DB2 for 0S/390

REXX Language Support

Version 5

<|lI!

Note
Before using this information and the product it supports, read the information

in [Notices” on page 41,

First Edition (September 1999)

This edition applies to Version 5 of IBM DATABASE 2 Server for OS/390 (DB2 for 0S/390), 5655-DB2, and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introduction

Who should read this book .
Product terminology and citations
How to read the syntax diagrams

Chapter 2. Coding SQL statements in a REXX application
Defining the SQL communication area. o
Defining SQL descriptor areas.
Accessing the DB2 REXX Language Support appllcatlon programmlng mterfaces
Embedding SQL statements in a REXX procedure . G
Using cursors and statement names . .
Using REXX host variables and data types .

Determining equivalent SQL and REXX data types

Letting DB2 determine the input data type .

Ensuring that DB2 correctly interprets character input data

Passing the data type of an input variable to DB2 .

Retrieving data from DB2 tables

Using indicator variables .

Setting the isolation level of SQL statements in a REXX procedure.

Chapter 3. Using REXX stored procedures

Defining a REXX stored procedure

Writing a REXX stored procedure . .
Calling a stored procedure from a REXX Procedure .

Chapter 4. Installing DB2 REXX Language Support

Step 1: Copy and edit the SMP/E jobs .

Step 2: Run the receive job: DSNTTJRC

Step 3: Run the apply job: DSNTTJAP .

Step 4: Run the Accept Job: DSNTTJAC .

Step 4: Bind the DB2 REXX Language Support packages DSNTIJRX

Chapter 5. Running a DB2 REXX application
Appendix. Sample DB2 REXX application
Notices

Programming mterface mformatron

Trademarks .

Index

© Copyright IBM Corp. 1999

. 29
.41
. 43
. 43

. 45

iV DB2 for 0S/390 V5: REXX Language Support

Chapter 1. Introduction

This document describes IBM DATABASE 2 Server for OS/390 REXX Language
Support, which is a separately-orderable feature of DB2. DB2 REXX Language
Support provides the ability to write SQL application programs in the REXX
programming language. The contents of this document will be incorporated into
future editions of the following DB2 for OS/390 documentation:

Application Programming and SQI Guide
[nstallation Guidd

[SQL Referencd

Who should read this book

This book is for DB2 application developers who are familiar with Structured Query
Language (SQL) and who know the REXX programming language.

Product terminology and citations

In this book, DB2 Server for OS/390 is referred to as "DB2 for OS/390." In cases
where the context makes the meaning clear, DB2 for OS/390 is referred to as
"DB2." When this book refers to other books in this library, a short title is used. (For
example, "See SQL Reference" is a citation to IBM DATABASE 2 Server for OS/390
SQL Reference.)

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2

subsystem.

MVS Represents MVS/Enterprise Systems Architecture (MVS/ESA) or the MVS

element of OS/390.

How to read the syntax diagrams

The following rules apply to the syntax diagrams that are used in this book:

© Copyright IBM Corp. 1999

Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the »—
symbol and end with the —> symbol.

Required items appear on the horizontal line (the main path).

»>—required item ><

Optional items appear below the main path.

2

v
A

»>—required_item
l—optional_item—|

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

|—optiona i tem—l

Y
A

»>—required_item

If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

v
A

»>—required_i tem—Erequi red _choicel
required_choi ce2—|

If choosing one of the items is optional, the entire stack appears below the main
path.

v
A

»>—required_item
i:optional_choicel:‘
optional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

|—de fault_choi ce—l

»>—required_item i:

optional_choice:‘
optional_choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated.

v

»>—required item repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

v
A

»—required_item——repeatable item

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

DB2 for OS/390 V5: REXX Language Support

» Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in all lowercase letters (for example, column-name).
They represent user-supplied names or values.

 If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Chapter 1. Introduction 3

4 DB2 for 0S/390 V5: REXX Language Support

Chapter 2. Coding SQL statements in a REXX application

This section helps you with the programming techniques that are unique to coding
SQL statements in a REXX procedure. For an example of a complete DB2 REXX

procedure, see tAppendix. Sample DB2 REXX application” on page 29.

Defining the SQL communication area

When DB2 prepares a REXX procedure that contains SQL statements, DB2
automatically includes an SQL communication area (SQLCA) in the procedure. The
REXX SQLCA differs from the SQLCA for other languages in the following ways:

The REXX SQLCA consists of a set of separate variables, rather than a
structure.

If you use the ADDRESS DSNREXX 'CONNECT' ssid syntax to connect to DB2, the
SQLCA variables are a set of simple variables.

If you connect to DB2 using the CALL SQLDBS 'ATTACH TO' syntax, the SQLCA
variables are compound variables that begin with the stem SQLCA.

See b

! for a discussion of the methods for connecting a REXX
application to DB2.

You cannot use the INCLUDE SQLCA statement to include an SQLCA in a REXX
program.

fFable 1 lists the variables in a REXX SQLCA.
Table 1. Variables in a REXX SQLCA

Variable Contents

SQLCODE The SQL return code.

SQLERRMC One or more tokens, separated by X'FF', that are substituted for variables in the
descriptions of error conditions.

SQLERRP A product signature and, in the case of an error, diagnostic information such as the
name of the module that detected the error. For DB2 for OS/390, the product signature
is 'DSN'".

SQLERRD.1 An internal error code.

SQLERRD.2 An internal error code.

SQLERRD.3 The number of rows affected after INSERT, UPDATE, and DELETE (but not rows
deleted as a result of CASCADE delete). Set to O if the SQL statement fails, indicating
that all changes made in executing the statement were canceled. Set to -1 for a mass
delete from a table in a segmented table space.

For SQLCODE -911 or -913, SQLERRD.3 can also contain the reason code for a
timeout or deadlock.

SQLERRD.4 Generally contains timerons, a short floating-point value that indicates a rough relative
estimate of resources required. This value does not reflect an estimate of the time
required to execute the SQL statement. After you prepare an SQL statement, you can
use this field as an indicator of the relative cost of the prepared SQL statement. For a
particular statement, this number can vary with changes to the statistics in the catalog.
This value is subject to change between releases of DB2 for OS/390.

SQLERRD.5 The position or column of a syntax error for a PREPARE or EXECUTE IMMEDIATE
statement.

SQLERRD.6 An internal error code.

© Copyright IBM Corp. 1999

Table 1. Variables in a REXX SQLCA (continued)

Variable Contents

SQLWARN.O Blank if all other indicators are blank; W if at least one other indicator also contains a
W.

SQLWARN.1 W if the value of a string column was truncated when assigned to a host variable.

SQLWARN.2 W if null values were eliminated from the argument of a column function; not
necessarily set to W for the MIN function because its results are not dependent on the
elimination of null values.

SQLWARN.3 W if the number of result columns is larger than the number of host variables. Z if the
ASSOCIATE LOCATORS statement contains fewer locators than the stored procedure
returned.

SQLWARN.4 W if a prepared UPDATE or DELETE statement does not include a WHERE clause.

SQLWARN.5 W if the SQL statement was not executed because it is not a valid SQL statement in
DB2 for OS/390.

SQLWARN.6 W if the addition of a month or year duration to a DATE or TIMESTAMP value results in
an invalid day (for example, June 31). Indicates that the value of the day was changed
to the last day of the month to make the result valid.

SQLWARN.7 W if one or more nonzero digits were eliminated from the fractional part of a number
that was used as the operand of a decimal multiply or divide operation.

SQLWARN.8 W if a character that could not be converted was replaced with a substitute character.

SQLWARN.9 W if arithmetic exceptions were ignored during COUNT DISTINCT processing. Z if the
stored procedure returned multiple result sets.

SQLWARN.10 W if at least one character field of the SQLCA is invalid due to a character conversion
error.

SQLSTATE A return code for the outcome of the most recent execution of an SQL statement.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement
executes. An application can check these variable values to determine whether the
last SQL statement was successful.

Defining SQL descriptor areas

The following statements require an SQL descriptor area (SQLDA):
* CALL...USING DESCRIPTOR descriptor-name

* DESCRIBE statement-name INTO descriptor-name

* DESCRIBE CURSOR host-variable INTO descriptor-name

* DESCRIBE INPUT statement-name INTO descriptor-name

* DESCRIBE PROCEDURE host-variable INTO descriptor-name
» DESCRIBE TABLE host-variable INTO descriptor-name
 EXECUTE...USING DESCRIPTOR descriptor-name

* FETCH...USING DESCRIPTOR descriptor-name

* OPEN...USING DESCRIPTOR descriptor-name

* PREPARE...INTO descriptor-name

A REXX procedure can contain more than one SQLDA. Each SQLDA consists of a
set of REXX variables with a common stem. The stem must be a REXX variable
name that contains no periods and is the same as the value of descriptor-name that
you specify when you use the SQLDA in an SQL statement. DB2 does not support
the INCLUDE SQLDA statement in REXX.

6 DB2 for 0S/390 V5: REXX Language Support

able A shows the variable names in a REXX SQLDA. The values in the second
column of the table are values that DB2 inserts into the SQLDA when the statement
executes. Except where noted otherwise, the values in the third column of the table
are values that the application must put in the SQLDA before the statement
executes.

Table 2. Fields of a REXX SQLDA

Variable name

Usage in DESCRIBE Usage in FETCH, OPEN,
and PREPARE INTO EXECUTE, and CALL

stem.SQLD

The number of columns that are described in The number of host variables that are used
the SQLDA. Double that number if USING by the SQL statement.

BOTH appears in the DESCRIBE or

PREPARE INTO statement. Contains a O if

the statement string is not a query.

For DESCRIBE PROCEDURE, the number
of result sets returned by the stored
procedure. Contains a 0 if no result sets are
returned.

