32767 ----- CHARACTER STRING 00133000

Figure 66. User edit routine field definitions for HLASM version of DXEECS control block (Part 3 of
3)

Creating Your Own Edit Codes for QMF Forms

172 Installing and Managing QMF for VSE/ESA

Assembling Your Program
When you assemble your program, ensure the LIBDEF search chain includes
the CICS and QMF sublibraries so that the CICS macros and the edit exit
interface control block (DXEECSA.A) can be found.

Use the following HLASM compiler options to assemble the routine:
'LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXIT(ORDER=EA)))'

These compiler options require that you specify an E-deck exit. EDECKXIT is
a library exit for HLASM that enables the processing of E-decks. This exit is
required here to process CICS E-decks.

VSE/ESA provides a skeleton to help you set up the E-deck exit. You can use
the skeleton without modifying it; however, before you use the skeleton,
ensure you enable the exit according to instructions provided in VSE Guide to
System Functions.

Link-Editing Your Program
Create a new QMF edit exit phase DSQUECIC by including your edit
program DSQUECIC with EXEC CICS interface control modules DFHEAI and
DFHEAI0, both located in the CICS PRD1.BASE sublibrary. Ensure the EXEC
CICS modules DFHEAI and DFHEAI0 are the first modules in the edit exit
phase DSQUECIC.

The phase DSQUECIC must be executable in 31-bit addressing mode.

Example JCL Statements
Figure 67 on page 174 shows the sample job DSQ3XCTA.Z, which is shipped
with QMF. This job translates, compiles, and link-edits the example HLASM
program (DSQUXCTA.Z), which is also shipped with QMF. Use the sample
job as a starting point to create JCL that translates, assembles, and link-edits
your own edit exit routine.

For more information on installing an assembler program in CICS, see CICS
System Definition Guide.

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 173

// JOB DSQ3XCTA Install QMF Edit Exit for COBOL
* ---
* Install QMF Edit Exit (HLASM)
* --
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block (syspch)
// SETPARM SIZE=ntrks *-- update number of tracks/blocks (syspch)
* --
// DLBL IJSYSPH,'ASM.TRANSLATION',0
// EXTENT SYSPCH,,1,0,&START.,&SIZE.
ASSGN SYSPCH,DISK,VOL=&VOLID.,SHR
* Library search chain must contain the QMF, CICS and HLASM sublibries
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* --
* Step 1: Translate Edit Exit program
* --
// EXEC DFHEAP1$

:
Assembler source program here
:

/*
* --
* Step 2: Assemble Edit Exit program
* --
CLOSE SYSPCH,00D
// DLBL IJSYSIN,'ASM.TRANSLATION',0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID.,SHR
// OPTION CATAL,DECK,SYM,ERRS

PHASE DSQUECIC,*,SVA

INCLUDE DFHEAI
INCLUDE DFHEAI0

Figure 67. Example JCL for translating, assembling, and link-editing an HLASM routine (Part 1 of
2)

Creating Your Own Edit Codes for QMF Forms

174 Installing and Managing QMF for VSE/ESA

Defining the Edit Exit Phase to CICS
The edit exit phase DSQUECIC is defined to CICS during the default QMF
installation. The phase is described in the CICS program processing table
(PPT) or the CICS system definition (CSD) file using the ASSEMBLER
keyword for the LANGUAGE parameter.

Writing an Edit Routine in VS COBOL II or COBOL for VSE/ESA

The edit exit interface for COBOL consists of three parts:
v Interface control block (supplied by IBM; shipped with QMF as

DXEECSC.C)
v CICS command interface module (supplied by IBM; shipped with CICS as

DFHECI)
v Your edit exit program (named DSQUECIC)

Figure 68 on page 176 shows the structure of a COBOL edit exit routine.

// EXEC ASMA90,SIZE=(ASMA90,50K), C
PARM='LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXITC
(ORDER=EA)))'

CLOSE SYSIPT,SYSRDR
/*
* ---
* Step 3: Link-edit Edit Exit program
* ---
// EXEC LNKEDT,PARM='AMODE=31,RMODE=ANY'
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&

Figure 67. Example JCL for translating, assembling, and link-editing an HLASM routine (Part 2 of
2)

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 175

The IBM-supplied sample edit exit program, DSQUXCTC.Z, is commented so
that you can browse it online, print it, or modify it to suit your needs. A
sample job named DSQ3XCTC.Z is shipped with QMF; this job compiles and
link-edits the sample COBOL program DSQUXCTC.Z.

Using Literal Values in a COBOL Program
Use either single or double quotes to delimit literal values in a COBOL
program. You can specify the delimiter of your choice in the CICS translation
process, and to the COBOL compiler by specifying QUOTE or APOST
keywords. Make sure the APOST or QUOTE option in effect for the COBOL
compiler matches that of the CICS translator.

The edit control block DXEECSC.C and the sample COBOL program
DSQUXCTC.Z, as distributed by QMF, use double quotes to delimit literals. If
your installation or program uses single quotes instead, change DXEECSC.C
(as distributed by QMF) or copy the structure to your program and change
the double quotes to single quotes.

How a COBOL Edit Routine Interacts with CICS
The user edit program is called by using the standard CICS LINK command
interface. Your program runs on a different program level than the main QMF
program. Translate your edit exit program using the CICS translator for
COBOL.

Figure 68. Program structure for a COBOL edit exit routine in CICS

Creating Your Own Edit Codes for QMF Forms

176 Installing and Managing QMF for VSE/ESA

The CICS communications area DFHCOMMAREA is used to provide pointers
to the user edit routine program parameters, DXEECS, input data, and output
data as shown in Figure 69.

After translation, the CICS translator provides a procedure statement that
describes the CICS environment block DFHEIBLK and the CICS
communications block DFHCOMMAREA, as shown in the following example:

PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA.

QMF provides pointers to the user edit routine control block DXEECS, input
data, and output data in the CICS communications area DFHCOMMAREA.
Provide your own description of the DFHCOMMAREA in the COBOL
program linkage section as shown in Figure 70.

To provide addressability to the user edit routine control block DXEECS, input
data area ECSINPT, and the result data area ECSRSLT, set the pointers in
these data areas to the values located in the DFHCOMMAREA, as shown in
Figure 71 on page 178.

Figure 69. The CICS communications area, DFHCOMMAREA

LINKAGE SECTION.

01 DFHCOMMAREA.
02 ECSADR POINTER.
02 ECSINADR POINTER.
02 ECSRLADR POINTER.

Figure 70. Example description of the CICS communications area in program linkage

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 177

A COBOL copybook is shipped with QMF as DXEECSC.C, located in the
sublibrary where QMF is installed. Include this copybook in your program.

Return control to QMF using a standard CICS RETURN command as shown
in Figure 72.

How a COBOL Edit Routine Interacts with QMF
DXEECS is the name of the interface control block between QMF and the user
edit exit DSQUECIC. It contains the user’s edit code, identifies the source data
and the target location for the edited result, and provides a scratchpad area
for the user edit routine.

This control block is persistent between calls to the user edit routine. The
scratchpad area is not modified by QMF after the initial invocation of the exit
routine.

Figure 73 on page 179 shows the DXEECS control block for COBOL.

SETUP SECTION.

SET ADDRESS OF DXEECS TO ECSADR.
SET ADDRESS OF ECSINPT TO ECSINADR.
SET ADDRESS OF ECSRSLT TO ECSRLADR.

Figure 71. Establishing addressability to the control block and the input and output fields

EXEC CICS

RETURN

END-EXEC.

Figure 72. Returning control to QMF from a COBOL edit exit routine

Creating Your Own Edit Codes for QMF Forms

178 Installing and Managing QMF for VSE/ESA

*** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEECS (COBOL VERSION) * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* THE USER EDITING INTERFACE, DSQUEDIT (TSO/CMS), OR * 00008000
* DSQUECIC (CICS). * 00009000
* * 00010000
* IT CONTAINS THE USER'S EDIT CODE, IDENTIFIES THE SOURCE * 00011000
* DATA AND THE TARGET LOCATION FOR THE EDITED RESULT * 00012000
* AND PROVIDES A SCRATCHPAD AREA FOR THE USER EDIT * 00013000
* ROUTINE'S USE. * 00014000
* * 00015000
* THIS CONTROL BLOCK IS PERSISTENT BETWEEN CALLS TO THE * 00016000
* USER EDIT ROUTINE. * 00017000
* * 00018000
* THE SCRATCHPAD AREA WILL NOT BE MODIFIED BY QMF AFTER * 00019000
* THE INITIAL INVOCATION OF THE EXIT ROUTINE. * 00020000
* * 00021000
* * 00022000
* NOTE: THIS FILE IS DESIGNED TO BE COPIED INTO THE LINKAGE * 00023000
* SECTION OF THE USER EDIT ROUTINE. * 00024000
* * 00025000
* * 00026000
* STATUS: VERSION 7 RELEASE 1 LEVEL 0 * 00027000
* * 00028000
* INNER CONTROL BLOCKS: NONE * 00029000
* * 00030000
* CHANGE ACTIVITY: NEW CONTROL BLOCK * 00031000
* * 00032000
* CHANGE DATE: * 00033000
* * 00034000
*** 00035000

00036000
01 DXEECS. 00037000

02 ECSNAME PICTURE X(8). 00038000
* -- CONTROL BLOCK IDENTIFICATION 00039000

00040000

Figure 73. User edit routine field definitions for COBOL version of DXEECS control block (Part 1 of
5)

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 179

02 ECSEDCTL. 00041000
* -- EDIT CONTROL 00042000

00043000
03 ECSFREQ PICTURE X(1). 00044000

* -- FUNCTION REQUEST 00045000
88 ECS-EDIT-FUNCTION VALUE "E". 00046000
88 ECS-TERMINATE-FUNCTION VALUE "T". 00047000

* ---- TERMINATE FUNCTION TO FREE RESOURCES. 00048000
* QMF WILL CALL THE USER EDIT ROUTINE 00049000
* FOR THIS FUNCTION ONLY IF THE USER 00050000
* EDIT ROUTINE HAS PREVIOUSLY REQUESTED 00051000
* IT. (SEE ECSRQMF BELOW.) 00052000

03 ECSPAD10 PICTURE X(3). 00053000
* -- RESERVED FIELD 00054000

03 ECSECODE PICTURE X(5). 00055000
* -- EDIT CODE FROM FORM OBJECT 00056000

03 ECSPAD20 PICTURE X(3). 00057000
* -- RESERVED FIELD 00058000

03 ECSDECPT PICTURE X(1). 00059000
* -- SYMBOL FOR DECIMAL POINT 00060000
* -- (AS DEFINED BY DECIMAL OPTION IN 00061000
* -- CURRENT PROFILE OBJECT 00062000

03 ECSTHSEP PICTURE X(1). 00063000
* -- SYMBOL FOR THOUSANDS SEPARATOR 00064000
* -- (AS DEFINED BY DECIMAL OPTION IN 00065000
* -- CURRENT PROFILE OBJECT 00066000

03 ECSPAD30 PICTURE X(6). 00067000
* -- RESERVED FIELD 00068000

03 ECSQMF PICTURE X(20). 00069000
* -- AREA RESERVED FOR QMF'S USE 00070000

00071000
02 ECSINDTA. 00072000

* -- DESCRIPTION OF THE INPUT DATA 00073000
00074000

03 ECSINTYP PICTURE S9(9) COMPUTATIONAL. 00075000
* -- DATA TYPE OF THE INPUT AS IT 00076000
* -- EXISTS IN THE DATA BASE. 00077000

88 ECS-FLOATING-POINT VALUE IS +480. 00078000
88 ECS-DECIMAL VALUE IS +484. 00079000
88 ECS-INTEGER VALUE IS +496. 00080000
88 ECS-SMALL-INTEGER VALUE IS +500. 00081000
88 ECS-VARCHAR VALUE IS +448. 00082000
88 ECS-FIXED-CHAR VALUE IS +452. 00083000
88 ECS-LONG-VARCHAR VALUE IS +456. 00084000
88 ECS-VARG VALUE IS +464. 00085000

Figure 73. User edit routine field definitions for COBOL version of DXEECS control block (Part 2 of
5)

Creating Your Own Edit Codes for QMF Forms

180 Installing and Managing QMF for VSE/ESA

88 ECS-FIXED-G VALUE IS +468. 00086000
88 ECS-LONG-VARG VALUE IS +472. 00087000
88 ECS-DATE VALUE IS +384. 00088000
88 ECS-TIME VALUE IS +388. 00089000
88 ECS-TIMESTAMP VALUE IS +392. 00090000
88 ECS-EXT-FLOATING-POINT VALUE IS +940. 00091000

03 ECSINLEN PICTURE S9(5) USAGE IS COMPUTATIONAL. 00092000
* -- LENGTH OF INPUT DATA 00093000

03 ECSINPRC PICTURE S9(2) USAGE IS COMPUTATIONAL. 00094000
* -- PRECISION OF INPUT DATA IF IT IS 00095000
* -- DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00096000
* -- OR IF IT WAS ANY NUMERIC DATA TYPE 00097000
* -- (V-TYPE EDIT CODE)... 00098000
* -- ZERO OTHERWISE. 00099000

03 ECSINSCL PICTURE S9(2) USAGE IS COMPUTATIONAL. 00100000
* -- SCALE OF INPUT DATA IF IT IS 00101000
* -- DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00102000
* -- OR IF IT WAS ANY NUMERIC DATA TYPE 00103000
* -- (V-TYPE EDIT CODE)... 00104000
* -- ZERO OTHERWISE. 00105000

03 ECSINSGN PICTURE X(1). 00106000
* -- SIGN OF CONVERTED NUMERIC DATA 00107000
* -- (V-TYPE EDIT CODE ONLY)... 00108000

88 ECS-POSITIVE VALUE " ". 00109000
88 ECS-NEGATIVE VALUE "-". 00110000

00111000
03 ECSINNUL PICTURE X(1). 00112000

* -- NULL INPUT DATA INDICATOR 00113000
88 ECS-NULL-DATA VALUE "N". 00114000

00115000
03 ECSPAD40 PICTURE X(10). 00116000

* -- RESERVED FIELD 00117000
00118000

02 ECSRSDTA. 00119000
* -- DESCRIPTION OF THE RESULT BUFFER 00120000

00121000
03 ECSRSLEN PICTURE S9(5) USAGE IS COMPUTATIONAL. 00122000

* -- LENGTH OF RESULT AREA 00123000
* -- (EQUIVALENT TO COLUMN WIDTH IN THE 00124000
* -- FORM OBJECT 00125000

03 ECSPAD50 PICTURE X(12). 00126000
* -- RESERVED FIELD 00127000

00128000
02 ECSUCTL. 00129000

* -- USER CONTROL AREA 00130000
00131000

03 ECSERRET PICTURE S9(9) USAGE IS COMPUTATIONAL. 00132000
* -- EDIT ROUTINE ERROR RETURN CODE 00133000
* (SEE QMF-DEFINED ERROR CODES BELOW). 00134000

03 ECSRQMF PICTURE X(1). 00135000
* -- REQUEST FOR QMF 00136000
* (SEE CODE(S) DEFINED BELOW.) 00137000

03 ECSPAD60 PICTURE X(11). 00138000
* -- RESERVED FIELD 00139000

00140000
02 ECSUSERS. 00141000

Figure 73. User edit routine field definitions for COBOL version of DXEECS control block (Part 3 of
5)

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 181

* -- USER SCRATCH PAD AREA 00142000
00143000

03 ECSUSERS-ARRAY 00144000
PICTURE X(1) 00145000
OCCURS 256 TIMES. 00146000

00147000
00148000

******** -- EDIT ROUTINE INPUT DATA 00149000
01 ECSINPT. 00150000

02 ECSINPTC PICTURE X(32767). 00151000
02 ECSINPT-ARRAY REDEFINES ECSINPTC 00152000

PICTURE X(1) 00153000
OCCURS 32767 TIMES. 00154000

02 ECSINPT-INTEGER-OVL 00155000
REDEFINES ECSINPTC. 00156000

03 ECSINPT-INTEGER 00157000
PICTURE S9(9) 00158000
USAGE IS COMPUTATIONAL. 00159000

03 FILLER PICTURE X(1) 00160000
OCCURS 32763 TIMES. 00161000

02 ECSINPT-SMALL-INTEGER-OVL 00162000
REDEFINES ECSINPTC. 00163000

03 ECSINPT-SMALL-INTEGER 00164000
PICTURE S9(4) 00165000
USAGE IS COMPUTATIONAL. 00166000

03 FILLER PICTURE X(1) 00167000
OCCURS 32765 TIMES. 00168000

02 ECSINPT-FLOATING-POINT-OVL 00169000
REDEFINES ECSINPTC. 00170000

03 ECSINPT-FLOATING-POINT 00171000
USAGE IS COMPUTATIONAL-2. 00172000

03 FILLER PICTURE X(1) 00173000
OCCURS 32759 TIMES. 00174000

Figure 73. User edit routine field definitions for COBOL version of DXEECS control block (Part 4 of
5)

Creating Your Own Edit Codes for QMF Forms

182 Installing and Managing QMF for VSE/ESA

Translating Your Program
Before you translate your program, include in the LIBDEF statement the QMF
edit exit interface control block DXEECSC.C, which is located in the sublibrary
where QMF is installed.

Translate your program using the CICS translator for COBOL. When you
translate your program, CICS normally supplies the standard procedure and
linkage sections. If you do not specify a definition for DFHCOMMAREA in

00175000
00176000

******** -- EDIT ROUTINE RESULT BUFFER 00177000
01 ECSRSLT. 00178000

02 ECSRSLT-ARRAY PICTURE X(1) 00179000
OCCURS 1 TO 32767 TIMES 00180000

DEPENDING ON ECSRSLEN. 00181000
00182000

*** 00183000
* * 00184000
* THE DATA DEFINITIONS BELOW ARE FOR DOCUMENTATION * 00185000
* PURPOSES ONLY SINCE COBOL DOES NOT ALLOW LINKAGE * 00186000
* SECTION DATA DEFINITIONS TO HAVE VALUE CLAUSES * 00187000
* * 00188000
*** 00189000

00190000
******** -- QMF-DEFINED VALUES FOR ECSERRET 00191000
* (SEE ABOVE). 00192000
*77 ECS-UNKNOWN-EDIT-CODE 00193000
* PICTURE S9(9) VALUE IS +99101 00194000
* USAGE IS COMPUTATIONAL. 00195000
*77 ECS-IMPROPER-DATA-TYPE 00196000
* PICTURE S9(9) VALUE IS +99102 00197000
* USAGE IS COMPUTATIONAL. 00198000
*77 ECS-INVALID-DATA-VALUE 00199000
* PICTURE S9(9) VALUE IS +99103 00200000
* USAGE IS COMPUTATIONAL. 00201000
*77 ECS-INPUT-DATA-TOO-SHORT 00202000
* PICTURE S9(9) VALUE IS +99104 00203000
* USAGE IS COMPUTATIONAL. 00204000
*77 ECS-RESULT-BUFFER-TOO-SHORT 00205000
* PICTURE S9(9) VALUE IS +99105 00206000
* USAGE IS COMPUTATIONAL. 00207000

00208000
00209000

******** -- POSSIBLE REQUEST-FOR-QMF CODES 00210000
* (SEE ECSRQMF ABOVE). 00211000
*77 ECS-CALL-FOR-TERMINATE 00212000
* PICTURE X(1) VALUE IS "T". 00213000

Figure 73. User edit routine field definitions for COBOL version of DXEECS control block (Part 5 of
5)

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 183

your program, the translator automatically creates a definition for you.
Because this default DFHCOMMAREA is not structured to allow proper
communication between QMF and the edit exit routine, you need to prevent
the translator from creating a default definition by providing a structure as
shown in Figure 70 on page 177.

Compiling Your Program
Specify compiler options RENT, RES, NODYNAM for the COBOL compiler.

Because QMF distributes the user edit routine control block DXEECSC.C using
quotes as literal delimiters, use the QUOTE compiler option if you use the
DXEECSC control block distributed by IBM.

Link-Editing Your Program
Create a new QMF edit exit phase, DSQUECIC, by including your edit exit
program (also named DSQUECIC) with the EXEC CICS interface control
module DFHECI. DFHECI is located in the CICS module sublibrary, which is
usually PRD1.BASE. Ensure DFHECI is the first module in the edit exit phase.
Also ensure the phase DSQUECIC is executable in 31-bit addressing mode.

Example JCL Statements
Figure 74 on page 185 shows the sample job DSQ3XCTC.Z, which is shipped
with QMF. This job translates, compiles, and link-edits the example COBOL
program (DSQUXCTC.Z), which is also shipped with QMF. Use the sample
job as a starting point to create JCL that translates, assembles, and link-edits
your own edit exit routine.

Ignore weak external references unresolved by the linkage editor, and also the
associated messages about unresolved address constants.

For more information on installing a program in CICS, see CICS System
Definition Guide.

Creating Your Own Edit Codes for QMF Forms

184 Installing and Managing QMF for VSE/ESA

// JOB DSQ3XCTC Install QMF Edit Exit for COBOL
* ---
* Install QMF edit exit (COBOL Version)
* ---
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block
// SETPARM SIZE=ntrks *-- update number of tracks/blocks
* ---
// DLBL IJSYSPH,'CICS.TRANSLAT.OUTPUT',0
// EXTENT SYSPCH,,1,0,&START.,&SIZE.
ASSGN SYSPCH,DISK,VOL=&VOLID.,SHR
* Library search chain must contain the QMF, CICS and COBOL sublibraries
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* ---
* Step 1: Translate user edit exit program
* ---
// EXEC DFHECP1$,SIZE=256K,PARM='XOPTS(CICS,QUOTE)'

:
COBOL source program here
:
/*
* ---
* Step 2: Compile translated user edit exit program
* ---
CLOSE SYSPCH,00D
// DLBL IJSYSIN,'CICS.TRANSLAT.OUTPUT',0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID.,SHR
// OPTION CATAL

PHASE DSQUECIC,*,SVA
INCLUDE DFHECI

// EXEC IGYCRCTL,PARM='SZ(MAX),OBJECT,MAP,RES,NODYNAM,QUOTE,LIB,RENT
CLOSE SYSIPT,SYSRDR
/*

Figure 74. Example JCL for translating, compiling, and link-editing a COBOL routine (Part 1 of 2)

* ---
* Step 3: Link-edit user edit exit program
* ---
// EXEC LNKEDT,PARM='AMODE=31,RMODE=31'
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&

Figure 74. Example JCL for translating, compiling, and link-editing a COBOL routine (Part 2 of 2)

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 185

Defining the Edit Exit Phase to CICS
During QMF installation, the QMF edit exit program is installed with a
programming language of HLASM. To use the COBOL edit exit program, you
must define the routine to CICS using the COBOL keyword in the CICS
program processing table (PPT) or the CICS system definition (CSD) file.

Writing an Edit Routine in PL/I

You can write an edit routine in PL/I for CICS.

Writing an Edit Routine in PL/I for CICS
The QMF edit exit interface for PL/I in CICS consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSP.C
v CICS command interface modules, which are shipped with CICS as

DFHPL1I
v Your edit exit program, which is named DSQUECIC

Figure 75 shows the program structure of a PL/I edit exit routine in CICS.

The IBM-supplied sample edit exit program, DSQUXCTP.Z, is commented so
that you can browse it online, print it, or modify it to suit your needs. A
sample job named DSQ3XCTP.Z is shipped with QMF; this job compiles and
link-edits the sample PL/I program DSQUXCTP.Z.

Figure 75. Program structure for PL/I edit exit routine in CICS

Creating Your Own Edit Codes for QMF Forms

186 Installing and Managing QMF for VSE/ESA

How a PL/I Edit Routine Interacts with CICS
The user edit program is called by using the standard CICS LINK command
interface. Your program is executing on a different program level than the
main QMF program. The user edit program must be translated using the
CICS translator for PL/I.

The CICS communications area DFHCOMMAREA is used to provide
addresses to the user edit routine program parameters, DXEECS, input data,
and output data as shown in the following diagram.

After translation, the CICS translator provides a procedure statement that
describes the CICS environment block DFHEIBLK. Provide a parameter that is
a pointer to the CICS communications block DFHCOMMAREA such as the
following example:

DSQUXDT:
PROCEDURE(DFHCOMMP) OPTIONS(REENTRANT,MAIN);

QMF provides addresses to the user edit routine control block DXEECS, input
data, and output data in the CICS communications area DFHCOMMAREA.
Provide your own description of the DFHCOMMAREA in the PL/I program
as follows:

/***/
/* CICS DFHCOMM ARE DESCRIPTION OF EDIT EXIT PARAMETERS */
/***/
DECLARE

DFHCOMMP PTR;
DECLARE

1 DFHCOMM BASED(DFHCOMMP),
02 DFHCOMM_ECSPTR PTR,
02 DFHCOMM_INPTR PTR,
02 DFHCOMM_OUTPTR PTR;

If you do not specify a definition for DFHCOMMAREA in your program, the
translator automatically creates a definition for you. Because this default
DFHCOMMAREA is not structured to allow proper communication between

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 187

QMF and the edit exit routine, you need to prevent the translator from
creating a default definition by providing a structure as shown in the
preceding example.

To provide addressability to the user edit routine control block DXEECS, input
data area ECSINPT, and the result data area ECSRSLT, set the addresses of
these data areas to the values located in DFHCOMMAREA as in the following
example:

ECSPTR = DFHCOMM_ECSPTR; /* ADDRESS OF DXEECS:
EDIT CODE SPECIFICATIONS */

ECSINPTP = DFHCOMM_INPTR; /* ADDRESS OF INPUT DATA */
ECSRSLTP = DFHCOMM_OUTPTR; /* ADDRESS OF RESULT AREA */

A PL/I data structure is shipped with QMF as DXEECSP.C, located in the
sublibrary where QMF is installed. Include this structure in your program.

Return control to QMF using a standard CICS RETURN command such as the
following:

EXEC CICS RETURN;

Translating Your Program
Before you translate your program, include in the LIBDEF statement the QMF
edit exit interface control block DXEECSP.C, which is located in the sublibrary
where QMF is installed.

Translate your program using the CICS translator for PL/I. During
translation, CICS normally supplies an input parameter and data structure
definition for the CICS environment control block EIB.

Link-Editing Your Program
Create a new QMF edit exit phase, DSQUECIC, by including your edit exit
program (also named DSQUECIC) with the EXEC CICS interface control
module DFHPL1I. DFHPL1I is located in the CICS module sublibrary, which
is usually PRD1.BASE. Ensure DFHPL1I is the first module in the edit exit
phase. Also ensure the phase DSQUECIC is executable in 31-bit addressing
mode.

CICS Program Definition
When QMF is installed, the QMF edit exit program is installed with a
program language of assembler. To use the PL/I edit exit program, you must
change the program language of module DSQUECIC to PL/I using the CICS
program control table (PCT) macro or resource definition online (RDO).

Example JCL Statements
Figure 76 on page 190 shows the sample job DSQ3XCTP.Z, which is shipped
with QMF. This job translates, compiles, and link-edits the example PL/I

Creating Your Own Edit Codes for QMF Forms

188 Installing and Managing QMF for VSE/ESA

program (DSQUXCTP.Z), which is also shipped with QMF. Use the sample job
as a starting point to create JCL that translates, assembles, and link-edits your
own edit exit routine.

Ignore weak external references unresolved by the linkage editor, and also the
associated messages about unresolved address constants. For more
information on installing a program in CICS, see the CICS System Definition
Guide.

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 189

How a PL/I Edit Routine Interacts with QMF
The interface control block between QMF and the user edit interface
DSQUECIC is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result, and provides a scratchpad
area for the user edit routine’s use. The control block is persistent between

..* $$ JOB JNM=DSQ3XCTP,DISP=D,CLASS=0
// JOB DSQ3XCTP Sample Job to Install QMF Edit Exit for PL/I
* ---
* Install QMF edit exit (PL/I)
* ---
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block
// SETPARM SIZE=ntrks *-- update number of tracks/blocks
* ---
// DLBL IJSYSPH,'CICS.TRANSLAT.OUTPUT',0
// EXTENT SYSPCH,,1,0,&START,&SIZE
ASSGN SYSPCH,DISK,VOL=&VOLID,SHR
* Library search chain must contain the QMF, CICS and PL/I sublibrary
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* ---
* Step 1: Translate user edit exit program
* ---
// EXEC DFHECP1$,SIZE=256K,PARM='XOPTS(CICS,QUOTE)'
..* $$ SLI MEM=DSQUXCTP.Z,S=PRD2.PROD
/*
* ---
* Step 2: Compile translated user edit exit program
* ---
CLOSE SYSPCH,00D
// DLBL IJSYSIN,'CICS.TRANSLAT.OUTPUT',0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID,SHR
// OPTION CATAL

PHASE DSQUECIC,*,SVA
INCLUDE DFHPL1I

// EXEC PLIOPT
CLOSE SYSIPT,SYSRDR
/*
* ---
* Step 3: Link-edit user edit exit program
* ---
// EXEC LNKEDT,PARM='AMODE=31,RMODE=31'
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&
..* $$ EOJ

Figure 76. Sample job control from DSQ3XCTP

Creating Your Own Edit Codes for QMF Forms

190 Installing and Managing QMF for VSE/ESA

calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

Figure 77 on page 192 shows the DXEECS control block for PL/I.

