
DB2 Universal Database for OS/390 IBM

Utility Guide and Reference
Version 6

 SC26-9015-01

 Note!

Before using this information and the product it supports, be sure to read the general information under
Appendix E, “Notices” on page 545.

Second Edition, Softcopy Only (April 2000)

This edition applies to Version 6 of DB2 Universal Database Server for OS/390, 5645-DB2, and to any subsequent releases until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed version by vertical
bars. Additional changes made to this softcopy version of the manual since the hardcopy manual was published are indicated by the
hash (#) symbol in the left-hand margin. Editorial changes that have no technical significance are not noted.

 Copyright International Business Machines Corporation 1983, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

Section 1. Introduction . 1

Chapter 1-1. Introduction to this book and the DB2 for OS/390 library . . 3
Who should read this book . 3
How to use this book . 3

Product terminology and citations . 3
How to read the syntax diagrams . 4
What naming conventions are used . 5
How to use the DB2 library . 8

| How to obtain DB2 information . 10
| Summary of changes to DB2 UDB for OS/390 Version 6 12
| Summary of changes to this book . 16

Chapter 1-2. Introduction to the DB2 utilities 17
Types of DB2 utilities . 17
Privileges and authorization IDs . 17

Objects supported by DB2 utilities . 18
Running utilities when using undefined data sets 18

Section 2. DB2 online utilities . 21

Chapter 2-1. Invoking DB2 online utilities . 27
Creating utility control statements . 27
Data sets used by online utilities . 28
Using the DB2 utilities panel in DB2I . 32
Using the DSNU CLIST command in TSO . 34
Using the supplied JCL procedure (DSNUPROC) 41
Creating the JCL data set yourself . 43

Chapter 2-2. Monitoring and controlling online utilities 45
Monitoring utilities with the DISPLAY UTILITY command 45
Running utilities concurrently . 46
Running online utilities in a data sharing environment 47
Terminating an online utility with the TERM UTILITY command 47
Restarting an online utility . 48

Chapter 2-3. CATMAINT . 51
Syntax and options of the control statement . 51
Instructions for running CATMAINT . 51
Concurrency and compatibility . 53

Chapter 2-4. CHECK DATA . 55
Syntax and options of the control statement . 56
Instructions for running CHECK DATA . 59
Concurrency and compatibility . 67
Sample control statements . 68

Chapter 2-5. CHECK INDEX . 71

 Copyright IBM Corp. 1983, 1999 iii

 Contents

Syntax and options of the control statement . 72
Instructions for running CHECK INDEX . 73
Concurrency and compatibility . 76
Sample control statements . 77

| Chapter 2-6. CHECK LOB . 79
| Syntax and options of the control statement . 79
| Instructions for running CHECK LOB . 81
| Concurrency and compatibility . 84
| Sample control statements . 84

Chapter 2-7. COPY . 85
Syntax and options of the control statement . 86
Instructions for running COPY . 92
Concurrency and compatibility . 106
Sample control statements . 108

Chapter 2-8. DIAGNOSE . 113
Syntax and options of the control statement . 113
Instructions for running DIAGNOSE . 117
Concurrency and compatibility . 118
Sample control statements . 118

Chapter 2-9. LOAD . 121
Syntax and options of the control statement . 122
Instructions for running LOAD . 148
Concurrency and compatibility . 173
After running LOAD . 174
Sample control statements . 178

Chapter 2-10. MERGECOPY . 185
Syntax and options of the control statement . 186
Instructions for running MERGECOPY . 188
Concurrency and compatibility . 192
Sample control statements . 193

Chapter 2-11. MODIFY . 195
Syntax and options of the control statement . 196
Instructions for running MODIFY . 197
Concurrency and compatibility . 200
Sample control statements . 200

Chapter 2-12. QUIESCE . 201
Syntax and options of the control statement . 201
Instructions for running QUIESCE . 203
Concurrency and compatibility . 206
Sample control statements . 207

Chapter 2-13. REBUILD INDEX . 209
Syntax and options of the control statement . 209
Instructions for running REBUILD INDEX . 213
Concurrency and compatibility . 220
Sample control statements . 221

iv Utility Guide and Reference

 Contents

Chapter 2-14. RECOVER . 225
Syntax and options of the control statement . 226
Instructions for running RECOVER . 232
Considerations for running RECOVER . 248
Terminating or restarting RECOVER . 250
Concurrency and compatibility . 250
Sample control statements . 252

Chapter 2-15. REORG INDEX . 255
Syntax and options of the control statement . 256
Instructions for running REORG INDEX . 264
Concurrency and compatibility . 273
Reviewing REORG INDEX output . 275
Sample control statements . 275

Chapter 2-16. REORG TABLESPACE . 277
Syntax and options of the control statement . 279
Instructions for running REORG TABLESPACE 303
Concurrency and compatibility . 329
Reviewing REORG TABLESPACE output . 334
After running REORG TABLESPACE . 334
Sample control statements . 335

Chapter 2-17. REPAIR . 343
Syntax and options of the control statement . 344
Instructions for running REPAIR . 355
Concurrency and compatibility . 359
Reviewing REPAIR output . 362
After running REPAIR . 363
Sample control statements . 363

Chapter 2-18. REPORT . 365
Syntax and options of the control statement . 366
Instructions for running REPORT . 368
Concurrency and compatibility . 371
Reviewing REPORT output . 371
Sample control statements . 374

Chapter 2-19. RUNSTATS . 375
Syntax and options of the control statement . 376
Instructions for running RUNSTATS . 382
Concurrency and compatibility . 385
Reviewing RUNSTATS output . 387
After running RUNSTATS . 394
Sample control statements . 394

Chapter 2-20. STOSPACE . 397
Syntax and options of the control statement . 397
Instructions for running STOSPACE . 398
Concurrency and compatibility . 401
Reviewing STOSPACE output . 401
Sample control statement . 402

 Contents v

 Contents

Section 3. Stand-alone utilities . 403

Chapter 3-1. Invoking stand-alone utilities . 407
Creating utility statements and EXEC PARM parameters 407

Chapter 3-2. DSNJLOGF (Preformat Active Log) 409
Before running DSNJLOGF . 409
Sample control statement . 409
DSNJLOGF output . 410

Chapter 3-3. DSNJU003 (Change Log Inventory) 411
Syntax and options of the control statement . 411
Before running DSNJU003 . 419
Using DSNJU003 . 421
Sample control statements . 427

Chapter 3-4. DSNJU004 (Print Log Map) . 429
Syntax and options of the control statement . 429
Before running DSNJU004 . 430
Sample control statement . 431
DSNJU004 (Print Log Map) output . 431

Chapter 3-5. DSN1CHKR . 439
Syntax and options of the control statement . 439
Before running DSN1CHKR . 441
Sample control statements . 442
DSN1CHKR output . 445

Chapter 3-6. DSN1COMP . 447
Syntax and options of the control statement . 447
Before running DSN1COMP . 450
Using DSN1COMP . 451
Sample control statements . 452
DSN1COMP output . 452

Chapter 3-7. DSN1COPY . 455
Syntax and options of the control statement . 455
Before running DSN1COPY . 460
Using DSN1COPY . 466
Sample control statements . 469
DSN1COPY output . 470

Chapter 3-8. DSN1LOGP . 471
Syntax and options of the control statement . 471
Before running DSN1LOGP . 477
Using DSN1LOGP . 479
Sample control statements . 481
DSN1LOGP output . 483

Chapter 3-9. DSN1PRNT . 493
Syntax and options of the control statement . 493
Before running DSN1PRNT . 498
Sample control statements . 499

vi Utility Guide and Reference

 Contents

DSN1PRNT output . 500

Chapter 3-10. DSN1SDMP . 501
Syntax and options of the control statement . 501
Before running DSN1SDMP . 504
Using DSN1SDMP . 505
Sample control statements . 507
DSN1SDMP output . 509

Appendixes . 511

Appendix A. Limits in DB2 for OS/390 . 513

Appendix B. Invoking utilities as a stored procedure (DSNUTILS) 517
Environment . 517
Authorization required . 517
Control statement . 517
DSNUTILS syntax diagram . 519
DSNUTILS option descriptions . 520
Modifying the WLM-established address space 525
Sample program for calling DSNUTILS . 525
DSNUTILS output . 526

| Appendix C. Resetting an advisory or restrictive status 527
| Auxiliary CHECK pending status . 527
| Auxiliary warning status . 528
| CHECK pending status . 528
| COPY pending status . 529
| Group buffer pool RECOVER pending status . 530
| Informational COPY pending status . 530
| REBUILD pending status . 530
| RECOVER pending status . 531
| REORG pending status . 532
| Restart pending status . 533

| Appendix D. How to run sample programs DSNTIAUL, DSNTIAD, and
| DSNTEP2 . 535
| Running DSNTIAUL . 536
| Running DSNTIAD . 539
| Running DSNTEP2 . 541

Appendix E. Notices . 545
Programming interface information . 546
Trademarks . 547

Glossary . 549

Bibliography . 567

Index . 573

 Contents vii

 Contents

viii Utility Guide and Reference

 Section 1. Introduction

Chapter 1-1. Introduction to this book and the DB2 for OS/390 library . . 3
Who should read this book . 3
How to use this book . 3

Product terminology and citations . 3
How to read the syntax diagrams . 4
What naming conventions are used . 5
How to use the DB2 library . 8

| How to obtain DB2 information . 10
| DB2 on the Web . 10
| DB2 publications . 10
| DB2 education . 11
| How to order the DB2 library . 11
| Summary of changes to DB2 UDB for OS/390 Version 6 12
| Capacity improvements . 12
| Performance and availability . 12
| Data sharing enhancements . 13
| User productivity . 13
| Network computing . 14
| Object-relational extensions and active data 14
| More function . 15
| Features of DB2 for OS/390 . 15
| Migration considerations . 16
| Summary of changes to this book . 16

Chapter 1-2. Introduction to the DB2 utilities 17
Types of DB2 utilities . 17

Description of online utilities . 17
Description of stand-alone utilities . 17

Privileges and authorization IDs . 17
Objects supported by DB2 utilities . 18
Running utilities when using undefined data sets 18

 Copyright IBM Corp. 1983, 1999 1

2 Utility Guide and Reference

Chapter 1-1. Introduction to this book and the DB2 for
OS/390 library

This book contains usage information for the tasks of system administration,
database administration, and operation. It presents detailed information on using
utilities, specifying syntax (including keyword and parameter descriptions), and
starting, stopping, and restarting utilities. Sample JCL and control statements for
each utility are also included.

Who should read this book
This book is intended for system administrators, database administrators, system
operators, and application programmers of DB2 online and stand-alone utilities.
Familiarity with DB2 for OS/390 is recommended prior to using this book.

How to use this book
It is assumed that you possess an understanding of system administration,
database administration, system operation, or application programming in the DB2
environment, as provided by the appropriate guide, and that you have some
knowledge of the following:

� One of the transaction managers (CICS, IMS), or TSO

� A programming language (Assembler language, PL/I, COBOL, APL2, BASIC,
Fortran, Prolog, or C)

� OS/VS MVS Job Control Language (JCL)

� Structured Query Language (SQL)

This book contains the following sections and appendixes:

� “Chapter 1-1. Introduction to this book and the DB2 for OS/390 library”
� “Chapter 2-1. Invoking DB2 online utilities” on page 27
� “Chapter 3-1. Invoking stand-alone utilities” on page 407
� Appendix A, “Limits in DB2 for OS/390” on page 513
� Appendix B, “Invoking utilities as a stored procedure (DSNUTILS)” on

page 517
| � Appendix C, “Resetting an advisory or restrictive status” on page 527
| � Appendix D, “How to run sample programs DSNTIAUL, DSNTIAD, and
| DSNTEP2” on page 535

Product terminology and citations
In this book, DB2 Universal Database Server for OS/390 is referred to as "DB2 for
OS/390." In cases where the context makes the meaning clear, DB2 for OS/390 is
referred to as "DB2." When this book refers to other books in this library, a short
title is used. (For example, "See DB2 SQL Reference" is a citation to IBM
DATABASE 2 Universal Database Server for OS/390 SQL Reference.)

References in this book to "DB2 UDB" relate to the DB2 Universal Database
product that is available on the AIX, OS/2, and Windows NT operating

 Copyright IBM Corp. 1983, 1999 3

systems. When this book refers to books about the DB2 UDB product, the citation
includes the complete title and order number.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2
subsystem.

C and C language Represent the C programming language.

CICS Represents CICS/ESA and CICS Transaction Server for OS/390
Release 1.

IMS Represents IMS/ESA.

MVS Represents the MVS element of OS/390.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book:

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Required items appear on the horizontal line (the main path).

��──required_item──��

� Optional items appear below the main path.

��─ ─required_item─ ──┬ ┬─────────────── ────────────────────────────────��
 └ ┘─optional_item─

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

 ┌ ┐─optional_item─
��─ ─required_item─ ──┴ ┴─────────────── ────────────────────────────────��

� If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

��─ ─required_item─ ──┬ ┬─required_choice1─ ─────────────────────────────��
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the
main path.

4 Utility Guide and Reference

��─ ─required_item─ ──┬ ┬────────────────── ─────────────────────────────��
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

 ┌ ┐─default_choice──
��─ ─required_item─ ──┼ ┼───────────────── ──────────────────────────────��
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

� An arrow returning to the left, above the main line, indicates an item that can
be repeated.

 ┌ ┐───────────────────
��─ ─required_item─ ───

�
┴─repeatable_item─ ──────────────────────────────��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

 ┌ ┐─,───────────────
��─ ─required_item─ ───

�
┴─repeatable_item─ ──────────────────────────────��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

� Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example,
column-name). They represent user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

What naming conventions are used
This section describes naming conventions unique to commands and utilities.

When a parameter refers to an object created by SQL statements (for example,
tables, table spaces, and indexes), follow the SQL syntactical naming conventions.

Characters are classified as letters, digits, or special characters.

� A letter is any one of the uppercase characters A through Z (including the three
characters reserved as alphabetic extenders for national languages, #, @, and
$ in the United States).

� A digit is any one of the characters 0 through 9.

� A special character is any character other than a letter or a digit.

See Chapter 3 of DB2 SQL Reference for an additional explanation of long
identifiers, short identifiers, and location identifiers.

authorization-id A short identifier of 1 to 8 letters, digits, or the underscore
that identifies a set of privileges. An authorization ID must
begin with a letter.

 Chapter 1-1. Introduction to this book and the DB2 for OS/390 library 5

connection-name An identifier of 1 to 8 characters that identifies an address
space connection to DB2. A connection identifier is one of
the following:

� For DSN processes running in TSO foreground, the
connection name TSO is used.

� For DSN processes running in TSO batch, the
connection name BATCH is used.

� For the call attachment facility (CAF), the connection
name DB2CALL is used.

� For IMS and CICS processes, the connection name is
the system identification name.

See Section 4 (Volume 1) of DB2 Administration Guide for
more information about managing DB2 connections.

correlation-id An identifier of 1 to 12 characters that identifies a process
within an address space connection. A correlation ID must
begin with a letter.

A correlation ID can be one of the following:

� For DSN processes running in TSO foreground, the
correlation ID is the TSO logon identifier.

� For DSN processes running in TSO batch, the
correlation ID is the job name.

� For CAF processes, the correlation ID is the TSO
logon identifier.

� For IMS processes, the correlation ID is the
PST#.PSBNAME.

� For CICS processes, the correlation ID is the entry
identifier.thread_number.transaction_identifier.

See Section 4 (Volume 1) of DB2 Administration Guide for
more information about correlation IDs.

| database-name A short identifier that designates a database. The identifier
| must start with a letter and must not include special
| characters.

data-set-name An identifier of 1 to 44 characters that identifies a data set.

dbrm-member-name An identifier of 1 to 8 letters or digits that identifies a
member of a partitioned data set.

A DBRM member name should not begin with DSN; this
can sometimes conflict with DB2-provided DBRM member
names. If a DBRM member name beginning with DSN is
specified, DB2 issues a warning message.

dbrm-pds-name An identifier of 1 to 44 characters that identifies a
partitioned data set.

ddname An identifier of 1 to 8 characters that designates the name
of a DD statement.

6 Utility Guide and Reference

hexadecimal-constant A sequence of digits or any of the letters from A to F
(uppercase or lowercase).

hexadecimal-string An X followed by a sequence of characters that begins and
ends with an apostrophe. The characters between the
string delimiters must be a hexadecimal number.

| index-name A qualified or unqualified name that designates an index.

| A qualified index name is a short identifier followed by a
| period and a long identifier. The short identifier is the
| authorization ID that owns the index.

| An unqualified index name is a long identifier with an
| implicit qualifier. The implicit qualifier is an authorization ID
| that is determined by the rules set forth in Chapter 3 of
| DB2 SQL Reference.

location-name A location identifier of 1 to 16 letters (but excluding the
alphabetic extenders), digits or the underscore that
identifies an instance of a data base management system.
A location name must begin with a letter.

luname An SQL short identifier of 1 to 8 characters that identifies a
logical unit name. An luname must begin with a letter.

member-name An identifier of 1 to 8 letters (including the three alphabetic
extenders) or digits that identifies a member of a
partitioned data set.

A member name should not begin with DSN; this can
sometimes conflict with DB2-provided member names. If a
member name beginning with DSN is specified, DB2
issues a warning message.

qualifier-name An SQL short identifier of 1 to 8 letters, digits, or the
underscore that identifies the implicit qualifier for
unqualified table names, views, indexes, and aliases.

string A sequence of characters that begins and ends with an
apostrophe.

subsystem-name An identifier that specifies the DB2 subsystem as it is
known to MVS.

table-name A qualified or unqualified name that designates a table.

| A fully qualified table name is a three-part name. The first
| part is a location name that designates the DBMS at which
| the table is stored. The second part is the authorization ID
| that designates the owner of the table. The third part is a
| long identifier. A period must separate each of the parts.

A two-part table name is implicitly qualified by the location
name of the current server. The first part is the
authorization ID that designates the owner of the table.
The second part is a SQL long identifier. A period must
separate the two parts.

A one-part or unqualified table name is a long identifier
with two implicit qualifiers. The first implicit qualifier is the

 Chapter 1-1. Introduction to this book and the DB2 for OS/390 library 7

location name of the current server. The second is an
authorization ID, which is determined by the rules set forth
in Chapter 3 of DB2 SQL Reference.

table-space-name A short identifier that designates a table space of an
| identified database. The identifier must start with a letter
| and must not include special characters. If a database is

not identified, a table space name specifies a table space
of database DSNDB04.

utility-id An identifier of 1 to 16 characters that uniquely identifies a
utility process within DB2. A utility ID must begin with a
letter. The remaining characters can be upper and lower
case letters, numbers 0 through 9, and the following
characters: #, $, @, ¢, !, ¬, and ..

How to use the DB2 library
Titles of books in the library begin with DB2 Universal Database for OS/390 Version
6. However, references from one book in the library to another are shortened and
do not include the product name, version, and release. Instead, they point directly
to the section that holds the information. For a complete list of books in the library,
and the sections in each book, see the bibliography at the back of this book.

Throughout the library, the DB2 for OS/390 licensed program and a particular DB2
for MVS/ESA subsystem are each referred to as “DB2.” In each case, the context
makes the meaning clear.

The most rewarding task associated with a database management system is asking
questions of it and getting answers, the task called end use. Other tasks are also
necessary—defining the parameters of the system, putting the data in place, and so
on. The tasks associated with DB2 are grouped into the following major categories
(but supplemental information relating to all of the below tasks for new releases of
DB2 can be found in DB2 Release Guide):

Installation: If you are involved with DB2 only to install the system, DB2
Installation Guide might be all you need.

If you will be using data sharing then you also need DB2 Data Sharing: Planning
and Administration, which describes installation considerations for data sharing.

End use: End users issue SQL statements to retrieve data. They can also insert,
update, or delete data, with SQL statements. They might need an introduction to
SQL, detailed instructions for using SPUFI, and an alphabetized reference to the
types of SQL statements. This information is found in DB2 Application
Programming and SQL Guide and DB2 SQL Reference.

End users can also issue SQL statements through the Query Management Facility
(QMF) or some other program, and the library for that program might provide all
the instruction or reference material they need. For a list of the titles in the QMF
library, see the bibliography at the end of this book.

Application Programming: Some users access DB2 without knowing it, using
programs that contain SQL statements. DB2 application programmers write those
programs. Because they write SQL statements, they need DB2 Application

8 Utility Guide and Reference

Programming and SQL Guide, DB2 SQL Reference, and DB2 ODBC Guide and
Reference just as end users do.

Application programmers also need instructions on many other topics:

� How to transfer data between DB2 and a host program—written in COBOL, C,
or FORTRAN, for example

� How to prepare to compile a program that embeds SQL statements

� How to process data from two systems simultaneously, say DB2 and IMS or
DB2 and CICS

� How to write distributed applications across platforms

� How to write applications that use DB2 ODBC to access DB2 servers

� How to write applications that use Open Database Connectivity (ODBC) to
access DB2 servers

� How to write applications in the Java programming language to access DB2
servers

The material needed for writing a host program containing SQL is in DB2
Application Programming and SQL Guide and in DB2 Application Programming
Guide and Reference for Java. The material needed for writing applications that
use DB2 ODBC or ODBC to access DB2 servers is in DB2 ODBC Guide and
Reference. For handling errors, see DB2 Messages and Codes .

Information about writing applications across platforms can be found in Distributed
Relational Database Architecture: Application Programming Guide.

System and Database Administration: Administration covers almost everything
else. DB2 Administration Guide divides those tasks among the following sections:

� Section 2 (Volume 1) of DB2 Administration Guide discusses the decisions that
must be made when designing a database and tells how to bring the design
into being by creating DB2 objects, loading data, and adjusting to changes.

� Section 3 (Volume 1) of DB2 Administration Guide describes ways of controlling
access to the DB2 system and to data within DB2, to audit aspects of DB2
usage, and to answer other security and auditing concerns.

� Section 4 (Volume 1) of DB2 Administration Guide describes the steps in
normal day-to-day operation and discusses the steps one should take to
prepare for recovery in the event of some failure.

� Section 5 (Volume 2) of DB2 Administration Guide explains how to monitor the
performance of the DB2 system and its parts. It also lists things that can be
done to make some parts run faster.

In addition, the appendixes in DB2 Administration Guide contain valuable
information on DB2 sample tables, National Language Support (NLS), writing exit
routines, interpreting DB2 trace output, and character conversion for distributed
data.

If you are involved with DB2 only to design the database, or plan operational
procedures, you need DB2 Administration Guide. If you also want to carry out your
own plans by creating DB2 objects, granting privileges, running utility jobs, and so
on, then you also need:

 Chapter 1-1. Introduction to this book and the DB2 for OS/390 library 9

� DB2 SQL Reference, which describes the SQL statements you use to create,
alter, and drop objects and grant and revoke privileges

� DB2 Utility Guide and Reference, which explains how to run utilities

� DB2 Command Reference, which explains how to run commands

If you will be using data sharing, then you need DB2 Data Sharing: Planning and
Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in
DB2 Messages and Codes, which lists messages and codes issued by DB2, with
explanations and suggested responses.

Diagnosis: Diagnosticians detect and describe errors in the DB2 program. They
might also recommend or apply a remedy. The documentation for this task is in
DB2 Diagnosis Guide and Reference and DB2 Messages and Codes.

| How to obtain DB2 information

| DB2 on the Web
| Stay current with the latest information about DB2. View the DB2 home page on
| the World Wide Web. News items keep you informed about the latest
| enhancements to the product. Product announcements, press releases, fact sheets,
| and technical articles help you plan your database management strategy.

| You can view and search DB2 publications on the Web, or you can download and
| print many of the most current DB2 books. Follow links to other Web sites with
| more information about DB2 family and OS/390 solutions. Access DB2 on the Web
| at the following address:

| http://www.ibm.com/software/db2os390

| DB2 publications
| The DB2 publications for DB2 Universal Database Server for OS/390 are available
| in both hardcopy and softcopy format.

| BookManager format
| Using online books on CD-ROM, you can read, search across books, print portions
| of the text, and make notes in these BookManager books. With the appropriate
| BookManager READ product or IBM Library Readers, you can view these books in
| the OS/390, VM, OS/2, DOS, AIX, and Windows environments. You can also
| view many of the DB2 BookManager books on the Web.

| PDF format
| Many of the DB2 books are available in Portable Document Format (PDF) for
| viewing or printing from CD-ROM or the Web. Download the PDF books to your
| intranet for distribution throughout your enterprise.

10 Utility Guide and Reference

| CD-ROMs
| Books for Version 6 of DB2 Universal Database Server for OS/390 are available on
| CD-ROMs:

| � DB2 UDB for OS/390 Version 6 Licensed Online Book, LK3T-3519, containing
| DB2 UDB for OS/390 Version 6 Diagnosis Guide and Reference in
| BookManager format, for ordering with the product.

| � DB2 UDB Server for OS/390 Version 6 Online and PDF Library, SK3T-3518, a
| collection of books for the DB2 server in BookManager and PDF formats.

| Periodically, the books will be refreshed on subsequent editions of these
| CD-ROMs.

| The books for Version 6 of DB2 UDB Server for OS/390 are also available on the
| following collection kits that contain online books for many IBM products:

| � Online Library Omnibus Edition OS/390 Collection, SK2T-6700, in English

| � IBM Online Library MVS Collection Kit, SK88-8002, in Japanese, for viewing on
| DOS and Windows operating systems.

| DB2 education
| IBM Education and Training offers a wide variety of classroom courses to help you
| quickly and efficiently gain DB2 expertise. Classes are scheduled in cities all over
| the world. You can find class information, by country, at the IBM Learning Services
| Web site:

| http://www.ibm.com/services/learning/

| For more information, including the current local schedule, please contact your IBM
| representative.

| Classes can also be taught at your location, at a time that suits your needs.
| Courses can even be customized to meet your exact requirements. The All-in-One
| Education and Training Catalog describes the DB2 curriculum in the United States.
| You can inquire about or enroll in these courses by calling 1-800-IBM-TEACH
| (1-800-426-8322).

| How to order the DB2 library
| You can order DB2 publications and CD-ROMs through your IBM representative or
| the IBM branch office serving your locality. If you are located within the United
| States or Canada, you can place your order by calling one of the toll-free numbers :

| � In the U.S., call 1-800-879-2755.
| � In Canada, call 1-800-565-1234.

| To order additional copies of licensed publications, specify the SOFTWARE option.
| To order additional publications or CD-ROMs, specify the PUBLICATIONS and
| SLSS option. Be prepared to give your customer number, the product number, and
| the feature code(s) or order numbers you want.

 Chapter 1-1. Introduction to this book and the DB2 for OS/390 library 11

| Summary of changes to DB2 UDB for OS/390 Version 6
| DB2 UDB for OS/390 Version 6 delivers an enhanced relational database server
| solution for OS/390. This release focuses on greater capacity, performance
| improvements for utilities and queries, easier database management, more
| powerful network computing, and DB2 family compatibility with rich new
| object-oriented capability, triggers, and more built-in functions.

| Capacity improvements
| 16-terabyte tables provide a significant increase to table capacity for partitioned
| and LOB table spaces and indexes, and for nonpartitioning indexes.

| Buffer pools in data spaces provide virtual storage constraint relief for the
| ssnmDBM1 address space, and data spaces increase the maximum amount of
| virtual buffer pool space allowed.

| Performance and availability
| Improved partition rebalancing lets you redistribute partitioned data with minimal
| impact to data availability. One REORG of a range of partitions both reorganizes
| and rebalances the partitions.

| You can change checkpoint frequency dynamically using the new SET LOG
| command and initiate checkpoints any time while your subsystem remains
| available.

| Utilities that are faster, more parallel, easier to use:

| � Faster backup and recovery enables COPY and RECOVER to process a list
| of objects in parallel, and recover indexes and table spaces at the same time
| from image copies and the log.

| � Parallel index build reduces the elapsed time of LOAD and REORG jobs of
| table spaces, or partitions of table spaces, that have more than one index; the
| elapsed time of REBUILD INDEX jobs is also reduced.

| � Tests show decreased elapsed and processor time for online REORG.

| � Inline statistics embeds statistics collection into utility jobs, making table
| spaces available sooner.

| � You can determine when to run REORG by specifying threshold limits for
| relevant statistics from the DB2 catalog.

| Query performance enhancements include:

| � Query parallelism extensions for complex queries, such as outer joins and
| queries that use nonpartitioned tables

| � Improved workload balancing in a Parallel Sysplex that reduces elapsed
| time for a single query that is split across active DB2 members

| � Improved data transfer that lets you request multiple DRDA query blocks
| when performing high-volume operations

| � The ability to use an index to access predicates with noncorrelated IN
| subqueries

| � Faster query processing of queries that include join operations

12 Utility Guide and Reference

| More performance and availability enhancements include:

| � Faster restart and recovery with the ability to postpone backout work during
| restart, and a faster log apply process

| � Increased flexibility with 8-KB and 16-KB page sizes for balancing different
| workload requirements more efficiently, and for controlling traffic to the coupling
| facility for some workloads

| � Direct-row access using the new ROWID data type to re-access a row directly
| without using the index or scanning the table

| � Ability to retain prior access path when you rebind a statement. You almost
| always get the same or a better access path. For the exceptional cases,
| Version 6 of DB2 for OS/390 lets you retain the access path from a prior BIND
| by using rows in an Explain table as input to optimization.

| � An increased log output buffer size (from 1000 4-KB to 100000 4-KB buffers)
| that improves log read and write performance

| Data sharing enhancements
| More caching options use the coupling facility to improve performance in a data
| sharing environment for some applications by writing changed pages directly to
| DASD.

| Control of space map copy maintenance with a new option avoids tracking of
| page changes, thereby optimizing performance of data sharing applications.

| User productivity
| Predictive governing capabilities enhance the resource limit facility to help
| evaluate resource consumption for queries that run against large volumes of data.

| Statement cost estimation of processing resource that is needed for an SQL
| statement helps you to determine error and warning thresholds for governing, and
| to decide which statements need tuning.

| A default buffer pool for user data and indexes isolates user data from the DB2
| catalog and directory, and separating user data from system data helps you make
| better tuning decisions.

| More information available for monitoring DB2 includes data set I/O activity in
| traces, both for batch reporting and online monitors.

| Better integration of DB2 and Workload Manager delay reporting enables DB2
| to notify Workload Manager about the current state of a work request.

| More tables are allowed in SQL statements SELECT, UPDATE, INSERT, and
| DELETE, and in views. DB2 increases the limit from 15 to 225 tables. The number
| of tables and views in a subselect is not changed.

| Improved DB2 UDB family compatibility includes SQL extensions, such as:

| � A VALUES clause of INSERT that supports any expression
| � A new VALUES INTO statement

| Easier recovery management lets you achieve a single point of recovery and
| recover data at a remote site more easily.

 Chapter 1-1. Introduction to this book and the DB2 for OS/390 library 13

| Enhanced database commands extend support for pattern-matching characters
| (*) and let you filter display output.

| You can easily process dynamic SQL in batch mode with the new object form of
| DSNTEP2 shipped with DB2 for OS/390.

| Network computing
| SQLJ, the newest Java implementation for the OS/390 environment, supports SQL
| embedded in the Java programming language. With SQLJ, your Java programs
| benefit from the superior performance, manageability, and authorization available to
| static SQL, and they are easy to write.

| DRDA support for three-part names offers more functionality to applications
| using three-part names for remote access and improves the performance of
| client/server applications.

| Stored procedure enhancements include the ability to create and modify stored
| procedure definitions, make nested calls for stored procedures and user-defined
| functions, and imbed CALL statements in application programs or dynamically
| invoke CALL statements from IBM's ODBC and CLI drivers.

| DB2 ODBC extensions include new and modified APIs and new data types to
| support the object-relational extensions.

| ODBC access to DB2 for OS/390 catalog data improves the performance of your
| ODBC catalog queries by redirecting them to shadow copies of DB2 catalog tables.

| Better performance for ODBC applications reduces the number of network
| messages that are exchanged when an application executes dynamic SQL.

| Improvements for dynamically prepared SQL statements include a new special
| register that you use to implicitly qualify names of distinct types, user-defined
| functions, and stored procedures.

| DDF connection pooling uses a new type of inactive thread that improves
| performance for large volumes of inbound DDF connections.

| Object-relational extensions and active data
| The object extensions of DB2 offer the benefits of object-oriented technology while
| increasing the strength of your relational database with an enriched set of data
| types and functions. Complementing these extensions is a powerful mechanism,
| triggers, that brings application logic into the database that governs the following
| new structures:

| � Large objects (LOBs) are well suited to represent large, complex structures in
| DB2 tables. Now you can make effective use of multimedia by storing objects
| such as complex documents, videos, images, and voice. Some key elements of
| LOB support include:

| – LOB data types for storing byte strings up to 2 GB in size

| – LOB locators for easily manipulating LOB values in manageable pieces

| – Auxiliary tables (that reside in LOB table spaces) for storing LOB values

14 Utility Guide and Reference

| � Distinct types (which are sometimes called user-defined data types), like
| built-in data types, describe the data that is stored in columns of tables where
| the instances (or objects) of these data types are stored. They ensure that
| only those functions and operators that are explicitly defined on a distinct type
| can be applied to its instances.

| � User-defined functions, like built-in functions or operators, support
| manipulation of distinct type instances (and built-in data types) in SQL queries.

| � New and extended built-in functions improve the power of the SQL language
| with about 100 new built-in functions, extensions to existing functions, and
| sample user-defined functions.

| Triggers automatically execute a set of SQL statements whenever a specified
| event occurs. These statements validate and edit database changes, read and
| modify the database, and invoke functions that perform operations inside and
| outside the database.

| You can use the DB2 Extenders feature of DB2 for OS/390 to store and
| manipulate image, audio, video, and text objects. The extenders automatically
| capture and maintain object information and provide a rich body of APIs.

| More function
| Some function and capability is available to both Version 6 and Version 5 users.
| Learn how to obtain these functions now, prior to migrating to Version 6, by visiting
| the following Web site:

| http://www.software.ibm.com/data/db2/os390/v5apar.html

| Features of DB2 for OS/390
| DB2 for OS/390 Version 6 offers a number of tools, which are optional features of
| the server, that are shipped to you automatically when you order DB2 Universal
| Database for OS/390:

| � DB2 Management Tools Package, which includes the following elements:

| – DB2 UDB Control Center
| – DB2 Stored Procedures Builder
| – DB2 Installer
| – DB2 Visual Explain
| – DB2 Estimator

| � Net.Data for OS/390

| You can install and use these features in a “Try and Buy” program for up to 90
| days without paying license charges:

| � Query Management Facility
| � DB2 DataPropagator
| � DB2 Performance Monitor
| � DB2 Buffer Pool Tool
| � DB2 Administration Tool

 Chapter 1-1. Introduction to this book and the DB2 for OS/390 library 15

| Migration considerations
| Migration to Version 6 eliminates all type 1 indexes, shared read-only data, data set
| passwords, use of host variables without the colon, and RECOVER INDEX usage.
| You can migrate to Version 6 only from a Version 5 subsystem.

| Summary of changes to this book
| The syntax diagram for the DSNU CLIST command has changed. See “DSNU
| CLIST command syntax” on page 35 for more information.

| The following online utilities are new for Version 6:

| “Chapter 2-6. CHECK LOB” on page 79
| “Chapter 2-13. REBUILD INDEX” on page 209

| The following online utilities have changed:

| “Chapter 2-3. CATMAINT” on page 51
| “Chapter 2-4. CHECK DATA” on page 55
| “Chapter 2-5. CHECK INDEX” on page 71
| “Chapter 2-7. COPY” on page 85
| “Chapter 2-9. LOAD” on page 121
| “Chapter 2-12. QUIESCE” on page 201
| “Chapter 2-14. RECOVER” on page 225
| “Chapter 2-15. REORG INDEX” on page 255
| “Chapter 2-16. REORG TABLESPACE” on page 277
| “Chapter 2-17. REPAIR” on page 343
| “Chapter 2-18. REPORT” on page 365

| The following stand-alone utilities have changed:

| “Chapter 3-3. DSNJU003 (Change Log Inventory)” on page 411
| “Chapter 3-6. DSN1COMP” on page 447
| “Chapter 3-7. DSN1COPY” on page 455
| “Chapter 3-9. DSN1PRNT” on page 493

| The following appendixes are new for Version 6:

| � Appendix B, “Invoking utilities as a stored procedure (DSNUTILS)” on
| page 517

| � Appendix C, “Resetting an advisory or restrictive status” on page 527

| � Appendix D, “How to run sample programs DSNTIAUL, DSNTIAD, and
| DSNTEP2” on page 535

16 Utility Guide and Reference

Chapter 1-2. Introduction to the DB2 utilities

This chapter provides an introduction to the DB2 online and stand-alone utilities.
This chapter also discusses the authorization rules for coding utility control
statements and the data sets used by utilities.

Types of DB2 utilities
There are two types of DB2 utilities: online utilities and stand-alone utilities. Both
types are described in this section.

Description of online utilities
| DB2 online utilities run as standard MVS batch jobs or stored procedures, and they

require DB2 to be running. They do not run under control of the terminal monitor
program (TMP), but have their own attach mechanisms. They invoke DB2 control
facility services directly. Refer to “Chapter 2-1. Invoking DB2 online utilities” on
page 27 for information about the ways to execute these utilities.

Description of stand-alone utilities
The stand-alone utilities execute as batch jobs independent of DB2. They can be
executed only by means of MVS JCL. Refer to the chapters on the individual
utilities in “Chapter 3-1. Invoking stand-alone utilities” on page 407 for information
about the ways to execute these utilities.

Privileges and authorization IDs
The issuer of a command or a utility job can be an individual user. It can also be a
program running in batch mode or an IMS or CICS transaction. We use the term
process to represent any or all of those.

A process is represented to DB2 by a set of identifiers (IDs). What the process can
do with DB2 is determined by privileges and authorities that can be held by its
identifiers. We use “the privilege set of a process” to mean the entire set of
privileges and authorities that can be used by the process in a specific situation.

Three types of identifiers exist: primary authorization IDs, secondary authorization
IDs, and SQL authorization IDs.

� Generally, the primary authorization ID identifies a specific process. For
example, in the process initiated through the TSO attachment facility, the
primary authorization ID is identical to the TSO logon ID. A trace record
identifies the process by that ID.

� Secondary authorization IDs, which are optional, can hold additional privileges
available to the process. A secondary authorization ID is often a Resource
Access Control Facility (RACF) group ID. For example, a process can belong
to a RACF group that holds the LOAD privilege on a particular database. Any
member of the group can run the LOAD utility to load table spaces in the
database.

DB2 commands entered from an MVS console are not associated with any
secondary authorization IDs.

 Copyright IBM Corp. 1983, 1999 17

� An SQL authorization ID (SQL ID) holds the privileges exercised when issuing
certain dynamic SQL statements. This ID plays little part in the utilities
described in this book.

Within DB2, a process can be represented by a primary authorization ID and
possibly one or more secondary IDs. For detailed instructions on how to associate
a process with one or more IDs, and how to grant privileges to those IDs, see
“Processing connections” and “Processing sign-ons” in Section 3 (Volume 1) of
DB2 Administration Guide.

A privilege or authority is granted to, or revoked from, an identifier by executing an
SQL GRANT or a REVOKE statement. For the complete syntax of those
statements, see Chapter 6 of DB2 SQL Reference.

If you use the access control authorization exit, then that exit might control the
authorization rules, rather than the exits documented for each utility.

Objects supported by DB2 utilities
DB2 utilities operate on a variety of target objects. You can use the REPAIR DBD
utility on declared temporary tables, which must be created in a database that is
defined with the AS TEMP clause. No other DB2 utilities can be used on a declared
temporary table, its indexes, or its table spaces.

For detailed information about target object support, see the “Concurrency and
compatibility” section in each utility chapter.

Running utilities when using undefined data sets
With DB2 version 6, you can run certain online utilities on table spaces or index
spaces that were defined with the DEFINE NO attribute. In this situation, the
physical creation of the data set is deferred until data is first inserted in the table
space.

You can populate table spaces with undefined data sets by using the LOAD utility
with either the RESUME keyword, the REPLACE keyword, or both. Using LOAD in
this manner results in the following actions:

1. DB2 allocates the data sets.

2. DB2 updates the SPACE column in the catalog table to show that data sets
exist.

3. DB2 loads the specified table space.

The following online utilities will process a table space that has been defined but
has indexes that remain undefined:

� CHECK DATA
� CHECK INDEX
� COPY TABLESPACE
� MERGECOPY
� MODIFY
� QUIESCE WRITE(NO)
� REBUILD INDEX
� RECOVER

18 Utility Guide and Reference

� REORG TABLESPACE
� REPAIR, except REPAIR DBD
� RUNSTATS TABLESPACE INDEX(ALL)

All online utilities except LOAD, REPAIR DBD, REPORT, and STOSPACE
terminate processing after encountering an undefined target object by issuing
message DSNU185I with return code 8.

No stand-alone utilities can be used on objects where the data sets have not been
defined.

 Chapter 1-2. Introduction to the DB2 utilities 19

20 Utility Guide and Reference

Section 2. DB2 online utilities

Chapter 2-1. Invoking DB2 online utilities . 27
Creating utility control statements . 27

Control statement coding rules . 27
Example of option description . 28

Data sets used by online utilities . 28
Concatenating data sets . 31
Controlling data set disposition . 31
Security . 31

Using the DB2 utilities panel in DB2I . 32
Using the DSNU CLIST command in TSO . 34

DSNU CLIST command syntax . 35
DSNU CLIST option descriptions . 35
Reviewing DSNU CLIST command output . 39
Editing the generated JCL data set . 40
Examples . 40

Using the supplied JCL procedure (DSNUPROC) 41
DSNUPROC syntax . 41
DSNUPROC option descriptions . 41
Sample DSNUPROC listing . 42

Creating the JCL data set yourself . 43
EXEC statement . 44

Chapter 2-2. Monitoring and controlling online utilities 45
Monitoring utilities with the DISPLAY UTILITY command 45

Determining the status of a utility . 45
Determining which utility phase is currently executing 45
Determining why a utility failed to complete 46

Running utilities concurrently . 46
Running online utilities in a data sharing environment 47
Terminating an online utility with the TERM UTILITY command 47
Restarting an online utility . 48

Updating the JCL data set for restarting a utility 49
Adding or deleting utility statements . 49
Restarting after the output data set is full . 49
Other restart hints . 50

Chapter 2-3. CATMAINT . 51
Syntax and options of the control statement . 51

Syntax diagram . 51
Option descriptions . 51

Instructions for running CATMAINT . 51
Before running CATMAINT . 52
Data sets used by CATMAINT . 52
Instructions for specific tasks . 52
Terminating or restarting CATMAINT . 53

Concurrency and compatibility . 53

Chapter 2-4. CHECK DATA . 55
Syntax and options of the control statement . 56

Syntax diagram . 56

 Copyright IBM Corp. 1983, 1999 21

Option descriptions . 56
Instructions for running CHECK DATA . 59

Before running CHECK DATA . 60
Data sets used by CHECK DATA . 63
Creating the control statement . 64
Instructions for specific tasks . 64
Terminating or restarting CHECK DATA . 66

Concurrency and compatibility . 67
Sample control statements . 68

Chapter 2-5. CHECK INDEX . 71
Syntax and options of the control statement . 72

Syntax diagram . 72
Option descriptions . 72

Instructions for running CHECK INDEX . 73
Data sets used by CHECK INDEX . 74
Creating the control statement . 75
Instructions for specific tasks . 75
Reviewing CHECK INDEX output . 75
Terminating or restarting CHECK INDEX . 76

Concurrency and compatibility . 76
Sample control statements . 77

| Chapter 2-6. CHECK LOB . 79
| Syntax and options of the control statement . 79
| Syntax diagram . 80
| Option descriptions . 80
| Instructions for running CHECK LOB . 81
| Before running CHECK LOB . 82
| Data sets used by CHECK LOB . 82
| Creating the control statement . 82
| Instructions for specific tasks . 83
| Terminating or restarting CHECK LOB . 83
| Concurrency and compatibility . 84
| Sample control statements . 84

Chapter 2-7. COPY . 85
Syntax and options of the control statement . 86

Syntax diagram . 86
Option descriptions . 87

Instructions for running COPY . 92
Before running COPY . 93
Data sets used by COPY . 93
Creating the control statement . 95
Instructions for specific tasks . 95
Considerations for running COPY . 104
Terminating or restarting COPY . 105

Concurrency and compatibility . 106
Sample control statements . 108

Chapter 2-8. DIAGNOSE . 113
Syntax and options of the control statement . 113

Syntax diagram . 113
Option descriptions . 114

22 Utility Guide and Reference

Instructions for running DIAGNOSE . 117
Data sets used by DIAGNOSE . 117
Instructions for specific tasks . 117
Terminating or restarting DIAGNOSE . 118

Concurrency and compatibility . 118
Sample control statements . 118

Chapter 2-9. LOAD . 121
Syntax and options of the control statement . 122

Syntax diagram . 123
Option descriptions . 124
INTO TABLE spec . 135
Option descriptions for INTO TABLE . 136

Instructions for running LOAD . 148
Before running LOAD . 149
Data sets used by LOAD . 149
Instructions for specific tasks . 152
Considerations for running LOAD . 163
Terminating or restarting LOAD . 170

Concurrency and compatibility . 173
After running LOAD . 174

Copying the loaded table space or partition 174
Resetting the COPY pending status . 174

| Resetting the REBUILD pending status . 175
Resetting the CHECK pending status . 175
Collecting inline statistics while loading a table 177
Running CHECK INDEX after loading a table having indexes 177
Recovering a failed LOAD job . 178

Reorganizing an auxiliary index after LOAD 178
Sample control statements . 178

Chapter 2-10. MERGECOPY . 185
Syntax and options of the control statement . 186

Syntax diagram . 186
Option descriptions . 186

Instructions for running MERGECOPY . 188
Data sets used by MERGECOPY . 188
Creating the control statement . 189
Instructions for specific tasks . 189
Terminating or restarting MERGECOPY . 192

Concurrency and compatibility . 192
Sample control statements . 193

Chapter 2-11. MODIFY . 195
Syntax and options of the control statement . 196

Syntax diagram . 196
Option descriptions . 196

Instructions for running MODIFY . 197
Before running MODIFY . 198
Data sets used by MODIFY . 198
Creating the control statement . 198
Instructions for specific tasks . 198
Terminating or restarting MODIFY . 199

Concurrency and compatibility . 200

 DB2 online utilities 23

Sample control statements . 200

Chapter 2-12. QUIESCE . 201
Syntax and options of the control statement . 201

Syntax diagram . 202
Option descriptions . 202

Instructions for running QUIESCE . 203
Before running QUIESCE . 203
Data sets used by QUIESCE . 203
Creating the control statement . 204
Instructions for specific tasks . 204
Considerations for running QUIESCE . 205
Terminating or restarting QUIESCE . 205

Concurrency and compatibility . 206
Sample control statements . 207

Chapter 2-13. REBUILD INDEX . 209
Syntax and options of the control statement . 209

Syntax diagram . 209
Option descriptions . 210

Instructions for running REBUILD INDEX . 213
Before running REBUILD INDEX . 213
Data sets used by REBUILD INDEX . 213
Creating the control statement . 214
Instructions for specific tasks . 214
Terminating or restarting REBUILD INDEX . 219

Concurrency and compatibility . 220
Sample control statements . 221

Chapter 2-14. RECOVER . 225
Syntax and options of the control statement . 226

Syntax diagram . 226
Option descriptions . 227

Instructions for running RECOVER . 232
| Before running RECOVER . 232

Data sets used by RECOVER . 233
Instructions for specific tasks . 233

Considerations for running RECOVER . 248
Allocating incremental image copies . 248
Performing fallback recovery . 248
Retaining tape mounts . 249
Avoiding damaged media . 249

| Recovering table spaces and index spaces with mixed volume IDs 250
Terminating or restarting RECOVER . 250
Concurrency and compatibility . 250
Sample control statements . 252

Chapter 2-15. REORG INDEX . 255
Syntax and options of the control statement . 256

Syntax diagram . 256
Option descriptions . 258

Instructions for running REORG INDEX . 264
Before running REORG INDEX . 264
Data sets used by REORG INDEX . 266

24 Utility Guide and Reference

Creating the control statement . 267
Instructions for specific tasks . 267
Terminating or restarting REORG INDEX . 271

Concurrency and compatibility . 273
REORG INDEX compatibility . 273

Reviewing REORG INDEX output . 275
Sample control statements . 275

Chapter 2-16. REORG TABLESPACE . 277
Syntax and options of the control statement . 279

Syntax diagram . 279
Option descriptions . 282
REORG TABLESPACE options syntax . 302
Option descriptions for REORG TABLESPACE options 302

Instructions for running REORG TABLESPACE 303
Before running REORG TABLESPACE . 304
Data sets used by REORG TABLESPACE . 307
Creating the control statement . 310
Instructions for specific tasks . 310
Considerations for running REORG . 323
Terminating or restarting REORG TABLESPACE 325

Concurrency and compatibility . 329
REORG TABLESPACE compatibility . 329

Reviewing REORG TABLESPACE output . 334
After running REORG TABLESPACE . 334
Sample control statements . 335

Chapter 2-17. REPAIR . 343
Syntax and options of the control statement . 344

Syntax diagram . 344
REPAIR option descriptions . 344
SET TABLESPACE and SET INDEX statement syntax 345
SET TABLESPACE and SET INDEX option descriptions 346
LOCATE block syntax . 347
LOCATE TABLESPACE statement option descriptions 347
LOCATE INDEX statement option descriptions 349
VERIFY statement syntax . 350
VERIFY statement option descriptions . 350
REPLACE statement syntax . 350
REPLACE statement option descriptions . 351
DELETE statement syntax and description . 351
DUMP statement syntax . 352
DUMP statement option descriptions . 352
DBD statement syntax . 353
DBD statement option descriptions . 354

Instructions for running REPAIR . 355
Before running REPAIR . 355
Data sets used by REPAIR . 356
Creating the control statement . 356
Instructions for specific tasks . 357
Terminating or restarting REPAIR . 359

Concurrency and compatibility . 359
Reviewing REPAIR output . 362
After running REPAIR . 363

 DB2 online utilities 25

Sample control statements . 363

Chapter 2-18. REPORT . 365
Syntax and options of the control statement . 366

Syntax diagram . 366
Option descriptions . 366

Instructions for running REPORT . 368
Data sets used by REPORT . 369
Creating the control statement . 369
Instructions for specific tasks . 369
Terminating or restarting REPORT . 371

Concurrency and compatibility . 371
Reviewing REPORT output . 371
Sample control statements . 374

Chapter 2-19. RUNSTATS . 375
Syntax and options of the control statement . 376

RUNSTATS TABLESPACE syntax diagram 376
RUNSTATS TABLESPACE option descriptions 377
RUNSTATS INDEX syntax diagram . 380
RUNSTATS INDEX option descriptions . 380

Instructions for running RUNSTATS . 382
Before running RUNSTATS . 382
Data sets used by RUNSTATS . 383
Creating the control statement . 383
Instructions for specific tasks . 383
Terminating or restarting RUNSTATS . 385

Concurrency and compatibility . 385
Reviewing RUNSTATS output . 387

Access path statistics . 388
Space statistics (columns for tuning information) 390

After running RUNSTATS . 394
Sample control statements . 394

Chapter 2-20. STOSPACE . 397
Syntax and options of the control statement . 397

Syntax diagram . 397
Option descriptions . 398

Instructions for running STOSPACE . 398
Data sets used by STOSPACE . 398
Creating the control statement . 399
Instructions for specific tasks . 399
Considerations for running STOSPACE . 401
Terminating or restarting STOSPACE . 401

Concurrency and compatibility . 401
Reviewing STOSPACE output . 401
Sample control statement . 402

26 Utility Guide and Reference

Chapter 2-1. Invoking DB2 online utilities

This chapter contains procedures and guidelines for creating utility control
statements and describes five methods for invoking the DB2 utilities.

Creating utility control statements is the first step required to run an online utility.

After creating the utility statements, use one of the following methods for invoking
the online utilities:

� “Using the DB2 utilities panel in DB2I” on page 32
� “Using the DSNU CLIST command in TSO” on page 34
� “Using the supplied JCL procedure (DSNUPROC)” on page 41
� “Creating the JCL data set yourself” on page 43
� Appendix B, “Invoking utilities as a stored procedure (DSNUTILS)” on

page 517

For the least involvement with JCL, use either DB2I or the DSNU CLIST command,
and then edit the generated JCL to alter or add necessary fields on the JOB or
ROUTE cards before submitting the job. Both of these methods require TSO, and
the first also requires access to the DB2 Utilities Panel in DB2 Interactive (DB2I).

If you want to work with JCL or create your own JCL, choose the third or fourth
method listed previously.

Creating utility control statements
Utility control statements define the function that the utility job performs.

You can create the utility control statements with the ISPF/PDF edit function. After
they are created, save them in a sequential or partitioned data set.

Control statement coding rules
Utility control statements are read from the SYSIN input stream. The statements in
that stream must obey these rules:

� If the SYSIN records are 80-character fixed-length records, columns 73 through
80 are ignored.

� The records are concatenated before being parsed; therefore, a statement or
any of its syntactical constructs can span more than one record. No
continuation character is necessary.

� The SYSIN stream must begin with one of these online utility names:

At least one blank character must follow the name.

| CATMAINT
| CHECK DATA
| CHECK INDEX
| CHECK LOB
| COPY
| DIAGNOSE

| LOAD
| MERGECOPY
| MODIFY
| QUIESCE
| REBUILD INDEX
| RECOVER

| REORG
| REPAIR
| REPORT
| RUNSTATS
| STOSPACE

 Copyright IBM Corp. 1983, 1999 27

� Other syntactical constructs in the utility control statement describe options; you
can separate these constructs with an arbitrary number of blanks.

� The SYSIN stream can contain multiple utility control statements.

The online utility name determines which options can follow it. You can specify
more than one utility control statement in the SYSIN stream.

Options are typically described by an option keyword, followed by a parameter. The
parameter value can be a keyword. Values of parameters are sometimes enclosed
in parentheses. The syntax diagrams for utility control statements included in this
chapter show parentheses where they are required.

You can enter comments within the SYSIN stream. Comments must begin with two
hyphens(--) and are subject to the following rules:

� The two hyphens must be on the same line, not separated by a space

� You can start comments wherever a space is valid, except within a delimiter
token.

� Comments are terminated by the end of the line, for example:

// SYSIN DD �

RUNSTATS TABLESPACE DSNDB%6.SYSDBASE -- COMMENT HERE

-- COMMENT HERE

/�

Example of option description
Where the syntax of each utility control statement is described, parameters are
indented under the option keyword they must follow. Here is a typical example:

WORKDDN ddname Specifies a temporary work file.

ddname is the data set name of the temporary file.

The default is SYSUT1.

In the example, WORKDDN is an option keyword, and ddname is a parameter. As
noted previously, you can enclose parameter values in parentheses but they are
not always required. The description of the temporary work file can be written as
either WORKDDN SYSUT1 or WORKDDN (SYSUT1).