Each SQLDA contains stem.SQLD of the following variables. Therefore, 1<=n<=stem.SQLD. There is one occurrence
of each variable for each column of the result table or host variable that is described by the SQLDA.

stem.n.SQLTYPE

Indicates the data type of the column or Indicates the data type of the host variable

parameter and whether it can contain null and whether an indicator variable is

values. For a description of the type codes, provided. Host variables for datetime values

see Appendix C of mﬁ must be character string variables. For
FETCH, a datetime type code means a
fixed-length character string. For a

description of the type codes, see Appendix
C of w

stem.n.SQLLEN

For a column other than a DECIMAL or For a host variable that does not have a
NUMERIC column, the length attribute of the decimal data type, the length attribute of the
column or parameter. For datetime data, the host variable. See Appendix C of |.ST.L|
length of the string representation of the Referencd for a description of allowable
value. See Appendix C of m for values.

a description of allowable values.

stem.n.SQLPRECISION

For a DECIMAL or NUMERIC column, the For a host variable with a decimal data type,
precision of the column or parameter. the precision of the host variable.

stem.n.SQLSCALE

For a DECIMAL or NUMERIC column, the For a host variable with a decimal data type,
scale of the column or parameter. the scale of the host variable.

stem.n.SQLCCSID

For a string column or parameter, the CCSID For a string host variable, the CCSID of the
of the column or parameter. host variable.

stem.n.SQLLOCATOR

For DESCRIBE PROCEDURE, the value of Not used.
a result set locator.

stem.n.SQLDATA

Not used. Before EXECUTE or OPEN, contains the
value of an input host variable. The
application must supply this value.

After FETCH, contains the values of an
output host variable.

Chapter 2. Coding SQL statements in a REXX application 7

Table 2. Fields of a REXX SQLDA (continued)

Variable name Usage in DESCRIBE Usage in FETCH, OPEN,
and PREPARE INTO EXECUTE, and CALL
stem.n.SQLIND Not used. Before EXECUTE or OPEN, contains a

negative number to indicate that the input
host variable in stem.n.SQLDATA is null. The
application must supply this value.

After FETCH, contains a negative number if
the value of the output host variable in
stem.n.SQLDATA is null.

stem.n.SQLNAME The name of the nth column in the result Not used.
table. For DESCRIBE PROCEDURE,
contains the cursor name that is used by the
stored procedure to return the result set. The
values for SQLNAME appear in the order
that the cursors were opened by the stored
procedure.

Accessing the DB2 REXX Language Support application programming
interfaces

DB2 REXX Language Support includes the following application programming
interfaces:

CONNECT
Connects the REXX procedure to a DB2 subsystem. You must execute
CONNECT before you can execute SQL statements. The syntax of CONNECT
is:

(1)
|_ _| 'CONNECT' 'subsystem- ID’J ><
Address DSNREXX REXX-variable

-
>

Notes:
1 CALL SQLDBS 'ATTACH TO' -ssid is equivalent to ADDRESS DSNREXX 'CONNECT" -ssid.

EXECSQL
Executes SQL statements in REXX procedures. The syntax of EXECSQL is:

(1)
"EXECSQL" "SQL-statement "
|—Addr*ess DSNREXX—| REXX-variabZeJ

v
A

[N

Notes:

1 CALL SQLEXEC is equivalent to EXECSQL.
See [Embedding SQI statements in a REXX procedure” an page d for more
information.

DISCONNECT
Disconnects the REXX procedure from a DB2 subsystem. You should execute

8 DB2 for 0S/390 V5: REXX Language Support

DISCONNECT to release resources that are held by DB2. The syntax of
DISCONNECT is:

(1)
'DISCONNECT' ><

»>p-

|—Add\ress DSNREXXJ

Notes:
1 CALL SQLDBS 'DETACH' is equivalent to DISCONNECT.
These application programming interfaces are available through the DSNREXX host

command environment. To make DSNREXX available to the application, invoke the
RXSUBCOM function. The syntax is:

A\
A

»>—RXSUBCOM— (I_'/-\DD' _| ,—'DSNREXX'—,——"'DSNREXX")
'DELETE'

The ADD function adds DSNREXX to the REXX host command environment table.
The DELETE function deletes DSNREXX from the REXX host command
environment table.

@ shows an example of REXX code that makes DSNREXX available to an

application.
"SUBCOM DSNREXX' /* HOST CMD ENV AVAILABLE? */
IF RC THEN /% IF NOT, MAKE IT AVAILABLE =*/

S_RC = RXSUBCOM('ADD', 'DSNREXX','DSNREXX")
/* ADD HOST CMD ENVIRONMENT */

ADDRESS DSNREXX /* SEND ALL COMMANDS OTHER */
/* THAN REXX INSTRUCTIONS TO =*/
/* DSNREXX */
/* CALL CONNECT, EXECSQL, AND =*/
/* DISCONNECT INTERFACES */

S_RC = RXSUBCOM('DELETE"', 'DSNREXX','DSNREXX")
/* WHEN DONE WITH */
/* DSNREXX, REMOVE IT. */

Figure 1. Making DSNREXX available to an application

Embedding SQL statements in a REXX procedure

You can code SQL statements in a REXX procedure wherever you can use REXX
commands. DB2 REXX Language Support allows all SQL statements that DB2 for
0OS/390 supports, except the following statements:

« BEGIN DECLARE SECTION

e DECLARE STATEMENT

* END DECLARE SECTION

* INCLUDE

* SELECT INTO

+ WHENEVER

Chapter 2. Coding SQL statements in a REXX applicaton 9

10

Each SQL statement in a REXX procedure must begin with EXECSQL, in either
upper-, lower-, or mixed-case. One of the following items must follow EXECSQL.:

* An SQL statement enclosed in single or double quotation marks.

* A REXX variable that contains an SQL statement. The REXX variable must not
be preceded by a colon.

For example, you can use either of the following methods to execute the COMMIT
statement in a REXX procedure:
EXECSQL "COMMIT"

rexxvar="COMMIT"
EXECSQL rexxvar

You cannot execute a SELECT, INSERT, UPDATE, or DELETE statement that
contains host variables. Instead, you must execute PREPARE on the statement,
with parameter markers substituted for the host variables, and then use the host
variables in an EXECUTE, OPEN, or FETCH statement. See L

lariahles and data types” on page 11 for more information.

An SQL statement follows rules that apply to REXX commands. The SQL statement
can optionally end with a semicolon and can be enclosed in single or double
quotation marks, as in the following example:

"EXECSQL COMMIT';

Comments: You cannot include REXX comments (/* ... */) or SQL comments (--)
within SQL statements. However, you can include REXX comments anywhere else
in the procedure.

Continuation for SQL statements: SQL statements that span lines follow REXX
rules for statement continuation. You can break the statement into several strings,
each of which fits on a line, and separate the strings with commas or with
concatenation operators followed by commas. For example, either of the following
statements is valid:
EXECSQL ,

"UPDATE DSN8510.DEPT" ,

"SET MGRNO = '000010'" ,
"WHERE DEPTNO = 'D11'"

"EXECSQL " |]

" UPDATE DSN8510.DEPT " || ,
" SET MGRNO = '000010'" ||

" WHERE DEPTNO = 'DI11'"

Including code: The EXECSQL INCLUDE statement is not valid for REXX. You
therefore cannot include externally defined SQL statements in a procedure.

Margins: Like REXX commands, SQL statements can begin and end anywhere on
a line.

Names: You can use any valid REXX name that does not end with a period as a
host variable. However, host variable names should not begin with 'SQL', 'RDI',
'DSN', 'RXSQL', or 'QRW'. Variable names can be at most 64 bytes.

Nulls: A REXX null value and an SQL null value are different. The REXX language

has a null string (a string of length 0) and a null clause (a clause that contains only

blanks and comments). The SQL null value is a special value that is distinct from all
nonnull values and denotes the absence of a value. Assigning a REXX null value to
a DB2 column does not make the column value null.

DB2 for OS/390 V5: REXX Language Support

Statement labels: You can precede an SQL statement with a label, in the same
way that you label REXX commands.

Handling errors and warnings: DB2 does not support the SQL WHENEVER
statement in a REXX procedure. To handle SQL errors and warnings, use the
following methods:

» To test for SQL errors or warnings, test the SQLCODE or SQLSTATE value and
the SQLWARN. values after each EXECSQL call. This method does not detect
errors in the REXX interface to DB2.

» To test for SQL errors or warnings or errors or warnings from the REXX interface
to DB2, test the REXX RC variable after each EXECSQL call. frable 3 lists the
values of the RC variable.

You can also use the REXX SIGNAL ON ERROR and SIGNAL ON FAILURE
keyword instructions to detect negative values of the RC variable and transfer
control to an error routine.

Table 3. REXX return codes after SQL statements

Return code Meaning

0 No SQL warning or error occurred.
+1 An SQL warning occurred.
-1 An SQL error occurred.

Using cursors and statement names

In REXX SQL applications, you must use a predefined set of names for cursors or
prepared statements. The following names are valid for cursors and prepared
statements in REXX SQL applications:

cl to c100
Cursor names for DECLARE CURSOR, OPEN, CLOSE, and FETCH
statements. Use c1 to c50 for cursors that are defined without the WITH HOLD
option. Use c¢51 to ¢100 for cursors that are defined with the WITH HOLD
option. All cursors are defined with the WITH RETURN option, so any cursor
name can be used to return result sets from a REXX stored procedure.

c101 to c200
Cursor names for ALLOCATE, DESCRIBE, FETCH, and CLOSE statements
that are used to retrieve result sets in a program that calls a stored procedure.

sl to s100
Prepared statement names for DECLARE STATEMENT, PREPARE,
DESCRIBE, and EXECUTE statements.

Use only the predefined names for cursors and statements. Do not use any of the
predefined names for host variables.

Using REXX host variables and data types

You do not declare host variables in REXX. When you need a new variable, you
use it in a REXX command. When you use a REXX variable as a host variable in
an SQL statement, you must precede the variable with a colon.

Chapter 2. Coding SQL statements in a REXX application 11

A REXX host variable can be a simple or compound variable. DB2 REXX Language
Support evaluates compound variables before DB2 processes SQL statements that
contain the variables. In the following example, the host variable that is passed to
DB2 is :x.1.2:

a=1

b=2

EXECSQL 'OPEN C1 USING :x.a.b'

Determining equivalent SQL and REXX data types

All REXX data is string data. Therefore, when a REXX procedure assigns input data
to a table column, DB2 converts the data from a string type to the table column
type. When a REXX procedure assigns column data to an output variable, DB2
converts the data from the column type to a string type.

When you assign input data to a DB2 table column, you can either let DB2
determine the type that your input data represents, or you can use an SQLDA to tell
DB2 the intended type of the input data.

Letting DB2 determine the input data type

You can let DB2 assign a data type to input data based on the format of the input
string. ffahle 4 shows the SQL data types that DB2 assigns to input data and the
corresponding formats for that data. The two SQLTYPE values that are listed for
each data type are the value for a column that does not accept null values and the
value for a column that accepts null values.