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 191

/**/ 00001000
/* */ 00002000
/* CONTROL BLOCK NAME: DXEECS (PLI VERSION) */ 00003000
/* */ 00004000
/* FUNCTION: */ 00005000
/* */ 00006000
/* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND */ 00007000
/* THE USER EDITING ROUTINE INTERFACE, DSQUEDIT (TSO/CMS). */ 00008000
/* OR DSQUECIC (CICS). */ 00009000
/* */ 00010000
/* IT CONTAINS THE USER'S EDIT CODE, IDENTIFIES THE SOURCE */ 00011000
/* DATA AND THE TARGET LOCATION FOR THE EDITED RESULT */ 00012000
/* AND PROVIDES A SCRATCHPAD AREA FOR THE USER EDIT */ 00013000
/* ROUTINE'S USE. */ 00014000
/* */ 00015000
/* THIS CONTROL BLOCK IS PERSISTENT BETWEEN CALLS TO THE */ 00016000
/* USER EDIT ROUTINE. */ 00017000
/* */ 00018000
/* THE SCRATCHPAD AREA WILL NOT BE MODIFIED BY QMF AFTER */ 00019000
/* THE INITIAL INVOCATION OF THE EXIT ROUTINE. */ 00020000
/* */ 00021000
/* */ 00022000
/* STATUS: VERSION 7 RELEASE 1 LEVEL 0 */ 00023000
/* */ 00024000
/* INNER CONTROL BLOCKS: NONE */ 00025000
/* */ 00026000
/* CHANGE ACTIVITY: */ 00027000
/* */ 00028000
/* CHANGE DATE: */ 00029000
/* */ 00030000
/**/ 00031000

00032000
DECLARE 00033000

1 DXEECS BASED(ECSPTR), /* EDIT ROUTINE INFORMATION */ 00034000
3 ECSNAME CHARACTER(8), /* CONTROL BLOCK IDENTIFICATION */ 00035000

00036000
3 ECSEDCTL, /* EDIT CONTROL */ 00037000

5 ECSFREQ CHARACTER(1), /* FUNCTION REQUEST 00038000
(CODES ARE DEFINED BELOW) */ 00039000

5 ECSPAD10 CHARACTER(3), /* RESERVED FIELD */ 00040000
5 ECSECODE CHARACTER(5), /* EDIT CODE FROM FORM OBJECT */ 00041000
5 ECSPAD20 CHARACTER(3), /* RESERVED FIELD */ 00042000
5 ECSDECPT CHARACTER(1), /* SYMBOL FOR DECIMAL POINT 00043000

(AS DEFINED BY DECIMAL OPTION 00044000
IN CURRENT PROFILE OBJECT) */ 00045000

5 ECSTHSEP CHARACTER(1), /* SYMBOL FOR THOUSANDS SEPARATOR 00046000
(AS DEFINED BY DECIMAL OPTION 00047000
IN CURRENT PROFILE OBJECT) */ 00048000

5 ECSPAD30 CHARACTER(6), /* RESERVED FIELD */ 00049000

Figure 77. User edit routine field definitions for PL/I DXEECS control block (Part 1 of 4)

Creating Your Own Edit Codes for QMF Forms

192 Installing and Managing QMF for VSE/ESA

5 ECSQMF CHARACTER(20), /* AREA RESERVED FOR QMF'S USE */ 00050000
00051000

3 ECSINDTA, /* DESCRIPTION OF THE INPUT DATA*/ 00052000
5 ECSINTYP FIXED BINARY(31), /* DATA TYPE OF THE INPUT AS 00053000

IT EXISTS IN THE DATA BASE 00054000
(SEE CODES DEFINED BELOW) */ 00055000

5 ECSINLEN FIXED BINARY(31), /* LENGTH OF INPUT DATA */ 00056000
5 ECSINPRC FIXED BINARY(15), /* PRECISION OF INPUT DATA IF 00057000

IS IT DECIMAL DATA TYPE 00058000
(U-TYPE EDIT CODE) OR 00059000
IF IT WAS ANY NUMERIC 00060000
DATA TYPE (V-TYPE EDIT 00061000
CODE)... 00062000
ZERO OTHERWISE */ 00063000

5 ECSINSCL FIXED BINARY(15), /* SCALE OF INPUT DATA IF 00064000
IS IT DECIMAL DATA TYPE 00065000
(U-TYPE EDIT CODE) OR 00066000
IF IT WAS ANY NUMERIC 00067000
DATA TYPE (V-TYPE EDIT 00068000
CODE)... 00069000
ZERO OTHERWISE */ 00070000

5 ECSINSGN CHARACTER(1), /* SIGN (V-TYPE EDIT ONLY) 00071000
SEE VALUES DEFINED 00072000
BELOW */ 00073000

5 ECSINNUL CHARACTER(1), /* NULL INPUT DATA INDICATOR 00074000
SEE VALUE DEFINED 00075000
BELOW */ 00076000

5 ECSPAD40 CHARACTER(10), /* RESERVED FIELD */ 00077000
3 ECSRSDTA, /* DESCRIPTION OF THE RESULT 00078000

BUFFER */ 00079000
5 ECSRSLEN FIXED BINARY(31), /* LENGTH (EQUIVALENT TO 00080000

COLUMN WIDTH IN THE 00081000
FORM OBJECT) */ 00082000

5 ECSPAD50 CHARACTER(12), /* RESERVED FIELD */ 00083000
00084000

3 ECSUCTL, /* USER CONTROL AREA */ 00085000
5 ECSERRET FIXED BINARY(31), /* EDIT ROUTINE ERROR RETURN CODE 00086000

(SEE CODES DEFINED BELOW) */ 00087000
5 ECSRQMF CHARACTER(1), /* REQUEST FOR QMF 00088000

(SEE CODE(S) DEFINED BELOW */ 00089000
5 ECSPAD60 CHARACTER(11), /* RESERVED FIELD */ 00090000

00091000
3 ECSUSERS CHARACTER(256); /* USER SCRATCH PAD AREA */ 00092000

Figure 77. User edit routine field definitions for PL/I DXEECS control block (Part 2 of 4)

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 193

00093000
DECLARE /* INPUT DATA PARAMETER... */ 00094000

ECSINPT CHARACTER(32767) /* CHARACTER INPUT DATA */ 00095000
BASED(ECSINPTP), 00096000

ECSINSIN FIXED BINARY(15) /* SMALL INTEGER INPUT DATA */ 00097000
BASED(ECSINPTP), 00098000

ECSININT FIXED BINARY(31) /* INTEGER INPUT DATA */ 00099000
BASED(ECSINPTP), 00100000

ECSINFLT FLOAT BINARY(53) /* FLOATING POINT INPUT DATA */ 00101000
BASED(ECSINPTP); 00102000

00103000
DECLARE /* RESULT BUFFER PARAMETER... */ 00104000

ECSRSLT CHARACTER(32767) /* EDIT ROUTINE RESULT BUFFER */ 00105000
BASED(ECSRSLTP); 00106000

00107000
DECLARE 00108000
(ECSPTR, /* MUST CONTAIN DXEECS ADDRESS */ 00109000
ECSINPTP, /* MUST CONTAIN ECSINPT ADDRESS */ 00110000
ECSRSLTP /* MUST CONTAIN ECSRSLT ADDRESS */ 00111000

) POINTER; 00112000
00113000
00114000

DECLARE (/* DATA TYPE CONSTANTS: 00115000
(SEE ECSINTYP ABOVE) */ 00116000

ECSINT INITIAL(496), /* INTEGER */ 00117000
ECSSINT INITIAL(500), /* SMALL INTEGER */ 00118000
ECSFLT INITIAL(480), /* FLOATING POINT */ 00119000
ECSVCHR INITIAL(448), /* VARYING CHARACTER */ 00120000
ECSFCHR INITIAL(452), /* FIXED CHARACTER */ 00121000
ECSLCHR INITIAL(456), /* VERY LONG CHARACTER */ 00122000
ECSVG INITIAL(464), /* VARYING GRAPHIC */ 00123000
ECSFG INITIAL(468), /* FIXED GRAPHIC */ 00124000
ECSLG INITIAL(472), /* VERY LONG GRAPHIC */ 00125000
ECSDEC INITIAL(484), /* DECIMAL */ 00126000
ECSDATE INITIAL(384), /* DATE */ 00127000
ECSTIME INITIAL(388), /* TIME */ 00128000
ECSTS INITIAL(392), /* TIMESTAMP */ 00129000
ECSFLTX INITIAL(940) /* EXTENDED FLOATING POINT */ 00130000

) FIXED BINARY(31) STATIC; 00131000
00132000
00133000

DECLARE (/* FUNCTION REQUEST CONSTANTS 00134000

Figure 77. User edit routine field definitions for PL/I DXEECS control block (Part 3 of 4)

Creating Your Own Edit Codes for QMF Forms

194 Installing and Managing QMF for VSE/ESA

(SEE ECSFREQ ABOVE) */ 00135000
ECSFEDIT INITIAL('E'), /* EDIT */ 00136000
ECSFTERM INITIAL('T') /* TERMINATE 00137000

(TO FREE RESOURCES... 00138000
QMF WILL CALL THE USER 00139000
EDIT ROUTINE FOR THIS 00140000
FUNCTION ONLY IF THE 00141000
USER EDIT ROUTINE HAS 00142000
PREVIOUSLY REQUESTED 00143000
IT.) */ 00144000

) CHARACTER(1) STATIC; 00145000
00146000
00147000

DECLARE (/* PLUS/MINUS SIGN CONSTANTS 00148000
(SEE ECSINSGN ABOVE) */ 00149000

ECSPLUS INITIAL(' '), /* INPUT DATA IS POSITIVE */ 00150000
ECSMINUS INITIAL('-') /* INPUT DATA IS NEGATIVE */ 00151000

) CHARACTER(1) STATIC; 00152000
00153000
00154000

DECLARE (/* NULL INDICATION CONSTANT 00155000
(SEE ECSINNUL ABOVE) */ 00156000

ECSNULL INITIAL('N') /* INPUT DATA IS NULL */ 00157000
) CHARACTER(1) STATIC; 00158000

00159000
00160000

DECLARE (/* REQUEST-FOR-QMF CONSTANTS 00161000
(SEE ECSRQMF ABOVE) */ 00162000

ECSRTERM INITIAL('T') /* REQUEST QMF TO INVOKE 00163000
USER EDIT ROUTINE FOR 00164000
TERMINATION FUNCTION */ 00165000

) CHARACTER(1) STATIC; 00166000
00167000
00168000

DECLARE (/* QMF-DEFINED ERROR RETURN CODE 00169000
CONSTANTS 00170000
(SEE ECSERRET ABOVE) */ 00171000

ECSERR01 INITIAL(99101), /* UNRECOGNIZED EDIT CODE */ 00172000
ECSERR02 INITIAL(99102), /* IMPROPER INPUT DATA TYPE FOR */ 00173000

/* REQUESTED EDIT EDIT CODE */ 00174000
ECSERR03 INITIAL(99103), /* INVALID INPUT DATA VALUE */ 00175000

/* RECEIVED */ 00176000
ECSERR04 INITIAL(99104), /* LENGTH OF INPUT DATA IS TOO */ 00177000

/* SHORT */ 00178000
ECSERR05 INITIAL(99105) /* LENGTH OF RESULT BUFFER IS */ 00179000

/* TOO SHORT */ 00180000
) FIXED BINARY(31) STATIC; 00181000

Figure 77. User edit routine field definitions for PL/I DXEECS control block (Part 4 of 4)

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 195

Handling Double-Byte Character Set Data

Double-byte character set (DBCS) data can appear in character columns or in
columns with a graphic data type (GRAPHIC, VARGRAPHIC, and LONG
VARGRAPHIC). If you need to devise edit routines that process this type of
data, read this section.

Among the characters represented by the Japanese DBCS are Latin characters
and Katakana characters. A Latin character has these characteristics:
v The first (leftmost) byte of the character has the value X'42'.
v The second byte of the character contains the EBCDIC equivalent.

A Katakana character has these characteristics:
v The first byte of the character contains X'43'.
v The second byte contains the EBCDIC equivalent.

Edit Codes for DBCS Data
You can use either Uxxxx or Vxxxx edit codes for DBCS data. The data that
the edit routine receives is the same.

What the Edit Routine Receives
The data to be formatted is in the field ECSINPT, and the length of that data,
in bytes, is in ECSINLEN. What you find in ECSINPT depends to some extent
on where the data originates. More precisely, it depends on whether the
column containing that data is a character column or one with a graphic data
type.

Data from Graphic Columns
If the data to be formatted is from a column with a graphic data type, then
the text in ECSINPT consists of this data preceded by one shift character and
followed by another. Both shift characters are single bytes. For DBCS
terminals, shift characters mark the start and end of a string of DBCS
characters.

So denotes the shift character that introduces a DBCS string, and Si denotes
the one that marks its end. So has the value X'0E'. Si has the value X'0F'.

The shift characters are included in the data length recorded in ECSINLEN.
Thus, the length appearing in ECSINLEN is always greater by two than the
length of the actual data. Because the data is presumably a string of DBCS
characters, its length (in bytes) is always an even number.

Data from Character Columns
If the data to be processed comes from a character column, then the data in
ECSINPT is just a copy of the column data. Unlike data from a graphic
column, this data can hold single-byte characters and shift characters, as well
as DBCS characters. To locate DBCS characters, you must search for the So

Creating Your Own Edit Codes for QMF Forms

196 Installing and Managing QMF for VSE/ESA

and Si characters that bracket the DBCS strings. If there are no So or Si
characters in ECSINPT, the string contains no DBCS data. For example,
ECSINPT contains the following string:
ccccSodedededededededeSiccSodededededeSi

Here, c, d, and e stand for any possible byte, and So and Si are shift bytes.
From the placement of the shift bytes, you can see that every occurrence of c
represents a single-byte character, and that every occurrence of de represents a
DBCS character.

Single-byte characters can represent Latin letters, Arabic numerals, and special
characters such as plus signs and parentheses. For Japanese DBCS, they can
also be Katakana characters. Some bytes meant to represent lowercase Latin
might be displayed as Katakana symbols. You might have to devise edit codes
that distinguish between columns containing lowercase English and those
containing Katakana.

Ensuring the Edit Routine Returns the Right Results
Return the results in the ECSRSLT field, with trailing blanks for unused bytes.
Make the results readable to the user’s screen. This means that the resulting
DBCS and EBCDIC characters must have the appropriate representations, and
that the beginning and end of any string of DBCS characters are marked by So
and Si characters.

Overflowing the ECSRSLT Field
Be careful not to overflow the ECSRSLT field, whose length is contained in
the ECSRSLEN field. If your results do not fit, truncate them on the right. If
the last character represented in the truncated results is a DBCS character, be
certain to retain its rightmost byte, and to follow that character with an Si
character.

Printing the Report Column
QMF copies the ECSRSLT field into the corresponding report column. The
result is exactly as wide as the report column. If you don’t specify
ALIGNMENT for data, the data is aligned exactly as you typed it.

How the report device represents what you return depends on the specific
device. For some terminals, the following rules apply:
v If the report is displayed on the screen, the Si and So characters embedded

in a user’s results also appear on the terminal.
v The Si and So characters appear either as blanks or as special symbols.

There is one special symbol for Si and another for So.
v Blanks appear instead of the symbols unless the user presses a certain

combination of keys.

For other devices, the rules can be slightly different.

Creating Your Own Edit Codes for QMF Forms

Chapter 13. Creating Your Own Edit Codes for QMF Forms 197

Instructions for using DBCS characters in the online help say not to use
certain DBCS characters in queries and QMF commands. The same restriction
does not apply to the formatted data returned by an edit routine. Any
legitimate DBCS character can be returned in the ECSRSLT field.

Creating Your Own Edit Codes for QMF Forms

198 Installing and Managing QMF for VSE/ESA

Chapter 14. Controlling QMF Resources Using a Governor
Exit Routine

Note: This chapter contains General Use Programming Interface and
Associated Guidance Information.

A governor exit routine helps you limit end-user activity and control use of
computer resources at your installation. IBM supplies a governor exit routine
with QMF, with default limits for the number of rows a user can retrieve from
the database. You can use this default exit routine, or use High-Level
Assembler (HLASM) to modify the routine or write one of your own.

Quick Start

Use the steps in Table 27 to guide you in setting up and using a governor exit
routine. If you need more information on any step, see the page listed at the
right of the table.

Table 27. Using a governor exit routine

To do this task: See:

To prompt users when the number of database rows retrieved reaches 25 000, and
cancel data retrieval when the number reaches 100 000, turn the governor on by
setting the INTVAL field of Q.RESOURCE_VIEW to 0 (where
RESOURCE_GROUP=SYSTEM and RESOURCE_OPTION=SCOPE). Then update the
RESOURCE_GROUP field of the user’s profile to SYSTEM, and reconnect to the
database.

Page 200

To set up the governor exit routine to use database row limits other than the
defaults of 25 000 and 100 000, add new rows to Q.RESOURCE_TABLE that define
the points at which you want to warn the user (optional) and cancel data retrieval.
Turn the governor on and update the user’s profile as explained above.

Page 204

To limit activities other than the number of rows retrieved from the database, use
High-Level Assembler (HLASM) to modify the IBM-supplied governor exit routine or
write a routine of your own.

Page 208

If you modify the IBM-supplied governor exit routine or write your own routine,
translate, assemble, and link-edit the routine.

Page 229

Using the IBM-Supplied Governor Exit Routine

The governor exit routine supplied by IBM controls how many rows a user
can retrieve from the database. The governor exit routine is shipped with two
predefined values for the number of rows:

© Copyright IBM Corp. 1983, 2000 199

v A row prompt value warns users when the number of rows retrieved
reaches 25 000, at which time the user sees the message shown in Figure 78:

v A row limit value cancels data retrieval when 100 000 rows have been
retrieved, if the user presses the Enter key in response to the message in
Figure 78. When the IBM-supplied governor cancels data retrieval, the user
sees the message shown in Figure 79:

When running a procedure, you might get a message that your procedure was
canceled, rather than the message in Figure 79. For example, if your procedure
contains a command that requires the report to complete (such as ERASE),
you receive the message shown in Figure 80:

Users using the SYSTEM profile, discussed in “Establishing a Profile Structure
for Your Installation” on page 82, are already set up to use these default
values of 25 000 and 100 000. To activate the default values for users with
unique profiles, see “Activating the Default Limits for Number of Rows
Retrieved”.

If you want to define your own limits for when the user is warned and when
data retrieval is canceled, see “Defining Your Own Resource Limits” on
page 204.

Activating the Default Limits for Number of Rows Retrieved
Follow this procedure to set up the governor exit routine to warn a user when
the number of rows retrieved from the database reaches 25 000 and to cancel
the QMF activity when the number of rows retrieved reaches 100 000:

DSQUn00 QMF governor prompt:
Command has fetched 25000 rows of data.

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key
==> To turn off prompting type "NOPROMPT" then press the "ENTER" key

Figure 78. Message displayed when a resource limit is approaching. The n symbol in the figure
represents an NLID from Table 3 on page 10

Row limit exceeded! Your command canceled by QMF governor.

Figure 79. Message displayed when a resource limit is exceeded

Procedure canceled.

Figure 80. Message displayed when a procedure is canceled

Controlling QMF Resources Using a Governor Exit Routine

200 Installing and Managing QMF for VSE/ESA

1. Run the query shown in Figure 81 from the SQL query panel:

2. Set a value of SYSTEM for the RESOURCE_GROUP field of the user’s
profile. For example, the UPDATE statements in Figure 82 activate default
values for user JONES (using English QMF) and user SCHMIDT (using
German QMF).

Important: Always specify a value for the TRANSLATION column, or you
might change more rows in Q.PROFILES than you intend.

For more information on how to create a new user profile in the
Q.PROFILES table, see “Creating User Profiles to Enable User Access to
QMF” on page 82.

3. Instruct the user to reconnect to the database to activate the new values.
For example, user JONES, who has the password MYPW, enters the
following command:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See Table 8 on page 81 for how to grant a user authority to connect to the
database. Users who do not have DB2 CONNECT authority can end the
current QMF session and begin another to activate the new resource
group.

UPDATE Q.RESOURCE_VIEW
SET INTVAL=0
WHERE RESOURCE_OPTION='SCOPE' AND

RESOURCE_GROUP='SYSTEM'

Figure 81. Activating default values for the IBM-supplied governor

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET RESOURCE_GROUP = 'SYSTEM'
SET RESOURCE_GROUP = 'SYSTEM'

WHERE CREATOR='JONES' AND
WHERE CREATOR='SCHMIDT' AND

TRANSLATION='ENGLISH'
TRANSLATION='DEUTSCH'

Figure 82. Updating a user’s resource group

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 201

“How a Governor Exit Routine Controls Resources” explains how the
governor uses the information in the Q.RESOURCE_VIEW and the
Q.PROFILES table to control resources.

If you want to define row limits other than the defaults of 25 000 and 100 000,
read “How a Governor Exit Routine Controls Resources”. Then see the
procedure in “Defining Your Own Resource Limits” on page 204.

How a Governor Exit Routine Controls Resources
The governor uses two types of information to control resources:
v Information about the resource limits you set for a user, defined in a

resource control table called Q.RESOURCE_TABLE.
v Information about the state of the user’s session, which tells the governor

how close the user’s activity is coming to the resource limits defined for the
resource group the user is in. This information is passed to the governor
exit routine in the IBM-supplied control blocks DXEGOVA and DXEXCBA.

How the Governor Knows What the Resource Limits Are
Each row of the IBM-supplied Q.RESOURCE_TABLE contains:
v The name of a resource group (RESOURCE_GROUP), which characterizes one or

more users whose activities you want to govern in the same manner.
v The name of the resource (RESOURCE_OPTION) you want to limit for the group

of users named in RESOURCE_GROUP.
v Values (INTVAL, FLOATVAL, or CHARVAL) that define the limit for the resource

option. Resource options can have integer values, floating-point values, or
character values.

Table 28 on page 207 shows the structure of the Q.RESOURCE_TABLE as it is
shipped by IBM. Q.RESOURCE_TABLE has the index Q.RESOURCE_INDEX.
Keyed columns are RESOURCE_GROUP and RESOURCE_OPTION.

The Q.RESOURCE_TABLE is shipped by IBM with a predefined resource
group called SYSTEM. The SYSTEM resource group has three predefined
resource options, as shown in Figure 83. Use the CHARVAL column to
indicate the limits defined in each row, as shown.

RESOURCE RESOURCE
GROUP OPTION INTVAL FLOATVAL CHARVAL

---------------- ---------------- ----------- ---------- -------------------------------------
SYSTEM SCOPE 0 - INDICATE WHETHER GOVERNOR IS ACTIVE
SYSTEM ROWLIMIT 100000 - CANCEL AFTER FETCHING 100000 ROWS
SYSTEM ROWPROMPT 25000 - PROMPT USER AFTER FETCHING 25000 ROWS

Figure 83. Default resource group and options for the IBM-supplied governor exit

Controlling QMF Resources Using a Governor Exit Routine

202 Installing and Managing QMF for VSE/ESA

SCOPE = 0
Activates governing for a particular resource group.

ROWLIMIT = 100 000
If the user decides to continue when warned, the governor exit
routine cancels data retrieval activities after 100 000 rows are
retrieved. (Retrieval is for FETCH only.)

ROWPROMPT = 25 000
Warns the user when 25 000 database rows have been retrieved.

IBM also supplies a view of this table, called Q.RESOURCE_VIEW, that
includes all five columns of Q.RESOURCE_TABLE. Each time QMF calls the
governor exit routine, QMF passes to the routine the resource control
information stored in Q.RESOURCE_VIEW. The governor exit routine uses
this resource information to help determine when the user reaches a resource
limit.

How the Governor Knows When You Reach a Resource Limit
On a call to the governor exit routine, QMF queries Q.RESOURCE_VIEW,
which shows what resource limits are defined in the resource control table for
the resource group to which the user belongs. To determine the resource
group, QMF checks the value of the RESOURCE_GROUP field of the user’s
row in the Q.PROFILES table and checks Q.RESOURCE_VIEW for a matching
value.

QMF uses two control blocks, DXEGOVA and DXEXCBA, to pass information
to the governor exit routine. The DXEGOVA control block contains
information from Q.RESOURCE_VIEW about the limits you set for each user.
The DXEXCBA control block contains information about the activities the user
is performing in the current QMF session, which tells the governor how close
the user is coming to the resource limits.

Figure 84 on page 204 shows how the governor limits use of resources.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 203

QMF calls the governor exit routine at a number of different points within the
QMF session, as shown in Figure 84. These calls are called function calls. For
more information about function calls, see “Points at Which QMF Calls the
Governor” on page 211.

What Happens When You Reach a Resource Limit
When the resource control information QMF passes to the governor exit
routine indicates that a resource limit has been reached, the IBM-supplied
governor exit routine calls the QMF cancellation service to cancel the QMF
activity the user tried to perform, and the user sees the message in Figure 79
on page 200.

If you use the default limits for number of rows as discussed in Activating the
Default Limits for Number of Rows Retrieved, the IBM-supplied governor exit
routine also displays a warning before canceling the activity, as shown in
Figure 78 on page 200. See “Defining Your Own Resource Limits” for how to
activate this warning if you are not using the default values for the number of
rows retrieved.

The IBM-supplied governor exit routine resets its count of the number of rows
upon returning control to QMF, so that the number of rows is not cumulative
across calls to the governor.

Defining Your Own Resource Limits
This section explains how to create a new resource group, for which the
resource is the number of rows retrieved from the database. If you want to

Figure 84. How a governor exit routine works with QMF

Controlling QMF Resources Using a Governor Exit Routine

204 Installing and Managing QMF for VSE/ESA

define resource limits other than the number of rows, you need to modify the
IBM-supplied governor exit routine or write an exit routine of your own. See
“Modifying the IBM-Supplied Governor Exit Routine or Writing Your Own”
on page 208 for more information on the facilities you can use.

Use the following procedure to add a resource group to the resource control
table. This procedure adds a resource group named GROUP1, where the
governor prompts a user in GROUP1 when the number of rows reaches
10 000, and cancels the user’s activity when the number of rows reaches
15 000. The procedure also shows an example of how to add a user to a
resource group.
1. Run the query in Figure 85 to set the number of rows at which the user is

warned of the approaching resource limit.
If you don’t want to warn users when they are approaching their limit for
the number of rows, skip to Step 2.

2. Run the query in Figure 86 to set the number of rows at which the
governor cancels the user’s activity.

3. Run the query shown in Figure 87 to turn on governing for the GROUP1
resource group.
SCOPE is a resource option that activates or deactivates governing. Each

resource group in the Q.RESOURCE_TABLE must have a
RESOURCE_OPTION called SCOPE, and SCOPE must have a
corresponding INTVAL of zero, or the resource group will not be
governed. Set INTVAL to 1 to deactivate governing.

4. Run a query similar to the one in Figure 88 on page 206 to add user
JONES to the GROUP1 resource group in the English QMF environment.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','ROWPROMPT',10000)

Figure 85. Activating prompting for row limit

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','ROWLIMIT',15000)

Figure 86. Activating cancellation of activities when user reaches row limit

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','SCOPE',0)

Figure 87. Turning on the governor for a particular resource group

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 205

If you’re using an NLF: Use a similar query to update a user’s profile in
an NLF environment, but use a TRANSLATION
value from Table 3 on page 10.

5. Instruct the user whose profile you updated to reconnect to the database
to initialize the resource values. For example, user JONES, who has the
password MYPW, can enter:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See Table 8 on page 81 for how to grant a user authority to connect to the
database. Users who do not have DB2 CONNECT authority can end the
current QMF session and begin another to activate the new resource
group.

Creating your own Resource Control Table
You can create your own table or rename the Q.RESOURCE_TABLE. You can
also include additional columns in the table you create, if
Q.RESOURCE_VIEW is the view defined in this table, and if the table
includes all of the columns shown in Table 28 on page 207.

Figure 89 on page 207 shows an example of SQL statements you might use to
create a table called MY_RESOURCES. Substitute your own table, column,
and dbspace names in the query. Before creating a new table, ensure you erase
the Q.RESOURCE_TABLE from the database, because Q.RESOURCE_VIEW is
defined in this table:
DROP TABLE Q.RESOURCE_TABLE

Dropping the Q.RESOURCE_TABLE also drops Q.RESOURCE_VIEW from the
database, so you need to recreate both the table and the view, as shown in
Figure 89 on page 207 and Figure 90 on page 207.

UPDATE Q.PROFILES
SET RESOURCE_GROUP='GROUP1'
WHERE CREATOR='JONES' AND
TRANSLATION='ENGLISH'

Figure 88. Updating a user’s resource group

Controlling QMF Resources Using a Governor Exit Routine

206 Installing and Managing QMF for VSE/ESA

Always recreate Q.RESOURCE_VIEW if you decide to use a table other than
Q.RESOURCE_TABLE or decide to give Q.RESOURCE_TABLE a different
name, because QMF queries the view, not the table, to obtain resource control
information to pass to the governor exit routine.

Figure 90 shows how to redefine Q.RESOURCE_VIEW as a view on the new
table, MY_RESOURCES. Substitute your own table and column names for
those in the figure.

Table 28. Structure of the Q.RESOURCE_TABLE table

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

RESOURCE_GROUP CHAR 16 No Contains the name of the resource
group. Update the
RESOURCE_GROUP field of the
user’s row in Q.PROFILES to
activate governing for that user.

RESOURCE_OPTION CHAR 16 No Your own name for a resource you
want to monitor.

INTVAL INTEGER Yes Reflects resource limit for resource
options that have integer values. For
example, number of rows retrieved
from the database is a resource that
has an integer value.

FLOATVAL FLOAT Yes Reflects resource limit for resource
options that have floating point
values. FLOATVAL is null for the
IBM-supplied governor.

CREATE TABLE MY_RESOURCES
(GROUP_NAME CHAR(16) NOT NULL,
CONSTRAINT CHAR(16) NOT NULL,
INTEGER INTEGER,
FLOAT_VALUE FLOAT,
CHARACTER VARCHAR(80))

IN DBSPACE1

Figure 89. Creating a resource control table or renaming Q.RESOURCE_TABLE

CREATE VIEW Q.RESOURCE_VIEW
(RESOURCE_GROUP, RESOURCE_OPTION, INTVAL, FLOATVAL, CHARVAL)
AS SELECT GROUPNAME, CONSTRAINT, INTEGER, FLOAT_VALUE, CHARACTER
FROM MY_RESOURCES

Figure 90. Redefining the Q.RESOURCE_VIEW

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 207

Table 28. Structure of the Q.RESOURCE_TABLE table (continued)

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

CHARVAL VARCHAR 80 Yes Reflects resource limit for resource
options that have character values.
For example, you might establish a
DAY_OF_WEEK resource option and
assign MONDAY to CHARVAL so
that QMF users can log on to QMF
only on Mondays. CHARVAL is
used as a comment column in the
IBM-supplied governor.

Modifying the IBM-Supplied Governor Exit Routine or Writing Your Own

If you decide to govern resources other than the number of rows returned
from the database, you need to modify the IBM-supplied governor exit
routine or write your own by doing the following:
1. Establish addressability to the exit routine for the points at which QMF

calls the routine. “How and When QMF Calls the Governor Exit Routine”
on page 211 explains this step.

2. Pass resource control information to the governor exit routine and store
this information. “Passing Resource Control Information to the Governor
Exit” on page 215 explains this step.

3. Establish addressability to the QMF cancellation service to cancel activities.
“Canceling User Activity” on page 228 explains this step.

4. Establish addressability to the QMF message service to provide messages
for activities that have been canceled. “Providing Messages for Canceled
Activities” on page 228 explains this step.

5. Translate, assemble, and link-edit your governor exit routine, whether you
modified the IBM-supplied governor exit routine or wrote your own.
“Translating, Assembling, and Link-Editing Your Governor Exit Routine”
on page 229 explains this step.

Program Components of the Governor Exit Routine
Before you begin modifying or writing your own governor exit routine, you
need to know the names of the governor exit routine components and what
purpose each component serves.

Table 29 on page 209 shows these components, whose names vary according to
which language you installed (English or an NLF). Replace the n symbol in
the component names in Table 29 with the NLID (from Table 3 on page 10)
that matches the NLF you’re using.

Controlling QMF Resources Using a Governor Exit Routine

208 Installing and Managing QMF for VSE/ESA

Table 29. IBM-supplied governor components

Member Name Sublibrary Function

DSQUnGV3.PHASE PRD2.PROD Executable phase installed during QMF
installation.

DSQUnGV3.Z PRD2.PROD Source code for governor exit routine.

DXEGOVA.A PRD2.PROD DSECT for the DXEGOVA control block.

DXEXCBA.A PRD2.PROD DSECT for the DXEXCBA control block.

DXEUnGV3.A PRD2.PROD Contains text and related definitions for
the governor exit routine cancellation
message in CICS.

DXEUnGM.Z PRD2.PROD Contains CICS basic mapping support
(BMS) information, which describes how
the governor prompts appear on the
screen.

DSQ3nGLK.Z PRD2.PROD Job that translates, assembles, and
link-edits the IBM-supplied governor exit
routine and the BMS map.

You can find these members in the sublibrary where QMF was installed (the
default sublibrary is PRD2.PROD).

If you’re using an NLF: You can govern resources in an NLF session as well
as an English QMF session, by using different
versions of the phase DSQUnGV3 for each language
environment. For example, if you have both English
and German QMF installed, use the phase
DSQUEGV3 for English and the phase DSQUDGV3
for German.

You can share the resource control table (Q.RESOURCE_TABLE or one you
create yourself) and the Q.RESOURCE_VIEW between language
environments, just as the Q.PROFILES table can contain profiles for English or
any NLF.

How CICS Interfaces with the Governor Exit Routine
At the start of a user’s session, QMF issues an EXEC CICS LOAD command
to bring the governor into the user’s virtual storage. For performance reasons,
an assembler call interface is used between QMF and the governor exit
routine. The governor exit routine must provide fast performance because,
depending on which resources you are trying to control, it could be called on
every row retrieved from the database.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 209

The CICS control block interface to the governor exit consists of the following
parts:
v Interface control blocks DXEXCBA.A and DXEGOVA.A (shipped with QMF)
v CICS-supplied prolog and epilog macros DFHEIENT and DFHEIRET

(shipped with CICS)
v Command interface modules DFHEAI and DFHEAI0 (shipped with CICS)
v The governor exit program (named DSQUnGV3)

Figure 91 shows the program structure of a governor exit routine:

The governor exit routine executes on the same program level as the main
QMF program.

The entry point to the governor exit routine is DSQUnGV3. When it calls the
governor exit routine, QMF always branches to the address returned by CICS
as the result of an EXEC CICS LOAD command.

If the load fails or the phase doesn’t support 31-bit addressing mode, QMF
issues a warning message, disables the governor exit, and continues the
session without the governor.

Figure 91. CICS processing that interfaces QMF with the governor exit

Controlling QMF Resources Using a Governor Exit Routine

210 Installing and Managing QMF for VSE/ESA

How and When QMF Calls the Governor Exit Routine
QMF issues standard assembler CALL statements to the governor exit routine.
The term function calls describes the points during the QMF session when
these CALL statements are issued.

Points at Which QMF Calls the Governor
Function calls to the governor exit routine either precede or follow a specific
type of QMF activity. For example, QMF passes control to the governor exit
before and after running a command.
v At the beginning and end of a QMF session

QMF calls the governor exit routine during initialization for a QMF session,
after the governor exit routine is loaded into the user’s virtual storage. The
governor initializes itself for the session using the resource control
information contained in rows passed from QMF’s query of
Q.RESOURCE_VIEW.
The governor exit routine is also called just before the session ends, when it
can perform whatever is needed to discontinue its activities for the user’s
session. For example, it can release virtual storage.

v After a new connection is made to the database

When a user issues the CONNECT command, the Q.PROFILES table and
the resource control table are re-initialized. The governor is called because
the resource control values might have changed if a different CONNECT ID
was used. All unfinished database operations are completed before the
connection is made.
Although the governor exit routine cannot cancel a connection to the
database, you can write statements in your own routine that cancel the
user’s session on the next activity, if the resource information passed to the
governor indicates that the user is not allowed to use QMF.

v Before and after running a command

QMF calls the governor before and after running all commands. There can
be several calls for the start of commands before a call for the completion of
a command. For example, a RUN PROC command results in two “start
command” calls and two “end command” calls when there is a RUN
QUERY command embedded in the procedure.

v Before database activity starts and when it ends

QMF calls the governor just before it begins a variety of database
operations, such as PREPARE, OPEN, and FETCH; QMF also calls the
governor upon completing any database activity.
When QMF retrieves data, it fits the maximum number of rows possible
into a buffer that has a minimum size of 4K. QMF calls the governor once
upon retrieving the first row into the buffer and once upon either filling the
buffer or reaching the end of the table, whichever comes first.
The following QMF commands always force database activity:

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 211

– DISPLAY table commands
– The EDIT TABLE command for the Table Editor
– The ERASE command for a table
– The EXPORT TABLE command
– The IMPORT command to a table
– The PRINT command for a table or view
– The RUN QUERY command (for all types of queries)
– The SAVE DATA command (which forces an implicit CREATE TABLE

query)
– Scrolling commands that result in retrieving data when a report is being

displayed
– Data retrieval operations (fetch operations)

v Before and after the user makes a choice

At various points in a session, QMF waits for users to make decisions. The
time QMF spends waiting is known as think time.
QMF calls the governor before performing an operation that leads to think
time, such as displaying a panel for a user-entered selection. As soon as the
user enters a response and ends the period of think time, QMF calls the
governor.
Any of the following activities leads to think time:
– Displaying a QMF panel between running commands
– Displaying help panels
– Displaying confirmation prompt panels; for example, when the user is

about to erase something by issuing the SAVE command that replaces
the object

– Displaying command prompt panels; for example, when the user enters
DISPLAY ?