Data sets used by online utilities
Every online utility job requires a SYSIN DD statement to describe an input data
set; some utilities also require other data sets. Table 1 on page 29 lists the name
of each DD statement that might be needed, the online utilities that require it, and
the purpose of the corresponding data sets. If an alternate DD statement is
allowed, you specify it as a parameter in a utility option. Table 1 on page 29 also
lists the option keywords that you can use. DCB attributes that you specify on the
DD statement are referred to as user-specified values.

28 Utility Guide and Reference

Table 1 (Page 1 of 2). Data sets used by online utilities

DD Name Used By Purpose Option Keyword

ddname COPY8 A single data set DB2 uses when you
specify the FILTERDDN option in the utility
control statement; contains a list of VSAM
data set names used during COPY using

| the CONCURRENT and FILTERDDN
options.

FILTERDDN

DATAWKnn REORG Work data set for sorting data, where nn is
a 2-digit number. You can use several data
sets. To estimate the size of the data set
needed, see “Data sets used by REORG
TABLESPACE” on page 307.

NOSYSREC
CHANGE

DSSPRINT COPY Output data set for messages; required
when CONCURRENT copy is used and the
SYSPRINT DD card points to a data set.

CONCURRENT

SORTOUT CHECK
DATA2,7,
LOAD1,3,7,
REORG1,7

Holds sorted keys (sort output) and allows
the SORT phase to be restarted; for
CHECK DATA, holds sorted keys (sort
output).

WORKDDN

SORTWKnn 4 CHECK DATA,
CHECK INDEX,

| LOAD, REBUILD
INDEX, REORG

Work data set for sorting indexes where nn
is a 2-digit number. You can use several
data sets. To estimate the size of the data
set required, see page 64 for CHECK
DATA, 74 for CHECK INDEX, 150 for
LOAD, 214 for REBUILD INDEX, or 309 for
REORG.

None

| SWmmWKnn 4| LOAD, REBUILD
| INDEX, REORG
| Optional work data sets for sorting index
| keys using the SORTKEYS keyword, where
| mm and nn are 2-digit numbers. You can
| use several data sets. To estimate the size
| of the data set required, see page 167 for
| LOAD, 218 for REBUILD INDEX, or 323 for
| REORG.

| None

SYSCOPY COPY,
MERGECOPY,
LOAD5, REORG
5

An output data set for copies. COPYDDN
RECOVERYDDN

SYSDISC| LOAD, REORG
| DISCARD,
| optional for
| REORG

Contains discarded records (optional). DISCARDDN

SYSERR CHECK DATA2,
LOAD

Contains information about errors
encountered during processing.

ERRDDN

SYSIN All utilities An input data set for utility statements. None

SYSMAP LOAD3 Contains information about what input
records violated a constraint.

MAPDDN

SYSPRINT All utilities Messages and printed output (usually
SYSOUT).

None

 Chapter 2-1. Invoking DB2 online utilities 29

Table 1 (Page 2 of 2). Data sets used by online utilities

DD Name Used By Purpose Option Keyword

| SYSPUNCH| REORG| Contains a LOAD statement that is
| generated by REORG, which loads records
| that REORG DISCARD or REORG
| UNLOAD EXTERNAL wrote to the
| DISCARD or UNLOAD data sets.

| PUNCHDDN

SYSREC LOAD2,
REORG6

Contains the LOAD input data set; unloaded
records for REORG.

INDDN UNLDDN

SYSUT1 CHECK DATA7,
CHECK INDEX2,
LOAD1,3,7,
MERGECOPY,

| REBUILD
INDEX,
REORG1,7

A temporary work data set that holds sorted
keys for input to the SORT phase; for
MERGECOPY, it holds intermediate merged
output.

WORKDDN

| UTPRINmm| LOAD, REBUILD
| INDEX, REORG
| Optional print message data sets, used
| when the SORTKEYS keyword is specified,
| where mm is a 2-digit number.

| None

UTPRINT CHECK DATA,
CHECK INDEX,
LOAD, REORG,

| REBUILD INDEX

Contains messages from DFSORT
(usually, SYSOUT or DUMMY).

None

Notes:

1 Required for tables with indexes, not required when using REORG with the SORTKEYS option.
 2 Required.

3 When referential constraints exist and ENFORCE(CONSTRAINTS) is specified.
4 If tape is specified, the maximum key length of all indexes involved in the sort phase must be a minimum
of 6 bytes. This length, when added to the internally assigned 12-byte header, must be at least 18 bytes
as required by DFSORT.
5 Required for LOAD with COPYDDN or RECOVERYDDN and for REORG with COPYDDN,
RECOVERYDDN, SHRLEVEL REFERENCE, or SHRLEVEL CHANGE.
6 Required unless you specify NOSYSREC or SHRLEVEL CHANGE.
7 Data sets can not be shared between SORTOUT and SYSUT1. Sharing these data sets can cause
unpredictable results.
8 If you specify FILTERDDN, there is no default DD name. You must supply a name.

For input data sets, the online utilities use the logical record length (LRECL),
record format (RECFM), and block size (BLKSIZE) with which the data set was
created. Variable spanned (VS) or variable blocked spanned (VBS) record formats
are not allowed for utility input data sets. The only exception is for the LOAD utility,
which accepts unloaded SQL/DS data in VBS format.

For output data sets, the online utilities determine both the logical record length
and the record format. If you supply values for LRECL or RECFM, they are ignored.
If you supply block size, it is used; otherwise, the utility chooses a block size
appropriate for the storage device. Partitioned data sets (PDS) are not allowed for
output data sets.

For both input and output data sets, the online utilities use the value you supply
for the number of buffers (BUFNO), with a maximum of 99 buffers. The default
number of buffers is 20. The utilities set the number of channel programs equal to
the number of buffers. The parameters used to specify the buffer size (BUFSIZE)

30 Utility Guide and Reference

and the number of channel programs (NCP) are ignored. If you omit any DCB
parameters, the utilities choose default values.

Restriction: DB2 does not support the undefined record format (RECFM=U) for
any data set.

Concatenating data sets
DB2 utilities let you concatenate unlike input data sets. Therefore, the data sets in
a concatenation list can have differing block sizes, logical record lengths, and
record formats. If you want to concatenate variable and fixed blocked data sets, the
logical record length must be eight bytes smaller than the block size.

You cannot concatenate output data sets.

Controlling data set disposition
Most data sets need to exist only during utility execution (for example, during
reorganization). However, you must keep several data sets in certain
circumstances:

� Retain the image copy data sets until they are no longer needed for recovery.

� Retain the unload data sets if you specify UNLOAD PAUSE, UNLOAD ONLY,
| UNLOAD EXTERNAL or DISCARD for the REORG utility.

| � Retain the SYSPUNCH data set if you specify UNLOAD EXTERNAL or
| DISCARD for the REORG utility until the contents are no longer needed for
| subsequent loads.

� Retain the discard data set until the contents are no longer needed for
subsequent loads.

Because you might need to restart a utility, take the following precautions when
defining the disposition of data sets:

� Use DISP=(MOD,CATLG,CATLG) or DISP=(MOD,CATLG) for data sets you
want to retain.

� Use DISP=(MOD,DELETE,CATLG) for data sets that you want to discard after
utility execution.

� Use DISP=(NEW,DELETE) for DFSORT SORTWKnn data sets, or refer to
| DFSORT Application Programming: Guide for alternatives.

� Do not use temporary data set names.

| Refer to Table 84 on page 518 and Table 85 on page 519 for information about
| the default data dispositions specified for dynamically-allocated data sets.

 Security
To prevent unauthorized access to data sets (for example, image copies), you can
protect the data sets with the Resource Access Control Facility (RACF). To use a
utility with a data set protected by RACF, you must be authorized to access the
data set.

 Chapter 2-1. Invoking DB2 online utilities 31

Using the DB2 utilities panel in DB2I
Using the DB2 Utilities panel to execute DB2 online utilities requires the least
knowledge of JCL.

| Restriction for using the DB2 Utilities panel: You cannot use the DB2 Utilities
| panel in DB2I to submit a COPY job for a list of objects (with or without the
| CONCURRENT keyword).

| Editing and submitting a utility job: If your site does not have default JOB and
ROUTE statements, you must edit the JCL to define them. If you edit the utility job
before submitting it, you must use the ISPF editor and submit your job directly from
the editor. Use the procedure outlined in the following example:

1. Create the utility control statement for the online utility you intend to execute,
and save it in a sequential or partitioned data set.

For example, the following utility control statement makes an incremental image
copy of table space DSN8D61A.DSN8S61D with a SHRLEVEL value of
CHANGE:

COPY TABLESPACE DSN8D61A.DSN8S61D

 FULL NO

 SHRLEVEL CHANGE

For the rest of this example, suppose that you save the statement in the default
data set, UTIL.

2. Select the DB2I menu from the ISPF Primary Option Menu.

3. Select the UTILITIES option on the DB2I Utilities panel. Items you must specify
are highlighted on the DB2 Utilities panel in Figure 1.

2 3
DSNEUP%1 DB2 UTILITIES

 ===>

 Select from the following:

1 FUNCTION ===> EDITJCL (SUBMIT job, EDITJCL, DISPLAY, TERMINATE)

2 JOB ID ===> TEMP (A unique job identifier string)

 3 UTILITY ===> COPY
| (CHECK DATA, CHECK INDEX, CHECK LOB,

| COPY, DIAGNOSE, LOAD, MERGE, MODIFY,

| QUIESCE, REBUILD, RECOVER, REORG INDEX,

| REORG LOB, REORG TABLESPACE, REPORT,

| REPAIR, RUNSTATS, STOSPACE.)

4 CONTROL CARDS DATA SET ===> UTIL

 To RESTART a utility, specify starting point, otherwise specify NO.

5 RESTART ===> NO (NO, At CURRENT position, or beginning of PHASE)

 � The data set names panel will be displayed when required by a utility.

 PRESS: ENTER to process END to exit HELP for more information

U V

| Figure 1. DB2 utilities panel

32 Utility Guide and Reference

4. Fill in field 1 with the function you want to execute. In this example, you want to
submit the utility job, but you want to edit the JCL first. After you have edited
the utility job, specify SUBMIT on the editor command line.

5. Field 2 must be a unique identifier for your utility job. The default value TEMP.
In this example, that value is satisfactory; leave it as is.

| 6. Fill in field 3 with the utility you want to run. Specify REORG LOB to indicate
| REORG TABLESPACE of a LOB table space.

In this example, specify COPY.

7. Fill in field 4 if you want to use an input data set other than the default data set.
Unless you enclose the data set name between apostrophes, TSO adds your
user identifier as a prefix. In this example, specify UTIL, which is the default
data set.

8. Change field 5 only if this job restarts a stopped utility. In this example, leave
the default value, NO.

 9. Press ENTER.

If you specify COPY, LOAD, MERGECOPY, or REORG TABLESPACE as the utility
in field 3, you must fill in the appropriate fields on the “Data Set Names” panel. In
this example, COPY was specified.

2 3
DSNEUP%2 DATA SET NAMES

 ===>

Enter data set name for LOAD or REORG TABLESPACE:

1 RECDSN ==>

Enter data set name for

LOAD or REORG TABLESPACE:

2 DISCDSN ==>

Enter output data sets for local/current site for COPY, MERGECOPY,

LOAD, or REORG:

3 COPYDSN ==> ABC
4 COPYDSN2 ==>

Enter output data sets for recovery site for COPY, LOAD, or REORG:

5 RCPYDSN1 ==> ABC1
6 RCPYDSN2 ==>

Enter output data sets for REORG:

| 7 PUNCHDSN ==>

 PRESS: ENTER to process END to exit HELP for more information

U V

| Figure 2. Data set names panel

1. Fill in field 1 if you are running LOAD or REORG. If you are running LOAD, you
must specify the data set name that contains records to be loaded. If you are
running REORG you must specify the unload data set. In this example, you do
not have to fill in field 1.

| 2. Fill in field 2 if you are running LOAD or REORG with discard processing; you
must specify a discard data set. In this example, you do not have to fill in field
2.

 Chapter 2-1. Invoking DB2 online utilities 33

3. Fill in field 3 with the primary output data set name for the local site if you are
running COPY, LOAD, or REORG, or the current site if you are running
MERGECOPY. The DDNAME generated by the panel for this field is
SYSCOPY. This is an optional field for LOAD and for REORG with SHRLEVEL
NONE; it is required for COPY, for MERGECOPY, and for REORG with
SHRLEVEL REFERENCE or CHANGE.

4. Fill in field 4 with the backup output data set name for the local site if you are
running COPY, LOAD, or REORG, or the current site if you are running
MERGECOPY. The DDNAME generated by the panel for this field is
SYSCOPY2. This is an optional field. In this example, you do not have to fill in
field 4.

5. Fill in field 5 with the primary output data set for the recovery site if you are
running COPY, LOAD, or REORG. The DDNAME generated by the panel for
this field is SYSRCOPY1. This is an optional field.

6. Fill in field 6 with the backup output data set for the recovery site if you are
running COPY, LOAD, or REORG. The DDNAME generated by the panel for
this field is SYSRCOPY2. This field is optional. In this example, you do not
have to fill in field 6.

| 7. Fill in field 7 with the output data set for the generated LOAD utility control
| statements if you are running REORG UNLOAD EXTERNAL or REORG
| DISCARD. The DDNAME generated by the panel for this field is SYSPUNCH.
| In this example, you do not have to fill in field 7.

 8. Press ENTER.

If you need help while using the DB2 Utilities panel or the Data Set Names panel,
press the HELP PF key. HELP panels explain the parameters on the DB2 Utilities
panel and show the syntax and some sample utility control statements for each
online utility.

Using the DSNU CLIST command in TSO
You can also initiate a DB2 online utility by invoking the DSNU CLIST command
under TSO. The CLIST command generates the JCL data set required to execute
the DSNUPROC procedure and execute online utilities as batch jobs. When you
use the CLIST command, you need not be concerned with details of the JCL data
set.

| Restriction for using the DSNU CLIST command: You cannot use the DSNU
| CLIST command to submit a COPY job for a list of objects (with or without the
| CONCURRENT keyword).

| Creating a utility job: The CLIST command creates a job that performs only one
utility operation. However, you can invoke the CLIST command for each utility
operation you need, and then edit and merge the outputs into one job or step.

To use the DSNU CLIST command:

1. Create a file containing the required utility statements and control statements.
The file is used to create the SYSIN data set in the generated job stream. Do
not include double-byte character set (DBCS) data in this file.

2. Ensure that the DB2 CLIST library is allocated to the ddname SYSPROC.

34 Utility Guide and Reference

3. Execute the command procedure by using the syntax in “DSNU CLIST
command syntax” on page 35.

4. Edit the generated JCL data set to alter or add DD statements as needed.

This last step is optional. “Editing the generated JCL data set” on page 40
explains how the edit the JCL data set.

You can execute the DSNU CLIST command from the TSO command processor or
the DB2I Utilities panel.

DSNU CLIST command syntax

��──DSNU─ ──UTILITY(utility-name) ──INDSN(data-set-name ──┬ ┬───────────────) ─────────────────────────────�
└ ┘──(member-name)

�─ ──┬ ┬─────────────────────────────────── ──┬ ┬───────────────── ──┬ ┬──────────────────────── ────────────�
│ │┌ ┐─NONE─────────────── │ │┌ ┐─NO── └ ┘──DISCDSN(data-set-name)
│ ││ │┌ ┐─:────────────── └ ┘──DB2I(──┴ ┴─YES─)
└ ┘──CONTROL(──┴ ┴───

�
┴─control-option─)

�─ ──┬ ┬─── ───�
└ ┘──COPYDSN(data-set-name) ──┬ ┬─────────────────────────

└ ┘──COPYDSN2(data-set-name)

�─ ──┬ ┬── ──┬ ┬─────────────────────── ───────────────�
| └ ┘──RCPYDSN1(data-set-name) ──┬ ┬───────────────────────── └ ┘──RECDSN(data-set-name)

└ ┘──RCPYDSN2(data-set-name)

�─ ──┬ ┬─────────────────────────────── ──┬ ┬───────────────── ──┬ ┬──────────────────────── ────────────────�
| └ ┘| ─PUNCHDSN──(──data-set-name──)─ │ │┌ ┐─NO── │ │┌ ┐─NO──────

└ ┘──EDIT(──┼ ┼─SPF─) └ ┘──RESTART(──┼ ┼─CURRENT─)
 └ ┘─TSO─ └ ┘─PHASE───

�─ ──┬ ┬────────────────────── ──┬ ┬────────────────────────────── ──┬ ┬───────────────── ───────────────────�
│ │┌ ┐─NO───── │ │┌ ┐─DSN──────────── └ ┘──UID(utility-id)
└ ┘──SUBMIT(──┼ ┼─YES────) └ ┘──SYSTEM(──┼ ┼─subsystem-name─)

 └ ┘─PROMPT─ └ ┘─group-attach───

�─ ──┬ ┬─────────────────────── ──┬ ┬───────────────── ───��
│ │┌ ┐─SYSDA───── └ ┘──VOLUME(vol-ser)
└ ┘──UNIT(──┴ ┴─unit-name─)

DSNU CLIST option descriptions
The parentheses shown in the following descriptions are required. If you make
syntax errors or omit parameter values, TSO prompts you for the correct parameter
spelling and omitted values.

% Identifies DSNU as a member of a command procedure library.
Specifying this parameter is optional; however, it does improve
performance.

UTILITY (utility-name)
Specifies the utility you want to execute. Select the name from the
following list:

 Chapter 2-1. Invoking DB2 online utilities 35

DB2 places the JCL in a data set named DSNUxxx.CNTL, where
DSNUxxx is a control file name. The control file contains the
statements necessary to invoke the DSNUPROC procedure which, in
turn, executes the utility. If you execute another job with the same
utility name, the first job is deleted. See the UID keyword on page 38
for a list of the online utilities and the control file name associated with
each utility.

INDSN(data-set-name (member-name))
Specifies what data set contains the utility statements and control
statements. Do not specify a data set that contains double-byte
character set data.

(data-set-name) Specifies the name of the data set.

If you do not specify a data set name, the default
command procedure prompts you for the data set
name.

(member-name) Specifies the member name.

You must specify the member name if the data set
is partitioned.

CONTROL(control-option: ...)
Specifies whether to trace the CLIST command execution.

NONE Omits tracing.

The default is CONTROL(NONE).

control-option Lists one or more of the options given below.
Separate items in the list by colons (:). To abbreviate,
specify only the first letter of the option.

LIST Displays TSO commands after symbolic
substitution and before command
execution

CONLIST Displays CLIST commands after symbolic
substitution and before command
execution

SYMLIST Displays all executable statements (TSO
commands and CLIST statements) before
the scan for symbolic substitution

NONE Generates a CONTROL statement with
the options NOLIST, NOCONLIST, and
NOSYMLIST.

| CHECK DATA
| CHECK INDEX
| CHECK LOB
| COPY
| DIAGNOSE
| LOAD

| MERGE
| MODIFY
| QUIESCE
| REBUILD
| RECOVER
| REORG INDEX

| REORG LOB
| REORG TABLESPACE
| REPAIR
| REPORT
| RUNSTATS
| STOSPACE

36 Utility Guide and Reference

DB2I Indicates the environment from which the DSNU CLIST command is
called.

(NO) Indicates that DSNU CLIST command is not being called from
the DB2I environment.

The default is DB2I(NO).

(YES) Indicates that DSNU CLIST command is called from the DB2I
environment and that card information can be used. Only the
utility panels should execute the CLIST command with
DB2I(YES).

DISCDSN(data-set-name)
| The cataloged data set name used by LOAD and REORG as a
| discard data set. For LOAD, this data set holds records not loaded;
| for REORG, it holds records not reloaded.

| PUNCHDSN(data-set-name)
| The cataloged data set name used by REORG to hold the generated
| LOAD utility control statements for UNLOAD EXTERNAL or
| DISCARD.

COPYDSN(data-set-name)
The name of the cataloged data set that is used as a target (output)
data set. If you do not supply this information, the CLIST command
prompts you for it. It is optional for LOAD and for REORG with
SHRLEVEL NONE; it is required for COPY, for MERGECOPY, and for
REORG with SHRLEVEL REFERENCE or CHANGE.

COPYDSN2(data-set-name)
The name of the cataloged data set that is used as a target (output)
data set for the backup copy. It is optional for COPY, MERGECOPY,
LOAD, and REORG.

RCPYDSN1(data-set-name)
The name of the cataloged data set that is used as a target (output)
data set for the remote site primary copy. It is optional for COPY,
LOAD, and REORG.

RCPYDSN2(data-set-name)
The name of the cataloged data set that is used as a target (output)
data set for the remote site backup copy. It is optional for COPY,
LOAD, and REORG.

RECDSN(data-set-name)
The cataloged data set name that is used by LOAD for input or by
REORG TABLESPACE as the unload data set. If you do not supply

| this information, the CLIST command prompts you for it. It is required
| for LOAD and REORG TABLESPACE only.

EDIT Specifies whether to invoke an editor to edit the temporary file
generated by the CLIST command.

(NO) Does not invoke an editor.

The default is EDIT(NO).

(SPF) Invokes the ISPF editor.

 Chapter 2-1. Invoking DB2 online utilities 37

(TSO) Invokes the TSO editor.

RESTART Specifies whether this job restarts a current utility job, and, if so, at
what point it is to be restarted.

(NO) Indicates that the utility is a new job, not a restarted
job. The utility identifier (UID) must be unique for each
utility job step.

The default is RESTART(NO).

(CURRENT) Restarts the utility at the last commit point.

(PHASE) Restarts the utility at the beginning of the current
stopped phase. You can determine the current
stopped phase using the DISPLAY UTILITY command.

SUBMIT Specifies whether to submit the generated JCL for processing.

(NO) Does not submit the JCL data set for processing.

The default is SUBMIT(NO).

(YES) Submits the JCL data set for background processing,
using the TSO SUBMIT command.

(PROMPT) Prompts you, after the data set is processed, to
specify whether to submit the JCL data set for batch
processing. You cannot use PROMPT when the
CLIST command is executed in the TSO batch
environment.

SYSTEM(subsystem-name)
Specifies the DB2 subsystem or group attach name.

The default is SYSTEM (DSN).

UID(utility-id)
Provides a unique identifier for this utility job within DB2.

The default is tso-userid.control-file-name, where control-file-name for
each of the utilities is listed below:

Utility control-file-name
| CHECK INDEX DSNUCHI

CHECK DATA DSNUCHD
| CHECK LOB DSNUCHL

COPY DSNUCOP
DIAGNOSE DSNUDIA
LOAD DSNULOA
MERGECOPY DSNUMER
MODIFY DSNUMOD
QUIESCE DSNUQUI

| REBUILD INDEX DSNUREB
| RECOVER DSNUREC

REORG INDEX DSNURGI
| REORG LOB DSNURGL

REORG TABLESPACE DSNURGT
REPAIR DSNUREP
REPORT DSNURPT

38 Utility Guide and Reference

RUNSTATS DSNURUN
STOSPACE DSNUSTO

UNIT(unit-name)
Assigns a unit address, a generic device type, or a user-assigned
group name for a device on which a new temporary or permanent
data set resides. unit-name is placed after the UNIT clause of the
generated DD statement.

The default is UNIT(SYSDA).

VOLUME(vol-ser)
Assigns the serial number of the volume on which a new temporary or
permanent data set resides. vol-ser is placed after the VOL=SER
clause of the generated DD statement. If you omit VOLUME, the
VOL=SER clause is omitted from the generated DD statement.

Reviewing DSNU CLIST command output
DSNU builds a one-step job stream. The JCL data set consists of a JOB statement,
an EXEC statement that executes the DB2 utility processor and the required DD
statements. This JOB statement also includes the SYSIN DD * job stream, as
shown in Figure 3. Any of these statements can be edited.

//DSNUCOP JOB your-job-statement-parameters
// USER=userid,PASSWORD=userword
//�ROUTE PRINT routing-information
//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID=TEMP,UTPROC='

//SYSCOPY DD DSN=MYCOPIES.DSN8D61A.JAN1,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSIN DD �

COPY TABLESPACE DSN8D61A.DSN8S61D

 FULL NO

 SHRLEVEL CHANGE

/�

Figure 3. Control file DSNUCOP.CNTL. This is an example of the JCL data set before
editing.

The following list describes the required JCL data set statements:

Statement Description

JOB The CLIST command uses any JOB statements that you saved
when using DB2I. If no JOB statements exist, DB2 produces a
skeleton JOB statement that you can modify after the JCL is
complete. The job name is DSNU, followed by the first three
letters of the utility name you are using.

EXEC The CLIST command builds the EXEC statement. The values
you specified for SYSTEM (DSN, by default), UID(TEMP), and
RESTART (none) become the values of SYSTEM, UID, and
UTPROC for the DSNUPROC.

The CLIST command builds the necessary JCL DD statements. Those statements
vary depending on the utility that you execute. Data sets that might be required are
listed under “Data sets used by online utilities” on page 28.

 Chapter 2-1. Invoking DB2 online utilities 39

SYSPRINT DD SYSOUT=A
Utility messages are sent to the SYSPRINT data set. The generated JCL
defines OUTPUT, SYSPRINT as SYSOUT=A. You can use the TSO command
to control the disposition of the SYSPRINT data set. For example, you can
send the data set to your terminal. For further information, see OS/390 TSO/E
Command Reference.

UTPRINT DD SYSOUT=A
If any utility requires a sort, it executes DFSORT. Messages from that program
are sent to UTPRINT. The generated JCL defines UTPRINT as SYSOUT=A.

SYSIN DD *
To build the SYSIN DD * job stream, DSNU copies the data set named by the
INDSN parameter. The INDSN data set does not change, and you can reuse it
when the DSNU procedure has completed.

Editing the generated JCL data set
You can edit the data set before you process it by using the EDIT parameter on the
command procedure. Use the editor to add a JCL statement to the job stream,
change JCL parameters (such as ddnames), or change utility control statements.

If you use a ddname that is not the default on some utility statement that you use,
you must change the ddname in the JCL generated by the DSNU procedure. For
example, in the REORG TABLESPACE utility the default option for UNLDDN is
SYSREC, and DSNU builds a SYSREC DD statement for REORG TABLESPACE.
If you use a different value for UNLDDN, you must edit the JCL data set and
change SYSREC to the ddname that you used.

When you finish editing the data set, you can either save changes to the data set
(by issuing SAVE), or instruct the editor to ignore all changes.

The SUBMIT parameter specifies whether to submit the data set statement as a
background job. The temporary data set that holds the JCL statement is reused. If
you want to submit more than one job that executes the same utility, you must
rename the JCL data sets and submit them separately.

 Examples
Example 1: The following CLIST command statement generates a data set called
authorization-id.DSNURGT.CNTL that contains JCL statements that invoke the
DSNUPROC procedure.

%DSNU UTILITY(REORG TABLESPACE) INDSN(MYREOR.DATA)

 RECDSN(MYREOR.WORK) RESTART(NO)

 EDIT(TSO) SUBMIT(YES)

The DSNUPROC procedure invokes the REORG TABLESPACE utility. The
MYREOR.DATA data set is merged into the JCL data set as SYSIN input.
MYREOR.WORK is a temporary data set required by REORG TABLESPACE. The
TSO editor is invoked to allow editing of the JCL data set,
authorization-id.DSNURGT.CNTL. The TSO editor then submits the JCL data set
as a batch job and will not be modified by this CLIST command statement until a
new request is made to execute the REORG TABLESPACE utility.

Example 2: The following example shows how to invoke the CLIST command for
the COPY utility.

40 Utility Guide and Reference

%DSNU

 UTILITY (COPY)

 INDSN ('MYCOPY(STATEMNT)')

 COPYDSN ('MYCOPIES.DSN8D61A.JAN1')

 EDIT (TSO)

 SUBMIT (YES)

 UID (TEMP)

 RESTART (NO)

Using the supplied JCL procedure (DSNUPROC)
Another method of invoking a DB2 online utility uses the supplied JCL procedure,
DSNUPROC, shown in Figure 4 on page 42. This procedure uses the parameters
that you supply to build an appropriate EXEC statement that executes an online
utility.

To execute the DSNUPROC procedure, you must write and submit a JCL data set
like that built by the DSNU CLIST command, and shown in Figure 3 on page 39.
In your JCL, the EXEC statement executes the DSNUPROC procedure.
“DSNUPROC syntax” explains the parameters you can supply to that procedure
and the syntax.

 DSNUPROC syntax

��─ ─DSNUPROC─ ──┬ ┬───────────────────────────── ──┬ ┬───────────────────────── ───────────────────────────�
| │ │┌ ┐─prefix.SSPGM────── │ │┌ ┐─%M──────────

 └ ┘──LIB= ──┴ ┴ ─DB2──library-name─ └ ┘── ,SIZE= ──┴ ┴─region-size─

�─ ──┬ ┬───────────────────────────── ──┬ ┬────────────────────────────── ─────────────────────────────────�
 │ │┌ ┐─DSN─────────── │ │┌ ┐─' '───────────────
 └ ┘── ,SYSTEM= ──┴ ┴─subsytem-name─ └ ┘── ,UID= ──┴ ┴─utility-qualifier─

�─ ──┬ ┬──────────────────────────────── ───��
 │ │┌ ┐─' '──────────────
 └ ┘──,UTPROC= ──┼ ┼──'RESTART' ───────

└ ┘──'RESTART(PHASE)'

DSNUPROC option descriptions
The following list describes all the parameters. For example, in Figure 3 on
page 39, you need to use only one parameter, UID=TEMP; for all others, you can
use the defaults.

LIB= Specifies the data set name of the DB2 subsystem library.

The default is prefix .SSPGM.

SIZE= Specifies the region size of the utility execution area; that is, the
number of bytes of virtual storage allocated to this utility job.

| The default is 0M.

SYSTEM= Specifies the DB2 subsystem or group attach name.

The default is DSN.

 Chapter 2-1. Invoking DB2 online utilities 41

UID= Specifies the unique identifier for your utility job. The maximum name
length is 16 characters. If the name contains special characters,
enclose the entire name between apostrophes (for example,
'PETERS.JOB').

The default is an empty string.

UTPROC= Controls restart processing.

The default is an empty string. Use the default if you do not want to
restart a stopped job.

To restart the utility, specify:

'RESTART' To restart at the last commit point
'RESTART(PHASE)' To restart at the beginning of the phase

executed last.

The procedure provides the SYSPRINT and UTPRINT DD statements
for printed output. You must provide DD statements for SYSIN and
other data sets that your job needs. See “Data sets used by online
utilities” on page 28 for a description of data sets that you might
need.

Figure 4 is the DSNUPROC procedure that was executed by the JCL
example in Figure 3 on page 39.

Sample DSNUPROC listing

//DSNUPROC PROC LIB='prefix.SSPGM',
// SYSTEM=DSN,

// SIZE=%K,UID=',UTPROC='

//�

//��

//� �

//� PROCEDURE-NAME: DSNUPROC �

//� �

//� DESCRIPTIVE-NAME: UTILITY PROCEDURE �

//� �

//� COPYRIGHT = 5665-DB2 (C) COPYRIGHT IBM CORP 1982, 1993 �

//� REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G12%-2%83 �

//� �

//� STATUS: Version 6 �

//� �

//� FUNCTION: THIS PROCEDURE INVOKES THE ADMF UTILITIES IN THE �

//� BATCH ENVIRONMENT �

//� �

//� PROCEDURE-OWNER: UTILITY COMPONENT �

//� �

//� COMPONENT-INVOKED: DB2 UTILITIES (ENTRY POINT DSNUTILB). �

//� �

//� ENVIRONMENT: TSO BATCH �

//� �

//� INPUT: �

//� PARAMETERS: �

//� LIB = THE DATA SET NAME OF THE DB2 PROGRAM LIBRARY. �

//� THE DEFAULT LIBRARY NAME IS PREFIX.SSPGM, �

//� WITH PREFIX SET DURING INSTALLATION. �

Figure 4 (Part 1 of 2). Sample listing of supplied JCL procedure DSNUPROC

42 Utility Guide and Reference

//� SIZE = THE REGION SIZE OF THE UTILITIES EXECUTION AREA.�

//� THE DEFAULT REGION SIZE IS 4%96K. �

//� SYSTEM = THE SUBSYSTEM NAME USED TO IDENTIFY THIS JOB �

//� TO DB2. THE DEFAULT IS "DSN". �

//� UID = THE IDENTIFIER WHICH WILL DEFINE THIS UTILITY �

//� JOB TO DB2. IF THE PARAMETER IS DEFAULTED OR �

//� SET TO A NULL STRING, THE UTILITY FUNCTION WILL �

//� USE ITS DEFAULT, USERID.JOBNAME. EACH UTILITY �

//� WHICH HAS STARTED AND IS NOT YET TERMINATED �

//� (MAY NOT BE RUNNING) MUST HAVE A UNIQUE UID. �

//� UTPROC = AN OPTIONAL INDICATOR USED TO DETERMINE WHETHER �

//� THE USER WISHES TO INITIALLY START THE REQUESTED�

//� UTILITY OR TO RESTART A PREVIOUS EXECUTION OF �

//� THE UTILITY. IF OMITTED, THE UTILITY WILL �

//� BE INITIALLY STARTED. OTHERWISE, THE UTILITY �

//� WILL BE RESTARTED BY ENTERING THE FOLLOWING �

//� VALUES: �

//� RESTART(PHASE) = RESTART THE UTILITY AT THE �

//� BEGINNING OF THE PHASE EXECUTED �

//� LAST. �

//� RESTART = RESTART THE UTILITY AT THE LAST �

//� OR CURRENT COMMIT POINT. �

//� �

//� OUTPUT: NONE. �

//� �

//� EXTERNAL-REFERENCES: NONE. �

//� �

//� CHANGE-ACTIVITY: �

//� �

//� �

//��

//�

//DSNUPROC EXEC PGM=DSNUTILB,REGION=&SIZE,

// PARM=(&SYSTEM,'&UID','&UTPROC')

//STEPLIB DD DSN=&LIB,DISP=SHR;

//�

//��

//� DATA SETS USED BY THE UTILITY �

//��

//�

//SYSPRINT DD SYSOUT=�

//UTPRINT DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//�DSNUPROC PEND REMOVE � FOR USE AS INSTREAM PROCEDURE

Figure 4 (Part 2 of 2). Sample listing of supplied JCL procedure DSNUPROC

Creating the JCL data set yourself
| DB2 online utilities execute as standard OS/390 jobs. To execute the utility, you

must supply the JOB statement required by your installation and the JOBLIB or
STEPLIB DD statements required to access DB2. You must also include an EXEC
statement and a set of DD statements. The EXEC statement is described in “Data
sets used by online utilities” on page 28. For a description of the DD statements
you might need, see “Data sets used by online utilities” on page 28.

| We recommend using DSNUPROC to invoke a DB2 online utility, rather than
| creating the JCL yourself. For more information, see “Using the supplied JCL
| procedure (DSNUPROC)” on page 41.

 Chapter 2-1. Invoking DB2 online utilities 43

 EXEC statement
The EXEC statement can be a procedure that contains the required JCL, or it can
be of the form:

//stepname EXEC PGM=DSNUTILB,PARM='system,[uid],[utproc]'

where the brackets, [], indicate optional parameters. The parameters have the
following meanings:

DSNUTILB Specifies the utility control program. The program must reside in an
APF-authorized library.

system Specifies the DB2 subsystem.

uid The unique identifier for your utility job.

utproc The value of the UTPROC parameter in the DSNUPROC procedure.
Specify this option only when you want to restart the utility job.
Specify:

'RESTART' To restart at the last commit point
'RESTART(PHASE)' To restart at the beginning of the phase

executed last.

For the example in Figure 4 on page 42, you write:

//stepname EXEC PGM=DSNUTILB,PARM='DSN,TEMP'

44 Utility Guide and Reference

Chapter 2-2. Monitoring and controlling online utilities

This section contains procedures and guidelines for monitoring utilities, running
utilities concurrently, terminating utilities, and restarting utilities.

Monitoring utilities with the DISPLAY UTILITY command
The information under this heading, up to “Running utilities concurrently” on
page 46 is General-use Programming Interface and Associated Guidance
Information, as defined in Appendix E, “Notices” on page 545.

Use the DB2 DISPLAY UTILITY command to check the current status of online
utilities. Figure 5 on page 46 shows an example of the output generated by the
DISPLAY UTILITY command. In the example output, DB2 returns a message that
indicates the member name (�A�), utility name (�B�), identifier (�C�), phase (�D�),
and status (�E�). The message also indicates the number of pages or records that
are processed by the utility (�F�)1. The output might also report additional

| information for an executing utility, such as log phase estimates or utility subtask
| activity.

Determining the status of a utility
An online utility can have one of these statuses:

Status (�E�) Description

Active The utility has started execution.

Stopped The utility has abnormally stopped executing before completion, but
the table spaces and indexes accessed by the utility remain under
utility control.

 To make the data available again, you must either:

� Correct the condition that stopped the utility, and restart the
utility so that it runs to termination, or

� Terminate the utility with the DB2 TERM UTILITY command
(see “Terminating an online utility with the TERM UTILITY
command” on page 47).

Terminated The utility has been requested to terminate by the DB2 TERM
UTILITY command. If the utility has terminated, there is no
message.

Determining which utility phase is currently executing
DB2 online utility execution is divided into phases. Each utility starts with the
UTILINIT phase that performs initialization and set up. Each utility finishes with a
UTILTERM phase that cleans up after processing has completed. The other
phases of online utility execution differ, depending on the utility. See the

1 In a data sharing environment, the number of records is current when the command is issued from the same member on which
the utility is executing. When issued from a different member, the count may lag substantially.

 Copyright IBM Corp. 1983, 1999 45

DSNU1%%I - DSNUGDIS - USERID = SAMPID

�A� MEMBER = DB1G

�C� UTILID = RUNTS

PROCESSING UTILITY STATEMENT 1

�B� UTILITY = RUNSTATS

�D� PHASE = RUNSTATS �F� COUNT = %
�E� STATUS = STOPPED

DSN9%22I - DSNUGCC '-DISPLAY UTILITY' NORMAL COMPLETION

Figure 5. DISPLAY UTILITY command sample output

“Execution Phases” section in the descriptions of each utility. Output from the
DISPLAY UTILITY command shows the phase that is currently executing.

Determining why a utility failed to complete
If an online utility job completes normally, it issues return code 0. If it completes
with warning messages, it issues return code 4. Return code 8 means that the job
failed to complete. Return code 12 means that an authorization error occurred.

During execution of the utility, any of these problems can cause a failure:

� Problem: DB2 terminates the utility job step and any subsequent utility steps.

Solution: Submit a new utility job to execute the terminated steps. Use the
same utility identifier for the new job to ensure that no duplicate utility is
running.

� Problem: DB2 does not execute the particular utility function, but prior utility
functions are executed.

Solution: Submit a new utility step to execute the function.

� Problem: DB2 places the utility function in the stopped state.

Solution: Restart the utility job step at either the last commit point or the
beginning of the phase by using the same utility identifier. Alternatively,
terminate the job step (by using TERM UTILITY (uid)) and resubmit it.

| � Problem: DB2 terminates the utility and issues return code 8.

| Solution: One or more objects may be in a restrictive or advisory status. See
| Appendix C, “Resetting an advisory or restrictive status” on page 527 for more
| information on resetting the status of an object.

| Alternatively, a DEADLINE condition in Online REORG might have terminated
| the reorganization.

Running utilities concurrently
Some online utilities allow other utilities and SQL statements to run concurrently on
the same target object. The online utility descriptions in Section 2 of this book
feature a section on compatibility and concurrency. The section on concurrency and
compatibility includes the following information:

� For each target object on which the utility acts, the section outlines the claim
classes that the utility must claim or drain. The section also outlines the
restrictive state that the utility sets on the target object.

� For other online utilities, the section summarizes the compatibility of the utility
with the same target object. If two actions are compatible on a target object,

46 Utility Guide and Reference

they can run simultaneously on that object in separate applications. If
compatibility depends on particular options of a utility, that is also shown.

See Section 5 (Volume 2) of DB2 Administration Guide for a description of the
claim classes and the use of claims and drains by online utilities.

Running online utilities in a data sharing environment
This section discusses considerations for running online utilities in a data sharing
environment.

Submitting online utilities: When you submit a utility job, you must specify the
name of the DB2 subsystem to which the utility is to attach or the group attach
name. If you do not use the group attach name, the utility job must run on the MVS
system where the specified DB2 subsystem is running. You must be sure that MVS
runs the utility job on the appropriate MVS system. You must use one of several
MVS installation-specific statements to make sure this happens. These include:

� For JES2 multi-access spool (MAS) systems, the following statement can be
inserted into the utility JCL:

/�JOBPARM SYSAFF=cccc

� For JES3 systems, the following statement can be inserted into the utility JCL:

//�MAIN SYSTEM=(main-name)

| Those JCL statements are described in OS/390 MVS JCL Reference. Your
installation might have other mechanisms for controlling where batch jobs run, such
as by using job classes.

Stopping and restarting utilities: In a data sharing environment, You can
terminate an active utility (with the TERM UTILITY command) only on the DB2
subsystem on which it was started. If a DB2 subsystem fails while a utility is in

| progress, you must restart that DB2 and then you can terminate the utility from any
| system.

| You can only restart a utility on a member that is running the same DB2 release
| level as the member on which the utility job was originally submitted. The same

utility ID (UID) must be used to restart the utility. That UID is unique within a data
sharing group. However, if DB2 fails, you must restart DB2 on either the same or
another MVS system before you restart the utility.

Terminating an online utility with the TERM UTILITY command
The information under this heading, up to “Restarting an online utility” on page 48
is General-use Programming Interface and Associated Guidance Information, as
defined in Appendix E, “Notices” on page 545.

Use the TERM UTILITY command to terminate the execution of an active utility or
release the resources associated with a stopped utility.

After you issue the TERM UTILITY command, you cannot restart the terminated
utility. It is possible that the objects on which the utility was operating might be left
in an indeterminate state. In many cases you cannot rerun the same utility without
first recovering the objects on which the utility was operating. The situation varies,

 Chapter 2-2. Monitoring and controlling online utilities 47

depending on the utility and the phase that was in process when you issued the
command. These considerations are particularly important when terminating the
COPY, LOAD, and REORG utilities.

If you cannot restart a utility, you might have to terminate it to make the data
available to other applications. To terminate a utility, issue the DB2 TERM UTILITY
command. Use the command only if you must start the utility from the beginning.

In a data sharing environment, TERM UTILITY is effective for active utilities when
submitted from the DB2 subsystem that originally issued the command. You can
terminate a stopped utility from any active member of the data sharing group.

If the utility is active, TERM UTILITY terminates it at the next commit point. It then
performs any necessary cleanup operations.

You might choose to put TERM UTILITY in a conditionally executed job step; for
example, if you never want to restart certain utility jobs. Figure 6 shows a sample
job stream for our COPY example:

//TERM EXEC PGM=IKJEFT%1,COND=((8,GT,S1),EVEN)

//�

//��

//� IF THE PREVIOUS UTILITY STEP, S1, ABENDS, ISSUE A

//� TERMINATE COMMAND. IT CAN NOT BE RESTARTED.

//��

//�

//SYSPRINT DD SYSOUT=A

//SYSTSPRT DD SYSOUT=A

//SYSOUT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSTSIN DD �

DSN SYSTEM(DSN)

-TERM UTILITY(TEMP)

END

/�

Figure 6. Example of conditionally executed TERM UTILITY

| Alternatively, consider specifying the TIMEOUT TERM parameter for some Online
| REORG situations.

Restarting an online utility
If a utility finishes abnormally, it is often possible to restart it. With the restart
procedure, you avoid repeating much of the work that had already been done.

Two different methods of restart are available:

Phase restart can be done from the beginning of the phase that was being
processed.

Current restart can be done from the last checkpoint taken during the execution
of the utility phase. If the utility phase does not take any checkpoints or has not
reached the first checkpoint, current restart is equivalent to phase restart.

48 Utility Guide and Reference

Updating the JCL data set for restarting a utility
To restart a DB2 online utility, update the original JCL data set with the RESTART
parameter. This can be accomplished using one of three methods:

� Using DB2I. Restart the utility following these steps:

1. Access the DB2 UTILITIES panel.

2. Fill in the panel fields as documented in Figure 2 on page 33, except for
field 5.

3. Change field 5 to CURRENT or PHASE, depending on the method of
restart desired.

 4. Press ENTER.

� Using the DSNU CLIST command. Restart the utility by invoking the DSNU
CLIST command as described in “Using the DSNU CLIST command in TSO”
on page 34, but change the value of the RESTART parameter, using either
RESTART or RESTART(PHASE).

| � Creating your own JCL. If you create your own JCL you must specify
| RESTART or RESTART(PHASE) to restart the utility. You must also check the

DISP parameters on the DD statements. For example, DD statements that
have DISP=NEW and need to be reused must have DISP changed to OLD or
MOD. If generation data groups (GDGs) are used and any (+1) generations
were cataloged, then ensure that the JCL is changed to GDG (+0) for such
data sets.

Automatically generated JCL normally has DISP=MOD. DISP=MOD allows a
data set to be allocated during the first execution and then reused during a
restart.

Adding or deleting utility statements
Restart processing remembers the relative position of the utility statement in the
input stream. Therefore, you must include all the original utility statements when
restarting any online utility; however, you can add or delete DIAGNOSE statements.

Restarting after the output data set is full
Special considerations exist when restarting a utility at the last commit point after
the output data set runs out of space (for example, ABENDx37 on SYSUT1).

If you receive an out-of-space condition on the output data set, follow these steps
before restarting the utility at the last commit point:

1. Copy the output data set to a temporary data set. Use the same DCB
parameters. Use MVS utilities that do not reblock the data set during the copy
operation (for example, DFDSS ADRDSUU or DFSORT ICEGENER). Avoid
using the MVS utilities IEBGENER or ISPF 3.3.

2. Delete or rename the output data set. Redefine the data set with additional
space. Use the same VOLSER (if the data set is not cataloged), the same
DSNAME, and the same DCB parameters. You should know the current DCB
parameters before attempting to redefine the data set.

3. Copy the data from the temporary data set into the new, larger output data set.
Use MVS utilities that do not reblock the data set during the copy operation (for
example, DFDSS ADRDSUU or DFSORT ICEGENER).

 Chapter 2-2. Monitoring and controlling online utilities 49

Other restart hints
The following guidelines provide additional information for restarting utilities:

� The VOLSER (if the data set is not cataloged) and the data set name are used
to track utility restart information. They must be the same as what you specified
in the original JCL data set for the utility you want to restart.

| � When restarting a utility with cataloged data sets, do not specify VOL=SER=.
Let DB2 determine the VOLSER of the data sets from the system catalog.

� Do not change the utility function that is currently stopped and the DB2 objects
on which it is operating. However, you can change other parameters that are
related to the stopped step and subsequent utility steps.

� Do not specify MVS automatic step restart.

� If a utility is restarted in the UTILINIT phase, it is re-executed from the
beginning of the phase.

| � When you restart a LOAD, REBUILD INDEX, or REORG job in which you
| specified the STATISTICS keyword, DB2 does not collect inline statistics. You
| should run the RUNSTATS utility after the restarted utility completes.

� If a utility abends or system failure occurs while the utility is in the UTILTERM
phase, you must restart it with RESTART(PHASE).

Restart is not always possible. The restrictions applying to the phases of each utility
are discussed under the description of each utility.

50 Utility Guide and Reference

 CATMAINT

Chapter 2-3. CATMAINT

The CATMAINT utility updates the catalog; it should be run only during migration to
a new release of DB2.

Output: Output for CATMAINT UPDATE is the updated catalog.

Authorization required: The authorization required for CATMAINT is installation
SYSADM.

Execution phases of CATMAINT: The CATMAINT utility operates in these
phases:

Phase Description
UTILINIT Initialization and setup to the new type
UTILTERM Cleanup

Syntax and options of the control statement
The utility control statement defines the function that the utility job performs. Use
the ISPF/PDF edit function to create a control statement, save it in a sequential or
partitioned data set. When you create the JCL for running the job, use the SYSIN
DD statement to specify the name of the data set that contains the utility control
statement.

 Syntax diagram

��──CATMAINT──UPDATE───��

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

UPDATE Indicates you want to update the catalog. Run this option only when
you migrate to a new release of DB2.

Instructions for running CATMAINT
To run CATMAINT, you must:

1. Read “Before running CATMAINT” on page 52.

2. Prepare the necessary data sets, as described in “Data sets used by
CATMAINT” on page 52.

3. Create JCL statements by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27.

 Copyright IBM Corp. 1983, 1999 51

 CATMAINT

4. Prepare a utility control statement that specifies the options for the tasks you
want to perform, as described in “Instructions for specific tasks” on page 52.
(For a complete description of the syntax and options for CATMAINT, see
“Syntax and options of the control statement.”)

5. Check “Concurrency and compatibility” on page 53 if you want to run other
jobs concurrently on the same target objects.

6. Plan for restarting CATMAINT if the job doesn't complete, as described in
“Terminating or restarting CATMAINT” on page 53.

 7. Run CATMAINT.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
methods you can use to execute DB2 utilities.

Before running CATMAINT
The work file database is used for CATMAINT sorting. Prior to executing the
CATMAINT utility, calculate the size of the work file database.

To calculate the size of the work file database, see DB2 Installation Guide.

Data sets used by CATMAINT
Table 2 describes the data sets used by CATMAINT. Include DD statements in all
data sets that are used by your job.

Table 2. Data sets used by CATMAINT

Data Set Description Required?

SYSIN An input data set containing the utility
control statement

Yes

SYSPRINT An output data set for messages Yes

Instructions for specific tasks
To perform the following task, specify the options and values for that task in your
utility control statement.

Updating the catalog for a new release: When you migrate to a new release of
DB2, you must update the catalog for the prior release to the new version. The
DSNTIJTC job, described in Section 2 (Volume 1) of DB2 Installation Guide, runs
CATMAINT UPDATE to update the catalog. Run CATMAINT UPDATE only when

| you migrate to a new release. DB2 displays message DSNU777I at several points
| during CATMAINT execution.

| If you still have type 1 indexes, shared read-only data, or data set passwords, the
| CATMAINT UPDATE utility abnormally terminates. See “Migrating the DB2

Subsystem” in Section 2 of DB2 Installation Guide for the steps necessary to
migrate to a new release.

| If necessary, message DSNU776I or DSNU778I can give you information about
| why an abend occurred.

52 Utility Guide and Reference

 CATMAINT

Terminating or restarting CATMAINT
You can terminate CATMAINT using the TERM UTILITY command, but it leaves

| the indexes in REBUILD pending status. See “Resetting the REBUILD pending
status” on page 175 for information on resetting this status.

You cannot restart CATMAINT.

Concurrency and compatibility
Catalog and directory index availability: The catalog or directory indexes are not
available while CATMAINT is running. This can cause other jobs to time out with
message DSNT376I or message DSNT501I.

 Chapter 2-3. CATMAINT 53

 CATMAINT

54 Utility Guide and Reference

 CHECK DATA

Chapter 2-4. CHECK DATA

The CHECK DATA online utility checks table spaces for violations of referential and
table check constraints, and reports information about violations that are detected.

Run CHECK DATA after a conditional restart or a point-in-time recovery on all table
| spaces where parent and dependent tables might not be synchronized. CHECK
| DATA can be run against a base table space only, not a LOB table space.

For a diagram of CHECK DATA syntax and a description of available options, see
“Syntax and options of the control statement” on page 56. For detailed guidance on
running this utility, see “Instructions for running CHECK DATA” on page 59.

Output: CHECK DATA optionally deletes rows that violate referential or table check
constraints. A row that violates one or more constraints is copied, once, to an
exception table.

If any violation of constraints is found, CHECK DATA puts the table space being
checked in the CHECK pending status.

On successful execution, CHECK DATA resets the CHECK pending status.

Authorization required: To run this utility, the privilege set of this process must
include one of the following:

� STATS privilege for the database
� DBADM, DBCTRL, or DBMAINT authority for the database
� SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute CHECK DATA.
However, you cannot use SYSOPR authority to execute CHECK DATA on table
space SYSDBASE in database DSNDB06 or on any object except SYSUTILX in
database DSNDB01.

If you specify the DELETE option, then the privilege set must include the DELETE
privilege on the tables being checked. If you specify the FOR EXCEPTION option,
then the privilege set must include the INSERT privilege on any exception table

| used. If you specify the AUXERROR INVALIDATE option, then the privilege set
| must include the UPDATE privilege on the base tables containing LOB columns.

Execution phases of CHECK DATA:

Phase Description

UTILINIT Initialization

SCANTAB Extract foreign keys; use foreign key index if it exists, else scan table

SORT Sort foreign keys if not extracted from foreign key index

CHECKDAT Look in primary indexes for foreign key parents, and issue messages
to report errors detected

REPORTCK Copy error rows into exception tables, and delete them from source
table if DELETE YES is specified

UTILTERM Cleanup

 Copyright IBM Corp. 1983, 1999 55

 CHECK DATA

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

 ┌ ┐───────────────────────────────────────
��─ ─CHECK──DATA─ ───

�
┴─table space spec─ ──┬ ┬─────────────── ──┬ ┬──────────────────── ──┬ ┬────────────────────────── ────�

| └ ┘| ─PART──integer─ │ │┌ ┐─PENDING─ │ │┌ ┐─REPORT─────
| └ ┘| ─SCOPE─ ──┼ ┼─AUXONLY─ └ ┘| ─AUXERROR─ ──┴ ┴─INVALIDATE─
| ├ ┤─ALL─────
| └ ┘─REFONLY─

�─ ──┬ ┬── ───────────────�
 │ │┌ ┐─────────────────────────────────────
 └ ┘─FOR──EXCEPTION─ ───

�
┴─IN──table-name1──USE──table-name2─ ──┬ ┬───────────────────────────────────

 │ │┌ ┐─NO────────────────────
 └ ┘ ─DELETE─ ──┴ ┴ ─YES─ ──┬ ┬──────────────

| │ │┌ ┐─YES─
| └ ┘| ─LOG─ ──┴ ┴─NO──

�─ ──┬ ┬───────────────────────── ──┬ ┬──────────────────── ──┬ ┬──────────────────────────────────── ────────────────────�
│ │┌ ┐─%─────── │ │┌ ┐─SYSERR─ │ │┌ ┐─SYSUT1── ┌ ┐──,SORTOUT

 └ ┘ ─EXCEPTIONS─ ──┴ ┴─integer─ └ ┘ ─ERRDDN─ ──┴ ┴─ddname─ └ ┘ ─WORKDDN─ ──┴ ┴─ddname1─ ──┼ ┼──────────
└ ┘──,ddname2

�─ ──┬ ┬─────────────────────── ──┬ ┬────────────────── ───��
 └ ┘ ─SORTDEVT──device-type─ └ ┘ ─SORTNUM──integer─

table space spec:

�──TABLESPACE─ ──┬ ┬──────────────── ─table-space-name───�
 └ ┘─database-name.─

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

DATA Indicates that you are checking referential and table check
constraints.

TABLESPACE database-name.table-space-name
Specifies the table space to which the data belongs.

database-name is the name of the database and is optional. The
default is DSNDB04.

table-space-name is the name of the table space.