If you do not assign a value to a host variable before you assign the host variable
to a column, DB2 returns an error code.

Table 4. SQL input data types and REXX data formats

SQL data type SQLTYPE for data REXX input data format
assigned by DB2 type
INTEGER 496/497 A string of numerics that does not contain a decimal point or

exponent identifier. The first character can be a plus (+) or minus (=)
sign. The number that is represented must be between -2147483647
and 2147483647, inclusive.

DECIMAL(p,s)

484/485 One of the following formats:

» A string of numerics that contains a decimal point but no exponent
identifier. p represents the precision and s represents the scale of
the decimal number that the string represents. The first character
can be a plus (+) or minus (=) sign.

» A string of numerics that does not contain a decimal point or an
exponent identifier. The first character can be a plus (+) or minus
(=) sign. The number that is represented is less than -2147483647
or greater than 2147483647.

FLOAT

480/481 A string that represents a number in scientific notation. The string
consists of a series of numerics followed by an exponent identifier
(an E or e followed by an optional plus (+) or minus (=) sign and a
series of numerics). The string can begin with a plus (+) or minus (=)
sign.

12 DB2 for 0S/390 V5: REXX Language Support

Table 4. SQL input data types and REXX data formats (continued)

SQL data type SQLTYPE for data REXX input data format
assigned by DB2 type
VARCHAR(n) 448/449 One of the following formats:

» A string of length n, enclosed in single or double quotation marks.

* The character X or x, followed by a string enclosed in single or
double quotation marks. The string within the quotation marks has
a length of 2*n bytes and is the hexadecimal representation of a
string of n characters.

» A string of length n that does not have a numeric or graphic
format, and does not satisfy either of the previous conditions.

VARGRAPHIC(n) 464/465 One of the following formats:

* The character G, g, N, or n, followed by a string enclosed in single
or double quotation marks. The string within the quotation marks
begins with a shift-out character (X'OE") and ends with a shift-in
character (X'OF'"). Between the shift-out character and shift-in
character are n double-byte characters.

* The characters GX, Gx, gX, or gx, followed by a string enclosed in
single or double quotation marks. The string within the quotation
marks has a length of 4*n bytes and is the hexadecimal
representation of a string of n double-byte characters.

For example, when DB2 executes the following statements to update the MIDINIT
column of the EMP table, DB2 must determine a data type for HVMIDINIT:
SQLSTMT="UPDATE EMP" ,

"SET MIDINIT = ?"

"WHERE EMPNO = '000200'"
"EXECSQL PREPARE S100 FROM :SQLSTMT"
HVMIDINIT="H'
"EXECSQL EXECUTE S100 USING" ,

" :HVMIDINIT"

Because the data that is assigned to HVMIDINIT has a format that fits a character
data type, DB2 REXX Language Support assigns a VARCHAR type to the input
data.

Ensuring that DB2 correctly interprets character input data

To ensure that DB2 REXX Language Support does not interpret character literals as
graphic or numeric literals, precede and follow character literals with a double
quotation mark, followed by a single quotation mark, followed by another double
quotation mark (™).

Enclosing the string in apostrophes is not adequate because REXX removes the
apostrophes when it assigns a literal to a variable. For example, suppose that you
want to pass the value in host variable stringvar to DB2. The value that you want to
pass is the string '100'. The first thing that you need to do is to assign the string to
the host variable. You might write a REXX command like this:

stringvar = '100'

After the command executes, stringvar contains the characters 100 (without the
apostrophes). DB2 REXX Language Support then passes the numeric value 100 to
DB2, which is not what you intended.

However, suppose that you write the command like this:

Chapter 2. Coding SQL statements in a REXX applicaton 13

stringvar = "'"100""'"

In this case, REXX assigns the string '100' to stringvar, including the single
quotation marks. DB2 REXX Language Support then passes the string '100' to DB2,
which is the desired result.

Passing the data type of an input variable to DB2

In some cases, you might want to determine the data type of input data for DB2.
For example, DB2 does not assign data types of SMALLINT, CHAR, or GRAPHIC
to input data. If you assign or compare this data to columns of type SMALLINT,
CHAR, or GRAPHIC, DB2 must do more work than if the data types of the input
data and columns match.

To indicate the data type of input data to DB2, use an SQLDA. For example,
suppose you want to tell DB2 that the data with which you update the MIDINIT
column of the EMP table is of type CHAR, rather than VARCHAR. You need to set
up an SQLDA that contains a description of a CHAR column, and then prepare and
execute the UPDATE statement using that SQLDA:

INSQLDA.SQLD = 1 /* SQLDA contains one variable */
INSQLDA.1.SQLTYPE = 453 /* Type of the variable is CHAR, */

/* and the value can be null */
INSQLDA.1.SQLLEN =1 /* Length of the variable is 1 */
INSQLDA.1.SQLDATA = 'H' /* Value in variable is H */
INSQLDA.1.SQLIND =0 /* Input variable is not null */

SQLSTMT="UPDATE EMP" ,
"SET MIDINIT = 2" ,
"WHERE EMPNO = '000200"'"
"EXECSQL PREPARE S100 FROM :SQLSTMT"
"EXECSQL EXECUTE S100 USING" ,
"DESCRIPTOR :INSQLDA"

Retrieving data from DB2 tables

Although all output data is string data, you can determine the data type that the
data represents from its format and from the data type of the column from which the
data was retrieved. [ahle § gives the format for each type of output data.

Table 5. SQL output data types and REXX data formats

SQL data type

REXX output data format

SMALLINT
INTEGER

A string of numerics that does not contain leading zeroes, a decimal point, or an
exponent identifier. If the string represents a negative number, it begins with a minus
(=) sign. The numeric value is between -2147483647 and 2147483647, inclusive.

DECIMAL(p,s)

A string of numerics with one of the following formats:

» Contains a decimal point but not an exponent identifier. The string is padded with
zeroes to match the scale of the corresponding table column. If the value represents
a negative number, it begins with a minus (=) sign.

« Does not contain a decimal point or an exponent identifier. The numeric value is less
than -2147483647 or greater than 2147483647. If the value is negative, it begins
with a minus (=) sign.

FLOAT(n)
REAL
DOUBLE

A string that represents a number in scientific notation. The string consists of a numeric,
a decimal point, a series of numerics, and an exponent identifier. The exponent
identifier is an E followed by a minus (=) sign and a series of numerics if the number is
between -1 and 1. Otherwise, the exponent identifier is an E followed by a series of
numerics. If the string represents a negative number, it begins with a minus (=) sign.

14 DB2 for 0S/390 V5: REXX Language Support

Table 5. SQL output data types and REXX data formats (continued)

SQL data type

REXX output data format

CHAR(n) A character string of length n bytes. The string is not enclosed in single or double
VARCHAR(n) quotation marks.
GRAPHIC(n) A string of length 2*n bytes. Each pair of bytes represents a double-byte character. This

VARGRAPHIC(n)

string does not contain a leading G, is not enclosed in quotation marks, and does not
contain shift-out or shift-in characters.

Because you cannot use the SELECT INTO statement in a REXX procedure, to
retrieve data from a DB2 table you must prepare a SELECT statement, open a
cursor for the prepared statement, and then fetch rows into host variables or an
SQLDA using the cursor. The following example demonstrates how you can retrieve
data from a DB2 table using an SQLDA:

SQLSTMT= ,
'SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,' ,
' WORKDEPT, PHONENO, HIREDATE, JOB,' ,
' EDLEVEL, SEX, BIRTHDATE, SALARY,' ,
' BONUS, COMM' ,
' FROM EMP'
EXECSQL DECLARE C1 CURSOR FOR S1
EXECSQL PREPARE S1 INTO :0UTSQLDA FROM :SQLSTMT
EXECSQL OPEN C1
Do Unti1(SQLCODE -= 0)
EXECSQL FETCH C1 USING DESCRIPTOR :0UTSQLDA
If SQLCODE = @ Then Do
Line = "'
Do I = 1 To OUTSQLDA.SQLD
Line = Line OUTSQLDA.I.SQLDATA
End I
Say Line
End
End

Using indicator variables

When you retrieve a null value from a column, DB2 puts a negative value in an
indicator variable to indicate that the data in the corresponding host variable is null.
When you pass a null value to DB2, you assign a negative value to an indicator
variable to indicate that the corresponding host variable has a null value.

The way that you use indicator variables for input host variables in REXX
procedures is slightly different from the way that you use indicator variables in other
languages. When you want to pass a null value to a DB2 column, in addition to
putting a negative value in an indicator variable, you also need to put a valid value
in the corresponding host variable. For example, to set a value of WORKDEPT in
table EMP to null, use statements like these:
SQLSTMT="UPDATE EMP" ,

"SET WORKDEPT = ? ?"
HVWORKDEPT="'000"
INDWORKDEPT=-1

"EXECSQL PREPARE S100 FROM :SQLSTMT"
"EXECSQL EXECUTE S100 USING :HVWORKDEPT :INDWORKDEPT"

After you retrieve data from a column that can contain null values, you should
always check the indicator variable that corresponds to the output host variable for
that column. If the indicator variable value is negative, the retrieved value is null, so
you can disregard the value in the host variable.

Chapter 2. Coding SQL statements in a REXX application 15

In the following example, the phone number for employee Haas is selected into
variable HVPhone. After the SELECT statement executes, if no phone number for
employee Haas is found, indicator variable INDPhone contains -1.

SQLSTMT =,
"SELECT PHONENO WHERE LASTNAME='HAAS'"
"EXECSQL PREPARE S1 FROM :SQLSTMT"
"EXECSQL DECLARE C1 CURSOR FOR S1"
"EXECSQL OPEN C1"
"EXECSQL FETCH C1 INTO :HVPhone :INDPhone"
If INDPhone < O Then ,

Say 'Phone number for Haas is null.'

Setting the isolation level of SQL statements in a REXX procedure

16

When you install DB2 REXX Language Support, you bind four packages for
accessing DB2, each with a different isolation level:

Package name
Isolation level

DSNREXRR Repeatable read (RR)

DSNREXRS Read stability (RS)

DSNREXCS Cursor stability (CS)

DSNREXUR Uncommitted read (UR)

To change the isolation level for SQL statements in a REXX procedure, execute the
SET CURRENT PACKAGESET statement to select the package with the isolation

level you need. For example, to change the isolation level to cursor stability,
execute this SQL statement:

"EXECSQL SET CURRENT PACKAGESET='DSNREXCS'"

DB2 for OS/390 V5: REXX Language Support

Chapter 3. Using REXX stored procedures

This chapter contains information about defining, writing, and calling REXX stored
procedures. For information that is common to all stored procedures, see Section 6

of |Application Programming and SQI Guida.