– Displaying the LIST prompt panel
– Displaying the GDDM interactive chart utility panels for QMF charting

functions

For the IBM-supplied governor exit routine, QMF uses the GOVFUNCT field
of the DXEGOVA control block to pass information about the type of function
call. The fields of this control block are explained in Table 30 on page 215.
Each type of function call has a specific value for the GOVFUNCT field. These
values are shown in Figure 93 on page 214.

What Happens Upon Entry to the Governor Exit Routine
QMF calls the governor exit routine by branching to the address of the entry
point DSQUnGV3. Upon entry to the governor exit routine:

Controlling QMF Resources Using a Governor Exit Routine

212 Installing and Managing QMF for VSE/ESA

v Register 1 contains a CICS parameter list suitable for processing by
CICS-supplied macros DFHEIENT and DFHEIRET. Figure 92 shows the
contents of Register 1 on a call to the governor.
DFHEIBLK is the address of the CICS communications area. DFHCOMMA
contains two pointers, one to the DXEXCBA control block and the other to
the DXEGOVA control block.

v Register 13 contains the address of a standard CICS working storage area as
described by CICS-supplied macro DFHEISTG.

v Register 14 contains the return address.

Establishing Addressability for Function Calls
Because QMF always branches to an entry point named DSQUnGV3 when it
calls the governor, you can’t use this entry point to determine the type of
function call; instead, use the GOVFUNCT field of the DXEGOVA control
block.

In the IBM-supplied governor exit routine, GOVFUNCT contains a character
value that identifies the type of function call. This character value, in turn,
equates to a 1-byte binary integer from 1 to 9. For example, on a function call
for the start of a QMF session, the value of GOVFUNCT is GOVINIT, which
equates to a numeric value of X'1'.

Both character and numeric values for each type of function call are shown in
Figure 93 on page 214. (If you need more information about the activity that

Figure 92. Contents of Register 1 on a call to the governor exit routine

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 213

occurs at each function call, see “Points at Which QMF Calls the Governor” on
page 211 .)

To improve performance in your own exit routine, you can follow the
convention the IBM-supplied governor uses, and equate the values of
GOVFUNCT with binary numbers by using a branch table. QMF uses the
branch table to find the addresses to branch to for each type of function call.

Figure 94 shows an example of some code that identifies branch addresses for
the IBM-supplied governor.

Because the governor program runs on the same program level as QMF, use
caution when using any EXEC CICS commands that change the environment
(for example, CICS HANDLE CONDITION). If you need to use the CICS
HANDLE CONDITION, use EXEC CICS PUSH and EXEC CICS POP to save
and restore the QMF environment.

GOVINIT EQU 1 -------- INITIALIZATION OF SESSION
GOVTERM EQU 2 -------- TERMINATION OF SESSION
GOVSCMD EQU 3 -------- START COMMAND
GOVECMD EQU 4 -------- END COMMAND
GOVCONN EQU 5 -------- CONNECT COMMAND
GOVSDBAS EQU 6 -------- START DATA BASE
GOVEDBAS EQU 7 -------- END DATA BASE
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY

Figure 93. Character and numeric values for the GOVFUNCT field of DXEGOVA

XR R07,R07 ZERO REGISTER 7
IC R07,GOVFUNCT IDENTIFY EXIT TYPE
SLL R07,2 DETERMINE BRANCH TABLE OFFSET
LA R15,FUNBTAB(R07) GET BRANCH TABLE ADDRESS
L R15,0(R15) GET BRANCHING ADDRESS
BALR R14,R15 BRANCH TO THE APPROPRIATE CODE

. . .

. . .

. . .

. . .
FUNBTAB DS 0F

DC A(BYPASS) VALUE "0" - UNUSED
DC A(INIT) VALUE "1" - QMF INITIALIZATION

. . .

. . .

. . .

Figure 94. Identifying the type of function call and branching to the appropriate address

Controlling QMF Resources Using a Governor Exit Routine

214 Installing and Managing QMF for VSE/ESA

Use the standard HLASM RETURN statement to return control to QMF after
every call.

Attention: Do not use the EXEC CICS RETURN command to return to QMF.
Using EXEC CICS RETURN ends the QMF session or causes unpredictable
results.

Passing Resource Control Information to the Governor Exit
If you have not done so already, read the following sections, which describe
how to set up resource control information in a format the governor can use:
v “How a Governor Exit Routine Controls Resources” on page 202
v “Defining Your Own Resource Limits” on page 204

QMF passes resource control information using two control blocks named
DXEGOVA and DXEXCBA. These are shown in Figure 95 on page 218 and
Figure 97 on page 225. Their addresses are passed to the governor on every
function call. The DSECT DXEXCBA (shipped as DXEXCBA.A) and the
DSECT DXEGOVA (shipped as DXEGOVA.A) are located in the sublibrary
where QMF is installed. Include these DSECTs in your program using the
HLASM COPY statement.

Structure of the DXEGOVA Control Block
The DXEGOVA control block passes to the governor exit routine information
about a user’s resource constraints. This information is located in a resource
control view called Q.RESOURCE_VIEW. See “How the Governor Knows
What the Resource Limits Are” on page 202 for more information on how this
view is used.

Table 30 provides the name of each field in the DXEGOVA control block, with
its data type and purpose. Each data type is listed as it appears in the DS
statement that defines the field in the DSECT. For example, for the
GOVOROWS field, the letter F indicates that this field contains a full-word
integer. The DS statement for GOVOROWS appears as GOVOROWS DS F.

The layout of the control blocks and the information they contain is the same
for QMF support in all operating environments. Therefore, some of the
information shown in the control blocks might not apply to QMF in the
VSE/ESA environment because it is used in only OS/390 or VM operating
environments.

Table 30. Fields of the DXEGOVA interface control block to the governor

Field Data Type Purpose

GOVCADDR A Contains the address to branch to for canceling an activity. The code to
use this field appears in “Canceling User Activity” on page 228.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 215

Table 30. Fields of the DXEGOVA interface control block to the governor (continued)

Field Data Type Purpose

GOVFUNCT XL1 Indicates the type of function call. Possible values are:
v GOVINIT (session initialization); GOVTERM (session termination)
v GOVSCMD (start command); GOVECMD (end command)
v GOVCONN (connect command)
v GOVSDBAS (start database retrieval operation); GOVEDBAS (end

database retrieval operation)
v GOVSACTV (suspend QMF activity for user think time);

GOVRACTV (resume QMF activity)

Code to use this field appears in “Establishing Addressability for
Function Calls” on page 213.

GOVGROUP CL16 Contains the name of the user’s resource group. This value can change
after a CONNECT command, when QMF initializes the
Q.RESOURCE_TABLE and the Q.PROFILES table. For more on
resource groups, read “How the Governor Knows What the Resource
Limits Are” on page 202.

GOVNAME CL8 Contains the name of the control block (DXEGOVA). This value does
not change during a session. It can serve as an eye catcher in a dump
of virtual storage.

GOVOROWS F Contains the number of rows for the user’s resource group in the
resource control table. This value does not change during a session,
and can be zero.

GOVRESC 10XL128 Contains information from the resource control table. This information
is divided into 10 contiguous blocks of storage that are structured like
DSECT GOVRESCT. A block contains information about one of the
rows for the user’s resource group in the QMF resource control table.
v If the resource group has less than 10 rows, unused blocks are those

at the end of the field.
v If the resource group has more than 10 rows, use the field named

GOVNEXTR (in the GOVRESCT DSECT) to access additional rows.

All blocks are part of a chain, as described in “Addressing the
Resource Control Table” on page 219. The value of this field does not
change during a session.

Controlling QMF Resources Using a Governor Exit Routine

216 Installing and Managing QMF for VSE/ESA

Table 30. Fields of the DXEGOVA interface control block to the governor (continued)

Field Data Type Purpose

GOVRESCT DSECT Describes the block of storage containing information on one of the
user’s rows of the resource control table. All such blocks are linked
together in a chain discussed in “Addressing the Resource Control
Table” on page 219. The following fields are within the block:
GOVOPTN(CL16)

Contains the value in the RESOURCE_OPTION column of the
resource control table. Blocks in the chain are ordered
alphabetically on the content of this field.

GOVNULLI(H)
Null indicator for INTVAL column.

GOVINTVL(F)
Value of INTVAL column.

GOVNULLF(H)
Null indicator for FLOATVAL column.

GOVFLOAT(D)
Value of FLOATVAL column.

GOVNULLC(H)
Null indicator for CHARVAL column.

GOVCHLEN(H)
Length of data in CHARVAL column.

GOVCHAR(CL80)
Value in CHARVAL column.

GOVNEXTR(A)
Points to the block of data for the next resource table row.
Contains zero if this is the last row.

Any null indicator in the structure is zero when its corresponding
column value isn’t null. If the column value is null, the indicator is not
zero.

GOVSQLCA A Address of the SQL communications area (SQLCA), which holds
information about the SQL SELECT query on the resource control view
(Q.RESOURCE_VIEW).

GOVSQLRC F Return code from the SQL SELECT query on the resource control view
(Q.RESOURCE_VIEW). If it is nonzero, the query failed and no rows
are passed to the governor.

GOVUSERS CL2048 Scratchpad area, retained between session calls. QMF does not change
this value.

Figure 95 on page 218 shows the structure of the DXEGOVA control block.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 217

*** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEGOVA * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* THE GOVERNOR EXIT ROUTINE. * 00008000
* * 00009000
* STATUS: VERSION 7 RELEASE 1 LEVEL 0 * 00010000
* * 00011000
* INNER CONTROL BLOCKS: NONE * 00012000
* * 00013000
* CHANGE ACTIVITY: NA * 00014000
* * 00015000
* CHANGE DATE: NA * 00016000
* * 00017000
*** 00018000
* 00019000
DXEGOVA DSECT 00020000

DS 0D 00021000
GOVNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00022000

SPACE 00023000
GOVEXCTL DS XL72 -- EXIT CONTROL 00024000

ORG GOVEXCTL 00025000
GOVFUNCT DS XL1 ----- FUNCTION CODE 00026000
GOVINIT EQU 1 -------- INITIALIZATION OF SESSION 00027000
GOVTERM EQU 2 -------- TERMINATION OF SESSION 00028000
GOVSCMD EQU 3 -------- START COMMAND 00029000
GOVECMD EQU 4 -------- END COMMAND 00030000
GOVCONN EQU 5 -------- CONNECT COMMAND 00031000
GOVSDBAS EQU 6 -------- START DATA BASE 00032000
GOVEDBAS EQU 7 -------- END DATA BASE 00033000
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY 00034000
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY 00035000
GOVABEND EQU 10 -------- QMF ABEND OPERATION 00036000
GOVPAD10 DS CL7 ----- RESERVED FIELD 00037000

SPACE 00038000
GOVCADDR DS A ----- ADDR TO BRANCH TO FOR CANCELLATION 00039000

SPACE 00040000
GOVOROWS DS F ----- NUMBER OF OPTION ROWS RETRIEVED 00041000

SPACE 00042000
GOVSQLRC DS F ----- RESOURCE TABLE SQL RETURN CODE 00043000

SPACE 00044000
GOVSQLCA DS A ----- ADDRESS OF SQLCA FOR ERROR CONDITION 00045000

SPACE 00046000
GOVGROUP DS CL16 ----- GROUP NAME 00047000
GOVPAD20 DS CL32 ----- RESERVED FIELD 00048000

SPACE 00049000
GOVUCTL DS XL304 -- USER CONTROL AREA 00050000

Figure 95. The DXEGOVA control block (Part 1 of 2)

Controlling QMF Resources Using a Governor Exit Routine

218 Installing and Managing QMF for VSE/ESA

Addressing the Resource Control Table
The GOVGROUP field of the DXEGOVA control block holds the value of the
RESOURCE_GROUP column of Q.RESOURCE_VIEW, the view defined on the
resource control table.

All information about the user’s resource options is stored in blocks; there is
one block for each of the user’s resource options you decide to monitor.

The first block defines the first resource option and is stored in the DXEGOVA
control block as the DSECT GOVRESCT. This DSECT is shown in the last part
of Figure 95. The address of this DSECT is defined in the DXEGOVA field
GOVRESC. You can establish addressability to the GOVRESC field in your
own routine using the address of the GOVRESCT DSECT.

Negative half-word integers in the DSECT represent null values entered for
INTVAL, CHARVAL or FLOATVAL in the Q.RESOURCE_VIEW; zero or
positive half-words indicate a value in that column of Q.RESOURCE_VIEW.

The blocks that store the resource control information form a chain in which a
pointer in one block points to the beginning of the next block (the next
resource option) in the chain. For example, the GOVNEXTR DS statement in
the GOVRESCT DSECT in Figure 95 contains the address of the next block in
the chain of resource control information. Each block in the chain has a
GOVNEXTR DS statement. In the final block, the GOVNEXTR DS statement
contains zeros to mark the end of the user’s resource control information.

ORG GOVUCTL 00051000
GOVUSERS DS CL2048 ----- USER SCRATCH PAD AREA 00052000
GOVPAD30 DS CL48 ----- RESERVED FIELD 00053000

SPACE 00054000
DS 0D 00055000

GOVRESC DS 10XL128 -- RESOURCE CONTROL TABLE 00056000
ORG GOVRESC 00057000

GOVRESCT DSECT -- RESOURCE CONTROL TABLE MAPPING 00058000
DS 0D 00059000

GOVOPTN DS CL16 ----- RESOURCE OPTION 00060000
GOVNULLI DS H ----- INTEGER NULL INDICATOR 00061000
GOVPAD40 DS CL2 ----- RESERVED FIELD 00062000
GOVINTVL DS F ----- INTEGER OPTION REPRESENTATION 00063000
GOVNULLF DS H ----- FLOATING POINT NULL INDICATOR 00064000
GOVPAD50 DS CL6 ----- RESERVED FIELD 00065000
GOVFLOAT DS D ----- FLOATING POINT OPTION REPRESENTATION 00066000
GOVNULLC DS H ----- CHARACTER NULL INDICATOR 00067000
GOVCHLEN DS H ----- LENGTH OF THE CHARACTER OPTION 00068000
GOVCHAR DS CL80 ----- CHARACTER OPTION REPRESENTATION 00069000
GOVNEXTR DS A ----- POINTER TO NEXT RESOURCE CONTROL ROW 00070000

Figure 95. The DXEGOVA control block (Part 2 of 2)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 219

Figure 96 shows a part of the code for the IBM-supplied governor that
processes the blocks of resource control information. In this code, GOVRESC
points to the GOVRESCT DSECT.

Structure of the DXEXCBA Control Block
The DXEXCBA control block passes to the governor exit routine information
about the state of the QMF session upon entry to the governor. The governor
combines this information with information on resource limits (contained in
DXEGOVA) to determine when the resource limits are exceeded and when to
cancel the user’s activity.

For example, you can define a resource option that does not allow user
JONES to use the EDIT TABLE command. You can then write your governor

L R08,GOVOROWS GET NUMBER OF RESOURCE TABLE ROWS
LTR R08,R08 ANY RESOURCE TABLE ROWS?
BZ ENDRESST NO, SKIP RESOURCE INITIALIZATION
LA R05,GOVRESC GET ADDRESS OF 1ST RESOURCE ROW
USING GOVRESC,R05 BASE RESOURCE RECORD ENTRY

LOOK4RES DS 0H MAIN LOOP THRU RESOURCE ROWS
LTR R05,R05 ANY MORE RESOURCE TABLE ROWS?
BZ ENDRESST NO, END RESOURCE INITIALIZATION...
L R05,GOVNEXTR GET ADDRESS ON NEXT RESOURCE ROW
B LOOK4RES BEGIN NEXT ITERATION

ENDRESST DS OH -- BRANCH HERE WHEN FINISHED READING ALL ROWS

. . .

. . .

. . .

. . .

DXEGOVA DSECT

. . .

. . .

. . .

GOVRESC DS 10XL128 -- RESOURCE CONTROL TABLE
ORG GOVRESC

GOVRESCT DSECT -- DSECT FOR RESOURCE ROW
. . .
. . .
. . .

GOVNEXTR DS A -- POINTER TO NEXT RESOURCE ROW

. . .

. . .

. . .

Figure 96. Resource initialization

Controlling QMF Resources Using a Governor Exit Routine

220 Installing and Managing QMF for VSE/ESA

exit routine so that, if the XCBQRYP field of the DXEXCBA control block
indicates an EDIT TABLE command, the governor exit calls the QMF
cancellation service to cancel the command.

Table 31 provides the name of each field in the control block, with its data
type and purpose. Each data type is listed as it appears in the DS statement
that defines the field in the DSECT.

The layout of the control blocks and the information they contain is the same
for QMF support in all operating environments. Therefore, some of the
information shown in the control blocks might not apply to QMF in the
VSE/ESA environment because it is used in only OS/390 or VM operating
environments.

Table 31. Fields of the DXEXCBA interface control block to the governor

Field Data Type Purpose

XCBACTIV CL1 Indicates the current type of database activity. Applies only when rows
are being retrieved for the current data object. Possible values are:
1 OPEN being run
2 FETCH being run
3 PREPARE being run
4 DESCRIBE being run
5 CLOSE being run

This field changes whenever the type of database activity changes.

XCBAIACT CL1 Tells whether the current command is running interactively:
1 Interactive
0 Noninteractive (batch)
Interactive commands display prompt and status panels. This field
changes value on any function call for the start of the command; it is
reset to zero when the command completes.

XCBAUTH CL8 Contains the user’s SQL authorization ID, which might change on a
CONNECT command.

XCBCAN CL1 Indicates whether the user or the governor requested cancellation of
the current command. The field is set to 1 if cancellation is requested.
Zero indicates that no cancellation was requested. This field is reset to
zero before the function call for the command’s termination.

XCBCLOC CL18 Contains the current location name. The current location is always a
VSE DB2 database name for QMF for VSE/ESA Version 3.2.

XCBCMDL F Contains the length of the string containing the command to be run.
This is the string addressed by XCBCMDP field. This field changes
values when XCBCMDL changes values.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 221

Table 31. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data Type Purpose

XCBCMDP A Points to the string containing the command to be run. This field is
reset when QMF validates a command at some point before the
function call for the start of the command.

The field is reset to zeros before the function call when the command
completes. If a command synonym is being run, it appears here.

XCBCVERB CL18 Holds the verb of the current command. This field changes value on
the function call for the start of a command. The value does not
change between calls.

XCBDBMG CL1 Identifies the database manager. This value is always set to 1 for QMF
for VSE/ESA Version 3.2, indicating DB2 for VM/ESA or VSE/ESA

XCBEMODE CL1 Indicates the current mode of the QMF session:
1 Interactive
2 Noninteractive (batch)
This value does not change during a session. See “Starting a
Noninteractive QMF Session (DSQSMODE)” on page 69 for more
information on starting a noninteractive session.

XCBERRET F Contains the return code to be used in the default cancellation
message. For more information about this message, see “Providing
Messages for Canceled Activities” on page 228.

XCBINCI (TSO
ISPF only)

CL1 This field is not supported in CICS/VSE.

XCBINPRC CL1 Tells the governor where a command is being run: 1 indicates it is
running in a procedure or LIST command; 0 indicates it is being run
another way.

XCBKPARM CL1 Tells the governor how the DSQSDBCS program parameter is set. The
value does not change during a session. Possible values are: 0 for Latin
letters; 1 for double-byte character set (DBCS) data. See “Setting
Printing for Double-Byte Character Set Data (DSQSDBCS)” on page 75
for more information about this parameter.

XCBLOGM CL1 Indicates if QMF should log a message in the QMF trace data. Use a
value of 1 to log the message, and 0 to not log the message. Message
logging is described in “Providing Messages for Canceled Activities”
on page 228. Using the QMF trace facility is described in “Using the
QMF Trace Facility” on page 242.

XCBMGTXT CL78 Contains the text for a message. The message can be logged in the
QMF trace data, displayed on the screen, or both. For more
information on how this field is used, see page 228.

XCBMSGNO
(TSO ISPF
only)

CL8 This field is not supported in CICS/VSE.

Controlling QMF Resources Using a Governor Exit Routine

222 Installing and Managing QMF for VSE/ESA

Table 31. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data Type Purpose

XCBNAME CL8 Contains the control block name (DXEXCBA). Can serve as an eye
catcher in a dump of virtual storage. This value does not change
during a session.

XCBNLANG CL1 Identifies NLFs being used. (For a list of NLIDs used, see Table 3 on
page 10.) Value does not change during a session.

XCBPANEL
(TSO ISPF
only)

CL8 This field is not supported in CICS/VSE.

XCBPLAN CL8 This field applies to TSO only, which is not supported in CICS/VSE.

XCBQCE F Contains the value of the SQLDERRD(4) field in the SQLCA returned
from VSE DB2. The value is a short floating-point number, divided by
X'1000' and converted to a QMF internal decimal. The integer part of
this decimal appears in the database status (“relative cost estimate”)
panel. The value is set to zero on the function call when the command
finishes running. The field contains zeros if the operation is not a data
retrieval query.

XCBQERR CL1 Tells whether a QMF error occurred since the previous function call: 0
indicates no error occurred; 1 indicates an error occurred.

XCBQMF CL10 Identifies the current release of QMF. This value is QMF V7R1, and does
not change during a session.

XCBQRYP A Contains the address of a copy of the query that QMF passes to the
database for execution. The governor inspects the query upon a call to
start database activity (before any data retrieval) and determines
whether to cancel the activity. The address is set to zero either at the
beginning of the session or when the data object is reset or imported to
temporary storage.

This field contains information only when data retrieval is requested
through one of the commands in the following list; no information is
provided for queries on VSE DB2 system tables or QMF control tables.
DISPLAY TABLE

EDIT TABLE
ERASE TABLE

EXPORT TABLE
IMPORT TABLE

PRINT TABLE
RUN QUERY

SAVE DATA

XCBREFR CL1 Indicates whether QMF refreshes the screen after returning from the
governor; 1 indicates a refresh; 0 indicates no refresh.

If your governor displays any screen information, set this field to 1.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 223

Table 31. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data Type Purpose

XCBRELN CL2 Identifies the QMF release level. For QMF for VSE/ESA Version 3.2,
this is 09. The value does not change during a session.

XCBRGRP CL16 Contains the name of the user’s resource group. This value can change
after a CONNECT command.

XCBROWSF F Reflects the number of rows retrieved into the data object. Initially
zero, this field changes value whenever more rows are retrieved. All
data retrieval is counted whether data is retrieved from the database or
imported from CICS temporary storage or transient data queues.

QMF does not reset this field, but the governor can. For example, if
your governor exit routine monitors the number of database rows
retrieved, you can set this field to zero on the function call for the end
of the command that began the data retrieval.

XCBSYST CL1 Identifies the current operating system. The value does not change
during a session, and is usually set to 5, indicating CICS. Possible
values are:
1 for CMS (VM/SP)

3 for TSO (MVS/XA)™ or MVS/ESA)™

4 for CMS (VM/XA or VM/ESA)
5 for CICS (VSE/ESA, MVS/ESA, or MVS/XA)

For information on why the other values here can be valid for QMF
VSE/ESA 6, see “Providing the Correct Profile for the User’s Operating
Environment” on page 88.

XCBTRACE CL1 Contains a value for the level of detail at which user exit activity is
traced. Possible values are 0 (least detail), 1, or 2 (most detail). Using
this value in a governor is discussed in “Providing Messages for
Canceled Activities” on page 228.

At the start of a session, the value of the TRACE field from the user’s
QMF profile is used here. After that, the value changes only when the
user changes the value of the TRACE option. For more information on
tracing, see “Using the QMF Trace Facility” on page 242.

XCBUSER CL8 This field is not used in CICS; it contains blanks.

XCBUSERS CL2048 Scratchpad area in which you can store results you want the governor
to save from one call to the next. It is initially set to blanks. QMF does
not change this value.

Figure 97 on page 225 shows the structure of the DXEXCBA control block.

Controlling QMF Resources Using a Governor Exit Routine

224 Installing and Managing QMF for VSE/ESA

*** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEXCBA * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* EXIT ROUTINES. * 00008000
* * 00009000
* STATUS: VERSION 7 RELEASE 1 LEVEL 0 * 00010000
* * 00011000
* INNER CONTROL BLOCKS: NONE * 00012000
* * 00013000
* CHANGE ACTIVITY: * 00014000
* * 00015000
* * 00016000
*** 00017000
* 00018000
DXEXCBA DSECT 00019000

DS 0D 00020000
XCBNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00021000

SPACE 00022000
XCBEXCTL DS XL190 -- EXIT CONTROL 00023000

ORG XCBEXCTL 00024000
XCBAUTH DS CL8 ----- AUTHORIZATION ID 00025000
XCBUSER DS CL8 ----- USER ID 00026000
XCBPLAN DS CL8 ----- PLAN ID 00027000

SPACE 00028000
XCBQMF DS CL10 ----- CURRENT VERSION/RELEASE 00029000

SPACE 00030000
XCBRELN DS CL2 ----- QMF RELEASE LEVEL 00031000

SPACE 00032000
XCBTRACE DS CL1 ----- QMF EXIT TRACE LEVEL 00033000
XCBTOFF EQU C'0' -------- NO TRACING 00034000
XCBTPART EQU C'1' -------- PARTIAL TRACING 00035000
XCBTFULL EQU C'2' -------- FULL TRACING 00036000

SPACE 00037000
XCBSYST DS CL1 ----- OPERATING SYSTEM 00038000
XCBSYSTX EQU C'3' -------- MVS/ESA or XA (TSO,APPC, native) 00039000
XCBSYSTV EQU C'4' -------- CMS/VM/ESA 00040000
XCBSYSTY EQU C'5' -------- CICS (MVS or VSE) 00041000

SPACE 00042000
XCBPAD10 DS CL4 ----- RESERVED FIELD 00043000

SPACE 00044000
XCBNLANG DS CL1 ----- CURRENT NATIONAL LANGUAGE 00045000

SPACE 00046000
XCBKPARM DS CL1 ----- SETTING OF K PARAMETER 00047000

Figure 97. The DXEXCBA control block (Part 1 of 3)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 225

XCBKPARN EQU C'0' -------- LATIN 00048000
XCBKPARY EQU C'1' -------- DBCS 00049000

SPACE 00050000
XCBDBMG DS CL1 ----- DATA BASE MANAGER 00051000
XCBDBMGS EQU C'1' -------- DB2 FOR VM/VSE 00052000
XCBDBMGD EQU C'2' -------- DB2 FOR OS/390 00053000
XCBDBMGW EQU C'3' -------- WORKSTATION DB2 00054000

SPACE 00055000
XCBEMODE DS CL1 ----- CURRENT EXECUTION MODE 00056000
XCBIACTV EQU C'1' -------- INTERACTIVE MODE 00057000
XCBBATCH EQU C'2' -------- BATCH MODE 00058000

SPACE 00059000
XCBAIACT DS CL1 ----- CURRENT INTERACT MODE 00060000
XCBAIACY EQU C'1' -------- INTERACTIVE EXECUTION 00061000
XCBAIACN EQU C'0' -------- NOT INTERACTIVE EXECUTION 00062000

SPACE 00063000
XCBINCI DS CL1 ----- CURRENT COMMAND INTERFACE STATE 00064000
XCBINCIY EQU C'1' -------- COMMAND INTERFACE ACTIVE 00065000
XCBINCIN EQU C'0' -------- COMMAND INTERFACE NOT ACTIVE 00066000

SPACE 00067000
XCBINPRC DS CL1 ----- PROCEDURE OR LIST CMD EXEC STATE 00068000
XCBPRCY EQU C'1' -------- RUNNING A PROCEDURE OR LIST CMD 00069000
XCBPRCN EQU C'0' -------- NOT RUNNING PROCEDURE OR LIST CMD 00070000

SPACE 00071000
XCBCVERB DS CL18 ----- CURRENT COMMAND VERB 00072000

SPACE 00073000
XCBCAN DS CL1 ----- CANCEL CURRENT COMMAND INDICATOR 00074000
XCBCANN EQU C'0' -------- NO CANCELLATION 00075000
XCBCANY EQU C'1' -------- CANCELLATION IN PROGRESS 00076000

SPACE 00077000
XCBACTIV DS CL1 ----- TYPE OF DATA BASE ACTIVITY 00078000
XCBOPEN EQU C'1' -------- OPEN 00079000
XCBFETCH EQU C'2' -------- FETCH 00080000
XCBPREP EQU C'3' -------- PREPARE 00081000
XCBDESCR EQU C'4' -------- DESCRIBE 00082000
XCBCLOSE EQU C'5' -------- CLOSE 00083000
XCBEXEC EQU C'6' -------- EXECUTE 00084000
XCBEXECI EQU C'7' -------- EXECUTE IMMEDIATE 00085000
XCBPAD20 DS CL9 ----- RESERVED FIELD 00086000

SPACE 00087000
XCBRGRP DS CL16 ----- RESOURCE GROUP NAME 00088000

00100000

Figure 97. The DXEXCBA control block (Part 2 of 3)

Controlling QMF Resources Using a Governor Exit Routine

226 Installing and Managing QMF for VSE/ESA

Storing Resource Control Information for the Duration of a QMF Session
You can use the information passed to the governor on the first call of a
session for subsequent calls to the governor routine. Although your governor
exit routine can issue an EXEC CICS GETMAIN command to obtain the
necessary storage to hold the resource control information, it might be more
efficient for you to use the 2048-byte scratchpad areas provided in the
DXEGOVA and DXEXCBA control blocks. These fields can contain any
information you need to store. The information persists from one call to the
governor to the next.

The IBM-supplied governor uses the code shown in Figure 98 on page 228 to
address GOVUSERS, the scratchpad area in the DXEGOVA control block. You

XCBPAD30 DS CL22 ----- RESERVED FIELD 00089000
SPACE 00090000

XCBCMDP DS A ----- POINTER TO ORIGINAL COMMAND STRING 00091000
* -------- WILL NOT CONTAIN PROMPT VALUES 00092000

SPACE 00093000
XCBCMDL DS F ----- ORIGINAL COMMAND STRING LENGTH 00094000

SPACE 00095000
XCBQCE DS F ----- QUERY COST ESTIMATE VALUE 00096000

SPACE 00097000
XCBROWSF DS F ----- DATA BASE ROWS FETCHED FROM SOURCE 00098000
* -------- SET BY QMF; EXIT MAY RESET 00099000

SPACE XCBQERR DS CL1 ----- QMF ERROR INDICATOR 00101000
XCBQERRN EQU C'0' -------- NO QMF ERROR DETECTED 00102000
XCBQERRY EQU C'1' -------- QMF ERROR DETECTED 00103000
XCBCLOC DS CL18 ----- CURRENT LOCATION NAME 00104000
XCBPAD40 DS CL41 ----- RESERVED FIELD 00105000

SPACE 00106000
XCBQRYP DS A ----- POINTER TO SQL QUERY 00107000
* -------- QUERY LENGTH IS FIRST HALFWORD 00108000

SPACE 00109000
XCBUCTL DS XL432 -- USER CONTROL AREA 00110000

ORG XCBUCTL 00111000
XCBERRET DS F ----- EXIT ERROR RETURN CODE 00112000
XCBMGTXT DS CL78 ----- EXIT ERROR MESSAGE TEXT 00113000
XCBMSGNO DS CL8 ----- ISPF MESSAGE NUMBER 00114000
XCBPANEL DS CL8 ----- ISPF MESSAGE HELP PANEL 00115000
XCBLOGM DS CL1 ----- LOG MESSAGE INDICATOR 00116000
XCBLOGMN EQU C'0' -------- QMF SHOULD NOT LOG MESSAGE 00117000
XCBLOGMY EQU C'1' -------- QMF SHOULD LOG MESSAGE 00118000
XCBREFR DS CL1 ----- REFRESH SCREEN INDICATOR 00119000
XCBREFRN EQU C'0' -------- QMF DOES NOT HAVE TO REFRESH SCR 00120000
XCBREFRY EQU C'1' -------- QMF SHOULD REFRESH SCREEN 00121000
XCBPAD50 DS CL28 ----- RESERVED FIELD 00122000

SPACE 00123000
XCBUSERS DS CL2048 -- USER SCRATCH PAD AREA 00124000
XCBPAD60 DS CL48 ----- RESERVED FIELD 00125000

Figure 97. The DXEXCBA control block (Part 3 of 3)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 227

can use similar code to address the XCBUSERS scratchpad area in the
DXEXCBA control block, by replacing GOVUSERS in Figure 98 with
XCBUSERS.