56 Utility Guide and Reference

 CHECK DATA

PART integer Identifies which partition to check for constraint violations.

integer is the number of the partition and must be in the range from
1 to the number of partitions defined for the table space. The
maximum is 254.

SCOPE Limits the scope of the rows in the table space that are to be
checked.

PENDING Indicates that only those rows that are to be checked
are those that are in table spaces, partitions, or tables

| that are in CHECK pending status. The referential
| integrity check, constraint check, and the LOB check
| are all performed.

If you specify this option for a table space that is not in
CHECK pending status, the table space is ignored.

The default is SCOPE PENDING.

| AUXONLY Indicates that only the LOB column check is to be
| performed for table spaces that have tables with LOB
| columns. The referential integrity and constraint
| checks are not performed.

ALL Indicates that all dependent tables in the specified
| table spaces are to be checked. The referential
| integrity check, constraint check, and the LOB check
| are performed.

| REFONLY Same as the ALL option, except the LOB column
| check is not performed.

| AUXERROR Specifies the action that CHECK DATA is to perform when a LOB
| column check error is found.

| REPORT A LOB column check error is reported with a
| warning message. The base table space is set to
| the auxiliary CHECK pending (ACHKP) status.

| The default is AUXERROR REPORT.

| INVALIDATE A LOB column check error is reported with a
| warning message. The base table LOB column is
| set to an invalid status. The base table space is set
| to the auxiliary warning (AUXW) status. Before using
| CHECK DATA to check LOBs:

| 1. Run CHECK LOB to ensure the validity of the
| LOB table space.

| 2. Run REBUILD INDEX or CHECK INDEX on the
| index on the auxiliary table to ensure its validity.

FOR EXCEPTION
Indicates that any row in violation of referential or table check
constraints is copied to an exception table.

If any row violates more than one constraint, it appears no more
than once in the exception table.

 Chapter 2-4. CHECK DATA 57

 CHECK DATA

IN table-name1
Specifies the table (in the table space specified on the
TABLESPACE keyword) from which rows are to be
copied.

table-name1 is the name of the table.

USE table-name2
Specifies the exception table into which error rows are to
be copied.

table-name2 is the name of the exception table and must
be a base table; it cannot be a view, synonym or alias.

DELETE Indicates whether or not rows in violation of referential or table
check constraints are deleted from the table space. You can only
use this option if you have used the FOR EXCEPTION keyword.

NO Indicates that error rows remain in the table space. Primary
errors in dependent tables are copied to exception tables.

The default is DELETE NO.

If DELETE NO is specified, and constraint violations are
detected, the table space is placed in the CHECK pending
status.

YES Indicates that error rows are deleted from the table space.
| Deleted rows from both dependent and descendent tables
| are placed into exception tables.

| LOG Specifies the logging action taken when records
| are deleted.

| YES Logs all records deleted during the
| REPORTCK PHASE.

| NO Does not log any records that are deleted
| during the REPORTCK phase. If any rows
| are deleted, CHECK DATA places the table
| space in the COPY pending status, and
| places any indexes that were defined with
| the COPY YES attribute in the
| informational COPY pending status.

| Attention: Use the LOG NO option with
| caution. You cannot recover data across a
| point in the log in which CHECK DATA
| DELETE YES LOG NO was used.

EXCEPTIONS integer
Specifies maximum number of exceptions, which are reported by
messages only. CHECK DATA terminates in the CHECKDAT phase
when it reaches the number of exceptions specified; if termination
occurs, the error rows are not written to the EXCEPTION table.

Only records containing primary referential integrity errors or table
check constraint violations are applied toward the exception limit.
There is no limit on the number of records containing secondary
errors.

58 Utility Guide and Reference

 CHECK DATA

integer is the maximum number of exceptions. The default is
EXCEPTIONS 0, which indicates no limit on the number of
exceptions.

ERRDDN ddname
Specifies a DD statement for an error processing data set.

ddname is the DD name. The default is ERRDDN SYSERR.

WORKDDN(ddname1,ddname2)
Specifies the DD statements for the temporary work file for sort
input and the temporary work file for sort output. A temporary work
file for sort input and output is required.

ddname1 is the DD name of the temporary work file for sort input.

The default is SYSUT1.

ddname2 is the DD name of the temporary work file for sort output.

The default is SORTOUT.

SORTDEVT device-type
Specifies the device type for temporary data sets to be dynamically
allocated by DFSORT. It can be any device type acceptable to the
DYNALLOC parameter of the SORT or OPTION control statement
for DFSORT, as described in DFSORT Application Programming:
Guide.

device-type is the device type. If you omit SORTDEVT and a sort is
required, you must provide the DD statements that the sort program
requires for the temporary data sets.

SORTNUM integer
Tells the number of temporary data sets to be dynamically allocated
by the sort program.

integer is the number of temporary data sets.

If you omit SORTDEVT, SORTNUM is ignored.

If you use SORTDEVT and omit SORTNUM, no value is passed to
DFSORT; it is allowed to take its own default.

Instructions for running CHECK DATA
To run CHECK DATA, you must:

1. Read “Before running CHECK DATA” on page 60.

2. Prepare the necessary data sets, as described in “Data sets used by CHECK
DATA” on page 63.

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for CHECK
DATA, see “Sample control statements” on page 68.)

4. Prepare a utility control statement that specifies the options for the tasks you
want to perform, as described in “Instructions for specific tasks” on page 64.
(For a complete description of the syntax and options for CHECK DATA, see
“Syntax diagram” on page 56.)

 Chapter 2-4. CHECK DATA 59

 CHECK DATA

5. Check the compatibility table in “Concurrency and compatibility” on page 67 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restarting CHECK DATA if the job doesn't complete, as described in
“Terminating or restarting CHECK DATA” on page 66.

7. Run CHECK DATA.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for a description of
ways to execute DB2 utilities.

Before running CHECK DATA

| For a table with no LOB columns:
You should run CHECK INDEX on primary key indexes and foreign key indexes
before running CHECK DATA to ensure that the indexes used by CHECK DATA
are valid. This is especially important before using CHECK DATA with DELETE
YES.

| For a table with LOB columns:
| If you plan to run CHECK DATA on a base table space containing at least one LOB
| column, complete the following steps prior to running CHECK DATA:

| 1. Run CHECK LOB on the LOB table space.

| 2. Run CHECK INDEX on the index on the auxiliary table prior to running CHECK
| DATA to ensure the validity of the LOB table space and index on the auxiliary
| table.

| 3. Run CHECK INDEX on the base table space indexes.

| If the LOB table space is in either the CHECK pending or RECOVER pending
| status, or if the index on the auxiliary table is in REBUILD pending status, CHECK
| DATA will issue an error message and fail.

Create exception tables:
An exception table is a user-created table that duplicates the definition of a
dependent table. The dependent table is checked with the CHECK DATA utility. It
consists of at least n columns, where n is the number of columns of the dependent
table. The CHECK DATA utility copies the deleted rows from the dependent table
to the exception table. Table 3 describes the contents of an exception table.

60 Utility Guide and Reference

 CHECK DATA

Table 3. Exception tables

Column Description Required? Data Type and
Length

NULL Attribute

1 to n Corresponds to columns in the
table being checked. These
columns hold data from rows in the
table that violate referential or table
check constraints.

Yes The same as
the
corresponding
columns in the
table being
checked.

The same as the
corresponding
columns in the
table being
checked.

n+1 Identifies the RIDs of the invalid
rows of the table being checked.

No CHAR(4);
| CHAR(5) 1 for
| table spaces
| defined with
| LARGE or
| DSSIZE
| options

Anything

n+2 Starting time of the CHECK utility No TIMESTAMP Anything

≥ n+2 Additional columns that are not
used by the CHECK utility

No Anything Anything

| Notes:

| 1. You can use CHAR(5) for any type of table space.

If you delete rows using the CHECK DATA utility, you must create exception tables
for all tables that are named in the table spaces and for all their descendents. All
descendents of any row will be deleted.

When creating or using exception tables, be aware of the following:

� The exception tables should not have any unique indexes or referential or table
check constraints that might cause errors when CHECK DATA inserts rows in
them.

� You can create a new exception table before you run CHECK DATA, or use an
existing exception table. The exception table can contain rows from multiple
invocations of CHECK DATA.

� If column n+2 is of type TIMESTAMP, CHECK DATA records the starting time.
Otherwise, it does not use this column.

� You must have DELETE authorization on the dependent table being checked.

� You must have INSERT authorization on the exception table.

� Column names in the exception table can be given any name.

� Any change to the structure of the dependent table (such as a dropped column)
is not automatically recorded in the exception table. You must make that
change in the exception table.

Exception processing a table with a LOB column:
| If you use exception tables, the exception table for the base table must have a
| similar LOB column and a LOB table space for each LOB column. If an exception is
| found, DB2 moves the base table row with its LOB column to the exception table,
| and moves the LOB column into the exception table's LOB table space. If you
| specify DELETE YES, DB2 deletes the base table row and the LOB column.

 Chapter 2-4. CHECK DATA 61

 CHECK DATA

| An auxiliary table cannot be an exception table. A LOB column check error is not
| included in the exception count. A row with a LOB column check error only does
| not participate in exception processing.

Example: creating an exception table for the project activity
table

General-use Programming Interface

There is a clause of CREATE TABLE that makes the exception table easy to
create. You can create an exception table for the project activity table by using
these SQL statements:

CREATE TABLE EPROJACT

 LIKE DSN861%.PROJACT

IN DATABASE DSN8D61A;

ALTER TABLE EPROJACT

ADD RID CHAR(4);

ALTER TABLE EPROJACT

ADD TIME TIMESTAMP NOT NULL WITH DEFAULT;

The first statement requires the SELECT privilege on table DSN8610.PROJACT
and the privileges usually required to create a table.

Table EPROJACT has the same structure as table DSN8610.PROJACT, but it has
two extra columns:

� Its first five columns mimic the columns of the project activity table; they have
exactly the same names and descriptions. Although the column names are the
same, they do not have to be. However, the rest of the column attributes for
the initial columns must be same as those of the table being checked.

� The next column, added by ALTER TABLE, is optional; CHECK DATA uses it
as an identifier. The name “RID” is an arbitrary choice—if the table already has
a column with that name, you have to use a different name. The description of
this column, CHAR(4), is required.

� The final timestamp column is also useful. If the timestamp column is defined, a
row identifier (RID) column must precede this column. You might define a
permanent exception table for each table that is subject to referential or table
check constraints. You can define it once and use it to hold invalid rows
detected by CHECK DATA. The TIME column allows you to identify rows that
were added by the most recent run.

Eventually, you correct the data in the exception tables, perhaps with an SQL
UPDATE, and transfer the corrections to the original tables by using statements
such as:

INSERT INTO DSN861%.PROJACT

SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

 FROM EPROJACT

WHERE TIME > CURRENT TIMESTAMP - 1 DAY;

End of General-use Programming Interface

62 Utility Guide and Reference

 CHECK DATA

| Complete all LOB column definitions
| You must complete all LOB column definitions for a base table before running
| CHECK DATA. A LOB column definition is not complete until the LOB table space,
| auxiliary table and index on the auxiliary table have been created. If any LOB
| column definition is not complete, CHECK DATA will fail and issue error message
| DSNU075E.

Data sets used by CHECK DATA
Table 4 describes the data sets used by CHECK DATA. Include statements in your
JCL for each required data set, and any optional data sets you want to use.

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Table space
Object to be checked. It is named in the CHECK DATA control
statement and is accessed through the DB2 catalog. (If you want to
check only one partition of a table space, use the PART option in the
control statement.)

Exception tables
For each table in a table space that is checked, you can specify the
name of an exception table in the utility control statement. Any row
that violates a referential constraint is copied to the associated
exception table. See page 60 for more information.

Table 4. Data sets used by CHECK DATA

Data Set Description Required?

SYSIN An input data set containing the utility
control statement.

Yes

SYSPRINT An output data set for messages. Yes

Work data sets Two temporary data sets for sort input
and sort output. The symbolic names of
the DD statement are specified with the
WORKDDN option of the utility control
statement. The default ddname for sort
input is SYSUT1. The default ddname for
sort output is SORTOUT.

To find the approximate size in bytes of
the work data sets, see page 64.

Yes

Error data set An output data set that collects
information about violations encountered
during the CHECKDAT phase for
referential constraints or the SCANTAB
phase for check constraints. The symbolic
name of the DD statement is specified
with the ERRDDN parameter of the utility
control statement. The default ddname is
SYSERR.

Yes

UTPRINT Contains messages from DFSORT
(usually, SYSOUT or DUMMY).

No

 Chapter 2-4. CHECK DATA 63

 CHECK DATA

Defining work data sets: Three sequential data sets, described by the DD
statements named in the WORKDDN and ERRDDN options, are required during
execution of CHECK DATA.

To find the approximate size, in bytes, of the WORKDDN data set:

| 1. If a table space has a LOB column, count a total of 70 bytes for the LOB
| column, then go to step 3. If a table space does not have a LOB column, then
| go to step 2.
| 2. Add 9 to the length of the longest foreign key.
| 3. Multiply the sum by the number of keys and LOB columns checked.

Create the ERRDDN data set so that it is large enough to accommodate one error
entry (length=60 bytes) per defect detected by CHECK DATA.

Creating the control statement
See “Syntax diagram” on page 56 for CHECK DATA syntax and option
descriptions. See “Sample control statements” on page 68 for examples of CHECK
DATA usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Specify the scope of CHECK DATA”
“Checking several table spaces”
“Finding violations” on page 65
“Detecting and correcting constraint violations” on page 65
“Resetting CHECK pending status” on page 65
“Interpreting LOB column errors” on page 65

Specify the scope of CHECK DATA
To specify the scope of CHECK DATA, it is normally sufficient to run CHECK DATA
with SCOPE PENDING. DB2 keeps track of the data rows that must be checked to
ensure the referential integrity of the table space. You should run SCOPE ALL
whenever the scope information is in doubt. The scope information is recorded in
the DB2 catalog. The scope information can become in doubt whenever you start
the target table space with ACCESS(FORCE), or the catalog is recovered to a point
in time.

| If you only want to check tables with LOB columns, specify the AUXONLY option. If
| you want to check all dependent tables in the specified table spaces except tables
| with LOB columns, specify the REFONLY option.

Checking several table spaces
To check several table spaces, you can specify more than one table space in a
CHECK DATA control statement. This technique is useful for checking a complete
set of referentially related table spaces.

64 Utility Guide and Reference

 CHECK DATA

 Finding violations
CHECK DATA issues a message for every row containing a referential or table
check constraint violation. The violation is identified by:

� The RID of the row

� The name of the table that contained the row

� The name of the constraint being violated

Detecting and correcting constraint violations
To avoid problems, you should run CHECK DATA with DELETE NO to detect the
violations before you attempt to correct the errors. If required, use DELETE YES
after you analyze the output and understand the errors.

You can automatically delete rows that violate referential or table check constraints
by specifying CHECK DATA with DELETE YES. However, you should be aware of
the following possible problems:

� The violation might be created by a nonreferential integrity error. For example,
the indexes on a table might be inconsistent with the data in a table.

� Deleting a row might cause a cascade of secondary deletes in dependent
tables. The cascade of deletes might be especially inconvenient within
referential integrity cycles.

� The error might be in the parent table.

� Deleting a row might make the time error harder to detect.

� Valid rows might be detected.

CHECK DATA uses the primary key index and all indexes that match a foreign key
exactly. Therefore, before running CHECK DATA, ensure that the indexes are
consistent with the data by using CHECK INDEX.

Resetting CHECK pending status
If you run CHECK DATA with the DELETE NO option and referential or table check
constraint violations are found, the table space or partition is placed in CHECK
pending status.

Take one of the following actions to remove the CHECK pending status:

� Use the DELETE NO option if no tables contain rows that violate referential or
table check constraints.

� Use the DELETE YES option to remove all rows in violation of referential or
table check constraints.

| Interpreting LOB column errors
| If you run CHECK DATA AUXERROR REPORT or INVALIDATE on a base table
| space containing at least one LOB column, the following errors might be reported:

| Orphan LOBs: An orphan LOB column is a LOB found in the LOB table space but
| not referenced by the base table space. An orphan can result if you recover the
| base table space to a point in time prior to the insertion of the base table row or
| prior to the definition of the LOB column. An orphan can also result if you recover
| the LOB table space to a point in time prior to the deletion of a base table row.

 Chapter 2-4. CHECK DATA 65

 CHECK DATA

| Missing LOBs: A missing LOB column is a LOB referenced by the base table
| space, but the LOB is not in the LOB table space. A missing LOB can result if you
| recover the LOB table space to a point in time when the LOB column is not in the
| LOB table space. This could be a point in time prior to the first insertion of the LOB
| into the base table, or when the LOB column is null or has a zero length.

| Out-of-synch LOBs: An out-of-synch LOB error occurs when DB2 detects a LOB
| that is found in both the base table and the LOB table space, but the LOB in the
| LOB table space is at a different level. An LOB column is also out-of-synch if the
| base table LOB column is null or has a zero length, but the LOB is found in the
| LOB table space. An out-of-synch LOB can occur anytime you recover the LOB
| table space or the base table space to a prior point in time.

| Invalid LOBs: An invalid LOB is an uncorrected LOB column error found by a
| previous execution of CHECK DATA AUXERROR INVALIDATE.

| Detecting LOB column errors: If you specify either CHECK DATA AUXERROR
| REPORT or AUXERROR INVALIDATE and a LOB column check error is detected,
| DB2 reports a message identifying the table, row, column, and type of error. Any
| additional actions depend on the option you specify for the AUXERROR parameter.

| Actions performed with AUXERROR REPORT: DB2 sets the base table space to
| the CHECK pending status. If CHECK DATA encounters only invalid LOB columns
| and no other LOB column errors, the base table space is set to the auxiliary
| warning status.

| Actions performed with AUXERROR INVALIDATE: DB2 sets the base table LOB
| column to an invalid status, and sets the base table space to the auxiliary warning
| (AUXW) status. You can use SQL to update a LOB column in the AUXW status,
| however, any other attempt to access the column will result in a -904 SQL return
| code.

| See Appendix C, “Resetting an advisory or restrictive status” on page 527 for
| information about the resetting the restrictive table space status.

Terminating or restarting CHECK DATA

Terminating CHECK DATA
When you terminate CHECK DATA, table spaces remain in the CHECK pending
status as they were when the utility was terminated. The CHECKDAT phase places
the table space in the CHECK pending status when an error is detected; at the end
of the phase, the CHECK pending status is reset if no errors were detected. The
REPORTCK phase resets the CHECK pending status if you specify the DELETE
YES option.

For instructions on terminating an online utility, see “Terminating an online utility
with the TERM UTILITY command” on page 47.

66 Utility Guide and Reference

 CHECK DATA

Restarting CHECK DATA
You can restart a CHECK DATA utility job, but it starts from the beginning again.

For instructions on restarting a utility job, see “Restarting an online utility” on
page 48.

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Claims and drains: Table 5 shows the claim classes in which CHECK DATA
claims and drains and any restrictive status the utility sets on the target object.

Table 5. Claim classes of CHECK DATA operations. Use of claims and drains; restrictive
state set on the target object.

TARGET OBJECTS CHECK
DATA
DELETE
NO

CHECK
DATA
DELETE
YES

CHECK
DATA
PART
DELETE
NO

CHECK DATA
PART
DELETE YES

Table space or
Partition

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning Index or
Index Partition

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

| Nonpartitioning index DW/UTRO DA/UTUT DR

Logical partition of
index

 DW/UTRO DA/UTUT

Primary index DW/UTRO DW/UTRO DW/UTRO DW/UTRO

RI dependent and
descendent table
spaces and indexes

 DA/UTUT DA/UTUT

RI exception table
spaces and indexes
(FOR EXCEPTION
only)

DA/UTUT DA/UTUT DA/UTUT DA/UTUT

Legend:

� DA: Drain all claim classes, no concurrent SQL access
� DR: Drain the repeatable read class, no concurrent access for SQL repeatable

readers
� DW: Drain the write claim class, concurrent access for SQL readers
� UTUT: Utility restrictive state, exclusive control
� UTRO: Utility restrictive state, read only access allowed
� Blank: Object is not affected by this utility

 Chapter 2-4. CHECK DATA 67

 CHECK DATA

| When you specify CHECK DATA AUXERROR INVALIDATE, a drain-all is
| performed on the base table space, and the base table space is set UTUT.

Compatibility: The following utilities are compatible with CHECK DATA and can
run concurrently on the same target object:

 � DIAGNOSE
 � MERGECOPY
 � MODIFY
 � REPORT
 � STOSPACE

SQL operations and other online utilities are incompatible.

To run on DSNDB01.SYSUTILX, CHECK DATA must be the only utility in the job
step and the only utility running in the DB2 subsystem.

| The index on the auxiliary table for each LOB column inherits the same
| compatibility and concurrency attributes of a primary index.

| Table 6 (Page 1 of 2). Claim classes on a LOB table space and index on the auxiliary
| table for CHECK DATA operations. Use of claims and drains; restrictive states set on the
| target object.

TARGET OBJECTS CHECK DATA
DELETE NO

CHECK DATA DELETE
YES

| LOB table space| DW/UTRO| DA/UTUT

| Index on the auxiliary table| DW/UTRO| DA/UTUT

| Legend:

| � DW: Drain the write claim class, concurrent access for SQL readers
| � DA: Drain all claim classes, no concurrent SQL access
| � UTRO: Utility restrictive state, read only access allowed
| � UTUT: Utility restrictive state, exclusive control

Sample control statements
Example 1: CHECK DATA with DELETE. The following shows CHECK DATA JCL
for checking and deleting.

68 Utility Guide and Reference

 CHECK DATA

| //STEP1 EXEC DSNUPROC,UID='IUIQU1UQ.CHK1',

| // UTPROC='',

| // SYSTEM='V61A'

| //SYSUT1 DD DSN=IUIQU1UQ.CHK3.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(8%%%,(2%%,2%),,,ROUND)

| //SYSERR DD DSN=IUIQU1UQ.CHK3.SYSERR,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(6%%%,(2%,2%),,,ROUND)

| //SORTOUT DD DSN=IUIQU1UQ.CHK3.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(6%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

CHECK DATA TABLESPACE DSN8D61A.DSN8S61D

 TABLESPACE DSN8D61A.DSN8S61E

FOR EXCEPTION IN DSN861%.DEPT USE DSN861%.EDEPT

 IN DSN861%.EMP USE DSN861%.EEMP

 IN DSN861%.PROJ USE DSN861%.EPROJ

 IN DSN861%.PROJACT USE DSN861%.EPROJACT

 IN DSN861%.EMPPROJACT USE DSN861%.EEPA

 DELETE YES

//�

Example 2: Control statement for deleting error rows. Check for and delete all
constraint violations in table spaces DSN8D61A.DSN8S61D and
DSN8D61A.DSN8S61E.

CHECK DATA TABLESPACE DSN8D61A.DSN8S61D

 TABLESPACE DSN8D61A.DSN8S61E

 FOR EXCEPTION IN DSN861%.DEPT USE DSN861%.EDEPT

IN DSN861%.EMP USE DSN861%.EEMP

IN DSN861%.PROJ USE DSN861%.EPROJ

IN DSN861%.PROJECT USE DSN861%.EPROJECT

IN DSN861%.EMPPROJECT USE DSN861%.EEMPPROJECT

 DELETE YES

 Chapter 2-4. CHECK DATA 69

 CHECK DATA

70 Utility Guide and Reference

 CHECK INDEX

Chapter 2-5. CHECK INDEX

The CHECK INDEX online utility tests whether indexes are consistent with the data
they index, and issues warning messages when an inconsistency is found.

CHECK INDEX should be executed after a conditional restart or a point-in-time
recovery on all table spaces whose indexes may not be consistent with the data.

It should also be used before CHECK DATA to ensure that the indexes used by
CHECK DATA are valid. This is especially important before using CHECK DATA

| with DELETE YES. When checking an auxiliary table index, CHECK INDEX verifies
| that each LOB is represented by an index entry, and that an index entry exists for
| every LOB.

For a diagram of CHECK INDEX syntax and a description of available options, see
“Syntax and options of the control statement” on page 72. For detailed guidance on
running this utility, see “Instructions for running CHECK INDEX” on page 73.

Output: CHECK INDEX generates several messages that show whether the
indexes are consistent with the data. See Section 3 of DB2 Messages and Codes
for more information about these messages.

For unique indexes, any two null values are taken to be equal, unless the index
was created with the UNIQUE WHERE NOT NULL clause. In that case, if the key
is a single column, it can contain any number of null values, and CHECK INDEX
does not issue an error message.

| CHECK INDEX issues an error message if there are two or more null values and
the unique index was not created with the UNIQUE WHERE NOT NULL clause.

Authorization required: To execute this utility, the privilege set of this process
must include one of the following:

� STATS privilege for the database
� DBADM, DBCTRL, or DBMAINT authority for the database
� SYSCTRL or SYSADM authority.

An ID with installation SYSOPR authority can also execute CHECK INDEX, but
only on a table space in the DSNDB01 or DSNDB06 databases.

Execution Phases of CHECK INDEX:

Phase Description
UTILINIT Initialization and setup
UNLOAD Unloading of index entries
SORT Sorting of unloaded index entries
CHECKIDX Scanning of data to validate index entries
UTILTERM Cleanup.

 Copyright IBM Corp. 1983, 1999 71

 CHECK INDEX

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

 ┌ ┐─,─────────────────────────────
��─ ─CHECK─ ─INDEX─ ──┬ ┬──(───

�
┴─index-name─ ──┬ ┬───────────────) ───────── ──┬ ┬───────────────────── ────────�

 │ │└ ┘ ─PART──integer─ │ │┌ ┐─SYSUT1─
 └ ┘─(──ALL──)──table space spec─ ──┬ ┬─────────────── └ ┘ ─WORKDDN─ ──┴ ┴─ddname─
 └ ┘ ─PART──integer─

�─ ──┬ ┬─────────────────────── ──┬ ┬────────────────── ──��
 └ ┘ ─SORTDEVT──device-type─ └ ┘ ─SORTNUM──integer─

table space spec:

�─ ─TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ──�
 └ ┘─database-name.─

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

INDEX Indicates that you are checking for index consistency.

(index-name, ...) Specifies the indexes that are to be checked. All indexes must
belong to tables in the same table space. If you omit this
option, you must use the (ALL) TABLESPACE option. Then
CHECK INDEX checks all indexes on all tables in the table
space you specify.

index-name is the name of an index, in the form
creator-id.name. If you omit the qualifier creator-id., the user
identifier for the utility job is used. If you use a list of names,
separate items in the list by commas. Parentheses are required
around a name or list of names.

| PART integer Identifies a physical partition of a partitioning index or a logical
| partition of a nonpartitioning index to check.

integer is the number of the partition and must be in the range
from 1 to the number of partitions defined for the table space.
The maximum is 254.

(ALL) Specifies that all indexes in the specified table space
referenced by the table space are to be checked.

72 Utility Guide and Reference

 CHECK INDEX

TABLESPACE database-name.table-space-name
Specifies the table space from which all indexes will be
checked. If an explicit list of index names is not given, then all
indexes on all tables in the specified table space will be
checked.

Do not specify TABLESPACE with an explicit list of index
names.

database-name is the name of the database that the table
space belongs to. The default is DSNDB04.

table-space-name is the name of the table space from which all
indexes will be checked.

WORKDDN ddname
Specifies a DD statement for a temporary work file.

ddname is the DD name. The default is SYSUT1.

SORTDEVT device-type
Specifies the device type for temporary data sets to be
dynamically allocated by DFSORT. It can be any device type
acceptable to the DYNALLOC parameter of the SORT or
OPTION control statement for DFSORT.

device-type is the device type. If you omit SORTDEVT and a
sort is required, you must provide the DD statements that the
sort program requires for the temporary data sets.

SORTNUM integer Tells the number of temporary data sets to be dynamically
allocated by the sort program.

integer is the number of temporary data sets.

If you omit SORTDEVT, SORTNUM is ignored.

If you use SORTDEVT and omit SORTNUM, no value is
passed to DFSORT; it is allowed to take its own default.

Instructions for running CHECK INDEX
To run CHECK INDEX, you must:

1. Prepare the necessary data sets, as described in 71.

2. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for CHECK
INDEX, see “Sample control statements” on page 77.)

3. Prepare a utility control statement, specifying the options for the tasks you want
to perform. For a complete description of the syntax and options for CHECK
INDEX, see “Syntax and options of the control statement” on page 72.

4. Check the compatibility table in “Concurrency and compatibility” on page 76 if
you want to run other jobs concurrently on the same target objects.

5. Plan for restart if the CHECK INDEX job doesn't complete, as described in
“Terminating or restarting CHECK INDEX” on page 76.

6. Run CHECK INDEX.

 Chapter 2-5. CHECK INDEX 73

 CHECK INDEX

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Data sets used by CHECK INDEX
Table 7 describes the data sets used by CHECK INDEX. Include statements in
your JCL for each required data set, and any optional data sets you want to use.

The following object is named in the utility control statement and does not require a
DD card in the JCL:

Index space Object to be checked. It is named in the CHECK INDEX control
statement and is accessed through the DB2 catalog. (If you want to
check only one partition of an index, you must use the PART option in
the control statement.)

Defining the work data set for CHECK INDEX: A single sequential data set,
described by the DD statement specified in the WORKDDN option, is required
during execution of CHECK INDEX.

To find the approximate size of the WORKDDN data set, in bytes:

1. For each table, multiply the number of records in the table by the number of
indexes needing to be checked on the table.

2. Add the products obtained in step 1.

| 3. Add 9 to the length of the longest key.

4. Multiply the sum from step 2 by the sum from step 3.

Another method of estimating the size of the WORKDDN data set is to obtain the
high-used relative byte address (RBA) for each index from a VSAM catalog listing.
Then sum the RBAs.

Table 7. Data sets used by CHECK INDEX

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Work data set A temporary data set for collecting index
key values to be checked. Its DD name is
specified with the WORKDDN option of
the utility control statement. The default
DD name is SYSUT1.

To find the approximate size in bytes of
the work data sets, see page 74.

Yes

UTPRINT Contains messages from DFSORT
(usually, SYSOUT or DUMMY).

No

74 Utility Guide and Reference

 CHECK INDEX

Creating the control statement
See “Syntax diagram” on page 72 for CHECK INDEX syntax and option
descriptions. See “Sample control statements” on page 77 for examples of CHECK
INDEX usage.

Instructions for specific tasks
To perform the following task, specify the options and values documented with your
utility control statement.

Checking a single logical partition
You can run CHECK INDEX on a single logical partition of a nonpartitioning index.
However, there are some limitations on what CHECK INDEX can detect:

� It does not detect duplicate unique keys in different logical partitions. For
example, logical partition 1 might have the following keys:

A B E F T Z

and logical partition 2 might have these keys:

M N Q T V X

In this example, the keys are unique within each logical partition, but both
logical partitions contain the key, T; so for the index as a whole, the keys are
not unique.

� It does not detect keys that are out of sequence between different logical
partitions. For example, the following keys are out of sequence:

1 7 5 8 9 1% 12

If keys 1, 5, 9 and 12 belong to logical partition 1 and keys 7, 8, and 10 belong
to logical partition 2, then the keys within each partition are in sequence, but
the keys for the index, as a whole, are out of sequence:

LP 1 1 5 9 12

LP 2 7 8 1%

When checking a single logical partition, this out of sequence condition is not
detected.

Reviewing CHECK INDEX output
CHECK INDEX indicates whether or not a table space and its indexes are
inconsistent, but does not correct any such inconsistencies. If CHECK INDEX
detects inconsistencies, you should analyze the output to determine the problem

| and then correct the inconsistency. Perform the following actions to identify the
| inconsistency:

| 1. Examine the error messages from CHECK INDEX.

| 2. Verify the point in time (TOLOGPOINT, TORBA, or TOCOPY) for each object
| recovered. Use output from REPORT RECOVERY to determine a consistent
| point for both the table space and its indexes.

| 3. If the table space is correct, run the REBUILD INDEX utility to rebuild the
| indexes.

| 4. If the index is correct, determine a consistent point in time for the table space,
| and run the RECOVER utility on the table space. Run CHECK INDEX again to
| verify consistency.

 Chapter 2-5. CHECK INDEX 75

 CHECK INDEX

| 5. If neither the table space nor its indexes are correct, determine a consistent
| point in time, then run the RECOVER utility job again, including the table space
| and its indexes all in the same list.

Terminating or restarting CHECK INDEX
CHECK INDEX can be terminated in any phase without any integrity exposure.

You can restart a CHECK INDEX utility job, although it starts over again from the
beginning.

For instructions on restarting a utility job, see “Restarting an online utility” on
page 48.

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Claims and drains: Table 8 shows which claim classes CHECK INDEX claims
and drains and any restrictive state the utility sets on the target object.

CHECK INDEX does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

Compatibility: Table 9 shows which utilities can run concurrently with CHECK
INDEX on the same target object. The target object can be a table space, an index
space, or an index partition. If compatibility depends on particular options of a
utility, that is also documented.

Table 8. Claim classes of CHECK INDEX operations. Use of claims and drains; restrictive
states set on the target object.

Target CHECK INDEX CHECK INDEX
PART

Table space or partition DW/UTRO DW/UTRO

Partitioning index or index partition DW/UTRO DW/UTRO

| Nonpartitioning
index

DW/UTRO

Logical partition
of
an index

 DW/UTRO

Legend:

� DW: Drain the write claim class, concurrent access for SQL readers
� UTRO: Utility restrictive state, read only access allowed
� Blank: Object is not affected by this utility

Table 9 (Page 1 of 2). CHECK INDEX compatibility

Action CHECK INDEX

CHECK DATA No

CHECK INDEX Yes

76 Utility Guide and Reference

 CHECK INDEX

To run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, CHECK INDEX must be
the only utility within the same job step.

Table 9 (Page 2 of 2). CHECK INDEX compatibility

Action CHECK INDEX

| CHECK LOB| Yes

| COPY INDEXSPACE| Yes

| COPY TABLESPACE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE Yes

| REBUILD INDEX| No

| RECOVER INDEX| No

| RECOVER TABLESPACE No

REORG INDEX No

| REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

| REORG TABLESPACE UNLOAD ONLY or EXTERNAL Yes

REPAIR DUMP or VERIFY Yes

REPAIR DELETE or REPLACE No

REPORT Yes

RUNSTATS Yes

STOSPACE Yes

Sample control statements
Example 1: Check all indexes in a sample table space.

| //STEP1 EXEC DSNUPROC,UID='IUIQU1UQ.CHK1',

| // UTPROC='',

| // SYSTEM='V61A'

| //SYSUT1 DD DSN=IUIQU1UQ.CHK3.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(8%%%,(2%%,2%),,,ROUND)

| //SYSERR DD DSN=IUIQU1UQ.CHK3.SYSERR,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(6%%%,(2%,2%),,,ROUND)

| //SORTOUT DD DSN=IUIQU1UQ.CHK3.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(6%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

CHECK INDEX (ALL) TABLESPACE DSN8D61A.DSN8S61E

//�

Example 2: Check one index. Check the project-number index
(DSN8610.XPROJ1) on the sample project table.

CHECK INDEX (DSN861%.XPROJ1)

 SORTDEVT SYSDA

 Chapter 2-5. CHECK INDEX 77

 CHECK INDEX

Example 3: Check more than one index. Check the indexes
DSN8610.XEMPRAC1 and DSN8610.XEMPRAC2 on the employee to project
activity sample table.

CHECK INDEX NAME (DSN861%.XEMPRAC1, DSN861%.XEMPRAC2)

Example 4: Check all indexes on a table space. Check all indexes on the
employee-table table space (DSN8S61E).

CHECK INDEX (ALL) TABLESPACE DSN8S61E

 SORTDEVT 338%

78 Utility Guide and Reference

 CHECK LOB

| Chapter 2-6. CHECK LOB

| The CHECK LOB online utility can be run against a LOB table space to identify any
| structural defects in the LOB table space and any invalid LOB values.

| Run the CHECK LOB online utility against a LOB table space that is marked
| CHECK pending (CHKP) to identify structural defects. If none is found, the CHECK
| LOB utility turns the CHKP status off.

| Run the CHECK LOB online utility against a LOB table space that is in auxiliary
| warning (AUXW) status to identify invalid LOBs. If none exists, the CHECK LOB
| utility turns AUXW status off.

| Run CHECK LOB after a conditional restart or a point-in-time recovery on all table
| spaces where LOB table spaces might not be synchronized.

| For a diagram of CHECK LOB syntax and a description of available options, see
| “Syntax and options of the control statement.” For detailed guidance on running this
| utility, see “Instructions for running CHECK LOB” on page 81 .

| Output: After successful execution, CHECK LOB resets the CHECK pending
| (CHKP) and auxiliary warning (AUXW) statuses.

| Authorization required: To run this utility, the privilege set of this process must
| include one of the following authorities:

| � STATS privilege for the database
| � DBADM, DBCTRL, or DBMAINT authority for the database
| � SYSCTRL or SYSADM authority

| An ID with installation SYSOPR authority can also execute CHECK LOB.

| Execution phases of CHECK LOB:

| Phase Description

| UTILINIT Initialization

| CHECKLOB Scans all active pages of the LOB table space

| SORT Sorts four types of records from the CHECKLOB phase; reports four
| times the number of rows sorted.

| REPRTLOB Examines records that are produced by the CHECKLOB phase and
| sorted by the SORT phase, and issues error messages

| UTILTERM Cleanup

| Syntax and options of the control statement
| The utility control statement defines the function the utility job performs. You can
| create a control statement with the ISPF/PDF edit function. After creating it, save it
| in a sequential or partitioned data set. When you create the JCL for running the job,
| use the SYSIN DD statement to specify the name of the data set that contains the
| utility control statement.

 Copyright IBM Corp. 1983, 1999 79

 CHECK LOB

| Syntax diagram
| For guidance in interpreting syntax diagrams, see “How to read the syntax
| diagrams” on page 4.

|

| ��─| ─CHECK─| ─LOB──table-space-spec─ ──┬ ┬───────────────────────── ──�
| │ │┌ ┐─ ───────
| └ ┘| ─EXCEPTIONS─ ──┴ ┴─integer─

| �─ ──┬ ┬──────────────────────────────────── ──┬ ┬─────────────────────── ──┬ ┬────────────────── ──────────��
| │ │┌ ┐─SYSUT1── ┌ ┐─,SORTOUT─ └ ┘| ─SORTDEVT──device-type─ └ ┘| ─SORTNUM──integer─
| └ ┘| ─WORKDDN─ ──┴ ┴─ddname1─ ──┼ ┼──────────
| └ ┘─,ddname2─

| table-space-spec:|

| �─| ─TABLESPACE─ ──┬ ┬──────────────── ─lob-table-space-name───�
| └ ┘─database-name.─

| Option descriptions
| For a description of how utility statements are parsed, and how to read a list of
| option identifiers and specifications like the one that follows, see “Control statement
| coding rules” on page 27.

| LOB Indicates that you are checking a LOB table space for
| defects.

| TABLESPACE database-name.lob-table-space-name
| Specifies the table space to which the data belongs.

| database-name is the name of the database and is optional.
| The default is DSNDB04.

| lob-table-space-name is the name of the LOB table space.

| EXCEPTIONS integer Specifies the maximum number of exceptions, which are
| reported by messages only. CHECK LOB terminates in the
| CHECKLOB phase when it reaches the specified number of
| exceptions.

| All defects that are reported by messages are applied to the
| exception count.

| integer is the maximum number of exceptions. The default
| is EXCEPTIONS 0, which indicates no limit on the number
| of exceptions.

| WORKDDN(ddname1,ddname2)
| Specifies the DD statements for the temporary work file for
| sort input and the temporary work file for sort output. A
| temporary work file for sort input and output is required.

| ddname1 is the DD name of the temporary work file for sort
| input.

80 Utility Guide and Reference

 CHECK LOB

| The default is SYSUT1.

| ddname2 is the DD name of the temporary work file for sort
| output.

| The default is SORTOUT.

| SORTDEVT device-type
| Specifies the device type for temporary data sets that are to
| be dynamically allocated by DFSORT.

| device-type is the device type. device-type can be any
| device type that is acceptable to the DYNALLOC parameter
| of the SORT or OPTION control statement for DFSORT, as
| described in DFSORT Application Programming: Guide.

| If you omit SORTDEVT and a sort is required, you must
| provide the DD statements that the sort program requires
| for the temporary data sets.

| SORTNUM integer Indicates the number of temporary data sets that are to be
| dynamically allocated by the sort program.

| integer is the number of temporary data sets.

| If you omit SORTDEVT, SORTNUM is ignored.

| If you use SORTDEVT and omit SORTNUM, no value is
| passed to DFSORT, which then uses its own default.

| Instructions for running CHECK LOB
| To run CHECK LOB:

| 1. Read “Before running CHECK LOB” on page 82.

| 2. Prepare the necessary data sets, as described in “Data sets used by CHECK
| LOB” on page 82.

| 3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
| Invoking DB2 online utilities” on page 27. (For examples of JCL for CHECK
| LOB, see “Sample control statements” on page 84.)

| 4. Prepare a utility control statement that specifies the options for the tasks you
| want to perform, as described in “Instructions for specific tasks” on page 83.
| (For a complete description of the syntax and options for CHECK LOB, see
| “Syntax diagram” on page 80.)

| 5. Check the compatibility table in “Concurrency and compatibility” on page 84 if
| you want to run other jobs concurrently on the same target objects.

| 6. Plan for restarting CHECK LOB if the job doesn't complete, as described in
| “Terminating or restarting CHECK LOB” on page 83.

| 7. Run CHECK LOB.

| See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for a description of
| ways to execute DB2 utilities.

 Chapter 2-6. CHECK LOB 81

 CHECK LOB

| Before running CHECK LOB
| You must first recover a LOB table space that is in RECOVER pending status
| before running CHECK LOB.

| Data sets used by CHECK LOB
| Table 10 describes the data sets that CHECK LOB uses. Include statements in
| your JCL for each required data set and any optional data sets you want to use.

| The following object is named in the utility control statement and does not require
| DD statements in the JCL:

| Table space
| Object to be checked. This object is named in the CHECK LOB
| control statement and is accessed through the DB2 catalog.

| Defining work data sets: Two sequential data sets, described by the DD
| statements named in the WORKDDN option, are required during execution of
| CHECK LOB.

| To find the approximate size, in bytes, of the WORKDDN data set:

| 1. Find the high allocated page number, either from the NACTIVEF column of the
| SYSIBM.SYSTABLESPACE catalog table after running the RUNSTATS utility
| on the LOB table space, or from information in the VSAM catalog data set.
| 2. Use the formula (43 × NACTIVEF × 4). The resulting value is the approximate
| size, in bytes, of the work data set required.

| Table 10. Data sets used by CHECK LOB

| Data Set| Description| Required?

| SYSIN| An input data set containing the utility
| control statement.
| Yes

| SYSPRINT| An output data set for messages.| Yes

| Work data set# One temporary data set for sort input and
sort output. The symbolic name of the DD
statement is specified with the
WORKDDN option of the utility control
statement. The default ddname for this
data set is SYSUT1.

| To find the approximate size in bytes of
| the work data sets, see page 82.

| Yes

| UTPRINT| Contains messages from DFSORT
| (usually, SYSOUT or DUMMY).
| No

| Creating the control statement
| See “Syntax diagram” on page 80 for CHECK LOB syntax and option descriptions.
| See “Sample control statements” on page 84 for examples of CHECK LOB usage.

82 Utility Guide and Reference

 CHECK LOB

| Instructions for specific tasks
| To perform the following tasks, specify the options and values for those tasks in
| your utility control statement:

| “Finding and resolving violations”
| “Resetting CHECK pending status for a LOB table space”

| Finding and resolving violations
| CHECK LOB issues message DSNU743I whenever a LOB value is invalid. The
| violation is identified by:

| � The row ID and version number of the LOB
| � A reason code for the error
| � The page number where the error was found

| You can resolve LOB violations by using the UPDATE or DELETE SQL statements
| to update the LOB column or delete the row associated with the LOB (use the
| rowid given in message DSNU743I). For more information, see UPDATE or
| DELETE in Chapter 6 of DB2 SQL Reference.

| If CHECK LOB issues either message DSNU785I or DSNU787I, it has detected a
| logical inconsistency within the LOB table space. Contact IBM Support Center for
| assistance with diagnosing and resolving the problem.

| Resetting CHECK pending status for a LOB table space
| If you run CHECK LOB and LOB table space errors are found, the table space is
| placed in CHECK pending status.

| Complete the following tasks to remove the CHECK pending status:

| 1. Correct any defects found in the LOB table space using the REPAIR utility.
| 2. To reset CHECK pending or AUXW status, run CHECK LOB again, or run the
| REPAIR utility.

| Terminating or restarting CHECK LOB

| Terminating CHECK LOB
| If you terminate CHECK LOB during the CHECKLOB phase, it sets the table space
| to CHECK pending status. Otherwise, CHECK LOB resets the CHECK pending
| status at the end of the phase if no errors are detected.

| For instructions on terminating an online utility, see “Terminating an online utility
| with the TERM UTILITY command” on page 47.

| Restarting CHECK LOB
| You can restart a CHECK LOB utility job, but it starts from the beginning again.

| For instructions on restarting a utility job, see “Restarting an online utility” on
| page 48.

 Chapter 2-6. CHECK LOB 83

 CHECK LOB

| Concurrency and compatibility
| Claims and drains: Table 11 shows the claim classes in which CHECK LOB
| claims and drains and any restrictive state the utility sets on the target object.

| Compatibility: Any SQL operation or other online utility that attempts to update the
| same LOB table space is incompatible.

| Table 11. Claim classes on a LOB table space and index on the auxiliary table for CHECK
| LOB operations. Use of claims and drains; restrictive states set on the target object.

| TARGET OBJECTS| CHECK LOB

| LOB table space| DW/UTRO

| Index on the auxiliary table| DW/UTRO

| Legend:

| � DW: Drain the write claim class, concurrent access for SQL readers
| � UTRO: Utility restrictive state, read only access allowed

| Sample control statements
| Example: Checking a LOB table space. Check the table space TLIQUG02 in
| database DBIQUG01 for structural defects or invalid LOB values.

| //STEP1 EXEC DSNUPROC,UID='IUIQU2UG.CHECKL',

| // UTPROC='',

| // SYSTEM='V61A'

| //SYSERR DD DSN=IUIQU2UG.STEP1.SYSERR,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSUT1 DD DSN=IUIQU2UG.CHECKL.SYSUT1,UNIT=SYSDA,

| // SPACE=(4%%%,(2%,2%),,,ROUND),

| // DISP=(MOD,DELETE,CATLG)

| //SYSREC DD DSN=CUST.FM.CSFT32%.DATA,DISP=SHR,UNIT=SYSDA,

| // VOL=SER=123456

| //SORTOUT DD DSN=IUIQU2UG.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

| CHECK LOB TABLESPACE DBIQUG%1.TLIQUG%2

| EXCEPTIONS 3 WORKDDN SYSUT1,SORTOUT SORTDEVT SYSDA

| SORTNUM 4

84 Utility Guide and Reference

 COPY

Chapter 2-7. COPY

The COPY online utility creates up to four image copies of any of the following
objects:

| � Table space
| � Table space partition
| � Data set of a linear table space
| � Index space
| � Index space partition

There are two types of image copies:

| 1. A full image copy is a copy of all pages in a table space, partition, data set, or
| index space.

2. An incremental image copy is a copy only of pages that have been modified
since the last use of the COPY utility.

| The copies are used by the RECOVER utility when recovering a table space or
| index space to the most recent time or to a previous time.

You can copy a list of objects in parallel to improve performance. Specifying a list
of objects along with the SHRLEVEL REFERENCE option creates a single recovery
point for that list of objects. Specifying the PARALLEL keyword allows you to copy
a list of objects in parallel, rather than serially. This provides a performance
advantage, and allows the RECOVER utility to process the logs for all table spaces
and index spaces in a single pass.

For a diagram of COPY syntax and a description of available options, see “Syntax
and options of the control statement” on page 86. For detailed guidance on running
this utility, see “Instructions for running COPY” on page 92.

Output: Output from the COPY utility consists of:

� Up to four sequential data sets containing the image copy.

� Rows in the SYSIBM.SYSCOPY catalog table that describe the image copy
| data sets available to the RECOVER utility. It is your installation's responsibility
| to ensure that these data sets are available if the RECOVER utility requests

them.

� If you specify the CHANGELIMIT option, a report on the change status of the
table space.

The COPY pending status is off for table spaces if the copy was a full image copy.
| However, DB2 does not reset the COPY pending status if you COPY a single piece
| of a multi-piece linear data set. If you COPY a single table space partition, DB2
| resets the COPY pending status only for the copied partition and not the whole
| table space. DB2 resets the informational COPY pending status (ICOPY) after you
| copy an index space or index.

Related information: See Section 4 (Volume 1) of DB2 Administration Guide for
| uses of COPY in the context of planning for database recovery. For information
| about creating copies inline during LOAD, see “Using inline COPY with LOAD” on

 Copyright IBM Corp. 1983, 1999 85

 COPY

| page 160. You can also create inline copies during REORG; see “Using inline
| COPY with REORG TABLESPACE” on page 319 for more information.

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

� IMAGCOPY privilege for the database
� DBADM, DBCTRL, or DBMAINT authority for the database
� SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute COPY, but only on a
table space in the DSNDB01 or DSNDB06 database.

The batch user ID that invokes COPY with the CONCURRENT option must provide
the necessary authority to execute the DFDSS DUMP command.

Execution phases of COPY: The COPY utility operates in these phases:

Phase Description
UTILINIT Initialization and setup
REPORT Reporting for CHANGELIMIT option
COPY Copying
UTILTERM Cleanup

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

��──COPY───�

 ┌ ┐───
| �─ ──┬ ┬| ───

�
┴┬ ┬─table-space spec── ──┬ ┬───────────────────────────────── ──┬ ┬─────────── ────────�

│ │└ ┘# ─index-name spec─ ──┬ ┬───────────────────────# ─data-set spec─ └ ┘# ─PARALLEL─ ──┬ ┬─────────────────── └ ┘# ─CHECKPAGE─
| │ ││ │┌ ┐─ALL──────── └ ┘| ─(──num-objects──)─
| │ │└ ┘| ─DSNUM─ ──┴ ┴─integer────(1)

 │ │┌ ┐───
| └ ┘| ──┬ ┬| ───

�
┴| ──┬ ┬─ts-name spec──── ──┬ ┬───────────────────────| ─data-set spec─ ─────────────────── ─CONCURRENT────────────────

 │ │└ ┘─index-name spec─ │ │┌ ┐─ALL────────
 │ │└ ┘ ─DSNUM─ ──┴ ┴ ─integer────(1)

 │ │┌ ┐──
| └ ┘| ───

�
┴──┬ ┬─ts-name spec──── ──┬ ┬─────────────────────── ──FILTERDDN(ddname)| ─data-set spec─

 └ ┘─index-name spec─ │ │┌ ┐─ALL────────
 └ ┘ ─DSNUM─ ──┴ ┴ ─integer────(1)

�─ ──┬ ┬───────────────────────── ───��
 │ │┌ ┐─REFERENCE─
 └ ┘ ─SHRLEVEL─ ──┴ ┴─CHANGE────

Note:
| 1 Not valid for nonpartitioning indexes.

86 Utility Guide and Reference

 COPY

| table-space spec:|

| �─| ─ts-name spec─ ──┬ ┬────────────────────| ─data-set spec──�
| │ │┌ ┐─ALL─────
| └ ┘| ─DSNUM─ ──┴ ┴─integer─

| �─ ──┬ ┬── ──────────────────────�
| │ │┌ ┐─YES─
| ├ ┤| ─FULL─ ──┴ ┴─NO── ───
| └ ┘| ─CHANGELIMIT─ ──┬ ┬─── ──┬ ┬────────────
| └ ┘──(percent_value1 ──┬ ┬───────────────────) └ ┘─REPORTONLY─
| └ ┘| ─,──percent_value2─

| ts-name spec:

�──TABLESPACE─ ──┬ ┬──────────────── ─table-space-name──�
 └ ┘─database-name.─

| index-name spec:|

| �─ ───(1) ──┬ ┬| ─INDEXSPACE─ ──┬ ┬──────────────── ─index-space-name─ ───�
| │ │└ ┘─database-name.─
| └ ┘| ─INDEX─ ──┬ ┬───────────── ─index-name───────────────
| └ ┘─creator-id.─

| Note:
| 1 INDEXSPACE is the preferred specification.

| data-set spec:|

| �─ ───(1) ──┬ ┬── ──┬ ┬──────────────────────────────────── ───────────�
| │ │┌ ┐─SYSCOPY─ └ ┘──RECOVERYDDN(ddname3 ──┬ ┬──────────)
| └ ┘──COPYDDN(──┬ ┬| ──┴ ┴─ddname1─ ──┬ ┬──────────) └ ┘──,ddname4
| │ │└ ┘──,ddname2
| └ ┘──,ddname2 ─────────────────

| Note:
| 1 If you specified a list of objects, only one object in the list can use the default (SYSCOPY); you must
| specify the DD names for the rest of the objects listed.

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

TABLESPACE Specifies the table space (and, optionally, the database it belongs
to) that is to be copied.

 Chapter 2-7. COPY 87

 COPY

database-name Is the name of the database the table space
belongs to.

The default is DSNDB04.

table-space-name Is the name of the table space to be copied.

| Specify a catalog or directory table space by itself in a single
| COPY statement, or only with indexes over the table space that
| were defined with the COPY YES attribute.

| INDEXSPACE database-name.index-space-name
| Specifies the qualified name of the index space that is to be
| copied; the name is obtained from the SYSIBM.SYSINDEXES
| table. The index space specified must be defined with the COPY
| YES attribute.

| database-name Optionally specifies the name of the database
| the index space belongs to.

| The default is DSNDB04.

| index-space-name Specifies the name of the index space to be
| copied.

| INDEX creator-id.index-name
| Specifies the index to be copied.

| creator-id Optionally specifies the creator of the index.

| The default is DSNDB04.

| index-name Specifies the name of the index that is to be copied.

| DSNUM For a table space, identifies a partition or data set within the table
| space to be copied; or it copies the entire table space. For an
| index space, identifies a partition to be copied; or it copies the

entire index space.

If a data set of a nonpartitioned table space is in the COPY
pending status, you must copy the entire table space.

| ALL Copies the entire table space or index space.

The default is ALL.

| You must use the ALL default for a non-partitioning
| index.

integer Is the number of a partition or data set to be copied.

| An integer value is not valid for non-partitioning
| indexes.

| For a partitioned table space or index space, the
integer is its partition number. The maximum is 254.

| For a nonpartitioned table space or nonpartitioning
| index space, find the integer at the end of the data set

name as cataloged in the VSAM catalog. The data set
name has this format:

| catname.DSNDBx.dbname.spacename.I%%%1.Annn

88 Utility Guide and Reference

 COPY

where:

catname The VSAM catalog name or alias
x C or D
dbname The database name

| spacename The table space or index space name
nnn The data set integer.