Defining a REXX stored procedure

To define a stored procedure to DB2, you insert a row in catalog table
SYSIBM.SYSPROCEDURES. The stored procedure code does not need to exist
when you insert the row. Defining a REXX stored procedure is the same as defining
any other stored procedure, with the following exceptions:

To indicate that the stored procedure is written in REXX, specify REXX for the
LANGUAGE column value.

The PARMLIST string can include only the CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC data types.

A REXX stored procedure can return only one parameter. Therefore, you can
specify only one entry in the PARMLIST column value as OUT or INOUT. All
other entries must be of type IN. The output variable must be specified last.

A REXX stored procedure can run only in a WLM-established address space.
You therefore need to define a WLM application environment for the stored
procedure and specify the name of that environment in the WLM_ENV column.

Although DB2 REXX Language Support runs under Language Environment, the
REXX stored procedure itself does not. Therefore, if you specify a value for
PGM_TYPE, it is ignored. You can, however, specify Language Environment
run-time options for the DB2 REXX Language Support environment in the
RUNOPTS column.

Example of a definition for a REXX stored procedure: Suppose that you have
written a stored procedure that has these characteristics:

© Copyright IBM Corp. 1999

The stored procedure name is RXCHKTBL.
User ID GROUPADM at any location can run the stored procedure.

The REXX procedure that runs when the CALL statement executes is hamed
RXCHKTBL.

The parameters can have null values.

The stored procedure is written in the REXX language.

The stored procedure should run for no more than 900 CPU service units.
The stored procedure should be deleted from memory when it completes.

The Language Environment run-time option TRAP(ON) should be passed to the
stored procedure.

The stored procedure takes two parameters:
— An input parameter that has a CHAR(8) format
— An output parameter that has a VARCHAR(18) format

The stored procedure returns no result sets.

The stored procedure is part of the WLM application environment named
TESTPRGS.

The stored procedure does not access non-DB2 resources, so it does not need a
special RACF environment.

When control returns to the client program, DB2 should not commit updates
automatically.

17

The following statement places a row that describes RXCHKTBL in the catalog
table SYSPROCEDURES:

INSERT INTO SYSIBM.SYSPROCEDURES
(PROCEDURE, AUTHID, LUNAME, LOADMOD, LINKAGE, COLLID,
LANGUAGE, ASUTIME, STAYRESIDENT, IBMREQD, RUNOPTS,
PARMLIST,RESULT_SETS,WLM_ENV,
EXTERNAL_SECURITY,COMMIT_ON_RETURN)

VALUES ('RXCHKTBL', 'GROUPADM', ' ', 'RXCHKTBL', 'N', ' ',
'"REXX', 900, ' ', 'N', 'TRAP(ON)',
"IN1 CHAR(8) IN,OUT1 VARCHAR(18) OUT',0,'TESTPRGS',
"N',NULL);

Writing a REXX stored procedure

18

A REXX stored procedure is much like any other REXX procedure and follows the
same rules as stored procedures in other languages. It receives input parameters,
executes REXX commands, optionally executes SQL statements, and returns at
most one output parameter. A REXX stored procedure is different from other REXX
procedures in the following ways:

* A REXX stored procedure cannot execute the ADDRESS DSNREXX CONNECT
and ADDRESS DSNREXX DISCONNECT commands. When you execute SQL
statements in your stored procedure, DB2 establishes the connection for you.

* As in other stored procedures, you cannot include the following statements in a
REXX stored procedure:
— CALL
- COMMIT
— CONNECT
— RELEASE
— SET CONNECTION
— SET CURRENT SQLID

Eigure 3 on page 20 shows an example of a REXX stored procedure that executes
DB2 commands. The stored procedure performs the following actions:

* Receives one input parameter, which contains a DB2 command.
* Calls the IFI COMMAND function to execute the command.

» Extracts the command result messages from the IFI return area and places the
messages in a temporary table. Each row of the temporary table contains a
sequence number and the text of one message.

* Opens a cursor to return a result set that contains the command result
messages.

* Returns the unformatted contents of the IFI return area in an output parameter.

Eigure 2 on page 19 shows the definition of the stored procedure.

DB2 for OS/390 V5: REXX Language Support

INSERT INTO SYSIBM.SYSPROCEDURES
("PROCEDURE", "AUTHID", "LUNAME", "LOADMOD", "LINKAGE", "COLLID",
"LANGUAGE", "ASUTIME", "STAYRESIDENT", "IBMREQD", "RUNOPTS",
"PARMLIST",
"RESULT_SETS", "WLM_ENV", "PGM_TYPE",
"EXTERNAL_SECURITY", "COMMIT_ON_RETURN")
VALUES ('COMMAND', 'SYSADM', ' ', 'COMMAND', ' ', ' ',
'"REXX', 0, " ', 'N', 'TRAP(ON)',
'VARCHAR(254) IN, VARCHAR(32704) OUT',
1, 'WLMENVL', 'M',
INI, INI);

Figure 2. Definition for REXX stored procedure COMMAND

Chapter 3. Using REXX stored procedures

19

20

[* REXX */

PARSE UPPER ARG CMD /* Get the DB2 command text x/
/* Remove enclosing quotes */

IF LEFT(CMD,2) = ""'" & RIGHT(CMD,2) = "'"" THEN

CMD = SUBSTR(CMD,2,LENGTH(CMD)-2)

ELSE

IF LEFT(CMD,2) = """'" & RIGHT(CMD,2) = "'""" THEN

CMD = SUBSTR(CMD,3,LENGTH(CMD)-4)

COMMAND = SUBSTR("COMMAND",1,18," ")
/**/
/* Set up the IFCA, return area, and output area for the */
/* IFI COMMAND call. */

/**/

IFCA = SUBSTR('00'X,1,180,'00'X)

IFCA = OVERLAY(D2C(LENGTH(IFCA),2),IFCA,1+0)

IFCA = OVERLAY("IFCA",IFCA,4+1)

RTRNAREASIZE = 262144 /*1048572%*/

RTRNAREA = D2C(RTRNAREASIZE+4,4)LEFT("' ',RTRNAREASIZE,' ')

OUTPUT = D2C(LENGTH(CMD)+4,2)||'0000'X||CMD

BUFFER = SUBSTR(" ",1,16," ")
/**/
/* Make the IFI COMMAND call. */
JEEETIIEE T e e e ek ok ok ok ok ok ok ok ok ok ok kK e ok o ok ok ok ko ok ok ko Kkkkkkkkkkhk [

ADDRESS LINKPGM "DSNWLIR COMMAND IFCA RTRNAREA OUTPUT"

WRC = RC

RTRN= SUBSTR(IFCA,12+1,4)

REAS= SUBSTR(IFCA,16+1,4)

TOTLEN = C2D(SUBSTR(IFCA,20+1,4))
/**/
/* Set up the host command environment for SQL calls. */
/**/

"SUBCOM DSNREXX" /* Host cmd env available? =/

IF RC THEN /* No--add host cmd env */

S_RC = RXSUBCOM('ADD', 'DSNREXX','DSNREXX")
/**/
/* Set up SQL statements to insert command output messages */
/* into a temporary table. */
/**/

SQLSTMT="INSERT INTO SYSIBM.SYSPRINT(SEQNO,TEXT) VALUES(?,?)'

ADDRESS DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"

IF SQLCODE —= O THEN CALL SQLCA

ADDRESS DSNREXX "EXECSQL PREPARE S1 FROM :SQLSTMT"
IF SQLCODE —-= O THEN CALL SQLCA

/**/
/* Extract messages from the return area and insert them into =/

/* the temporary table. */
/**/
SEQNO = 0
OFFSET = 4+1

DO WHILE (OFFSET < TOTLEN)
LEN = C2D(SUBSTR(RTRNAREA,OFFSET,2))
SEQNO = SEQNO + 1
TEXT = SUBSTR(RTRNAREA,OFFSET+4,LEN-4-1)
ADDRESS DSNREXX "EXECSQL EXECUTE S1 USING :SEQNO,:TEXT"
IF SQLCODE -= 0 THEN CALL SQLCA
OFFSET = OFFSET + LEN
END

Figure 3. Example of a REXX stored procedure: COMMAND (Part 1 of 3)

DB2 for OS/390 V5: REXX Language Support

/**/
/* Set up a cursor for a result set that contains the command =/
/* output messages from the temporary table. */

SQLSTMT="'SELECT SEQNO,TEXT FROM SYSIBM.SYSPRINT ORDER BY SEQNO'
ADDRESS DSNREXX "EXECSQL DECLARE C2 CURSOR FOR S2"
IF SQLCODE -= 0 THEN CALL SQLCA

ADDRESS DSNREXX "EXECSQL PREPARE S2 FROM :SQLSTMT"
IF SQLCODE —= O THEN CALL SQLCA

/**/

/* Open the cursor to return the message output result set to =*/
/* the caller. */

/**/

ADDRESS DSNREXX "EXECSQL OPEN C2"
IF SQLCODE —= 0 THEN CALL SQLCA

S_RC = RXSUBCOM('DELETE', 'DSNREXX','DSNREXX') /+ REMOVE CMD ENV =/

EXIT SUBSTR(RTRNAREA,1,TOTLEN+4)

/**/

/* Routine to display the SQLCA */
JEZT IR ERTEE *k kK I I IR *Khhh IR I I h*Kh Kk KKk *k KK I I I I KRR hh IR I I **Kh Kk KKk *%/
SQLCA:
TRACE 0
SAY 'SQLCODE ='SQLCODE
SAY 'SQLERRM ='SQLERRM
SAY 'SQLERRP ='SQLERRP

SAY 'SQLERRD ='SQLERRD.1',',
SQLERRD.2', ",
SQLERRD.3', ",
SQLERRD.4', ",
SQLERRD.5', ",
SQLERRD. 6

SAY 'SQLWARN ='SQLWARN.O',",
SQLWARN.1',",
SQLWARN.2', ",
SQLWARN.3', ",
SQLWARN.4', ",
SQLWARN.5', ",
SQLWARN.6', ",
SQLWARN.7"', ",
SQLWARN.8', ",
SQLWARN.9', ",
SQLWARN. 10
SAY 'SQLSTATE='SQLSTATE

SAY 'SQLCODE ='SQLCODE

Figure 3. Example of a REXX stored procedure: COMMAND (Part 2 of 3)

Chapter 3. Using REXX stored procedures

21

EXIT 'SQLERRM ='SQLERRM';' ,
|| "SQLERRP ='SQLERRP';" ,
"SQLERRD ='SQLERRD.1',",
SQLERRD.2',",
SQLERRD.3',",
SQLERRD.4',",
SQLERRD.5',",
SQLERRD.6';"' ,

|| 'SQLWARN ='SQLWARN.O',',
SQLWARN.1',",
SQLWARN.2',",
SQLWARN.3',",
SQLWARN.4',",
SQLWARN.5',",
SQLWARN.6',",
SQLWARN.7',",
SQLWARN.8',",
SQLWARN.9',",
SQLWARN.10';"
|| "SQLSTATE='SQLSTATE';'

Figure 3. Example of a REXX stored procedure: COMMAND (Part 3 of 3)

Calling a stored procedure from a REXX Procedure

Use the SQL CALL statement in a REXX program to call a stored procedure in any
supported language. The format of the parameters that you pass in the CALL
statement must be compatible with the data types in the PARMLIST column value
of the SYSPROCEDURES row that defines the stored procedure. fable 4 lists each
SQL data type that you can specify in the PARMLIST column and the
corresponding format for a REXX parameter that represents that data type.