In Figure 98, WORK is the name of a DSECT, and WORKPTR is equated to
general register 4. The WORK DSECT contains the definition for the fields
that hold the information in the scratchpad areas.

Canceling User Activity
When users reach their resource limits, you can call the QMF cancellation
service to cancel user activity. For example, your governor exit routine might
cancel the following:
v A QMF session during a function call at the start of a QMF session
v The current command during a number of different function calls, and any

commands that start database activity

The code for canceling either of these activities is contained in the source
program DSQUnGV3. To have your governor call the QMF cancellation
service to cancel an activity, branch to the address that appears in the
DXEGOVA control block field named GOVCADDR. Figure 99 shows the
statements that establish addressability to the QMF cancellation service. Before
you use these statements to pass control from the governor exit routine to
QMF, ensure that Register 13 points to a save area for the governor so that
QMF can restore the state of the governor upon returning control.

The cancellation routine returns control to the point addressed by Register 14
(in this case, the command that follows the BALR command). Register 15
contains a return code of 0 if QMF accepted the request to cancel, and a
return code of 100 if the governor requested a cancel when QMF was inactive.

Providing Messages for Canceled Activities
You can use the QMF message service to display a message to users after
their commands are canceled, by using the XCBMGTXT and XCBERRET fields
of the DXEXCBA control block:
XCBMGTXT

Contains the message text.

LA WORKPTR,GOVUSERS
USING WORK,WORKPTR

Figure 98. Establishing addressability to the governor scratchpad area

L R15,GOVCADDR
BALR R14,R15

Figure 99. Calling the QMF cancellation service

Controlling QMF Resources Using a Governor Exit Routine

228 Installing and Managing QMF for VSE/ESA

XCBERRET
Contains the error return code.

Upon entry to the governor, XCBMGTXT contains blanks, and XCBERRET
contains binary zeros. The value of XCBERRET determines what message is
displayed on the screen:
v If you want to use the message OK, command canceled, leave the zero value

in XCBERRET.
v If you want to use the message A governor exit cancel occurred with

return code xxxxx, use a nonzero value for XCBERRET; this nonzero value
appears in the message in place of xxxxx.

If QMF initialization is canceled by the governor exit, the preceding messages
for XCBMGTXT and XCBERRET appear in the user’s trace data rather than on
the screen.

Set XCBLOGM to 1 to log a message in the user’s trace data for any function
call in your own governor exit routine. If the value of XCBERRET is nonzero,
the IBM-supplied governor logs cancellation messages in the user’s trace data
by setting the XCBLOGM field of the DXEXCBA control block to a value of 1.

The trace facility writes messages to CICS temporary storage queues or
transient data queues at a level of detail determined by the value of the
XCBTRACE field of the DXEXCBA control block. Use a value of zero for
XCBTRACE if you don’t want messages to be logged (although initialization
errors are logged unless you don’t allocate a trace data set). Use a value of 1
or 2 to get trace output. For additional details on using the QMF trace facility,
see “Using the QMF Trace Facility” on page 242.

The IBM-supplied governor does not log messages for termination function
calls.

Translating, Assembling, and Link-Editing Your Governor Exit Routine

Whether you’re modifying the IBM-supplied governor exit routine or writing
a routine of your own, you need to translate, assemble, and link-edit the
routine. Use the sample JCL shown in this section to help you.

Translating Your Governor Exit Program for CICS
Translate your program using the CICS translator for HLASM. When you
translate your program, CICS supplies the standard CICS prolog
(DFHEIENT), which establishes addressability and saves registers in the
standard CICS working storage area. The standard prolog also provides a
standard CICS epilog (DFHEIRET).

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 229

Assembling Your Governor Exit
Before you assemble your governor exit routine, establish a VSE library exit to
handle macro processing of E-decks. VSE Guide to System Functions provides a
description of how to establish this exit.

Use the HLASM compiler options shown in the following example to
assemble the routine. The LIBEXIT parameter includes CICS macro definitions
created by the CICS translation process.
'LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXIT(ORDER=EA)))'

In the source library search specification, specify the QMF governor exit
interface control blocks DXEXCBA.A and DXEGOVA.A, located in the QMF
sublibrary.

Link-Editing Your Governor Exit Routine
Create a new QMF governor exit phase named DSQUnV3, by including the
EXEC CICS interface control modules DFHEAI and DFHEAI0 (located in the
CICS sublibrary PRD1.BASE) and your governor exit program, DSQUnV3.
The EXEC CICS module DFHEAI must be the first module in your governor
exit phase, and the entry point must be the QMF module DSQUnV3.

The module DSQUnV3 must be executable in 31-bit addressing mode.
Remember to replace the n symbol with an NLID from Table 3 on page 10 that
corresponds to the national language you’re using.

Example JCL Statements
Figure 100 on page 231 shows the JCL used to install, translate, assemble, and
link-edit the IBM-supplied governor exit routine. This JCL is supplied in the
QMF sublibrary, under the name DSQ3GV3.Z. For more information on
installing your own program into CICS, see CICS System Definition Guide.

Controlling QMF Resources Using a Governor Exit Routine

230 Installing and Managing QMF for VSE/ESA

...* $$ JOB JNM=DSQ3GV3,DISP=D,CLASS=0
// JOB DSQ3GV3 Sample Job to Install Customer Written QMF Governor
* ---
* Install QMF Governor Exit (HLASM)
* ---
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block (syspch)
// SETPARM SIZE=ntrks *-- update number of tracks/blocks (syspch)
* ---
* Library search chain must contain the QMF, CICS and HLASM sublibrary
* ---
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* ---
* Step 1: Translate Governor exit program
* ---
// DLBL IJSYSPH,'ASM.TRANSLATION',0
// EXTENT SYSPCH,,1,0,&START.,&SIZE.
ASSGN SYSPCH,DISK,VOL=&VOLID.,SHR
// EXEC DFHEAP1$

:
:
Your governor program
:
:

/*
* ---
* Step 2: Assemble Governor exit program
* ---
CLOSE SYSPCH,00D
// DLBL IJSYSIN,'ASM.TRANSLATION',0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID.,SHR
// OPTION CATAL,DECK,SYM,ERRS

PHASE DSQUEGV3,*,SVA
INCLUDE DFHEAI
INCLUDE DFHEAI0

// EXEC ASMA90,SIZE=(ASMA90,50K), C
PARM='LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXITC
(ORDER=EA)))'

CLOSE SYSIPT,SYSRDR
/*

Figure 100. Example JCL for translating, assembling, and link-editing a governor exit (Part 1 of 2)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 14. Controlling QMF Resources Using a Governor Exit Routine 231

* ---
* Step 3: Link-edit Governor exit program
* ---
// EXEC LNKEDT,PARM='AMODE=31,RMODE=ANY'
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&
...* $$ EOJ

Figure 100. Example JCL for translating, assembling, and link-editing a governor exit (Part 2 of 2)

232 Installing and Managing QMF for VSE/ESA

Chapter 15. Troubleshooting and Problem Diagnosis

Use this chapter to help solve problems your users might have while using
QMF. “Troubleshooting Common Problems” on page 234 provides possible
solutions to common problems, while “Determining the Problem Using
Diagnosis Aids” on page 240 provides explanations of diagnosis aids that help
you solve more complex problems.

Quick Start

Use the steps in Table 32 to guide you in troubleshooting common errors and
diagnosing more complex problems. If you need more information on any
step, see the page listed at the right.

Table 32. Troubleshooting common errors and diagnosing problems

For information on this problem: See:

If you encounter GDDM or QMF errors while printing, it’s likely you did not
supply a printer name, defined the name or allocated the device incorrectly, or
encountered an I/O error.

Page 237

If you see warning messages on the QMF Home panel, QMF probably encountered
errors during initialization trying to read or load tables or routines.

Page 234

If the report display seems incoherent, you might need to convert raw binary data
(from the table that generates the report) to character data before displaying the
report.

Page 237

If you’re getting slow response, you likely need to either reset the data object or
increase your storage.

Page 238

If the problem is none of the above, determine which QMF or CICS diagnostic aids
can help you further diagnose the problem.

Page 240

To determine the problem using QMF message support, use the message number on
the help panel to determine more information about the error, such as the QMF
function that issued it.

Page 240

To determine the problem using the QMF trace facility, turn the trace on by setting
the DSQSDBUG program parameter, displaying the user’s profile and changing the
value of the TRACE option, or using the command SET PROFILE (TRACE=value. The
level of detail for the DSQSDBUG parameter is either ALL or NONE. You can also
specify a selected trace level just before running your trace. For example, you can
specify SET T=C2D2L2.

Page 242

To determine the problem using CICS diagnostic facilities, identify QMF in a CICS
transaction dump, using information in this book and in CICS Problem Determination
Guide.

Page 248

© Copyright IBM Corp. 1983, 2000 233

Table 32. Troubleshooting common errors and diagnosing problems (continued)

For information on this problem: See:

To determine the problem using reports from the Q.ERROR_LOG table, run a
SELECT query on the table, specifying the SQL authorization ID that experienced the
error and the approximate date and time of the error.

Page 250

To report a problem to IBM, use IBM’s ServiceLink facility (if you have it) or call
your IBM Support Center.

Page 251

Troubleshooting Common Problems

Use this section to help determine how to solve initialization errors, printing
errors, warning messages on the display, incoherent report displays, and slow
response times or other performance problems.

Handling Initialization Errors
If you cannot start QMF, there are several common fixes:
v Determine if all QMF users at your shop cannot get into QMF, and it is not

just one user.
v Check whether there are any messages on the terminal screen, and look up

the explanation for the DSQDEBUG file message in QMF Messages and
Codes.

v If nothing appears on the screen and nothing is in DSQDEBUG, go into
ISQL and issue a SELECT * FROM Q.ERROR_LOG command to see if any
entries appear during the time you were trying to access QMF.

v QMF initializes DB2 and GDDM during QMF initialization. If any ARI
(DB2) and ADM (GDDM) error messages appear, look them up in the
messages and codes book for the appropriate product.

v Check that the DB2 database is initialized and working properly. If all users
are getting a type of ADMxxxx message upon startup, check that the base
GDDM product is working correctly by running the GDDM IVPs.

Handling Warning Messages
If errors occur during QMF initialization (or after issuing the CONNECT
command), you might see this message on the QMF Home panel:
Warning messages have been generated

Errors that cause this kind of message do not stop QMF. They indicate that
QMF is having a problem loading or reading any of the following:
v Command synonym table
v Function key definitions table
v Resource control table (for governor exit routine)
v User edit exit routine
v Governor exit routine

Troubleshooting and Problem Diagnosis

234 Installing and Managing QMF for VSE/ESA

v Module level trace control

For command synonyms, function keys, and resource control tables, ensure
that:
v The user has the SQL SELECT privilege for that table. If this might be the

problem, issue an SQL GRANT statement according to instructions in “SQL
Privileges Required to Access Objects” on page 92.

v The table conforms to the proper structure:
– The structure for command synonym tables is shown in Figure 44 on

page 135
– The structure for function key tables is shown in Figure 56 on page 148
– The structure for the resource control table is shown in Table 28 on

page 207.
v All rows of the table contain valid data. If this might be the problem, see:

– Page135 for information on valid command synonym definitions
– Page149 for information key definitions
– Page207 for information on valid resource control

v All rows in the tables are unique.

More information about the error is logged in the user’s trace data. The trace
data is stored in a transient data queue named DSQD, unless you changed the
type or name using the DSQSDBQT or DSQSDBQN program parameter when
you started the QMF session.

To view the information in the trace data, first press the Help key to display a
panel containing the message number. Then browse or print the user’s trace
data according to the instructions in “Viewing QMF Trace Data” on page 247.
Search the trace data for the numeric portion of the message number to see
information about the error.

Handling GDDM Errors During Printing
If a GDDM error occurred during printing, QMF displays this message:

GDDM error using nnnnnnnn. See message help for details.

The character string nnnnnnnn in the message represents a GDDM printer
nickname. Press the Help key to display the help panel, which contains an
explanation of the error. This section discusses some common errors and what
you can do to fix them.

DSQ50623
GDDM error. ADM0307 E FILE 'ADMPRINT.REQU—QUEUE' NOT
FOUND. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, QMF can’t find a nickname definition
for the printer name the user specified. You need to set up a nickname

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 235

definition for the printer name, or supply one that is already defined.
See “Choosing a GDDM Nickname for Your Printer” on page 116 for
additional information.

DSQ50623
GDDM error. ADM0314 E UNABLE TO OPEN 'MYPRINT'. DD OR
DLBL STATEMENT MISSING. Severity 8. Function DSOPEN. ***
CMD=PRINT

If you see a message like this, QMF was able to find a nickname but
no DLBL statement that links the nickname with a physical device.
You need to provide DLBL information in the CICS startup JCL.
Sample JCL is shown in Figure 39 on page 122.

DSQ50623
GDDM error. ADM0482 E DEVICE NAME LIST '31E' IS INVALID
FOR FAMILY 1. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, your nickname definition is incorrect.
The device token you supplied is not a valid token for the type of
GDDM printer for which you created the nickname. See “Choosing a
GDDM Nickname for Your Printer” on page 116 for information on
how to create an ADMMNICK specification for a GDDM printer. For
a list of valid device tokens for each family of GDDM printers, see
GDDM System Customization and Administration for 3.1 or GDDM
Installation and System Management for VSE for 2.3.

DSQ50631
GDDM error. ADM0904 E ALPHANUMERIC FIELDS ARE NOT
SUPPORTED FOR THIS DEVICE. Severity 8. Function ASDFLD.
*** CMD=PRINT

If you see a message like this, the output the user is trying to print is
not valid for the type of printer defined by the GDDM nickname.
Certain types of output, such as QMF charts, are restricted to specific
families of GDDM printers. For more information on what families of
printers handle your type of output, see GDDM System Customization
and Administration for 3.1 or GDDM Installation and System Management
for VSE for 2.3.

DSQ90551
GDDM error. ADM0055 E SPINIT, AT '82F810C2'X ADM0050 E
DEFAULTS ERROR. INVALID SYNTAX OR VALUE AT
'...JIP,ADMMNICK'

If you see a message like this when starting QMF, you made a syntax
error somewhere in the ADMMNICK specification for the nickname.
See “Choosing a GDDM Nickname for Your Printer” on page 116 for
examples of syntax for the ADMMNICK specification. After you fix
the syntax error, reload the ADMADFC GDDM defaults module.

Troubleshooting and Problem Diagnosis

236 Installing and Managing QMF for VSE/ESA

DSQ50633
GDDM error ADM0327 E 'TD WRITEQ' ERROR CODE '08000000'X,
ON 'SYSP'. Severity 8. Function FSFRCE. *** CMD=PRINT

A message like this indicates that the temporary storage or transient
data queue to which QMF is attempting to print is closed. Use the
CICS CEMT transaction to open the queue, specifying the file
identifier SYSP.

Handling QMF Errors During Printing
The following message is a QMF error message that indicates that the object
the user is trying to print needs a printer name, and QMF can’t find a printer
name in the user’s profile or a default name.
GDDM printer nickname is required for PRINTER

Instruct users who see this message to press the Enter key to display a
prompt panel on which they can enter a printer name and other print
parameters. Update the user’s profile with a valid printer nickname so QMF
does not display this message again. “Updating User Profiles” on page 89
explains how to update the user’s profile with the nickname.

“Using GDDM services to Handle Printing” on page 116 explains how to
create a GDDM nickname for your printer.

Handling Display Errors
If a user who attempts to display a report finds that the report has several
display control characters in it, data in one or more of the table columns from
which the report is derived might be binary (rather than character) data. QMF
provides three ways of handling these control characters:
v Using the HEX function
v Using the QMF-provided hex and bit edit codes in the QMF form
v Handling binary data through user-written edit routines

Using the HEX Function
The HEX function is an SQL scalar function that converts its argument to a
string of legitimate characters. The resulting string is the value of the
argument in hexadecimal notation. For example, the function argument ABC
produces the string C1C2C3 in hexadecimal notation.

Instruct users to use the word HEX in their queries in front of any columns
that might contain binary data. For example, the following statement converts
binary data in column A of the table SMITH.TABLEA.
SELECT HEX(A) FROM SMITH.TABLEA

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 237

Using QMF-Provided Hex and Bit Edit Codes
Two edit codes (and their wrapping versions) for character data allow QMF to
display binary data in character columns: X and XW (for hex display), B and
BW (for bit display). For more information on using these edit codes, see
QMF Reference.

Handling Binary Data with User-Written Edit Routines
Using the HEX function or the hex and bit edit codes can be a good way to
handle binary data. For example, assume that each bit represents a data item
and displays in natural language form of the value. If the fifth bit represents
gender rather than hex values, a user edit code routine can cause a value of
Male or Female to be displayed.

You can create your own edit code and write an edit exit routine in either VS
COBOL II or High-Level Assembler to convert the binary data to the character
string you want. You might consider predefining some QMF forms that use
the new edit codes you create. You can then make the forms available to your
users. See “Chapter 13. Creating Your Own Edit Codes for QMF Forms” on
page 159 for more information.

Solving Slow Performance Problems
If your users notice slow performance in running queries or formatting
reports, the problem can be that QMF is attempting to retrieve all the
database rows requested during one command before starting another. It’s
also possible that the user does not have enough virtual storage to retrieve all
the requested rows. This section explains what you can do to solve each kind
of problem.

Resetting the Data Object to Improve Performance
Suppose that, after viewing parts of a report, a user attempts to run an
UPDATE query and waits an unusually long time for the query to return
results. Because QMF finishes one database task before starting another, QMF
might be attempting to complete the report (retrieve the rest of the rows into
the DATA object) before running the UPDATE query. These commands cause
QMF to complete the report before the command can run:

CONNECT
DISPLAY tablename (from the

database)
DRAW tablename
EDIT TABLE
ERASE
EXPORT (from the database)
IMPORT (to the database)
LIST
PRINT (from the database)

REFRESH (of a database object
list)

RESET QUERY (with
LANGUAGE=PROMPTED and modifying
query)

RUN (an object in the database)
RUN QUERY
SAVE (data, form, procedure, or
profile)

Troubleshooting and Problem Diagnosis

238 Installing and Managing QMF for VSE/ESA

Depending on the value specified for the global variable DSQEC_RESET_RPT,
you might need to instruct users to issue a RESET DATA command as soon as
they finish viewing the necessary parts of the report in order to prevent
performance problems caused by trying to run these commands before QMF
completes the report. See the QMF Reference for more information.

A user who attempts to execute certain commands during the insufficient
storage condition receives an ″incomplete DATA″ prompt. This is caused by
any command that forces QMF to ″complete″ the current DATA object. (A
DATA object is complete when all its rows have been fetched by AMF and
none have been discarded without copying to the DSQSPILL file.) To resolve
this problem, the prompt offers the user two choices: either reset the DATA
object or withdraw the command.

If QMF encounters a system error while the insufficient storage condition is in
effect, it might reset the user’s current DATA object.

Increasing the User’s Report Storage
Users might also experience slow performance if they do not have enough
virtual storage to accommodate a large report. For example, if you set the
DSQSBSTG parameter at a very low value and the user runs a query that
retrieves hundreds of thousands of rows, QMF retrieves the data in small
amounts. The user might find performance slow for formatting complex
reports or scrolling the report.

To maximize report performance, ensure you specify an adequate amount of
GETVIS storage for the user, using the DSQSBSTG parameter. This parameter
is discussed in “Adjusting GETVIS Storage Used for Report Data
(DSQSBSTG)” on page 56. To provide the best performance, use a value that
accommodates the largest report the user is likely to have.

You can also define a spill file for the user, as discussed in “Acquiring Extra
Temporary Storage (DSQSPILL)” on page 58. However, using primarily virtual
storage for QMF operations provides better performance. Users who rely on a
spill file and have little virtual storage might notice slow performance for
large reports. Because a spill file can hold a maximum of 32 767 rows of size
4K each, setting DSQSBSTG higher ensures that QMF completes the report.

Increasing the Size of the CICS Partition
If a QMF transaction runs out of virtual storage in the CICS partition, the
transaction might time out waiting for storage to become available. Ensure
you size the CICS partition according to the recommended values in “QMF
Storage Requirements” on page 4. These recommendations are in addition to
any storage required by additional products installed.

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 239

Determining the Problem Using Diagnosis Aids

If you aren’t able to solve your problem using the troubleshooting techniques
discussed in “Troubleshooting Common Problems” on page 234, use this
section to find out which QMF and CICS diagnosis aids can help you
determine the problem.

Choosing the Right Diagnosis Aid for the Symptoms
Use Table 33 to help you determine which diagnosis aids you need for the
symptoms you’re experiencing. The diagnosis aids are listed across the top of
the table, and symptoms are listed on the side. For example, if you experience
a problem while using a governor exit routine, you can use the QMF trace
facility, CICS status information, and QMF messages and help to determine
the problem.

Table 33. Types of problems and the best diagnosis aids to use for them

QMF
Msg. No.

QMF
Trace

CICS
Trans-
action
Dump

CICS
Status
Info.

Help
Message

Non-
QMF

Msg. No.

Error
Log

Output

Abend x x x

Callable interface x x x x x

Display panel x x x x x

Error messages x x x x x

Termination x x x x x x

Governor exit routine x x x x x x

Incorrect output x x x x x

Initialization x x x x x x

Installation x x x x

Loop x x x x

Noninteractive session x x x x x

Performance x x x x x

Printing x x x x x x

QMF command x x x x x

SQL error codes x x x x x

User edit routine x x x x x

Diagnosing Your Problem Using QMF Message Support
QMF issues various types of messages during a user’s session, indicating
either that QMF successfully completed the user’s request or that an error
occurred. All QMF messages have a message number of the form DSQnnnnn,

Troubleshooting and Problem Diagnosis

240 Installing and Managing QMF for VSE/ESA

where nnnnn is a 5-digit number. These numbers are listed in QMF Messages
and Codes, which provides more information about how you can solve the
problem.

To obtain the message number and more information about the error, press
the Help key to display a message help panel. Each help panel has a panel
number associated with it. If you report the problem to IBM, your IBM
Support Center representative might need this number. To make sure the
number displays, set the global variable DSQDC_SHOW_PANID to 1:
SET GLOBAL (DSQDC_SHOW_PANID=1

Determining which QMF Function Issued an Error Message
You can use the QMF message number, which begins with DSQ, to determine
which QMF component issued the message. This information can help you
isolate the problem to a specific QMF function.

The QMF functions and their associated ranges of message numbers are
shown in Table 34. The trace IDs are the same IDs you use to trace QMF
activity for each function, as discussed in “Getting the Right Level of Detail in
Your Trace Output” on page 244.

Table 34. QMF functions and the message numbers they issue

Function Trace ID Message Numbers

Database Services I DSQ10000 - DSQ19999 DSQ30000 -
DSQ39999

Dialog Command
Processing

D DSQ20000 - DSQ29999

Display Services E DSQ40000 - DSQ49999

Common Services and
Systems Interface

C DSQ50000 - DSQ59999

Report Formatting F DSQ60000 - DSQ69999

Charting P DSQ70000 - DSQ79999

Full-screen Windows G DSQ80000 - DSQ89999

In addition to the message numbers in Table 34, the following ranges of
message numbers might be generated during QMF initialization:

DSQI0001 - DSQI0100
DSQ90000 - DSQ99999

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 241

Handling System Error Messages
A system error might indicate a system problem, a resource problem, or an
unexpected condition. These might be problems within QMF, the database
manager, or possibly some other software component. System errors are
indicated by the message:
Sorry, a system error occurred. Your command may not have been
executed.

You can press the Help key to display more information about the message,
or see QMF Messages and Codes.

All uncommitted changes to the database are rolled back when a system
problem stops QMF. Error information about the system problem is written to
the trace data, which is the only source of information for a system problem
that stops QMF. See “Viewing QMF Trace Data” on page 247 for instructions
on viewing the trace data. The Q.ERROR_LOG table contains information
about a system error only if the error occurred while the database was still
running.

Handling SQL Return Codes
In some cases, the message QMF displays might map to an SQL return code.
For example, suppose a user receives QMF message DSQ12002. This message
maps to the SQL return code -702, which has the text:
NO AVAILABLE SPACE IN THE DBSPACE NUMBER 'dbspace_number' FOR INDEXES.

dbspace_number in the message is a placeholder, called a token, for a real
database value. The token is located in the SQL communications area
(SQLCA) that QMF receives from DB2.

To find the value of the token:
1. Run a QMF I2 or ALL trace using the procedures described in “Using the

QMF Trace Facility”. Keep the trace data online so you can search it easily.
2. Convert the SQL return code to a hexadecimal number. For example, the

SQL return code -702 is FFFFFD42 in hexadecimal.
3. Locate the hexadecimal number in the trace data. It is in a trace block

called SQLCA.
4. Browse the right side of the trace (the eye catcher field) to gather the

tokens. See DB2 Server for VSE & VM SQL Reference for SQLCA mappings
of the tokens.

5. When you find the right token, see DB2 Server for VSE Message and Codes
to solve the problem that caused the SQL return code.

Using the QMF Trace Facility
QMF provides a facility that traces QMF activity during a user’s session. Trace
output from the facility can help you analyze errors such as incorrect or

Troubleshooting and Problem Diagnosis

242 Installing and Managing QMF for VSE/ESA

missing output, performance problems, or loops. This section shows you how
to allocate storage for the trace output, how to start the facility and determine
the level of tracing detail, and how to view the trace data for diagnosis.

Allocating Storage for Trace Data
Choose either a CICS temporary storage or transient data queue to store trace
data. If the trace data for the user’s session does not exceed 32 767 rows, you
can use CICS temporary storage or intrapartition transient data queues to
contain it. If the trace data exceeds 32 767 rows, define in the CICS DCT an
extrapartition transient data queue that routes the output to a VSE file or
SYSLST.

Temporary storage queues can be browsed online; however, you need to stop
CICS to view the output in a transient data queue. See “Viewing QMF Trace
Data” on page 247 for more information.

To define a transient data queue, update the CICS DCT with a 1-byte to 7-byte
entry that points to the location that receives your trace data.

Figure 101 shows the definitions for the default queue, a transient data queue
named DSQD that is allocated to a SYSLST. The default location is
DSQDBUG.

If you want to use a temporary storage queue for the trace data, you can use
the DSQSDBQT parameter when you start QMF. If you want to name the
queue something other than DSQD, you can use the DSQSDBQN parameter.
Both parameters are explained in “Tracing QMF Activity at the Start of a
Session” on page 64.

The trace data queue can be shared by all the users in the same CICS
partition, because QMF issues CICS ENQ and DEQ commands around single
trace entries. Because tracing is an aspect of a user’s profile, you can also set

DFHDCT TYPE=EXTRA, QUEUE FOR QMF EXTRA PROCESSING
DESTID=DSQD,
RSL=PUBLIC,
DSCNAME=DSQDBUG

DFHDCT TYPE=SDSCI, DCT ENTRY FOR DEBUG OF QMF
DSCNAME=DSQDBUG,
RECFORM=VARUNB,
BLKSIZE=136,
TYPEFLE=OUTPUT,
CTLCHR=ASA,
DEVADDR=SYSLST,
DEVICE=1403

Figure 101. Describing a SYSLST to contain trace data

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 243

the level of trace detail individually for each user, using the SET PROFILE
command with the TRACE keyword. Records in the trace data identify
individual terminal IDs for different QMF sessions on the header line.

Starting the Trace Facility
You can start the trace facility when you start QMF, from a QMF session, or
by using CONNECT authority. To start the trace facility do one of the
following:
v Specify a value of ALL on the DSQSDBUG program parameter when you

start QMF, as explained in “Setting the Level of Trace Detail (DSQSDBUG)”
on page 65. This value traces QMF activity at the highest level of detail,
including program failures that might occur during QMF initialization.
See page 66 for how to specify a type and name for the queue to hold the
trace output. You need to use a transient data queue to hold the output if it
exceeds 32 767 rows.

v Instruct the user to enter the following QMF command:
SET PROFILE (T=value

where value is ALL or a string that indicates QMF functions and their
levels of detail in the trace output. The levels of detail are explained in
“Getting the Right Level of Detail in Your Trace Output”.

v Use SQL UPDATE statements for the TRACE field in the user’s profile,
which has the same effect as the previous step. Instruct the user to
reconnect to the database to initialize the new values. For example, user
JONES with password MYPW can enter:
CONNECT JONES (PA=MYPW

Users who do not have DB2 CONNECT authority can end the current QMF
session and begin another to initialize the values.

Getting the Right Level of Detail in Your Trace Output
If you want to trace all QMF functions at the most detailed level, use a value
of ALL for the trace. When you start QMF, use a transient data queue (the
default) to hold the trace output if it might exceed 32 767 rows. Specifying the
type and name of the queue is explained in “Specifying the Type of CICS
Storage for Trace Data (DSQSDBQT)” on page 66.

If you want to trace individual QMF functions, update the TRACE column of
Q.PROFILES with a character string that has letters for the QMF functions
you want to trace and numbers for the level of detail you want in the trace
data for each function. You need to pair each letter with a number:

The value 1 traces a function at a medium level of detail.
The value 2 traces a function at the highest level of detail.

Troubleshooting and Problem Diagnosis

244 Installing and Managing QMF for VSE/ESA

Only the functions you specify in the character string are traced. The letter for
each QMF function is shown in the following list.

Trace ID
QMF Function

A Application Support Services

C Common Services and Systems Interface

D Dialog Command Processing

E Display services for parts of QMF such as Prompted Query, QBE,
Table Editor, global variable lists, and database object list

F Report formatting

G QBE, Prompted Query, and table editor full-screen windows

I Database services

L Message and command logging

P Charting (Interactive Chart Utility)

R Storage management functions

U User exits, such as a governor exit routine

For example, to trace message and command logging at the most detailed
level, application support services at a medium level, and common services
and systems interfaces at the most detailed level, use this command:
SET PROFILE (T=L2A1C2

Use the L1 and L2 trace records to precisely record user activities during a
QMF session. A value of L1 writes records for all messages issued by QMF; L2
writes all the L1 records, plus additional records describing the execution of
QMF commands. Use the L2 trace code to log each command a user issued
and how QMF responded to that command. Figure 102 on page 246 shows an
example of a RUN QUERY command that failed because the user named
columns that were not in the table.

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 245

QMF messages have variables for parts of the message that change, such as a
table or column name. You can use the trace data to help a user decipher a
message that includes variables. For example, the message shown in
Figure 102 appears in QMF Messages and Codes as:
Column &01 is not in table &02.

The bottom half of Figure 102 shows that the value for &01 in the message is
DATE and that the value for &02 is STAFF. Substitute these values into the
message to help a user solve the problem.

These variables might also appear in the definition of the help panels
associated with the error message. Use the variable values from the trace data
together with the help command to reconstruct the message help panel.

Tracing at the Module Level

Important: Perform a trace at the module level only under IBM Service Level
2 guidance.

You can turn on a trace for certain modules using the SET PROFILE command
and the module DSQUTRAC. For example, you can trace the formatter buffer
manager without tracing the line manager or the summary manager. The
values for module-level tracing are:

The value 3 provides a detailed trace for specific programs in a
component, and traces entry and exit for all other programs in the
component.
The value 4 traces a module only.

--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
COMMAND TEXT:
RUN QUERY
--
--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
MESSAGE NUMBER: DSQ12405
MESSAGE TEXT:
Column name DATE is not in table STAFF.
&O1: DATE
&O2: STAFF
&O9: -205
--

Figure 102. Using the L2 trace code to trace a user’s commands and messages

Troubleshooting and Problem Diagnosis

246 Installing and Managing QMF for VSE/ESA

To create a module-level trace, list the modules you want traced in the
DSQUTRACE module. Then assemble and link-edit the module. After the
module has been created, you must make it available as a phase. You can then
run the following command:

SET PROFILE (TRACE F4

Viewing QMF Trace Data
Depending on the number of users and the levels of detail at which their
sessions are traced, the trace data might be very long. Browse the data before
you decide to print it.

Viewing Data in a Temporary Storage Queue: You can use the CICS
transaction CEBR to browse a temporary storage queue. For example, to
browse a queue named MYTRACE, enter the following from a cleared CICS
screen:
CEBR MYTRACE

If the trace output is less than 32 767 rows, we recommend using temporary
storage queues to hold the trace data. See “Specifying the Type of CICS
Storage for Trace Data (DSQSDBQT)” on page 66 for information on how to
specify this type of queue when you start QMF.