If image copies are taken by data set (rather than by table
space), then RECOVER or MERGECOPY must use the copies by
data set. For a nonpartitioned table space, if image copies are
taken by data set and you run MODIFY RECOVERY with
DSNUM ALL, then the table space is placed in COPY pending
status if a full image copy of the entire table space does not exist.

| COPYDDN ddname1,ddname2
| Specifies the DD statements for the primary (ddname1) and
| backup (ddname2) copied data sets for the image copy at the

local site.

| ddname is the DD name.

| The default is SYSCOPY for the primary copy. You can only use
| the default for one object in the list.

If you use the CHANGELIMIT REPORTONLY option, you may
use a DD DUMMY card when you specify the SYSCOPY output
data set. This card prevents a data set from being allocated and
opened.

It is recommended that you catalog all of your image copy data
sets.

You cannot have duplicate image copy data sets. If the DD
statement identifies a noncataloged data set with the same name,
volume serial, and file sequence number as one already recorded
in SYSIBM.SYSCOPY, a message is issued and no copy is
made. If it identifies a cataloged data set with only the same
name, no copy is made. For cataloged image copy data sets,
CATLG must be specified for the normal termination disposition in

| the DD statement; for example, DISP=(MOD,CATLG,CATL). The
DSVOLSER field of the SYSIBM.SYSCOPY entry will be blank.

When the image copy data set is going to a tape volume, the
VOL=SER parameter should be specified on the DD statement.

If you use the CONCURRENT and FILTERDDN options, make
sure the size of the copy data set is large enough to include all of

| the objects in the list.

| RECOVERYDDN ddname3,ddname4
| Specifies the DD statements for the primary (ddname3) and
| backup (ddname4) copied data sets for the image copy at the

recovery site.

| ddname is the DD name.

You cannot have duplicate image copy data sets. The same rules
apply for RECOVERYDDN as for COPYDDN.

 Chapter 2-7. COPY 89

 COPY

If you use the CONCURRENT and FILTERDDN options, make
sure the size of the copy data set is large enough to include all of

| the objects in the list.

| PARALLEL Specifies the maximum number of objects in the list that should
| be processed in parallel. If you omit this keyword, the list is not
| processed in parallel.

| (num-objects) Specifies the number of objects in the list that
| should be processed in parallel. This value can
| be adjusted to a smaller value if COPY
| encounters storage constraints.

| If you specify 0 or do not specify a value for
| num-objects, COPY determines the optimal
| number of objects to process in parallel.

CHECKPAGE If specified, checks each page in the table space or index space
for validity. The validity checking operates on one page at a time
and does not include any cross-page checking. If an error is
found, a message is issued describing the type of error. If more
than one error exists in a given page, only the first error is
identified. COPY will continue checking the remaining pages in
the table space or index space after an error is found.

FULL Makes either a full or an incremental image copy.

YES Makes a full image copy.

| Making a full image copy resets the COPY pending status
| for the table space or index, or for the partition if you
| specified DSNUM.

The default is YES.

NO Makes only an incremental image copy. Only changes
since the last image copy are copied.

| NO is not valid for indexes.

Incremental image copies are not allowed in the following
situations:

� The last full image copy of the table space was taken with the
CONCURRENT option.

� No full image copies exist for the table space or data set
being copied.

� After a successful LOAD or REORG operation, unless an
inline copy was made during the LOAD or REORG.

� The table space you specify is one of the following:
DSNDB01.DBD01, DSNDB01.SYSUTILX, or
DSNDB06.SYSCOPY.

| COPY automatically takes a full image copy of a table space if
you specify FULL NO when an incremental image copy is not
allowed.

90 Utility Guide and Reference

 COPY

FILTERDDN ddname
Specifies the DD statement for the filter data set to be used, if
desired, by COPY with the CONCURRENT option. COPY uses
this data set to automatically build a list of table spaces to be
copied by DFSMSdds with one DFSMSdds "DUMP" statement.

| If FILTERDDN is specified, the SYSIBM.SYSCOPY records for all
| objects in the list will have the same data set name.

ddname is the DD name.

SHRLEVEL Indicates whether other programs can access or update the table
| space or index while COPY is running.

REFERENCE Allows read-only access by other programs.

The default is REFERENCE.

CHANGE Allows other programs to change the table space
| or index space.

When you specify SHRLEVEL CHANGE, uncommitted data might
be copied. Image copies taken using SHRLEVEL CHANGE are
not recommended for use with RECOVER TOCOPY.

SHRLEVEL CHANGE is not allowed when you use DFSMS
| Concurrent Copy for table spaces having a page size greater
| than 4KB.

CONCURRENT Executes DFSMS concurrent copy to make the full image copy.
The image copy is recorded in SYSCOPY with ICTYPE=F and
STYPE=C.

If the SYSPRINT DD card points to a data set, you must use a
DSSPRINT DD card.

When SHRLEVEL(REFERENCE) is specified, an ICTYPE=Q
record is placed into the SYSCOPY table after the object has
been quiesced. If COPY fails, then this record remains in
SYSCOPY. When COPY is successful, then this ICTYPE=Q
record is replaced with the ICTYPE=F record.

For table spaces with a 32 KB page size, you must run the job
with the SHRLEVEL REFERENCE (default) option when using
the CONCURRENT option. Otherwise, the job is terminated, and
message DSNU423I is issued.

CHANGELIMIT Specifies the percent limit of changed pages in the table space,
partition, or data set when an incremental or full image copy
should be taken.

| percent_value1 Specifies a value in the CHANGELIMIT range.
| percent_value1 must be an integer or decimal
| value from 0 to 100. You do not need to specify
| leading zeroes, and the decimal point is not
| required when specifying a whole integer.
| Specify one decimal place for a decimal value
| (for example, .5).

 Chapter 2-7. COPY 91

 COPY

| percent_value2 Specifies the second value in the CHANGELIMIT
| range. percent_value2 must be an integer or
| decimal value from 0 to 100. You do not need to
| specify leading zeroes, and the decimal point is
| not required when specifying a whole integer.

COPY CHANGELIMIT accepts values in any order.

If only one value is specified, COPY CHANGELIMIT:

� Creates an incremental image copy if the percentage of
changed pages is greater than 0 and less than
percent_value1.

� Creates a full image copy if the percentage of change pages
is greater than or equal to percent_value1, or if
CHANGELIMIT(0) is specified.

� Does not create an image copy if no pages have changed,
unless CHANGELIMIT(0) is specified.

If two values are specified, COPY CHANGELIMIT:

� Creates an incremental image copy if the percentage of
changed pages is greater than the lowest value specified and
less than the highest value specified.

� Creates a full image copy if the percentage of changed pages
is equal to or greater than the highest value specified.

� Does not create an image copy if the percentage of changed
pages is less than or equal to the lowest value specified.

� If both values are equal, creates a full image copy if the
percentage of changed pages is equal to or greater than the
value specified.

The default values are (1,10).

| You cannot use the CHANGELIMIT option for a table space or
| partition defined with TRACKMOD NO. If you change the
| TRACKMOD option from NO to YES, you must take an image
| copy before you can use the CHANGELIMIT option. For
| nonpartitioned table spaces, you must copy the entire table space
| to allow future CHANGELIMIT requests.

REPORTONLY Specifies that image copy information is displayed. If you specify
the REPORTONLY option, then only image copy information is
displayed. Image copies are not taken, only recommended.

Instructions for running COPY
To run COPY, you must:

1. Read “Before running COPY” on page 93 in this chapter.

2. Prepare the necessary data sets, as described in “Data sets used by COPY” on
page 93.

92 Utility Guide and Reference

 COPY

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for COPY, see
“Sample control statements” on page 108.)

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 95. (For a
complete description of the syntax and options for COPY, see “Syntax and
options of the control statement” on page 86.)

5. Check the compatibility table in “Concurrency and compatibility” on page 106 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the COPY job doesn't complete, as described in “Terminating
or restarting COPY” on page 105.

 7. Run COPY.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Before running COPY
Checking table space status: You cannot copy a table space that is in the
CHECK pending or RECOVER pending status. See “Resetting RECOVER pending
or REBUILD pending status” on page 248 for information about resetting these
statuses.

| Resetting COPY pending status: If a table space is in COPY pending status, or
| an index is in informational COPY pending status, you can reset the status only by
| taking a full image copy of the entire table space, all partitions of the table space,
| or the index space. When you make an image copy of a partition, the COPY

pending status of the partition is reset. If a nonpartitioned table space is in COPY
pending status, you can reset the status only by taking a full image copy of the
entire table space, and not of each data set.

Data sets used by COPY
Table 12 describes the data sets required for COPY. Include statements in your
JCL for each required data set, and any optional data sets you want to use.

Table 12 (Page 1 of 2). Data sets used by COPY

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

DSSPRINT Output data set for messages; required
when CONCURRENT copy is used and
the SYSPRINT DD card points to a data
set.

No

Filter A single data set DB2 uses when you
specify the FILTERDDN option in the
utility control statement; contains a list of

| VSAM data set names built by DB2, and
| is used during COPY when the
| CONCURRENT and FILTERDDN options
| are specified.

Yes1

 Chapter 2-7. COPY 93

 COPY

The following objects are named in the utility control statement and do not require
DD cards in the JCL:

| Table space or Index space
Object to be copied. It is named in the COPY control statement and is
accessed through the DB2 catalog. (If you want to copy only certain
data sets in a table space, you must use the DSNUM option in the
control statement.)

Catalog COPY records each copy in the DB2 catalog table
SYSIBM.SYSCOPY.

Output data set size: Image copies are written to sequential non-VSAM data sets.
| To find the approximate size of the image copy data set for a table space, in bytes,

you can execute COPY with the CHANGELIMIT REPORTONLY option, or use the
following procedure:

1. Find the high allocated page number, either from the NACTIVE column of
SYSIBM.SYSTABLESPACE after running the RUNSTATS utility, or from
information in the VSAM catalog data set.

2. Multiply the high allocated page number by the page size.

Filter data set size: Use the formula (240 + (80 × n)) to determine the approximate
| FILTER data set size required, in bytes, where n = the number of objects specified

in the COPY control statement.

JCL parameters: You can specify a block size for the output by using the
BLKSIZE parameter on the DD statement for the output data set. Valid block sizes
are multiples of 4096 bytes. You can increase the buffering with the BUFNO
parameter; for example, you might specify BUFNO=30. See also “Data sets used
by online utilities” on page 28 for information about using BUFNO.

Cataloging image copies: To catalog your image copy data sets, use the
| DISP=(MOD,CATLG,CATLG) parameter in the DD statement named by the

COPYDDN option. After the image copy is taken, the DSVOLSER column of the
row inserted into SYSIBM.SYSCOPY contains blanks.

Duplicate image copy data sets are not allowed. If there is a cataloged data set
already recorded in SYSCOPY with the same name as the new image copy data
set, a message is issued and the copy is not made.

Table 12 (Page 2 of 2). Data sets used by COPY

Data Set Description Required?

Copies From one to four output data sets to
contain the resulting image copy data
sets. Their DD names are specified with
the COPYDDN and RECOVERYDDN
options of the utility control statement.
The default is one copy, in the data set
described by the SYSCOPY DD
statement.

Yes

Note: 1 Required if you specify the FILTERDDN option.

94 Utility Guide and Reference

 COPY

When RECOVER locates the entry in SYSCOPY, it uses the MVS catalog to
allocate the required data set. If you have uncataloged the data set, the allocation
fails. In that case, the recovery can still go forward; RECOVER searches for a
previous image copy. But even if it finds one, it must use correspondingly more of
the log to recover. It is to your benefit, and it is your responsibility, to keep the MVS
catalog consistent with SYSIBM.SYSCOPY about existing image copy data sets.

Creating the control statement
See “Syntax diagram” on page 86 for COPY syntax and option descriptions. See
“Sample control statements” on page 108 for examples of COPY usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Making full image copies”
“Making incremental image copies” on page 96
“Making multiple image copies” on page 97
“Copying partitions or data sets in separate jobs” on page 99
“Copying a list of objects” on page 99
“Using more than one COPY statement” on page 100
“Copying segmented table spaces” on page 100
“Using DFSMS concurrent copy” on page 100
“Specifying conditional image copies” on page 102
“Preparing for recovery” on page 103
“Improving performance” on page 104

Making full image copies
You can make a full image copy of any of the following objects:

| � Table space
| � Table space partition
| � Data set of a linear table space
| � Index space
| � Index space partition

The following statement makes a full image copy of the DSN8S61E table space in
database DSN8D61A:

COPY TABLESPACE DSN8D61A.DSN8S61E

| The COPY utility writes pages from the table space or index space to the output
data sets. The JCL for the utility job must include DD statements for the data sets.

| If the object consists of multiple data sets and all are copied in one run, the copies
reside in one physical sequential output data set.

| Image copies should be made either by entire page set or by partition, but not by
both. We recommend taking a full image copy after CREATE or LOAD operations
for a new object that is populated, after a REORG operation for an existing object,
and after LOAD RESUME of an existing object.

| We recommend copying the indexes over a table space whenever a full copy of the
| table space is taken. More frequent index copies decrease the number of log
| records to be applied during recovery. At minimum, you should copy an index when
| it is placed in informational COPY pending (ICOPY) status. For more information

 Chapter 2-7. COPY 95

 COPY

| about the ICOPY status, see Appendix C, “Resetting an advisory or restrictive
| status” on page 527.

If you create an inline copy during LOAD or REORG, you do not need to execute a
| separate COPY job for the table space. If you do not create an inline copy, and if

the LOG option was NO, the COPY pending status is set for the table space. A full
image copy must be made for any subsequent recovery of the data. An incremental
image copy is not allowed.

If the LOG option was YES, the COPY pending status is not set. However, your
next image copy must be a full image copy. Again, an incremental image copy is
not allowed.

| The COPY utility will automatically take a full image copy of a table space if you
attempt to take an incremental image copy when it is not allowed.

The catalog table SYSIBM.SYSCOPY and the directory tables SYSIBM.SYSUTILX
and SYSIBM.SYSLGRNX record information from the COPY utility. Copying the

| catalog table or the directories can lock out separate COPY jobs that are running
| simultaneously; therefore, it is most efficient to defer copying the catalog table or
| directories until the other copy jobs have completed. However, if you must copy
| other objects while another COPY job processes catalog tables or directories,

specify SHRLEVEL (CHANGE) for the copies of the catalog and directory tables.

Making incremental image copies
An incremental image copy is a copy of the pages that have been changed since

| the last full or incremental image copy. You cannot take an incremental image copy
| of an index space. You can make an incremental image copy of a table space if:

� A full image copy of the table space exists
� The COPY pending status is not on for that table space
� The last copy was taken without the CONCURRENT option

Copy by partition or data set: You can make an incremental image copy by
partition or data set (specified by DSNUM) if a full image copy of the table space
exists, or if a full image copy of the same partition or data set exists and the COPY
pending status is not on for the table space or partition. Moreover, the full image
copy must have been made after the most recent application to the table space of

| CREATE, REORG or LOAD, or it must be an inline copy made during the most
recent application of LOAD or REORG.

Sample control statement: To specify an incremental image copy, use FULL NO
on the COPY statement, as in this example:

COPY TABLESPACE DSN8D61A.DSN8S61E

 FULL NO

 SHRLEVEL CHANGE

| Performance advantage: An incremental image copy generally does not require a
| complete scan of the table space, with two exceptions:

| � The table space was defined with the TRACKMOD NO option.

| � You are taking the first copy after you altered a table space to TRACKMOD
| YES.

96 Utility Guide and Reference

 COPY

Space maps in each table space indicate, for each page, whether it has changed
since the last image copy. Therefore, making an incremental copy can be

| significantly faster than making a full copy if the table space was defined with the
| TRACKMOD YES option. Incremental image copies of a table space that was
| defined with TRACKMOD NO will still save space, at some performance cost.

Restrictions: You cannot make incremental copies of the DSNDB01.DBD01 and
copies of table space DSNDB01.SYSUTILX in the directory, or
DSNDB06.SYSCOPY in the catalog. For those objects, COPY always makes a full
image copy and places the SYSCOPY record in the log.

Making multiple image copies
You can use a single invocation of the COPY utility to create up to four exact
copies of any of the following objects:

| � Table space
| � Table space partition
| � Data set of a linear table space
| � Index space
| � Index space partition

Two copies can be made for use on the local DB2 system (installed with the option
LOCALSITE), and two more for offsite recovery (on any system installed with the

| option RECOVERYSITE). All copies are identical, and are produced at the same
| time from one invocation of COPY.

The ICBACKUP column in SYSIBM.SYSCOPY specifies whether the image copy
data set is for the local or recovery system, and whether the image copy data set is
for the primary copied data set or the backup copied data set. The ICUNIT column
in SYSIBM.SYSCOPY specifies whether the image copy data set is on tape or
DASD.

Remote site recovery: In preparation for remote site recovery, system and
application libraries and the DB2 catalog and directory are assumed to be identical
at the local site and recovery site. You can regularly transport copies of archive
logs and database data sets to a safe location to keep data for remote site
recovery current. This information can be kept on tape until needed.

Naming the data sets for the copies: The option COPYDDN of COPY names the
output data sets that receive copies for local use. The option RECOVERYDDN of
COPY names the output data sets that receive copies intended for remote site
recovery. The options have these formats:

COPYDDN (ddname1,ddname2)

RECOVERYDDN (ddname3,ddname4)

The ddnames for the primary output data sets are ddname1 and ddname3. The
ddnames for the backup output data sets are ddname2 and ddname4.

Sample control statement: The following statement makes four full image copies
of the table space DSN8S61E in database DSN8D61A, using LOCALDD1 and
LOCALDD2 as ddnames for the primary and backup copies used on the local
system and RECOVDD1 and RECOVDD2 as ddnames for the primary and backup
copies for remote site recovery:

 Chapter 2-7. COPY 97

 COPY

COPY TABLESPACE DSN8D61A.DSN8S61E

 COPYDDN (LOCALDD1,LOCALDD2)

 RECOVERYDDN (RECOVDD1,RECOVDD2)

You do not have to make copies for local use and for remote site recovery at the
same time. COPY allows you to use either option COPYDDN or option
RECOVERYDDN without the other. If you make copies for local use more often
than copies for remote site recovery, then a remote site recovery might work from
an older copy, and more of the log, than a local recovery; hence, it would take
longer. But, in your plans for remote site recovery, that difference might be
acceptable. You can also use MERGECOPY RECOVERYDDN to create recovery
site full copies, and merge local incrementals into new recovery site full copies.

Making multiple incremental image copies: DB2 cannot make incremental image
copies if:

� The incremental image copy is requested only for a site other than the current
site (the local site from which the request is made).

� Incremental image copies are requested for both sites, but the most recent full
image copy was made for only one site.

� Incremental image copies are requested for both sites and the most recent full
image copies were made for both sites, but between the most recent full image
copy and current request, incremental image copies were made for the current
site only.

If you attempt to make incremental image copies under any of these conditions,
COPY terminates with return code 8, does not take the image copy or update the
SYSCOPY table, and issues this message:

DSNU4%4I csect-name LOCAL SITE AND RECOVERY SITE INCREMENTAL
IMAGE COPIES ARE NOT SYNCHRONIZED

To proceed, and still keep the two sets of data synchronized, take another full
image copy of the table space for both sites, or change your request to make an
incremental image copy only for the site at which you are working.

| DB2 cannot make an incremental image copy if the object being copied is an index
| or index space.

Maintaining copy consistency: Make full image copies for both the local and
recovery sites:

� If a table space is in COPY pending status.
| � After a LOAD or REORG procedure that did not create an inline copy.
| � If an index is in the informational COPY pending status.

This action helps to insure correct recovery for both local and recovery sites. If the
requested full image copy is for one site only, but the history shows that copies
were made previously for both sites, COPY continues to process the image copy
and issues the following warning message:

DSNU4%6I FULL IMAGE COPY SHOULD BE TAKEN FOR BOTH LOCAL SITE AND

 RECOVERY SITE.

The COPY pending status of a table space is not changed for the other site when
you make multiple image copies at the current site for that other site. For example,
if a table space is in COPY pending status at the current site, and you make copies

98 Utility Guide and Reference

 COPY

from there for the other site only, the COPY pending status will still be on when you
bring up the system at that other site.

Copying partitions or data sets in separate jobs
| If you have a partitioned table space or partitioning index, you can copy the
| partitions independently in separate simultaneous jobs. This can reduce the time it

takes to create an image copy of the total table space.

If a nonpartitioned table space consists of more than one data set, you can copy
| several or all of the data sets independently in separate jobs. To do so, run
| simultaneous COPY jobs (one job for each data set) and specify SHRLEVEL

CHANGE on each.

| However, creating copies simultaneously will not provide you with a consistent
| recovery point unless you follow up with a QUIESCE of the table space.

| Copying a list of objects
| Within a single COPY statement, the COPY utility allows you to process a list
| containing any of the following objects:

| � Table space
| � Table space partition
| � Data set of a linear table space
| � Index space
| � Index space partition

| Specifying objects in a list is useful for copying a complete set of referentially
| related table spaces after running QUIESCE. Consider the following information
| when taking an image copy for a list of objects:

| � DB2 copies table spaces and index spaces in the list one at a time, in the
| specified order, unless you invoke parallelism by specifying the PARALLEL
| keyword.

| � Each table space in the list with a CHANGELIMIT specification will have a
| REPORT phase, so the phase will switch between REPORT and COPY while
| processing the list.

| � If processing completes successfully, any COPY pending status on the table
| spaces and informational COPY pending status on the indexes will be reset.

| � Using the SHRLEVEL(REFERENCE) option:

| Drains the write claim class on each table space and index in the UTILINIT
| phase, which is held for the duration of utility processing.

| Utility processing inserts SYSIBM.SYSCOPY rows for all of the objects in
| the list at the same time, after all of the objects have been copied.

| All objects in the list will have identical RBA or LRSN values for the
| START_RBA column for the SYSIBM.SYSCOPY rows: the current LRSN at
| the end of the COPY phase.

| � Using the SHRLEVEL(CHANGE) option:

| Claims the read class for each table space and index space. The claim
| initializes before the copy of the object starts, and releases when the copy
| on the object completes.

 Chapter 2-7. COPY 99

 COPY

| Utility processing inserts a SYSIBM.SYSCOPY row for objects in the list
| when the copy of each object is complete.

| Objects in the list will have different LRSN values for the START_RBA
| column for the SYSIBM.SYSCOPY rows: the current RBA or LRSN at the
| start of copy processing for that object.

| When you specify the PARALLEL keyword, DB2 supports parallelism for image
| copies on DASD devices. If COPY encounters a tape volume in the list, processing
| of remaining objects pauses until the tape object has completed, then parallel
| processing resumes.

| You can have DFSMS copy a list of table spaces. Certain table spaces cannot be
| included in a list of table spaces with the SHRLEVEL REFERENCE option; each
| one of the following table spaces must be specified as a single object:

| DSNDB01.SYSUTILX
| DSNDB06.SYSCOPY
| DSNDB01.SYSLGRNX

| The only exception to this restriction are the indexes over these table spaces that
| were defined with the COPY YES attribute. You can specify such indexes along
| with the appropriate table space.

Using more than one COPY statement
You can use more than one control statement for COPY in one DB2 utility job step.
After each COPY statement has executed successfully:

� A row referring to the image copy is recorded in SYSIBM.SYSCOPY table.
� The image copy data set is valid and available for RECOVER.

If a job step containing more than one COPY statement abends, do not use TERM
| UTILITY. Restart the job from the last commit point using RESTART instead.

Terminating COPY in this case creates inconsistencies between the ICF catalog
and DB2 catalogs.

Copying segmented table spaces
COPY distinguishes between segmented and nonsegmented table spaces. If you
specify a segmented table space, COPY locates empty and unformatted data
pages in the table space and does not copy them.

Using DFSMS concurrent copy
You might be able to gain improved availability by using the Concurrent Copy
function of Data Facility Storage Management Subsystem (DFSMS). You can
subsequently run the RECOVER utility to restore those image copies and apply the
necessary log records to them to complete recovery.

The CONCURRENT option invokes DFSMS concurrent copy. The COPY utility
records the resulting DFSMS concurrent copies in the catalog table
SYSIBM.SYSCOPY with ICTYPE=F and STYPE=C.

To obtain a consistent offline backup:

1. Start the DB2 objects being backed up for read-only access by issuing the
following command:

-START DATABASE(database name) SPACENAM(tablespace-name) ACCESS(RO)

100 Utility Guide and Reference

 COPY

This is necessary to ensure that no updates to data occur during this
procedure.

2. Run QUIESCE with the WRITE(YES) option to quiesce all DB2 objects being
backed up.

3. Back up the DB2 data sets if the QUIESCE utility completes successfully.

4. Issue the following command to allow transactions to access the data:

-START DATABASE(database name) SPACENAM(tablespace-name)

If you use the CONCURRENT option:

� You must supply either a COPYDDN ddname, a RECOVERYDDN ddname, or
both.

� If the SYSPRINT DD card points to a data set, you must use a DSSPRINT DD
card.

� You must use the SHRLEVEL REFERENCE option for table spaces with a
| 8KB, 16KB, or 32KB page size.

Restrictions on using DFSMS concurrent copy: You cannot use a copy made
with DFSMS concurrent copy with the PAGE or ERRORRANGE options. If you
specify PAGE or ERRORRANGE, RECOVER bypasses any concurrent copy
records when searching the SYSCOPY table for a recoverable point.

You cannot use the CONCURRENT option with SHRLEVEL CHANGE on a table
| space with 8 KB, 16 KB, or 32 KB page size.

Also, you cannot run the following DB2 stand-alone utilities on copies made by
DFSMS concurrent copy:

 DSN1COMP
 DSN1COPY
 DSN1PRNT

You cannot execute the CONCURRENT option from the DB2I Utilities panel or from
the DSNU TSO CLIST command.

Requirements for using DFSMS concurrent copy: To use COPY to take DFSMS
concurrent copies, you must have the following hardware and software:

� OS/390 Release 3

� 3990 model 3 or 3990 model 6 controller at the extended platform attached to
the DASD. A COPY job fails if one or more of the table spaces names is on
DASD that does not have the controller.

Table space availability: If you specify COPY SHRLEVEL REFERENCE with the
CONCURRENT option, and if you want to copy all of the data sets for a list of table
spaces to the same output device, specify FILTERDDN in your COPY statement to
improve table space availability. In this scenario, specifying COPY without the
FILTERDDN option forces DFSMS to process the list of table spaces sequentially,
which might limit the availability of some of the table spaces being copied.

 Chapter 2-7. COPY 101

 COPY

Specifying conditional image copies
Use the CHANGELIMIT option of the COPY utility to specify conditional image
copies. You can use it to get a report of image copy information about a table
space, or you can let DB2 decide whether to take an image copy based on this
information.

| You cannot use the CHANGELIMIT option for a table space or partition defined
| with TRACKMOD NO. If you change the TRACKMOD option from NO to YES, you
| must take an image copy before you can use the CHANGELIMIT option. When you
| change the TRACKMOD option from NO to YES for a linear table space, you must
| take a full image copy using DSNUM ALL before you can copy using the
| CHANGELIMIT option.

Obtaining image copy information about a table space: When you specify
COPY CHANGELIMIT REPORTONLY, COPY reports image copy information for
the table space and recommends the type of copy, if any, to take. The report
includes:

� The total number of pages in the table space. This value is the number of
pages copied if a full image copy is taken.

� The number of empty pages, if the table space is segmented.

� The number of changed pages. This value is the number of pages copied if an
incremental image copy is taken.

� The percentage of changed pages.

� The type of image copy recommended.

Adding conditional code to your COPY job: You can add conditional code to
your jobs so that an incremental or full image copy, or some other step, is

| performed depending on how much the table space has changed. For example,
| you can add a conditional MERGECOPY step to create a new full image copy if
| your COPY job took an incremental copy. COPY CHANGELIMIT uses the following

return codes to indicate the degree that a table space or list of table spaces has
changed:

1 (informational) If no CHANGELIMIT was met.
2 (informational) If the percent of changed pages is greater than the low

CHANGELIMIT and less than the high CHANGELIMIT
value.

3 (informational) If the percent of changed pages is greater than or equal to
the high CHANGELIMIT value.

| If you specify multiple copy statements in one job step, that job step will report the
| highest return code from all of the imbedded statements. Basically, the statement
| with the highest percentage of changed pages determines the return code and the
| recommended action against the entire list of COPY statements contained in the
| subsequent job step.

Using conditional copy with generation data groups (GDGs): When you use
generation data groups (GDGs) and need to make an incremental image copy, take
the following steps to prevent creating an empty image copy:

1. Include in your job a first step in which you run COPY with CHANGELIMIT
REPORTONLY. Set the SYSCOPY DD card to DD DUMMY so no output data
set is allocated.

102 Utility Guide and Reference

 COPY

2. Add a conditional JCL statement to examine the return code from the COPY
CHANGELIMIT REPORTONLY step.

3. Add a second COPY step without CHANGELIMIT REPORTONLY to copy the
table space or table space list based on the return code from the first step.

Preparing for recovery
If you are taking incremental copies, if you have recently run REORG or LOAD, or
if you plan to recover a LOB table space, read the following topics pertaining to
recovery.

Using incremental copies: The RECOVER TABLESPACE utility merges all
incremental image copies since the last full image copy, and must have all the
image copies available at the same time. If there is any likelihood that the
requirement will strain your system resources—for example, by demanding more
tape units than are available—consider regularly merging multiple image copies into
one copy.

Even if you do not periodically merge multiple image copies into one copy when
there are not enough tape units, RECOVER TABLESPACE can still attempt to
recover the object. RECOVER dynamically allocates the full image copy and
attempts to allocate dynamically all the incremental image copy data sets. If every
incremental copy can be allocated, recovery proceeds to merge pages to table
spaces and apply the log. If a point is reached where an incremental copy cannot
be allocated, the log RBA of the last successfully allocated data set is noted.
Attempts to allocate incremental copies cease, and the merge proceeds using only
the allocated data sets. The log is applied from the noted RBA, and the incremental
image copies that were not allocated are simply ignored.

After running LOAD or REORG: Primary and secondary image copies are
recommended after a LOAD or REORG operation specified with LOG NO when an
inline copy is not created, so if the primary image copy is not available, fallback
recovery using the secondary image copy is possible.

| Creating a point of recovery: If you use COPY SHRLEVEL REFERENCE to copy
| a list of objects which contains all referentially related structures, you do not need
| to QUIESCE these objects first in order to create a consistent point of recovery.

You should quiesce and copy both the base table space and the LOB table space
at the same time to establish a recoverable point of consistency. Be aware that
QUIESCE does not create a recoverable point for a LOB table space that contain
LOBs defined with LOG NO.

| Setting and clearing the informational COPY pending status: The following
| utilities can place an index that was defined with the COPY YES attribute in the
| informational COPY pending (ICOPY) status:

| � REORG INDEX
| � REORG TABLESPACE LOG YES or NO
| � LOAD TABLE LOG YES or NO
| � REBUILD INDEX

| After the utility processing completes, take a full image copy of the index space so
| that the index space is recoverable using the RECOVER utility. If you need to
| recover an index that did not have a full image copy taken, use the REBUILD
| INDEX utility to rebuild data from the table space.

 Chapter 2-7. COPY 103

 COPY

 Improving performance
A full image copy and subsequent incremental image copies can be merged into a
new full copy by running MERGECOPY. After reorganizing a table space, the first
image copy must be a full image copy.

The decision whether to run a full or an incremental image copy must not be based
on the number of rows updated since the last image copy was taken. Instead, it
must be based on the percentage of pages containing at least one updated record
(not the number of records updated). Regardless of the size of the table, if more
than 50% of the pages contain updated records, use full image copy (this saves the
cost of a subsequent MERGECOPY). To find the percentage of changed pages,
you can execute COPY with the CHANGELIMIT REPORTONLY option.
Alternatively, you can execute COPY CHANGELIMIT to allow COPY to determine
whether a full or incremental copy is required; see “Specifying conditional image
copies” on page 102 for more information.

Using data compression can improve COPY performance because COPY does not
decompress data. The performance improvement is proportional to the amount of
compression.

Considerations for running COPY
This section describes additional points to keep in mind when running COPY.

Copying table spaces with mixed volume IDs
| You cannot copy a table space or index space that uses a storage group that is
| defined with mixed specific and non-specific volume IDs using CREATE
| STOGROUP or ALTER STOGROUP. If you specify such a table space or index
| space, the job terminates and you receive error message DSNU419I.

Defining generation data groups
We recommend using generation data groups to hold image copies, because their
use automates the allocation of data set names and the deletion of the oldest data
set. When you define the generation data group:

� You can specify that the oldest data set is automatically deleted when the
maximum number of data sets is reached. If you do that, make the maximum
number large enough to cover all recovery requirements. When data sets are
deleted, use the MODIFY utility to delete the corresponding rows in
SYSIBM.SYSCOPY.

� Make the limit number of generation data sets equal to the number of copies to
keep. Use NOEMPTY to avoid deleting all the data sets from the integrated
catalog facility catalog when the limit is reached.

The high-level qualifier of the data set name might not be the catalog name or its
alias. In that case, include a DD statement for JOBCAT or STEPCAT in the COPY
job, and in the eventual RECOVER job, to tell what catalog the data set is in.

Attention: Do not take incremental image copies when using generation data
groups unless data pages have changed. When you use generation data groups,
taking an incremental image copy when no data pages have changed results in the
following:

� The new image copy data set is empty

104 Utility Guide and Reference

 COPY

� No SYSCOPY record is inserted for the new image copy data set

� Your oldest image copy is deleted

See “Using conditional copy with generation data groups (GDGs)” on page 102 for
guidance on executing COPY with the CHANGELIMIT and REPORTONLY options
to ensure that you do not create empty image copy data sets when using GDGs.

Using DB2 with DFSMS products
If image copy data sets are managed by HSM or SMS, all data sets are cataloged.

If you plan to use SMS, catalog all image copies. Never maintain cataloged and
un-cataloged image copies with the same name.

Putting image copies on tape
Do not combine a full image copy and incremental image copies for the same table
space on one tape volume. If you do, the RECOVER TABLESPACE utility cannot
allocate the incremental image copies.

| Copying a LOB table space
| Both full and incremental image copies are supported for a LOB table space, as
| well as SHRLEVEL REFERENCE, SHRLEVEL CHANGE, and the CONCURRENT
| options. COPY without the CONCURRENT option does not copy empty or
| unformatted data pages for a LOB table space.

Terminating or restarting COPY
For instructions on restarting a utility job, see “Restarting an online utility” on
page 48.

Warning against TERM UTILITY
We do not recommend stopping a COPY job with the TERM UTILITY command. If
you issue TERM UTILITY while COPY is in the active or stopped state, DB2 inserts

| an ICTYPE='T' record in the SYSIBM.SYSCOPY catalog table for each object
| COPY had started processing, but not yet completed. For copies made with
| SHRLEVEL REFERENCE, it is possible that some objects in the list might not have
| a 'T' record. For SHRLEVEL CHANGE, some objects might have a valid 'F', 'I',
| or 'T' record, or no record at all. The COPY utility does not allow you to take an

incremental image copy if a 'T' record exists. To reset the status, you must make
a full image copy.

Use restart current instead, because it:

� Is valid for full image copies and incremental copies
� Is valid for a single job step with several COPY statements

| � Is valid for a list of objects
� Requires a minimum of re-processing
� Keeps the DB2 catalog and the integrated catalog facility catalog in agreement

| DB2 uses the same image copy data set when you RESTART from the last commit
| point. Therefore, specify DISP=(MOD,CATLG,CATLG) on your DD statements. You
| cannot use RESTART(PHASE) for any COPY job.

 Chapter 2-7. COPY 105

 COPY

Implications of DISP on the DD statement
| If you terminate a COPY job that uses the parameter DISP=(MOD,CATLG,CATLG),

then:

� If there is only one COPY statement, no row is written to SYSIBM.SYSCOPY,
but an image copy data set has been created and is cataloged in the integrated
catalog facility catalog. You should delete that data set.

� If there are several COPY statements in one COPY job step, a row for each
successfully completed copy is written into SYSIBM.SYSCOPY. However, all
the image copy data sets have been created and cataloged. You should delete
all image copy data sets not recorded in SYSIBM.SYSCOPY.

Restarting with a new data set
| If you define a new output data set for a current restart, complete the following
| actions before restarting the COPY job:

1. Copy the failed copy output to the new data set.

| 2. Delete the old data set.

| 3. Rename the new data set to use the old data set name.

Restarting a COPY job
| You cannot use RESTART(PHASE) for any COPY job. If you do not use the
| -TERM UTILITY command, you can use RESTART to restart the job from the last
| commit point of the current table space or index space.

Restarting COPY after an out of space condition
See “Restarting after the output data set is full” on page 49 for guidance in
restarting COPY from the last commit point after receiving an out of space
condition.

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Claims and drains

Table 13 on page 107 shows which claim classes COPY claims and drains and
| any restrictive status the utility sets on the target table space.

106 Utility Guide and Reference

 COPY

COPY does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

Compatibility

Table 14 documents which utilities can run concurrently with COPY on the same
target object. The target object can be a table space, an index space, or a partition
of a table space or index space. If compatibility depends on particular options of a
utility, that is also shown.

Table 13. Claim classes of COPY operations. Use of claims and drains; restrictive states
set on the target object.

Target SHRLEVEL
REFERENCE

SHRLEVEL
CHANGE

Table space,
| Index space

or partition

DW
UTRO

CR
UTRW1

Legend:

� DW - Drain the write claim class - concurrent access for SQL readers
� CR - Claim the read claim class
� UTRO - Utility restrictive state - read only access allowed
� UTRW - Utility restrictive state - read/write access allowed

Notes:

1. If the target object is a segmented table space, SHRLEVEL CHANGE does not allow
you to concurrently execute an SQL searched DELETE without the WHERE clause.

Table 14 (Page 1 of 2). COPY compatibility

Action| COPY
| INDEXSPACE
| SHRLEVEL
| REFERENCE

| COPY
| INDEXSPACE
| SHRLEVEL
| CHANGE

| COPY
| TABLESPACE
| SHRLEVEL
| REFERENCE

| COPY
| TABLESPACE
| SHRLEVEL
| CHANGE

CHECK DATA| Yes| Yes No No

CHECK INDEX| Yes| Yes Yes Yes

| CHECK LOB| Yes| Yes| Yes| Yes

| COPY INDEXSPACE| No| No| Yes| Yes

| COPY TABLESPACE| Yes| Yes No No

DIAGNOSE| Yes| Yes Yes Yes

LOAD| No| No No No

MERGECOPY| No| No No No

| MODIFY| No| No No No

QUIESCE| Yes| No Yes No

| REBUILD INDEX| No| No Yes Yes

| RECOVER INDEX| No| No| Yes| Yes

| RECOVER TABLESPACE| Yes| Yes| No| No

REORG INDEX| No| No Yes Yes

 Chapter 2-7. COPY 107

 COPY

To run on DSNDB01.SYSUTILX, COPY must be the only utility in the job step.
Further, if SHRLEVEL REFERENCE is specified, the COPY job of
DSNDB01.SYSUTILX must be the only utility running in the Sysplex.

COPY on SYSUTILX is an “exclusive” job; such a job can interrupt another job
between job steps, possibly causing the interrupted job to time out.

Table 14 (Page 2 of 2). COPY compatibility

Action| COPY
| INDEXSPACE
| SHRLEVEL
| REFERENCE

| COPY
| INDEXSPACE
| SHRLEVEL
| CHANGE

| COPY
| TABLESPACE
| SHRLEVEL
| REFERENCE

| COPY
| TABLESPACE
| SHRLEVEL
| CHANGE

| REORG TABLESPACE
| UNLOAD CONTINUE
| or PAUSE

| No| No No No

| REORG TABLESPACE
| UNLOAD ONLY
| or EXTERNAL

| Yes| Yes Yes Yes

REPAIR LOCATE by KEY,
RID, or PAGE
DUMP or VERIFY

| Yes| Yes Yes Yes

REPAIR LOCATE by KEY
or RID DELETE or REPLACE

| No| No No No

REPAIR LOCATE
TABLESPACE
PAGE REPLACE

| Yes| Yes No No

REPAIR LOCATE INDEX
PAGE REPLACE

| No| No Yes No

REPORT| Yes| Yes Yes Yes

| RUNSTATS INDEX| Yes| Yes| Yes| Yes

RUNSTATS TABLESPACE| Yes| Yes Yes Yes

STOSPACE| Yes| Yes Yes Yes

Sample control statements
In some cases, a COPY utility job might be run more than once. To facilitate
avoiding duplicate image copy data sets, a DSN qualifier is used in the following
examples. See the description of the COPYDDN parameter in “Option descriptions”
on page 87 for further information.

Example 1: Full image copy. Make a full image copy of table space DSN8S61E in
database DSN8D61A.

|

| //STEP1 EXEC DSNUPROC,UID='IUJMU111.COPYTS',

| // UTPROC='',

| // SYSTEM='V61A',DB2LEV=DB2A

| //SYSIN DD �

//SYSCOPY DD DSN=COPY%%1F.IFDY%1,UNIT=SYSDA,VOL=SER=CPY%1I,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//SYSIN DD �

COPY TABLESPACE DSN8D61A.DSN8S61E

108 Utility Guide and Reference

 COPY

| Example 2: Full image copies of a list of objects. Make full image copies at the
| local site and recovery site, along with backups, of the following objects:

| � table space DSN8D61A.DSN8S61D, and its indexes:

| – DSN8610.XDEPT1

| – DSN8610.XDEPT2

| – DSN8610.XDEPT3

| � table space DSN8D61A.DSN8S61E, and its indexes

| Do not allow updates during the copy, and process four objects in parallel. As the
| copy of an object completes, the next object in the list begins processing in parallel
| until all the objects have been processed.

| This COPY job creates a point of consistency for the table spaces and their
| indexes. You can subsequently use the RECOVER utility with the TOCOPY option
| to recover all of these objects; see page 253 for an example.

| COPY

| TABLESPACE DSN8D61A.DSN8S61D

| COPYDDN (COPY1,COPY2)

| RECOVERYDDN (COPY3,COPY4)

| INDEX DSN861%.XDEPT1

| COPYDDN (COPY5,COPY6)

| RECOVERYDDN (COPY7,COPY8)

| INDEX DSN861%.XDEPT2

| COPYDDN (COPY9,COPY1%)

| RECOVERYDDN (COPY11,COPY12)

| INDEX DSN861%.XDEPT3

| COPYDDN (COPY13,COPY14)

| RECOVERYDDN (COPY15,COPY16)

| TABLESPACE DSN8D61A.DSN8S61E

| COPYDDN (COPY17,COPY18)

| RECOVERYDDN (COPY19,COPY2%)

| INDEX DSN861%.XEMP1

| COPYDDN (COPY21,COPY22)

| RECOVERYDDN (COPY23,COPY24)

| INDEX DSN861%.XEMP2

| COPYDDN (COPY25,COPY26)

| RECOVERYDDN (COPY27,COPY28)

| PARALLEL(4)

| SHRLEVEL REFERENCE

Example 3: Copies for local site and recovery site. Make full image copies of
table space DSN8S61C in database DSN8D61P at the local site and the recovery
site.

 Chapter 2-7. COPY 109

 COPY

| //STEP1 EXEC DSNUPROC,UID='IUJMU111.COPYLST',

| // UTPROC='',

| // SYSTEM='V61A',DB2LEV=DB2A

| //COPY1 DD DSN=IUJMU111.COPYLST.STEP1.COPY1,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(4%%%,(2%,2%),,,ROUND)

| //COPY2 DD DSN=IUJMU111.COPYLST.STEP1.COPY2,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(2%%%,(2%,2%),,,ROUND)

| //COPY3 DD DSN=IUJMU111.COPYLST.STEP1.COPY3,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(2%%%,(2%,2%),,,ROUND)

| //COPY4 DD DSN=IUJMU111.COPYLST.STEP1.COPY4,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(2%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

| COPY TABLESPACE DSN8D61P.DSN8S61C

 COPYDDN (COPY1,COPY2)

 RECOVERYDDN (COPY3,COPY4)

Example 4: Incremental copy with updates allowed. Make incremental image
copies of table space DSN8S61D in database DSN8D61A, allowing update activity
to occur during the copy process.

| //STEP1 EXEC DSNUPROC,UID='IUJMU111.COPYLSTI',

| // UTPROC='',

| // SYSTEM='V61A',DB2LEV=DB2A

| //SYSCOPY DD DSN=IUJMU111.COPYLSTI.STEP1.CPY%1I,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(4%%%,(2%,2%),,,ROUND)

| //COPY2 DD DSN=IUJMU111.COPYLSTI.STEP1.CPY%2I,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(2%%%,(2%,2%),,,ROUND)

| //COPY3 DD DSN=IUJMU111.COPYLSTI.STEP1.CPY%3I,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(2%%%,(2%,2%),,,ROUND)

| //COPY4 DD DSN=IUJMU111.COPYLSTI.STEP1.CPY%4I,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(2%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

COPY TABLESPACE DSN8D61A.DSN8S61D

 COPYDDN (SYSCOPY,COPY2)

 RECOVERYDDN (COPY3,COPY4)

 FULL NO

 SHRLEVEL CHANGE

Example 5: Invoking DFSMS concurrent copy with the COPY utility. Copy a
table space, using the CONCURRENT option to execute DFSMS concurrent
copy. Use a DSSPRINT DD card for message output.

110 Utility Guide and Reference

 COPY

//COPY EXEC DSNUPROC,SYSTEM=V61A

//SYSCOPY1 DD DSN=COPY1,DISP=(NEW,CATLG,CATLG),

// SPACE=(4%%%,(2%,2%),,,ROUND),UNIT=SYSDA,VOL=SER=DB2CC5

//SYSPRINT DD DSN=COPY1.PRINT1,DISP=(NEW,CATLG,CATLG),

// SPACE=(4%%%,(2%,2%),,,ROUND),UNIT=SYSDA,VOL=SER=DB2CC5

//DSSPRINT DD DSN=COPY1.PRINT2,DISP=(NEW,CATLG,CATLG),

// SPACE=(4%%%,(2%,2%),,,ROUND),UNIT=SYSDA,VOL=SER=DB2CC5

//SYSIN DD �

COPY TABLESPACE DBASE1AA.TABLESPC

 COPYDDN (SYSCOPY1)

 CONCURRENT

Example 6: Invoking DFSMS concurrent copy with the COPY utility using
FILTER. Copy a list of table spaces, using the CONCURRENT and FILTERDDN
options to create a single "DUMP" statement for DFSMS concurrent copy, allowing
maximum availability.

//SYSCOPY DD DSN=CONCOPY.WFILT,DISP=(MOD,CATLG,DELETE),

// UNIT=SYSDA,SPACE=(CYL,(42,5),RLSE)

//FILT DD DSN=FILT.TEST1,DISP=(MOD,CATLG,DELETE),

// UNIT=SYSDA,SPACE=(CYL,(1,1),RLSE)

//SYSIN DD �

COPY TABLESPACE TS1

 TABLESPACE TS2

 TABLESPACE TS3

FILTERDDN(FILT)

COPYDDN(SYSCOPY)

CONCURRENT

 SHRLEVEL REFERENCE

Example 7: Invoking DFSMS concurrent copy with a list. Copy a list of table
spaces, using the CONCURRENT option to execute DFSMS concurrent copy.
Allow update activity during the COPY operation.

| //STEP1 EXEC DSNUPROC,UID='IUJMU111.COPYLST',

| // UTPROC='',

| // SYSTEM='V61A',DB2LEV=DB2A

| //COPY1 DD DSN=IUJMU111.COPYLST.STEP1.TS1,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(4%%%,(2%,2%),,,ROUND)

| //COPY2 DD DSN=IUJMU111.COPYLST.STEP1.TS2,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(2%%%,(2%,2%),,,ROUND)

| //COPY3 DD DSN=IUJMU111.COPYLST.STEP1.TS3,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(2%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

COPY TABLESPACE DBAU29%1.TPAU29%1

 COPYDDN(COPY1)

 TABLESPACE DBAU29%1.TLAU29%2

 COPYDDN(COPY2)

 TABLESPACE DBAU29%1.TSAU29%3

 COPYDDN(COPY3)

CONCURRENT SHRLEVEL CHANGE

Example 8: Report image copy information for a table space. Recommend a
full image copy if the percent of changed pages is equal to or greater than 40
percent. Recommend an incremental image copy if the percent of changed pages

 Chapter 2-7. COPY 111

 COPY

is greater than 10 and less than 40 percent. Recommend no image copy if the
percent of changed pages is 10 percent or less.

COPY TABLESPACE DSN8D61P.DSN8S61C CHANGELIMIT(1%,4%) REPORTONLY

Example 9: Make a conditional image copy. Take a full image copy of a table
space if the number of changed pages is equal to or greater than 5 percent. Take
an incremental image copy if the percent of changed pages is greater than 0 and
less than 5 percent. If no pages have changed, do not take an image copy.

COPY TABLESPACE DSN8D61P.DSN8S61C CHANGELIMIT(5)

| Example 10: Copying LOB table spaces together with related objects. Take a
| full image copy of base table space TPIQUD01 and LOB table spaces TLIQUDA1,
| TLIQUDA2, TLIQUDA3, and TLIQUDA4 in database DBIQUD01 if the number of
| changed pages is equal to or greater than the decimal percentage values specified
| for each object. Take an incremental image copy if the percent of changed pages
| falls in the range between the specified decimal percentage values. If no pages
| have changed, do not take an image copy. Also take full image copies of index
| spaces IPIQUD01, IXIQUD02, IUIQUD03, IXIQUDA1, IXIQUDA2, IXIQUDA3, and
| IXIQUDA4.

| COPY

| TABLESPACE DBIQUD%1.TPIQUD%1 DSNUM ALL CHANGELIMIT(3.3,6.7)

| COPYDDN(COPYTB1)

| TABLESPACE DBIQUD%1.TLIQUDA1 DSNUM ALL CHANGELIMIT(7.9,25.3)

| COPYDDN(COPYTA1)

| TABLESPACE DBIQUD%1.TLIQUDA2 DSNUM ALL CHANGELIMIT(2.2,4.3)

| COPYDDN(COPYTA2)

| TABLESPACE DBIQUD%1.TLIQUDA3 DSNUM ALL CHANGELIMIT(1.2,9.3)

| COPYDDN(COPYTA3)

| TABLESPACE DBIQUD%1.TLIQUDA4 DSNUM ALL CHANGELIMIT(2.2,4.%)

| COPYDDN(COPYTA4)

| INDEXSPACE DBIQUD%1.IPIQUD%1 DSNUM ALL

| COPYDDN(COPYIX1)

| INDEXSPACE DBIQUD%1.IXIQUD%2 DSNUM ALL

| COPYDDN(COPYIX2)

| INDEXSPACE DBIQUD%1.IUIQUD%3 DSNUM ALL

| COPYDDN(COPYIX3)

| INDEXSPACE DBIQUD%1.IXIQUDA1 DSNUM ALL

| COPYDDN(COPYIXA1)

| INDEXSPACE DBIQUD%1.IXIQUDA2 DSNUM ALL

| COPYDDN(COPYIXA2)

| INDEXSPACE DBIQUD%1.IXIQUDA3 DSNUM ALL

| COPYDDN(COPYIXA3)

| INDEXSPACE DBIQUD%1.IXIQUDA4 DSNUM ALL

| COPYDDN(COPYIXA4)

| SHRLEVEL REFERENCE

112 Utility Guide and Reference

 DIAGNOSE

Chapter 2-8. DIAGNOSE

The DIAGNOSE online utility generates information useful in diagnosing problems.
It is intended to be used only under the direction of your IBM Support Center.

 Interpreting output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2, you might need to refer to licensed
documentation to interpret output from this utility.

For a diagram of DIAGNOSE syntax and a description of available options, see
“Syntax and options of the control statement.” For detailed guidance on running this
utility, see “Instructions for running DIAGNOSE” on page 117 .

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

� REPAIR privilege for the database
� DBADM or DBCTRL authority for the database
� SYSCTRL or SYSADM authority.

An ID with installation SYSOPR authority can execute the DIAGNOSE utility on a
table space in the DSNDB01 or DSNDB06 database.

An ID with installation SYSADM authority can execute the DIAGNOSE utility with
the WAIT statement option.

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

 Copyright IBM Corp. 1983, 1999 113

 DIAGNOSE

��─ ─DIAGNOSE─ ──┬ ┬─diagnose statement─ ──��
 └ ┘─END────────────────

diagnose statement:

�─ ──┬ ┬───────────────────── ──┬ ┬─────────────────────────────────── ────────────────────────────────────�
 │ │┌ ┐─,─────── └ ┘──ALLDUMPS ──┬ ┬─────────────────────

└ ┘──TYPE(───
�

┴─integer─) │ │┌ ┐─,───────────
└ ┘──(───

�
┴X'abend-code')

�─ ──┬ ┬────────────────────────────────── ──�
 └ ┘──NODUMPS ──┬ ┬─────────────────────
 │ │┌ ┐─,───────────

└ ┘──(───
�

┴X'abend-code')

�─ ──┬ ┬─────────────────── ──┬ ┬──────────────── ──┬ ┬───────────────── ────────────────────────────────────�
 └ ┘─display statement─ └ ┘─wait statement─ └ ┘─abend statement─

display statement:

�─ ─DISPLAY─ ──┬ ┬──OBD ──┬ ┬──────────────── table-space-name ──┬ ┬───────── ──── ─────────────────────────────�
 │ │└ ┘─database-name.─ ├ ┤─ALL─────
 │ │├ ┤─TABLES──
 │ │└ ┘─INDEXES─
 ├ ┤─SYSUTIL──
 ├ ┤─MEPL───
 └ ┘──DBET ──┬ ┬─DATABASE──database-name────────────────────────
 ├ ┤──TABLESPACE ──┬ ┬──────────────── table-space-name
 │ │└ ┘─database-name.─
 └ ┘─INDEX──index-name──────────────────────────────

wait statement:

 ┌ ┐───
�─ ─WAIT─ ───

�
┴┬ ┬ ─MESSAGE──message-id─ ──┬ ┬─────────────────── ───── ───────────────────────────────────────�

 │ │└ ┘ ─INSTANCE──integer─
 └ ┘─TRACEID─ ──┬ ┬──X'trace-id' ──┬ ┬───────────────────
 └ ┘─integer───── └ ┘ ─INSTANCE──integer─

abend statement:

�─ ─ABEND─ ──┬ ┬ ─MESSAGE──message-id─ ──┬ ┬─────────────────── ───── ──┬ ┬──────── ────────────────────────────�
 │ │└ ┘ ─INSTANCE──integer─ └ ┘─NODUMP─
 └ ┘─TRACEID─ ──┬ ┬──X'trace-id' ──┬ ┬───────────────────
 └ ┘─integer───── └ ┘ ─INSTANCE──integer─

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

END Ends DIAGNOSE processing.

114 Utility Guide and Reference

 DIAGNOSE

TYPE(integer, ...)
Specifies one or more types of diagnose you wish to perform.

integer is the number of types of diagnoses. The maximum number of
types is 32. See DB2 Diagnosis Guide and Reference for a list of
available types.