Table 6. Parameter formats for a CALL statement in a REXX procedure

SQL data type REXX format

CHARACTER(n) A string of length n, enclosed in single quotation marks.

VARCHAR(n)

VARCHAR(n) FOR BIT DATA

GRAPHIC(n) The character G followed by a string enclosed in single quotation marks. The string
VARGRAPHIC(n) within the quotation marks begins with a shift-out character (X'OE") and ends with a

shift-in character (X'OF"). Between the shift-out character and shift-in character are
n double-byte characters.

Eigure 4 an page 23 demonstrates how a REXX procedure calls the stored

procedure in Eigure 3 on page 2d. The REXX procedure performs the following
actions:

* Connects to the DB2 subsystem that was specified by the REXX procedure
invoker.

» Calls the stored procedure to execute a DB2 command that was specified by the
REXX procedure invoker.

» Retrieves rows from a result set that contains the command output messages.

22 DB2 for 0S/390 V5: REXX Language Support

/* REXX */

PARSE ARG SSID COMMAND /* Get the SSID to connect to */

/* and the DB2 command to be =/

/* executed */
/**/
/* Set up the host command environment for SQL calls. %/
/**/
"SUBCOM DSNREXX" /* Host cmd env available? x/

IF RC THEN /* No--make one */

S_RC = RXSUBCOM('ADD', 'DSNREXX', 'DSNREXX')

/**/

/* Connect to the DB2 subsystem. */

[kkkkdkkdkkdkkkkkokk ko k ko k ok k ok k ko k ko k ko k ko kkkkkkkkhk Rk kkhkkhkk [
ADDRESS DSNREXX "CONNECT" SSID
IF SQLCODE -= 0 THEN CALL SQLCA
PROC = 'COMMAND'

RESULTSIZE = 32703
RESULT = LEFT(' ',RESULTSIZE,' ')

/**/

/+* Call the stored procedure that executes the DB2 command. */
/* The input variable (COMMAND) contains the DB2 command. */
/* The output variable (RESULT) will contain the return area =*/
/* from the IFI COMMAND call after the stored procedure */
/* executes. */

[k dk ko ko ko k ok ko ko ko ko ko ko ko kR kR kR kR Rk kR Rk Rk ko k ok
ADDRESS DSNREXX "EXECSQL" ,
"CALL" PROC "(:COMMAND, :RESULT)"
IF SQLCODE < O THEN CALL SQLCA

SAY 'RETCODE ='RETCODE
SAY 'SQLCODE ='SQLCODE
SAY 'SQLERRM ='SQLERRM
SAY 'SQLERRP ='SQLERRP

SAY 'SQLERRD ='SQLERRD.1',"',
SQLERRD.2', ",
SQLERRD.3', ",
SQLERRD.4', ",
SQLERRD.5', ",
SQLERRD. 6

SAY 'SQLWARN ='SQLWARN.O',"',
SQLWARN.1',",
SQLWARN.2', ",
SQLWARN.3',",
SQLWARN.4',",
SQLWARN.5', ",
SQLWARN.6',",
SQLWARN.7',",
SQLWARN.8',",
SQLWARN.9', ",
SQLWARN. 10
SAY 'SQLSTATE='SQLSTATE

SAY C2X(RESULT) "'"||RESULT|]"'"

Figure 4. Example of a REXX procedure that calls a stored procedure (Part 1 of 3)

Chapter 3. Using REXX stored procedures

23

/**/

/* Display the IFI return area in hexadecimal. */
/**/
OFFSET = 4+1

TOTLEN = LENGTH(RESULT)

DO WHILE (OFFSET < TOTLEN)
LEN = C2D(SUBSTR(RESULT,OFFSET,2))
SAY SUBSTR(RESULT,OFFSET+4,LEN-4-1)
OFFSET = OFFSET + LEN

END
[ke ke ko ko ok ok ko ok ko ok ko ok ko ok ko ko ko ok ok ok ok ok ko ko ok ok ok *%)
/* Get information about result sets returned by the */
/* stored procedure. */

[Hk kg ko ke kR Kk Rk ko ko ko ok ko ko ko ko ke kR ko ko ko k
ADDRESS DSNREXX "EXECSQL DESCRIBE PROCEDURE :PROC INTO :SQLDA"
IF SQLCODE -= 0 THEN CALL SQLCA

DO I = 1 TO SQLDA.SQLD
SAY "SQLDA."I".SQLNAME ="SQLDA.I.SQLNAME";"
SAY "SQLDA."I".SQLTYPE ="SQLDA.I.SQLTYPE";"
SAY "SQLDA."I".SQLLOCATOR ="SQLDA.I.SQLLOCATOR";"
SAY "SQLDA."I".SQLESTIMATE="SQLDA.I.SQLESTIMATE";"

END I
/**/
/* Set up a cursor to retrieve the rows from the result */
/* set. */

[k kdkkdkkdkkdkkkk ko k ko k ko k ok k ok k ko k ko k ko kkkk ko kkkkkkk Rk kkhkkhkkhkk [
ADDRESS DSNREXX "EXECSQL ASSOCIATE LOCATOR (:RESULT) WITH PROCEDURE :PROC"
IF SQLCODE —-= O THEN CALL SQLCA
SAY RESULT

ADDRESS DSNREXX "EXECSQL ALLOCATE C101 CURSOR FOR RESULT SET :RESULT"
IF SQLCODE -= © THEN CALL SQLCA

CURSOR = 'C101'

ADDRESS DSNREXX "EXECSQL DESCRIBE CURSOR :CURSOR INTO :SQLDA"

IF SQLCODE —= O THEN CALL SQLCA
/**/
/* Retrieve and display the rows from the result set, which */
/* contain the command output message text. */
/**/

DO UNTIL(SQLCODE —-= 0)

ADDRESS DSNREXX "EXECSQL FETCH C101 INTO :SEQNO, :TEXT"
IF SQLCODE = O THEN
DO
SAY TEXT
END
END
IF SQLCODE -= O THEN CALL SQLCA

ADDRESS DSNREXX "EXECSQL CLOSE C101"
IF SQLCODE —= O THEN CALL SQLCA

ADDRESS DSNREXX "EXECSQL COMMIT"
IF SQLCODE -= 0 THEN CALL SQLCA

Figure 4. Example of a REXX procedure that calls a stored procedure (Part 2 of 3)

24 DB2 for 0S/390 V5: REXX Language Support

/**/
/* Disconnect from the DB2 subsystem. */
/**/

ADDRESS DSNREXX "DISCONNECT"

IF SQLCODE -= O THEN CALL SQLCA
/**/
/* Delete the host command environment for SQL. */
/**/

S_RC = RXSUBCOM('DELETE', 'DSNREXX', 'DSNREXX') /* REMOVE CMD ENV x/

RETURN
/**/
/* Routine to display the SQLCA */
/**/

SQLCA:

TRACE 0

SAY 'SQLCODE ='SQLCODE

SAY 'SQLERRM ='SQLERRM

SAY 'SQLERRP ='SQLERRP

SAY 'SQLERRD ='SQLERRD.1',',
SQLERRD.2', ',
SQLERRD.3',",
SQLERRD.4', ",
SQLERRD.5', ",
SQLERRD. 6

SAY 'SQLWARN

'SQLWARN.O', ",
SQLWARN.1',",
SQLWARN.2', ",
SQLWARN.3', ",
SQLWARN.4', ",
SQLWARN.5', ",
SQLWARN.6', ",
SQLWARN.7"', ",
SQLWARN.8', ",
SQLWARN.9', ",
SQLWARN. 10
SAY 'SQLSTATE='SQLSTATE

EXIT

Figure 4. Example of a REXX procedure that calls a stored procedure (Part 3 of 3)

Chapter 4. Installing DB2 REXX Language Support

This section describes the steps that you must perform to install DB2 REXX
Language Support. For additional information, see IBM DATABASE 2 Program
Directory.

Step 1: Copy and edit the SMP/E jobs

Use the sample JCL shown in Eigure 5 on page 26 to invoke the MVS utility
IEBCOPY to copy the SMP/E jobs to DASD.

© Copyright IBM Corp. 1999

25

//* COMPID: DB2,5740XYRO0

//* DOC: LOAD REXX SMP INSTALLATION JCL FROM TAPE FOR DB2
//LOAD EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=+

//JCLTAPE DD DSN=IBM.JDB551H.F1,VOL=(PRIVATE,,SER=DB551H),

// UNIT=TAPE,LABEL=(2,SL),DISP=(0LD,PASS)

/1%

//JCLDISK DD DSN=SYSADM.JCL.CNTL,VOL=SER=USERO1,UNIT=SYSDA,
// DISP=0LD

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD *

COPY I=JCLTAPE,0=JCLDISK

SELECT MEMBER=(DSNTTJAC,DSNTTJAP,DSNTTJRC)
/1*

Figure 5. Sample JCL to Copy SMP/E jobs to DASD

After you have copied the SMP/E jobs to DASD, add a job statement to each job
and customize the jobs to specify the unit names and volume serial numbers that
your site uses.