If the output is more than 32 767 rows, you must use a transient data queue
for the trace data.

Viewing Data in a Transient Data Queue: The default queue for trace data
is a transient data queue named DSQD, defined as shown in Figure 101 on
page 243. Trace output routed to this queue goes to the SYSLST, and can be
found in the list output of your CICS job. To transfer the data from the CICS
LST queue to the SYSLST so you can view it, you need to stop CICS. Then
you can browse or print the SYSLST using VSE POWER, ICCF, or another
facility available to you.

If you want to view the data without bringing down CICS, consider
redefining the transient data queue in the DCT so that the output goes to a
file.

Determining the QMF Service Level
The service level information is displayed:
v When T=ALL is specified on invocation (or from Q.PROFILES)
v When SET (TRACE ALL was specified as a command

You can determine the QMF service level using the following procedure:
1. Enter the SET PROFILE command (T=ALL.
2. Enter the SET PROFILE command (T=NONE.

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 247

3. Exit QMF.
4. Look at the DSQDEBUG file.

The resulting trace shows the program with its version, date, and time. The
trace can also show an Authorized Program Analysis Report (APAR) number
if the module has a Program Temporary Fix (PTF) applied, as in the following
trace example:
** DSQFQWRM: ENTERED FROM DSQFMCTL ***

V3R3.00 96/06/30 12:00 PNxxxxx

APAR PNxxxxx is the most recent APAR for which service was applied.

Turning off the Trace Facility
After you capture diagnostic details using the trace facility, you might want to
turn tracing off, because the storage queue for the trace data can fill up very
quickly.

To turn tracing off, issue the following command from within QMF:
SET PROFILE (T=NONE

If you leave tracing on until you end the QMF session, when you start QMF
the next time, the tracing is set to NONE by default. The program parameter
DSQSDBUG, explained in “Setting the Level of Trace Detail (DSQSDBUG)” on
page 65, controls this tracing when QMF is started.

Using CICS Diagnostic Facilities
To diagnose an abend in QMF, you might need to use procedures in CICS
Problem Determination Guide. Because another program might have caused
QMF to abend, these procedures can help you find much of the information
you need in a CICS dump of the transaction. A transaction dump shows
detailed activity of the programs that were running in the CICS partition at
the time of the abend.

The program that caused the abend might be QMF or it might be another
program. You can use the CICS Execution Diagnostic Facility (CEDF) to help
you diagnose a QMF abend if the QMF diagnostic facilities explained in this
chapter do not contain enough information about the cause of the error.

Identifying QMF in CICS Diagnostic Output
If you use CICS diagnostic facilities to help you diagnose an abend in QMF,
the following information might help you identify QMF programs in CICS
output.
v QMF program names begin with the prefix DSQ.
v QMF is an assembler-language program and issues standard assembler

calls, not CICS LINK statements.

Troubleshooting and Problem Diagnosis

248 Installing and Managing QMF for VSE/ESA

v QMF issues standard EXEC CICS statements for all system services when
running in CICS.

v QMF uses an internal call interface to the GDDM product.
v QMF issues standard EXEC SQL statements to the database.
v QMF does not issue any EXEC CICS ABEND commands.

Most QMF programs contain a stamp that you can use to help identify them
in diagnostic output. Figure 103 shows an example.

Defining the Display for a CICS Abend Message
In some cases, such as if QMF abends or when the operator cancels the
transaction, CICS sends a message to the user’s terminal indicating the
abnormal ending. Because QMF is a full-screen application that uses GDDM
to provide display services, you need to define to CICS how you want the
abend message should be displayed.

Using the CICS Resource Definition Online (RDO) facility, set diagnostic
display attributes of the CICS error message in the CICS TYPETERM
definition. A TYPETERM is a partial terminal definition that makes it easy for
you to define many terminal displays with one definition. Figure 104 on
page 250 shows an example of diagnostic display attributes you might use.

The definition shown in Figure 104 on page 250 displays the message at the
bottom of the screen, beneath the QMF message line. The message appears in
red, underlined, and with a higher intensity than the rest of the screen

Figure 103. Example of a stamp that identifies a QMF program

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 249

display. This definition is useful if you defined the QMF transaction to time
out when the user does not enter input for a certain amount of time. In this
type of transaction timeout, the QMF display remains on the screen, so the
message is readable only at the bottom of the screen.

Using Error Log Reports from the Q.ERROR_LOG Table
The Q.ERROR_LOG table is a QMF control table that logs information about
resource problems and problems caused by possible software defects. The
structure of the table is shown in Table 35.

Table 35. Structure of the Q.ERROR_LOG table

Column
name

Data type Length
(bytes)

Nulls
allowed?

Function/values

DATESTAMP CHAR 8 No The date on which the error occurred. It is in
the form yyyymmdd.

TIMESTAMP CHAR 5 No The time at which the error occurred. It is in
the form hh:mm, where hh is the hour and
mm is the minute.

USER ID CHAR 8 No CICS terminal ID of the user who experienced
the error.

MSG_NO CHAR 8 No The QMF message number that was issued
with the error.

MSGTEXT VARCHAR 254 No Text of the message. SQL errors might have
data from the SQLCA in this column.

A long error message might need more than one row of the table to represent
it. If it does, the values of every column except the MSGTEXT column repeat.
Within the MSGTEXT column, each row carries a fragment of the message. A
fragment begins with 1), 2), 3), and so on, to indicate its relative position in
the message.

To help diagnose problems, you can query the Q.ERROR_LOG table for
information about errors. You need to know the terminal ID of the user who

DIAGNOSTIC DISPLAY
ERRLastline : Yes No | Yes
ERRIntensify : Yes No | Yes
ERRColor : Red NO | Blue | Red | Pink | Green

| Turquoise | Yellow | NEutral
ERRHilight : Underline No | Blink | Reverse | Underline

Figure 104. TYPETERM specification for CICS diagnostic display

Troubleshooting and Problem Diagnosis

250 Installing and Managing QMF for VSE/ESA

experienced the problem and the approximate time the problem occurred.
Figure 105 shows the format of the query.

Be sure to use valid formats for the date and times you supply. These formats
are shown in Table 35 on page 250.

Reporting a Problem to IBM

Before you report a problem to IBM, check IBM’s Software Support Facility
(SSF) to see if the problem has already been reported. For many reported
problems, IBM support center representatives prepare an Authorized Program
Analysis Report (APAR), which includes useful information about how to
solve the problem.

If you have access to the SSF through ServiceLink or some other facility, read
“Using ServiceLink to Search for Previously Reported Problems” for
instructions on how to develop a string of search keywords that help you find
the problem. If you do not have access to ServiceLink, you can go directly to
“Working with Your IBM Support Center” on page 254.

Using ServiceLink to Search for Previously Reported Problems
Search the SSF by constructing a string of search words that describe your
problem. Every string of search words for QMF VSE/ESA 6

begins with the component ID 566872101 and a CLC number (shown in
Table 36) that matches the QMF national language environment in which you
experienced the problem.

Table 36. CLC numbers for QMF base product and NLFs

NLF ID

Brazilian Portuguese 1K3

English 1JT

French 1JY

German 1JZ

Italian 1K0

Japanese 1K1

SELECT TIMESTAMP, MSG_NO, MSGTEXT
FROM Q.ERROR_LOG
WHERE USERID = 'terminal_id'

AND DATESTAMP = 'date' __yyyymmdd
AND TIMESTAMP BETWEEN 'time1' AND 'time2'
ORDER BY TIMESTAMP, MSG_NO, MSGTEXT

Figure 105. Querying the error log for problem information

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 251

Table 36. CLC numbers for QMF base product and NLFs (continued)

NLF ID

Korean 1K2

Simplified Chinese 1JW

Spanish 1K4

Swiss French 1K6

Swiss German 1K7

Uppercase English 1JU

The flowchart in Figure 106 on page 253 shows how to develop your search
words as you determine each characteristic of the problem.

Troubleshooting and Problem Diagnosis

252 Installing and Managing QMF for VSE/ESA

For example, if the problem you are searching for is an abend type of 0C4
that occurred in the DSQFDTBL control section (CSECT) when a user was
running an English QMF session, use this search phrase:
566872101 09 ABEND0C4 DSQFDTBL

Figure 106. Chart of keyword types. Move from the top to the bottom of this chart to determine your keywords.

Troubleshooting and Problem Diagnosis

Chapter 15. Troubleshooting and Problem Diagnosis 253

To find the CSECT name, look in the section of the trace output that has the
heading ABEND CSECT NAME. The CSECT name is set off by asterisks. See
“Using the QMF Trace Facility” on page 242 for more information on how to
use the QMF trace facility.

For more information on searching the SSF for known QMF problems, see
ServiceLink User’s Guide.

Working with Your IBM Support Center
If you’re having trouble diagnosing the problem and have used the diagnosis
aids explained in this chapter, contact your IBM Support Center to report the
problem.

To help diagnose the problem, your support center representative might need
more information about the problem. For example, if you call to report an
abend in QMF, you might need to supply some information about CSECTs of
the program that you suspect might have caused the error. In many cases, you
can find this type of information using the trace facility, which is explained in
“Using the QMF Trace Facility” on page 242. The IBM representative might
also need documentation produced by other diagnosis aids shown in Table 33
on page 240. This documentation can help the representative recreate the
problem.

Troubleshooting and Problem Diagnosis

254 Installing and Managing QMF for VSE/ESA

Part 3. Appendixes

© Copyright IBM Corp. 1983, 2000 255

256 Installing and Managing QMF for VSE/ESA

Appendix A. QMF for VSE/ESA Version 7 Product
Limitations

Some functions provided by QMF are dependent on underlying system
services and other program products that are available in VM/CMS and
MVS/TSO, but not in CICS/VSE. ISPF is not available in CICS. REXX is not
available in QMF CICS, even though REXX is available in VSE/ESA 1.3. The
following QMF functions or programs are not supported in QMF for
VSE/ESA Version 7.

These functions depend on ISPF (as well as other services in some cases):
ISPF command
DPRE applications
BATCH application
EXTRACT application
QMF command interface
LAYOUT command synonym

These functions depend on REXX (as well as other services in some cases):
Report calculations
Conditional formatting
Column definition
Procedures with logic

Other products are not available in CICS:
Repository Manager
Document Interface

The EDIT PROC and EDIT QUERY commands are not available in CICS.
However, it is possible to edit procedures and queries using the DISPLAY
command with QMF. Other products are not available in QMF for VSE/ESA
Version 7:
v CMS command (VM only)
v TSO command (TSO only)
v CONNECT command (when issued to connect to another database)
v Remote unit of work and distributed unit of work

DB2 on VSE is a server, not a requester. It can be accessed by other
application requesters where QMF is installed, but QMF users on VSE
cannot connect to another application server with the QMF CONNECT
command.

v QMF client/server components

© Copyright IBM Corp. 1983, 2000 257

The function of QMF on VSE is synchronized with that of QMF on other
platforms. As a result, some functions that exist in QMF Version 1 are not
supported in QMF for VSE/ESA Version 7:
v Command canceling.
v IMPORT ISQL queries.
v Table plot utility. To create charts, see the information on charts in Using

QMF.
v QMF VSE V1 defaults module for starting QMF.
v VSE/POWER support (use methods supplied by CICS or GDDM to print

your objects).
v QMF-supplied views.
v QMF sample queries from QMF VSE V1. QMF for VSE/ESA Version 7 does

not supply sample objects except for tables. (Sample queries are not
discussed in the documentation.)

It is not abnormal that, under some circumstances, a QMF Version 1 report
looks slightly different in Version 7. You can make it look th e same as it did
in Version 1 with a minor adjustment on the FORM.OPTIONS panel.

QMF for VSE/ESA Version 7 Product Limitations

258 Installing and Managing QMF for VSE/ESA

Appendix B. Migrating from QMF VSE V1 to Version 7

If you are migrating to QMF for VSE/ESA Version 7 from QMF VSE V1, you
can use a migration utility to migrate Version 1 queries, forms, procedures,
and ISQL queries. IBM provides the migration utility exclusively for the
purpose of migrating objects to QMF for VSE/ESA Version 7. You don’t need
to customize any part of QMF to use the migration utility, because the utility
is installed during QMF installation. The utility is not provided with QMF for
any other versions or in any other operating environments.

After you successfully migrate Version 1 objects, you might consider deleting
Version 1 from the database using the example JCL shown in this chapter.

Quick Start

Use the steps in Table 37 to help you migrate your QMF VSE V1 objects to
QMF for VSE/ESA Version 7. To decide which Version 1 objects you want to
migrate, you can use QMF for VSE/ESA Version 7 to view QMF objects in the
Q.INTERNAL_DATA table, and ISQL queries in the SQLDBA.“STORED
QUERIES” table.

If you need more information on any step, see the page listed at the right of
the table.

Table 37. Migrating QMF VSE V1 objects to QMF for VSE/ESA Version 7

To do this task: See:

1. Migrate QMF queries, forms, and procedures using the migration utility
provided by IBM. Start the migration utility using the transaction ID QMFM, and
specify parameters that tell QMF which objects to migrate.

Page 260

1. View the messages that resulted from the migration by entering CEBR msglog
from a cleared CICS screen, where msglog is the value you specified for the
MSGLOG parameter during the migration.

Page 265

1. Migrate Version 1 user profiles by inserting values from the Version 1 Q.USERS
table into the Version 7 Q.PROFILES table. Use an SQL INSERT statement.

Page 265

1. Delete Version 1 from the VSE sublibrary after successfully migrating objects,
using the VSE librarian program.

Page 266

1. Delete Version 1 information from the VSE history file, using JCL statements.
Examples are provided in this chapter.

Page 267

© Copyright IBM Corp. 1983, 2000 259

Table 37. Migrating QMF VSE V1 objects to QMF for VSE/ESA Version 7 (continued)

To do this task: See:

1. Delete Version 1 objects from the database, if necessary. Use the DSQ3BDEL.Z
job, shipped with QMF, to delete the objects.

Page 268

1. Delete Version 1 QMF program definitions from the CICS system tables. Page 270

Migrating Queries, Forms, and Procedures

IBM supplies a migration utility that migrates QMF queries, forms,
procedures, and ISQL queries from the Version 1 Q.INTERNAL_DATA and
SQLDBA.“STORED QUERIES” tables to the Version 7
Q.OBJECT_DIRECTORY, Q.OBJECT_REMARKS, and Q.OBJECT_DATA tables.
The utility leaves the objects in the Version 1 tables intact after the migration,
and you can still use these objects with Version 1 if you need to.

Table 38 shows how the columns of the Q.INTERNAL_DATA table map to the
three new Version 1 control tables that store QMF objects. The Version 7 tables
have the OWNER, NAME, and TYPE columns in common so that QMF is
able to uniquely reference any QMF object of any type.

See “Maintaining QMF Objects Using QMF Control Tables” on page 104 for
the complete structure of Q.OBJECT_DIRECTORY, Q.OBJECT_REMARKS, and
Q.OBJECT_DATA, as well as more information on how QMF uses these
tables.

Table 38. How the Q.INTERNAL_DATA table (V1) maps to QMF for VSE/ESA Version 7 control tables
that contain objects

Version 1
column Meaning

Migrates to this
column

Of this QMF Version 7 control
table

CREATOR
User ID of user who created
object OWNER

Q.OBJECT_DIRECTORY
Q.OBJECT_DATA
Q.OBJECT_REMARKS

NAME
Name given to object by
CREATOR NAME

Q.OBJECT_DIRECTORY
Q.OBJECT_DATA
Q.OBJECT_REMARKS

SEQ Object row number SEQ Q.OBJECT_DATA

TYPE
QMF-assigned object type (such
as query or form) TYPE

Q.OBJECT_DIRECTORY
(TYPE and SUBTYPE)

Q.OBJECT_DATA
Q.OBJECT_REMARKS

Migrating from QMF VSE V1 to Version 7

260 Installing and Managing QMF for VSE/ESA

Table 38. How the Q.INTERNAL_DATA table (V1) maps to QMF for VSE/ESA Version 7 control tables
that contain objects (continued)

Version 1
column Meaning

Migrates to this
column

Of this QMF Version 7 control
table

SHARED

Whether an object has been
shared with other QMF users.
When SHARED=YES,
RESTRICTED=NO. When
SHARED=NO,
RESTRICTED=YES. RESTRICTED Q.OBJECT_DIRECTORY

RELEVEL
Release level of QMF. Has value
of REL 1.0 in QMF VSE V1.

RELEVEL not
migrated RELEVEL not migrated

REMARKS
Comments on the object given
by CREATOR REMARKS Q.OBJECT_REMARKS

DATA
Internal representation of object
itself APPLDATA Q.OBJECT_DATA

The DATA field of the Q.INTERNAL_DATA table is 3600 bytes long. If the
internal representation of the Version 7 object is more than 3600 bytes, more
than one row in Q.OBJECT_DATA is used to store the object. The APPLDATA
column contains the continuation of the internal representation of the object.
The SEQ column is a number that represents each additional APPLDATA
field.

If you migrate data into the QMF for VSE/ESA Version 7
Q.OBJECT_DIRECTORY table from the QMF VSE V1 table, the new
timestamp columns in the Q.OBJECT_DIRECTORY become nulls in your old
object.

Starting the Migration Utility
You can start the migration utility three ways:
v Enter QMFM from a cleared CICS screen, followed by values for the migration

utility parameters. These are explained beginning with “Specifying the Type
of Object” on page 262.
For example, the following command migrates a query named MYQUERY,
owned by user JONES. It also specifies that the Version 1 object should not
be migrated if a Version 7 object with the same name exists.
QMFM TYPE(QUERIES) CREATOR(JONES) NAME(MYQUERY)

REPLACE(NO) MSGLOG(MYMSGS)

After the migration, user JONES can use the command CEBR MYMSGS to view
the messages from the migration.

Migrating from QMF VSE V1 to Version 7

Appendix B. Migrating from QMF VSE V1 to Version 7 261

v Enter CICS QMFM... from the QMF Home panel, where “...” represents the
migration utility parameters and values. The Home panel command line
has a limit of 55 characters of input.

v Write a CICS application that includes the following command:
EXEC CICS START TRANSID('QMFM') FROM('...')

where “...” represents values for the migration utility parameters.

If you are migrating QMF VSE V1 objects that have uppercase names, you can
use the QMFM transaction from a cleared CICS screen.

If you need to migrate QMF VSE V1 objects that have been saved in lower or
mixed case, you need to start the migration utility from the QMF Home panel
(using the CICS command) or from within a CICS application using the EXEC
CICS START command.

Follow these guidelines when you use the migration utility parameters:
v Use uppercase if you are migrating objects from the QMF Home panel or

from a CICS application. CICS converts all input entered from a cleared
CICS screen to uppercase.

v Use each parameter only once.
v Enclose each value you supply in parentheses.
v Always supply a value for the TYPE and MSGLOG parameters. These

parameters are required. If you omit values for the other parameters,
defaults are used as explained in this chapter.

v Ensure the values you specify for CREATOR and NAME are identical to the
Version 1 names, because the CREATOR and NAME parameters are case
sensitive.

Specifying the Type of Object
Use the TYPE parameter to specify the type of object you want to migrate.
The migration utility migrates QMF queries, forms, procedures, and ISQL
queries. The following values are valid for the TYPE parameter:

If you use this value for TYPE:
The migration utility migrates:

ALL All QMF objects
QUERIES

QBE and SQL queries
FORMS

QMF forms
PROCS

QMF procedures
ISQLQUERIES

ISQL queries

Migrating from QMF VSE V1 to Version 7

262 Installing and Managing QMF for VSE/ESA

The value ALL migrates only QMF queries, forms, and procedures. Ensure
you specify ALL by itself on the TYPE parameter. For example, QMF displays
an error message if you enter the following:
QMFM TYPE(PROCS,ALL) MSGLOG(MYMSGS)

Other values can appear together as options on the same TYPE parameter,
provided the values are separated by commas. For example, the following
migrates all Version 1 queries and forms, regardless of their owners and
names:
QMFM TYPE(QUERIES,FORMS) MSGLOG(MYMSGS)

After you migrate QMF Version 1 forms, specify YES in answer to the
AUTOMATIC REORDERING? question on the Form.Options panel if you want the
Version 7 form to look identical to Version 1. QMF Version 1 provided
automatic reordering as the default, which ordered all aggregation summary
columns on the right and all break columns on the left. Automatic reordering
is not the default in Version 7.

The value ISQLQUERIES migrates Version 1 ISQL queries to Version 7 SQL
queries. Ensure you specify the value ISQLQUERIES by itself on the TYPE
parameter.

ISQL queries are stored in the SQLDBA.“STORED QUERIES” table in Version
1. The STMTNAME, CREATOR, and STMTTEXT columns of this Version 1
table are migrated to the NAME, OWNER, and APPLDATA columns of
Version 7 QMF control tables. Format data associated with the STMTTEXT
column is not migrated.

After the migration, the TYPE column is set to QUERY, and the SUBTYPE
column is set to SQL. The SEQ column of Q.OBJECT_DATA is used if
necessary. See Table 38 on page 260 for descriptions of how Version 1 table
columns map to Version 7.

Specifying the Owner of the Object
Use the CREATOR parameter to migrate objects by Version 1 user ID. If you
omit the CREATOR parameter, all objects that meet the criteria you specified
for other parameters (NAME and TYPE, for example) are migrated.

You can use the CREATOR parameter with the TYPE option to migrate objects
by user ID, regardless of their names. For example, the following command
migrates all QMF queries for user JONES:
QMFM TYPE(QUERIES) CREATOR(JONES) MSGLOG(MYMSGS)

Ensure the value you use for CREATOR is 8 characters or less. Also ensure
that you surround the entire value in double quotes if it contains blanks.
Double quotes are not allowed as part of the CREATOR value itself.

Migrating from QMF VSE V1 to Version 7

Appendix B. Migrating from QMF VSE V1 to Version 7 263

Characters you normally use in the LIKE predicate of an SQL statement can
be used to represent one or more characters in the CREATOR value. These
characters are the underscore (_) and the percent sign (%). For example, the
following command migrates all objects for user IDs that start with S:
QMF TYPE(ALL) CREATOR(S%) MSGLOG(MYMSGS)

The migration utility always treats both the percent sign and the underscore
as characters in an SQL LIKE predicate. If these characters are part of the user
ID whose objects you need to migrate, use the NAME and other parameters
to migrate that user’s objects.

Specifying the Name of the Object
Use the NAME parameter to migrate specific objects by name. If you omit the
NAME parameter, all objects that meet the criteria you specified for other
parameters (CREATOR and TYPE, for example) are migrated.

You can use the NAME parameter with the TYPE option to migrate a specific
set of objects, regardless of who created them. For example, the following
command migrates all QMF queries named SAMPLE, regardless of who
created them:
QMFM TYPE(QUERIES) NAME(SAMPLE) MSGLOG(MYMSGS)

For QMF object names, ensure the value you use for NAME is 18 characters
or less. For ISQL queries, ensure the value is 8 characters or less.

Also ensure that you surround the entire value in double quotes if it contains
embedded blanks. Trailing blanks are processed as part of the name. For
example, “MYQUERY” and “MYQUERY” are processed as two different
names.

See “Specifying the Owner of the Object” on page 263 for how to use
characters you normally use in the LIKE predicate of an SQL statement.

Migrating Version 1 Objects to Version 7 Control Tables
If an object you are migrating has the same values for OWNER, NAME, and
TYPE as a QMF for VSE/ESA Version 7 object, the REPLACE parameter
indicates whether the Version 1 object replaces the Version 7 object.

Use YES to indicate that you want QMF to replace the Version 7 object upon
finding a match. For example, the following command replaces all Version 7
QMF queries that begin with SAMPLE:
QMFM TYPE(QUERIES) NAME(SAMPLE%) REPLACE(YES)

If you omit the REPLACE parameter, QMF assumes a value of NO.

Migrating from QMF VSE V1 to Version 7

264 Installing and Managing QMF for VSE/ESA

Viewing Messages from the Migration
Use the MSGLOG parameter to name the CICS temporary storage queue that
holds the messages from the migration. Ensure the name you use is 8
characters or less and that no other queue by that name exists.

For example, the following command migrates all QMF objects and stores the
messages generated from the migration in a temporary storage queue named
MYMSGS:
QMFM TYPE(ALL) MSGLOG(MYMSGS)

You can use the CICS CEBR transaction or any other facility appropriate for
reading a temporary storage queue. If you plan to use the CEBR transaction to
view the messages, ensure you specify an uppercase name for the storage
queue that holds the message log, because the CEBR transaction folds
terminal input to uppercase.

Migrating User Profiles

To migrate user profiles from the Version 1 Q.USERS table to the Version 7
Q.PROFILES table, run an SQL query similar to the one in Figure 107. Specify
for the value of the &CREATOR variable the SQL authorization ID of the user
whose profile you’re migrating. To copy all QMF VSE V1 profiles to QMF for
VSE/ESA Version 7, use a percent sign (%) for the value of the &CREATOR
variable.

So that Version 7 profiles do not get overwritten, the query fails if you
attempt to insert a row that has the same CREATOR value as a row already in
Q.PROFILES.

The CREATOR and TRANSLATION columns do not allow null values. The
TRANSLATION column does not exist in Q.USERS and gets a value of
ENGLISH for rows inserted from Q.USERS.

If you’re using an NLF: Run an SQL UPDATE query after migrating the
profiles to change the value of the TRANSLATION
column.

INSERT INTO Q.PROFILES (CREATOR,CASE,DECOPT,CONFIRM,WIDTH,LENGTH,
LANGUAGE,SPACE,TRACE,TRANSLATION)

SELECT CREATOR,CASE,DECOPT,CONFIRM,WIDTH,LENGTH,LANGUAGE,SPACE,
TRACE,'ENGLISH')

FROM Q.USERS
WHERE CREATOR LIKE &CREATOR

Figure 107. Query that migrates QMF VSE V1 user profiles from Q.USERS table to QMF for
VSE/ESA Version 7 Q.PROFILES table

Migrating from QMF VSE V1 to Version 7

Appendix B. Migrating from QMF VSE V1 to Version 7 265

Columns not in Q.USERS are automatically given null values when the
profiles are migrated. Because Q.USERS has a separate control table for
printer names (Q.PRINTER), the PRINTER column in Q.PROFILES is also
given a null value. See Table 9 on page 85 for information about the
Q.PROFILES table.

Deleting QMF VSE V1 After You Migrate Your Objects

When you are certain you successfully migrated all Version 1 objects to
Version 7, consider deleting QMF VSE V1 to make more storage available on
your system. You need to perform four steps, each explained in this section:
1. Delete the QMF VSE V1 objects from the VSE sublibrary.
2. Delete information about QMF VSE V1 from the history file.
3. Remove QMF VSE V1 objects from VSE DB2.
4. Remove QMF VSE V1 definitions from the CICS system tables (for

example, the PPT and PCT).

Each of these steps is described in this section.

Attention: Before you begin this procedure, ensure you migrated all Version
1 objects successfully. Check the migration utility message log to make sure
there were no errors. See “Viewing Messages from the Migration” on page 265
for more information about how to view the message log.

Deleting QMF VSE V1 from the VSE Sublibrary
Use the VSE librarian program to delete QMF VSE V1 from the VSE
sublibrary. Run a job similar to the following:

Enter for library.sublibrary the library and sublibrary where QMF VSE V1 is
installed.

If you installed the QMF VSE V1 Uppercase Feature (UCF), ensure you add
the following as the last line of the job:
DELETE HD292A16.Z

. . .

. . .

. . .

EXEC LIBR,PARM='MSHP'
ACC S=library.sublibrary
DELETE DSQ*.*
DELETE $$$COQMF.OBJ
DELETE HD292F67.Z

Figure 108. Job that deletes QMF VSE V1 from the VSE sublibrary

Migrating from QMF VSE V1 to Version 7

266 Installing and Managing QMF for VSE/ESA

Deleting QMF VSE V1 Information from the History File
How you delete QMF VSE V1 from the history file depends on how you
installed QMF VSE V1. Retrace your history file to find out which of the
following configurations you have for QMF VSE V1:
v Only the Version 1 base product is installed.

In this case, run a job similar to the one shown in Figure 109 to delete the
history file entries.

v The base product and UCF are installed to the same sublibrary.
In this case, run a job similar to the one shown in Figure 110 to delete the
history file entries.

v The base product and UCF are installed to different sublibraries.
In this case, run a job similar to the one shown in Figure 111 on page 268 to
delete the history file entries.

// EXEC MSHP,SIZE=900K
REMOVE 292F67 /* QMF REL 1.0 BASE */
REMOVE 5666-292-01-F67
/*
// EXEC DTRIPST,SIZE=500K
/*
/&

Figure 109. Job that deletes QMF VSE V1 history file entries for base QMF

// EXEC MSHP,SIZE=900K
REMOVE 292A16 /* QMF REL 1.0 UPPER CASE ENGLISH FEATURE */
REMOVE 5666-292-01-A16
/*
// EXEC DTRIPST,SIZE=500K
/*
/&

Figure 110. Job that deletes QMF VSE V1 history file entries for QMF base and UCF (same
sublibrary)

Migrating from QMF VSE V1 to Version 7

Appendix B. Migrating from QMF VSE V1 to Version 7 267

Deleting QMF VSE V1 Objects from the VSE DB2 Database
IBM ships a job named DSQ3BDEL.Z with QMF for VSE/ESA Version 7. This
job removes Version 1 QMF objects (queries, forms, and procedures) stored in
the VSE DB2 database.

Check the target DB2 database where QMF VSE V1 is installed. The target
database name is specified on the DBNAME parameter:
// SETPARM DBNAME=SQLDS

The default name for the target database is SQLDS. If you installed QMF VSE
V1 into a different database, run DSQ3BDEL with a different database name.

Figure 112 on page 269 shows the DSQ3BDEL job.

// EXEC MSHP,SIZE=900K
REMOVE 292F67 /* QMF REL 1.0 BASE */
REMOVE 5666-292-01-F67
REMOVE 292A16 /* QMF REL 1.0 UPPER CASE ENGLISH FEATURE */
REMOVE 5666-292-01-A16
/*
// EXEC DTRIPST,SIZE=500K
/*
/&

Figure 111. Job that deletes QMF VSE V1 history file entries for QMF base and UCF (different
sublibrary)

Migrating from QMF VSE V1 to Version 7

268 Installing and Managing QMF for VSE/ESA

* $$ JOB JNM=DSQ3BDEL,DISP=D,CLASS=0
// JOB DSQ3BDEL DROP QMF V1 OBJECTS FROM DB2
// LIBDEF *,SEARCH=PRD2.DB2610
/. C * -- *
/. C * ** CAUTION ** *
/. C * THIS JOB DROPS ALL QMF V1 OBJECTS FROM THE DB2 *
/. C * DATABASE, INCLUDING PROCS, QUERIES, AND FORMS. RUNNING *
/. C * THIS JOB IS OPTIONAL AFTER SUCCESSFUL MIGRATION OF QMF *
/. C * V1 OBJECTS TO QMF V7R1M0. *
/. C * *
/. C * NOTE: APPLICATION SERVER MUST BE UP IN MULTIPLE USER MODE *
/. C * -- *
// SETPARM DBNAME=SQLDS *-- TARGET DB2 DBNAME FOR THIS JOB
// PAUSE *CAUTION* HIT ENTER TO DROP QMF V1 OBJECTS FROM DB2
// EXEC ARIDBS,SIZE=AUTO,PARM='DBNAME(&DBNAME)'
CONNECT Q IDENTIFIED BY QMF;
SET AUTOCOMMIT OFF;
DROP PROGRAM DSQIBOR ;
DROP PROGRAM DSQICNCT;
DROP PROGRAM DSQICSQL;
DROP PROGRAM DSQIDTVQ;
DROP PROGRAM DSQIESQL;
DROP PROGRAM DSQIFSQL;
DROP PROGRAM DSQIICVS;
DROP PROGRAM DSQIIPEL;
DROP PROGRAM DSQILD ;
DROP PROGRAM DSQIMIG ;
DROP PROGRAM DSQIPR ;
DROP PROGRAM DSQIPRNT;
DROP PROGRAM DSQISDTA;
DROP PROGRAM DSQISV ;
DROP PROGRAM DSQIUPRF;

Figure 112. Job that deletes QMF VSE V1 objects from VSE DB2 (DSQ3BDEL) (Part 1 of 2)

Migrating from QMF VSE V1 to Version 7

Appendix B. Migrating from QMF VSE V1 to Version 7 269

Deleting QMF VSE V1 Definitions from the CICS System Tables
CICS definitions for QMF VSE V1 programs and transactions are in the PPT,
the PCT, or the CSD:
v If the definitions are in the PPT or PCT, remove them and reassemble the

tables.
v If the definitions are in the CSD, remove the entries for the programs and

transactions.

For more information on how to remove definitions and reassemble the tables,
see CICS/VSE Resource Definition (Online).