ALLDUMPS(X'abend-code', ...)
Forces a dump to be taken from any utility abend code.

X'abend-code' is a member of a list of abend codes to which the
scope of ALLDUMPS is limited.

abend-code is a hexadecimal value.

NODUMPS(X'abend-code', ...)
Suppresses the dump for any utility abend code.

X'abend-code' is a member of a list of abend codes to which the
scope of NODUMPS is limited.

abend-code is a hexadecimal value.

DISPLAY Formats the specified database items using SYSPRINT.

OBD database-name.table-space-name
Formats the object descriptor (OBD) of the table space.

database-name is the name of the database in which the
table space belongs.

table-space-name is the name of the table space whose
OBD is to be formatted.

ALL Formats all OBDs of the table space. The
OBD of any relationship associated with the
table space is also formatted.

TABLES Formats the OBDs of all tables in the specified
table spaces.

INDEXES Formats the OBDs of all indexes in the
specified table spaces.

SYSUTIL Formats every SYSUTIL record.

MEPL Dumps the module entry point lists (MEPLs) to SYSPRINT.

DBET Dumps the contents of a database exception table (DBET)
to SYSPRINT. This option is intended to be used only
under the direction of your IBM Support Center.

DATABASE database-name
Dumps the DBET entry associated with the
specified database.

database-name is the name of the database.

TABLESPACE database-name.table-space-name
Dumps the DBET entry associated with the
specified table space.

database-name is the name of the database.

 Chapter 2-8. DIAGNOSE 115

 DIAGNOSE

table-space-name is the name of the table space.

INDEX creator-name.index-name
Dumps the DBET entry associated with the
specified index.

creator-name is the ID of the creator of the index.

index-name is the name of the index.

WAIT After encountering the specified utility message or utility trace ID, a
message is issued to the console and utility execution is suspended
until the operator replies to that message, the utility job times out, or
the utility job is canceled. This allows events to be synchronized while
diagnosing concurrency problems. The utility waits for the operator to
reply to the message, allowing the opportunity to time or synchronize
events.

If neither the utility message nor the trace ID are encountered, WAIT
processing continues.

ABEND After encountering the specified utility message or utility trace ID, an
abend is forced during utility execution.

If neither the utility message nor the trace ID are encountered,
ABEND processing continues.

NODUMP
Suppresses the dump generated by an abend of DIAGNOSE.

MESSAGE message-id
Specifies a DSNUxxx or DSNUxxxx message that causes a wait or an

abend to occur when that message is issued. Valid message IDs can
be found in Section 3 of DB2 Messages and Codes.

message-id is the message in the form of Uxxx or Uxxxx.

INSTANCE integer
Specifies that a wait or an abend occurs when the
MESSAGE option message has been encountered a
specified number of times. If INSTANCE is not specified, a
wait or abend occurs each time the message is
encountered.

integer is the number of times a message is to be
encountered before a wait or an abend occurs.

TRACEID trace-id
Specifies a trace ID that causes a wait or an abend to occur when the
ID is encountered. Valid trace IDs can be found in data set
prefix.SDSNSAMP(DSNWEIDS).

trace-id is a trace ID associated with the utility trace (RMID21), and
can be specified in either decimal (integer) or hexadecimal
(X'trace-id').

INSTANCE integer
Specifies that a wait or an abend occurs when the
TRACEID option has been encountered a specified
number of times. If INSTANCE is not specified, a wait or
abend occurs each time the trace ID is encountered.

116 Utility Guide and Reference

 DIAGNOSE

integer is the number of times a trace ID is to be
encountered before a wait or an abend occurs.

Instructions for running DIAGNOSE
To run DIAGNOSE, you must:

1. Prepare the necessary data sets, as described in “Data sets used by
DIAGNOSE.”

2. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for
DIAGNOSE, see “Sample control statements” on page 118.)

3. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks.” (For a complete
description of the syntax and options for DIAGNOSE, see “Syntax and options
of the control statement” on page 113 .)

 4. Run DIAGNOSE.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Data sets used by DIAGNOSE
Table 15 describes the data sets used by DIAGNOSE. Include statements in your
JCL for each required data set.

The following objects are named in the utility control statement and do not require
DD cards in the JCL:

Database Database to gather diagnosis information about.

Table space
Table space to gather diagnosis information about.

Index space
Index to gather diagnosis information about.

Table 15. Data sets used by DIAGNOSE

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Instructions for specific tasks
To perform the following task, specify the options and values for those tasks in your
utility control statement.

 Chapter 2-8. DIAGNOSE 117

 DIAGNOSE

Forcing a utility abend with DIAGNOSE
DIAGNOSE can force an utility to abend when a specific message is issued. To
force an abend when unique index or referential constraint violations are detected,
you must specify the message that is issued when the error is encountered by
using the MESSAGE option of the ABEND statement.

Instead of using a message, you can use the TRACEID option of the ABEND
statement to specify a trace IFCID associated with the utility to force an abend.

Use the INSTANCE keyword to specify the number of times the specified message
or trace record is generated before the utility abends.

Terminating or restarting DIAGNOSE
You can terminate DIAGNOSE with the TERM UTILITY command.

Concurrency and compatibility
DIAGNOSE can run concurrently on the same target object with any SQL operation
or utility, except a utility running on DSNDB01.SYSUTILX.

Sample control statements
Example 1: Sample JCL for DIAGNOSE.

| //STEP1 EXEC DSNUPROC,UID='IUJMU116.COPY1',

| // UTPROC='',

| // SYSTEM='V61A'

| //SYSCOPY1 DD DSN=IUJMU116.COPY.STEP1.SYSCOPY1,DISP=(NEW,CATLG,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

DIAGNOSE ABEND MESSAGE U4%%

 INSTANCE 1

 NODUMP

COPY TABLESPACE DSN8D61A.DSN8S61E

 COPYDDN SYSCOPY1

DIAGNOSE

 END

//�

Example 2: Force dump for utility abend. Force a dump for any utility abend that
occurs during the execution of the COPY utility.

DIAGNOSE

 ALLDUMPS

 COPY TABLESPACE DSNDB%6.SYSDBASE

DIAGNOSE END

Example 3: Force utility abend if message is issued. Abend the LOAD utility the
fifth time message DSNU311 is issued. Do not generate a dump.

DIAGNOSE

 ABEND MESSAGE U311 INSTANCE 5 NODUMP

LOAD DATA RESUME NO

INTO TABLE TABLE1

(NAME POSITION(1) CHAR(2%))

DIAGNOSE END

118 Utility Guide and Reference

 DIAGNOSE

Example 4: Display SYSUTIL table. Display all rows in the SYSUTIL table, and
the DB2 and utility MEPLs.

DIAGNOSE

 DISPLAY SYSUTIL

DIAGNOSE

 DISPLAY MEPL

Example 5: Abend LOAD utility if message is issued. Abend the LOAD utility
when unique index key violations occur.

DIAGNOSE

 ABEND MESSAGE U344

Example 6: Force dump if abend with specified reason code. Cause a dump to
be taken if an abend occurs with either of the specified reason codes.

DIAGNOSE

 ALLDUMPS(X'%%E4%322',X'%%E4%323')

 Chapter 2-8. DIAGNOSE 119

 DIAGNOSE

120 Utility Guide and Reference

 LOAD

Chapter 2-9. LOAD

Use LOAD to load one or more tables of a table space. LOAD loads records into
the tables and builds or extends any indexes defined on them. If the table space
already contains data, you can choose whether you want to add the new data to
the existing data or replace the existing data. The loaded data is processed by any
edit or validation routine associated with the table, and any field procedure
associated with any column of the table.

For a diagram of LOAD syntax and a description of available options, see “Syntax
and options of the control statement” on page 122. For detailed guidance on
running this utility, see “Instructions for running LOAD” on page 148.

Output: Output from LOAD DATA consists of one or more of the following:

� A loaded table space or partition

� A discard file of rejected records

� A summary report of errors encountered during processing, generated only if
you specify ENFORCE CONSTRAINTS or if the LOAD involves unique indexes

Related information: For information regarding ESA data compression, see
Section 2 (Volume 1) of DB2 Administration Guide.

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

� Ownership of the table
� LOAD privilege for the database
� DBADM or DBCTRL authority for the database
� SYSCTRL or SYSADM authority

You cannot run the LOAD utility on the DSNDB01 or DSNDB06 databases, except
to add lines to SYSIBM.SYSSTRINGS.

LOAD operates on a table space, so you must have authority for all tables in the
table space when you perform LOAD.

| To run LOAD STATISTICS REPORT YES, the privilege set must include the
| SELECT privilege on the catalog tables.

Execution phases of LOAD: Table 16 describes the phases of the LOAD utility.

Table 16 (Page 1 of 2). LOAD phases

Phase Description

UTILINIT Initialization and setup.

 Copyright IBM Corp. 1983, 1999 121

 LOAD

Table 16 (Page 2 of 2). LOAD phases

Phase Description

RELOAD Loading of record types and writing of temporary file records for indexes and
foreign keys. Check constraints are checked for each row. One pass through
the sequential input data set is made. Internal commits are taken to provide
commit points at which to restart in case operation should halt in this phase.

Creates inline copies if you specified the COPYDDN or RECOVERYDDN
keywords.

If SORTKEYS is used, a subtask is started at the beginning of the RELOAD
phase to handle the work of sorting the keys. The sort subtask initializes and
waits for the main RELOAD phase to pass its keys to SORT. The RELOAD
phase loads the data, extracts the keys, and passes them in memory for
sorting. At the end of the RELOAD phase, the last key is passed to SORT,
and record sorting completes.

PREFORMAT for table spaces occurs at the end of the RELOAD phase.

SORT Sorting of temporary file records before creating indexes or validating
referential constraints, if indexes or foreign keys exist. The SORT phase is
skipped if all the following conditions apply for the data processed during the
RELOAD phase:

� There is not more than one key per table
� All keys are the same type (index key, index foreign key, nonindexed

foreign key)
� The data being loaded or reloaded is in key order (if a key exists)
� The data being loaded or reloaded is grouped by table and each input

record is loaded into one table only.

If you use the SORTKEYS keyword, SORT passes the sorted keys in
memory to the BUILD phase, which builds the indexes.

BUILD Creating indexes from temporary file records for all indexes defined on the
loaded tables. Detection of duplicate keys. Preformatting of indexes occurs at
the end of the build phase.

SORTBLD| If you specify a parallel index build, all activities that normally occur in both
| the SORT and BUILD phases occur in the SORTBLD phase instead.

INDEXVAL Correction of unique index violations from the information in SYSERR, if any
exist.

ENFORCE Checking of referential constraints, and correction of violations. Information
about violations of referential constraints are stored in SYSERR.

DISCARD Copying of records causing errors from the input data set to the discard data
set.

REPORT Generation of a summary report, if you specified ENFORCE CONSTRAINT
or if load index validation is performed. The report is sent to SYSPRINT.

UTILTERM Cleanup.

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

122 Utility Guide and Reference

 LOAD

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

 ┌ ┐─DATA─
��─ ─LOAD─ ──┴ ┴────── ──┬ ┬─────────────────── ──┬ ┬─────────── ───�
 │ │┌ ┐─SYSREC─ └ ┘ ─PREFORMAT─
 └ ┘──INDDN ──┴ ┴─ddname─

 ┌ ┐ ─RESUME──NO─
�─ ──┬ ┬── ──┴ ┴──────────── ──┬ ┬── ──┬ ┬───────────────── ─────────�

| │ │└ ┘──REPLACE ──┬ ┬──────────────── ──┬ ┬─────────── └ ┘─statistics-spec─
 │ │└ ┘──KEEPDICTIONARY └ ┘──copy spec
 └ ┘─RESUME──YES───

 ┌ ┐─LOG YES─────────────────
�─ ──┬ ┬─────── ──┼ ┼───────────────────────── ──┬ ┬────────────────────────────────────── ──────────────────�

| └ ┘| ─REUSE─ └ ┘| ─LOG──NO─ ──┬ ┬──────────── │ │┌ ┐─SYSUT1── ┌ ┐──,SORTOUT
| └ ┘─NOCOPYPEND─ └ ┘──WORKDDN(──┴ ┴─ddname1─ ──┼ ┼──────────)

└ ┘──,ddname2

| ┌ ┐──FLOAT(S39%) ┌ ┐─EBCDIC─
�─ ──┬ ┬───────────────────────── ──┬ ┬──────────────────── ──┼ ┼───────────── ──┼ ┼──────── ──────────────────�

| │ │┌ ┐─ ─────── └ ┘──FORMAT ──┬ ┬─UNLOAD─ └ ┘──FLOAT(IEEE) └ ┘─ASCII──
 └ ┘── ─SORTKEYS─ ──┼ ┼───────── └ ┘─SQL/DS─
 └ ┘─integer─

�─ ──┬ ┬──────────────────── ──┬ ┬──────── ──┬ ┬────────────────────────── ──┬ ┬──────────────────── ──────────�
 │ │┌ ┐─,───── └ ┘─NOSUBS─ │ │┌ ┐─CONSTRAINTS─ │ │┌ ┐─SYSERR─

└ ┘──CCSID(───
�

┴integer) └ ┘──ENFORCE ──┴ ┴─NO────────── └ ┘──ERRDDN ──┴ ┴─ddname─

�─ ──┬ ┬──────────────────── ──┬ ┬──────────────────────── ──┬ ┬─────────────────────── ─────────────────────�
 │ │┌ ┐─SYSMAP─ │ │┌ ┐─SYSDISC─ │ │┌ ┐─%───────
 └ ┘──MAPDDN ──┴ ┴─ddname─ └ ┘──DISCARDDN ──┴ ┴─ddname── └ ┘──DISCARDS ──┴ ┴─integer─

�─ ──┬ ┬─────────────────────── ──┬ ┬────────────────── ───�
 └ ┘ ─SORTDEVT──device-type─ └ ┘ ─SORTNUM──integer─

 ┌ ┐───────────────────
�─ ──┬ ┬── ───

�
┴─into table spec─ ────────────────────��

└ ┘──CONTINUEIF(start ──┬ ┬──────)= ──┬ ┬──X'byte-string' ────
└ ┘──:end └ ┘──'character-string'

 Chapter 2-9. LOAD 123

 LOAD

| statistics-spec:|

| �─| ─STATISTICS───�

| �─ ──┬ ┬─── ───�
| │ │┌ ┐| ─(──ALL──)─
| ├ ┤| ─TABLE─ ──┴ ┴─────────── ──┬ ┬───────────────── ──
| │ │└ ┘| ─SAMPLE──integer─
| │ │┌ ┐───
| └ ┘───

�
┴─TABLE──(──table-name──)─ ──┬ ┬───────────────── ──┬ ┬───────────────────────────────────────

| └ ┘| ─SAMPLE──integer─ └ ┘| ─COLUMN─ ──┬ ┬───────────────────────────
| │ │┌ ┐| ─ALL─────────────
| │ ││ │┌ ┐─,───────────
| └ ┘| ─(─ ──┴ ┴───

�
┴─column-name─ ─)─

| �─ ──┬ ┬─── ──┬ ┬───────────────── ──────────�
| └ ┘| ─INDEX─ ──┬ ┬── │ │┌ ┐─NO──
| │ │┌ ┐| ─ALL─ ──┬ ┬──────────────────────── ─────────── └ ┘| ─REPORT─ ──┴ ┴─YES─
| │ ││ │└ ┘| ─correlation-stats-spec─
| │ ││ │┌ ┐─,──────────────────────────────────────
| └ ┘| ─(─ ──┴ ┴───

�
┴─index-name─ ──┬ ┬──────────────────────── ─)─

| └ ┘| ─correlation-stats-spec─

| �─ ──┬ ┬──────────────────────── ──�
| │ │┌ ┐─ALL────────
| └ ┘| ─UPDATE─ ──┼ ┼─ACCESSPATH─
| ├ ┤─SPACE──────
| └ ┘─NONE───────

| correlation-stats-spec:|

| �─ ──┬ ┬───────── ──┬ ┬─── ────────────────────────────�
| └ ┘| ─KEYCARD─ │ │┌ ┐───
| │ ││ │┌ ┐─1─────── ┌ ┐─1%──────
| └ ┘| ───

�
┴─FREQVAL──NUMCOLS─ ──┴ ┴─integer─ ─COUNT─ ──┴ ┴─integer─

copy spec:

�─ ──┬ ┬── ──┬ ┬──────────────────────────────────── ──────────────�
│ │┌ ┐─SYSCOPY─ └ ┘──RECOVERYDDN(ddname3 ──┬ ┬──────────)
└ ┘──COPYDDN(──┬ ┬──┴ ┴─ddname1─ ──┬ ┬──────────) └ ┘──,ddname4

│ │└ ┘──,ddname2
└ ┘──,ddname2 ─────────────────

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

DATA Is used for clarity only. You identify the data selected for loading
with table-name on the INTO TABLE option. See “INTO TABLE
spec” on page 135 for a description of the statement.

124 Utility Guide and Reference

 LOAD

INDDN ddname
Specifies the DD statement for the input data set. Record format for
the input data set must be fixed or variable. The data set must be
readable by the MVS BSAM access method.

ddname is the DD name.

The default is SYSREC.

PREFORMAT Specifies that the remaining pages are preformatted up to the high
allocated RBA in the table space and index spaces associated with
the table specified in table-name. The preformatting occurs after the
data has been loaded and the indexes are built.

PREFORMAT can operate on an entire table space and its index
spaces, or on a partition of a partitioned table space and its
corresponding partitioning index space. Specifying LOAD
PREFORMAT (rather than PART integer PREFORMAT) tells LOAD
to serialize at the table space level, which can inhibit concurrent
processing of separate partitions. If you want to serialize at the
partition level, specify PART integer PREFORMAT. See “Option
descriptions for INTO TABLE” on page 136 for the description for
specifying PREFORMAT at the partition level.

RESUME Tells whether records are to be loaded into an empty or non-empty
table space. For nonsegmented table spaces, space occupied by
rows that have been marked as deleted or by rows of dropped
tables is not reused.

Attention: Specifying LOAD RESUME (rather than PART integer
RESUME) tells LOAD to drain the table space, which can inhibit
concurrent processing of separate partitions. If you want to process

| other partitions concurrently, use “INTO TABLE spec” on page 135
| to specify PART integer RESUME.

NO Loads records into an empty table space. If the table space
is not empty, and you have not used REPLACE, a message
is issued and the utility job step terminates with a job step
condition code of 8.

For nonsegmented table spaces containing deleted rows or
rows of dropped tables, using the REPLACE keyword
provides increased efficiency.

The default is NO, unless you override it with PART integer
RESUME YES.

YES Loads records into a non-empty table space. If the table
space is empty, a warning message is issued, but the table
space is loaded. Loading begins at the current end of data
in the table space. Space occupied by rows marked as
deleted or by rows of dropped tables is not reused.

REPLACE Tells whether the table space and all its indexes need to be reset to
empty before records are loaded. With this option, the newly loaded
rows replace all existing rows of all tables in the table space, not
just those of the table you are loading. For DB2
STOGROUP-defined data sets, the data set is deleted and

| redefined with this option, unless you also specified the REUSE

 Chapter 2-9. LOAD 125

 LOAD

| option. You must have LOAD authority for all tables in the table
space where you perform LOAD REPLACE. If you attempt a LOAD
REPLACE without this authority, you get an error message.

You cannot use REPLACE with the PART integer REPLACE option
of INTO TABLE; you must either replace an entire table space
using the REPLACE option or replace a single partition using the
PART integer REPLACE option of INTO TABLE.

Specifying LOAD REPLACE (rather than PART integer REPLACE)
tells LOAD to serialize at the table space level. If you want to
serialize at the partition level, specify PART integer REPLACE. See
the description for specifying REPLACE at the partition level under
the keyword descriptions for INTO TABLE.

KEEPDICTIONARY
Prevents the LOAD utility from building a new compression
dictionary. LOAD retains the current compression dictionary and
uses it for compressing the input data. This option eliminates the
cost associated with building a new dictionary.

This keyword is valid only if a compression dictionary exists and the
table space being loaded has the COMPRESS YES attribute.

If the table space has the COMPRESS YES attribute, but there is
no dictionary, one is built and a warning message is issued.

For information regarding ESA data compression, see Section 2
(Volume 1) of DB2 Administration Guide.

| COPYDDN ddname1,ddname2
| Specifies the DD statements for the primary (ddname1) and backup
| (ddname2) copy data sets for the image copy.

| ddname is the DD name.

The default is SYSCOPY for the primary copy.

The COPYDDN keyword can only be specified with REPLACE. A
full image copy data set (SHRLEVEL REFERENCE) is created for
the table or partitions specified when LOAD executes. The table
space or partitions for which an image copy is produced is not
placed in COPY pending status.

Image copies taken during LOAD REPLACE are not recommended
for use with RECOVER TOCOPY, because these image copies
might contain unique index violations or referential constraint
violations.

| Using COPYDDN when loading a table with LOB columns will not
| create a copy of any index or LOB table space. You must perform
| these tasks separately.

| RECOVERYDDN ddname3,ddname4
| Specifies the DD statements for the primary (ddname3) and backup
| (ddname4) copy data sets for the image copy at the recovery site.

| ddname is the DD name.

You cannot have duplicate image copy data sets. The same rules
apply for RECOVERYDDN and COPYDDN.

126 Utility Guide and Reference

 LOAD

| STATISTICS Specifies the gathering of statistics for a table space, index, or both;
| the statistics are stored in the DB2 catalog.

| If you specify the STATISTICS keyword with no other
| statistics-spec or correlation-stats-spec options, DB2 gathers
| only table space statistics. Statistics are collected on a base table
| space, but not on a LOB table space.

| TABLE Specifies the table for which column information is to be gathered.
| All tables must belong to the table space specified in the
| TABLESPACE option.

| (ALL) Specifies that information is to be gathered for all
| columns of all tables in the table space.

| SAMPLE integer
| Indicates the percentage of rows to sample when
| collecting non-indexed column statistics. Any value
| from 1 through 100 can be specified. The default is
| 25.

| (table-name) Specifies the tables for which column information is
| to be gathered. The parentheses are required. If you
| omit the qualifier, the user identifier for the utility job
| is used.

| If you specify more than one table, you must repeat
| the TABLE option.

| COLUMN Specifies columns for which column information is to
| be gathered.

| You can only specify this option if you specify a
| particular tables for which statistics are to be
| gathered (TABLE (table-name)). If you specify
| particular tables and do not specify the COLUMN
| option, the default, COLUMN(ALL), is used. If you do
| not specify a particular table when using the TABLE
| option, you cannot specify the COLUMN option;
| however, COLUMN(ALL) is assumed.

| (ALL) Specifies that statistics are to be
| gathered for all columns in the table.

| (column-name, ...)
| Specifies the columns for which
| statistics are to be gathered. The
| parentheses are required.

| You can specify a list of column names;
| the maximum is 10. If you specify more
| than one column, separate each name
| with a comma.

| INDEX Specifies indexes for which information is to be gathered. Column
| information is gathered for the first column of the index. All the
| indexes must be associated with the same table space, which must
| be the table space specified in the TABLESPACE option.

 Chapter 2-9. LOAD 127

 LOAD

| (ALL) Specifies that the column information is to be
| gathered for all indexes defined on tables contained
| in the table space. The parentheses are required.

| (index-name) Specifies the indexes for which information is to be
| gathered. The parentheses are required.

| REPORT Determines if a set of messages is generated to report the collected
| statistics.

| NO Indicates that the set of messages is not output to
| SYSPRINT.

| The default is REPORT NO.

| YES Indicates that the set of messages is output to SYSPRINT.
| The messages generated are dependent on the combination
| of keywords (such as TABLESPACE, INDEX, TABLE, and
| COLUMN) specified with the RUNSTATS utility. However,
| these messages are not dependent on the specification of
| the UPDATE option. REPORT YES always generates a
| report of SPACE and ACCESSPATH statistics.

| UPDATE Tells whether the collected statistics are inserted into the catalog
| tables. UPDATE also allows you to select statistics used for access
| path selection or statistics used by database administrators.

| ALL Indicates that all collected statistics will be updated
| in the catalog.

| The default is UPDATE ALL.

| ACCESSPATH Indicates that only the catalog table columns that
| provide statistics used for access path selection
| are updated.

| SPACE Indicates that only the catalog table columns that
| provide statistics to help the database administrator
| assess the status of a particular table space or
| index are updated.

| NONE Indicates that no catalog tables are updated with
| the collected statistics. This option is only valid
| when REPORT YES is specified.

| KEYCARD Collects all of the distinct values in all of the 1 to n key column
| combinations for the specified indexes. n is the number of columns
| in the index.

| FREQVAL Controls the collection of frequent value statistics. If you specify
| FREQVAL, it must be followed by two additional keywords:

| NUMCOLS Indicates the number of key columns to concatenate
| together when collecting frequent values from the
| specified index. Specifying '3' means to collect
| frequent values on the concatenation of the first three
| key columns. The default is 1, which means collect
| frequent values on the first key column of the index.

128 Utility Guide and Reference

 LOAD

| COUNT Indicates the number of frequent values to be
| collected. Specifying '15' means collect 15 frequent
| values from the specified key columns. The default is
| 10.

| REUSE When used with the REPLACE option, specifies that LOAD should
| logically reset and reuse DB2-managed data sets without deleting
| and redefining them. If you do not specify REUSE, DB2 deletes and
| redefines DB2-managed data sets to reset them.

| REUSE must be accompanied by REPLACE to do the logical reset
| for all data sets. However, if you specify REUSE for the table space
| and REPLACE only at the partition level, only the replaced
| partitions are logically reset. See the description of REUSE in “INTO
| TABLE spec” on page 135 for information about specifying REUSE
| for individual partitions.

| If a data set has multiple extents, the extents will not be released if
| you specify the REUSE parameter.

LOG Tells whether logging is to occur during the RELOAD phase of the
load process.

YES Specifies normal logging during the load process. All
records loaded are logged.

The default is YES.

NO Specifies no logging of data during the load process. The
NO option sets the COPY pending restriction against the
table space or partition that the loaded table resides in. No
table or partition in the table space can be updated until the
restriction is removed. For ways to remove the restriction,
see “Resetting the COPY pending status” on page 174.

If you load a single partition of a partitioned table space and
the table space has a nonpartitioning index, some logging
might occur in the build phase as DB2 logs index structure
changes. This logging allows recoverability of the
nonpartitioning index in case an abend occurs, and also
allows concurrency.

A LOB table space that was defined with LOG YES or LOG
| NO will affect logging while loading a LOB column. See

Table 25 on page 170 for more information.

| NOCOPYPEND
| Specifies that LOAD is not to set the table space in
| the COPY pending status, even though LOG NO was
| specified. A NOCOPYPEND specification will not turn
| on or change any informational COPY pending
| (ICOPY) status for indexes. Normal completion of a
| LOAD LOG NO NOCOPYPEND job will be return
| code 0 if no other errors or warnings exist.

| DB2 ignores a NOCOPYPEND specification if you also
| specified COPYDDN to make a local site inline image
| copy during the LOAD.

 Chapter 2-9. LOAD 129

 LOAD

| Attention: You should only specify the
| NOCOPYPEND option if the data in the table space
| can be easily recreated by another LOAD if it is lost. If
| you do not take an image copy following the LOAD,
| you will not be able to recover the table space using
| the RECOVER utility.

WORKDDN(ddname1,ddname2)
Specifies the DD statements for the temporary work file for sort
input and sort output. Temporary work files for sort input and output
are required if the LOAD involves tables with indexes.

ddname1 is the DD name for the temporary work file for sort input.

The default is SYSUT1.

ddname2 is the DD name for the temporary work file for sort output.

The default is SORTOUT.

SORTKEYS integer
| Specifies that index keys will be sorted in parallel during the
| SORTBLD phase to improve performance. Optionally, you may use

integer to provide an estimate of the number of index keys to be
sorted. The default is 0.

SORTKEYS is recommended to improve performance unless the
table space has no indexes, or it has only one index and the data
being loaded is already sorted in key sequence. For more
information about invoking a parallel index build, see “Improving
performance with SORTKEYS” on page 161 and “Building indexes
in parallel for LOAD” on page 165.

FORMAT Identifies the format of the input record. If you use FORMAT, it
uniquely determines the format of the input, and no field
specifications are allowed in an INTO TABLE option. Follow
FORMAT with either the UNLOAD or SQL/DS option.

If you omit FORMAT, the format of the input data is determined by
the rules for field specifications described for the WHEN option of
“Option descriptions for INTO TABLE” on page 136.

UNLOAD Specifies that the input record format is compatible with
the DB2 unload format. (The DB2 unload format is the
result of REORG with the UNLOAD ONLY option.)
Input records that were unloaded by the REORG utility
are loaded into the tables from which they were
unloaded, if there is an INTO TABLE option to specify
each table. Do not add columns or change column
definitions of tables between running REORG UNLOAD
ONLY and LOAD FORMAT UNLOAD. Any WHEN
clause on that statement is ignored; DB2 reloads the
records into the same tables from which they were
unloaded. This ensures that the input records are
loaded into the proper tables. Input records that cannot
be loaded are discarded. If the DCB RECFM parameter
is specified on the DD statement for the input data set,
and the data set format has not been modified since

130 Utility Guide and Reference

 LOAD

the REORG UNLOAD (ONLY) operation, the record
format must be variable (RECFM=V).

SQL/DS Specifies that the input record format is compatible with
the SQL/DS unload format. The data type of a column
in the table to be loaded must be the same as the data
type of the corresponding column in the SQL/DS table.

If the SQL/DS input contains rows for more than one
table, the WHEN clause of the INTO TABLE option tells
which input records load into which DB2 table.

For information on the correct DCB parameters to
specify on the DD statement for the input data set, refer

| to DB2 Server for VSE: DBS Utility or DB2 Server for
| VM: DBS Utility.

LOAD cannot load SQL/DS strings that are longer than
the DB2 limit. For information about DB2 limits, see
Appendix A, “Limits in DB2 for OS/390” on page 513.

SQL/DS data that has been unloaded to disk under
| DB2 Server for VSE & VM resides in a simulated
| OS/390 type data set with a record format of VBS. That

must be taken into consideration when transferring the
data to another system to be loaded into a DB2 table

| (for example, the DB2 Server for VSE & VM FILEDEF
| must define it as an OS/390 type data set). Processing

it as a standard CMS file puts the SQL/DS record type
field at the wrong offset within the records; LOAD is
unable to recognize them as valid SQL/DS input.

| FLOAT Specifies that LOAD is to expect the designated format for floating
| point numbers.

| (S390) Specifies that LOAD is to expect that floating point
| numbers are provided in System/390 hexadecimal
| Floating Point (HFP) format. (S390) is the format that DB2
| stores floating point numbers in, and is the default if you
| do not explicitly specify the FLOAT keyword.

| (IEEE) Specifies that LOAD is to expect that floating point
| numbers are provided in IEEE Binary Floating Point (BFP)
| format.

| When you specify FLOAT(IEEE), DB2 converts the BFP
| data to HFP format as the data is being loaded into the
| DB2 table. If a conversion error occurs while converting
| from BFP to HFP, DB2 places the record in the discard
| file.

| FLOAT(IEEE) is mutually-exclusive with any specification
| of the FORMAT keyword. If you specify both FLOAT(IEEE)
| and FORMAT, DB2 issues message DSNU070I.

| BFP format is sometimes called IEEE Floating Point. For
| more information about the BFP format, see ESA/390
| Principles of Operation.

 Chapter 2-9. LOAD 131

 LOAD

EBCDIC Specifies that the input data file is EBCDIC. EBCDIC is the default.

ASCII Specifies that the input data file is ASCII. Numeric, date, time, and
timestamp internal formats are not affected by the ASCII option.

CCSID Specifies up to three coded character set identifiers (CCSIDs) for
the input file. The first specifies the CCSID for SBCS data found in
the input file, the second specifies the CCSID for mixed DBCS data,
and the third specifies the CCSID for DBCS data. If any of these
are specified as 0 or omitted, the CCSID of the corresponding data
type in the input file is assumed to be the same as the installation
default CCSID; that is, if the input data is EBCDIC, the omitted
CCSIDs are assumed to be the EBCDIC CCSIDs specified at
installation, and if the input data is ASCII, the omitted CCSIDs are
assumed to be the ASCII CCSIDs specified at installation. If the
CCSIDs of the input data file do not match the CCSIDs of the table
being loaded, the input data is converted to the table CCSIDs
before being loaded.

integer is any valid CCSID specification.

NOSUBS Specifies that LOAD is not to accept substitution characters in a
string.

A substitution character is sometimes placed in a string when that
string is being converted from ASCII to EBCDIC, or converted from
one CCSID to another. For example, this substitution occurs when a
character (sometimes referred to as a codepoint) that exists in the
source CCSID (code page) does not exist in the target CCSID
(code page).

When you specify the NOSUBS option and the LOAD utility
determines that a substitution character has been placed in a string
as a result of a conversion, it performs one of the following actions:

� If discard processing is active: DB2 issues message
DSNU310I and places the record in the discard file.

� If discard processing is not active: DB2 issues message
| DSNU334I and the utility abnormally terminates.

ENFORCE Specifies whether or not LOAD is to enforce check constraints and
referential constraints.

CONSTRAINTS Indicates that constraints are to be enforced. If
LOAD detects a violation, it deletes the errant row
and issues a message to identify it. If you specify
this option and referential constraints exist, sort
input and sort output data sets are required.

The default is CONSTRAINTS.

NO Indicates that constraints are not to be enforced.
This option places the target table space in the
CHECK pending status if at least one referential
or check constraint is defined for the table.

ERRDDN ddname
Specifies the DD statement for a work data set for error processing.
Information about errors encountered during processing is stored in

132 Utility Guide and Reference

 LOAD

this data set. A SYSERR data set is required if you request discard
processing.

ddname is the DD name.

The default is SYSERR.

MAPDDN ddname
Specifies the DD statement for a work data set for error processing.
It is used to map the identifier of a table row back to the input
record that caused an error. A SYSMAP data set is required if you
specify ENFORCE CONSTRAINTS and the tables have a
referential relationship, or if you request discard processing when
loading one or more tables that contain unique indexes.

ddname is the DD name.

The default is SYSMAP.

DISCARDDN ddname
Specifies the DD statement for a “discard data set,” to hold copies
of records that are not loaded (for example, if they contain
conversion errors). The discard data set also holds copies of
records loaded, then removed (due to unique index errors, or
referential or check constraint violations). Input records can be
flagged for discarding during RELOAD, INDEXVAL, and ENFORCE
phases. However, the discard data set is not written until the
DISCARD phase when the flagged records are copied from the
input data set to the discard data set. The discard data set must be
a sequential data set that can be written to by BSAM, with the same
record format, record length, and block size as the input data set.

ddname is the DD name.

If you omit the DISCARDDN option, the utility application program
saves discarded records only if there is a SYSDISC DD statement
in the JCL input.

The default is SYSDISC.

DISCARDS integer
Specifies the maximum number of source records to be written on
the discard data set. integer can range from 0 to 2147483647. If the
discard maximum is reached, LOAD abends, the discard data set is
empty, and you cannot see which records were discarded. You can
either restart the job with a larger limit, or terminate the utility.

DISCARDS 0 specifies that there is no maximum. The entire input
data set can be discarded.

The default is DISCARDS 0.

SORTDEVT device-type
Specifies the device type for temporary data sets to be dynamically
allocated by DFSORT. It can be any device type acceptable to the
DYNALLOC parameter of the SORT or OPTION options for
DFSORT.

If you omit SORTDEVT and a sort is required, you must provide the
DD statements that the sort application program needs for the
temporary data sets.

 Chapter 2-9. LOAD 133

 LOAD

SORTNUM integer
Tells the number of temporary data sets to be dynamically allocated
by the sort application program.

If you omit SORTDEVT, SORTNUM is ignored. If you use
SORTDEVT and omit SORTNUM, no value is passed to DFSORT.
It is allowed to take its own default.

CONTINUEIF Allows you to treat each input record as a portion of a larger record.
After CONTINUEIF, write a condition in one of these forms:

(start:end) = X'byte-string'
(start:end) = 'character-string'

If the condition is true in any record, the next record is
concatenated with it before loading takes place. You can
concatenate any number of records into a larger record up to a
maximum size of 32767 bytes.

Data in the input record can be in ASCII, but character constants
specified in the utility control statement are always interpreted as
EBCDIC. To use CONTINUEIF when the ASCII option is specified,
code the condition using the hexadecimal form, not the character
string form. For example, use (1:1)=X'31' rather than (1:1)='1'.

(start:end) Are column numbers in the input record; the first
column of the record is column 1. The two numbers tell
the starting and ending columns of a continuation field
in the input record.

Other field position specifications (such as those for
WHEN, POSITION, or NULLIF) refer to the field
position within the final assembled load record, not the
input record.

The continuation field is removed from the input record
and is not part of the final load record.

If you omit :end, the length of the continuation field is
taken as the length of the byte string or character
string. If you use :end, and the length of the resulting
continuation field is not the same as the length of the
byte string or character string, the shorter one is
padded. Character strings are padded with blanks.
Hexadecimal strings are padded with zeros.

X'byte-string'
Is a string of hexadecimal characters. That value in the
continuation field indicates that the next input record is
a continuation of the current load record. Records with
that value are concatenated until the value in the
continuation field changes. For example, a specification
might be

CONTINUEIF (72) = X'FF'

'character-string'
Is a string of characters that has the same effect as
X'byte-string'. For example, a specification might be

134 Utility Guide and Reference

 LOAD

CONTINUEIF (99:1%%) = 'CC'

INTO TABLE spec
More than one table or partition for each table space can be loaded with a single
invocation of the LOAD utility. At least one INTO TABLE statement is required for
each table to be loaded, to:

� Identify the table that is to be loaded
� Describe fields within the input record
� Define the format of the input data set.

All tables specified by INTO TABLE statements must belong to the same table
space.

If the data is already in UNLOAD or SQL/DS format, and FORMAT UNLOAD or
FORMAT SQL/DS is used on the LOAD statement, no field specifications are
allowed.

INTO TABLE spec:

�─ ─INTO─ ─TABLE─ ─table-name─ ──┬ ┬─── ───�
 └ ┘ ─PART──integer─ ──┬ ┬─────────── ─resume spec─
 └ ┘ ─PREFORMAT─

�─ ──┬ ┬───────────────────────────────────── ──┬ ┬───────────────────────────── ───────────────────────────────────────�
└ ┘──WHEN ──┬ ┬──SQL/DS='table-name' ────── │ │┌ ┐─,───────────────────

└ ┘─field selection criterion─ └ ┘──(───
�

┴─field specification─)

resume spec:

 ┌ ┐ ─RESUME──NO─
�─ ──┬ ┬── ──┴ ┴──────────── ──┬ ┬─── ────────────────────────────────�
 │ │└ ┘──REPLACE ──┬ ┬──────────────── ──┬ ┬─────── ──┬ ┬───────────

| │ │└ ┘──KEEPDICTIONARY └ ┘| ─REUSE─ └ ┘──copy spec
 └ ┘─RESUME──YES───

field selection criterion:

�─ ──┬ ┬─field-name──────── ─=─ ──┬ ┬──X'byte-string' ──── ──�
└ ┘──(start ──┬ ┬──────) ├ ┤──'character-string'

└ ┘──:end ├ ┤──G'graphic-string' ─
└ ┘──N'graphic-string' ─

 Chapter 2-9. LOAD 135

 LOAD

field specification:

�─ ─field-name─ ──┬ ┬─────────────────────────── ───�
└ ┘──POSITION(start ──┬ ┬──────)

└ ┘──:end

�─ ──┬ ┬─── ───�
 ├ ┤──CHAR ──┬ ┬─────── ──┬ ┬────────── ────────────────────────

│ │└ ┘─MIXED─ └ ┘──(length)
 ├ ┤──VARCHAR ──┬ ┬─────── ───────────────────────────────────
 │ │└ ┘─MIXED─
 ├ ┤──GRAPHIC ──┬ ┬────────── ──┬ ┬────────── ──────────────────

│ │└ ┘─EXTERNAL─ └ ┘──(length)
 ├ ┤─VARGRAPHIC──
 ├ ┤─SMALLINT──
 ├ ┤──INTEGER ──┬ ┬──────────────────────── ──────────────────
 │ │└ ┘──EXTERNAL ──┬ ┬──────────

│ │└ ┘──(length)
 ├ ┤──DECIMAL ──┬ ┬──
 │ │├ ┤─PACKED───────────────────────────────────
 │ │├ ┤─ZONED────────────────────────────────────
 │ │└ ┘──EXTERNAL ──┬ ┬────────────────────────────

│ │└ ┘──(length ──┬ ┬──────────────)
 │ ││ │┌ ┐─%─────
 │ │└ ┘──, ──┴ ┴─scale─
 ├ ┤──FLOAT ──┬ ┬────────── ──┬ ┬────────── ────────────────────

│ │└ ┘─EXTERNAL─ └ ┘──(length)
 ├ ┤ ─DATE──EXTERNAL─ ──┬ ┬────────── ─────────────────────────

│ │└ ┘──(length)
 ├ ┤ ─TIME──EXTERNAL─ ──┬ ┬────────── ─────────────────────────

│ │└ ┘──(length)
 ├ ┤ ─TIMESTAMP──EXTERNAL─ ──┬ ┬────────── ────────────────────

│ │└ ┘──(length)
| ├ ┤| ─ROWID───
| ├ ┤| ─BLOB──
| ├ ┤──CLOB ──┬ ┬─────── ──────────────────────────────────────
│ │└ ┘─MIXED─
| └ ┘| ─DBCLOB──

�─ ──┬ ┬────────────────────────────────────── ──�
 ├ ┤─NULLIF──field selection criterion────
 └ ┘─DEFAULTIF──field selection criterion─

Option descriptions for INTO TABLE
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

table-name Is the name of a table to be loaded. The table must be described
in the catalog and must not be a catalog table.

If the table name is not qualified by an authorization ID, the
authorization ID of the invoker of the utility job step is used as the
qualifier of the table name.

Data from every load record in the data set is loaded into the table
specified unless:

� A WHEN clause is used and the data does not match the field
selection criterion

� The FORMAT UNLOAD option is used on the LOAD statement
and the data comes from a table not specified in an INTO
TABLE statement

136 Utility Guide and Reference

 LOAD

� A certain partition is specified, and the data does not belong to
that partition

� Data conversion errors occur

� Any errors not generated by data conversion occur

The following keywords are optional:

PART integer Is valid only for partitioned table spaces.

integer is the number of the partition for which records are
accepted for loading. Any data outside the range of the specified
partition is not loaded. The maximum is 254.

LOAD INTO PART integer is not allowed if an identity column is
part of the partitioning index.

PREFORMAT Specifies that the remaining pages are preformatted up to the high
allocated RBA in the partition and its corresponding partitioning
index space. The preformatting occurs after the data has been
loaded and the indexes are built.

RESUME Specifies whether records are to be loaded into an empty or
non-empty partition. For nonsegmented table spaces, space
occupied by rows that have been marked as deleted or by rows of
dropped tables is not reused. If the RESUME option is specified at
the table space level, the RESUME option is not allowed in the
PART clause.

If you want the RESUME option to apply to the entire table space,
use the LOAD RESUME option. If you want the RESUME option to
apply to a particular partition, specify it using PART integer
RESUME.

NO Loads records into an empty partition. If the partition is not
empty, and you have not used REPLACE, a message is
issued, and the utility job step terminates with a job step
condition code of 8.

For nonsegmented table spaces containing deleted rows or
rows of dropped tables, using the REPLACE keyword
provides increased efficiency.

The default is NO.

YES Loads records into a non-empty partition. If the partition is
empty, a warning message is issued, but the partition is
loaded.

REPLACE If specified, this option indicates that you want to replace only the
contents of the partition cited by the PART option, rather than the
entire table space.

You cannot use LOAD REPLACE with the PART integer
REPLACE option of INTO TABLE. If you specify the REPLACE
option, you must either replace an entire table space, using LOAD
REPLACE, or a single partition, using the PART integer REPLACE
option of INTO TABLE. You can, however, use PART integer
REPLACE with LOAD RESUME YES.

 Chapter 2-9. LOAD 137

 LOAD

KEEPDICTIONARY
Prevents the LOAD utility from building a new dictionary.
LOAD retains the current dictionary and uses it for
compressing the input data. This option eliminates the cost
associated with building a new dictionary.

This keyword is only valid if a dictionary exists and the
partition being loaded has the COMPRESS YES attribute.

If the partition has the COMPRESS YES attribute, but there
is no dictionary, one is built and an error message is issued.

| REUSE When used with the REPLACE option, specifies that LOAD should
| logically reset and reuse DB2-managed data sets without deleting
| and redefining them. If you do not specify REUSE, DB2 deletes
| and redefines DB2-managed data sets to reset them.

| If you specify REUSE with REPLACE on the PART specification
| (and not for the “table space level” LOAD) only the specified
| partitions are logically reset. If you specify REUSE for the table
| space and REPLACE for the partition, then data sets for the
| replaced parts are logically reset.

WHEN The WHEN clause tells which records in the input data set are to
be loaded. If there is no WHEN clause (and if FORMAT UNLOAD
was not used in the LOAD statement), all records in the input data
set are loaded into the specified tables or partitions. (Data beyond
the range of the partition specified is not loaded.)

The option following WHEN describes a condition; input records
that satisfy the condition are loaded. Input records that do not
satisfy any WHEN clause of any INTO TABLE statement are
written to the discard data set, if one is being used.

Data in the input record can be in ASCII, but character constants
specified in the utility control statement are always interpreted as
EBCDIC. To use WHEN when the ASCII option is specified, code
the condition using the hexadecimal form, not the character string
form. For example, use (1:1)=X'31' rather than (1:1)='1'.

SQL/DS='table-name'
Is valid only when the FORMAT SQL/DS option is used on
the LOAD statement.

table-name is the SQL/DS name of a table that has been
unloaded onto the SQL/DS unload data set. The table name
after INTO TABLE tells which DB2 table the SQL/DS table is
loaded into.

If there is no WHEN clause, input records from every
SQL/DS table are loaded into the table specified after INTO
TABLE.

field-selection-criterion
Describes a field and a character constant. Only those
records in which the field contains the specified constant are
loaded into the table specified after INTO TABLE.

A field in a selection criterion must:

138 Utility Guide and Reference

 LOAD

� Contain a character or graphic string. No data type
conversions are performed when the contents of the field
in the input record are compared to a string constant.

� Start at the same byte offset in each assembled input
record. If any record contains varying-length
strings—stored with length fields—that precede the
selection field, then they must be padded so the start of
the selection field is always at the same offset.

The field and the constant need not be the same length. If
they are not, the shorter of the two is padded before a
comparison is made. Character and graphic strings are
padded with blanks. Hexadecimal strings are padded with
zeros.

field-name
Is the name of a field defined by a
field-specification. If field-name is used, the start and
end positions of the field are given by the
POSITION option of the field specification.

(start:end)
start and :end are column numbers in the
assembled load record; the first column of the
record is column 1. The two numbers tell the
starting and ending columns of a selection field in
the load record.

If :end is not used, the field is assumed to have the
same length as the constant.

X'byte-string'
Gives the constant as a string of hexadecimal
characters. For example, write

WHEN (33:34) = X'FFFF'

'character-string'
Gives the constant as a string of characters. For
example, write

WHEN DEPTNO = 'D11'

G'graphic-string'
Gives the constant as a string of double-byte
characters. For example, write

WHEN (33:36) = G'<��>'

where “<” is the shift-out character, “*” is a
double-byte character, and “>” is the shift-in
character.

If the first or last byte of the input data is a shift-out
character, it is ignored in the comparison. You can
specify G either as an upper- or lower-case
character.

 Chapter 2-9. LOAD 139

 LOAD

N'graphic-string'
Gives the constant as a string of double-byte
characters. N and G are synonymous for specifying
graphic string constants. You can specify N either
as an upper- or lower-case character.

(field-specification, ...)
Describes the location, format, and null value identifier of
the data to be loaded.

If NO field specifications are used:

� The fields in the input records are assumed to be in
the same order as in the DB2 table.

� The formats are set by the FORMAT option on the
LOAD statement, if that is used.

� Fixed strings in the input are assumed to be of fixed
maximum length. VARCHAR and VARGRAPHIC
fields must contain a valid 2-byte binary length field
preceding the data; there cannot be intervening gaps
between them and the fields that follow.

| � ROWID fields are varying length, and must contain a
| valid 2-byte binary length field preceding the data;
| there cannot be intervening gaps between them and
| the fields that follow.

| � LOB data types are varying length, and require a valid
| 4-byte binary length field preceding the data; there
| cannot be intervening gaps between them and the
| fields that follow.

� Numeric data is assumed to be in the appropriate
internal DB2 number representation.

� The NULLIF or DEFAULTIF options cannot be used.

If any field specification is used for an input table, there
must be a field specification for each field of the table that
does not have a default value. Any field in the table with
no corresponding field specification is loaded with its
default value.

If any column in the output table does not have a field
specification and is defined as NOT NULL, with no
default, the utility job step is terminated.

Identity columns may appear in the field specification only
if they were defined with the GENERATED BY DEFAULT
attribute.

field-name
Is the name of a field, and can be a name of your choice.
If the field is to be loaded, the name must be the name of
a column in the table named after INTO TABLE. The
field-name can be used as a vehicle to specify the range
of incoming data. See page 180.

140 Utility Guide and Reference

 LOAD

The starting location of the field is given by the POSITION
option. If POSITION is not used, the starting location is
one column after the end of the previous field.

The length of the field is determined in one of the
following ways, in the order listed:

1. If the field has data type VARCHAR, VARGRAPHIC,
| or ROWID, the length is assumed to be contained in

a 2-byte binary field preceding the data. For
VARCHAR fields, the length is in bytes; for
VARGRAPHIC fields, it is in (double-byte) characters.

| If the field has data type CLOB, BLOB, or DBCLOB,
| the length is assumed to be contained in a 4-byte
| binary field preceding the data. For BLOB and CLOB
| fields, the length is in bytes; for DBCLOB fields, it is
| in (double-byte) characters.

2. If :end is used in the POSITION option, the length is
calculated from start and end. In that case, any length
attribute after the CHAR, GRAPHIC, INTEGER,
DECIMAL, or FLOAT specifications is ignored.

3. The length attribute on the CHAR, GRAPHIC,
INTEGER, DECIMAL, or FLOAT specifications is
used as the length.

4. The length is taken from the DB2 field description in
the table definition or assigned a default value
according to the data type. For DATE and TIME fields
the length is defined during installation. For variable
length fields the length is defined from the column in
the DB2 table definition, excluding the null indicator
byte if it is present. Table 17 on page 142 shows the
default length, in bytes, for each data type.

 Chapter 2-9. LOAD 141

 LOAD

If a data type is not given for a field, its data type is taken
to be the same as that of the column it is loaded into, as
given in the DB2 table definition.

POSITION(start:end)
Tells where a field is in the assembled load record.

start and end are the locations of the first and last
columns of the field; the first column of the record is
column 1. The option can be omitted.

Column locations can be given as:

� An integer n, meaning an actual column number
� * , meaning one column after the end of the previous

field
� *+n, where n is an integer, meaning n columns after

the location specified by * .

The POSITION option specification cannot be enclosed in
parentheses; however, the start:end description must be
enclosed in parentheses, as the following example shows:

Valid Invalid

POSITION (1%:2%) POSITION ((1%:2%))

Table 17. Default length of each data type (in bytes)

Data Type Length in Bytes

| BLOB| Varying

CHARACTER Length used in column definition

| CLOB| Varying

DATE 10 (or installation default)

| DBCLOB| Varying

DECIMAL EXTERNAL Same as for DECIMAL ZONED

DECIMAL PACKED Length implied by column definition

DECIMAL ZONED Decimal precision if decimal output column, otherwise
length implied by column definition

FLOAT (single precision) 4

FLOAT (double precision) 8

GRAPHIC 2 * (length used in column definition)

INTEGER 4

MIXED Mixed DBCS data

| ROWID| Varying

SMALLINT 2

TIME 8 (or installation default)

TIMESTAMP 26

VARCHAR Varying

VARGRAPHIC Varying

142 Utility Guide and Reference

 LOAD

Data types in a field specification: The data type of the field can be specified by
any of the keywords that follow. Except for graphic fields, length is the length in
bytes of the input field.

All numbers designated EXTERNAL are in the same format in the input records.

CHAR
CHAR(length) For a fixed-length character string. The length of the string is

determined from the POSITION specification or from length. You
can also specify CHARACTER and CHARACTER(length).

MIXED Specifies that the input field contains mixed SBCS and
DBCS data. If MIXED is specified, then any required
CCSID conversions use the mixed CCSID for the input
data; if MIXED is not specified, then any such conversions
will use the SBCS CCSID for the input data.

VARCHAR For a character field of varying-length. The length in bytes must be
given in a 2-byte binary field preceding the data. (The length given
there does not include the 2 byte field itself.) The length field must
start in the column specified as start in the POSITION option. If
:end is used, it is ignored.

MIXED Specifies that the input field contains mixed DBCS data. If
MIXED is specified, then any required CCSID conversions
use the mixed CCSID for the input data; if MIXED is not
specified, then any such conversions will use the SBCS
CCSID for the input data.

GRAPHIC EXTERNAL
GRAPHIC EXTERNAL(length)

Used for a graphic field. You can specify both start and end for the
field specification.

If you use GRAPHIC EXTERNAL, the input data must contain a
shift-out character in the starting position, and a shift-in character in
the ending position. Aside from the shift characters, there must be
an even number of bytes in the field. The first byte of any pair must
not be a shift character.

length is a number of double-byte characters. length for GRAPHIC
EXTERNAL does not include the bytes of shift characters. The
length of the field in bytes is twice the value of length.

For example, let *** represent 3 double-byte characters, and let <
and > represent shift-out and shift-in characters. Then, to describe
<***>, use either POS(1:8) GRAPHIC EXTERNAL or POS(1)
GRAPHIC EXTERNAL(3).

GRAPHIC
GRAPHIC(length)

Used for a graphic field. You can specify both start and end for the
field specification.

If you use GRAPHIC, the input data must not contain shift
characters. start and end must indicate the starting and ending
positions of the data itself.

 Chapter 2-9. LOAD 143

 LOAD

length is a number of double-byte characters. The length of the field
in bytes is twice the value of length.

For example, let *** represent 3 double-byte characters. Then, to
describe ***, use either POS(1:6) GRAPHIC or POS(1)
GRAPHIC(3). A GRAPHIC field described in this way cannot be
specified in a field selection criterion.

VARGRAPHIC
For a graphic field of varying-length. The length, in double-byte
characters, must be given in a 2-byte binary field preceding the
data. (The length given there does not include the 2 byte field
itself.) The length field must start in the column specified as start in
the POSITION option. :end, if used, is ignored.

VARGRAPHIC input data must not contain shift characters.

SMALLINT For a two-byte binary number. Negative numbers are in two's
complement notation.

INTEGER Specifies a four-byte binary number. Negative numbers are in two's
complement notation.

You can also specify INT.