The SMP/E jobs move all files for DB2 REXX Language Support to the target and
distribution libraries for the DB2 base product. Therefore, you do not need to set up
target and distribution libraries for DB2 REXX Language Support.

Step 2: Run the receive job: DSNTTJRC

DSNTTJRC invokes SMP/E to receive the FMIDs for DB2 REXX Language Support
into the SMP/E control data sets.

Step 3: Run the apply job: DSNTTJAP

DSNTTJAP invokes SMP/E to apply the FMIDs for DB2 REXX Language Support
to the DB2 target libraries.

Step 4: Run the Accept Job: DSNTTJAC

DSNTTJAC invokes SMP/E to accept the FMIDs for DB2 REXX Language Support
into the DB2 distribution libraries.

Step 4: Bind the DB2 REXX Language Support packages: DSNTIJRX

DSNTIJRX, which is in data set DSN510.SDSNSAMP, binds DB2 packages that are
used by DB2 REXX Language Support. Before you run DSNTIJRX, make the
following changes:

* Add a job statement.

* Change DSN SYSTEM(DSN) to DSN SYSTEM(ssid), where ssid is the name of the
DB2 subsystem on which you will use DB2 REXX Language Support.

* Change all instances of DSN!!0 to your DB2 data set hame prefix.
* Change all instances of DSNTIA!! to the plan name for the DSNTIAD program.

26 DB2 for 0S/390 V5: REXX Language Support

Chapter 5. Running a DB2 REXX application

You run DB2 REXX procedures under TSO. You do not precompile, compile,
link-edit or bind DB2 REXX procedures before you run them.

In a batch environment, you might use statements like these to invoke procedure
REXXPROG:

//RUNREXX EXEC PGM=IKJEFTO1,DYNAMNBR=20

//SYSEXEC DD DISP=SHR,DSN=SYSADM.REXX.EXEC

//SYSTSPRT DD SYSOUT=+

//SYSTSIN DD *
%REXXPROG parameters

The SYSEXEC data set contains your REXX application, and the SYSTSIN data set
contains the command that you use to invoke the application.

© Copyright IBM Corp. 1999 27

28 DB2 for 0S/390 V5: REXX Language Support

Appendix. Sample DB2 REXX application

This appendix contains an example of a complete DB2 REXX application named
DRAW. DRAW must be invoked from the command line of an ISPF edit session.
DRAW takes a table or view name as input and produces a SELECT, INSERT, or
UPDATE SQL statement or a LOAD utility control statement that includes the
columns of the table as output.

DRAW syntax:
»>—%DRAW—object-name—(>
|—SSID=ssidJ L SELECT—
TYPE=——INSERT
UPDATE—|
LOAD—
DRAW parameters:

object-name
The name of the table or view for which DRAW builds an SQL statement or
utility control statement. The name can be a one-, two-, or three-part name. The
table or view to which object-name refers must exist before DRAW can run.

object-name is a required parameter.
SSID=ssid
Specifies the name of the local DB2 subsystem.

S can be used as an abbreviation for SSID.

If you invoke DRAW from the command line of the edit session in SPUFI,
SSID=ssid is an optional parameter. DRAW uses the subsystem ID from the
DB2I Defaults panel.

TYPE=operation-type
The type of statement that DRAW builds.

T can be used as an abbreviation for TYPE.

operation-type has one of the following values:

SELECT Builds a SELECT statement in which the result table contains
all columns of object-name.

S can be used as an abbreviation for SELECT.

INSERT Builds a template for an INSERT statement that inserts values
into all columns of object-name. The template contains
comments that indicate where the user can place column
values.

| can be used as an abbreviation for INSERT.

UPDATE Builds a template for an UPDATE statement that updates
columns of object-name. The template contains comments that
indicate where the user can place column values and qualify
the update operation for selected rows.

U can be used as an abbreviation for UPDATE.

© Copyright IBM Corp. 1999 29

30

LOAD Builds a template for a LOAD utility control statement for
object-name.

L can be used as an abbreviation for LOAD.
TYPE=operation-type is an optional parameter. The default is TYPE=SELECT.

DRAW data sets:

Edit data set
The data set from which you issue the DRAW command when you are in an
ISPF edit session. If you issue the DRAW command from a SPUFI session, this
data set is the data set that you specify in field 1 of the main SPUFI panel
(DSNESPO01). The output from the DRAW command goes into this data set.

DRAW return codes:

Return code Meaning

0 Successful completion.
12 An error occurred when DRAW edited the input file.
20 One of the following errors occurred:

* No input parameters were specified.

* One of the input parameters was not valid.

* An SQL error occurred when the output statement was
generated.

Examples of DRAW invocation:

Generate a SELECT statement for table DSN8510.EMP at the local subsystem.
Use the default DB2I subsystem ID.

The DRAW invocation is:
DRAW DSN8510.EMP (TYPE=SELECT

The output is:

SELECT "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" , "WORKDEPT" ,
"PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" , "BIRTHDATE" ,
"SALARY" , "BONUS" , "COMM"

FROM DSN8510.EMP

Generate a template for an INSERT statement that inserts values into table
DSN8510.EMP at location SAN_JOSE. The local subsystem ID is DSN.

The DRAW invocation is:
DRAW SAN_JOSE.DSN8510.EMP (TYPE=INSERT SSID=DSN

The output is:

INSERT INTO SAN_JOSE.DSN8510.EMP ("EMPNO" , "FIRSTNME" , "MIDINIT" ,
"LASTNAME" , "WORKDEPT" , "PHONENO" , "HIREDATE" , "JOB" ,
"EDLEVEL" , "SEX" , "BIRTHDATE" , "SALARY" , "BONUS" , "COMM")

VALUES (
-- ENTER VALUES BELOW COLUMN NAME DATA TYPE
, -- EMPNO CHAR(6) NOT NULL
, -- FIRSTNME VARCHAR(12) NOT NULL
, -- MIDINIT CHAR(1) NOT NULL
, -- LASTNAME VARCHAR(15) NOT NULL

DB2 for OS/390 V5: REXX Language Support

-- WORKDEPT CHAR(3)

, -- PHONENO CHAR(4)

, -- HIREDATE DATE

, -- JOB CHAR(8)

, -- EDLEVEL SMALLINT

, -- SEX CHAR(1)

, -- BIRTHDATE DATE

, -- SALARY DECIMAL(9,2)
, -- BONUS DECIMAL(9,2)
) -- COMM DECIMAL(9,2)

Generate a template for an UPDATE statement that updates values of table
DSN8510.EMP. The local subsystem ID is DSN.

The DRAW invocation is:
DRAW DSN8510.EMP (TYPE=UPDATE SSID=DSN

The output is:
UPDATE DSN8510.EMP SET

-~ COLUMN NAME ENTER VALUES BELOW DATA TYPE
"EMPNO"= -~ CHAR(6) NOT NULL
, "FIRSTNME"= -~ VARCHAR(12) NOT NULL
, "MIDINIT"= -~ CHAR(1) NOT NULL
, "LASTNAME"= -~ VARCHAR(15) NOT NULL
, "WORKDEPT"= -~ CHAR(3)
, "PHONENO"= - CHAR(4)
, "HIREDATE"= -~ DATE
, "JOB"= -- CHAR(8)
, "EDLEVEL"= -~ SMALLINT
, "SEX"= -~ CHAR(1)
, "BIRTHDATE"= -- DATE
, "SALARY"= -- DECIMAL(9,2)
, "BONUS"= -- DECIMAL(9,2)
, "COMM"= -- DECIMAL(9,2)
WHERE

Generate a LOAD control statement to load values into table DSN8510.EMP. The
local subsystem ID is DSN.

The draw invocation is:
DRAW DSN8510.EMP (TYPE=LOAD SSID=DSN

The output is:
LOAD DATA INDDN SYSREC INTO TABLE DSN8510.EMP

("EMPNO" POSITION(1) CHAR(6)

, "FIRSTNME" POSITION(8) VARCHAR

, "MIDINIT" POSITION(21) CHAR(1)

, "LASTNAME" POSITION(23) VARCHAR

, "WORKDEPT" POSITION(39) CHAR(3)
NULLIF(39)='?"

, "PHONENO" POSITION(43) CHAR(4)
NULLIF(43)='?"

, "HIREDATE" POSITION(48) DATE EXTERNAL
NULLIF(48)='?"

, "JOB" POSITION(59) CHAR(8)
NULLIF(59)='?"

, "EDLEVEL" POSITION(68) SMALLINT
NULLIF(68)='?"

, "SEX" POSITION(71) CHAR(1)
NULLIF(71)='?"

, "BIRTHDATE" POSITION(73) DATE EXTERNAL
NULLIF(73)='?"

, "SALARY" POSITION(84) DECIMAL EXTERNAL(9,2)

Appendix. Sample DB2 REXX application 31

NULLIF(84)='?'

, "BONUS" POSITION(90) DECIMAL EXTERNAL(9,2)
NULLIF(90)='?"
, "COMM" POSITION(96) DECIMAL EXTERNAL(9,2)

NULLIF(96)='?"
)

DRAW source code:

/* REXX ***/
L1 = WHEREAMI()

/*

DRAW creates basic SQL queries by retrieving the description of a

table. You must specify the name of the table or view to be queried.
You can specify the type of query you want to compose. You might need
to specify the name of the DB2 subsystem.

>>--DRAW----- tablename----- ‘ --------------------------- { ------- ><
-(-|-Ssid=subsystem-name-
+-Select-+
-Insert-
-Update-
+--Load--+

Type=

Ssid=subsystem-name
subsystem-name specified the name of a DB2 subsystem.

Select
Composes a basic query for selecting data from the columns of a
table or view. If TYPE is not specified, SELECT is assumed.
Using SELECT with the DRAW command produces a query that would
retrieve all rows and all columns from the specified table. You
can then modify the query as needed.

A SELECT query of EMP composed by DRAW looks Tike this:
SELECT "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" , "WORKDEPT" ,
"PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" , "BIRTHDATE" ,

"SALARY" , "BONUS" , "COMM"
FROM DSN8510.EMP

If you include a Tocation qualifier, the query looks like this:
SELECT "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" , "WORKDEPT" ,
"PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" , "BIRTHDATE" ,

"SALARY" , "BONUS" , "COMM"
FROM STLEC1.DSN8510.EMP

Figure 6. REXX sample program DRAW (Part 1 of 10)

32 DB2 for 0S/390 V5: REXX Language Support

To use this SELECT query, type the other clauses you need. If
you are selecting from more than one table, use a DRAW command
for each table name you want represented.