DROP VIEW Q.AUTHS;
DROP VIEW Q.COLUMNS;
DROP VIEW Q.FORMS;
DROP VIEW Q.ISQLQUERIES;
DROP VIEW Q.PROCS;
DROP VIEW Q.QUERIES;
DROP VIEW Q.TABLES;
DROP TABLE Q.INTERNAL_DATA;
DROP TABLE Q.PRINTER;
DROP TABLE Q.USERS;
DROP DBSPACE CONTROL_TABLE1;
COMMIT WORK;
/*
/&
* $$ EOJ

Figure 112. Job that deletes QMF VSE V1 objects from VSE DB2 (DSQ3BDEL) (Part 2 of 2)

Migrating from QMF VSE V1 to Version 7

270 Installing and Managing QMF for VSE/ESA

Appendix C. How QMF and GDDM Programs Are Defined
to CICS

Installing and Managing QMF on VSE/ESA provides the jobs necessary to
define QMF programs to CICS and load GDDM definitions and chart formats
for QMF panels. If you need to modify the default installation, use this section
to find out how QMF programs are defined and how GDDM definitions are
loaded during QMF installation.

How QMF Programs Are Defined to CICS/VSE

During QMF installation, the default transaction ID QMFn is defined for QMF,
where n is a national language identifier from Table 3 on page 10. The
transaction ID is defined in either the CICS program control table (PCT) or the
system definition (CSD) file. If you need to, you can change this default
transaction ID:
v To update the CSD, see CICS/VSE Resource Definition (Online)
v To update the PCT, see CICS/VSE Resource Definition (Macro)

Resident QMF Programs
During QMF installation, the following programs are defined as resident in
CICS:

DSQQMF
DSQQMFn
DSQCBST
DSQCnLTT
DSQCnBLT

CICS/VSE treats programs with RMODE(ANY) as permanently resident,
because of the large amount of virtual storage available above the 16MB line.
Programs defined as resident are loaded during CICS system initialization.
Nonresident programs are loaded on the first reference to the program.

The first QMF transaction to start causes certain GDDM programs to be
loaded. See “How Nonresident GDDM Programs Affect QMF” on page 273 for
more information.

How Nonresident Programs Affect Performance
If several users use QMF, removing QMF programs from resident storage
might affect QMF and CICS performance, because QMF must be loaded each
time a user starts the program. However, if the needs of your installation
require that you remove these programs from resident storage, change the
definition for QMF programs from resident to nonresident.

© Copyright IBM Corp. 1983, 2000 271

You can specify RESIDENT=NO on the CEDA DEFINE PROGRAM command
to interactively change the program definition in the CSD, or specify RES=NO
on the DFHPPT TYPE=ENTRY macro to change the value in the program
processing table (PPT).

For more information on the performance implications of nonresident
programs, see CICS for VSE/ESA 2.3 Performance Guide

Loading QMF to the 31-Bit Shared Virtual Area
The default installation loads QMF to an individual CICS partition.
Depending on the configuration of your system, you might consider loading
QMF programs to the 31-bit VSE shared virtual area (SVA).

If several CICS partitions run QMF, consider loading QMF to the SVA rather
than to the resident area in the individual CICS partitions where QMF is
running. Loading QMF to the SVA:
v Allows two or more CICS systems in the same processor to share QMF

programs. The CICS systems do not have to be using intercommunication
facilities to benefit from sharing programs.

v Automatically protects the programs from being overwritten by other
programs, such as CICS applications. This integrity also applies to a single
CICS system within the processor.

If you decide to load programs to the SVA, you need to use the SVA
command to allocate space in the SVA for QMF modules and their system
directory list (SDL) entries at IPL time. The space you allocate is in addition to
any required for other phases in the SVA.

The following QMF base programs can be loaded to the SVA; they take
approximately 2.8 MB of space:

DSQQMF
Main QMF program

DSQCBST
Driver for the callable interface

DSQQMFE
Identifies the environment and language being started

DSQCELTT
Holds messages and constants for QMF objects and screen displays

DSQCEBLT
Holds command definitions and permits bilingual support

DSQUEGV3
Required for the governor exit routine (discussed in Chapter 14)

How QMF and GDDM Programs Are Defined to CICS

272 Installing and Managing QMF for VSE/ESA

DSQUECIC
Required for user-written edit exit routines (discussed in Chapter 13)

If you’re using an NLF: You can also load the following QMF NLF programs
to the SVA. These programs require a total of
approximately 300 KB in the SVA, per NLF. The n
symbol represents an NLID from Table 3 on page 10.

DSQQMFn
DSQCnLTT
DSQCnBLT
DSQUnGV3

To load programs into the SVA, issue a SET SDL command from the
background (BG) partition, naming the selected programs. You can issue this
command at any time after IPL, but you must issue it before bringing up any
CICS system that uses programs from the SVA.

VSE loads SVA phases from the libraries of the BG partition library search
chain. You need to specify the QMF library in the SEARCH operand of the
LIBDEF statement for the BG partition. Figure 113 shows an example of a load
list for QMF programs:

How GDDM Definitions Are Loaded During QMF Installation

QMF for VSE/ESA Version 7 uses GDDM services for printing and displaying
QMF screens. The VSAM panel file DSQPNLn contains text for QMF screens
and is described to CICS during QMF installation. QMF also uses the
GDDM-PGF product to create charts of many types, such as scatter, pie,
histogram, and others.

How Nonresident GDDM Programs Affect QMF
GDDM programs are not predefined as resident. When you tailor GDDM for
CICS, consider making GDDM programs resident, because certain GDDM
programs are loaded when QMF is started, whether or not you use QMF’s

// JOB CICS SVALOAD
* CICS/VSE/ESA SVA LOAD LIST
* LIBDEF statement for the QMF sublibrary
SET SDL
DSQQMFE,SVA
DSQCBST,SVA
DSQCELTT,SVA

. . .

. . .

. . .
/*
/&

Figure 113. Loading QMF programs to the SVA

How QMF and GDDM Programs Are Defined to CICS

Appendix C. How QMF and GDDM Programs Are Defined to CICS 273

charting functions. See the CICS/VSE Performance Guide for more information
on how to decide which programs should be resident. For more information
on tailoring GDDM for CICS, see:

GDDM System Customization and Administration for GDDM 3.1
GDDM Installation and System Management for VSE for GDDM 2.3

How Chart Formats Are Defined
The QMF default installation stores chart formats, chart data, and GDF data in
the GDDM file ADMF. You can change the name of this GDDM object file or
create additional GDDM object files to store chart objects by modifying the
OBJFILE section of the GDDM external defaults module, ADMADFC. For
example, you might have separate files for chart formats, chart data, and GDF
data.

Adding Charting Function After QMF Installation
If you install GDDM-PGF after you install QMF, you need to fully install and
tailor GDDM-PGF for CICS, rather than merely restoring the product to a
sublibrary.

If you use GDDM 3.2, you need to install GDDM-PGF 2.1.3.
If you use GDDM 2.3, you need GDDM-PGF 2.1.1.

After you install GDDM-PGF and tailor it, you can verify the installation by
running the CICS ADMC transaction, which is predefined by GDDM during
GDDM tailoring for CICS. No further customization of the chart formats is
necessary; these formats were defined for you during QMF installation.

Using Transaction Routing to Control Resource Use

To protect high-speed transactions in your system from potential long-running
QMF queries that might consume extra resources, consider isolating execution
of QMF transactions to a single partition, using multiregion operations or
intersystem communications. Define one CICS terminal-owning partition and
route QMF transaction requests to other partitions by using multiple
transaction IDs or dynamic routing exits. Both methods are described in CICS
for VSE/ESA 2.3 Intercommunication Guide

See “Customizing Report Storage and Report Performance” on page 56 for
information on how QMF uses GETVIS storage in the CICS partition.

How QMF and GDDM Programs Are Defined to CICS

274 Installing and Managing QMF for VSE/ESA

Appendix D. QMF Control Tables and dbspaces Used by
QMF

QMF uses the control tables shown in Table 39 to manage QMF users and the
objects they create. The dbspace sizes given for each block are in pages, where
each page is one 4096-byte block. See the page listed at the right of the table if
you need information on the table’s structure and more detailed information
on how QMF uses it.

Table 39. List of QMF control tables and dbspaces used by QMF

Control table name dbspace dbspace
size

Table content More
information:

Q.PROFILES DSQTSPRO 128
pages

Contains QMF profiles
that hold information
about individual users’
access to resources and
data during a QMF
session.

Pages 82 to 92

Q.OBJECT_DIRECTORY DSQTSCT1 256
pages

Contains general
information about all QMF
queries, forms, and
procedures in the
database.

Page 104

Q.OBJECT_DATA DSQTSCT3 5120
pages

Contains queries, forms,
and procedures
represented in an internal
QMF format.

Page 105

Q.OBJECT_REMARKS DSQTSCT2 256
pages

Contains comments that
were saved when queries,
forms, and procedures
were created (or replaced).

Page 106

Q.RESOURCE_TABLE DSQTSGOV 128
pages

Contains resource control
information passed to the
governor exit routine.

Page 199

Q.ERROR_LOG DSQTSLOG 128
pages

Contains information on
system, resource, and
“unexpected condition”
errors. This information is
more detailed than that
found in error messages.

Page 250

© Copyright IBM Corp. 1983, 2000 275

Table 39. List of QMF control tables and dbspaces used by QMF (continued)

Control table name dbspace dbspace
size

Table content More
information:

Q.DSQ_RESERVED DSQTSRDO 128
pages

Contains information used
by QMF during
initialization.

Important: Do not modify
this table.

This table is not
discussed in this
book.

In addition to the dbspaces shown in Table 39 on page 275 for the QMF
control tables, QMF uses dbspace DSQ2STBT for the QMF sample tables, and
DSQTSDEF to store data from the QMF SAVE DATA or IMPORT TABLE
commands. Both dbspaces have a default size of 128 pages.

For more information about the QMF sample tables and the SAVE DATA or
IMPORT TABLE commands, see Using QMF.

QMF Control Tables and dbspaces Used by QMF

276 Installing and Managing QMF for VSE/ESA

Appendix E. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1983, 2000 277

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

278 Installing and Managing QMF for VSE/ESA

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Appendix E. Notices 279

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

ACF/VTAM
Advanced Peer-to-Peer

Networking
AIX
AIX/6000
AS/400
C/370
CICS
CICS/ESA
CICS/MVS
CICS/VSE
COBOL/370
DATABASE 2
DataJoiner
DB2
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
DXT
GDDM
IBM

IBMLink
IMS
Language Environment
MVS
MVS/ESA
MVS/XA
OfficeVision/VM
OS/2
OS/390
PL/I
PROFS
QMF
RACF
S/390
SQL/DS
Virtual Machine/Enterprise

Systems Architecture
Visual Basic
VM/XA
VM/ESA
VSE/ESA
VTAM

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other counrtries, or both.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation in the
Unites States, other counrties, or both.

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

280 Installing and Managing QMF for VSE/ESA

Bibliography

The following lists do not include all the books for a particular library. To get
copies of any of these books, or to get more information about a particular
library, contact your IBM representative.

For a list of QMF publications, see “The QMF Library” on page ix.

APPC Publications
Communicating with APPC and CPI-C: A Technical Overview
Networking with APPC: An Overview

CICS Publications

CICS Transaction Server for OS390
CICS/OS390 User’s Handbook
CICS/OS390 Application ProgrammerÆs Reference
CICS/OS390 Application Programming Guide
CICS/OS390 DB2 Guide
CICS/OS390 Resource Definition (Macro)
CICS/OS390 Resource Definition (Online)
CICS/OS390 Problem Determination Guide
CICS/OS390 System Definition Guide
CICS/OS390 Intercommunication Guide
CICS/OS390 Performance Tuning Handbook

CICS for VSE

v CICS for VSE/ESA User’s Handbook

v CICS for VSE/ESA Application Programmer’s Reference

v CICS for VSE/ESA Application Programming Guide

v CICS for VSE/ESA Resource Definition (Macro)

v CICS for VSE/ESA Resource Definition (Online)

v CICS for VSE/ESA Problem Determination Guide

v CICS/OS390 System Definition Guide

v CICS for VSE/ESA Intercommunication Guide

v CICS for VSE/ESA Performance Tuning Handbook

© Copyright IBM Corp. 1983, 2000 281

COBOL Publications
VS COBOL II Application Programming Guide for VSE
COBOL/VSE Language Reference
COBOL/VSE Programming Guide

DATABASE 2 Publications

DB2 UDB for OS390
DB2 UDB for OS390 Installation Guide
DB2 UDB for OS390 Administration Guide
DB2 UDB for OS390 SQL Reference
DB2 UDB for OS390 Command Reference
DB2 UDB for OS390 Application Programming and SQL Guide
DB2 UDB for OS390 Message and Codes
DB2 UDB for OS390 Uitility Guide and Reference
DB2 UDB for OS390 Call Level Interface Guide and Reference
DB2 UDB for OS390 Reference for Remote DRDA Requesters and Servers

DB2 for VSE & VM
DB2 Server for VM Installation Guide
DB2 Server for VSE Installation Guide
DB2 Server for VSE & VM Database Administration
DB2 Server for VM System Administration
DB2 Server for VSE System Administration
DB2 Server for VSE & VM Operation
DB2 Server for VSE & VM SQL Reference
DB2 Server for VSE & VM Application Programming
DB2 Server for VSE & VM Interactive SQL Guide and Reference
DB2 Server for VSE & VM Database Services Utility
DB2 Server for VM Message and Codes
DB2 Server for VSE Message and Codes
DB2 Server for VSE & VM Diagnostic Guide and Reference
DB2 Server for VSE & VM Performance Tuning Handbook

DB2 for AS/400
DB2 for AS/400 SQL Reference
DB2 for AS/400 SQL Programming

Parallel Edition
DB2 Parallel Edition Administration Guide and Reference

DB2 Universal Database
DB2 Universal Database Command Reference
DB2 Universal Database SQL Reference
DB2 Universal Database Message Reference

Bibliography

282 Installing and Managing QMF for VSE/ESA

DataJoiner
DataJoiner Application Programming and SQL Reference Supplement

DCF Publications
DCF and DLF General Information

DRDA Publications
DRDA Every Manager’s Guide
DRDA Connectivity Guide

DXT Publications
DXT Guide to Dialogs
Data Extract: Planning and Administration Guide for Dialogs
Data Extract: UserÆs Guide
Learning to Use DXT

Graphical Data Display Manager (GDDM) Publications
GDDM General Information
GDDM Base Programming Reference
GDDM Base Programming Guide
GDDM Guide for Users
GDDM Installation and System Management for VSE
GDDM Messages

HLASM Publications
IBM High-Level Assembler Programmer’s Guide for OS/390, VM and VSE
IBM High-Level Assembler Language Reference for OS/390, VM and VSE

ISPF/PDF Publications

OS/390
Interactive System Productivity Facility for OS/390 Installation and
Customization
Interactive System Productivity Facility for OS/390 Dialog Management Guide
Interactive System Productivity Facility for OS/390 Dialog Management Services
and Examples

VM
ISPF for VM Dialog Management Services and Examples

Bibliography

Bibliography 283

OS/390 Publications

Utilities
OS/390 Administration: Utilities
OS/390 Extended Architecture Utilities

JCL
OS/390 Extended Architecture JCL Reference
OS/390 Extended Architecture JCL User’s Guide
OS/390 JCL Reference
OS/390 JCL Users Guide

Pageable Link Pack Area (PLPA)
OS/390 Extended Architecture Initialization and Tuning
OS/390 SPL: Initialization and Tuning

VSAM
OS/390 VSAM Administration Guide
OS/390 VSAM Catalog Administration Access Method Services

TSO
OS/390 TSO Primer
OS/390 User’s Guide

SMP/E
OS/390 System Modification Program Extended Messages and Codes
OS/390 System Modification Program Extended Primer
OS/390 System Modification Program Extended Reference
OS/390 System Modification Program Extended User’s Guide

PL/I Publications
PL/I VSE Language Reference
PL/I VSE Programming Guide

REXX Publications

OS/390 environment
IBM Compiler and Library for REXX/370: UserÆs Guide and Reference
TSO Extensions REXX/MVS Reference

VM environment
Procedures Language VM/REXX Reference
Procedures Language VM/REXX User’s Guide

ServiceLink Publications
ServiceLink User’s Guide

Bibliography

284 Installing and Managing QMF for VSE/ESA

VM Publications
Virtual Machine Planning Guide and Reference
Virtual Machine CMS Command and Macro Reference

VSE Publications
VSE Planning Guide
VSE Guide to System Functions
VSE System Utilities
VSE Guide for Solving Problems

Bibliography

Bibliography 285

Bibliography

286 Installing and Managing QMF for VSE/ESA

Glossary of Terms and Acronyms

This glossary defines terms as they are used throughout the QMF library. If
you do not find the term you are looking for, refer to the index in this book,
or to the IBM Dictionary of Computing.

abend. The abnormal termination of a task.

ABENDx. The keyword for an abend problem.

Advanced Peer-to-Peer Networking. A distributed network and session control architecture that allows
networked computers to communicate dynamically as equals. Compare with Advanced
Program-to-Program Communication (APPC). An implementation of the SNA synchronous data link
control LU 6.2 protocol that allows interconnected systems to communicate and share the processing of
programs.

Advanced Program-to-Program Communication (APPC). An implementation of the SNA synchronous
data link control LU 6.2 protocol that allows interconnected systems to communicate and share the
processing of programs.

aggregation function. Any of a group of functions that summarizes data in a column. They are
requested with these usage codes on the form panels: AVERAGE, CALC, COUNT, FIRST, LAST,
MAXIMUM, MINIMUM, STDEV, SUM, CSUM, PCT, CPCT, TPCT, TCPCT.

aggregation variable. An aggregation function that is placed in a report using either the
FORM.BREAK, FORM.CALC, FORM.DETAIL, or FORM.FINAL panels. Its value appears as part of the
break footing, detail block text, or final text when the report is produced.

alias. In DB2 UDB for OS/390, an alternate name that can be used in SQL statements to refer to a table
or view in the same or a remote DB2 UDB for OS/390 subsystem. In OS/2, an alternate name used to
identify a object, a database, or a network resource such as an LU. In QMF, a locally defined name used
to access a QMF table or view stored on a local or remote DB2 UDB for OS/390 subsystem.

APAR. Authorized Program Analysis Report.

APPC. Advanced Program-to-Program Communication

application. A program written by QMF users that extends the capabilities of QMF without modifying
the QMF licensed program. Started from a QMF session by issuing a RUN command for a QMF
procedure, an installation-defined command, or a CMS or TSO command that invokes an EXEC or
CLIST, respectively.

application requester. (1) A facility that accepts a database request from an application process and
passes it to an application server. (2) In DRDA, the source of a request to a remote relational database
management system.

The application requester is the DBMS code that handles the QMF end of the distributed connection.
The local DB2 UDB for OS/390 subsystem to which QMF attaches is known as the application requester
for QMF, because DB2 UDB for OS/390’s application requester is installed within the local database

© Copyright IBM Corp. 1983, 2000 287

manager. Therefore, an entire DB2 UDB for OS/390 subsystem (including data) is associated with the
application requester, but the SQL statements are processed at the current location. This subsystem is
called the “local DB2 UDB for OS/390”.

With DB2 for VM and VSE the application requester runs in the same virtual machine as QMF; that is,
no database is inherently associated with the DB2 for VM and VSE application requester.

application server. The target of a request from an application requester. (1) The local or remote
database manager to which the application process is connected. The application server executes at the
system containing the desired data. (2) In DRDA, the target of a request from an application requester.
With DB2 UDB for OS/390, the application server is part of a full DB2 UDB for OS/390 subsystem.

With DB2 for VM and VSE, the application server is part of a DB2 for VM and VSE database machine.

application-support command. A QMF command that can be used within an application program to
exchange information between the application program and QMF. These commands include INTERACT,
MESSAGE, STATE, and QMF.

area separator. The barrier that separates the fixed area of a displayed report from the remainder of the
report.

argument. An independent variable.

base QMF environment. The English-language environment of QMF, established when QMF is
installed. Any other language environment is established after installation.

batch QMF session. A QMF session running in the background. Begins when a specified QMF
procedure is invoked and ends when the procedure ends. During a background QMF session, no user
interaction and panel display interaction are allowed.

bind. In DRDA, the process by which the SQL statements in an application program are made known
to a database management system over application support protocol (and database support protocol)
flows. During a bind, output from a precompiler or preprocessor is converted to a control structure
called a package. In addition, access paths to the referenced data are selected and some authorization
checking is performed. (Optionally in DB2 UDB for OS/390, the output may be an application plan.)

built-in function. Generic term for scalar function or column function. Can also be “function.”

calculation variable. CALCid is a special variable for forms that contains a user-defined calculated
value. CALCid is defined on the FORM.CALC panel.

callable interface. A programming interface that provides access to QMF services. An application can
access these services even when the application is running outside of a QMF session. Contrast with
command interface.

chart. A graphic display of information in a report.

CICS. Customer Information Control System.

client. A functional unit that receives shared services from a server.

CMS. Conversational Monitor System.

Glossary

288 Installing and Managing QMF for VSE/ESA

column. A vertical set of tabular data. It has a particular data type (for example, character or numeric)
and a name. The values in a column all have the same data characteristics.

column function. An operation that is applied once to all values in a column, returns a single value as
a result, and is expressed in the form of a function name followed by one or more arguments enclosed
in parentheses.

column heading. An alternative to the column name that a user can specify on a form. Not saved in
the database, as are the column name and label.

column label. An alternative descriptor for a column of data that is saved in the database. When used,
column labels appear by default on the form, but they can be changed by users.

column wrapping. Formatting values in a report so that they occupy several lines within a column.
Often used when a column contains values whose length exceeds the column width.

command interface. An interface for running QMF commands. The QMF commands can only be issued
from within an active QMF session. Contrast with callable interface.

command synonym. The verb or verb/object part of an installation-defined command. Users enter this
for the command, followed by whatever other information is needed.

command synonym table. A table each of whose rows describes an installation-defined command. Each
user can be assigned one of these tables.

commit. The process that makes a data change permanent. When a commit occurs, data locks are freed
enabling other applications to reference the just-committed data. See also “rollback”.

concatenation. The combination of two strings into a single string by appending the second to the first.

connectivity. The enabling of different systems to communicate with each other. For example,
connectivity between a DB2 UDB for OS/390 application requester and a DB2 for VM and VSE
application server enables a DB2 UDB for OS/390 user to request data from a DB2 for VM and VSE
database.

conversation. A logical connection between two programs over an LU 6.2 session that allows them to
communicate with each other while processing a transaction.

correlation name. An alias for a table name, specified in the FROM clause of a SELECT query. When
concatenated with a column name, it identifies the table to which the column belongs.

CP. The Control Program for VM.

CSECT. Control section.

current location. The application server to which the QMF session is currently connected. Except for
connection-type statements, such as CONNECT (which are handled by the application requester), this
server processes all the SQL statements. When initializing QMF, the current location is indicated by the
DSQSDBNM startup program parameter. (If that parameter is not specified, the local DB2 UDB for
OS/390 subsystem

current object. An object in temporary storage currently displayed. Contrast with saved object.

Glossary

Glossary of Terms and Acronyms 289

Customer Information Control System (CICS). An IBM licensed program that enables transactions
entered at remote terminals to be processed concurrently by user-written application programs. It
includes facilities for building, using, and maintaining databases.

DATA. An object in temporary storage that contains the information returned by a retrieval query.
Information represented by alphanumeric characters contained in tables and formatted in reports.

database. A collection of data with a given structure for accepting, storing, and providing on demand
data for multiple users. In DB2 UDB for OS/390, a created object that contains table spaces and index
spaces. In DB2 for VM and VSE, a collection of tables, indexes, and supporting information (such as
control information and data recovery information) maintained by the system. In OS/2, a collection of
information, such as tables, views, and indexes.

database administrator. The person who controls the content of and access to a database.

database management system. A computer-based system for defining, creating, manipulating,
controlling, managing, and using databases. The database management system also has transaction
management and data recovery facilities to protect data integrity.

database manager. A program used to create and maintain a database and to communicate with
programs requiring access to the database.

database server. (1) In DRDA, the target of a request received from an application server (2) In OS/2, a
workstations that provides database services for its local database to database clients.

date. Designates a day, month, and year (a three-part value).

date/time default formats. Date and time formats specified by a database manager installation option.
They can be the EUR, ISO, JIS, USA, or LOC (LOCAL) formats.

date/time data. The data in a table column with a DATE, TIME, or TIMESTAMP data type.

DB2 UDB for OS/390. DB2 Universal Database for OS/390 (an IBM relational database management
system).

DB2 for AIX. DATABASE2 for AIX. The database manager for QMF’s relational data.

DBCS. Double-byte character set.

DBMS. Database management system.

default form. The form created by QMF when a query is run. The default form is not created if a saved
form is run with the query.

destination control table (DCT). In CICS, a table containing a definition for each transient data queue.

detail block text. The text in the body of the report associated with a particular row of data.

detail heading text. The text in the heading of a report. Whether or not headings will be printed is
specified in FORM.DETAIL.

dialog panel. A panel that overlays part of a Prompted Query primary panel and extends the dialog
that helps build a query.

Glossary

290 Installing and Managing QMF for VSE/ESA

distributed data. Data that is stored in more than one system in a network, and is available to remote
users and application programs.

distributed database. A database that appears to users as a logical whole, locally accessible, but is
comprised of databases in multiple locations.

distributed relational database. A distributed database where all data is stored according to the
relational model.

Distributed Relational Database Architecture. A connection protocol for distributed relational database
processing that is used by IBM and vendor relational database products.

distributed unit of work. A method of accessing distributed relational data in which users or
applications can, within a single unit of work, submit SQL statements to multiple relational database
management systems, but no more than one RDBMS per SQL statement.

DB2 UDB for OS/390 introduced a limited form of distributed unit of work support in its V2R2 called
system-directed access, which QMF supports.

DOC. The keyword for a document problem.

double-byte character. An entity that requires two character bytes.

double-byte character set (DBCS). A set of characters in which each character is represented by two
bytes. Languages such as Japanese, Chinese, and Korean, which contain more symbols that can be
represented by 256 code points, require double-byte character sets. Because each character requires two
bytes, the typing, display, and printing of DBCS characters requires hardware and programs that support
DBCS. Contrast with single-byte character set.

DRDA. Distributed Relational Database Architecture.

duration. An amount of time expressed as a number followed by one of seven keywords: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS, MICROSECONDS.

EBCDIC. Extended Binary-Coded Decimal Interchange Code.

echo area. The part of the Prompted Query primary panel in which a prompted query is built.

EUR (European) format. A format that represents date and time values as follows:
v Date: dd.mm.yyyy
v Time: hh.mm.ss

extended syntax. QMF command syntax that is used by the QMF callable interface; this syntax defines
variables that are stored in the storage acquired by the callable interface application and shared with
QMF

example element. A symbol for a value to be used in a calculation or a condition in a QBE query.

example table. The framework of a QBE query.

fixed area. That part of a report that contains fixed columns.

fixed columns. The columns of a report that remain in place when the user scrolls horizontally. On
multiple-page, printed reports, these columns are repeated on the left side of each page.

Glossary

Glossary of Terms and Acronyms 291

form. An object that contains the specifications for printing or displaying a report or chart. A form in
temporary storage has the name of FORM.

function key table. A table containing function key definitions for one or more QMF panels, along with
text describing the keys. Each user can be assigned one of these tables.

gateway. A functional unit that connects two computer networks of different network architectures. A
gateway connects networks or systems of different architectures, as opposed to a bridge, which connects
networks or systems with the same or similar architectures.

GDDM. Graphical Data Display Manager.

global variable. A variable that, once set, can be used for an entire QMF session. A global variable can
be used in a procedure, query, or form. Contrast with run-time variable.

Graphical Data Display Manager. A group of routines that allows pictures to be defined and displayed
procedurally through function routines that correspond to graphic primitives.

grouped row. A row of data in a QBE target or example table that is summarized either by a G. or a
built-in function.

HELP. Additional information about an error message, a QMF panel, or a QMF command and its
options.

host. A mainframe or mid-size processor that provides services in a network to a workstation.

HTML. Hypertext Markup Language. A standardized markup language for documents displayed on
the World Wide Web.

ICU. Interactive Chart Utility.

INCORROUT. The keyword for incorrect output.

index. A collection of data about the locations of records in a table, allowing rapid access to a record
with a given key.

initial procedure. A QMF procedure specified by the DSQSRUN parameter on the QMF start command
which is executed immediately after QMF is invoked.

initialization program. A program that sets QMF program parameters. This program is specified by
DSQSCMD in the callable interface. The default program for interactive QMF is DSQSCMDn, where n is
the qualifier for the presiding language ('E' for English).

installation-defined command. A command created by an installation. QMF will process it as one of its
own commands or as a combination of its commands.

installation-defined format. Date and time formats, also referred to as LOCAL formats, that are
defined (or built) by the installation.

interactive execution. Execution of a QMF command in which any dialog that should take place
between the user and QMF during the command’s execution actually does take place.

Glossary

292 Installing and Managing QMF for VSE/ESA

interactive session. Any QMF session in which the user and QMF can interact. Could be started by
another interactive session by using the QMF INTERACT command.

interactive switch. A conceptual switch which, when on, enables an application program to run QMF
commands interactively.

invocation CLIST or EXEC. A program that invokes (starts) QMF.

ISO (International Standards Organization) format. A format that represents date and time values as
follows:
v Date: yyyy-mm-dd
v Time: hh.mm.ss

ISPF. Interactive System Productivity Facility.

IXF. Integration Exchange Format: A protocol for transferring tabular data among various software
products.

JCL. Job control language for OS/390.

job control. In VSE, a program called into storage to prepare each job or job step to be run. Some of its
functions are to assign I/O devices to symbolic names, set switches for program use, log (or print) job
control statements, and fetch the first phase of each job step.

JIS (Japanese Industrial Standard) format. A format that represents date and time values as follows:
v Date: yyyy-mm-dd
v Time: hh:mm:ss

join. A relational operation that allows retrieval of data from two or more tables based on matching
columns that contain values of the same data type.

keyword parameter. An element of a QMF command consisting of a keyword and an assigned value.

like. Pertaining to two or more similar or identical IBM operating environments. For example, like
distribution is distribution between two DB2 UDB for OS/390’s with compatible server attribute levels.
Contrast with “unlike”.

literal. In programming languages, a lexical unit that directly represents a value. A character string
whose value is given by the characters themselves.

linear procedure. Any procedure not beginning with a REXX comment. A linear procedure can contain
QMF commands, comments, blank lines, RUN commands, and substitution variables. See also
“procedure with logic.”

linear syntax. QMF command syntax that is entered in one statement of a program or procedure, or
that can be entered on the QMF command line.

line wrapping. Formatting table rows in a report so they occupy several lines. The row of column
names and each row of column values are split into as many lines as are required by the line length of
the report.

local. Pertaining to the relational database, data, or file that resides in the user’s processor. See also
“local DB2 UDB for OS/390”, and contrast with remote.

Glossary

Glossary of Terms and Acronyms 293

local area network (LAN). (1) Two or more processors connected for local resource sharing (2) A
network within a limited geographic area, such as a single office building, warehouse, or campus.

local data. Data that is maintained by the subsystem that is attempting to access the data. Contrast
with remote data.

local DB2 UDB for OS/390. With DB2 UDB for OS/390, the application requester is part of a DB2 UDB
for OS/390 subsystem that is running in the same MVS system as QMF. Therefore, an entire DB2 UDB
for OS/390 subsystem (including data) is associated with the application requester, but the SQL
statements are processed at the current location. This subsystem is where the QMF plan is bound.

When QMF runs in TSO, this subsystem is specified using DSQSSUBS startup program parameter. When
QMF runs in CICS, this subsystem is identified in the Resource Control Table (RCT). The local DB2 UDB
for OS/390 is the subsystem ID of the DB2 UDB for OS/390 that was started in the CICS region.

location. A specific relational database management system in a distributed relational database system.
Each DB2 UDB for OS/390 subsystem is considered to be a location.

logical unit (LU). A port through which an end user accesses the SNA network to communicate with
another end user and through which the end user accesses the functions provided by system services
control points.

Logical Unit type 6.2 (LU 6.2). The SNA logical unit type that supports general communication
between programs in a distributed processing environment.

LU. Logical unit.

LU 6.2. Logical Unit type 6.2.

LOOP. The keyword for an endless-loop problem.

MSGx. The keyword for a message problem.

Multiple Virtual Storage. Implies the MVS/ESA product

MVS/ESA. Multiple Virtual Storage/Enterprise System Architecture (IBM operating system).

NCP. Network Control Program.

Network Control Program (NCP). An IBM licensed program that provides communication controller
support for single-domain, multiple-domain, and interconnected network capability.

NLF. National Language Feature. Any of several optional features available with QMF that lets the user
select a language other than US English.