INTEGER EXTERNAL
INTEGER EXTERNAL(length)

A string of characters that represent a number. The format is that of
an SQL numeric constant as described in Chapter 3 of DB2 SQL
Reference.

You can also specify INT EXTERNAL.

DECIMAL
DECIMAL PACKED

For a number of the form ddd...ds, where d is a decimal digit
represented by four bits, and s is a four-bit sign value. (The plus
sign (+) is represented by A, C, E, or F and the minus sign (-) is
represented by B or D.) The maximum number of ds is the same as
the maximum number of digits allowed in the SQL definition.

You can also specify DEC or DEC PACKED.

DECIMAL ZONED
For a number of the form znznzn...z/sn, where n is a decimal digit
represented by the right four bits of a byte (called the numeric bits);
z is that digit's zone, represented by the left four bits; and s is the
rightmost byte of the decimal operand, and can be treated as a
zone or as the sign value for that digit. (The plus sign (+) is
represented by A, C, E, or F and the minus sign (-) is represented
by B or D.) The maximum number of zns is the same as the
maximum number of digits allowed in the SQL definition.

You can also specify DEC ZONED.

144 Utility Guide and Reference

 LOAD

DECIMAL EXTERNAL
DECIMAL EXTERNAL(length)
DECIMAL EXTERNAL(length,scale)

A string of characters that represent a number. The format is that of
an SQL numeric constant as described in Chapter 3 of DB2 SQL
Reference.

length Overall length of the input field in bytes.

scale Specifies the number of digits to the right of the decimal
point. That number must be an integer greater than or
equal to 0, and can be greater than length.

The default is 0.

If scale is greater than length, or the number of digits
provided is less than the scale specified, the input number
is padded on the left with zeros until the decimal point
position is reached. If scale is greater than the target scale,
the source scale locates the implied decimal position. All
fractional digits greater than target scale are truncated. If
scale is specified and the target column is small integer or
integer, the decimal portion of the input number is ignored.
If a decimal point is present, its position overrides the field
specification of scale.

You can also specify DEC EXTERNAL and DEC
EXTERNAL(length).

FLOAT EXTERNAL
FLOAT EXTERNAL(length)

A string of characters that represent a number. The format is that of
an SQL floating point constant as described in Chapter 3 of DB2
SQL Reference.

| If you specified the FLOAT(IEEE) or FLOAT(S390) option, it does
| not apply for this format (string of characters) of floating point
| numbers.

FLOAT(length)
For either a 64-bit floating point number, or a 32-bit floating point
number. If length is between 1 and 21 inclusive, the number is 32

| bits in the S390 (HFP) format:

Bit 0 Represents a sign (0 for "plus", and 1 for "minus")
Bits 1-7 Represent an exponent in excess-64 notation
Bits 8-31 Represent a mantissa.

| If length is between 1 and 24 inclusive, the number is 32 bits in the
| IEEE (BFP) format:

| Bit 0 Represents a sign (0 for "plus", and 1 for "minus")
| Bits 1-8 Represent an exponent
| Bits 9-31 Represent a mantissa.

If length is not specified, or is between 22 and 53 inclusive, the
| number is 64 bits in the S390 (HFP) format:

Bit 0 Represents a sign (0 for "plus", and 1 for "minus")

 Chapter 2-9. LOAD 145

 LOAD

Bits 1-7 Represent an exponent in excess-64 notation
Bits 8-63 Represent a mantissa.

| If length is not specified, or is between 25 and 53 inclusive, the
| number is 64 bits in the IEEE (BFP) format:

| Bit 0 Represents a sign (0 for "plus", and 1 for "minus")
| Bits 1-11 Represent an exponent in excess-64 notation
| Bits 12-63 Represent a mantissa.

You can also specify REAL for single precision floating point and
DOUBLE PRECISION for double precision floating point.

DATE EXTERNAL
DATE EXTERNAL(length)

For a character string representation of a date. Length, if
unspecified, is the length given by the LOCAL DATA LENGTH
install option, or, if none was provided, defaults to 10 bytes. If you
specify a length, it must be within the range of 8 to 254 bytes.

Dates can be in any of the following formats. You can omit leading
zeros for month and day. Trailing blanks can be included, but no
leading blanks are allowed.

 � dd.mm.yyyy
 � mm/dd/yyyy
 � yyyy-mm-dd
� any local format defined by your site at the time DB2 was

installed.

TIME EXTERNAL
TIME EXTERNAL(length)

For a character string representation of a time. Length, if
unspecified, is the length given by the LOCAL TIME LENGTH install
option, or, if none was provided, defaults to eight bytes. If you
specify a length, it must be within the range of 4 to 254 bytes.

Times can be in any of the following formats.

 � hh.mm.ss
 � hh:mm AM
 � hh:mm PM
 � hh:mm:ss
� any local format defined by your site at the time DB2 was

installed.

You can omit the mm portion of the hh:mm AM and hh:mm PM
formats if mm is equal to 00. For example, 5 PM is a valid time, and
can be used instead of 5:00 PM

TIMESTAMP EXTERNAL
TIMESTAMP EXTERNAL(length)

For a character string representation of a time. length, if
unspecified, defaults to 26 bytes. If you specify a length, it must be
within the range of 19 to 26 bytes.

Timestamps can be in either of the following formats. Note that
nnnnnn represents the number of microseconds, and can be from 0
to 6 digits. You can omit leading zeros from the month, day, or hour

146 Utility Guide and Reference

 LOAD

parts of the timestamp; you can omit trailing zeros from the
microseconds part of the timestamp.

 � yyyy-mm-dd-hh.mm.ss
 � yyyy-mm-dd-hh.mm.ss.nnnnnn

See Chapter 3 of DB2 SQL Reference for more information about
the timestamp data type.

| ROWID For a row ID. The input data must be a valid value for a row ID;
| DB2 will not perform any conversions.

| A field specification for a row ID column is not allowed if the row ID
| column was created GENERATED ALWAYS.

| If the ROWID column is part of the partitioning key, LOAD INTO
| TABLE PART is not allowed; specify LOAD INTO TABLE instead.

| BLOB For a BLOB field. You must specify the length in bytes in a 4-byte
| binary field preceding the data. (The length does not include the
| 4-byte field itself.) The length field must start in the column specified
| as start in the POSITION option. If :end is used, it is ignored.

| CLOB For a CLOB field. You must specify the length in bytes in a 4-byte
| binary field preceding the data. (The length does not include the
| 4-byte field itself.) The length field must start in the column specified
| as start in the POSITION option. If :end is used, it is ignored.

MIXED Specifies that the input field contains mixed SBCS and
DBCS data. If MIXED is specified, then any required
CCSID conversions use the mixed CCSID for the input
data; if MIXED is not specified, then any such conversions
will use the SBCS CCSID for the input data.

| DBCLOB For a DBCLOB field. You must specify the length in double-byte
| characters in a 4-byte binary field preceding the data. (The length
| does not include the 4-byte field itself.) The length field must start in
| the column specified as start in the POSITION option. If :end is
| used, it is ignored.

Field selection criterion: The criterion describes a condition that causes the DB2
column to be loaded with NULL or its default value.

NULLIF field-selection-criterion
Describes a condition that causes the DB2 column to be loaded
with NULL. The field-selection-criterion can be written with the
same options as described on page 138. If the contents of the
NULLIF field match the character constant given, the field specified
in field-specification is loaded with NULL.

If the NULLIF field is defined by the name of a VARCHAR or
VARGRAPHIC field, the length of the field is taken from the 2-byte
binary field that appears before the data portion of the VARCHAR
or VARGRAPHIC field.

Data in the input record can be in ASCII, but character constants
specified in the utility control statement are always interpreted as
EBCDIC. To use NULLIF when the ASCII option is specified, code

 Chapter 2-9. LOAD 147

 LOAD

the condition using the hexadecimal form, not the character string
form. For example, use (1:1)=X'31' rather than (1:1)='1'.

The fact that a field in the output table is loaded with NULL does
not change the format or function of the corresponding field in the
input record. The input field can still be used in a field selection
criterion. For example, with the field specification:

(FIELD1 POSITION(�) CHAR(4)

 FIELD2 POSITION(�) CHAR(3) NULLIF(FIELD1='SKIP')

 FIELD3 POSITION(�) CHAR(5))

and the source record:

SKIP FLD%3

the record is loaded so that:

FIELD1 Has the value 'SKIP'
FIELD2 Is NULL (not ' ' as in the source record)
FIELD3 Has the value 'FLD03'.

| You cannot use the NULLIF parameter with the ROWID keyword,
| because row ID columns cannot be null.

DEFAULTIF field-selection-criterion
Describes a condition that causes the DB2 column to be loaded
with its default value. The field-selection-criterion can be written with
the same options as described on page 138. If the contents of the
DEFAULTIF field match the character constant given, the field
specified in field-specification is loaded with its default value.

If the DEFAULTIF field is defined by the name of a VARCHAR or
VARGRAPHIC field, the length of the field is taken from the 2-byte
binary field that appears before the data portion of the VARCHAR
or VARGRAPHIC field.

Data in the input record can be in ASCII, but character constants
specified in the utility control statement are always interpreted as
EBCDIC. To use DEFAULTIF when the ASCII option is specified,
code the condition using the hexadecimal form, not the character
string form. For example, use (1:1)=X'31' rather than (1:1)='1'.

| You can use the DEFAULTIF attribute with the ROWID keyword. If
| the condition is met, the column will be loaded with a value
| generated by DB2.

Instructions for running LOAD
To run LOAD, you must:

1. Read “Before running LOAD” on page 149 in this chapter.

2. Prepare the necessary data sets, as described in “Data sets used by LOAD” on
page 149.

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for LOAD, see
“Sample control statements” on page 178.)

148 Utility Guide and Reference

 LOAD

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 152. (For a
complete description of the syntax and options for LOAD, see “Syntax and
options of the control statement” on page 122.)

5. Check the compatibility table in “Concurrency and compatibility” on page 173 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the LOAD job doesn't complete, as described in “Terminating
or restarting LOAD” on page 170.

7. Read “After running LOAD” on page 174 in this chapter.

 8. Run LOAD.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Before running LOAD
Preprocessing input data: There is no sorting of the data rows during the LOAD
utility— rows are loaded in the physical sequence in which they are found. It is a
good idea to sort your input records in clustering sequence before loading.

You should also:

� Ensure that no duplicate keys exist for unique indexes.

� Correct check constraint violations and referential constraint violations in the
input data set.

When loading into a segmented table space, sort your data by table to ensure that
the data is loaded in the best physical organization.

Data sets used by LOAD
Table 18 describes the data sets used by LOAD. Include statements in your JCL
for each required data set, and any optional data sets you want to use.

Table 18 (Page 1 of 2). Data sets used by LOAD

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Input data set The input data set containing the data to
be loaded. Its name is identified by the
DD statement specified by the INDDN
option. The default name is SYSREC. It
must be a sequential data set that is
readable by BSAM.

Yes

Sort data sets Two temporary work data sets for sort
input and sort output. Their DD names are
specified with the WORKDDN option of
the utility control statement. The default
DD name for sort input is SYSUT1. The
default DD name for sort output is
SORTOUT.

Yes1,3,5

 Chapter 2-9. LOAD 149

 LOAD

The following object is named in the utility control statement and does not require a
DD card in the JCL:

Table The name of the table to be loaded. It is named in the LOAD control
statement and is accessed through the DB2 catalog. (If you want to
load only one partition of a table, you must use the PART option in
the control statement.)

Defining work data sets: Use Table 19 on page 151 to calculate the size of work
data sets for LOAD.

Table 18 (Page 2 of 2). Data sets used by LOAD

Data Set Description Required?

Mapping data set Work data set for mapping the identifier of
a table row back to the input record that
caused an error. The default DD name is
SYSMAP.

Yes1,4

UTPRINT Contains messages from DFSORT
(usually, SYSOUT or DUMMY).

No6

Discard data set A work data set to hold copies of records
not loaded. It must be a sequential data
set that is readable by BSAM. Its name is
specified with the DISCARDDN option of
the utility control statement. If you omit
this, LOAD creates the data set with the
same record format, record length, and

| block size as the input data set. The
| default DD name is SYSDISC.

Yes2

Error data set Work data set for error processing. Its DD
name is specified with the ERRDDN
parameter of the utility control statement.
The default DD name is SYSERR.

Yes

Copy data sets 1 to 4 output data sets to contain image
copy data sets. Their DD names are
specified with the COPYDDN and
RECOVERYDDN options of the utility
control statement.

No

Note:

1 When referential constraints exist and ENFORCE(CONSTRAINTS) is specified.
2 If you request discard processing, by using the DISCARDS option of the utility control
statement.
3 For tables with indexes.
4 If you request discard processing when loading one or more tables that have unique
indexes.
5 If SORTKEYS is specified with no estimate or an estimate of 0.
6 Required if a sort is done.

150 Utility Guide and Reference

 LOAD

Calculating the key: k

| max(longest index key + 14, longest foreign key + 14) × (number of keys
extracted)

Calculating the number of keys extracted:

1. Count 1 for each index.

2. Count 1 for each foreign key that is not exactly indexed (that is, where
foreign key and index definitions do not correspond identically).

3. For each foreign key that is exactly indexed (that is, where foreign key and
index definitions correspond identically):

a. Count 0 for the first relationship in which the foreign key participates.

b. Count 1 for subsequent relationships in which the foreign key
participates (if any).

4. Multiply count by the number of rows to be loaded.

Calculating the foreign key: f

| max(longest foreign key + 14) × (number of keys extracted)

Calculating the map: m

| The data set must be large enough to accommodate 1 map entry (length = 21
bytes) per table row produced by the LOAD job.

Table 19. Work data set calculation

Work Data Set Size

SYSUT1 � Simple table space:
 max(k,e)

� Partitioned or segmented table space:
 max(k,e,m)

If SORTKEYS is used and an estimate of the number of keys to be
sorted is specified:

max(f,e) for a simple table space
max(f,e,m) for a partitioned or segmented table space.

SORTOUT max(k,e)

If SORTKEYS is used, max(f,e)

SYSERR e

SYSMAP � Simple table space or discard processing:
 m

� Partitioned or segmented table space without discard processing:
 max(m,e)

SYSDISC Same size as input data set

Notes:

 1.

k = key calculation
f = foreign key calculation
m = map calculation
e = error calculation
max() = maximum value of the specified calculations

 Chapter 2-9. LOAD 151

 LOAD

Calculating the error: e

| The data set must be large enough to accommodate 1 error entry (length = 100
bytes) per defect detected by LOAD (for example, conversion errors, unique
index violations, violations of referential constraints).

Calculating the number of possible defects:

� For discard processing, if the discard limit is specified, the number of
possible defects is equal to the discard limit.

If the discard limit is the maximum, the number of possible defects can be
calculated as follows:

number of input records +
(number of unique indexes × number of keys extracted) +
(number of relationships × number of foreign keys extracted)

� For nondiscard processing, the data set is not required.

Allocating twice the space used by the input data sets is usually adequate for the
| sort work data sets. Two or three large SORTWKnn data sets are preferable to

several small ones. For further information, see DFSORT Application Programming:
Guide.

Instructions for specific tasks
The following tasks are described here:

“Loading variable-length data”
“Ordering loaded records” on page 153
“Replacing data with LOAD” on page 153
“Adding more data to a table or partition” on page 155
“Deleting all the data in a table space” on page 155
“Loading partitions” on page 155
“Loading data with referential constraints” on page 156
“Correcting referential constraint violations” on page 157
“Compressing data” on page 158
“Loading data from DL/I” on page 159
“Using inline COPY with LOAD” on page 160
“Improving performance” on page 160
“Improving performance with SORTKEYS” on page 161
“Improving performance with LOAD or REORG PREFORMAT” on page 162

Loading variable-length data
To load variable-length data, put a 2-byte binary length field before each field of
variable-length data. The value in that field depends on the data type of the column
you load the data into. Use:

� The number of single-byte characters if the data type is VARCHAR

� The number of double-byte characters if the data type is VARGRAPHIC

For example, assume you have a variable-length column containing
X'42C142C142C2', which might be interpreted as either six single-byte characters
or three double-byte characters. With the two-byte length field, use:

152 Utility Guide and Reference

 LOAD

� X'0006'X'42C142C142C2' for six single-byte characters in a VARCHAR
column

� X'0003'X'42C142C142C2' for three double-byte characters in a
VARGRAPHIC column

Ordering loaded records
LOAD loads records into a table space in the order in which they appear in the
input stream. It does not sort the input stream, and does not insert records in
sequence with existing records, even if there is a clustering index. To achieve
clustering when loading an empty table or replacing data, sort the input stream.
When adding data to a clustered table, consider reorganizing the table afterwards.

As rows with duplicate key values for unique indexes fail to be loaded, any records
dependent on such rows will either:

� Fail to be loaded because they would cause referential integrity violations (if
you specify ENFORCE CONSTRAINTS)

� Be loaded without regard to referential integrity violations (if you specify
ENFORCE NO).

This might mean violations of referential integrity. Such violations can be detected
by LOAD (without the ENFORCE(NO) option) or by CHECK DATA.

Replacing data with LOAD
You can use LOAD REPLACE to replace data in a single-table table space or in a
multiple-table table space. You can replace all the data in a table space (using the
REPLACE option), or you can load new records into a table space without
destroying the rows already there (using the RESUME option).

| If an object is in REORG pending status, you can perform a LOAD REPLACE of
| the entire table space (which resets REORG pending status). In this situation, no
| other LOAD operations are allowed. See Appendix C, “Resetting an advisory or
| restrictive status” on page 527 for more information.

Using LOAD REPLACE with LOG YES: LOAD REPLACE or PART REPLACE
with LOG YES logs only the reset and not each deleted row. If you need to see
what rows are being deleted, use the SQL DELETE statement.

Replacing one table in a single-table table space: Figure 7 is an example that
replaces one table in a single-table table space:

LOAD DATA

 REPLACE

INTO TABLE DSN861%.DEPT

 (DEPTNO POSITION (1) CHAR(3),

 DEPTNAME POSITION (5) VARCHAR,

 MGRNO POSITION (37) CHAR(6),

 ADMRDEPT POSITION (44) CHAR(3),

 LOCATION POSITION (48) CHAR(16))

 ENFORCE NO

Figure 7. Example of using LOAD to replace one table in a single-table table space

Replacing one table in a multiple-table table space: When using LOAD
REPLACE on a multiple-table table space, you must be careful, because LOAD
works on an entire table space at a time. Thus, to replace all rows in a

 Chapter 2-9. LOAD 153

 LOAD

multiple-table table space, you have to work with one table at a time, using the
RESUME YES option on all but the first table. For example, if you have two tables
in a table space, you need to do the following:

1. Use LOAD REPLACE on the first table. This empties out the table space and
replaces just the data for the first table.

LOAD DATA CONTINUEIF(72:72)='X'

 REPLACE

 INTO DSN861%.TOPTVAL

 (MAJSYS POSITION (2) CHAR(1),

 ACTION POSITION (4) CHAR(1),

 OBJECT POSITION (6) CHAR(2),

 SRCHCRIT POSITION (9) CHAR(2),

 SCRTYPE POSITION (12) CHAR(1),

 HEADTXT POSITION (8%) CHAR(5%),

 SELTXT POSITION (159) CHAR(5%),

 INFOTXT POSITION (238) CHAR(71),

 HELPTXT POSITION (317) CHAR(71),

 PFKTXT POSITION (396) CHAR(71),

 DSPINDEX POSITION (475) CHAR(2))

Figure 8. Example of using LOAD REPLACE on the first table in a table space

2. Use LOAD with RESUME YES on the second table.

LOAD DATA CONTINUEIF(72:72)='X'

 RESUME YES

 INTO DSN861%.TDSPTXT

 (DSPINDEX POSITION (2) CHAR(2),

 LINENO POSITION (6) CHAR(2),

 DSPLINE POSITION (8%) CHAR(79))

Figure 9. Example of using LOAD with RESUME YES on the second table in a table space

This adds the records for the second table without destroying the data in the
first table.

If you need to replace just one table in a multi-table table space, you need to delete
all the rows in the table, then use LOAD with RESUME YES. For example, assume
you want to replace all the data in DSN8610.TDSPTXT without changing any data
in DSN8610.TOPTVAL. To do this:

1. Delete all the rows from DSN8610.TDSPTXT using an SQL DELETE
statement. (The mass delete works most quickly on a segmented table space.)

DELETE FROM DSN861%.TDSPTXT;

2. Use the LOAD job in Figure 10 to replace the rows in that table.

LOAD DATA CONTINUEIF(72:72)='X'

 RESUME YES

 INTO DSN861%.TDSPTXT

 (DSPINDEX POSITION (2) CHAR(2),

 LINENO POSITION (6) CHAR(2),

 DSPLINE POSITION (8%) CHAR(79))

Figure 10. Example of using LOAD with RESUME YES to replace one table in a multi-table
table space

154 Utility Guide and Reference

 LOAD

Adding more data to a table or partition
You may want to add data to a table, rather than replace it. The RESUME keyword
specifies whether data is to be loaded into an empty or a non-empty table space.
RESUME NO loads records into an empty table space. RESUME YES loads
records into a non-empty table space.

If RESUME NO is specified and the target table is not empty, no data is loaded.

If RESUME YES is specified and the target table is empty, data IS loaded.

LOAD always adds rows to the end of the existing rows, but index entries are
placed in key sequence.

Deleting all the data in a table space
Specifying LOAD REPLACE without loading any records is an efficient way of
clearing a table space. To achieve this, the input data set should be specified in the
JCL as DD DUMMY. LOAD REPLACE is efficient because:

1. LOAD REPLACE does not log any rows.

2. LOAD REPLACE redefines the table space.

3. LOAD REPLACE retains all views and privileges associated with a table space
or table.

4. LOG YES can be used to make the LOAD REPLACE recoverable.

LOAD REPLACE will replace ALL TABLES in the table space.

 Loading partitions
If you use the PART clause of the INTO TABLE option, only the specified partitions
of a partitioned table are loaded. If you omit PART, the entire table is loaded.

You can specify the REPLACE and RESUME options separately by partition. The
following example loads data into the first and second partitions of the employee
table. Records with '0' in column 1 replace the contents of partition 1; records with
'1' in column 1 are added to partition 2; all other records are ignored. (The
example, simplified to illustrate the point, does not list field specifications for all
columns of the table.)

Attention: If you are not loading columns in the same order as in the CREATE
TABLE statement, you must code field specifications for each INTO TABLE
statement.

LOAD DATA CONTINUEIF(72:72)='X'

INTO TABLE DSN861%.EMP PART 1 REPLACE WHEN (1) = '%'

 (EMPNO POSITION (1:6) CHAR(6),

FIRSTNME POSITION (7:18) CHAR(12),

...

)

INTO TABLE DSN861%.EMP PART 2 RESUME YES WHEN (1) = '1'

 (EMPNO POSITION (1:6) CHAR(6),

FIRSTNME POSITION (7:18) CHAR(12),

...

)

 Chapter 2-9. LOAD 155

 LOAD

The following example assumes you have your data in separate input data sets.
That data is already sorted by partition, so you do not have to use the WHEN
clause of INTO TABLE. The RESUME YES option placed before the PART option
inhibits concurrent partition processing while the utility is running.

LOAD DATA INDDN EMPLDS1 CONTINUEIF(72:72)='X'

 RESUME YES

INTO TABLE DSN861%.EMP REPLACE PART 1

LOAD DATA INDDN EMPLDS2 CONTINUEIF(72:72)='X'

 RESUME YES

INTO TABLE DSN861%.EMP REPLACE PART 2

The following example allows partitioning independence when loading more than
one partition concurrently.

| LOAD DATA INDDN SYSREC LOG NO

| INTO TABLE DSN861%.EMP PART 2 REPLACE

LOAD INTO PART x is not allowed if an identity column is part of the partitioning
index.

Loading data with referential constraints
If you plan to let DB2 enforce referential integrity in a set of tables, then you should
already have read the section on implications for utility operations in Section 2
(Volume 1) of DB2 Administration Guide.

LOAD does not load a table with an incomplete definition; if the table has a primary
key, then the unique index on that key must exist. If any table named to be loaded
has an incomplete definition, the LOAD job terminates.

By default, LOAD enforces referential constraints. By doing that, it provides you
with several possibilities for error:

� Records to be loaded might have duplicate values of a primary key.

� Records to be loaded might have invalid foreign-key values, which are not
values of the primary key of the corresponding parent table.

� The loaded table might lack primary key values that are values of foreign keys
in dependent tables.

The next few sections describe how DB2 signals each of those errors and the
means it provides for correcting them.

Duplicate values of a primary key: A primary index must be a unique index, and
must exist if the table definition is complete. Therefore, when you load a parent
table, you build at least its primary index. You need an error data set, and probably
also a map data set and a discard data set.

Invalid foreign key values: A dependent table has the constraint that the values of
its foreign keys must be values of the primary keys of corresponding parent tables.
By default, LOAD enforces that constraint in much the same way as it enforces the
uniqueness of key values in a unique index. First, it loads all records to the table;
subsequently, it checks their validity with respect to the constraints, identifies any
invalid record by an error message, and deletes the record. At your choice, the
record can also be copied to a discard data set. Again you need at least an error
data set, and probably also a map data set and a discard data set.

156 Utility Guide and Reference

 LOAD

If a record fails to load because it violates a referential constraint, any of its
dependent records in the same job also fail. For example, suppose that the sample
project table and project activity tables belong to the same table space, that you
load them both in the same job, and that some input record for the project table
has an invalid department number. Then, that record fails to be loaded and does
not appear in the loaded table; the summary report identifies it as causing a
primary error.

But the project table has a primary key, the project number. In this case, the record
rejected by LOAD defines a project number, and any record in the project activity
table that refers to the rejected number is also rejected. The summary report
identifies those as causing secondary errors. If you use a discard data set, both
types of error records are copied to it.

Missing primary key values: The deletion of invalid records does not cascade to
other dependent tables already in place. Suppose now that the project and project
activity tables exist in separate table spaces, and that they are both currently
populated and possess referential integrity. Further, suppose that the data in the
project table is now to be replaced (using LOAD REPLACE) and that the
replacement data for some department was inadvertently not supplied in the input
data. Records referencing that department number might already exist in the project
activity table. LOAD, therefore, automatically places the table space containing the
project activity table (and all table spaces containing dependent tables of any table
being replaced) into CHECK pending status.

The CHECK pending status indicates that the referential integrity of the table space
is in doubt; it might contain records that violate a referential constraint. There are
severe restrictions on the use of a table space in CHECK pending status; typically,
you run the CHECK DATA utility to reset this status. For more information, see
“Resetting the CHECK pending status” on page 175.

Consequences of ENFORCE NO: If you use the ENFORCE NO option, you tell
LOAD not to enforce referential constraints. Sometimes there are good reasons for
doing that (see Section 2 (Volume 1) of DB2 Administration Guide). But the result is
that the loaded table space might violate the constraints. Hence, LOAD places the
loaded table space in CHECK pending status. If you use REPLACE, all table
spaces containing any dependent tables of the tables that were loaded are also
placed in CHECK pending status. You must reset the status of each table before
you can use any of the spaces.

Correcting referential constraint violations
The referential integrity checking in LOAD can only delete incorrect dependent
rows, which were input to LOAD. Deletion is not always the best strategy for
correcting referential integrity violations.

For example, the violations may occur because parent rows do not exist. In this
case, it is better to correct the parent table, not to delete the dependent rows.
Therefore and in this case, ENFORCE NO would be more appropriate than
ENFORCE CONSTRAINTS. After the parent table is corrected, CHECK DATA can
be used to reset the CHECK pending status.

LOAD ENFORCE CONSTRAINTS is not equivalent to CHECK DATA. LOAD
ENFORCE CONSTRAINTS deletes any rows causing referential constraint

| violations. CHECK DATA detects violations and optionally deletes such rows.

 Chapter 2-9. LOAD 157

 LOAD

CHECK DATA checks a complete referential structure, although LOAD checks only
the rows being loaded.

When loading referential structures with ENFORCE CONSTRAINTS, parent tables
should be loaded before dependent tables.

 Compressing data
You can use LOAD with the REPLACE or RESUME NO options to build a
compression dictionary. If your table space, or a partition in a partitioned table
space, is defined with COMPRESS YES, the dictionary is created while records are
loaded. After the dictionary is completely built, the rest of the data is compressed
as it is loaded.

The data is not compressed until the dictionary is built. You must use LOAD
REPLACE or RESUME NO to build the dictionary. To save processing costs, an
initial LOAD does not go back to compress the records used to build the dictionary.

The number of records required to build a dictionary is dependent on the frequency
of patterns in the data. For large data sets, the number of rows required to build the
dictionary is a small percentage of the total number of rows to be compressed. For
the best compression results, it is best to go ahead and build a new dictionary
whenever you load the data.

However, there are circumstances in which you might want to compress data using
an existing dictionary. If you are satisfied with the compression you are getting with
an existing dictionary, you can keep that dictionary by using the
KEEPDICTIONARY option of LOAD REPLACE or REORG. For both LOAD and
REORG, this method also saves you the processing overhead of building the
dictionary.

Consider using KEEPDICTIONARY if the last dictionary was built by REORG;
REORG's sampling method can yield more representative dictionaries than LOAD
and can thus mean better compression. REORG with KEEPDICTIONARY is
efficient because the data is not decompressed in the process.

However, REORG with KEEPDICTIONARY does not generate a compression
report. You need to use RUNSTATS to update the catalog statistics and then
query the catalog columns yourself. See “Chapter 2-16. REORG TABLESPACE” on
page 277 and “Chapter 2-19. RUNSTATS” on page 375 for more information about
using REORG to compress data and about using RUNSTATS to update catalog
information about compression.

Use KEEPDICTIONARY if you want to try to compress all the records during
LOAD, and if you know the data has not changed much in content since the last
dictionary was built. An example of LOAD with the KEEPDICTIONARY option is
shown in Figure 11 on page 159.

158 Utility Guide and Reference

 LOAD

LOAD DATA

 REPLACE KEEPDICTIONARY

INTO TABLE DSN861%.DEPT

 (DEPTNO POSITION (1) CHAR(3),

 DEPTNAME POSITION (5) VARCHAR,

 MGRNO POSITION (37) CHAR(6),

 ADMRDEPT POSITION (44) CHAR(3),

 LOCATION POSITION (48) CHAR(16))

 ENFORCE NO

Figure 11. Example of LOAD with the KEEPDICTIONARY option

You can also specify KEEPDICTIONARY for specific partitions of a partitioned table
space. Each partition has its own dictionary.

Loading data from DL/I
To convert data in IMS DL/I databases from a hierarchic structure to a relational
structure so that it can be loaded into DB2 tables, you can use the DataPropagator
NonRelational (DPropNR) licensed program. DPropNR runs as an MVS application
and can extract data from VSAM and physical sequential access method (SAM)
files as well from DL/I databases.

Using DPropNR, you do not need to extract all the data in a database or data set.
You use a statement such as an SQL subselect to tell which fields to extract and
which conditions, if any, the source records or segments must meet.

With JCL models you edit, you can have DPropNR produce the statements for a
DB2 LOAD utility job. If you have more than one DB2 system, you can name the
one to receive the output. DPropNR can generate LOAD control statements in the
job to relate fields in the extracted data to target columns in DB2 tables.

You can choose whether DPropNR writes the extracted data as either:

� 80-byte records included in the generated job stream

� A separate physical sequential data set, (which can be dynamically allocated by
DPropNR) with a logical record length long enough to accommodate any row of
the extracted data.

In the first case, the LOAD control statements generated by DPropNR include the
CONTINUEIF option to describe the extracted data to DB2 LOAD.

In the second case, you can have DPropNR name the data set containing the
extracted data in the SYSREC DD statement in the LOAD job. (In that case,
DPropNR makes no provision for transmitting the extracted data across a network.)

Normally, you do not have to edit the job statements produced by DPropNR.
However, in some cases you might have to edit; for example, if you want to load
character data into a DB2 column with INTEGER data type. (DB2 LOAD does not
consider CHAR and INTEGER data compatible.)

DPropNR is a versatile tool that contains more control, formatting, and output
options than are described here. For more information about them, see
DataPropagator NonRelational MVS/ESA Administration Guide.

 Chapter 2-9. LOAD 159

 LOAD

Using inline COPY with LOAD
You can create a full image copy data set (SHRLEVEL REFERENCE) during LOAD
execution. The new copy is an inline copy. The advantage to using inline copy is
that the table space is not left in COPY pending status regardless of which LOG
option was specified for the utility. Thus, data availability is increased.

To create an inline copy, use the COPYDDN and RECOVERYDDN keywords. You
can specify up to two primary and two secondary copies. Inline copies are
produced during the RELOAD phase of LOAD processing.

The SYSCOPY record produced by an inline copy contains ICTYPE=F,
SHRLEVEL=R. The STYPE column contains an R if the image copy was produced
by LOAD REPLACE LOG(YES), and an S if the image copy was produced by
LOAD REPLACE LOG(NO). The data set produced by the inline copy is logically

| equivalent to a full image copy with SHRLEVEL REFERENCE, but the data within
the data set differs in some respects:

� Data pages might be out of sequence and some might be repeated. If pages
are repeated, the last one is always the correct copy.

� Space map pages will be out of sequence and might be repeated

� If the compression dictionary is rebuilt with LOAD, the set of dictionary pages
will occur twice in the data set, with the second set being the correct one.

The total number of duplicate pages will be small, with a negligible effect on the
space required for the data set.

You must specify LOAD REPLACE. If you specify RESUME YES or RESUME NO
but not REPLACE, an error message is issued and LOAD terminates.

 Improving performance
To improve LOAD utility performance, you can:

� Use one LOAD DATA statement when loading multiple tables in the same table
space. Follow the LOAD statement with multiple INTO TABLE WHEN
statements.

� Run LOAD concurrently against separate partitions of a partitioned table space.

| � Preprocess the input data. For more information about preprocessing input
| data, see “Before running LOAD” on page 149.

� Load numeric data in its internal representation.

� Avoid data conversion, such as integer to decimal or decimal to floating-point.

| � When you specify LOAD REPLACE, specify LOG NO with COPYDDN or
| RECOVERYDDN to create an inline copy.

� Sort the data in cluster order to avoid having to reorganize it after loading.

� Skip the sort phase of LOAD. The sort phase will be skipped when your input
data meets all of the following conditions:

– There is no more than one key per table.

– All keys are of the same type (for example, all index keys, all indexed
foreign keys, all nonindexed foreign keys, and so on).

– The data being loaded is in key order.

160 Utility Guide and Reference

 LOAD

– The data being loaded is grouped by table and each input record must be
loaded into one table only.

� If you cannot skip the sort phase because one or more of the conditions stated
in the previous bullet are not met, use the SORTKEYS keyword to improve the
efficiency of the sort.

� If you are using 3990 caching, and you have the nonpartitioning indexes on
RAMAC, consider specifying YES on the UTILITY CACHE OPTION field of
installation panel DSNTIPE. This allows DB2 to use sequential prestaging when
reading data from RAMAC for the following utilities:

– LOAD PART integer RESUME

– REORG TABLESPACE PART

For these utilities, prefetch reads remain in the cache longer, thus possibly
improving performance of subsequent writes.

The optimum order for presenting data to LOAD is as follows:

� If you are loading a single table that has, at most, one foreign key or one index
key, sort the data in key sequence. (An index over a foreign key is allowed.) If
it's an index key, sort the data in either ascending or descending order,
depending on how the index was defined. If it's a foreign key, sort the data in
ascending order. Null key values are treated as “high” values.

� If you are loading more than one table, choose one of the following methods:

– Load each table separately. Using this method you can follow the rules
listed above for loading single tables.

– Use the WHEN clause under each INTO TABLE option on your LOAD
statement to group your input data by table.

Within each table, sort the data in key sequence.

Improving performance with SORTKEYS
Use the SORTKEYS keyword to improve performance of the index key sort.

Advantages of using SORTKEYS: If you use SORTKEYS, index keys are passed
to sort in memory rather than written to work files. Avoiding this I/O to the work files
improves LOAD performance.

You also reduce DASD space requirements for the SYSUT1 and SORTOUT data
sets, especially if you provide an estimate of the number of keys to sort.

Using the SORTKEYS option reduces the elapsed time from the start of the reload
phase to the end of the build phase.

However, if the index keys are already in sorted order, or there are no indexes,
SORTKEYS does not provide any advantage.

| You can reduce the elapsed time of a LOAD job for a table space or partition with
| more than one index defined by specifying the parameters to invoke a parallel
| index build. For more information, see “Building indexes in parallel for LOAD” on
| page 165.

Estimating the number of keys: You can specify an estimate of the number of
keys for the job to sort. If the estimate is omitted or specified as 0, LOAD writes the

 Chapter 2-9. LOAD 161

 LOAD

extracted keys to the work data set, which reduces the performance improvement
of using SORTKEYS.

To estimate the number of keys to sort:

1. Count 1 for each index

2. Count 1 for each foreign key where foreign key and index definitions are not
identical

3. For each foreign key where foreign key and index definitions are identical:

a. Count 0 for the first relationship in which the foreign key participates

b. Count 1 for subsequent relationships in which the foreign key participates
(if any).

4. Multiply the count by the number of rows to be loaded

If more than one table is being loaded, repeat the steps above for each table and
sum the results.

Sort data sets: If you specify the SORTKEYS keyword and omit or specify as 0 an
estimate of the number of keys to be sorted, utility processing requires the sort
input data set (SYSUT1) and the sort output data set (SORTOUT). See page 150
for instructions on calculating the size of those data sets.

| Improving performance with LOAD or REORG PREFORMAT
When DB2's preformatting delays impact the performance or execution time
consistency of high INSERT applications and the table size can be predicted for a

| business processing cycle, LOAD PREFORMAT or REORG PREFORMAT might
be a technique to consider. This technique will only be of value if DB2's
preformatting causes a measurable delay with the INSERT processing or causes
inconsistent elapsed times for INSERT applications. It is recommended that a

| performance assessment be conducted before and after LOAD or REORG
PREFORMAT is used to quantify its value in your environment.

Considerations for using PREFORMAT: PREFORMAT is a technique used to
eliminate DB2 having to preformat new pages in a table space during execution
time. This might eliminate execution time delays but adds the preformatting cost as

| setup prior to the application's execution. LOAD or REORG PREFORMAT primes
a new table space and prepares it for INSERT processing. When the preformatted
space is utilized and DB2 has to extend the table space, normal data set extending
and preformatting occurs.

Preformatting for INSERT processing may be desirable for high INSERT tables that
will receive a predictable amount of data allowing all the required space to be
pre-allocated prior to the application's execution. This would be the case for a table

| that acts as a repository for work items coming into a system that are subsequently
used to feed a backend task that processes the work items.

Preformatting of a table space containing a table used for query processing may
cause table space scans to read additional empty pages, extending the elapsed

| time for these queries. LOAD or REORG PREFORMAT is not recommended for
tables that have a high ratio of reads to inserts if the reads result in table space
scans.

162 Utility Guide and Reference

 LOAD

Preformatting boundaries: You can manage your own data sets or have DB2
manage the data sets. For user-managed data sets, DB2 will not delete and
reallocate them during utility processing. The size of the data set will not shrink
back to the original data set allocation size but will either remain the same or
increase in size if additional space or data is added. This has implications when

| LOAD or REORG PREFORMAT is used because preformatting causes all free
pages between the high-used RBA (or page) to the high-allocated RBA to be
preformatted. This includes secondary extents that may have been allocated.

For DB2 managed data sets, DB2 will delete and reallocate them if you specify
REPLACE on the LOAD or REORG job. This will result in the data sets being
re-sized to their original allocation size. They will remain that size if the data being
reloaded does not fill the primary allocation and force a secondary allocation. This

| means the LOAD or REORG PREFORMAT option with DB2 managed data sets
will at minimum cause the full primary allocation amount of a data set to be
preformatted following the reload of data into the table space.

For both user-managed and DB2 managed data sets, if the data set goes into
secondary extents during the utility processing, the high-allocated RBA becomes
the end of the secondary extent and that becomes the high value for preformatting.

| Preformatting performance considerations: LOAD or REORG PREFORMAT can
eliminate dynamic preformatting delays when inserting into a new table space. The
cost of this execution time improvement is an increase in the LOAD or REORG
time due to the additional processing required to preformat all pages between the
data loaded or reorganized and the high-allocated RBA. The additional LOAD or
REORG time required depends on the amount of DASD space being preformatted.

Table space scans can also be elongated because empty preformatted pages will
| be read. It is best to use the LOAD or REORG PREFORMAT option for table

spaces that start out empty and are filled through high insert activity before any
query access is performed against the table space. Mixing inserts and non-indexed
queries against a preformatted table space may impact the query performance
without providing a compensating improvement in the insert performance. Best
results may be seen where there is a high ratio of inserts to read operations.

Considerations for running LOAD
This section describes additional points to keep in mind when running LOAD.

| Be aware that running the LOAD utility on a table space does not activate triggers
| defined on tables in the table space.

Converting input data
| The LOAD utility converts data between compatible data types.2

Tables 20, 21, 22, and 23 identify the allowable data conversions and the defaults
used when you do not specify the input data type in a field specification of the
INTO TABLE statement.

| 2 The source type is used for user-defined distinct types.

 Chapter 2-9. LOAD 163

 LOAD

| Input fields with data types CHAR, CHAR MIXED, CLOB, DBCLOB, VARCHAR,
VARCHAR MIXED, GRAPHIC, GRAPHIC EXTERNAL, and VARGRAPHIC are
converted from the CCSIDs of the input file to the CCSIDs of the table space in the
following cases:

� The ASCII option is specified (the input data is in ASCII) and the table space is
EBCDIC.

Table 20. Numeric data conversion

Input Data
Types

Output Data Types

SMALLINT INTEGER DECIMAL FLOAT

SMALLINT Default Allowed Allowed Allowed

INTEGER Allowed Default Allowed Allowed

DECIMAL Allowed Allowed Default Allowed

FLOAT Allowed Allowed Allowed Default

| Table 21. Character data conversion

| Input Data
| Types
| Output Data Types

| BLOB| CHAR| CLOB| VARCHAR| LONG
| VARCHAR

| CHAR| Allowed| Default| Allowed| Allowed| Allowed

| CHAR
| MIXED
| Allowed| Allowed

| VARCHAR| Allowed| Allowed| Allowed| Default| Default

Table 22. Time data conversion

Input Data Types Output Data Types

DATE TIME TIMESTAMP

DATE EXTERNAL Default

TIME EXTERNAL Default

TIMESTAMP
EXTERNAL

Allowed Allowed Default

| Table 23. Graphic data conversion

| Input Data
| Types
| Output Data Types

| DBCLOB| GRAPHIC| VARGRAPHIC| LONG
| VARGRAPHIC

| GRAPHIC| Allowed| Default| Allowed| Allowed

| VARGRAPHIC| Allowed| Allowed| Default| Default

164 Utility Guide and Reference

 LOAD

� The EBCDIC option is specified or defaulted (the input data is in EBCDIC) and
the table space is ASCII.

� The CCSID option is specified and the CCSIDs of the input data are not the
same as the CCSIDs of the table space.

| CLOB, BLOB, and DBCLOB input field types cannot be converted to any other field
| type.

Conversion errors cause LOAD:

� To abend, if there is no DISCARDS processing

� To map the input record for subsequent discarding and continue (if there is
DISCARDS processing)

Truncation of the decimal part of numeric data is not considered a conversion error.

Specifying input fields
When specifying input fields, consider:

� Specify the length of VARCHAR, BLOB, CLOB, DBCLOB, and ROWID data in
the input file.

� Explicitly define all input field specifications.

� Use DECIMAL EXTERNAL(length,scale) in full, or

� Specify decimal points explicitly in the input file.

Building indexes while loading data
LOAD builds all the indexes defined for any table being loaded. At the same time, it
checks for duplicate values of any unique index key. If there are any duplicate
values, none of the corresponding rows is loaded. Error messages identify the input
records that produce duplicates; and, optionally, the records are copied to a discard
data set. At the end of the job, a summary report lists all errors found.

For unique indexes, any two null values are taken to be equal, unless the index
was created with the UNIQUE WHERE NOT NULL clause. In that case, if the key
is a single column, it can contain any number of null values, though its other values
must be unique.

Neither the loaded table nor its indexes contain any of the records that might have
produced an error. Using the error messages, you can identify faulty input records,
correct them, and load them again. If you use a discard data set, you can correct
the records there and add them to the table with LOAD RESUME.

| Building indexes in parallel for LOAD
| Use parallel index build to reduce the elapsed time for a LOAD job by sorting the
| index keys and rebuilding multiple indexes in parallel, rather than sequentially.
| Optimally, a pair of subtasks process each index; one subtask sorts extracted keys
| while the other subtask builds the index. LOAD begins building each index as soon
| as the corresponding sort emits its first sorted record. For more information about
| improving index key sort performance, see “Improving performance with
| SORTKEYS” on page 161.

| LOAD uses parallel index build if all of the following conditions are true:

 Chapter 2-9. LOAD 165

 LOAD

| � There is more than one index to be built.
| � The LOAD job specifies the SORTKEYS keyword, along with a non-zero
| estimate of the number of keys, in the utility statement.
| � You either allow the utility to dynamically allocate the data sets needed by
| SORT, or provide the necessary data sets yourself.

| For a diagram of parallel index build processing, see Figure 18 on page 321.

| Select one of the following methods to allocate sort work and message data sets:

| Method 1: LOAD determines the optimal number of sort work and message data
| sets.

| 1. Specify the SORTKEYS and SORTDEVT keywords in the utility statement.

| 2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn
| DD statements in the LOAD utility JCL.

| 3. Allocate UTPRINT to SYSOUT.

| Method 2: Allows you to control allocation of sort work data sets, while LOAD
| allocates message data sets.

| 1. Specify the SORTKEYS keyword in the utility statement.

| 2. Provide DD statements with DDNAMEs in the form SWnnWKmm.

| 3. Allocate UTPRINT to SYSOUT.

| Method 3: Allows the most control over rebuild processing; you must specify both
| sort work and message data sets.

| 1. Specify the SORTKEYS keyword in the utility statement.

| 2. Provide DD statements with DDNAMEs in the form SWnnWKmm.

| 3. Provide DD statements with DDNAMEs in the form UTPRINnn.

| Data sets used: If you select Method 2 or 3 above, use the information provided
| here along with “Determining the number of sort subtasks” on page 167, “Allocation
| of sort subtasks” on page 167, and “Estimating the sort work file size” on page 167
| to define the necessary data sets.

| Each sort subtask must have its own group of sort work data sets and its own print
| message data set. Possible reasons to allocate data sets in the utility job JCL
| rather than using dynamic allocation are:

| � To control the size and placement of the data sets.
| � To minimize device contention.
| � To optimally utilize DASD free space.
| � To limit the number of utility subtasks used to build indexes.

| The DDNAMEs SWnnWKmm define the sort work data sets used during utility
| processing. nn identifies the subtask pair, while mm identifies one or more data
| sets to be used by that subtask pair. For example:

| SW01WK01 The first sort work data set used by the subtask building the first
| index.

| SW01WK02 The second sort work data set used by the subtask building the
| first index.

166 Utility Guide and Reference

 LOAD

| SW02WK01 The first sort work data set used by the subtask building the
| second index.

| SW02WK02 The second sort work data set used by the subtask building the
| second index.

| The DDNAMEs UTPRINnn define the sort work message data sets used by the
| utility subtask pairs. nn identifies the subtask pair.

| Determining the number of sort subtasks: The maximum number of utility
| subtask pairs started for parallel index build is equal to the number of indexes to be
| built.

| LOAD determines the number of subtask pairs according to the following
| guidelines:

| � The number of subtask pairs equals the number of sort work data set groups
| allocated.

| � The number of subtask pairs equals the number of message data sets
| allocated.

| � If you allocate both sort work and message data set groups, the number of
| subtask pairs equals the smallest number of data sets allocated.

| Allocation of sort subtasks: LOAD attempts to assign one sort subtask pair for
| each index to be built. If LOAD cannot start enough subtasks to build one index per
| subtask pair, it allocates any excess indexes across the pairs (in the order that the
| indexes were created), so one or more subtask pairs might build more than one
| index.

| During parallel index build processing, LOAD assigns all foreign keys to the first
| utility subtask pair. Remaining indexes are then distributed among the remaining
| subtask pairs according to the creation date of the index. If a table space does not
| participate in any relationships, LOAD distributes all indexes among the subtask
| pairs according to the index creation date, assigning the first created index to the
| first subtask pair.

| Refer to Table 24 for conceptual information about subtask pairing when the
| number of indexes (seven indexes) exceed the available number of subtask pairs
| (five subtask pairs).

| Estimating the sort work file size: If you choose to provide the data sets, you
| will need to know the size and number of keys present in all of the indexes being
| processed by the subtask in order to calculate each sort work file size. After you've

| Table 24. LOAD subtask pairing for a relational table space

| Subtask Pair| Index Assigned

| SW01WKmm| Foreign keys, Fifth created index

| SW02WKmm| First created index, Sixth created index

| SW03WKmm| Second created index, Seventh created
| index

| SW04WKmm| Third created index

| SW05WKmm| Fourth created index

 Chapter 2-9. LOAD 167

 LOAD

| determined which indexes are assigned to which subtask pairs, use the following
| formula to calculate the space required:

| 2 × (longest index key + 14) × (number of keys extracted)

| longest key The length of the longest key that will be processed by the
| subtask. For the first subtask pair for LOAD, compare the length
| of the longest key and the longest foreign key, and use the
| largest value.

| number of keys The number of keys from all indexes to be sorted that will be
| processed by the subtask.

Leaving free space
When loading into a nonsegmented table space, LOAD leaves one free page after
reaching the FREEPAGE limit, regardless of whether the records loaded belong to
the same or different tables.

When loading into a segmented table space, LOAD leaves free pages, and free
space on each page, in accordance with the current values of the FREEPAGE and
PCTFREE parameters. (Those values can be set by the CREATE TABLESPACE,
ALTER TABLESPACE, CREATE INDEX, or ALTER INDEX statements.) LOAD
leaves one free page after reaching the FREEPAGE limit for each table in the table
space.

Loading with RECOVER pending or REBUILD pending status
| You cannot load records specifying RESUME YES if any partition of a table space

is in the RECOVER pending status. In addition, you cannot load records if any
| index on the table being loaded is in the REBUILD pending status. for information

about resetting the RECOVER pending status. See “Resetting the REBUILD
pending status” on page 218 for information about resetting the REBUILD pending
status.

If you are replacing a partition, these restrictions are relaxed; the partition being
replaced can be in the RECOVER pending status, and its corresponding index

| partition can be in the REBUILD pending status. However, all nonpartitioning
| indexes must not be in the page set REBUILD pending status. See Appendix C,
| “Resetting an advisory or restrictive status” on page 527 for more information about
| resetting a restrictive status.

| There is one RECOVER pending restrictive status:

RECP The table space or partition is in the RECOVER pending status. If a single
logical partition is in RECP, the partition is treated as RECP for SQL
access. A single logical partition in RECP does not restrict utility access
to other logical partitions not in RECP. RECP is reset by recovering only
the single logical partition.

| There are three REBUILD pending restrictive states:

| RBDP REBUILD pending status (RBDP) is set on a physical or logical index
| partition. The individual physical or logical partition is inaccessible and
| must be rebuilt using the REBUILD INDEX utility, or recovered using the
| RECOVER utility.

168 Utility Guide and Reference

 LOAD

| PSRBD Page set REBUILD pending (PSRBD) is set for nonpartitioning indexes.
| The entire index space is inaccessible and must be rebuilt using the
| REBUILD utility, or recovered using the RECOVER utility.
| RBDP* RBDP* (REBUILD pending star) status is set only on logical partitions of
| nonpartitioning indexes. The entire index is inaccessible, but is made
| available again when the affected partitions are rebuilt using the REBUILD
| INDEX utility, or recovered using the RECOVER utility.

See Table 93 on page 531 for information about resetting the RECOVER pending
| status, and Table 92 on page 530 for information about resetting the REBUILD
| pending status.

Using exit procedures
Any field procedure associated with a column of a table being loaded is executed to
encode the data before it is loaded. The field procedures for all columns are
executed before any edit or validation procedure for the row.

Any field specification that describes the data is checked before a field procedure is
executed. That is, the field specification must describe the data as it appears in the
input record.

| Loading columns defined as ROWID
| Columns defined as ROWID can be designated as input fields using the LOAD field
| specification syntax diagram. LOAD PART is not allowed if the ROWID column is
| part of the partitioning key. In this situation, DB2 issues error message DSNU256I.

| Columns defined as ROWID can be designated as GENERATED BY DEFAULT or
| GENERATED ALWAYS. With GENERATED ALWAYS, DB2 always generates a
| Row ID.

| ROWID generated by default: Columns defined as ROWID GENERATED BY
| DEFAULT can be set by the LOAD utility from input data. The input field must be
| specified as a ROWID. No conversions are allowed. The input data for a ROWID
| column must be a unique, valid value for a row ID. If the value of the row is not
| unique, a duplicate key violation will occur. If such an error occurs, the load will fail.
| In this case, you need to discard the duplicate value and retry the load with a new
| unique value, or allow DB2 to generate the value of the row ID.

| You can use the DEFAULTIF attribute with the ROWID keyword. If the condition is
| met, the column will be loaded with a value generated by DB2. You cannot use the
| NULLIF attribute with the ROWID keyword, because row ID columns cannot be
| null.

| ROWID generated always: A ROWID column that is defined as GENERATED
| ALWAYS cannot be included in the field specification list, because DB2 generates
| the row ID value for you.

| Loading a LOB column
| LOB columns are treated by the LOAD utility as varying-length data. The length
| value for a LOB column must be 4 bytes. When the input record is greater than
| 32KB, you might have to load the LOB data separately. See sample job
| DSN8DLPL in SDSNSAMP for an example.

 Chapter 2-9. LOAD 169

 LOAD

| Using LOAD LOG on a LOB table space
| A LOB table space that was defined with LOG YES or LOG NO will affect logging
| while loading a LOB column. Table 25 shows the logging output and LOB table
| space effect, if any.

| Table 25. LOAD LOG and REORG LOG impact for a LOB table space

| LOAD LOG/
| REORG LOG
| keyword

| LOB table space
| LOG attribute
| What is logged| LOB table space
| status after
| utility completes

| LOG YES| LOG YES| Control information and LOB data| No pending status

| LOG YES| LOG NO| Control information| No pending status

| LOG NO| LOG YES| Nothing| COPY Pending

| LOG NO| LOG NO| Nothing| COPY Pending

| Inline statistics collection for discarded rows
| If you specify the DISCARDDN and STATISTICS options and a row is found with
| check constraint errors or conversion errors, the row is not loaded into the table
| and DB2 does not collect inline statistics on it. However, LOAD utility processing
| collects inline statistics prior to discarding rows as a result of unique index
| violations or referential integrity violations. In these cases, if the number of
| discarded rows is large enough to make the statistics significantly inaccurate, run
| the RUNSTATS utility separately on the table to gather the most accurate statistics.

| Inline COPY for a base table space
| If you take an inline image copy of a table with LOB columns, DB2 makes a copy
| of the base table space, but does not copy the LOB table spaces.