Insert
Composes a basic query to insert data into the columns of a table
or view.

The following example shows an INSERT query of EMP that
DRAW composed:

INSERT INTO DSN8510.EMP ("EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME"
"WORKDEPT" , "PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" ,
"BIRTHDATE" , "SALARY" , "BONUS" , "COMM")

VALUES (

-- ENTER VALUES BELOW COLUMN NAME DATA TYPE
, -- EMPNO CHAR(6) NOT NULL
, -- FIRSTNME VARCHAR(12) NOT NULL
, -- MIDINIT CHAR(1) NOT NULL
, -- LASTNAME VARCHAR(15) NOT NULL
, -- WORKDEPT CHAR(3)
, -- PHONENO CHAR (4)
, -- HIREDATE DATE
, -- JOB CHAR(8)
, -- EDLEVEL SMALLINT
, -- SEX CHAR(1)
, -- BIRTHDATE DATE
, -- SALARY DECIMAL(9,2)
, -- BONUS DECIMAL(9,2)
) -- COMM DECIMAL(9,2)

To insert values into EMP, type values to the left of the
column names. See EEI:EEZEE&EEE for more information on
INSERT queries.

Update
Composes a basic query to change the data in a table or view.

The following example shows an UPDATE query of EMP composed
by DRAW:

Figure 6. REXX sample program DRAW (Part 2 of 10)

Appendix. Sample DB2 REXX application

33

UPDATE DSN8510.EMP SET

-~ COLUMN NAME ENTER VALUES BELOW DATA TYPE
"EMPNO" = -~ CHAR(6) NOT NULL
, "FIRSTNME"= -~ VARCHAR(12) NOT NULL
, "MIDINIT"= -~ CHAR(1) NOT NULL
, "LASTNAME"= -~ VARCHAR(15) NOT NULL
, "WORKDEPT"= -~ CHAR(3)
, "PHONENO"= -~ CHAR(4)
, "HIREDATE"= -~ DATE
, "JOB"= -~ CHAR(8)
, "EDLEVEL"= -- SMALLINT
, "SEX"= -~ CHAR(1)
, "BIRTHDATE"= -- DATE
, "SALARY"= -- DECIMAL(9,2)
, "BONUS"= -~ DECIMAL(9,2)
, "COMM"= -- DECIMAL(9,2)
WHERE

To use this UPDATE query, type the changes you want to make to
the right of the column names, and delete the lines you don't
need. Be sure to complete the WHERE clause. For information on
writing queries to update data, refer to

Load
Composes a load statement to lToad the data in a table.

The following example shows a LOAD statement of EMP composed

by DRAMW:
LOAD DATA INDDN SYSREC INTO TABLE DSN8510.EMP

("EMPNO" POSITION(1) CHAR(6)

, "FIRSTNME" POSITION(8) VARCHAR

, "MIDINIT" POSITION(21) CHAR(1)

, "LASTNAME" POSITION(23) VARCHAR

, "WORKDEPT" POSITION(39) CHAR(3)
NULLIF(39)='?"

, "PHONENO" POSITION(43) CHAR(4)
NULLIF(43)='?"

, "HIREDATE" POSITION(48) DATE EXTERNAL
NULLIF(48)='?"

, "JOB" POSITION(59) CHAR(8)
NULLIF(59)='?"

, "EDLEVEL" POSITION(68) SMALLINT
NULLIF(68)='?"

, "SEX" POSITION(71) CHAR(1)
NULLIF(71)='?"

, "BIRTHDATE" POSITION(73) DATE EXTERNAL
NULLIF(73)='?"

, "SALARY" POSITION(84) DECIMAL EXTERNAL(9,2)
NULLIF(84)='?"

, "BONUS" POSITION(90) DECIMAL EXTERNAL(9,2)
NULLIF(90)='?"

, "COMM" POSITION(96) DECIMAL EXTERNAL(9,2)

NULLIF(96)='?"

Figure 6. REXX sample program DRAW (Part 3 of 10)

34 DB2 for 0S/390 V5: REXX Language Support

To use this LOAD statement, type the changes you want to make,
and delete the Tines you don't need. For information on writing
queries to update data, refer to

*/

L2 = WHEREAMI()
/*********‘k**‘k*************‘k*********‘k*************‘k*********‘k******‘k**/
/* TRACE ?R */
/**/
Address ISPEXEC
"ISREDIT MACRO (ARGS) NOPROCESS"

If ARGS = "" Then

Do
Do I = L1+2 To L2-2;Say SourcelLine(I);End
Exit (20)

End

Parse Upper Var Args Table "(" Parms
Parms = Translate(Parms," ",",")
Type = "SELECT" /x Default =/

SSID = " /* Default =/

"VGET (DSNEOVO1)"

If RC = 0 Then SSID = DSNEOVO1

If (Parms <> "") Then

Do Until(Parms = "")

Parse Var Parms Var "=" Value Parms
If Var = "T" | Var = "TYPE" Then Type = Value
Else
If Var = "S" | Var = "SSID" Then SSID = Value
Else
Exit (20)
End

"CONTROL ERRORS RETURN"
"ISREDIT (LEFTBND,RIGHTBND) = BOUNDS"
"ISREDIT (LRECL) = DATA_WIDTH" /+LRECL=*/
BndSize = RightBnd - LeftBnd + 1
If BndSize > 72 Then BndSize = 72
"ISREDIT PROCESS DEST"
Select
When rc = 0 Then
"ISREDIT (ZDEST) = LINENUM .ZDEST'
When rc <= 8 Then /* No A or B entered */
Do
zedsmsg = 'Enter "A"/"B" Tine cmd'
zedlmsg = 'DRAW requires an "A" or "B" Tine command'
'SETMSG MSG(ISRZ001)'
Exit 12
End
When rc < 20 Then /* Conflicting line commands - edit sets message */
Exit 12
When rc = 2
zdest = 0
Otherwise
Exit 12

0 Then

End

Figure 6. REXX sample program DRAW (Part 4 of 10)

Appendix. Sample DB2 REXX application

35

36

SQLTYPE. = "UNKNOWN TYPE"

VCHTYPE = 448; SQLTYPES.VCHTYPE = 'VARCHAR'

CHTYPE = 452; SQLTYPES.CHTYPE = 'CHAR'

LVCHTYPE = 456; SQLTYPES.LVCHTYPE = 'VARCHAR'

VGRTYP = 464; SQLTYPES.VGRTYP = 'VARGRAPHIC'

GRTYP = 468; SQLTYPES.GRTYP = '"GRAPHIC'

LVGRTYP = 472; SQLTYPES.LVGRTYP = 'VARGRAPHIC'

FLOTYPE = 480; SQLTYPES.FLOTYPE = 'FLOAT'

DCTYPE = 484; SQLTYPES.DCTYPE = 'DECIMAL'

INTYPE = 496; SQLTYPES.INTYPE = 'INTEGER'

SMTYPE = 500; SQLTYPES.SMTYPE = 'SMALLINT'

DATYPE = 384; SQLTYPES.DATYPE = 'DATE'

TITYPE = 388; SQLTYPES.TITYPE = 'TIME'

TSTYPE = 392; SQLTYPES.TSTYPE = 'TIMESTAMP'

Address TSO "SUBCOM DSNREXX" /* HOST CMD ENV AVAILABLE? =/
IF RC THEN /* NO, LET'S MAKE ONE */

S_RC = RXSUBCOM('ADD', 'DSNREXX','DSNREXX') /* ADD HOST CMD ENV =/

Address DSNREXX "CONNECT" SSID
If SQLCODE = 0 Then Call SQLCA
Address DSNREXX "EXECSQL DESCRIBE TABLE :TABLE INTO :SQLDA"

If SQLCODE "= 0 Then Call SQLCA
Address DSNREXX "EXECSQL COMMIT"
Address DSNREXX "DISCONNECT"

If SQLCODE = 0 Then Call SQLCA

Select
When (Left(Type,1) = "S") Then
Call DrawSelect
When (Left(Type,1)
Call DrawInsert
When (Left(Type,1) = "U") Then
Call DrawUpdate
When (Left(Type,1)
Call DrawlLoad
Otherwise EXIT (20)
End

"I") Then

"L") Then

Do I = LINE.O To 1 By -1
LINE = COPIES(" ",LEFTBND-1)||LINE.I
"ISREDIT LINE_AFTER 'zdest' = DATALINE (Line)'
End
linel = zdest + 1
"ISREDIT CURSOR = 'lTinel 0
Exit

Figure 6. REXX sample program DRAW (Part 5 of 10)

DB2 for OS/390 V5: REXX Language Support

/**/

WHEREAMI :; RETURN SIGL

/**/
/* Draw SELECT */
/**/
DrawSelect:
Line.0 = 0
Line = "SELECT"
Do I =1 To SQLDA.SQLD
If I > 1 Then Line = Line ','
CoTlName = '"'SQLDA.I.SQLNAME'"'
Null = SQLDA.I.SQLTYPE//2
If Length(Line)+Length(ColName)+LENGTH(" ,") > BndSize THEN
Do
L = Line.0 + 1; Line.0 = L
Line.L = Line

Line = " "
End
Line = Line ColName
End I X
If Line = "" Then

Do
L = Line.0 + 1; Line.0 = L
Line.L = Line
L.i ne = I n
End
L = Line.0 + 1; Line.0 =L
Line.L = "FROM" TABLE
Return
[kg ke ko ok koK *k KK I IR IR KhhhF kI I h* Kk kK H % kK rx I IR KRR hh IR I I h* kKK H % *kkkkk [

/* Draw INSERT */
/**/
DrawlInsert:
Line.0 = 0
Line = "INSERT INTO" TABLE "("
Do I =1 To SQLDA.SQLD
If I > 1 Then Line = Line ','

ColName = '"'SQLDA.I.SQLNAME'"'
If Length(Line)+Length(ColName) > BndSize THEN
Do

L = Line.0 + 1; Line.0 = L
Line.L = Line
L.ine = n n
End
Line = Line ColName
If I = SQLDA.SQLD Then Line = Line ')’
End I
If Line "= "" Then
Do
L = Line.0 + 1; Line.0 = L
Line.L = Line
L.ine = n n
End

Figure 6. REXX sample program DRAW (Part 6 of 10)

Appendix. Sample DB2 REXX application

37

38

L = Line.0 + 1; Line.0 = L

Line.L = " VALUES ("

L = Line.0 + 1; Line.0 = L

Line.L = ,

"-- ENTER VALUES BELOW COLUMN NAME

Do I =1 To SQLDA.SQLD
If SQLDA.SQLD > 1 & I < SQLDA.SQLD Then

Line = , --
Else
Line = ") --"

Line = Line Left(SQLDA.I.SQLNAME,18)
Type = SQLDA.I.SQLTYPE

Null = Type//2

If Null Then Type = Type - 1

Len = SQLDA.I.SQLLEN
Prcsn = SQLDA.I.SQLLEN.SQLPRECISION
Scale = SQLDA.I.SQLLEN.SQLSCALE
Select
When (Type = CHTYPE ,

Type = VCHTYPE ,

Type = LVCHTYPE ,

Type = GRTYP ,

Type = VGRTYP .