NLS. National Language Support.

node. In SNA, an end point of a link or a junction common to two or more links in a network. Nodes
can be distributed to host processors, communication controllers, cluster controllers, or terminals. Nodes
can vary in routing and other functional capabilities.

null. A special value used when there is no value for a given column in a row. Null is not the same as
zero.

Glossary

294 Installing and Managing QMF for VSE/ESA

null value. See null.

object. A QMF query, form, procedure, profile, report, chart, data, or table. The report, chart, and data
objects exist only in temporary storage; they cannot be saved in a database. The table object exists only
in a database.

object name. A character string that identifies an object owned by a QMF user. The character string can
be a maximum of 18 bytes long and must begin with an alphabetic character. The term “object name”
does not include the “owner name” prefix. Users can access other user’s objects only if authorized.

object panel. A QMF panel that can appear online after the execution of one QMF command and
before the execution of another. Such panels include the home, report, and chart panels, and all the
panels that display a QMF object. They do not include the list, help, prompt, and status panels.

online execution. The execution of a command from an object panel or by pressing a function key.

owner name. The authorization id of the user who creates a given object.

package. The control structure produced when the SQL statements in an application program are
bound to a relational database management system. The database management system uses the control
structure to process SQL statements encountered during statement execution.

panel. A particular arrangement of information, grouped together for presentation in a window. A
panel can contain informational text, entry fields, options the user can choose from, or a mixture of
these.

parameter. An element of a QMF command. This term is used generically in QMF documentation to
reference a keyword parameter or a positional parameter.

partner logical unit. In SNA, the remote system in a session.

PERFM. The keyword for a performance problem.

permanent storage. The database where all tables and QMF objects are stored.

plan. A form of package where the SQL statements of several programs are collected together during
bind to create a plan.

positional parameter. An element of a QMF command that must be placed in a certain position within
the command.

primary panel. The main Prompted Query panel containing your query.

primary QMF session. An interactive session begun from outside QMF Within this session, other
sessions can be started by using the INTERACT command.

procedure. An object that contains QMF commands. It can be run with a single RUN command. A
procedure in temporary storage has the name of PROC. See also “linear procedure” and “procedure with
logic.”

procedure termination switch. A conceptual switch that a QMF MESSAGE command can turn on.
While on, every QMF procedure to which control returns terminates immediately.

Glossary

Glossary of Terms and Acronyms 295

procedure with logic. Any QMF procedure beginning with a REXX comment. In a procedure with
logic, you can perform conditional logic, make calculations, build strings, and pass commands back to
the host environment. See also “linear procedure.”

profile. An object that contains information about the characteristics of the user’s session. A stored
profile is a profile that has been saved in permanent storage. A profile in temporary storage has the
name PROFILE. There can be only one profile for each user.

prompt panel. A panel that is displayed after an incomplete or incorrect QMF command has been
issued.

Prompted Query. A query built in accordance with the user’s responses to a set of dialog panels.

protocol. The rules governing the functions of a communication system that must be followed if
communication is to be achieved.

PSW. Program status word.

PTF. Program temporary fix.

QBE (Query-By-Example). A language used to write queries graphically. For more information see
Using QMF

QMF administrative authority. At minimum, insert or delete priviledge for the Q.PROFILES control
table.

QMF administrator. A QMF user with QMF administrative authority.

QMF command. Refers to any command that is part of the QMF language. Does not include
installation-defined commands.

QMF session. All interactions between the user and QMF from the time the user invokes QMF until
the EXIT command is issued.

qualifier. When referring to a QMF object, the part of the name that identifies the owner. When
referring to a TSO data set, any part of the name that is separated from the rest of the name by periods.
For example, ‘TCK’, ‘XYZ’, and ‘QUERY’ are all qualifiers in the data set name ‘TCK.XYZ.QUERY’.

query. An SQL or QBE statement, or a statement built from prompting, that performs data inquiries or
manipulations. A saved query is an SQL query, QBE query, or Prompted Query that has been saved in a
database. A query in temporary storage, has the name QUERY.

RDBMS. Relational database management system

relational database. A database perceived by its users as a collection of tables.

relational database management system (RDBMS). A computer-based system for defining, creating,
manipulating, controlling, managing, and using relational databases.

remote. Pertaining to a relational DBMS other than the local relational DBMS.

remote data. Data that is maintained by a subsystem other than the subsystem that is attempting to
access the data. Contrast with local data.

Glossary

296 Installing and Managing QMF for VSE/ESA

remote data access. Methods of retrieving data from remote locations. The two remote data access
functions used by QMF are remote unit of work and DB2 UDB for OS/390-only distributed unit of work,
which is called system-directed access.

remote unit of work. (1) The form of SQL distributed processing where the application is on a system
different from the relational database and a single application server services all remote unit of work
requests within a single logical unit of work. (2) A unit of work that allows for the remote preparation
and execution of SQL statements.

report. The formatted data produced when a query is issued to retrieve data or a DISPLAY command is
entered for a table or view.

REXX. Restructured extended executor.

rollback. The process that removes uncommitted database changes made by one application or user.
When a rollback occurs, locks are freed and the state of the resource being changed is returned to its
state at the last commit, rollback, or initiation. See also commit.

row. A horizontal set of tabular data.

row operator area. The leftmost column of a QBE target or example table.

run-time variable. A variable in a procedure or query whose value is specified by the user when the
procedure or query is run. The value of a run-time variable is only available in the current procedure or
query. Contrast with global variable.

sample tables. The tables that are shipped with QMF. Data in the sample tables is used to help new
QMF users learn the product.

saved object. An object that has been saved in the database. Contrast with current object.

SBCS. Single-byte character set.

scalar. A value in a column or the value of a literal or an expression involving other scalars.

scalar function. An operation that produces a single value from another value and is expressed in the
form of a function name followed by a list of arguments enclosed in parentheses.

screen. The physical surface of a display device upon which information is presented to the user.

scrollable area. The view of a displayed object that can be moved up, down, left, and right.

server. A functional unit that provides shared services to workstations over a network.

session. All interactions between the user and QMF from the time the user logs on until the user logs
off.

single-byte character. A character whose internal representation consists of one byte. The letters of the
Latin alphabet are examples of single-byte characters.

SNA. Systems Network Architecture.

SNAP dump. A dynamic dump of the contents of one or more storage areas that QMF generates
during an abend.

Glossary

Glossary of Terms and Acronyms 297

sort priority. A specification in a retrieval query that causes the sorted values in one retrieved column
to determine the sorting of values in another retrieved column.

SQL. Structured Query Language.

SQLCA. Structured Query Language Communication Area.

SSF. Software Support Facility. An IBM online database that allows for storage and retrieval of
information about all current APARs and PTFs.

stored object. An object that has been saved in permanent storage. Contrast with current object.

string. A set of consecutive items of a similar type; for example, a character string.

Structured Query Language. A language used to communicate with DB2 UDB for OS/390 and DB2 for
VSE or VM. Used to write queries in descriptive phrases.

subquery. A complete SQL query that appears in a WHERE or HAVING clause of another query (the
main query or a higher-level subquery).

substitution variable. (1) A variable in a procedure or query whose value is specified either by a global
variable or by a run-time variable. (2) A variable in a form whose value is specified by a global variable.

substring. The part of a string whose beginning and length are specified in the SUBSTR function.

System Log (SYSLOG). A data set or file in which job-related information, operational data,
descriptions of unusual occurrences, commands, and messages to and from the operator may be stored.

Systems Network Architecture. The description of the logical structure, formats, protocols, and
operational sequences for transmitting information units through and controlling the configuration and
operation of networks.

table. A named collection of data under the control of the relational database manager. A table consists
of a fixed number of rows and columns.

Table Editor. The QMF interactive editor that lets authorized users make changes to a database without
having to write a query.

table name area. The leftmost column of a QBE example table.

tabular data. The data in columns. The content and the form of the data is specified on FORM.MAIN
and FORM.COLUMNS.

target table. An empty table in which example elements are used to combine columns, combine rows,
or include constant values in a report.

temporary storage. An area where the query, form, procedure, profile, report, chart, and data objects in
current use are stored. All but the data object can be displayed.

temporary storage queue. In CICS, a temporary storage area used for transfer of objects between QMF
and an application or a system service.

time. Designates a time of day in hours and minutes and possibly seconds (a two- or three-part value).

Glossary

298 Installing and Managing QMF for VSE/ESA

thread. The DB2 UDB for OS/390 structure that describes an application’s connection, traces its
progress, provides resource function processing capability, and delimits its accessibility to DB2 UDB for
OS/390 resources and services. Most DB2 UDB for OS/390 functions execute under a thread structure.

three-part name. A fully-qualified name of a table or view, consisting of a location name, owner ID,
and object name. When supported by the application server (that is, DB2 UDB for OS/390), a three-part
name can be used in an SQL statement to retrieve or update the specified table or view at the specified
location.

timestamp. A date and a time, and possibly a number of microseconds (a six- or seven-part value).

TP. Transaction Program

TPN. Transaction program name

transaction. The work that occurs between 'Begin Unit of Work' and 'Commit' or 'Rollback'.

transaction program. A program that processes transactions in an SNA network. There are two kinds of
transactions programs: application transaction programs and service transaction programs.

transaction program name. The name by which each program participating in an LU 6.2 conversation
is known. Normally, the initiator of a connection identifies the name of the program it wants to connect
to at the other LU. When used in conjunction with an LU name, it identifies a specific transaction
program in the network.

transient data queue. In CICS, a storage area, whose name is defined in the Destination Control Table
(DCT), where objects are stored for subsequent internal or external processing.

TSO. Time Sharing Option.

two-phase commit. A protocol used in distributed unit of work to ensure that participating relational
database management systems commit or roll back a unit of work consistently.

unit of work. (1) A recoverable sequence of operations within an application process. At any time, an
application process is a single unit of work, but the life of an application process may involve many
units of work as a result of commit or rollback operations. (2) In DRDA, a sequence of SQL commands
that the database manager treats as a single entity. The database manager ensures the consistency of data
by verifying that either all the data changes made during a unit of work are performed or none of them
are performed.

unlike. Refers to two or more different IBM operating environments. For example, unlike distribution is
distribution between DB2 for VM and VSE and DB2 UDB for OS/390. Contrast with like.

unnamed column. An empty column added to an example table. Like a target table, it is used to
combine columns, combine rows, or include constant values in a report.

USA (United States of America) format. A format that represents date and time values as follows:
v Date: mm/dd/yyyy
v Time: hh:mm xM

value. A data element with an assigned row and column in a table.

Glossary

Glossary of Terms and Acronyms 299

variation. A data formatting definition specified on a FORM.DETAIL panel that conditionally can be
used to format a report or part of a report.

view. An alternative representation of data from one or more tables. It can include all or some of the
columns contained in the table or tables on which it is defined. (2) The entity or entities that define the
scope of the data to be searched for a query.

Virtual Storage Extended. An operating system that is an extension of Disk Operating System/ Virtual
Storage. A VSE consists of (1) VSE/Advanced Functions support and (2) any IBM-supplied and
user-written programs that are required to meet the data processing needs of a user. VSE and the
hardware it controls form a complete computing system.

VM. Virtual Machine (IBM operating system). The generic term for the VM/ESA environment.

VSE. Virtual Storage Extended (IBM operating system). The generic term for the VSE/ESA
environment.

WAIT. The keyword for an endless-wait-state problem.

window. A rectangular portion of the screen in which all or a portion of a panel is displayed. A
window can be smaller than or equal to the size of the screen.

Workstation Database Server. The IBM family of DRDA database products on the UNIX and Intel
platforms (such as DB2 Universal Database (UDB), DB2 Common Server, DB2 Parallel Edition, and
DataJoiner.)

wrapping. See “column wrapping” and “line wrapping”.

Glossary

300 Installing and Managing QMF for VSE/ESA

Index

A
abbreviating command

synonyms 142
abbreviations

for command synonyms 142
abend 34
abend during installation 34
access

to objects
controlling 92
database object list,

customizing 97
queries, forms,

procedures 95
SQL GRANT statement 94
SQL REVOKE statement 95

to QMF
connecting to DB2 68
enabling 82
restricting 84

ACQUIRE dbspace statement 102
add

new products 37
adding new products 37
address, governor function

calls 213
ADMADFC defaults module 120,

274
ADMF file 104
administration

acquiring dbspace 102
DB2 system tables 110
granting and revoking

privileges 94
listing user’s tables/views 110
object

controlling access 95
deleting 108
displaying user’s 107
listing user’s 107
transferring ownership 108,

111
Q user profile 82
resources 82
tables, creating 100
user profiles and objects 91

ADMMNICK specification 118
ALL keyword 65

ALL keyword 65 (continued)
DSQSDBUG program

parameter 65
ALLOC parameter, CICS 5
ALLOC.PROC data set 7
ALTER DBSPACE statement 110
ALTER statement

DBSPACE keyword 110
ampersand (&)

in command synonyms 139
ampersands in command

synonyms 139
ANSI support for printing 123
APAR (Authorized Program

Analysis Report) 249, 251
description 249

APPLDATA column 106
application

CICS, starting QMF 51
applying PTFs 39
ASCPUT services, printing 123
assembler

compiling HLASM edit
routine 173

assembling HLASM edit
routine 173

asynchronous processing,
printing 116

authorization
cascading 95
command synonyms 141, 144
creating tables 100
DBA, user Q 82
implicit connection to DB2 68
messages 92
RESOURCE 102
to access QMF 82

automatic routing, print output 115
auxiliary storage 58

B
B parameter 57
base QMF commands as

synonyms 136
batch

starting QMF in 52
updating CSD in 22

batch QMF session 69
bilingual support

forms 111

bilingual support, QMF forms 111
binary data

in reports 237
binary data in reports 237
blanks, restrictions for user ID and

procedure syntax 70
blocks, library 6
BOTTOM command 63
branch addresses, governor 213
Brazilian Portuguese NLF 11

C
calculating

spill file space 59
Canadian French NLF 11
canceling

governor 228
cancellation service, governor 228
cascading authority 95
case, setting 85
CASE column (Q.PROFILES) 85
CEBR transaction

viewing migration messages 265
viewing trace data 247

CEDA 24
chart

format 274
printing

GDDM vs QMF 115
charts

formats 274
printing 114, 115

specific objects 114
support 104

CHARVAL column,
Q.RESOURCE_TABLE 202

Chinese NLF 11
CICS

application, starting QMF 51
calculating storage for QMF 56
command interface modules, edit

routine 168
connecting to DB2 49
CSD modification 23
customization 11, 21
DB2 connection 49
defining edit routine

COBOL 186
HLASM 175

defining GDDM printers 121

© Copyright IBM Corp. 1983, 2000 301

CICS (continued)
deleting QMF V1 270
destination control table

(DCT) 121
DFHEISTG macro 169
ENVIRONMENT values, QMF

profile 88
installing additional 26
interface to governor 209
location of QMF programs 273
partition, defining storage 5
partition size 7
prolog macro, edit routine 168
QMF CICS command

command synonym 137
starting migration utility 262

QMFE transaction 32
startup job 25
tailoring 21
temporary storage 123
terminal operator ID 81
transient data queue 123
TYPETERM entries, QMF

display 249

CICS (Customer Information Control
System) 5

application, starting QMF 51
calculating storage for QMF 56
COBOL edit routine 184
command interface modules, edit

routine 168
connecting to DB2 49
DB2 connection 49
defining edit routine 175

COBOL 186
HLASM 175

defining GDDM printers 121
deleting QMF V1 270
destination control table

(DCT) 121
defining Family 3

printer 121
entries for trace data

queue 243
DFHEISTG macro 169
diagnostic facilities 248
ENVIRONMENT values, QMF

profile 88
HLASM edit routine 173
interface control block 208
interface to governor 209
JCL to define GDDM

printer 121
location of QMF programs 273
multiple transaction IDs 271

CICS (Customer Information Control
System) 5 (continued)

partition, defining storage 5
prolog macro, edit routine 168
QMF CICS command 137

command synonym 137
starting migration utility 262

starting QMF 51
storage 56
support for QMF 271
temporary storage queue 56

printing using QMF
services 123

reports 56, 58
trace data 66, 247

terminal control table (TCT),
defining printers 118

terminal operator ID 81
trace storage 66
transient data queue 66

printing using QMF
services 123

routing output 115
trace data 66, 247

TYPETERM entries, QMF
display 249

CIRB transaction 49
class ID, customizing function

keys 150
CLC numbers 251
COBOL 175
COBOL edit routine

defining to CICS 186
command 87

BOTTOM 63
cancellation messages 228
cancellation service 228
CICS, synonym definition 137
CONNECT 67

DSQSUSER parameter 67
customizing 133
EXEC CICS statement

LINK command 168
RETURN command 169
START command 51

EXIT in procedures 72
function keys, assigning 145
governor exit routine calls 211
interface initialization

messages 234
interface modules (CICS), edit

routine 168
PRINT 113
privileges required 92
program parameters 76

command 87 (continued)
RESET DATA 63
RUN

initial procedure 69
synonym definition 137

SAVE
DATA keyword 63
SHARE parameter 95

SET PROFILE 89
starting QMF 51
synonyms 133
window IDs 153

command synonyms table
creating 134
maintaining 142
views 143

comment
on function keys table 148
on synonyms table 134

comments
on function keys table 148
on synonyms table 134

compiler options
COBOL edit routine 184
governor exit routine 230
HLASM edit routine 173

CONFIRM column
(Q.PROFILES) 85

confirmation panel
displaying 85
table editor 103

confirmation panels
displaying 85
table editor 103

CONNECT authority, granting 81
CONNECT command

errors 234
QMF and DB2 68

connecting DB2 to CICS 49
connection to the database

VSE DB2 to CICS/VSE 49
console 3
control programs, edit routine 163
control section (CSECT),

diagnosis 253
control tables 83

dbspace names/sizes 275
ownership 82
Q.ERROR_LOG 250
Q.OBJECT_DATA 105
Q.OBJECT_DIRECTORY 104
Q.OBJECT_REMARKS 106
Q.PROFILES 84
Q.RESOURCE_TABLE 202
Q.RESOURCE_VIEW 203

302 Installing and Managing QMF for VSE/ESA

copybooks 12
CREATE TABLE statement

command synonyms 134
customized function keys 148
privileges for SAVE DATA 93
resource control table 206
tables for users 100

CREATOR column (Q.PROFILES)
defined 85
role in profile initialization 89

CREATOR parameter,
migration 263

CSD data set 12, 23
CSECT (control section),

diagnosis 253
cursor stability 96
Customer Information Control

System (CICS) 5
application, starting QMF 51
calculating storage for QMF 56
COBOL edit routine 184
command interface modules, edit

routine 168
connecting to DB2 49
DB2 connection 49
defining edit routine 175

COBOL 186
HLASM 175

defining GDDM printers 121
deleting QMF V1 270
destination control table

(DCT) 121
defining Family 3

printer 121
entries for trace data

queue 243
DFHEISTG macro 169
diagnostic facilities 248
ENVIRONMENT values, QMF

profile 88
HLASM edit routine 173
interface control block 208
interface to governor 209
JCL to define GDDM

printer 121
location of QMF programs 273
multiple transaction IDs 271
partition, defining storage 5
prolog macro, edit routine 168
QMF CICS command 137

command synonym 137
starting migration utility 262

starting QMF 51
storage 56
support for QMF 271

Customer Information Control
System (CICS) 5 (continued)

temporary storage queue 56
printing using QMF

services 123
reports 56, 58
trace data 66, 247

terminal control table (TCT),
defining printers 118

terminal operator ID 81
trace storage 66
transient data queue 66

printing using QMF
services 123

routing output 115
trace data 66, 247

TYPETERM entries, QMF
display 249

customizing
additional database 18
CICS 21
function keys 145
object lists 99
QMF 13, 26
QMF commands 133
QMF environment 13, 26
QMF session behavior

using QMF program
parameters 51, 75

using user profile 82

D
data formats 159
data object

BOTTOM command 63
limiting initial rows retrieved 63
performance 238
privileges for SAVE DATA 93
RESET DATA command 63
retrieval 59
SAVE command 63

database
confirming changes 103
connection

authority 82
CICS and DB2 49
QMF to DB2 68

object list, customizing 97
objects

access 92
granting privileges 94
ownership 94
revoking privileges 94
storage for 56

requirements for QMF 7

database (continued)
slow performance 63, 238

DATABASE 2 (DB2) 49
DB2

acquiring a dbspace 102
authority

DBA authority 94
displaying users’ 91

change confirmation panels 103
CICS connection 49
CICS partitions 49
DBA authority 94
deleting QMF V1 objects 268
displaying users’ authority 91
enlarging dbspaces 109
explicit connection 68
granting and revoking

privileges 94
granting CONNECT

authority 81
granting RESOURCE

authority 102
guest sharing 8, 89, 135
implicit connection 68
running without user

interaction 68
SQL authorization ID 68
system tables 110

DB2 customization 13
DB2 for VSE

customization 13
DB2 guest sharing 8
DBCS (double-byte character set)

installing under VSE 35
printing support 75

DBCS (double-byte character set)
support

DSQSDBCS 75
edit codes 196
Katakana characters 196
Latin characters 196
shift characters 196

dbspace 7
acquiring 102
ADD dbspace statement 102
calculating size 102
creating tables 101
deleting 91
enlarging 109
nonrecoverable 103
QMF-supplied tables 275
requirements 7
specifying in user profile 86

DCT (Destination Co ntrol
Table) 121

Index 303

DCT (Destination Co ntrol
Table) 121 (continued)

defining Family 3 printer 121
DCT (Destination Control Table)

entries for trace data queue 243
decimal data, edit routine 161
DECOPT column (Q.PROFILES) 85
default

function keys 146
GDDM module ADMADFC 120
QMF profile 84

default function keys 146
default QMF profile 84
defaults module, GDDM

printing 120
deleting

QMF VSE V1 266
deleting QMF V1 266
DEQ command

print queues 123
trace data 67

DEQ command, storage queues 67
DESCRIBE command

customizing 97
DESCRIBE command,

customizing 97
destination control table (DCT) 12,

22, 23
Destination Control Table

(DCT) 121
defining Family 3 printer 121
entries for trace data queue 243

Deutsch NLF 11
DEVTOK keyword, ADMMNICK

specification 117
DFHEAI/DFHEAI0 modules 168,

173
DFHEIENT prolog macro 168
DFHEISTG macro 169
DFHTEMP, sizing 58
diagnosis 233

aids 240
CICS 248
dumps 248
message support 240
problem reporting 251
Q.ERROR_LOG table 250
SQL return codes 242
symptoms 240
system error messages 242
termination messages 249
trace facility 242

disk storage requirements 6
DISPLAY command, SQL privileges

required 92

DOS printers 120
double-byte character set (DBCS) 9,

35
double-byte character set (DBCS)

support
DSQSDBCS 75
edit codes 196
Katakana characters 196
Latin characters 196
shift characters 196

DRAW command
SQL privileges required 92

DRAW command, SQL privileges
required 92

DSQ3BDEL job 268
DSQ3EDBI 16, 41
DSQ3EINS 9, 15
DSQ3ELNK 10
DSQ3GV3 sample job 230
DSQ3INIT 9, 13
DSQ3nCSD 23
DSQ3nDBI 11, 19
DSQ3nINS 11, 18
DSQ3nLNK 11
DSQ3SETQ 17
DSQ3XCTA sample job 173
DSQ3XCTC sample job 184
DSQAP_CICS_PQNAME

variable 124
DSQAP_CICS_PQTYPE

variable 124
DSQCP global variables 103
DSQDBUG, routing trace data 243
DSQDC_SHOW_PANID global

variable 241
DSQEC_COLS_SQL variable 97
DSQEC_FORM_LANG variable 111
DSQEC_NLFCMD_LANG

variable 111
DSQEC_RERUN_IPROC global

variable 72
DSQEC_TABS_SQL variable 97
DSQSBSTG parameter 57
DSQSDBCS parameter 75
DSQSDBQN parameter 66
DSQSDBQT parameter 66
DSQSDBUG parameter 65
DSQSIROW parameter 63
DSQSMODE parameter 51, 69
DSQSPILL parameter 58
DSQSRUN parameter

defined 69
noninteractive session 72
passing variables 72
used within CICS application 51

DSQSSPQN parameter 58, 62
DSQSUSER parameter 51, 67

defined 67
used within CICS application 51

DSQUECIC edit program 163
DSQUEGV3 phase, governor

exit 212
DSQUnGV3 phase, governor

exit 208
DSQUXCTA sample edit

routine 168, 176
dumps for diagnosis 248
DXEECS control block 169, 178
DXEGOVA control block 215
DXEXCBA control block 220

E
E-deck processing 173, 230
edit

codes 160
binary data 237
CASE field of profile 161
DBCS data 196
locally defined 161
numeric data processing 161
types 160
UDN 163
VSS 163

exit interface 159
control block fields 165
formatting calls 161
HLASM 169
input area 166
output area 166, 167
termination calls 167
VS COBOL II 178

exit phase 165
routine 159

DBCS data 196
defining to CICS

(HLASM) 175
defining to CICS (VS COBOL

II) 186
general structure 163
HLASM 168
sample program

(COBOL) 176
sample program

(HLASM) 168
scratchpad area 178
storing data between

calls 169
VS COBOL II 175

EDIT TABLE command
concurrent editing 95
SQL privileges required 92

304 Installing and Managing QMF for VSE/ESA

English QMF, NLID 11
English support in NLF session 111
ENQ command

print queues 123
trace data 67

ENQ command, storage queues 67,
123

entry point, governor 210
ENTRY_TYPE column (function key

table) 150
environment

changing in QMF profile 88
customizing 82
default setup 271

ENVIRONMENT column
(Q.PROFILES)

DB2 guest sharing 89
role in profile initialization 89

error
incomplete data object 59
initialization 65, 72
insufficient storage 63
messages

authorization 92
during install 34
warning 234

printing 130
QMF log 250
QMF transaction timeout 57
reporting to IBM 251
startup failure 63, 67

error messages 34
estimating

spill file size 59
EXEC CICS LINK command 168
EXEC CICS RETURN

command 169
EXEC CICS START command

migration utility 262
QMF session 51

EXIT command
procedures 72

EXIT command, procedures 72
exits, E-deck processing (VSE) 173,

230
explicit connection

defined 68
granting CONNECT

authority 81
EXPORT TABLE, SQL privileges 92
extended floating point, edit

routine 161

F
F parameter 63
Family 1 printer 117, 118

Family 2 printer 117, 118
Family 3 printer 117, 119
file control table (FCT) 12, 22
floating point data, edit routine 161
FLOATVAL column,

Q.RESOURCE_TABLE 202
formatting calls, edit routine 161
forms

controlling user access 95
creating new edit codes 160
displaying 107
internal stored format 105
listing 107
migrating 260
NLF support 111
printing 114
window IDs 154

French NLF 11
FSFRCE services, printing 123
full-screen panels 151, 153

customized function key
examples 151

panel IDs 153
function calls

branch addresses 213
GOVFUNCT values 212
types 211

function keys
customizing 87

activating new
definitions 156

appearance on screen 150
command 150
examples 151
full-screen panel 151
guidelines 149
help panel 152
problems activating 149
prompt panel 152
updating function key

table 149
user profile modification 156
window panel 152

default settings 146
index on table 149
initialization messages 234
panels 145
table 148

authorizing users 156
creating 148
entering definitions 149
maintenance 156
panel IDs 153

function selection menu 50

G
GDDM (Graphical Data Display

Manager)
ADMADFC defaults

module 120, 274
chart formats 104, 274
default setup 273
error 34
error messages, printing 235
modifying ADMF file 8
nonresident programs,

performance 273
PGF product 274
printer nicknames 116

ADMADFC defaults
module 120

ADMMNICK
specification 117

multiple addresses 121
printing 116, 123
PROCOPT parameter 120
QMF considerations 8
version 2.3 tailoring 8
VSAM requirements 6

GDDM-PGF 37, 274
generic QMF profile 82
German NLF 11
GETVIS 8
GETVIS storage

amounts per user 5, 57
installation requirements 8
setting when QMF starts 57

global variables
confirming database

changes 103
DSQDC_SHOW_PANID 241
DSQEC_RERUN_IPROC 72
English support for NLFs 111
object list, displaying 97
printing 124
window IDs 154

governor exit routine
branch table 213
cancellation service 228
CICS control block interface 208
command processing 213
control information, storing 227
description 199
entry point 210
exit routine information 220
flow of control 208
function calls 213
passing resource control

information 215
performance 214

Index 305

governor exit routine (continued)
program structure 208
resource control table 199
RESOURCE_GROUP 87
sample JCL 230
scratchpad area 227
sharing 209
specifying for resource

groups 206
think time 212
translating, assembling,

link-editing 230
types of function calls 211

GOVFUNCT values for function
calls 212

GRANT statement
CONNECT authority 81
PUBLIC keyword 94
RESOURCE authority 102
WITH GRANT OPTION 94

Graphical Data Display Manager
(GDDM)

ADMADFC defaults
module 120, 274

chart formats 104, 274
default setup 273
error messages, printing 235
nonresident programs,

performance 273
PGF product 274
printer nicknames 116

ADMADFC defaults
module 120

ADMMNICK
specification 117

multiple addresses 121
printing 116, 123
PROCOPT parameter 120

graphics printers, defining
nicknames 116

guest sharing 8, 89

H
Hangeul NLF 11
hardware requirements 3
help

customizing panel function
keys 152, 154

panel test during IVP 32
help panel test during IVP 32
help panels

customized function key
example 152

panel ID 154
HEX function 237
history file, deleting QMF V1 267

HLASM (High-Level Assembler)
edit routine

assembling 173
compiler options 173
defining to CICS 175
edit exit routine

structure 168
edit function call 168
interface control block 169
link-edit 173
program translation 172

governor exit routine 230
printing, sample program 124

home panel 32
during IVP 32

I
I parameter 69
ICU (Interactive Chart Utility) 104,

274
ID 67

CICS terminal operator 81
QMF panels 153

implicit connection 68
IMPORT TABLE command

creating tables 100
default dbspace 275
SQL privileges required 92

incomplete data object 59
index

command synonyms table 134
function key table 149
Q.OBJECT_DATA 105
Q.OBJECT_DIRECTORY

table 104
Q.OBJECT_REMARKS 106
Q.PROFILES table 85
Q.RESOURCE_TABLE 202
recreating 109

initial procedure 69
initial procedures

specifying 69
initialization 49

errors 63, 234
message numbers 241
performance 271
procedure 13
QMF profile values 89
slow performance 72
tracing errors 65

initialization procedure 13
input area

control for formatting 164
control for termination 167

installation
job 15
overview 9
prerequisite software 3

for optional features 4
process 9
verification procedure (IVP) 31

insufficient storage message 63
integer data, edit routine 161
Interactive Chart Utility (ICU) 104,

274
interactive session 69
interface control block

DXEGOVA 215
DXEXCBA 215
HLASM edit routine 169
VS COBOL II 178

INTVAL column,
Q.RESOURCE_TABLE 202

IPL procedures 7
ISC (intersystem

communicaton) 274
isolation levels

cursor stability 96
uncommited read 96

ISQL queries 263
Italian NLF 11
IVP (Installation Verification

Procedure) 31

J
Japanese NLF 11
JCL samples

deleting QMF Version 1 266
governor exit routine 230
printing using VSE POWER 124
using edit routines

COBOL (DSQ3XCTC.Z) 184
HLASM (DSQ3XCTA.Z) 173

K
K parameter 75
Katakana terminals

setting up DBCS support 75
UCF support 11

Katakana terminals, DBCS
support 11, 75

keywords, reporting problems 251
Korean NLF 11

L
L parameter 58
L1 tracing 66
L2 tracing 65
LENGTH column (Q.PROFILES) 85
library exits, E-deck processing 173

306 Installing and Managing QMF for VSE/ESA

library space 6
linear procedures in command

synonyms 138
link-edit jobs 20, 37
link-edit statements

COBOL edit exit routine 184
governor exit routine 230
HLASM edit exit routine 173

LIST command
ALL keyword 107
customizing 97

list view
rules 99

literals in command synonyms 140
location window IDs 154
locks on tables

releasing control tables 63
SQL GRANT statement 95

logon to QMF
enabling 82
restricting 84

loop problems, initialization 72

M
M parameter 69
macros to define printers 121
maintenance

command synonym table 142
displaying objects 107
enlarging dbspace for

objects 109
function key table 156
listing objects 107
listing tables 110
listing views 110
QMF and database objects 104

message
authorization 92
canceling user activity,

governor 228
incomplete data object 59
insufficient storage 63
log from migration 265
printer name 130
printing errors 235, 237
QMF message services 240
row limit exceeded 200
tracing 66
warning, QMF Home panel 234

migrating
CICS 37
DB2 37
GDDM 37

migration 259
column values 260
ISQL queries 262, 263

migration 259 (continued)
message log 265
parameter values 262, 265
replacing objects 264
user profiles 265
utility 260

MODEL column 88, 105
MRO (multiregion operation) 274
MSGLOG parameter, migration 265
multiple user mode (DB2) 49