Terminating or restarting LOAD
For instructions on restarting a utility job, see “Restarting an online utility” on
page 48.

Terminating LOAD: If you terminate LOAD using the TERM UTILITY command
during the reload phase, the records are not erased. The table space remains in

| RECOVER pending status, and indexes remain in the REBUILD pending status.

If you terminate LOAD using the TERM UTILITY command during the sort or build
| phases, then the indexes not yet built remain in the REBUILD pending status.

If you use the SORTKEYS option and the LOAD job terminates during the
| RELOAD, SORT, BUILD, or SORTBLD phases, then both RESTART and
| RESTART(PHASE) restart from the beginning of the RELOAD phase. However,
| restart of LOAD RESUME YES or LOAD PART RESUME YES in the BUILD or
| SORTBLD phase will result in message DSNU257I.

170 Utility Guide and Reference

 LOAD

Restarting LOAD: Table 27 on page 172 provides information about restarting
LOAD, depending on the phase LOAD was in when the job stopped.

� If you restart LOAD during the UTILINIT phase, it re-executes from the
beginning of the phase.

� If LOAD abends or system failure occurs while it is in the UTILTERM phase,
you must restart with RESTART(PHASE).

| � If you restart a LOAD job for a table with LOB columns that specified the
| RESUME YES option, you must use RESTART CURRENT.

| � If you use RESTART PHASE to restart a LOAD job which specified RESUME
| NO, the LOB table spaces and indexes on auxiliary tables will be reset.

| � If you restart a LOAD job which uses the STATISTICS keyword, inline statistics
| collection will not occur. To update catalog statistics, run the RUNSTATS utility
| after the restarted LOAD job completes.

In this table, the TYPE column distinguishes between the effects of specifying
RESTART or RESTART(PHASE).

Table 26. LOAD phases and pending statuses

Phase Effect on Pending Status

Reload Places table space in RECOVER pending status, then resets the status.
| Places indexes in REBUILD pending status.

Places table space in COPY pending status.
Places table space in CHECK pending status.
Resets COPY pending at end of phase if an inline copy is produced
unless SORTKEYS is also specified.

Build| Resets REBUILD pending status for nonunique indexes.
Resets COPY pending status at end of phase if an inline copy is
produced and SORTKEYS is also specified.

Indexval| Resets REBUILD pending status for unique indexes.

Enforce Resets CHECK pending status for table space.

 Chapter 2-9. LOAD 171

 LOAD

You can restart LOAD at its last commit point or at the beginning of the phase
during which operation ceased. LOAD output messages identify the completed
phases; use the DISPLAY command to identify the specific phase during which
operation stopped.

Table 27. LOAD restart information

Phase Type Data Sets Required Notes

RELOAD CURRENT

PHASE

SYSREC and SYSUT1
SYSMAP and SYSERR
SYSREC

2,3
7

SORT CURRENT
PHASE

SYSUT1
SYSUT1

1

BUILD CURRENT
PHASE

SORTOUT
SORTOUT

1,5
5

SORTBLD| CURRENT
| PHASE

SYSUT1 and SORTOUT
SYSUT1 and SORTOUT

5,9
5,9

INDEXVAL CURRENT
PHASE

SYSERR or SYSUT1
SYSERR or SYSUT1

3
3

ENFORCE CURRENT
PHASE

SORTOUT and SYSUT1
SORTOUT and SYSUT1

4
4

DISCARD CURRENT

PHASE

SYSMAP and SYSERR
SORTOUT and SYSUT1
SYSMAP and SYSERR
SORTOUT and SYSUT1

4
8
4
8

REPORT CURRENT

PHASE

SYSERR or SORTOUT
SYSMAP and SYSERR
SYSERR or SORTOUT
SYSMAP and SYSERR

4
6
4
6

Note:

1. The utility can be restarted with either RESTART or RESTART(PHASE).
However, because this phase does not take checkpoints, RESTART is always
re-executed from the beginning of the phase.

2. SYSMAP and SYSERR data sets may not be required for all load jobs. See
“Chapter 2-9. LOAD” on page 121 for exact requirements.

3. If the SYSERR data set is not required and has not been provided, LOAD uses
SYSUT1 as a work data set to contain error information.

4. This utility can be restarted with either RESTART or RESTART(PHASE).
However, the utility can be re-executed from the last internal checkpoint. This is
dependent on the data sets used and whether any input data sets have been
rewritten.

| 5. LOAD RESUME YES cannot be restarted in the BUILD or SORTBLD phase.
6. If report is required and this is a load without discard processing, SYSMAP is

required to complete the report phase.
7. You must not restart during RELOAD phase if you specified SYSREC DD *. This

prevents internal commits from being taken, and RESTART performs like
RESTART(PHASE), except with no data back-out. Also, you must not restart if
your SYSREC input consists of multiple, concatenated data sets.

8. The SYSUT1 data set is required if the target table space is segmented or
partitioned.

| 9. If you specified SORTKEYS, then use RESTART or RESTART(PHASE) to restart
| at the beginning of the RELOAD phase.

172 Utility Guide and Reference

 LOAD

Restarting after an out of space condition
See “Restarting after the output data set is full” on page 49 for guidance in
restarting LOAD from the last commit point after receiving an out of space
condition.

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

For nonpartitioning indexes, LOAD PART:

� Drains only the logical partition
| � Does not set the page set REBUILD pending status (PSRBD)

� Does not respect PCTFREE or FREEPAGE attributes when inserting keys

Claims and drains

Table 28 shows which claim classes LOAD drains and the restrictive states the
utility sets.

Compatibility

The following utilities are compatible with LOAD and can run concurrently on the
same target object. The target object can be a table space, an index space, or a
partition of a table space or index space.

 � DIAGNOSE
 � REPORT

Table 28. Claim classes of LOAD operations. Use of claims and drains; restrictive states
set on the target object.

Target LOAD LOAD PART

Table space, index,
or physical partition of
a table space or index

DA/UTUT DA/UTUT

Nonpartitioning
index

DA/UTUT DR

Index logical partition DA/UTUT

Primary index
(with ENFORCE option only)

DW/UTRO DW/UTRO

RI dependents CHKP (NO) CHKP (NO)

Legend:

� CHKP (NO): Concurrently running applications will not see CHECK PENDING
after commit

� DA: Drain all claim classes, no concurrent SQL access
� DR: Drain the repeatable read class, no concurrent access for SQL repeatable

readers
� DW: Drain the write claim class, concurrent access for SQL readers
� UTUT: Utility restrictive state, exclusive control
� UTRO: Utility restrictive state, read only access allowed
� Blank: Object is not affected by this utility

 Chapter 2-9. LOAD 173

 LOAD

 � STOSPACE

SQL operations and other online utilities on the same target partition are
incompatible.

After running LOAD
The following tasks are described here:

“Copying the loaded table space or partition”
“Resetting the COPY pending status”
“Resetting the REBUILD pending status” on page 175
“Resetting the CHECK pending status” on page 175
“Recovering a failed LOAD job” on page 178

“Reorganizing an auxiliary index after LOAD” on page 178

Copying the loaded table space or partition
If you have used LOG YES, consider taking a full image copy of the loaded table
space or partition to reduce the processing time of subsequent recovery operations.
If you also specified RESUME NO or REPLACE, indicating that this is the first load
into the table space, we recommend that you take two or more full image copies to
enable recovery. Alternatively, we recommend that you take primary and backup

| inline copies when you do a LOAD REPLACE; full table space or partition image
| copies taken after the LOAD completes are not necessary. However, you might
| need to take images copies of indexes.

| Use either the STATISTICS option to collect inline statistics, or the RUNSTATS
utility so that the DB2 catalog statistics take into account the newly loaded data,
and DB2 can select SQL paths with accurate information. Following this, rebind any
application plans that depend on the loaded tables to update the path selection of
any embedded SQL statements.

Resetting the COPY pending status
If you load with LOG NO and do not take an inline copy, LOAD places a table
space in the COPY pending status. Immediately after that operation, DB2 cannot
recover the table space (though you can, by loading it again). Prepare for recovery,
and turn off the restriction, by making a full image copy using SHRLEVEL
REFERENCE. (If you end the copy job before it is finished, the table space is still
in COPY pending status.)

You can also remove the restriction by one of these operations:

� LOAD REPLACE LOG YES
� LOAD REPLACE LOG NO with an inline copy
� REORG LOG YES
� REORG LOG NO with an inline copy
� REPAIR SET with NOCOPYPEND

If you use LOG YES and do not make an image copy of the table space,
subsequent recovery operations are possible but will take longer than if you had
made an image copy.

A table space in COPY pending status can be read without restriction; however, it
cannot be updated.

174 Utility Guide and Reference

 LOAD

| Resetting the REBUILD pending status
| LOAD places all the index spaces for a table space in the REBUILD pending status

if you end the job (using -TERM UTILITY) before it completes the INDEXVAL
phase. It places the table space itself in RECOVER pending if you end the job
before it completes the RELOAD phase.

Resetting the RECOVER pending status depends on when the utility terminated:

| � If the data is intact (running the -DISPLAY DATABASE command shows
| indexes are in REBUILD pending status but the table space is not in
| RECOVER pending status), you can recover the indexes using RECOVER

INDEX, if you have a full image copy of the affected indexes. If you do not
| have an image copy available, you must rebuild the entire index using the
| REBUILD INDEX utility. However, for partitioning indexes and for
| nonpartitioning indexes in REBUILD pending (RBDP), you can use the PART

option of REBUILD INDEX to rebuild separate partitions of the index.

| � If the data is not intact (running the -DISPLAY DATABASE command shows
the table space is in RECOVER pending status), you can either load the table
again or recover it to a prior point of consistency. The recovery puts the table
space into COPY pending status, and places all indexes in REBUILD pending
status.

Resetting the CHECK pending status
LOAD places a table space in the CHECK pending status if its referential integrity
is in doubt or its check constraints are violated. The intent of the restriction is to
encourage the use of the CHECK DATA utility. That utility locates invalid data and,
optionally, removes it. If it removes the invalid data, the data remaining satisfies all
check and referential constraints and the CHECK pending restriction is lifted.

Though CHECK DATA is usually preferred, the CHECK pending status can also be
reset by any of the following operations:

� Dropping tables that contain invalid rows
� Replacing the data in the table space, using LOAD REPLACE and enforcing

check and referential constraints
� Recovering all members of the table space set to a prior quiesce point
� REPAIR SET with NOCHECKPEND

In the next sections, we illustrate the use of CHECK DATA after two likely LOAD
jobs.

Running CHECK DATA after LOAD REPLACE: Suppose you choose to replace
the contents of the project table using LOAD REPLACE. While doing that, you let
LOAD enforce its referential and table check constraints, so that the project table
contains only valid records at the end of the job; it is not in the CHECK pending
status. However, its dependent, the project activity table, is placed in CHECK
pending status— some of its rows might have project numbers that are no longer
present in the project table. (If the project table had any other dependents, they
also would be in CHECK pending status.)

You want to run CHECK DATA against the table space containing the project
activity table to reset the status. First, give particular care to the options described
below. Then, when you run the utility, make sure that all table spaces are available

 Chapter 2-9. LOAD 175

 LOAD

that contain either parent tables or dependent tables of any table in the table
spaces being checked.

 DELETE YES
This option deletes invalid records and resets the status, but it is not the default.
Use DELETE NO, the default, to find out quickly how large your problem is; you
can choose to correct it by reloading, rather than correcting the current situation.

 Exception tables
With DELETE YES, you do not use a discard data set to receive copies of the
invalid records; instead, you use another DB2 table called an exception table. At
this point, we assume that you already have an exception table available for every
table subject to referential or table check constraints. (For instructions on creating
them, see page 60.)

If you use DELETE YES, you must name an exception table for every descendent
of every table in every table space being checked. Deletes caused by CHECK
DATA are not subject to any of the SQL delete rules; they cascade without restraint
to the farthest descendent.

If table Y is the exception table for table X, name it with this clause in the CHECK
DATA statement:

FOR EXCEPTION IN X USE Y

Error and sort data sets
The options ERRDDN, WORKDDN, SORTDEVT, and SORTNUM function in
CHECK DATA just as they do in LOAD. That is, you need an error data set, and
you can name work data sets for Sort/Merge or let DB2 allocate them dynamically.

The following example runs CHECK DATA against the table space containing the
project activity table. It assumes the existence of exception tables named
DSN8610.EPROJACT and DSN8610.EEPA.

CHECK DATA TABLESPACE DSN8D61A.PROJACT

 DELETE YES

FOR EXCEPTION IN DSN861%.PROJACT USE DSN861%.EPROJACT

IN DSN861%.EMPPROJACT USE DSN861%.EEPA

 SORTDEVT SYSDA

 SORTNUM 4

If the statement does not name error or work data sets, the JCL for the job must
contain DD statements like these:

//SYSERR DD UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

//SYSUT1 DD UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

//SORTOUT DD UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

//SORTWK%1 DD UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

//SORTWK%2 DD UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

//SORTWK%3 DD UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

//SORTWK%4 DD UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

//UTPRINT DD SYSOUT=A

Running CHECK DATA after LOAD RESUME: Suppose now that you want to add
records to both the project and project activity tables, using LOAD RESUME.
Furthermore, you want to run both jobs at the same time, which you can do
because the tables belong to separate table spaces. The only new consideration is

176 Utility Guide and Reference

 LOAD

that you must load the project activity table using ENFORCE NO, because you
cannot assume that the parent project table is already fully loaded.

When the two jobs are complete, what table spaces are in CHECK pending status?

� If you enforced constraints when loading the project table, it is not in CHECK
pending status.

� Because you did not enforce constraints on the project activity table, it is in
CHECK pending status.

� Because you used LOAD RESUME (not LOAD REPLACE) when loading the
project activity table, its dependents (the employee to project activity table) are
not in CHECK pending status. That is, the operation might not delete any
parent rows from the project table, and so might not violate the referential
integrity of its dependent. But if you delete records from PROJACT when
checking, you still need an exception table for EMPPROJACT.

Hence you want to check the data in the project activity table.

 SCOPE PENDING
DB2 records the identifier of the first record of the table that might violate referential
or table check constraints. For partitioned table spaces, that identifier is in
SYSIBM.SYSTABLEPART; for nonpartitioned table spaces, that identifier is in
SYSIBM.SYSTABLES. The SCOPE PENDING option speeds the checking by
confining it to just the records that might be in error.

The following example runs CHECK DATA against the table space containing the
project activity table after LOAD RESUME:

CHECK DATA TABLESPACE DSN8D61A.PROJACT

 SCOPE PENDING

 DELETE YES

FOR EXCEPTION IN DSN861%.PROJACT USE DSN861%.EPROJACT

IN DSN861%.EMPPROJACT USE DSN861%.EEPA

 SORTDEVT SYSDA

 SORTNUM 4

As before, the JCL data set for the job needs DD statements to define data sets for
the error and sort data sets.

Collecting inline statistics while loading a table
| If you do not specify LOAD RESUME, use the STATISTICS keyword to gather
| inline statistics about space use and row clustering to update the DB2 catalog. The
| data is used to select access paths when executing SQL statements. This
| procedure eliminates the need to run RUNSTATS after loading a table space.
| However, it you perform a LOAD PART operation, you should run RUNSTATS
| INDEX on the nonpartitioning indexes to update that data.

Running CHECK INDEX after loading a table having indexes
The CHECK INDEX utility tests whether an index is consistent with the data it
indexes and issues error messages if it finds an inconsistency. If you have any
reason to doubt the accuracy of an index (for example, if the result of an SQL
SELECT COUNT statement is inconsistent with the output of RUNSTATS), run
CHECK INDEX. You might also want to run CHECK INDEX after any LOAD

 Chapter 2-9. LOAD 177

 LOAD

operation that shows some abnormal condition in its execution, or even run it
periodically to verify the accuracy of important indexes.

| To rebuild an index that is inconsistent with its data, use the REBUILD INDEX
utility.

Recovering a failed LOAD job
To facilitate recovery in case of failure, the SYSCOPY record is inserted at the
beginning of the RELOAD phase if LOG YES was specified in the LOAD control
statement. As a result, you can recover the data to a point in time before the LOAD
by using RECOVER TORBA.

Reorganizing an auxiliary index after LOAD
Indexes on the auxiliary tables are not built during the BUILD phase. Instead, LOB
values are inserted (not loaded) into auxiliary tables during the RELOAD phase as
each row is loaded into the base table, and each index on the auxiliary table is
updated as part of the INSERT operation. Because the LOAD utility inserts keys
into an auxiliary index, free space within the index might be consumed and index
page splits might occur. Consider reorganizing an index on the auxiliary table after
LOAD completes to introduce free space into the index for future INSERTs and
LOADs.

Sample control statements
Example 1: LOAD JCL with RESUME YES and ENFORCE NO. This example
shows the JCL for loading a table with the RESUME YES and ENFORCE NO
options. This job will place the table in the CHECK pending status.

| //STEP1 EXEC DSNUPROC,UID='IUIQU2UB.LOAD',

| // UTPROC='',

| // SYSTEM='V61A'

| //SYSRECAC DD DSN=IUIQU2UB.LOAD.DATA,DISP=SHR,VOL=SER=SCR%3,

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSUT1 DD DSN=IUIQU2UB.LOAD.STEP1.SYSUT1,

| // DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SORTOUT DD DSN=IUIQU2UB.LOAD.STEP1.SORTOUT,

| // DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

LOAD DATA INDDN(SYSRECAC) RESUME YES

INTO TABLE DSN861%.ACT

(ACTNO POSITION(1) INTEGER EXTERNAL(3),

ACTKWD POSITION(5) CHAR(6),

 ACTDESC POSITION(13) VARCHAR)

 ENFORCE NO

//�

Example 2: Control statement with RESUME YES option. Figure 12 on
page 179 shows a LOAD utility statement. It loads the records from the data set
named by the SYSREC DD statement for the utility job into the department table.
The RESUME YES clause specifies that the table space need not be empty; new
records are added at the end.

178 Utility Guide and Reference

 LOAD

LOAD DATA

 RESUME YES

INTO TABLE DSN861%.DEPT

 (DEPTNO POSITION (1:3) CHAR(3),

 DEPTNAME POSITION (4:39) CHAR(36),

 MGRNO POSITION (4%:45) CHAR(6),

 ADMRDEPT POSITION (46:48) CHAR(3),

 LOCATION POSITION (49:64) CHAR(16))

Figure 12. Example of a LOAD utility statement

This example uses the POSITION clause to specify where a field is in the input
record. With the statement above, LOAD accepts the input shown in Figure 13 on
page 179 and interprets it as follows:

� The first three bytes of each record are loaded into the DEPTNO column of the
table.

� The next 36 bytes are loaded into the DEPTNAME column, including trailing
blanks.

If we had chosen to define this input column as VARCHAR(36), the input data
would have had to contain a 2-byte binary length field preceding the data.

� The next three fields are loaded into columns defined as CHAR(6), CHAR(3),
and CHAR(16).

A%%SPIFFY COMPUTER SERVICE DIV. %%%%1%A%%USIBMSTODB21

B%1PLANNING %%%%2%A%%USIBMSTODB21

C%1INFORMATION CENTER %%%%3%A%%USIBMSTODB21

D%1DEVELOPMENT CENTER A%%USIBMSTODB21

Figure 13. Records in an input data set for LOAD

Table 29 shows how the same records appear if you then execute the statement
SELECT * FROM DSN8610.DEPT under SPUFI.

Example 3: Load data into a table. Load data from the data set specified by the
EMPLDS DD statement into the EMP table.

LOAD DATA INDDN EMPLDS

INTO TABLE DSN861%.EMP

Example 4: Load data into two tables. Load data from the data set specified by
the EMPLDS DD statement into the DSN8610.EMP and SMITH.EMPEMPL tables.

Table 29. Data loaded to a table

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A00 SPIFFY
COMPUTER
SERVICE
DIV.

000010 A00 USIBMSTODB21

B01 PLANNING 000020 A00 USIBMSTODB21
C01 INFORMATION

CENTER
000030 A00 USIBMSTODB21

D01 DEVELOPMENT
CENTER

______ A00 USIBMSTODB21

 Chapter 2-9. LOAD 179

 LOAD

LOAD DATA INDDN EMPLDS

INTO TABLE DSN861%.EMP

INTO TABLE SMITH.EMPEMPL

Example 5: Load selected records into a table. Load data from the data set
specified by the EMPLDS DD statement into the EMP table. Load only from source
input records that begin with LKA.

LOAD DATA INDDN EMPLDS

INTO TABLE DSN861%.EMP

 WHEN (1:3)='LKA'

Example 6: Load selected records into a non-empty table space. The data from
the sequential data set identified by the SYSREC DD statement is selectively
loaded into the DSN8610.DEPT table whenever positions 1 through 3 contain the
value LKA. The table space need not be empty for loading to proceed.

For each source record that has LKA in its first three positions:

� The characters in positions 7 through 9 are loaded into the DEPTNO column
� The characters in positions 10 through 35 are loaded into the DEPTNAME

VARCHAR column
� The characters in positions 36 through 41 are loaded into the MGRNO column
� Characters in positions 42 through 44 are loaded into the ADMRDEPT column.

LOAD DATA

 RESUME YES

INTO TABLE DSN861%.DEPT WHEN (1:3)='LKA'

(DEPTNO POSITION (7:9) CHAR,

DEPTNAME POSITION (1%:35) CHAR,

MGRNO POSITION (36:41) CHAR,

ADMRDEPT POSITION (42:44) CHAR)

Example 7: Load selected records into an empty table space. Data from the
sequential data set identified by the SYSRECPJ DD statement is selectively loaded
into the DSN8610.PROJ table. The table space containing the DSN8610.PROJ
table is currently empty, because the RESUME YES option was not specified.

For each source input record, data is loaded into the specified columns (that is,
PROJNO, PROJNAME, DEPTNO ..., and so on) to form a table row. Any other
columns in a DSN8610.PROJ row are set to NULL.

Starting positions of the fields in the sequential data set are defined by the field
specification POSITION options. The ending position of the fields in the sequential
data set are implicitly defined either by the length specification of the data type
options (CHAR length) or by the length specification of the external numeric data
type (LENGTH).

The numeric data represented in SQL constant format (EXTERNAL format) is
converted to the correct internal format by the LOAD process and placed in the
indicated column names. The two dates are assumed to be represented by eight
digits and two separator characters, as in the USA format (for example,
11/15/1987). The length of the date fields is given as 10 explicitly, though in many
cases it defaults to the same value.

180 Utility Guide and Reference

 LOAD

LOAD DATA INDDN(SYSRECPJ)

INTO TABLE DSN861%.PROJ

 (PROJNO POSITION (1) CHAR(6),

PROJNAME POSITION (8) CHAR(22),

 DEPTNO POSITION (31) CHAR(3),

 RESPEMP POSITION (35) CHAR(6),

PRSTAFF POSITION (42) DECIMAL EXTERNAL(5),

PRSTDATE POSITION (48) DATE EXTERNAL(1%),

PRENDATE POSITION (59) DATE EXTERNAL(1%),

 MAJPROJ POSITION (7%) CHAR(6))

Example 8: Load data selectively using the CONTINUEIF option. Data from the
sequential data set specified by the SYSRECOV DD statement is assembled and
selectively loaded into the DSN8610.TOPTVAL table. The table space that
contains DSN8610.TOPTVAL is currently empty because the RESUME YES option
is not specified.

Fields destined for columns in the same table row can span more than one source
record. Source records having fields containing columns that belong to the same
row as the next source record all have an X in column 72 (that is,
CONTINUEIF(72:72)='X').

For each assembled source record, fields are loaded into the DSN8610.TOPTVAL
table columns (that is, MAJSYS, ACTION, OBJECT ..., DSPINDEX) to form a table
row. Any columns not mentioned are set to NULL.

The starting positions of the fields in the assembled source record input are given
in the POSITION option. Starting positions are numbered from the first column of
the internally assembled input record, not from the start of the source records in the
sequential data set. The ending positions are defined by the character string
lengths given with the input data type.

No conversions are required to load the source character strings into their
designated columns, which are also defined to be fixed character strings. However,
because columns INFOTXT, HELPTXT, and PFKTXT are defined as 79 characters
in length and the strings being loaded are 71 characters in length, those strings are
padded with blanks as they are loaded.

LOAD DATA INDDN(SYSRECOV) CONTINUEIF(72:72)='X'

INTO TABLE DSN861%.TOPTVAL

(MAJSYS POSITION (2) CHAR(1),

 ACTION POSITION (4) CHAR(1),

 OBJECT POSITION (6) CHAR(2),

 SRCHCRIT POSITION (9) CHAR(2),

SCRTYPE POSITION (12) CHAR(1),

HEADTXT POSITION (8%) CHAR(5%),

 SELTXT POSITION (159) CHAR(5%),

INFOTXT POSITION (238) CHAR(71),

HELPTXT POSITION (317) CHAR(71),

 PFKTXT POSITION (396) CHAR(71),

DSPINDEX POSITION (475) CHAR(2))

Example 9: Load data with referential constraints. Data from the sequential data
set identified by the SYSREC DD statement is loaded into the DSN8610.PROJ.
table. Referential constraints are enforced on data added. Output consists of a

 Chapter 2-9. LOAD 181

 LOAD

summary report of violations of referential constraints, and all records causing these
violations are placed in the SYSDISC discard data set.

LOAD DATA INDDN(SYSREC) CONTINUEIF(72:72)='X'

 RESUME YES

 ENFORCE CONSTRAINTS

 INTO TABLE DSN861%.PROJ

(PROJNO POSITION (1) CHAR (6),

PROJNAME POSITION (8) VARCHAR,

DEPTNO POSITION (33) CHAR (3),

RESPEMP POSITION (37) CHAR (6),

PRSTAFF POSITION (44) DECIMAL EXTERNAL (5),

PRSTDATE POSITION (5%) DATE EXTERNAL,

PRENDATE POSITION (61) DATE EXTERNAL,

MAJPROJ POSITION (8%) CHAR (6) NULLIF(MAJPROJ=' '))

Example 10: Load data using SORTKEYS. Use the SORTKEYS keyword to
improve performance of the index key sort as shown in the following example.

| Assume there are 22,000 rows to load into the DSN8610.DEPT table. This table
| has 3 indexes.

| The following job specifies an estimate of 66,000 keys to sort with the SORTKEYS
| keyword, using the calculation described in “Improving performance with

SORTKEYS” on page 161:

(3 + %) � 22,%%% = 66,%%%

| This example specifies dynamic allocation of the required data sets by DFSORT,
| using the SORTDEVT and SORTNUM keywords. If sufficient virtual storage
| resources are available, one utility subtask pair will be started to build each index.
| This example does not require UTPRINnn DD statements, because it uses
| DSNUPROC to invoke utility processing, which includes a DD statement that
| allocates UTPRINT to SYSOUT.

LOAD statement:

| //SAMPJOB JOB ...

| //STEP1 EXEC DSNUPROC,UID='SAMPJOB.LOAD',UTPROC='',SYSTEM='V61A'

| //SORTOUT DD DSN=SAMPJOB.LOAD.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SYSUT1 DD DSN=SAMPJOB.LOAD.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SYSERR DD DSN=SAMPJOB.LOAD.STEP1.SYSERR,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(2%%%,(2%,2%),,,ROUND)

| // DCB=(RECFM=FB,LRECL=8%,BLKSIZE=24%%)

| //SYSMAP DD DSN=SAMPJOB.LOAD.STEP1.SYSMAP,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(2%%%,(2%,2%),,,ROUND),

| // DCB=(RECFM=FB,LRECL=8%,BLKSIZE=24%%)

| //SYSREC DSN=SAMPJOB.TEMP.DATA,DISP=SHR,UNIT=SYSDA

| //SYSIN DD �

| LOAD DATA REPLACE INDDN SYSREC CONTINUEIF(79:8%)='++'

| SORTKEYS 66%%% SORTDEVT SYSDA SORTNUM 3

| INTO TABLE DSN861%.DEPT

| /�

Example 11: LOAD with inline copy. Use the REPLACE option with COPYDDN
and RECOVERYDDN to create copies during LOAD.

182 Utility Guide and Reference

 LOAD

LOAD DATA REPLACE INDDN INPUT

 SORTKEYS 66%%%

 COPYDDN SYSCOPY RECOVERYDDN REMCOPY

 CONTINUEIF(79:8%)='++'

 INTO TABLE DSN861%.DEPT

Example 12: Load ASCII input data. Use the ASCII option to load ASCII input
data into a table named MYASCIIT that was created with the CCSID ASCII clause.

LOAD REPLACE LOG NO ASCII INTO TABLE MYASCIIT

 (NAME POSITION(1) CHAR(4%),

ADDRESS POSITON(41) CHAR(4%),

ZIP POSITION(81) DECIMAL EXTERNAL(9),

DEPARTMENT POSITION(9%) CHAR(3),

TITLE POSITION(93) GRAPHIC(2%))

The CCSID keyword is not specified in this example; therefore, the CCSIDs of the
ASCII input data are assumed to be the ASCII CCSIDs specified at installation.
Conversions are done only if the CCSIDs of the target table differ from the ASCII
CCSIDs specified at installation.

| Example 13: Load data using statistics collection. Use the STATISTICS
| keyword to gather catalog statistics for the table space. This eliminates the need to
| run the RUNSTATS utility after completing the load operation. Specify REUSE so
| that all partitions are logically reset rather than deleted and redefined.

| LOAD DATA

| INDDN SYSREC

| REPLACE

| STATISTICS TABLE(ALL)

| INDEX(ALL)

| REPORT YES UPDATE ALL

| REUSE

| CONTINUEIF(79:8%)='++'

| INTO TABLE

| DSN861%.DEPT

| Example 14: Load data for a partitioned table space using statistics
| collection. Load data for a specified partition, using the STATISTICS keyword to
| gather catalog statistics of the partitioned table space.

| LOAD STATISTICS

| INTO TABLE DSN861%.DEPT PART 1 REPLACE

 Chapter 2-9. LOAD 183

 LOAD

184 Utility Guide and Reference

 MERGECOPY

Chapter 2-10. MERGECOPY

The MERGECOPY online utility merges image copies produced by the COPY utility
or inline copies produced by the LOAD or REORG utilities. It can merge several
incremental copies of a table space to make one incremental copy. It can also
merge incremental copies with a full image copy to make a new full image copy.

MERGECOPY operates on the image copy data sets of a table space, and not on
the table space itself.

For a diagram of MERGECOPY syntax and a description of available options, see
“Syntax and options of the control statement” on page 186. For detailed guidance
on running this utility, see “Instructions for running MERGECOPY” on page 188.

Output: Output from the MERGECOPY utility consists of one of the following types
of copies:

� A new single incremental image copy
� A new full image copy

You can create the new image copy for the local or recovery site.

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

� IMAGCOPY privilege for the database
� DBADM, DBCTRL, or DBMAINT authority for the database
� SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute MERGECOPY, but only
on a table space in the DSNDB01 or DSNDB06 database.

Restrictions on running MERGECOPY:

� MERGECOPY cannot merge image copies into a single incremental image
copy for the other site, that is,

– At local sites, you cannot use RECOVERYDDN with NEWCOPY NO.

– At recovery sites, you cannot use COPYDDN with NEWCOPY NO.

� When none of the keywords NEWCOPY, COPYDDN, or RECOVERYDDN is
specified, the default, NEWCOPY NO COPYDDN(SYSCOPY), is valid for the
local site only.

Execution phases of MERGECOPY: One of the following phases can be identified
if the job terminates.

The phases for MERGECOPY are:

Phase Description
UTILINIT Initialization

| MERGECOP Merge incremental copies
UTILTERM Cleanup.

 Copyright IBM Corp. 1983, 1999 185

 MERGECOPY

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
you can use the SYSIN DD statement to specify the name of the data set that
contains the utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

��─ ─MERGECOPY─ ─TABLESPACE─ ──┬ ┬──────────────── ─table-space-name─ ──┬ ┬───────────────────── ─────────────�
└ ┘─database-name.─ │ │┌ ┐─SYSUT1─

 └ ┘──WORKDDN ──┴ ┴─ddname─

�─ ──┬ ┬──────────────────── ──┬ ┬── ─────────────��
 │ │┌ ┐─ALL───── │ │┌ ┐─NO─ ┌ ┐─copyddn spec─────
 └ ┘──DSNUM ──┴ ┴─integer─ └ ┘──NEWCOPY ──┬ ┬── ──┴ ┴──── ──┴ ┴─recoveryddn spec─ ─────────────
 └ ┘──YES ──┬ ┬────────────── ──┬ ┬──────────────────
 └ ┘─copyddn spec─ └ ┘─recoveryddn spec─

copyddn spec:

 ┌ ┐─SYSCOPY─
�─ ─COPYDDN─ ─(─ ──┬ ┬──┴ ┴─ddname1─ ──┬ ┬────────── ─)───�
 │ │└ ┘──,ddname2
 └ ┘──,ddname2 ─────────────────

recoveryddn spec:

�─ ─RECOVERYDDN─ ─(──ddname3─ ──┬ ┬────────── ─)───�
 └ ┘──,ddname4

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database it belongs to)
that is to be copied.

database-name The name of the database the table space
belongs to. The default is DSNDB04.

table-space-name The name of the table space whose incremental
image copies are to be merged.

You cannot run the MERGECOPY utility on the DSNDB01.DBD01,
DSNDB01.SYSUTILX, or DSNDB06.SYSCOPY table spaces because
you cannot make incremental copies of those table spaces. Because
MERGECOPY does not directly access the table space whose copies

186 Utility Guide and Reference

 MERGECOPY

it is merging, it does not interfere with concurrent access to that table
space.

The following are optional.

WORKDDN ddname
Specifies a DD statement for a temporary data set, to be used for
intermediate merged output.

ddname is the DD name. The default is SYSUT1.

Use the WORKDDN option if you are not able to allocate enough data
sets to execute MERGECOPY; in that case, a temporary data set is
used to hold intermediate output. If you omit the WORKDDN option, it
is possible that only some of the image copy data sets will be merged.
When MERGECOPY has ended, a message is issued that tells the
number of data sets that exist and the number of data sets that have
been merged. To continue the merge, repeat MERGECOPY with a
new output data set.

DSNUM Identifies a partition or data set, within the table space, that is to be
merged; or it merges the entire table space.

ALL Merges the entire table space. The default is ALL.

integer Is the number of a partition or data set to be merged. The
maximum is 254.

For a partitioned table space, the integer is its partition
number.

For a nonpartitioned table space, find the integer at the end
of the data set name as cataloged in the VSAM catalog. The
data set name has this format:

| catname.DSNDBx.dbname.tsname.I%%%1.Annn

| where nnn is the data set integer.

If image copies were taken by data set (rather than by table space),
then MERGECOPY must use the copies by data set.

NEWCOPY Tells whether incremental image copies are to be merged with the full
image copy or not.

NO Merges incremental image copies into a single incremental
image copy, but does not merge them with the full image
copy. The default is NO.

YES Merges all incremental image copies with the full image copy
to form a new full image copy.

COPYDDN(ddname1,ddname2)
Specifies the DD statements for the output image copy data sets at
the local site. ddname1 is the primary output image copy data set.
ddname2 is the backup output image copy data set.

The default is COPYDDN(SYSCOPY), where SYSCOPY identifies
the primary data set.

 Chapter 2-10. MERGECOPY 187

 MERGECOPY

RECOVERYDDN(ddname3,ddname4)
Specifies the DD statements for the output image copy data sets at
the recovery site. You can have a maximum of two output data sets;
the outputs are identical. ddname3 is the primary output image copy
data set. ddname4 is the backup output image copy data set.

There is no default for RECOVERYDDN.

Instructions for running MERGECOPY
To run MERGECOPY, you must:

1. Prepare the necessary data sets, as described in “Data sets used by
MERGECOPY.”

2. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for
MERGECOPY, see “Sample control statements” on page 193.)

3. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 189. (For a
complete description of the syntax and options for MERGECOPY, see “Syntax
and options of the control statement” on page 186.)

4. Check the compatibility table in “Concurrency and compatibility” on page 192 if
you want to run other jobs concurrently on the same target objects.

5. Plan for restart if the MERGECOPY job doesn't complete, as described in
“Terminating or restarting MERGECOPY” on page 192.

 6. Run MERGECOPY.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Data sets used by MERGECOPY
Table 30 describes the data sets used by MERGECOPY. Include statements in
your JCL for each required data set, and any optional data sets you want to use.

Table 30 (Page 1 of 2). Data sets used by MERGECOPY

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Image copy data set The image copy data set defines the
resulting image copy. Its DD names is
specified with the COPYDDN parameter
of the MERGECOPY statement. The
default DD name is SYSCOPY.

Yes

Work data set This is a temporary data set that is used
for intermediate merged output. Its DD
name is specified through the WORKDDN
parameter of the MERGECOPY
statement. The default DD name is
SYSUT1.

Yes

188 Utility Guide and Reference

 MERGECOPY

The following object is named in the utility control statement and does not require a
DD card in the JCL:

Table space
Object to be copied. It is named in the MERGECOPY control
statement and is accessed through the DB2 catalog.

Data sets: The input data sets for the merge operation are dynamically allocated.
To merge incremental copies, a work data set (WORKDDN) and up to two new
copy data sets (COPYDDN) are allocated in the JCL for the utility job. These can
be allocated to tape or DASD. If these allocations are made to tape, an additional
tape drive is required for each of those data sets.

The COPYDDN option of MERGECOPY allows you to specify the ddnames for the
output data sets. The option has the format COPYDDN (ddname1,ddname2), where
ddname1 is the ddname for the primary output data set in the system currently
running DB2 and ddname2 is the ddname for the backup output data set in the
system currently running DB2. The default for ddname1 is SYSCOPY.

The RECOVERYDDN option of MERGECOPY allows you to specify the output
image copy data sets at the recovery site. The option has the format RECOVERYDDN

(ddname3, ddname4), where ddname3 is the ddname for the primary output image
copy data set at the recovery site and ddname4 is the ddname for the backup
output data set at the recovery site.

Defining the work data set: The work data set should be at least equal in size to
the largest input image copy data set being merged. Use the same DCB attributes
as used for the image copy data sets.

Table 30 (Page 2 of 2). Data sets used by MERGECOPY

Data Set Description Required?

Input data sets These are image copy data sets which
may be pre-allocated by the user. The
DD names are defined by the user.

No

Creating the control statement
See “Syntax and options of the control statement” on page 186 for MERGECOPY
syntax and option descriptions. See “Sample control statements” on page 193 for
examples of MERGECOPY usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Specifying full or incremental image copy” on page 190
“Merging inline copies” on page 190
“Using MERGECOPY with individual data sets” on page 190
“Deciding between MERGECOPY or COPY” on page 191
“Avoiding MERGECOPY LOG RBA inconsistencies” on page 191
“Creating image copies in a JES3 environment” on page 191
“Running MERGECOPY on the directory” on page 192

 Chapter 2-10. MERGECOPY 189

 MERGECOPY

Specifying full or incremental image copy
The NEWCOPY parameter decides if the new copy created by MERGECOPY is an
incremental image copy or a full image copy. In general, it is recommended to
create a new full image copy. The reasons for this recommendation are:

� A new full image copy creates a new recoverable point.

� The additional time it takes to create a new full image copy does not have any
adverse affect on the access to the table space. The only concurrency
implication is the access to SYSIBM.SYSCOPY.

� The range of log records to be applied by RECOVER is the same for both the
new full image copy and the merged incremental image copy.

� Assuming the copies are on tape, only one tape drive will be required for image
copies during a RECOVER.

If NEWCOPY is YES, the utility inserts an entry for the new full image copy into the
SYSIBM.SYSCOPY catalog table.

If NEWCOPY is NO, the utility:

� Replaces the SYSIBM.SYSCOPY records of the incremental image copies that
were merged with an entry for the new incremental image copy

� Deletes all SYSIBM.SYSCOPY records of the incremental image copies that
have been merged.

In either case, if any of the input data sets might not be allocated, or you did not
specify a temporary work data set (WORKDDN), the utility performs a partial
merge.

For large table spaces, the use of MERGECOPY to create full image copies should
be considered.

Use MERGECOPY NEWCOPY YES immediately after each incremental image
copy:

� Dates will become a valid criterion for image copy data set and archive log
deletion.

� A minimum number of tape drives will be allocated for MERGECOPY and
RECOVER execution.

Merging inline copies
If you merge an inline copy with incremental copies, the result is a full inline copy.
The data set is logically equivalent to a full image copy, but the data within the data
set differs in some respects. See “Using inline COPY with LOAD” on page 160 for
additional information about inline copies.

Using MERGECOPY with individual data sets
MERGECOPY can be used on copies of an entire table space or individual data
sets or partitions. However, MERGECOPY can only merge incremental copies of
the same type. That is, you cannot merge incremental copies of an entire table
space with incremental copies of individual data sets to form new incremental
copies. The attempt to mix the two types of incremental copies produces the
following messages:

190 Utility Guide and Reference

 MERGECOPY

DSNU46%I DSNUBCLO - IMAGE COPIES INCONSISTENT.

MERGECOPY REQUEST REJECTED

DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE,

HIGHEST RETURN CODE=4

With the option NEWCOPY YES, however, you can merge a full image copy of a
table space with incremental copies of the table space and of individual data sets to
make a new full image copy of the table space.

| If the image copy data sets you want to merge reside tape, refer to “Retaining tape
| mounts” on page 249 for general information about specifying the appropriate
| parameters on the DD cards.

Deciding between MERGECOPY or COPY
COPY and MERGECOPY can create a full image copy. COPY is required after a
LOAD or REORG with LOG NO unless an inline copy is created, but in other cases
an incremental image copy followed by MERGECOPY is a valid alternative.

Avoiding MERGECOPY LOG RBA inconsistencies
MERGECOPY does not use information that was logged between the time of the
most recent image copy and the time when MERGECOPY was run. Therefore, you
cannot safely delete all log records made before running MERGECOPY. (And you
do that if you run MODIFY RECOVERY specifying the date when MERGECOPY
was run as the value of DATE.)

To delete all log information that is included in a copy made by MERGECOPY:

1. Find the record of that copy in the catalog table SYSIBM.SYSCOPY. You can
find it by selecting on database name, table space name, and date (columns
DBNAME, TSNAME, and ICDATE).

2. Column START_RBA contains the RBA of the last image copy that
MERGECOPY used. Find the record of the image copy that has the same
value of START_RBA.

3. In that record, find the date in column ICDATE. You can use MODIFY
RECOVERY to delete all copies and log records for the table space made
before that date.

RECOVER uses the LOG RBA of image copies to determine the starting point in
the log needed for recovery. Normally, there is a direct correspondence between a
timestamp and a LOG RBA. Because of this, and because MODIFY uses dates to
cleanup recovery history, you may decide to use dates to delete old archive log
tapes. This may cause a problem if MERGECOPY is used. MERGECOPY inserts
the LOG RBA of the last incremental image copy into the SYSIBM.SYSCOPY row
created for the new image copy. The date recorded in ICDATE column of
SYSIBM.SYSCOPY row is the date MERGECOPY was executed.

Creating image copies in a JES3 environment
Ensure that there are sufficient units available to mount the required image copies.
In a JES3 environment, if the number of image copies to be restored exceeds the
number of available online and offline units, and the MERGECOPY job successfully
allocates all available units, the job will then wait for more units to become
available.

 Chapter 2-10. MERGECOPY 191

 MERGECOPY

Running MERGECOPY on the directory
You cannot run the MERGECOPY utility on the DSNDB01.DBD01,
DSNDB01.SYSUTILX, or DSNDB06.SYSCOPY table spaces because you cannot
make incremental copies of those table spaces.

Terminating or restarting MERGECOPY
For instructions on restarting a utility job, see “Restarting an online utility” on
page 48.

You can restart a MERGECOPY utility job at the beginning of any of the phases
listed below:

UTILINIT Initialization and setup
MERGECOPY Merge
UTILTERM Cleanup.

Restarting MERGECOPY after an out of space condition: See “Restarting after
the output data set is full” on page 49 for guidance in restarting MERGECOPY
from the last commit point after receiving an out of space condition.

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Table 31 shows the restrictive state the utility sets on the target object.

MERGECOPY can run concurrently on the same target object with any utility
except the following:

| � COPY TABLESPACE
| � LOAD

 � MERGECOPY
 � MODIFY
 � RECOVER

| � REORG TABLESPACE

The target object can be a table space or partition.

Table 31. Claim classes of MERGECOPY operations. Use of claims and drains; restrictive
states set on the target object.

Target MERGECOPY

Table space or partition UTRW

Legend:

UTRW - Utility restrictive state - Read/Write access allowed.

192 Utility Guide and Reference

 MERGECOPY

Sample control statements
Example 1: Creating a merged incremental copy. Create a merged incremental
image copy of table space DSN8S61C.

| //STEP1 EXEC DSNUPROC,UID='IUJMU1%7.MERGE1',

| // UTPROC='',SYSTEM='V61A'

| //COPY1 DD DSN=IUJMU1%7.MERGE1.STEP1.COPY1,DISP=(MOD,CATLG,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //COPY2 DD DSN=IUJMU1%7.MERGE1.STEP1.COPY2,DISP=(MOD,CATLG,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSUT1 DD DSN=IUJMU1%7.MERGE1.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

| MERGECOPY TABLESPACE DSN8D61P.DSN8S61C

 COPYDDN (COPY1,COPY2)

 NEWCOPY NO

Example 2: Creating a merged full image copy. Create a merged full image copy
of table space DSN8S61C.

| //STEP1 EXEC DSNUPROC,UID='IUJMU1%7.MERGE2',

| // UTPROC='',SYSTEM='V61A'

| //COPY1 DD DSN=IUJMU1%7.MERGE2.STEP1.COPY1,DISP=(MOD,CATLG,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //COPY2 DD DSN=IUJMU1%7.MERGE2.STEP1.COPY2,DISP=(MOD,CATLG,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSUT1 DD DSN=IUJMU1%7.MERGE2.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

MERGECOPY TABLESPACE DSN8D61P.DSN8S61C

 COPYDDN (COPY1,COPY2)

 NEWCOPY YES

 Chapter 2-10. MERGECOPY 193

 MERGECOPY

194 Utility Guide and Reference

 MODIFY

Chapter 2-11. MODIFY

The MODIFY online utility with the RECOVERY option deletes records from the
SYSIBM.SYSCOPY catalog table, related log records from the
SYSIBM.SYSLGRNX directory table, and entries from the DBD. You can remove
records that were written before a specific date or you can remove records of a
specific age. You can delete records for an entire table space, partition, or data set.

You should run MODIFY regularly to clear outdated information from
SYSIBM.SYSCOPY and SYSIBM.SYSLGRNX. These tables, and particularly
SYSIBM.SYSLGRNX, can become very large and take up considerable amounts of
space. By deleting outdated information from these tables, you can help improve
performance for processes that access data from these tables.

| The MODIFY utility automatically removes the SYSIBM.SYSCOPY and
| SYSIBM.SYSLGRNX recovery records that meet the AGE and DATE criteria for all
| indexes over the table space that were defined with the COPY YES attribute.

For a diagram of MODIFY syntax and a description of available options, see
“Syntax and options of the control statement” on page 196. For detailed guidance
on running this utility, see “Instructions for running MODIFY” on page 197.

Output: MODIFY deletes image copy rows from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX.

For each full and incremental SYSCOPY record deleted from SYSCOPY, the utility
returns a message giving the name of the copy data set.

For information on deleting SYSLGRNX rows, see “Deleting SYSLGRNX rows” on
page 199.

If MODIFY RECOVERY deletes at least one SYSCOPY record and the target table
space or partition is not recoverable, the target object is placed in COPY pending
status.

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

� IMAGCOPY privilege for the database to run MODIFY
� DBADM, DBCTRL, or DBMAINT authority for the database
� SYSCTRL or SYSADM authority.

An ID with installation SYSOPR authority can also execute MODIFY, but only on a
table space in the DSNDB01 or DSNDB06 database.

There are no SYSCOPY or SYSLGRNX records for DSNDB06.SYSCOPY,
DSNDB01.SYSUTIL, or DSNDB01.DBD01. You can run MODIFY on these table
spaces, but you receive message DSNU573I, indicating that no SYSCOPY records
could be found. No SYSCOPY or SYSLGRNX records are deleted.

Execution phases of MODIFY: One of the following phases can be identified if the
job terminates.

The phases for MODIFY are:

 Copyright IBM Corp. 1983, 1999 195

 MODIFY

UTILINIT Initialization and setup
MODIFY Deleting records
UTILTERM Cleanup.

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

��─ ─MODIFY─ ─RECOVERY─ ─TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ──┬ ┬──────────────────── ───────�
└ ┘─database-name.─ │ │┌ ┐─ALL─────

 └ ┘──DSNUM ──┴ ┴─integer─

�─ ──DELETE ──┬ ┬──AGE ──┬ ┬─integer─ ─ ──��
│ │└ ┘──(�) ────

 └ ┘──DATE ──┬ ┬─integer─
└ ┘──(�) ────

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

TABLESPACE database-name.table-space-name
Specifies the database and the table space for which records are
to be deleted.

database-name Specifies the name of the database to which
the table space belongs. database-name is
optional.

The default is DSNDB04.

table-space-name Specifies the name of the table space.

DSNUM integer Identifies a single partition or data set of the table space for which
records are to be deleted; ALL deletes records for the entire data
set and table space.

integer is the number of a partition or data set.

The default is ALL.

For a partitioned table space, integer is its partition number. The
maximum is 254.

For a nonpartitioned table space, use the data set integer at the
end of the data set name as cataloged in the VSAM catalog. If

196 Utility Guide and Reference

 MODIFY

image copies are taken by partition or data set and you specify
DSNUM ALL, then the table space is placed in COPY pending
status if a full image copy of the entire table space does not exist.
The data set name has this format:

| catname.DSNDBx.dbname.tsname.I%%%1.Annn

| where: nnn is the data set integer.

If you specify DSNUM, MODIFY does not delete any SYSCOPY
records for the partition that have an RBA greater than that of the
earliest point to which the entire table space could be recovered.
That point might indicate a full image copy, a LOAD operation
with LOG YES or a REORG operation with LOG YES.

DELETE Indicates that records are to be deleted. See the DSNUM
description above for restrictions on deleting partition statistics. on
deleting partition statistics.

AGE integer Deletes all SYSCOPY records older than a
specified number of days.

integer is the number of days, and can range from
0 to 32767. Records created today are of age 0,
and cannot be deleted by this option.

(*) deletes all records, regardless of their age.

DATE integer Deletes all records written before a specified date.

integer may use either an 8 or 6 character format.
You must specify a year (yyyy or yy), month
(mm), and day (dd) in the form yyyymmdd or
yymmdd. DB2 processing queries the system
clock and converts 6-character dates to the most
recent, previous 8-character equivalent.

(*) deletes all records, regardless of the date on
which they were written.

Instructions for running MODIFY
To run MODIFY you must:

1. Read “Before running MODIFY” on page 198 in this chapter.

2. Prepare the necessary data sets, as described in “Data sets used by MODIFY”
on page 198.

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for MODIFY,
see “Sample control statements” on page 200.)

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 198. (For a
complete description of the syntax and options for MODIFY, see “Syntax
diagram” on page 196.)

5. Check the compatibility table in “Concurrency and compatibility” on page 200 if
you want to run other jobs concurrently on the same target objects.

 Chapter 2-11. MODIFY 197

 MODIFY

6. Plan for restart if the MODIFY job doesn't complete, as described in
“Terminating or restarting MODIFY” on page 199.

 7. Run MODIFY.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Before running MODIFY
Printing SYSCOPY records with REPORT RECOVERY: If you use MODIFY
RECOVER to delete SYSCOPY records, we recommend that you first use the
REPORT utility to view all SYSCOPY records for the object at the specified site to
avoid deleting the wrong records.

Removing RECOVER pending status: You cannot run MODIFY RECOVER on a
table space that is in RECOVER pending status. See “Chapter 2-14. RECOVER”
on page 225 for information about resetting the RECOVER pending status.

Data sets used by MODIFY
Table 32 describes the data sets used by MODIFY. Include statements in your JCL
for each required data set, and any optional data sets you want to use.

The following object is named in the utility control statement and does not require a
DD card in the JCL:

Table space
Object for which records are to be deleted. It is named in the MODIFY
control statement and is accessed through the DB2 catalog.

Table 32. Data sets used by MODIFY

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Creating the control statement
See “Syntax diagram” on page 196 for MODIFY syntax and option descriptions.
See “Sample control statements” on page 200 for examples of MODIFY usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Deleting SYSLGRNX rows” on page 199
“Deleting all image copy entries” on page 199

| “Deleting recovery rows for indexes” on page 199
“Reclaiming space in the DBD” on page 199
“Improving REORG performance after adding a column” on page 199

198 Utility Guide and Reference

 MODIFY

Deleting SYSLGRNX rows
If you take image copies at the data set level or partition level only, then you can
use MODIFY with the DSNUM option to delete SYSLGRNX rows for the data set or
partition. For partitioned table spaces, MODIFY deletes partition-level SYSLGRNX
records only if there are no image copies of the entire table space. Otherwise, if full
copies exist for the entire table space and you specify DSNUM, MODIFY returns a
message saying that no records were deleted.

If you omit DSNUM or specify DSNUM ALL, then MODIFY deletes all SYSLGRNX
records pertaining to the entire table space and individual data sets and partitions.

Deleting all image copy entries
MODIFY allows you to delete all image copy entries for a table space or data set.
In this case MODIFY:

� Issues message DSNU572I.
� Sets the COPY pending restriction.
� Gives return code 4.

| Deleting recovery rows for indexes
| When you perform MODIFY RECOVERY on a table space, utility processing
| deletes SYSIBM.SYSCOPY and SYSIBM.SYSLGRNX rows that meet the AGE and
| DATE criteria for related indexes that were defined with COPY YES.

Reclaiming space in the DBD
To reclaim space in the DBD when you drop a table, use the following procedure:

1. Commit the drop.
2. Run the REORG utility.
3. Run the COPY utility to make a full image copy of the table space.
4. Run MODIFY with the DELETE option to delete all previous image copies.

Improving REORG performance after adding a column
After you add a column to a table space, the next REORG of the table space
materializes default values for the added column by decompressing all rows of the

table space during the UNLOAD phase and then compressing them again during
the RELOAD phase. Subsequently, each REORG job for the table space repeats
this processing in the UNLOAD and RELOAD phases. Use the following procedure
to avoid repeating the compression cycle with each REORG:

1. Run the REORG utility on the table space.

2. Run the COPY utility to make a full image copy of the table space.

3. Run MODIFY with the DELETE option to delete all previous image copies.
MODIFY changes the alter added column status only if there are SYSCOPY

rows to delete.

Terminating or restarting MODIFY
MODIFY can be terminated in any phase without any integrity exposure.

You are permitted to restart the MODIFY utility, but it starts from the beginning
again.

For more guidance in restarting online utilities, see “Restarting an online utility” on
page 48.

 Chapter 2-11. MODIFY 199

 MODIFY

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Table 33 shows the restrictive state the utility sets on the target object.