Type = LVGRTYP) THEN

Type = SQLTYPES.Type" ("STRIP(LEN)")"
When (Type = FLOTYPE) THEN

Type = SQLTYPES.Type" ("STRIP((LEN%4)-11) ")"

When (Type = DCTYPE) THEN

DATA

TYPE"

Type = SQLTYPES.Type" ("STRIP(PRCSN)","STRIP(SCALE)")"

Otherwise
Type = SQLTYPES.Type
End
Line = Line Type
If Null = 0 Then
Line = Line "NOT NULL"
L = Line.0 + 1; Line.0 = L
Line.L = Line
End I
Return

Figure 6. REXX sample program DRAW (Part 7 of 10)

DB2 for OS/390 V5: REXX Language Support

/**/

/* Draw UPDATE

*/

/**/

DrawUpdate:
Line.0 =1

Line.1 = "UPDATE" TABLE "SET"
L = Line.0 + 1; Line.0 = L

Line.L = ,

"-- COLUMN NAME

ENTER VALUES BELOW DATA TYPE"

Do I =1 To SQLDA.SQLD
If I =1 Then

Line =
Else
Line = "

Line = Line Left('"'SQLDA.I.SQLNAME'"=",21)
Line = Line Left(" ",20)

Type = SQLDA.I.SQLTYPE

Null = Type//2

If Null Then Type = Type - 1

Len
Prcsn

SQLDA.T.SQLLEN
SQLDA.I.SQLLEN.SQLPRECISION

Scale = SQLDA.I.SQLLEN.SQLSCALE

Select

When (Type
Type
Type
Type
Type
Type

Type = SQ

When (Type

LT

CHTYPE
VCHTYPE
LVCHTYPE
GRTYP
VGRTYP

LVGRTYP) THEN
YPES.Type" ("STRIP(LEN)")"
FLOTYPE) THEN

Type = SQLTYPES.Type" ("STRIP((LEN*4)-11) ")"

When (Type

DCTYPE) THEN

Type = SQLTYPES.Type" ("STRIP(PRCSN)","STRIP(SCALE)")"

Otherwise

Type = SQLTYPES.Type

End

Line = Line

__n Type

If Null = 0 Then

Line = Line "NOT NULL"

L = Line.0 + 1; Line.0 = L
Line.L = Line

End I

L = Line.0 + 1; Line.0 = L
Line.L = "WHERE"

Return

Figure 6. REXX sample program DRAW (Part 8 of 10)

Appendix. Sample DB2 REXX application

39

/**/

/* Draw LOAD */
/**/
DrawlLoad:
Line.0 =1
Line.1l = "LOAD DATA INDDN SYSREC INTO TABLE" TABLE
Position =1
Do I =1 To SQLDA.SQLD
If I =1 Then
Line = " ("
Else
L.ine = n n

Line = Line Left('"'SQLDA.I.SQLNAME'""',20)
Line = Line "POSITION("RIGHT(POSITION,5)")"
Type SQLDA.I.SQLTYPE

Null = Type//2

If Null Then Type = Type - 1

Len SQLDA.I.SQLLEN

Prcsn = SQLDA.I.SQLLEN.SQLPRECISION

Scale = SQLDA.I.SQLLEN.SQLSCALE
Select
When (Type = CHTYPE ,

|Type = GRTYP) THEN

Type = SQLTYPES.Type" ("STRIP(LEN)")"
When (Type = FLOTYPE) THEN

Type = SQLTYPES.Type" ("STRIP((LEN*4)-11) ")"
When (Type = DCTYPE) THEN
Do

Type = SQLTYPES.Type "EXTERNAL"

Type = Type" ("STRIP(PRCSN)","STRIP(SCALE)")"

Len = (PRCSN+2)%2

End
When (Type = DATYPE ,
Type = TITYPE .
Type = TSTYPE) THEN
Type = SQLTYPES.Type "EXTERNAL"
Otherwise
Type = SQLTYPES.Type
End
If (Type = GRTYP ,
}Type = VGRTYP ,
Type = LVGRTYP) THEN

Len = Len * 2

If (Type = VCHTYPE ,

Type = LVCHTYPE ,

Type = VGRTYP .

Type = LVGRTYP) THEN
Len = Len + 2

Line = Line Type

L = Line.0 + 1; Line.0 = L

Figure 6. REXX sample program DRAW (Part 9 of 10)

40 DB2 for 0S/390 V5: REXX Language Support

Notices

Line.L = Line
If Null =1 Then

Do
L.ine = n n
Line = Line Left('',20)
Line = Line " NULLIF("RIGHT(POSITION,5)")="2""

L = Line.0 + 1; Line.0 = L
Line.L = Line

End

Position = Position + Len + 1

End I

L =Line.0 + 1; Line.0 = L

Line.L = ")"

Return
/*******************‘k**k*******k******************************‘k**********/
/* Display SQLCA */
/****************************~k***/
SQLCA:

"ISREDIT LINE_AFTER "zdest" = MSGLINE 'SQLSTATE="SQLSTATE"'"

"ISREDIT LINE_AFTER "zdest" = MSGLINE 'SQLWARN ="SQLWARN.O",",
SQLWARN.1","
SQLWARN.2","
SQLWARN.3","
SQLWARN.4","
SQLWARN.5","
SQLWARN.6","
SQLWARN.7","
SQLWARN.8","
SQLWARN.9","
SQLWARN.10"!
"ISREDIT LINE_AFTER "zdest" = MSGLINE 'SQLERRD ="SQLERRD.1",",

SQLERRD.2","
SQLERRD.3","
SQLERRD.4","
SQLERRD.5","
SQLERRD.6"""
"ISREDIT LINE_AFTER "zdest"
"ISREDIT LINE_AFTER "zdest"
"ISREDIT LINE_AFTER "zdest"
Exit 20

ZTe v v v v v ow v o

MSGLINE 'SQLERRP ="SQLERRP"'"
MSGLINE 'SQLERRM ="SQLERRM"'"
MSGLINE 'SQLCODE ="SQLCODE"'"

Figure 6. REXX sample program DRAW (Part 10 of 10)

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive

© Copyright IBM Corp. 1999 41

42

Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

J74/G4

555 Bailey Avenue

P.O. Box 49023

San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,

DB2 for OS/390 V5: REXX Language Support

for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Programming interface information

This book is intended to help the customer write applications that use REXX to
access IBM DB2 for OS/390 servers. This book documents General-use
Programming Interface and Associated Guidance Information provided by
DATABASE 2 for OS/390 (DB2 for OS/390).

General-use programming interfaces allow the customer to write programs that
obtain the services of DB2 for OS/390.

Trademarks

The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX IBM

BookManager IMS

C++/MVS IMS/ESA

CICS Language Environment

CICS/ESA MVS

CICS/MVS MVS/ESA

DATABASE 2 0s/2

DB2 0S/390

DB2/2 0S/400

DB2/6000 Parallel Sysplex

DFSMS QMF

DFSMShsm RACF

Distributed Relational SQL/DS
Database Architecture VTAM

DRDA

Other company, product, and service names may be trademarks or service marks
of others.

Notices 43

44 DB2 for 0S/390 V5: REXX Language Support

Index
C

coding
SQL statements
REXX 5

D

data type
compatibility
REXX and SQL 12

H

host variable
REXX 11

indicator variable
REXX 15

isolation level
REXX 16

N

naming convention
REXX 10
notices, legal 41
Null
in REXX 10

R

REXX
installing 25

REXX application
running 27

REXX procedure
coding SQL statements 5
error handling 11
indicator variables 15
isolation level 16
naming convention 10
specifying input data type 13
statement label 11

REXX stored procedure
defining 17
writing 18

S

SQL (Structured Query Language)
coding
REXX 5

© Copyright IBM Corp. 1999

SQL statements
continuation
REXX language 10
SQLCA (SQL communication area)
REXX 5
SQLDA (SQL descriptor area)
REXX 6
syntax diagrams, how to read 1

45

46 DB2 for 0S/390 V5: REXX Language Support

Program Number: 5655-DB2

" Printed in the United States of America
&) on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	Chapter 1. Introduction
	Who should read this book
	Product terminology and citations
	How to read the syntax diagrams

	Chapter 2. Coding SQL statements in a REXX application
	Defining the SQL communication area
	Defining SQL descriptor areas
	Accessing the DB2 REXX Language Support application programminginterfaces
	Embedding SQL statements in a REXX procedure
	Using cursors and statement names
	Using REXX host variables and data types
	Determining equivalent SQL and REXX data types
	Letting DB2 determine the input data type
	Ensuring that DB2 correctly interprets character input data
	Passing the data type of an input variable to DB2
	Retrieving data from DB2 tables

	Using indicator variables
	Setting the isolation level of SQL statements in a REXX procedure

	Chapter 3. Using REXX stored procedures
	Defining a REXX stored procedure
	Writing a REXX stored procedure
	Calling a stored procedure from a REXX Procedure

	Chapter 4. Installing DB2 REXX Language Support
	Step 1: Copy and edit the SMP/E jobs
	Step 2: Run the receive job: DSNTTJRC
	Step 3: Run the apply job: DSNTTJAP
	Step 4: Run the Accept Job: DSNTTJAC
	Step 4: Bind the DB2 REXX Language Support packages: DSNTIJRX

	Chapter 5. Running a DB2 REXX application
	Appendix. Sample DB2 REXX application
	Notices
	Programming interface information
	Trademarks

	Index