N
name

ADMMNICK specification 117
column in control tables 105
printers 116
spill file storage 62
trace data storage 66

NAME parameter, migration 264
nickname

defined 116
defining multiple printers 119
errors during printing 235

Nihongo NLF 11
NLF

CLC numbers, ServiceLink 251
command synonyms 138
English support 111
governor, sharing 209
multiple profiles 84
QMF profile values 84
starting QMF 51
TRANSLATION column

(Q.PROFILES) 83
NLF (national language feature)

customize QMF 18
installation verification procedure

(IVP) 34
NLID 10
overview 10
re-installing 38
updating maps 40
VSAM catalog requirements 6

NLF (National Language Feature)
changing in QMF profile 87
DBCS printing 75

NONE keyword 65
noninteractive session

ID and password 67
method for connecting to

DB2 68
starting 69

nonrecoverable dbspace 103
Notices 277
NUMBER column (function key

table) 151

numeric data conversion, edit
routine 161

O
object 5, 81

authorization to use 92
cascading authority 95
control tables 104
deleting 108, 111
displaying 107
enlarging dbspace 109
internal representation 104, 260
list

customizing 98
default views 97
window IDs 154

listing 107
maintenance 104
migration 262
name, command synonym 136
ownership 94
privileges 92
retrieval storage 58
sharing 95, 107
standards for creating 96
storage 56
transferring ownership

queries, forms,
procedures 108

tables, views 111
OBJECT column (synonyms

table) 134, 137
object lists

customizing 99
OBJECTLEVEL column, QMF control

tables 105
online support, DB2 49
open enrollment 83
OS/2 printers 120
output area

control for formatting 164
control for termination 167

OWNER column, QMF control
tables 105

ownership
control tables 82
how QMF tracks 104
transferring 108, 111

P
page sizes for dbspace 102
panel

class ID 150
confirmation 85, 103
customized function keys 145

Index 307

panel (continued)
file (DSQPNLn)

error message 35
loading 15
updating 39

governor prompt 199
IDs 153
print and display support 273

PANEL column (function key
table) 150

panel file (DSQPNLn)
error message 35
loading 15
updating 39

panels
class ID 150
confirmation 85, 103
customized function keys 145
governor prompt 199
IDs 153
print and display support 273

parameters
migration utility 262
passed to edit routine 164
QMF program 55, 76

partition size
CICS 7
installation only 8

partition storage 5, 57
password, connection to DB2 67
passwords 17
PC printers 120
performance

data retrieval 63
eliminating duplicate rows 99
governor exit routine 214
initialization 72
loading QMF to SVA 273
QMF transaction timeout 57
reports 58, 63
resident programs 271
slow, causes 238
table indexes 101
using spill file 58, 61

PF keys 87
PF_SETTING column (function key

table) 151
PFKEYS column (Q.PROFILES) 87
phases 39
Portuguese NLF 11
POWER queues, printing 124
prerequisite software 3

for optional features 4
preventive service 6
PRINT command 115, 124

PRINT command 115, 124
(continued)

routing to named
destinations 115, 124

PRINT TABLE command, SQL
privileges required 92

printer
ANSI support

GDDM nicknames 121
graphic device 115
QMF-provided services 123

control keywords
(PRINTCTL) 120

DBCS support 75
DOS 120
Family 1 117
Family 2 118
Family 3 119
length of output 85
multiple addresses 117, 121
nicknames 116, 117
OS/2 120
PROCOPT parameter 120
width of output 85

PRINTER column (Q.PROFILES) 86
printing 113

defining printers to CICS 121
errors 235, 237
QMF vs. GDDM 115
sample program 126
summary 114
temporary storage queue 123
to PC printers 120
transient data queue 123
updating user profiles 130
using GDDM services 116
using QMF services 123
VSE POWER 124

private dbspace 102
privileges 89

commands 92
database objects 92
for table editor 94
GRANT statement 94
granting to all users

(PUBLIC) 94
queries 93
REVOKE statement 95
revoking 95

privileges required for QMF
tasks 92

problem reporting 251
procedures

controlling user access 95
displaying 107

procedures (continued)
initial 69
internal stored format 105
listing 107
maintaining objects 105, 111
migrating 260
printing 114
running without user

interaction 69
using in command

synonyms 138
processing program table (PPT) 12,

25
processor 3
PROCOPT parameter, printing 120
profile

CASE setting, customized
function keys 151

command synonyms 141
creating 82
DB2 guest sharing 89
default values 84
deleting 84, 91
function key customization 156
initialization search order 89
maintenance 104
migrating Version 1 265
multiple (NLFs) 84
print parameters 130
printing 114
Q user ID 82
SET PROFILE command 89
sizing printed reports 130
updating 89, 91

program control table (PCT) 12, 25
program parameters 51, 76

CONNECT ID and password
(DSQSUSER) 67

DBCS support (DSQSDBCS) 75
default values 55
initial procedure (DSQSRUN) 69
interactive session

(DSQSMODE) 69
maximum rows retrieved

(DSQSIROW) 63
name of spill file

(DSQSSPQN) 62
names 55
noninteractive session

(DSQSMODE) 69
report storage (DSQSBSTG) 57
short forms 55
trace data storage

(DSQSDBQT) 66

308 Installing and Managing QMF for VSE/ESA

program parameters 51, 76
(continued)

trace data storage name
(DSQSDBQN) 66

tracing errors (DSQSDBUG) 65
prolog macro, edit routine 168
prompt panel

customized function key
example 152

panel ID 154
prompted query

printing 114, 116
SQL privileges 93
window IDs 155

PTFs 39
PTFs, applying

under VSE 39
public dbspace 102
PUBLIC keyword 95

Q
Q.DSQ_RESERVED control

table 275
Q.ERROR_LOG control table 250,

275
Q.INTERNAL_DATA table (V1) 260
Q.OBJECT_DATA control table

default dbspace 275
enlarging dbspace 109
migrating objects 260, 265

Q.OBJECT_DIRECTORY control
table

default dbspace 275
enlarging dbspace 109
maintaining objects 104, 111
migrating objects 260, 265

Q.OBJECT_REMARKS control table
default dbspace 275
enlarging dbspace 109
maintaining objects 106, 111
migrating objects 260, 265

Q.PROFILES control table
adding user profiles 83
DB2 guest sharing 89
default dbspace 275
deleting user profile 84
table structure 84
updating 89
updating PFKEYS field 156
updating RESOURCE_GROUP

field 200
updating SYNONYMS field 141
user modifications 89

Q.RESOURCE_TABLE control table
default dbspace 275
governor exit routines 202

Q.RESOURCE_VIEW, governor 203
Q user ID 32
Q user profile 82
QBE query

printing 114
SQL privileges 93

QMF 81
control tables 16
deleting Version 1 266
error messages, printing 237
establishing user support 81,

112
maps 15, 40
objects 5, 57
packages 16
printing 123
program stamps 249
session 82
storage required 5

QMF command
rules 51

QMFE transaction 32
QMFM transaction ID 261
QMFn transaction ID 51

passing program parameters 51,
75

used from cleared CICS
screen 51

with CICS application 51
queries

changing default type 86
controlling user access 95
deleting 108
displaying 107
GRANT 94
internal stored format 105
listing 107
migrating 260
printing 115
required privileges 93
storage for execution 57
transferring object

ownership 108
query

changing default type 86
deleting

SQL statements 108
displaying 107
internal stored format 105
listing

SQL statements 107
migrating 260
required privileges 93
storage for execution 57

question mark (?)
printer nicknames 121

question mark, printer
nicknames 121

QUEUENAME, QUEUETYPE
keywords 124

R
re-installing QMF 38
RELOAD dbspace command 109
REMARKS column 106
remote database servers, installing

QMF into 27
REPLACE parameter,

migration 264
replacing

existing products 38
text decks and phases 39

replacing existing products 38
replacing text decks and phases 39
reports

binary data 237
data formats 159
printing 114
Q.ERROR_LOG table 250
slow performance 63, 239
storage

allocating extra 58
estimating spill file size 58
setting amount of

GETVIS 57
width/length 85, 130

RESET DATA command 63, 238
resident QMF programs 271
resource

controlling 199
governor exit routine 199
group 84

default (SYSTEM) 202
limiting 199
profile 87

ownership 82
passing control information 215
problem log 250
profile management 84

RESOURCE authority 102
RESOURCE_GROUP column 87,

202
RESOURCE_OPTION column 202
restricted access to QMF 84
RESTRICTED column

changing value to NO 107
defined 105

return codes, SQL 242
REVOKE statement 95

Index 309

rows, controlling number
retrieved 199

rules
command synonyms 136
customizing function keys 149

rules for command synonyms 136,
141

rules for creating a list view 99
rules for customizing function

keys 149
rules for QMF command 51
RUN command

command synonym 137
initial procedure 69
SQL privileges required 92

S
sample

charts 15
tables

installing 16, 33
predefined dbspaces 275

sample charts 15
sample tables 16, 33, 275
SAVE command

DATA keyword 92
default dbspace, tables 275
performance 63
SHARE parameter 95
SQL privileges required 92
TABLE keyword 92

SCOPE resource option 202
scratchpad area

edit routines 178
governor exit routine 227

SEQ column 106
ServiceLink 251
servicing QMF 37

under VSE 37
session 82

cancellation service 228
customizing

at initialization 51
user profile 82

ID and password 67
interactive vs. noninteractive 69

SET PROFILE command 89
share locks on data 63
SHARE parameter 95
shared virtual area (SVA) 272
shift characters 196
sign-on table (SNT) 81
Simplified Chinese NLF 11
small integer data, edit routine 161
SNT (sign-on table) 81

software requirements 3
under VSE 3

Software Support Facility (SSF) 251
SPACE column (Q.PROFILES) 86
space requirements 6
Spanish NLF 11
spill file 58

activating 62
allocating 58
estimating size 59
name 62
performance problems 61
sample calculations 60

SQL
ID 68

attached to user profile 85
command synonym

table 144
connecting to DB2 67
default 68
how QMF stores 106
Q 82

privileges 68
for prompted, QBE

queries 93
for QMF commands 92
for table editor 94
granting 94
Q.PROFILES table update 89
revoking 94
table and view access 92

queries, printing 114
return codes 242
statement 68

ACQUIRE DBSPACE 102
ALTER DBSPACE 110
CREATE TABLE 100
GRANT 94
INSERT (new user

profile) 83
REVOKE 95
UPDATE 90

SQLDBA.“STORED QUERIES”
table 263

SQLDBA password 17
SSF (Software Support Facility) 251
stamps, QMF programs 249
starting QMF 49, 63

as a CICS transaction 51
DB2 connection to CICS 49
errors 63, 67
from a CICS application 51
passing program parameters 51,

75
QMF connection to DB2 68

starting QMF 49, 63 (continued)
QMF profile initialization 89
table lock failure 95

startup job 25
storage

allocating extra report
storage 57, 58

CICS partition 5, 56
data from edit routine 164, 169
dbspace

calculating size 102
increasing size 109

for printing 123
GETVIS 5, 57
incomplete data object 59
insufficient storage prompt 63
limiting users’ storage 58
object retrieval 58
QMF phases and objects 57
reports

allocating extra (spill file) 58
allocating GETVIS 57

sizing DFHTEMP 58, 59
spill file 58
SVA requirements for QMF 272
temporary storage queue

printing using QMF
services 123

reports 56, 58
trace data 66, 247

trace data 66, 243
transient data queue

printing using QMF
services 123

routing output 115
trace data 66, 247

troubleshooting 239
storage violation 34
SUBTYPE column, QMF control

tables 105
support products

CICS 271
GDDM 273
setup 271

SUSPEND keyword 124
SVA (shared virtual area) 272
Swiss French NLF 11
Swiss German NLF 11
SYNONYM_DEFINITION

column 137
SYNONYMS column

(Q.PROFILES) 87
synonyms for QMF commands 133,

135
abbreviations 142

310 Installing and Managing QMF for VSE/ESA

synonyms for QMF commands 133,
135 (continued)

activating for users 141
creating synonyms table 133
index 134
initialization messages 234
object name 136
problems activating 136
quotation marks 140
synonym definition 137
syntax 140
table maintenance 142
using variables 139
verb 136

SYSLST
printing 123
routing trace data 243

SYSTABAUTH system table 91
system

error messages 242
printing errors 237
tables, DB2 110

SYSTEM profile
changing default values 91
deleting 84

SYSTEM resource group 202
system tables

CICS, deleting QMF V1 270
DB2 91

SYSUSERAUTH system table 91

T
T parameter 65
Table Editor

confirmation panels 103
SQL privileges required 94

tables
command synonym 134
concurrent editing 95
control tables 83
controlling access 92
creating 100
DB2 system 110
deleting 111
enlarging dbspaces 109
function keys 145
indexes 101
listing 110
locks 95
maintenance 110
printing 114
QMF control tables 83
resource control, governor

exit 202
transferring ownership 111

tailoring 21

tape
drive 3

TCT (Terminal Control Table),
defining printers 121

TD keyword 66
TDL edit code 161
temporary storage queue

printing using QMF
services 123

reports 56, 58
trace data 66, 247

terminal 3
changing case 85
DBCS data support 75
GDDM nicknames 116
installation requirements 3
operator ID 81
running without 69
UCF support for Katakana 11

Terminal Control Table (TCT) 121
TERMINAL field, CICS TCT 118
termination calls, edit routine 167
termination messages 249
testing QMF 31
text decks 39
think time 212
timeout, QMF transaction

CICS partition size 239
defining message display 249

TOFAM keyword, ADMMNICK
specification 117

toggle switch, governor exit 202
TONAME keyword, ADMMNICK

specification 118
trace

data
level of detail 65
storage 66
storage queue name 66
viewing 247

facility
file allocation 242
functions 244
starting 65, 244
stopping 248

level of detail 86, 244
message logging 234
storage queue 67

TRACE column (Q.PROFILES) 86
transaction

QMFM 261
QMFn 51
routing requests with MRO and

ISC 274
transferring object ownership 108

transient data queue
printing using QMF

services 123
routing output 115
trace data 66, 247

translation
edit routine

COBOL 183
HLASM 172

governor exit routine 229
TRANSLATION column

(Q.PROFILES) 87
TRMIDNT field, CICS TCT 118
troubleshooting 233

diagnostic aids 240
initialization errors 234
performance problems 238
printing errors 237
storage requirements 239

TS keyword 66
TTL edit code 161
TYPE column, QMF control

tables 105
TYPE parameter, migration 262
TYPETERM specification 249
TYPETERMs for QMF display 249

U
U edit codes, forms 160, 166

defined 160
input area 166

UCF (Uppercase Feature) 11
UDN edit code 163
UID parameter 51
uncommited read 96
UNLOAD dbspace command 109
updating

packages 41
products 38

updating packages 41
updating products 38
Uppercase Feature (UCF) 11
user

adding new 83
authorization for objects 92
CONNECT ID 67
edit routines 159
limiting resources 199
objects 107
password 67
support 81

creating tables 100
object access 92
profile and object

maintenance 104

Index 311

V
V edit codes, forms 160, 166

defined 160
input area 166

variables
global 72
in synonym definitions 139
passing using DSQSRUN

parameter 72
using &ALL 139

VERB column (synonyms
table) 134, 136

verification procedure 31
Version 1 QMF, deleting 266
views

controlling access 92
deleting 111
listing 110
maintenance 110
object lists, customizing 97
privileges for queries 93
privileges for table editor 94
Q.RESOURCE_VIEW, governor

exit 203
recreating 110

virtual storage, estimating 5, 57
virtual storage error 34
Virtual Storage Extended (VSE)

DB2 guest sharing 89, 135
library exit, E-deck

processing 173
operator ID 68, 81
printing to POWER queues 124

VS COBOL IIedit routine
compiling 184
copybook 178
delimiters 186
edit exit routine structure 175
edit program call 176
interface control block 178
link-edit 184
translating for use 183

VSAM catalog requirements 6
VSE (Virtual Storage Extended)

ALLOC statement 7
DB2 guest sharing 89, 135
library exit, E-deck

processing 173
operator ID 68, 81
printing to POWER queues 124

VSE ALLOC statement 7
VSE POWER

printing to 124
VSS edit code 163

W
warning messages 35, 234

WIDTH

column in Q.PROFILES 85

WIDTH column (Q.PROFILES) 85

window panels

customized function key
examples 152

IDs 153

312 Installing and Managing QMF for VSE/ESA

Readers’ Comments — We’d Like to Hear from You

Query Management Facility™

Installing and Managing QMF for
VSE/ESA
Version 7

Publication No. GC27-0721-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GC27-0721-00

GC27-0721-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
Department HHX/H3
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5697-F42

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC27-0721-00

Spine information:

��� Query Management Facility™ Installing and Managing QMF for VSE/ESA Version 7

	Contents
	The QMF Library
	About This Book
	Terminology in This Guide
	Locating Prerequisite Documentation
	How to Use This Book
	What You Should Know before You Begin
	How National Language Feature Information is Represented

	Part 1. Installing QMF on VSE/ESA
	Chapter 1. Before You Begin
	Hardware
	Prerequisite Software
	QMF Storage Requirements
	Apply Service
	Check Space Requirements
	Library Space
	VSAM Catalog
	dbspace
	Check Your CICS Partition Size
	Partition Size for Installation

	Other Planning Considerations
	Tailoring GDDM for QMF and CICS
	Changing GDDM 2.3 Default Parameters
	Run the Installation Verification Procedure (IVP) for GDDM

	Running DB2 Guest Sharing
	Customizing DB2 for Double-Byte Character Support

	Installation Overview
	Base Installation
	Optional Job

	Installing Language Support
	NLF Install Process

	CICS Tailoring

	Chapter 2. Tailoring Your Installation
	Punch Members to an Editor
	Install QMF Base
	Catalog the Initialization Procedure
	Run the QMF Installation Job
	Install QMF Base into DB2 Database

	Tailor QMF for NLF
	Install NLF
	Install QMF NLF into SQL Database

	Link-Edit Jobs for QMF
	Link Jobs for NLF

	Tailor CICS
	Modify the DFHFCT and DFHDCT
	Modify DFHFCT
	Modify DFHDCT

	Define QMF Programs and Transactions to CICS
	Update the CSD

	Run CEDA
	Modify the DFHPCT and DFHPPT
	Modify the DFHPCT
	Modify the DFHPPT

	Modify the CICS Startup Job

	Install QMF for VSE/ESA into a Second CICS System

	Chapter 3. Installing QMF into Remote Database Servers
	Installing QMF Version 7 into a DB2 Universal Database® Remote Server
	Prerequisites
	Punch Members to an Editor
	Installation steps

	Installing QMF Version 7 into a DB2 for AS/400® Server

	Chapter 4. Run the Installation Verification Procedure (IVP)
	Before You Start QMF
	Start and Test QMF
	Run an IVP for NLF
	What if It Didn't Work?

	Chapter 5. How to Maintain QMF
	Adding New Components
	Adding GDDM-PGF
	Adding QMF to Another DB2 Database
	Migrating to New Releases of DB2, CICS, or GDDM
	Binding QMF 7.1 Packages at a Remote Server

	Replacing Existing Components
	Re-installing QMF
	Re-installing an NLF
	Applying Service Updates
	Replacing Text Decks or Phases
	Updating the QMF Panel File
	Updating QMF GDDM Maps
	Updating QMF SQL Packages

	Part 2. Managing QMF for VSE/ESA
	Chapter 6. Starting QMF
	Before You Start QMF
	Quick Start
	Add QMF to the VSE/ESA Function Selection Menu
	Starting QMF from a Cleared CICS Screen
	Starting QMF from a CICS Application
	Starting a Noninteractive Session
	Starting an Interactive Session

	Chapter 7. Customizing Your Start Procedure
	Quick Start
	Customizing Report Storage and Report Performance
	Adjusting GETVIS Storage Used for Report Data (DSQSBSTG)
	Choosing the Right Amount of GETVIS Storage for Each User
	Performance Tradeoffs

	Acquiring Extra Temporary Storage (DSQSPILL)
	Estimating the Space Required for a Spill File
	Using a Spill File in a Noninteractive QMF Session
	Solving Some Spill File Problems

	Specifying the Name of Spill Storage (DSQSSPQN)
	Controlling the Number of Report Rows Retrieved for Display(DSQSIROW)
	Performance with Small DSQSIROW Values
	Performance with Large DSQSIROW Values

	Tracing QMF Activity at the Start of a Session
	Setting the Level of Trace Detail (DSQSDBUG)
	Specifying the Type of CICS Storage for Trace Data (DSQSDBQT)
	Specifying the Name of CICS Storage for Trace Data (DSQSDBQN)

	Controlling Initial Activities during a Session
	Connecting to the Database (DSQSUSER)
	Starting a Noninteractive QMF Session (DSQSMODE)
	Naming a Procedure to Run When QMF Starts (DSQSRUN)
	Running an Initial Procedure Noninteractively
	Performing Interactive QMF Work with an Initial Procedure
	Passing Variable Values to an Initial Procedure

	Setting Printing for Double-Byte Character Set Data (DSQSDBCS)

	Chapter 8. The QMF Session Control Facility
	Installing or Removing Q.SYSTEM_INI
	When Does the Q.SYSTEM_INI Procedure Run?
	Using Q.SYSTEM_INI
	Example Shipped with QMF
	User Session Procedure Example
	Procedure that Displays an Object list

	Security and Sharing Session Procedure
	Diagnosis Considerations

	Chapter 9. Establishing QMF Support for End Users
	Quick Start
	Creating User Profiles to Enable User Access to QMF
	Using the Q User Profile, a Special QMF Profile
	Establishing a Profile Structure for Your Installation
	Adding a New User Profile to the Q.PROFILES Table
	Preventing Users Without Unique Profiles from Using QMF
	Reading the Q.PROFILES Table
	Providing the Correct Profile for the User's Operating Environment
	Storing Profiles in VM DB2 in a Guest-Sharing Environment
	Updating User Profiles
	Using the SET PROFILE Command
	Using SQL UPDATE Statements
	Updating the SYSTEM Profile

	Deleting Profiles from the Q.PROFILES Table

	Controlling Access to QMF and Database Objects
	SQL Privileges Required to Access Objects
	SQL Privileges Required for QMF Commands
	SQL Privileges Required for Prompted and QBE Queries
	SQL Privileges Required for the Table Editor

	Granting and Revoking SQL Privileges
	Using the SQL GRANT Statement
	Using the SQL REVOKE Statement

	Sharing QMF Objects with Other Users
	Allowing Uncommitted Read
	Setting Standards for Creating Objects

	Customizing a User's Database Object List
	Using the Default Object Lists
	Changing the Default List
	Object List Storage Requirement

	Enabling Users to Create Tables in the Database
	Choosing and Acquiring a dbspace for the User
	Using the SQL ACQUIRE Statement
	Sizing a dbspace

	Granting a User DB2 RESOURCE Authority
	Enabling Users to Confirm Table Changes Before They are Made

	Enabling Users to Support a Chart
	Maintaining QMF Objects Using QMF Control Tables
	Reading the Q.OBJECT_DIRECTORY Table
	Reading the Q.OBJECT_DATA Table
	Reading the Q.OBJECT_REMARKS Table
	Listing QMF Queries, Forms, and Procedures
	Displaying QMF Queries, Forms, and Procedures
	Transferring Ownership of Queries, Forms, and Procedures
	Deleting Obsolete Queries, Forms, and Procedures
	Enlarging the dbspace for the QMF Object Control Tables

	Maintaining Tables and Views Using DB2 System Tables
	Listing Tables and Views
	Transferring Ownership of a Table or View
	Deleting a Table or View from the Database

	Enabling English Support in an NLF Environment
	Using Global Variables to Define the Currency Symbol

	Chapter 10. Enabling Users to Print Objects
	Quick Start
	Printing Objects
	Deciding Whether to Use QMF or GDDM Services for Printing
	Using GDDM services to Handle Printing
	Choosing a GDDM Nickname for Your Printer
	Choosing the Right Type of GDDM Device
	Creating the Nickname Specification
	Example Nickname for a Family 1 or 2 GDDM Printer
	Example Nickname for a Family 3 GDDM Printer
	Defining Multiple Nicknames with One Definition
	Examples of Nickname Definitions

	Updating the GDDM Defaults Module (ADMADFC) with the Nickname
	Linking the Nickname with a Physical Device
	Linking a Family 1 or 2 Nickname with a Physical Device
	Linking a Family 3 Nickname with a Physical Device

	How QMF Interfaces with your GDDM Nickname

	Using QMF Services to Handle Printing
	Choosing Between Temporary Storage Queues and Transient DataQueues
	Using the PRINT Command to Route Output to Queues
	Using Global Variables to Define Queues for Printing
	Printing to VSE POWER using QMF
	Modifying Your CICS Startup JCL
	Modifying Your DCT
	Modifying Your Synonym and Function Key Tables
	Sample Program to Segment POWER Output
	Creating the QMF Procedures
	Modifying Your User's Profile
	Using Your New Print Procedure

	Updating User Profiles to Enable GDDM Printing

	Chapter 11. Customizing QMF Commands
	Quick Start
	Creating the Command Synonym Table
	Entering Command Synonym Definitions into the Command Synonym Table
	Choosing a Verb
	Rules for the VERB Column
	Using Base QMF Verbs as Command Synonym Verbs

	Choosing an Object Name
	Choosing the Synonym Definition
	Using a Linear Procedure in the Synonym Definition
	Using Variables in the Synonym Definition
	Keying Information into the SYNONYM_DEFINITION Column

	Activating the Synonyms
	Minimizing Maintenance of Command Synonym Tables
	Assigning One Synonym Table to All Users
	Assigning Views of a Synonym Table to Individual Users
	Synonyms for Public or Private Use
	Synonyms for Public or Group Use
	Synonyms Paired with an Authorization Table

	Chapter 12. Customizing QMF Function Keys
	Quick Start
	Choosing the Keys You Want to Customize
	Default Keys on Full-Screen Panels
	Default Keys on Window Panels

	Creating the Function Key Table
	Entering Your Function Key Definitions into the Table
	Linking a Command with a Function Key
	Labeling the Function Key and Positioning It on the Screen
	Examples of Key Definitions
	Entering a Definition for a Key on a Full-Screen Panel
	Entering a Definition for a Key on a Window Panel
	Entering a Key Definition for a Help or Prompt Panel

	Identifying the Panel You Want to Customize
	Full-Screen Panel Identifiers
	Window Panel Identifiers
	Command Windows
	Forms Windows
	Global Variable Windows
	Help and Prompt Windows
	Location Windows
	Object List Windows
	Prompted Query Windows

	Activating New Function Key Definitions

	Chapter 13. Creating Your Own Edit Codes for QMF Forms
	Quick Start
	Choosing an Edit Code
	Calling Your Exit Routine to Format the Data
	Passing Information To and From the Exit Routine
	Fields of the Interface Control Block
	Fields That Characterize the Input Area
	How U-Type Edit Codes are Represented in the Input Area
	How V-Type Edit Codes are Represented in the Input Area

	Fields That Characterize the Output Area

	Passing Control to the Exit Routine When QMF Terminates
	Writing an Edit Routine in High-Level Assembler (HLASM)
	How an HLASM Edit Routine Interacts with CICS
	How an HLASM Edit Routine Interacts with QMF
	Translating Your Program
	Assembling Your Program
	Link-Editing Your Program
	Example JCL Statements
	Defining the Edit Exit Phase to CICS

	Writing an Edit Routine in VS COBOL II or COBOL for VSE/ESA
	Using Literal Values in a COBOL Program
	How a COBOL Edit Routine Interacts with CICS
	How a COBOL Edit Routine Interacts with QMF
	Translating Your Program
	Compiling Your Program
	Link-Editing Your Program
	Example JCL Statements
	Defining the Edit Exit Phase to CICS

	Writing an Edit Routine in PL/I
	Writing an Edit Routine in PL/I for CICS
	How a PL/I Edit Routine Interacts with CICS
	Translating Your Program
	Link-Editing Your Program
	CICS Program Definition
	Example JCL Statements
	How a PL/I Edit Routine Interacts with QMF

	Handling Double-Byte Character Set Data
	Edit Codes for DBCS Data
	What the Edit Routine Receives
	Data from Graphic Columns
	Data from Character Columns

	Ensuring the Edit Routine Returns the Right Results
	Overflowing the ECSRSLT Field
	Printing the Report Column

	Chapter 14. Controlling QMF Resources Using a GovernorExit Routine
	Quick Start
	Using the IBM-Supplied Governor Exit Routine
	Activating the Default Limits for Number of Rows Retrieved
	How a Governor Exit Routine Controls Resources
	How the Governor Knows What the Resource Limits Are
	How the Governor Knows When You Reach a Resource Limit
	What Happens When You Reach a Resource Limit

	Defining Your Own Resource Limits
	Creating your own Resource Control Table

	Modifying the IBM-Supplied Governor Exit Routine or Writing Your Own
	Program Components of the Governor Exit Routine
	How CICS Interfaces with the Governor Exit Routine
	How and When QMF Calls the Governor Exit Routine
	Points at Which QMF Calls the Governor
	What Happens Upon Entry to the Governor Exit Routine
	Establishing Addressability for Function Calls

	Passing Resource Control Information to the Governor Exit
	Structure of the DXEGOVA Control Block
	Addressing the Resource Control Table
	Structure of the DXEXCBA Control Block

	Storing Resource Control Information for the Duration of a QMF Session
	Canceling User Activity
	Providing Messages for Canceled Activities

	Translating, Assembling, and Link-Editing Your Governor Exit Routine
	Translating Your Governor Exit Program for CICS
	Assembling Your Governor Exit
	Link-Editing Your Governor Exit Routine
	Example JCL Statements

	Chapter 15. Troubleshooting and Problem Diagnosis
	Quick Start
	Troubleshooting Common Problems
	Handling Initialization Errors
	Handling Warning Messages
	Handling GDDM Errors During Printing
	Handling QMF Errors During Printing
	Handling Display Errors
	Using the HEX Function
	Using QMF-Provided Hex and Bit Edit Codes
	Handling Binary Data with User-Written Edit Routines

	Solving Slow Performance Problems
	Resetting the Data Object to Improve Performance
	Increasing the User's Report Storage
	Increasing the Size of the CICS Partition

	Determining the Problem Using Diagnosis Aids
	Choosing the Right Diagnosis Aid for the Symptoms
	Diagnosing Your Problem Using QMF Message Support
	Determining which QMF Function Issued an Error Message
	Handling System Error Messages
	Handling SQL Return Codes

	Using the QMF Trace Facility
	Allocating Storage for Trace Data
	Starting the Trace Facility
	Getting the Right Level of Detail in Your Trace Output
	Tracing at the Module Level
	Viewing QMF Trace Data
	Determining the QMF Service Level
	Turning off the Trace Facility

	Using CICS Diagnostic Facilities
	Identifying QMF in CICS Diagnostic Output
	Defining the Display for a CICS Abend Message

	Using Error Log Reports from the Q.ERROR_LOG Table

	Reporting a Problem to IBM
	Using ServiceLink to Search for Previously Reported Problems
	Working with Your IBM Support Center

	Part 3. Appendixes
	Appendix A. QMF for VSE/ESA Version 7 ProductLimitations
	Appendix B. Migrating from QMF VSE V1 to Version 7
	Quick Start
	Migrating Queries, Forms, and Procedures
	Starting the Migration Utility
	Specifying the Type of Object
	Specifying the Owner of the Object
	Specifying the Name of the Object
	Migrating Version 1 Objects to Version 7 Control Tables
	Viewing Messages from the Migration

	Migrating User Profiles
	Deleting QMF VSE V1 After You Migrate Your Objects
	Deleting QMF VSE V1 from the VSE Sublibrary
	Deleting QMF VSE V1 Information from the History File
	Deleting QMF VSE V1 Objects from the VSE DB2 Database
	Deleting QMF VSE V1 Definitions from the CICS System Tables

	Appendix C. How QMF and GDDM Programs Are Definedto CICS
	How QMF Programs Are Defined to CICS/VSE
	Resident QMF Programs
	How Nonresident Programs Affect Performance
	Loading QMF to the 31-Bit Shared Virtual Area

	How GDDM Definitions Are Loaded During QMF Installation
	How Nonresident GDDM Programs Affect QMF
	How Chart Formats Are Defined
	Adding Charting Function After QMF Installation

	Using Transaction Routing to Control Resource Use

	Appendix D. QMF Control Tables and dbspaces Used byQMF
	Appendix E. Notices
	Trademarks

	Bibliography
	APPC Publications
	CICS Publications
	COBOL Publications
	DATABASE 2 Publications
	DCF Publications
	DRDA Publications
	DXT Publications
	Graphical Data Display Manager (GDDM) Publications
	HLASM Publications
	ISPF/PDF Publications
	OS/390 Publications
	PL/I Publications
	REXX Publications
	ServiceLink Publications
	VM Publications
	VSE Publications

	Glossary of Terms and Acronyms
	Index
	Readers’ Comments — We'd Like to Hear from You