MODIFY can run concurrently on the same target object with any utility except the
following:

| � COPY TABLESPACE
 � LOAD
 � MERGECOPY
 � MODIFY
 � RECOVER TABLESPACE
 � REORG TABLESPACE

The target object can be a table space or partition.

Table 33. Claim classes of MODIFY operations. Use of claims and drains; restrictive states
set on the target object.

Target MODIFY

Table space or partition UTRW

Legend:

UTRW - Utility restrictive state - Read/Write access allowed.

Sample control statements
Example 1: Delete SYSCOPY records by age. For the table space containing the
employee table, delete all SYSCOPY records older than 90 days.

| //STEP1 EXEC DSNUPROC,UID='IUIQU2UD.MODRCV1',

| // UTPROC='',SYSTEM='V61A'

| //SYSIN DD �

MODIFY RECOVERY TABLESPACE DSN8D61A.DSN8S61E DELETE AGE(9%)

/�

Example 2: Delete SYSCOPY records by date. For the table space containing the
department table, delete all SYSCOPY records written before 10 September 1998.

MODIFY RECOVERY TABLESPACE DSN8D61A.DSN8S61D

 DELETE DATE(1998%91%)

200 Utility Guide and Reference

 QUIESCE

Chapter 2-12. QUIESCE

| The QUIESCE online utility establishes a quiesce point (the current log RBA or log
| record sequence number (LRSN)) for a table space, partition, table space set, or
| list of table spaces and table space sets, and records it in the SYSIBM.SYSCOPY

catalog table. A successful QUIESCE improves the probability of a successful
RECOVER or COPY. You should run QUIESCE frequently between regular
executions of COPY to establish regular recovery points for future point in time
recovery.

For a diagram of QUIESCE syntax and a description of available options, see
“Syntax and options of the control statement.” For detailed guidance on running this
utility, see “Instructions for running QUIESCE” on page 203 .

Output: QUIESCE writes changed pages from the table spaces to DASD. The
catalog table SYSIBM.SYSCOPY records the current RBA and the timestamp of
the quiesce point. A row with ICTYPE='Q' is inserted into SYSCOPY for each table

| space quiesced. DB2 also inserts a SYSCOPY row with ICTYPE='Q' for any
| indexes (defined with the COPY YES attribute) over a table space being quiesced.

(Table spaces DSNDB06.SYSCOPY, DSNDB01.DBD01, and DSNDB01.SYSUTILX
are an exception: their information is written to the log.)

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

� IMAGCOPY privilege for the database
� DBADM, DBCTRL, or DBMAINT authority for the database
� SYSCTRL or SYSADM authority.

An ID with installation SYSOPR authority can also execute QUIESCE, but only on a
table space in the DSNDB01 or DSNDB06 database.

You can specify DSNDB01.SYSUTILX, but you cannot include it in a list with other
table spaces to be quiesced.

Execution phases of QUIESCE: The QUIESCE utility operates in these phases:

Phase Description
UTILINIT Initialization and setup
QUIESCE Determining the quiesce point and updating the catalog
UTILTERM Cleanup

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Copyright IBM Corp. 1983, 1999 201

 QUIESCE

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

 ┌ ┐───
��─ ─QUIESCE─ ───

�
┴┬ ┬──TABLESPACE ──┬ ┬──────────────── table-space-name ──┬ ┬─────────────── ─────────────────�

 │ │└ ┘─database-name.─ └ ┘ ─PART──integer─
| └ ┘──TABLESPACESET ──┬ ┬──────────── ──┬ ┬──────────────── table-space-name
| └ ┘─TABLESPACE─ └ ┘─database-name.─

�─ ──┬ ┬──────────────── ───��
 │ │┌ ┐─YES─
 └ ┘──WRITE ──┴ ┴─NO──

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

TABLESPACE database-name.table-space-name
For QUIESCE TABLESPACE, specifies the table space (and,
optionally, the database to which it belongs) being quiesced.

| For QUIESCE TABLESPACESET, specifies a table space (and,
| optionally, the database to which it belongs) in the table space set
| being quiesced.

database-name Optionally specifies the name of the database
to which the table space belongs. The default
is DSNDB04.

table-space-name Specifies the name of the table space to be
quiesced. You can specify
DSNDB01.SYSUTILX, but it cannot be included
in a list with other table spaces to be quiesced.

PART integer Identifies a partition to be quiesced.

integer is the number of the partition and must be in the range from
1 to the number of partitions defined for the table space. The
maximum is 254.

| TABLESPACESET
| Specifies that all of the referentially related table spaces in the table
| space set are to be quiesced. For the purposes of the QUIESCE
| utility, a table space set is either:

| � A group of table spaces that have a referential relationship.

| � A base table space with all of its LOB table spaces.

| TABLESPACE database-name.table-space-name
| Specifies the table space name (and, optionally, the database
| to which it belongs) being quiesced. For QUIESCE
| TABLESPACESET, the TABLESPACE keyword is optional.

202 Utility Guide and Reference

 QUIESCE

WRITE Specifies whether to write the changed pages from the table spaces
| and index spaces to DASD.

YES Establishes a quiesce point and writes the changed pages
| from the table spaces and index spaces to DASD.

The default is YES.

NO Establishes a quiesce point but does not write the changed
| pages from the table spaces and index spaces to DASD.

Instructions for running QUIESCE
To run QUIESCE, you must:

1. Read “Before running QUIESCE” in this chapter.

2. Prepare the necessary data sets, as described in “Data sets used by
QUIESCE.”

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for QUIESCE,
see “Sample control statements” on page 207.)

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 204. (For a
complete description of the syntax and options for QUIESCE, see “Syntax and
options of the control statement” on page 201.)

5. Check the compatibility table in “Concurrency and compatibility” on page 206 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the QUIESCE job doesn't complete, as described in
“Terminating or restarting QUIESCE” on page 205.

 7. Run QUIESCE.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Before running QUIESCE
You cannot run QUIESCE on a table space that is in COPY pending, CHECK

| pending, RECOVER pending, or auxiliary CHECK pending status. See “Resetting
the COPY pending status” on page 174, “Resetting CHECK pending status” on
page 65, “Resetting the REBUILD pending status” on page 175, and Appendix C,
“Resetting an advisory or restrictive status” on page 527 for information about
resetting these statuses.

Data sets used by QUIESCE
Table 34 on page 204 describes the data sets used by QUIESCE. Include
statements in your JCL for each required data set, and any optional data sets you
want to use.

 Chapter 2-12. QUIESCE 203

 QUIESCE

The following object is named in the utility control statement and does not require a
DD card in the JCL:

Table space
Object to be quiesced. It is named in the QUIESCE control statement
and is accessed through the DB2 catalog. (If you want to quiesce only
one partition of a table space, you must use the PART option in the
control statement.)

Table 34. Data sets used by QUIESCE

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Creating the control statement
See “Syntax and options of the control statement” on page 201 for QUIESCE
syntax and option descriptions. See “Sample control statements” on page 207 for
examples of QUIESCE usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Using QUIESCE for recovery”
“Obtaining a common quiesce point”

| “Specifying a list of table spaces and table space sets” on page 205

Using QUIESCE for recovery
You can recover a table space to its quiesce point with the RECOVER
TABLESPACE utility. See “Chapter 2-14. RECOVER” on page 225 for information
about the RECOVER TABLESPACE utility.

Obtaining a common quiesce point
Use the QUIESCE TABLESPACESET utility to obtain a common quiesce point for

| table spaces that are related. For the purposes of the QUIESCE utility, a table
| space set is one or both of the following:

| � A group of table spaces that have a referential relationship

| � A base table space with all of its LOB table spaces

If you use QUIESCE TABLESPACE instead and do not include every member, you
may encounter problems running RECOVER on the table spaces in the structure.
RECOVER checks if a complete table space set is recovered to a point in time. If
the table space set is not complete, RECOVER places all dependent table spaces
into CHECK pending status.

| You should QUIESCE and RECOVER the LOB table spaces to the same point in
| time as the associated base table space. A group of table spaces that have a
| referential relationship should all be quiesced to the same point in time.

204 Utility Guide and Reference

 QUIESCE

| When you QUIESCE WRITE YES a table space, each related index that was
| defined with COPY YES has a SYSIBM.SYSCOPY row inserted with ICTYPE='Q'
| to record the quiesce point.

Specifying a list of table spaces and table space sets
| You can specify as many objects in your QUIESCE job as available memory in the
| batch address space and in the DSN1MSTR address space allows.

| Be aware of the following considerations when you specify a list of objects to
| quiesce:

| � Each table space set will be expanded into a list of table spaces that have a
| referential relationship, or a list containing a base table space with all of its
| LOB table spaces.

| � If you specify a list of table spaces or table space sets to quiesce and duplicate
| a table space, utility processing will continue and the table space will only be
| quiesced once. QUIESCE will issue return code 4 and warning message
| DSNU533I to alert you of the duplication.

| � If you specify the same table space twice in a list, using PART n in one
| specification, and PART m for the other specification, each partition is quiesced
| once.

Considerations for running QUIESCE
If a table space is in a pending status: If you run QUIESCE on a table space in
COPY pending, CHECK pending, or RECOVER pending status, it terminates as
shown in Figure 14.

DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = R92341Q

DSBY%5%I DSNUGUTC - QUIESCE TABLESPACE UTQPD22A.UTQPS22D

 TABLESPACE UTQPD22A.UTQPS22E

 TABLESPACE UTQPD22A.EMPPROJA

DSNU471I % DSNUQUIA - TABLESPACE UTQPD22A.EMPPROJA HAS PENDING STATE

DSNU%12I DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

Figure 14. QUIESCE and pending restrictions

If the write to DASD fails: QUIESCE attempts to write pages of each table space
to DASD. If any of the following conditions is encountered, the write to DASD fails:

� The table space has a write error range
� The table space has deferred restart pending
� An I/O error occurs

If any of the above conditions is true, QUIESCE will terminate with a return code of
4 and a DSNU473I warning message. In any case, the QUIESCE point is a valid
point of consistency for recovery.

Terminating or restarting QUIESCE
If you use -TERM UTILITY to terminate QUIESCE when it is active, QUIESCE
releases the drain locks on table spaces. If QUIESCE is stopped, the drain locks
have already been released.

You can restart the QUIESCE utility, but it starts from the beginning again.

 Chapter 2-12. QUIESCE 205

 QUIESCE

For more guidance in restarting online utilities, see “Restarting an online utility” on
page 48.

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Table 35 shows which claim classes QUIESCE drains and any restrictive state the
utility sets on the target object.

Table 36 shows which utilities can run concurrently with QUIESCE on the same
target object. The target object can be a table space, an index space, or a partition
of a table space or index space. If compatibility depends on particular options of a
utility, that is also shown.

QUIESCE does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

Table 35. Claim classes of QUIESCE operations. Use of claims and drains; restrictive
states set on the target object.

Target WRITE YES WRITE NO

Table space or partition DW/UTRO DW/UTRO

Index or partition DW/UTRO

Nonpartitioning index DW/UTRO

Legend:

� DW - Drain the write claim class - concurrent access for SQL readers
� UTRO - Utility restrictive state - read only access allowed

Table 36 (Page 1 of 2). QUIESCE compatibility

Action QUIESCE

CHECK DATA No

CHECK INDEX Yes

| CHECK LOB| Yes

| COPY INDEXSPACE SHRLEVEL REFERENCE| Yes

| COPY INDEXSPACE SHRLEVEL CHANGE| No

COPY TABLESPACE SHRLEVEL REFERENCE Yes

COPY TABLESPACE SHRLEVEL CHANGE No

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE Yes

| REBUILD INDEX| No

| RECOVER INDEX| No

206 Utility Guide and Reference

 QUIESCE

To run on DSNDB01.SYSUTILX, QUIESCE must be the only utility in the job step.

QUIESCE on SYSUTILX is an “exclusive” job; such a job can interrupt another job
between job steps, possibly causing the interrupted job to time out.

Table 36 (Page 2 of 2). QUIESCE compatibility

Action QUIESCE

| RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE
UNLOAD CONTINUE or PAUSE

No

| REORG TABLESPACE
| UNLOAD ONLY or EXTERNAL

Yes

REPAIR DUMP or VERIFY Yes

REPAIR DELETE or REPLACE No

REPORT Yes

RUNSTATS Yes

STOSPACE Yes

Sample control statements
Example 1: Sample JCL for QUIESCE. Establish a quiesce point for three table
spaces.

| //STEP1 EXEC DSNUPROC,UID='IUIQU2UD.QUIESC2',

| // UTPROC='',SYSTEM='V61A'

| //SYSIN DD �

QUIESCE TABLESPACE DSN8D61A.DSN8S61D

 TABLESPACE DSN8D61A.DSN8S61E

 TABLESPACE DSN8D61A.DSN8S61P

//�

Example 2: Sample control statement for QUIESCE. Establish a quiesce point
for the DSN8D61A.DSN8S61E and DSN8D61A.DSN8S61D table spaces.

QUIESCE TABLESPACE DSN8D61A.DSN8S61E TABLESPACE DSN8D61A.DSN8S61D

The following is output of the preceding command:

DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TSLQ.STEP1

DSNU%5%I DSNUGUTC - QUIESCE TABLESPACE DSN8D61A.DSN8S61E

 TABLESPACE DSN8D61A.DSN8S61D

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D61A.DSN8S61E

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D61A.DSN8S61D

DSNU474I - DSNUQUIA - QUIESCE AT RBA %%%%%%%527%8

DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= %%:%%:25

DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=%

Example 3: QUIESCE point for a table space set. Establish a quiesce point for
the table space set of the sample application.

| QUIESCE TABLESPACESET TABLESPACE DSN8D61A.DSN8S61D

The following is output of the preceding command:

 Chapter 2-12. QUIESCE 207

 QUIESCE

| DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TSLQ.STEP1

| DSNU%5%I DSNUGUTC - QUIESCE TABLESPACESET TABLESPACE DSN8D61A.DSN8S61D

| DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACESET DSN8D61A.DSN8S61D

| DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D61A.DSN8S61D

| DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D61A.DSN8S61E

| DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D61A.PROJ

| DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D61A.ACT

| DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D61A.PROJACT

| DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D61A.EMPPROJA

| DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D61A.DSN8S1D

| DSNU474I - DSNUQUIA - QUIESCE AT RBA %%%%%%%527%8 AND AT LRSN %%%%%%%527%8

| DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= %%:%%:25

| DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=%

208 Utility Guide and Reference

 REBUILD INDEX

Chapter 2-13. REBUILD INDEX

| REBUILD INDEX reconstructs indexes from the table that they reference.

| You must modify all RECOVER INDEX jobs from a previous release of DB2 to use
| REBUILD INDEX instead.

For a diagram of REBUILD INDEX syntax and a description of available options,
see “Syntax and options of the control statement.” For detailed guidance on running
this utility, see “Instructions for running REBUILD INDEX” on page 213

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

� RECOVERDB privilege for the database
� DBADM or DBCTRL authority for the database
� SYSCTRL or SYSADM authority.

| To run REBUILD INDEX STATISTICS REPORT YES, the privilege set must include
| the SELECT privilege on the catalog tables.

Execution phases of REBUILD INDEX: The REBUILD INDEX utility operates in
these phases:

Phase Description
UTILINIT Initialization and setup
UNLOAD Unloading of index entries
SORT Sorting of unloaded index entries
BUILD Building of indexes

| SORTBLD If you specify the SORTKEYS keyword to invoke parallel index build
| processing for a simple or segmented table space, or a single partition
| of a partitioned table space, all activities that normally occur in both
| the SORT and BUILD phases occur in the SORTBLD phase instead.

UTILTERM Cleanup

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

 Copyright IBM Corp. 1983, 1999 209

 REBUILD INDEX

 ┌ ┐─,─────────────────────────────
��─ ─REBUILD──INDEX─ ──┬ ┬ ─ ─(───

�
┴─index-name─ ──┬ ┬───────────────) ───────────────────────────────────── ──┬ ┬─────── ─────�

| │ │└ ┘| ─PART──integer─ └ ┘| ─REUSE─
 └ ┘──(ALL) ─TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ──┬ ┬───────────────
 └ ┘─database-name.─ └ ┘ ─PART──integer─

�─ ──┬ ┬─────────────────────── ──┬ ┬─────────────────────── ──┬ ┬────────────────── ──┬ ┬────────── ───────────────────────�
| │ │┌ ┐─SYSUT1─ └ ┘| ─SORTDEVT──device-type─ └ ┘| ─SORTNUM──integer─ └ ┘| ─SORTKEYS─

└ ┘──WORKDDN(──┴ ┴─ddname─)

�─ ──┬ ┬─── ───────────────────��
| └ ┘| ─STATISTICS─ ──┬ ┬───────────────── ──┬ ┬──────────────────────── ──┬ ┬────────────────────────
| │ │┌ ┐─NO── │ │┌ ┐─ALL──────── └ ┘| ─correlation-stats-spec─
| └ ┘| ─REPORT─ ──┴ ┴─YES─ └ ┘| ─UPDATE─ ──┼ ┼─ACCESSPATH─
| ├ ┤─SPACE──────
| └ ┘─NONE───────

correlation-stats-spec:

�─ ──┬ ┬───────── ──┬ ┬─── ────────────────────────────�
 └ ┘ ─KEYCARD─ │ │┌ ┐───
 │ ││ │┌ ┐─1─────── ┌ ┐─1%──────
 └ ┘ ───

�
┴─FREQVAL──NUMCOLS─ ──┴ ┴─integer─ ─COUNT─ ──┴ ┴─integer─

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

(index-name, ...) Indicates the qualified name of an index, in the form
creator-id.index-name. If you omit the qualifier creator ID, the user
identifier for the utility job is used.

index-name identifies the index to be rebuilt. To rebuild multiple
indexes, separate each index name with a comma. All indexes
listed must reside in the same table space. If more than one
index is listed and TABLESPACE keyword is not specified, DB2
locates the first valid index name cited and determines the table
space in which that index resides. That table space is used as
the target table space for all other valid index names listed.

(ALL) Specifies that all indexes in the table space referred to by the
TABLESPACE keyword are to be rebuilt.

TABLESPACE database-name.table-space-name
Specifies the table space from which all indexes are to be rebuilt.

database-name Identifies the database to which the table
space belongs.

The default is DSNDB04.

table-space-name Identifies the table space from which all
indexes are rebuilt.

PART integer Specifies the physical partition of a partitioning index or the
logical partition of a nonpartitioning index in a partitioned table
space that is to be rebuilt.

210 Utility Guide and Reference

 REBUILD INDEX

integer is the number of the partition and must be in the range
from 1 to the number of partitions defined for the table space.
The maximum is 254.

| REUSE Specifies that REBUILD should logically reset and reuse
| DB2-managed data sets without deleting and redefining them. If
| you do not specify REUSE, DB2 deletes and redefines
| DB2-managed data sets to reset them.

| If you are rebuilding the index because of a media failure, do not
| specify REUSE.

| If a data set has multiple extents, the extents will not be released
| if you use the REUSE parameter.

WORKDDN ddname
Specifies the DD statement for the temporary work file.

ddname is the DD name for the optional temporary work file.

The default is WORKDDN SYSUT1. If WORKDDN is omitted
and a DD card for SYSUT1 is not provided, REBUILD INDEX
performance will improve by eliminating I/O for SORT.

SORTDEVT device-type
Specifies the device type for temporary data sets to be
dynamically allocated by DFSORT. It can be any device type
acceptable to the DYNALLOC parameter of the SORT or

| OPTION options for DFSORT, as described in DFSORT
| Application Programming: Guide.

device-type is the device type.

SORTNUM integer
Specifies the number of temporary data sets to be dynamically
allocated by the sort program. If you omit SORTDEVT,
SORTNUM is ignored. If you use SORTDEVT and omit
SORTNUM, no value is passed to DFSORT. It is allowed to take
its own default.

integer is the number of temporary data sets.

| SORTKEYS Specifies that index keys are to be sorted and built in parallel
| during the SORTBLD phase to improve performance, unless
| constrained by available memory, sort work files, or UTPRINnn
| file allocations. If you specify SORTKEYS, utility processing
| ignores any WORKDDN specification or file allocation to SYSUT1
| (the default WORKDDN).

| STATISTICS Specifies the gathering of index statistics.

| If you specify the STATISTICS and UPDATE options, statistics are
| stored in the DB2 catalog.

| REPORT Determines if a set of messages is generated to report the
| collected statistics.

| NO Indicates that the set of messages is not output to
| SYSPRINT.

| The default is REPORT NO.

 Chapter 2-13. REBUILD INDEX 211

 REBUILD INDEX

| YES Indicates that the set of messages is output to SYSPRINT.
| The messages generated are dependent on the
| combination of keywords (such as TABLESPACE, INDEX,
| TABLE, and COLUMN) specified with the RUNSTATS
| utility. However, these messages are not dependent on the
| specification of the UPDATE option. REPORT YES always
| generates a report of SPACE and ACCESSPATH
| statistics.

| UPDATE Tells whether the collected statistics are inserted into the catalog
| tables. UPDATE also allows you to select statistics used for
| access path selection or statistics used by database
| administrators.

| ALL Indicates that all collected statistics will be
| updated in the catalog.

| The default is UPDATE ALL.

| ACCESSPATH Indicates that only the catalog table columns that
| provide statistics used for access path selection
| are updated.

| SPACE Indicates that only the catalog table columns that
| provide statistics to help the database
| administrator assess the status of a particular
| table space or index are updated.

| NONE Indicates that no catalog tables are updated with
| the collected statistics. This option is only valid
| when REPORT YES is specified.

| KEYCARD Collects all of the distinct values in all of the 1 to n key column
| combinations for the specified indexes. n is the number of columns
| in the index.

| FREQVAL Controls the collection of frequent value statistics. If you specify
| FREQVAL, it must be followed by two additional keywords:

| NUMCOLS Indicates the number of key columns to concatenate
| together when collecting frequent values from the
| specified index. Specifying '3' means to collect
| frequent values on the concatenation of the first three
| key columns. The default is 1, which means collect
| frequent values on the first key column of the index.

| COUNT Indicates the number of frequent values to be
| collected. Specifying '15' means collect 15 frequent
| values from the specified key columns. The default is
| 10.

212 Utility Guide and Reference

 REBUILD INDEX

Instructions for running REBUILD INDEX
To run REBUILD INDEX, you must:

1. Read “Before running REBUILD INDEX” in this chapter.

2. Prepare the necessary data sets, as described in “Data sets used by REBUILD
INDEX.”

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for REBUILD
INDEX, see “Sample control statements” on page 221.)

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 214. (For a
complete description of the syntax and options for REBUILD INDEX, see
“Syntax and options of the control statement” on page 209.)

5. Check the compatibility table in “Concurrency and compatibility” on page 220 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the REBUILD INDEX job doesn't complete, as described in
“Terminating or restarting REBUILD INDEX” on page 219.

7. Run REBUILD INDEX.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Before running REBUILD INDEX
Because the data needed to build an index is in the table space on which the index
is based, you do not need image copies of indexes. To rebuild the index, you do
not need to recover the table space, unless it also is damaged. Neither do you
have to rebuild an index merely because you have recovered the table space it is
based on.

| If you recover a table space to a prior point in time and do not recover all the
| indexes to the same point in time, you must rebuild all of the indexes.

Data sets used by REBUILD INDEX
Table 37 describes the data sets used by REBUILD INDEX. Include statements in
your JCL for each required data set, and any optional data sets you want to use.

Table 37 (Page 1 of 2). Data sets used by REBUILD INDEX

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

| Work data sets| Temporary data sets for sort input and
| output. The DD names have the form
| SORTWKnn.

| Yes

 Chapter 2-13. REBUILD INDEX 213

 REBUILD INDEX

The following object is named in the utility control statement and does not require a
DD card in the JCL:

Table space
Object to be rebuilt. It is named in the REBUILD INDEX control
statement and is accessed through the DB2 catalog.

Creating the work data set: REBUILD INDEX can use a single sequential data set
as described by the DD statement specified in the WORKDDN option.

To calculate the approximate size (in bytes) of the WORKDDN data set, follow
these steps:

1. For each table, multiply the number of records in the table by the number of
indexes needing to be rebuilt on the table.

2. Add the products obtained in step 1.

| 3. Multiply the sum (from step 2) by the longest key length plus 9.

Allocating twice the space used by the input data sets is usually adequate for the
| sort work data sets. Two or three large SORTWKnn data sets are preferable to

several small ones.

Table 37 (Page 2 of 2). Data sets used by REBUILD INDEX

Data Set Description Required?

Work data set Temporary data set used to store the
| index keys for REBUILD INDEX. The

WORKDDN option of the utility control
statement specifies its DD name. The
default DD name is SYSUT1.

To find the approximate size in bytes of
the work data set, see page 214.

No

Creating the control statement
See “Syntax and options of the control statement” on page 209 for syntax and
option descriptions. See “Sample control statements” on page 221 for examples of
usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Rebuilding index partitions” on page 215
“Improving performance and space utilization” on page 215

| “Building indexes in parallel for REBUILD INDEX” on page 215
“Resetting the REBUILD pending status” on page 218
“Rebuilding critical catalog indexes” on page 219

| “Rebuilt index recoverability” on page 219

214 Utility Guide and Reference

 REBUILD INDEX

Rebuilding index partitions
REBUILD INDEX can rebuild one or more partitions of a partitioning index. The
PART option allows you to specify a particular partition to be rebuilt. This prevents
REBUILD INDEX from unnecessarily scanning the entire table space, and
unnecessarily rebuilding every index. If you recover any part of a partitioned table

| space to the latest point of consistency, you must rebuild all nonpartitioning
indexes.

Improving performance and space utilization
REBUILD INDEX rebuilds indexes by re-creating them from the tables on which
they are based. It can rebuild one or more partitions of a partitioning index in a
partitioned table space when you specify the PART option. This prevents REBUILD

| INDEX from unnecessarily scanning the entire table space when rebuilding only a
| single partition of an index.

| To rebuild several indexes simultaneously and reduce recovery time, use parallel
| index rebuild, or submit multiple index jobs. See “Building indexes in parallel for
| REBUILD INDEX” for more information.

When rebuilding nonpartitioning indexes and partitions of partitioning indexes, this
type of parallel processing on the same table space decreases the size of the sort
data set, as well as the total time required to sort all the keys.

When you run the REBUILD INDEX utility concurrently on separate partitions of a
partitioning index, the sum of the processor time will be roughly equivalent to the
time it takes to run a single REBUILD INDEX job against the entire index. For
partitioning indexes, the elapsed time for running concurrent REBUILD INDEX jobs
will be a fraction of the elapsed time for running a single REBUILD INDEX job
against an entire index.

REBUILD INDEX utility performance can be improved by eliminating the work data
set; however, if the job terminates abnormally, you will have to restart it from the
beginning.

| Building indexes in parallel for REBUILD INDEX
| Use parallel index build to reduce the elapsed time for a REBUILD INDEX job by
| sorting the index keys and rebuilding multiple indexes in parallel, rather than
| sequentially. Optimally, a pair of subtasks processes each index; one subtask sorts
| extracted keys, while the other subtask builds the index. REBUILD INDEX begins
| building each index as soon as the corresponding sort generates its first sorted
| record.

| The greatest elapsed processing time improvements result from parallel rebuilding
| for:

| � Multiple indexes on a simple, segmented, or partitioned table space
| � The partitioning index on all partitions of a partitioned table space
| � The nonpartitioning index on a partitioned table space

| Figure 15 on page 216 shows a REBUILD INDEX flow with parallel index build,
| which requires SORTKEYS. DB2 starts multiple subtasks to unload all parts of the
| partitioned table space. Subtasks then sort index keys and build the partitioning
| index in parallel. If you specified STATISTICS, additional subtasks collect the

 Chapter 2-13. REBUILD INDEX 215

 REBUILD INDEX

| sorted keys and update the catalog table in parallel, eliminating the need for a
| second scan of the index by a separate RUNSTATS job.

| Figure 15. Rebuilding a partitioning index using parallel index build

| Figure 16 shows a REBUILD INDEX flow with parallel index build, which requires
| SORTKEYS. DB2 starts multiple subtasks to unload all partitions of a partitioned
| table space, and sort index keys in parallel. The keys are then merged and passed
| to the build subtask, which builds the nonpartitioning index. If you specified
| STATISTICS, a separate subtask collects the sorted keys and updates the catalog
| table.

| Figure 16. Rebuilding a nonpartitioning index using parallel index build

| REBUILD INDEX of a table space or partition uses parallel index build if all of the
| following conditions are true:

| � You specify the SORTKEYS keyword in the utility statement.
| � You either allow the utility to dynamically allocate the data sets needed by
| SORT, or provide the necessary data sets yourself.

| Select one of the following methods to allocate sort work and message data sets:

216 Utility Guide and Reference

 REBUILD INDEX

| Method 1: REBUILD INDEX determines the optimal number of sort work and
| message data sets.

| 1. Specify the SORTKEYS and SORTDEVT keywords in the utility statement.

| 2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn
| DD statements in the REBUILD INDEX utility JCL.

| 3. Allocate UTPRINT to SYSOUT.

| Method 2: You control allocation of sort work data sets, and REBUILD INDEX
| allocates message data sets.

| 1. Specify the SORTKEYS keyword in the utility statement.

| 2. Provide DD statements with DDNAMEs in the form SWnnWKmm.

| 3. Allocate UTPRINT to SYSOUT.

| Method 3: You have the most control over rebuild processing; you must specify
| both sort work and message data sets.

| 1. Specify the SORTKEYS keyword in the utility statement.

| 2. Provide DD statements with DDNAMEs in the form SWnnWKmm.

| 3. Provide DD statements with DDNAMEs in the form UTPRINnn.

| Data sets used: If you select Method 2 or 3 above, define the necessary data
| sets by using the information provided here, along with:

| � “Determining the number of sort subtasks” on page 218

| � “Allocation of sort subtasks” on page 218

| � “Estimating the sort work file size” on page 218

| Each sort subtask must have its own group of sort work data sets and its own print
| message data set. In addition, you need to allocate the merge message data set
| when you build a single nonpartitioning index on a partitioned table space.

| Possible reasons to allocate data sets in the utility job JCL rather than using
| dynamic allocation are to:

| � Control the size and placement of the data sets
| � Minimize device contention
| � Optimally utilize DASD free space
| � Limit the number of utility subtasks used to build indexes

| The DDNAMEs SWnnWKmm define the sort work data sets that are used during
| utility processing. nn identifies the subtask pair, and mm identifies one or more data
| sets that are to be used by that subtask pair. For example:

| SW01WK01 The first sort work data set that is used by the subtask building the
| first index.

| SW01WK02 The second sort work data set that is used by the subtask building
| the first index.

| SW02WK01 The first sort work data set that is used by the subtask building the
| second index.

| SW02WK02 The second sort work data set that is used by the subtask building
| the second index.

 Chapter 2-13. REBUILD INDEX 217

 REBUILD INDEX

| The DDNAMEs UTPRINnn define the sort work message data sets that are used
| by the utility subtask pairs. nn identifies the subtask pair.

| If you allocate the UTPRINT DD statement to SYSOUT in the job statement, the
| sort message data sets and the merge message data set, if required, are
| dynamically allocated. If you want the sort, merge message data sets, or both
| allocated to a disk or tape data set rather than to SYSOUT, you must supply the
| UTPRINnn or the UTMERG01 DD statements (or both) in the utility JCL. If you do
| not allocate the UTPRINT DD statement to SYSOUT, and do not supply
| UTMERG01 DD statement in the job statement, partitions are not unloaded in
| parallel.

| Determining the number of sort subtasks: The maximum number of utility
| subtasks started for parallel index build is equal to the number of indexes that are
| to be built for a simple table space, segmented table space, or single partition of a
| partitioned table space, or the number of partitions that are to be unloaded if only a
| single index is being built on a partitioned table space.

| REBUILD INDEX determines the number of subtasks according to the following
| guidelines:

| � The number of subtasks equals the number of allocated sort work data set
| groups.

| � The number of subtasks equals the number of allocated message data sets.

| � If you allocate both sort work and message data set groups, the number of
| subtasks equals the smallest number of allocated data sets.

| Allocation of sort subtasks: REBUILD INDEX attempts to assign one sort
| subtask for each index that is to be built. If REBUILD INDEX cannot start enough
| subtasks to build one index per subtask, it allocates any excess indexes across the
| pairs (in the order that the indexes were created), so that one or more subtasks
| might build more than one index.

| Estimating the sort work file size: If you choose to provide the data sets, you
| need to know the size and number of keys that are present in all of the indexes
| being processed by the subtask in order to calculate each sort work file size. When
| you've determined which indexes are assigned to which subtask pairs, use the
| following formula to calculate the space required:

| 2 × (longest index key + 9) × (number of keys extracted)

| longest key The length of the longest index key that is to be processed by
| the subtask. For the first subtask pair for REBUILD INDEX, use
| the maximum value of the longest key.

| number of keys The number of keys from all indexes to be sorted that are to be
| processed by the subtask.

| Resetting the REBUILD pending status
| REBUILD pending (RBDP in DISPLAY command output) means that the physical
| or logical index partition, nonpartitioning index, or logical partition of a
| nonpartitioning index is in REBUILD pending status.

| There are three variations of REBUILD pending:

218 Utility Guide and Reference

 REBUILD INDEX

| RBDP The physical or logical index partition is in the REBUILD pending status.
| The individual physical or logical index partition is inaccessible. RBDP is
| reset by rebuilding the single affected partition.
| RBDP* The logical partition of the nonpartitioning index is in the REBUILD
| pending status. The entire nonpartitioning index is inaccessible. RBDP* is
| reset by rebuilding only the affected logical partitions.
| PSRBD The nonpartitioning index space is in the REBUILD pending status. The
| entire index space is inaccessible and must be rebuilt with the REBUILD
| INDEX utility.

| You can reset the REBUILD pending status for an index with any of these
| operations:

| � REBUILD INDEX
| � REORG INDEX SORTDATA
| � REPAIR SET INDEX with NORBDPEND
| � -START DATABASE with ACCESS FORCE

Rebuilding critical catalog indexes
An ID with a granted authority receives message DSNT500I, “RESOURCE
UNAVAILABLE,” while trying to rebuild indexes in the catalog or directory if the
DSNDB06.SYSDBASE or DSNDB06.SYSUSER table space is unavailable. If you
get this message, you must either make these table spaces available or run the
RECOVER TABLESPACE utility on the catalog or directory using an authorization
ID with the installation SYSADM or installation SYSOPR authority.

| Rebuilt index recoverability
| When you successfully rebuild an index that was defined with COPY YES, utility
| processing inserts a SYSIBM.SYSCOPY row with ICTYPE='B' for each index
| rebuilt. Rebuilt indexes are also placed in informational COPY pending status. We
| recommend taking a full image copy of the index to create a recoverable point in
| time; this action also resets the ICOPY status.

Terminating or restarting REBUILD INDEX
You can terminate REBUILD INDEX with the TERM UTILITY command. If you

| terminate a REBUILD INDEX job, the table space is placed in the RECOVER
pending status and is unavailable until it has been successfully rebuilt.

If you specified the WORKDDN keyword, you can restart REBUILD INDEX during
the UNLOAD and SORT phases, and at the last index built during the BUILD
phase. However, there is a short period of time during writing of SORT output at
the end of the SORT phase that requires restart to begin at the beginning of the
UNLOAD phase instead of at the SORT phase. If you omit WORKDDN, the job
starts over again from the beginning.

| If you restart a job that used the SORTKEYS keyword, you must restart from the
| beginning of the UNLOAD phase.

| If you restart a job which uses the STATISTICS keyword, inline statistics collection
| will not occur. To update catalog statistics, run the RUNSTATS utility after the
| restarted REBUILD INDEX job completes.

For more guidance in restarting online utilities, see “Restarting an online utility” on
page 48.

 Chapter 2-13. REBUILD INDEX 219

 REBUILD INDEX

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Table 38 shows which claim classes REBUILD INDEX drains and any restrictive
state the utility sets on the target object.

Table 39 shows which utilities can run concurrently with REBUILD INDEX on the
same target object. The target object can be an index space or a partition of an
index space. If compatibility depends on particular options of a utility, that is also
shown.

REBUILD INDEX does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

Table 38. Claim classes of REBUILD INDEX operations. Use of claims and drains;
restrictive states set on the target object.

Target| REBUILD INDEX| REBUILD INDEX
PART

Table space or partition DW/UTRO DW/UTRO

Index or physical partition DA/UTUT DA/UTUT

Nonpartitioning index DA/UTUT DR

Logical partition of an index DA/UTUT

Legend:

� DA - Drain all claim classes - no concurrent SQL access
� DW - Drain the write claim class - concurrent access for SQL readers
� DR - Drains the “RR” claim class
� UTUT - Utility restrictive state - exclusive control
� UTRO - Utility restrictive state - read only access allowed.

Table 39 (Page 1 of 2). REBUILD INDEX compatibility

Action| REBUILD INDEX

CHECK DATA No

CHECK INDEX No

| CHECK LOB| Yes

| COPY INDEX| No

| COPY TABLESPACE
| SHRLEVEL REFERENCE

Yes

| COPY TABLESPACE
| SHRLEVEL CHANGE

No

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE No

| REBUILD INDEX| No

220 Utility Guide and Reference

 REBUILD INDEX

To run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, REBUILD INDEX must be
the only utility in the job step and the only utility running in the DB2 subsystem.

Table 39 (Page 2 of 2). REBUILD INDEX compatibility

Action| REBUILD INDEX

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

| REORG TABLESPACE
| UNLOAD CONTINUE or PAUSE

No

| REORG TABLESPACE UNLOAD ONLY or EXTERNAL
| without cluster index

Yes

| REORG TABLESPACE UNLOAD ONLY or EXTERNAL
| with cluster index

No

REPAIR LOCATE by KEY No

REPAIR LOCATE by RID
DUMP or VERIFY

Yes

REPAIR LOCATE by RID
DELETE or REPLACE

No

REPAIR LOCATE TABLESPACE
PAGE DUMP or VERIFY

Yes

REPAIR LOCATE INDEX
PAGE DUMP or VERIFY

No

REPAIR LOCATE TABLESPACE
or INDEX PAGE REPLACE

No

REPORT Yes

RUNSTATS INDEX No

RUNSTATS TABLESPACE Yes

STOSPACE Yes

Sample control statements
Example 1: Rebuild an index. Rebuild the DSN8610.XDEPT1 index, which
indexes the DSN8610.TDEPT table in the DSN8D61A database.

| //STEP1 EXEC DSNUPROC,UID='IUIQU2UT.RBLD1',TIME=144%,

| // UTPROC='',

| // SYSTEM='V61A',DB2LEV=DB2A

| //SYSREC DD DSN=IUIQU2UT.RBLD1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(8%%%,(2%,2%),,,ROUND)

| //SYSUT1 DD DSN=IUIQU2UT.RBLD1.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(8%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

REBUILD INDEX (DSN861%.XDEPT1)

//�

Example 2: Rebuild index partitions. Rebuild partitions 2 and 3 of the
DSN8610.XEMP1 index.

REBUILD INDEX (DSN861%.XEMP1 PART 2, DSN861%.XEMP1 PART 3)

 Chapter 2-13. REBUILD INDEX 221

 REBUILD INDEX

| Example 3: Rebuild a single index on a segmented table space. Rebuild the
| DSN8610.XDEPT1 index. This example specifies the SORTKEYS keyword to use
| parallelism and uses dynamic data set and message set allocation with the
| SORTDEVT and SORTNUM keywords.

| DB2 starts one utility sort subtask pair to build the index. This example does not
| require UTPRINnn DD statements, because it uses DSNUPROC to invoke utility
| processing, which includes a DD statement that allocates UTPRINT to SYSOUT.

| //SAMPJOB JOB ...

| //STEP1 EXEC DSNUPROC,UID='SAMPJOB.RCVINDEX',UTPROC='',SYSTEM='V61A'

| //SYSIN DD �

| REBUILD INDEX (DSN861%.XDEPT1)

| SORTDEVT SYSWK

| SORTNUM 4

| SORTKEYS

| /�

| Example 4: Rebuild multiple partitions of a partitioning index. Rebuild
| partitions 2 and 3 of the DSN8610.XDEPT1 index, using parallel index build
| processing. This example specifies the SORTKEYS keyword to use parallelism and
| uses dynamic data set and message set allocation with the SORTDEVT and
| SORTNUM keywords.

| If sufficient virtual storage resources are available, DB2 starts one utility sort
| subtask pair for each partition. This example does not require UTPRINnn DD
| statements, because it uses DSNUPROC to invoke utility processing, which
| includes a DD statement allocating UTPRINT to SYSOUT.

| //SAMPJOB JOB ...

| //STEP1 EXEC DSNUPROC,UID='SAMPJOB.RBINDEX',UTPROC='',SYSTEM='V61A'

| //SYSIN DD �

| REBUILD INDEX (DSN861%.XEMP1 PART 2, DSN861%.XEMP1 PART 3)

| SORTDEVT SYSWK

| SORTNUM 4

| SORTKEYS

| /�

| Example 5: Rebuild all partitions of a partitioning index. Rebuilds all index
| partitions of the DSN8610.XEMP1 partitioning index, using parallel index build
| processing. This example specifies the SORTKEYS keyword and allocates sort
| work data sets in two groups, which limits the number of utility subtask pairs to two.
| This example does not require UTPRINnn DD statements, because it uses
| DSNUPROC to invoke utility processing, which includes a DD statement allocating
| UTPRINT to SYSOUT.

222 Utility Guide and Reference

 REBUILD INDEX

| //SAMPJOB JOB ...

| //STEP1 EXEC DSNUPROC,UID='SAMPJOB.RCVINDEX',UTPROC='',SYSTEM='V61A'

| //� First group of sort work data sets for parallel index rebuild

| //SW%1WK%1 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SW%1WK%2 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SW%1WK%3 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //� Second group of sort work data sets for parallel index rebuild

| //SW%2WK%1 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SW%2WK%2 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SW%2WK%3 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SYSIN DD �

| REBUILD INDEX (DSN861%.XEMP1)

| SORTKEYS

| /�

| Example 6: Rebuild all indexes of a partitioned table space. Rebuild all indexes
| for table space DSN8S61E in database DSN8D61A, using parallel index build
| processing. This example specifies the SORTKEYS keyword and uses dynamic
| data set and message set allocation with the SORTDEVT and SORTNUM
| keywords.

| If sufficient virtual storage resources are available, DB2 starts one utility sort
| subtask to build the partitioning index and another utility sort subtask to build the
| non-partitioning index. This example does not require UTPRINnn DD statements,
| because it uses DSNUPROC to invoke utility processing, which includes a DD
| statement allocating UTPRINT to SYSOUT.

| //SAMPJOB JOB ...

| //STEP1 EXEC DSNUPROC,UID='SAMPJOB.RCVINDEX',UTPROC='',SYSTEM='V61A'

| //SYSIN DD �

| REBUILD INDEX (ALL) TABLESPACE DSN8D61A.DSN8S61E

| SORTKEYS

| SORTDEVT SYSWK

| SORTNUM 4

| /�

 Chapter 2-13. REBUILD INDEX 223

 REBUILD INDEX

224 Utility Guide and Reference

 RECOVER

Chapter 2-14. RECOVER

The RECOVER online utility recovers data to the current state or to a previous
| point in time by restoring a copy, then applying log records.

| The largest unit of data recovery is the table space or index space; the smallest is
| the page. You can recover a single object, or a list of objects. RECOVER recovers
| an entire table space, index space, a partition or data set, pages within an error
| range, or a single page. You recover data from image copies of an object and from
| log records containing changes to the object. If the most recent full image copy

data set is unusable, and there are previous image copy data sets existing in the
system, then RECOVER uses the previous image copy data sets. For more
information about using data sets for recovery, see “Recovering a data set or
partition” on page 235.

| Compatibility with prior releases: In previous releases of DB2, REBUILD INDEX
| was called RECOVER INDEX. You must modify all utility control statements from
| previous releases to use REBUILD INDEX if you want to continue recovering the
| indexes via a scan of the data. However, if you want to recover the indexes from a
| full image copy, change those control statements to use the new RECOVER INDEX
| syntax on page 226. Only indexes that were defined with the COPY YES attribute
| can be copied and subsequently recovered; see Chapter 6 of DB2 SQL Reference
| for more information about the COPY YES attribute of the ALTER INDEX and
| CREATE INDEX SQL statements.

For a diagram of RECOVER syntax and a description of available options, see
“Syntax and options of the control statement” on page 226. For detailed guidance
on running this utility, see “Instructions for running RECOVER” on page 232.

Output: Output from RECOVER consists of recovered data (either a table space,
| index, partition or data set, error range, or page within a table space).

If you specify the TOLOGPOINT, TORBA, or TOCOPY option to recover data to a
| point in time, RECOVER puts any associated index spaces in REBUILD pending
| status. You must run REBUILD INDEX to remove the index space from REBUILD

pending status.

| If you use the RECOVER utility to partially recover a referentially-related table
| space set or a base table space and LOB table space set, you must ensure that
| you recover the entire set of table spaces, including rebuilding or recovering all
| indexes (including indexes on auxiliary tables for a base table space and LOB table
| space set), to a common quiesce point or a SHRLEVEL REFERENCE copy. If you
| do not include every member of the set, or if you do not recover the entire set to
| the same point in time, RECOVER sets the CHECK pending status on for all
| dependent table spaces, base table spaces, or LOB table spaces in the set.

| If you use the RECOVER utility to partially recover data and all indexes over the
| data, it is best to recover these objects to a common quiesce point or SHRLEVEL
| REFERENCE copy. Otherwise, RECOVER places all indexes in the CHECK
| pending status.

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

 Copyright IBM Corp. 1983, 1999 225

 RECOVER

� RECOVERDB privilege for the database
� DBADM or DBCTRL authority for the database
� SYSCTRL or SYSADM authority.

An ID with installation SYSOPR authority can also execute RECOVER, but only on
a table space in the DSNDB01 or DSNDB06 database.

Execution phases of RECOVER: The RECOVER utility operates in these phases:

Phase Description

UTILINIT Initialization and setup

RESTORE Locate and merge any appropriate image copies and restore the table
space to a backup level; processes a list of objects in parallel if you
specified the PARALLEL keyword.

| RESTORER If you specified the PARALLEL keyword, reads and merges the image
| copies.

| RESTOREW If you specified the PARALLEL keyword, writes the pages to the
| object.

| LOGAPPLY Apply any outstanding log changes to the object restored from the
previous phase or step.

UTILTERM Cleanup

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

��──RECOVER──�

 ┌ ┐──────────────────────────────────
| �─ ──┬ ┬── ───

�
┴object ──┬ ┬────────────────────── ──┬ ┬──────────────────────────── ──┬ ┬| ──┬ ┬─────── ──┬ ┬─────────────── ─────�

| │ ││ │┌ ┐─ALL─────── ├ ┤| ─TORBA─ ──X'byte-string' ───── │ │└ ┘─REUSE─ └ ┘─parallel spec─
| │ │└ ┘──DSNUM ──┴ ┴─integer───(1) └ ┘| ─TOLOGPOINT─ ──X'byte-string' └ ┘| ─LOGONLY──────────────────────
| ├ ┤──object ──┬ ┬────────────────────── recover options spec ──

 │ ││ │┌ ┐─ALL───────
 │ │└ ┘──DSNUM ──┴ ┴─integer───(1)

| └ ┘| ─object──PAGE──page-number─ ──┬ ┬────────── ───
 └ ┘─CONTINUE─

�─ ──┬ ┬────────────── ──��
 ├ ┤─LOCALSITE────
 └ ┘─RECOVERYSITE─

Note:
1 Not valid for nonpartitioning indexes.

226 Utility Guide and Reference

 RECOVER

| object:

�─ ──┬ ┬ ─TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ───────────────────────────────────�
 │ │└ ┘─database-name.─

| ├ ┤| ─INDEXSPACE─ ── ──┬ ┬──────────────── index-space-name
| │ │└ ┘─database-name.─
| └ ┘| ─INDEX─ ── ──┬ ┬───────────── index-name ──────────────
| └ ┘─creator-id.─

parallel spec:

�─ ──┬ ┬───────────────────────────────── ──�
| └ ┘| ─PARALLEL─ ──┬ ┬───────────────────
| └ ┘| ─(──num-objects──)─

recover options spec:

�─ ──┬ ┬ ─TOCOPY──data-set-name─ ──┬ ┬─── ──┬ ┬─────── ─────────────�
| │ │└ ┘──TOVOLUME ──┬ ┬─CATALOG─────────────────────── └ ┘| ─REUSE─

 │ │└ ┘──vol-ser ──┬ ┬──────────────────
 │ │└ ┘ ─TOSEQNO──integer─
 └ ┘─ERROR──RANGE──

 Option descriptions
| You can specify a list of objects by repeating the TABLESPACE, INDEX, or
| INDEXSPACE keywords. If you use a list of objects, the valid keywords are:
| DSNUM, TORBA, TOLOGPOINT, LOGONLY, PARALLEL, and either LOCALSITE
| or RECOVERYSITE.

| RECOVER cannot recover a table space or index space that is defined to use a
| storage group that is defined with mixed specific and nonspecific volume IDs. If you
| specify such a table space or index space, the job terminates and you receive error
| message DSNU419I.

For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

TABLESPACE database-name.table-space-name
Specifies the table space (and optionally, the database to which it
belongs) that is to be recovered.

You can specify a list of table spaces by repeating the TABLESPACE
keyword. You can recover an individual catalog or directory table
space in a list with its IBM-defined indexes. You cannot recover
multiple catalog or directory table spaces in a list.

 Chapter 2-14. RECOVER 227

 RECOVER

database-name Is the name of the database the table space
belongs to.

The default is DSNDB04.

table-space-name Is the name of the table space to be recovered.

| INDEXSPACE database-name.index-space-name
| Specifies the index space that is to be recovered.

| database-name Specifies the name of the database the index
| space belongs to.

| The default is DSNDB04.

| index-space-name Specifies the name of the index space to be
| recovered.

| INDEX creator-id.index-name
| Specifies the index in the index space that is to be recovered. The
| RECOVER utility can recover only indexes that were defined with the
| COPY YES attribute and subsequently copied. For more information
| about this restriction, see “Compatibility with Prior Releases” on page
| 225.

| creator-id Optionally specifies the creator of the index.

| The default is the user identifier for the utility.

| index-name Specifies the name of the index in the index space to be
| recovered.

The following are optional:

| DSNUM Identifies a partition or data set within a table space, or a partition
| within an index space, that is to be recovered; or it recovers the entire
| table space or index space.

| ALL Recovers the entire table space or index space.

The default is ALL.

integer Is the number of a partition or data set to be recovered. The
maximum is 254.

| Not valid for non-partitioning indexes.

For a partitioned table space or index space: The integer is its
partition number.

For a nonpartitioned table space: Find the integer at the end of the
data set name as cataloged in the VSAM catalog. The data set name
has this format:

| catname.DSNDBx.dbname.tsname.I%%%1.Annn

where:

catname The VSAM catalog name or alias
x C or D
dbname The database name
tsname The table space name

| nnn The data set integer.

228 Utility Guide and Reference

 RECOVER

PAGE page-number
Specifies a particular page to be recovered.

page-number is the number of the page, in either decimal or
hexadecimal notation. For example, both 999 and X'3E7' represent
the same page.

CONTINUE Specifies that the recovery process is to continue. Use
this option only if RECOVER has terminated during
reconstruction of a page, because of an error. In this
case, the page is marked as “broken.” After you have
repaired the page, you can use the CONTINUE option to
recover the page, starting from the point of failure in the
recovery log.

TORBA X'byte-string'
Is used in a non-data-sharing environment to specify a point on the

| log to recover to. You must specify TORBA when recovering to a
| point before Version 4. Specify an RBA value.

In a data sharing environment, TORBA must be used only when
recovering to a point before the originating member joined the data
sharing group. If you specify an RBA after this point, the recovery
fails.

Terminates the recovery process with the last log record whose
relative byte address (RBA) is not greater than byte-string, which is a
string of up to 12 hexadecimal characters. If byte-string is the RBA of
the first byte of a log record, that record is included in the recovery.

TOLOGPOINT X'byte-string'
Specifies a point on the log to recover to. Specify either an RBA or an
LRSN value.

The LRSN is a string of 12 hexadecimal characters and is reported by
the DSN1LOGP utility. The value must be greater than the LRSN
value when Version 4 started.

LOGONLY Recovers the target objects from their existing data sets by applying
only log records to the data sets. DB2 applies all log records that
were written after a point that is recorded in the data set itself.

Use the LOGONLY option when the data sets of the target objects
have already been restored to a point of consistency by another
process offline, such as DFSMS Concurrent Copy.

| REUSE Specifies that RECOVER logically resets and reuses DB2-managed
| data sets without deleting and redefining them. If you do not specify
| REUSE, DB2 deletes and redefines DB2-managed data sets to reset
| them.

| If you are recovering an object because of a media failure, do not
| specify REUSE.

| If a data set has multiple extents, the extents will not be released if
| you use the REUSE parameter.

 Chapter 2-14. RECOVER 229

 RECOVER

| PARALLEL Specifies the maximum number of objects in the list that should be
| restored in parallel from image copies on DASD. Specify the
| PARALLEL keyword to take advantage of parallel processing during
| the RESTORE phase.

| (num-objects) Specifies the number of objects in the list that
| should be processed in parallel. If storage
| constraints are encountered, you can adjust this
| value to a smaller value.

| If you specify 0 or do not specify a value for
| num-objects, RECOVER determines the optimal
| number of objects to process in parallel.

LOCALSITE
RECOVER uses image copies from the local site. If you specify
neither LOCALSITE or RECOVERYSITE, then RECOVER uses image
copies from the current site of invocation. (The current site is identified
on the installation panel DSNTIPO under SITE TYPE and in the
macro DSN6SPRM under SITETYP.)

RECOVERYSITE
RECOVER uses image copies from the recovery site. If you specify
neither LOCALSITE or RECOVERYSITE, then RECOVER uses image
copies from the current site of invocation. (The current site is identified
on the installation panel DSNTIPO under SITE TYPE and in the
macro DSN6SPRM under SITETYP.)

TOCOPY data-set-name
| Specifies the particular image copy data set that DB2 uses as a
| source for recovery.

data-set-name is the name of the data set.

If the data set is a full image copy, it is the only data set used in
recovery. If it is an incremental image copy, the recovery also uses
the previous full image copy and any intervening incremental image
copies.

If you specify the data set as the local backup copy, DB2 first tries to
allocate the local primary copy. If the local primary copy is
unavailable, DB2 uses the local backup copy.

If you use TOCOPY or TORBA to recover a single data set of a
nonpartitioned table space, DB2 issues message DSNU520I to warn
that the table space can become inconsistent following the RECOVER
job. This point in time recovery can cause compressed data to exist
without a dictionary or can even overwrite the data set that contains
the current dictionary.

If you use TOCOPY with a particular partition or data set (identified
with DSNUM), then the image copy must be for the same partition or

| data set, or for the whole table space or index space. If you use
TOCOPY with DSNUM ALL, the image copy must be for DSNUM
ALL.

If the image copy data set is an MVS generation data set, then supply
a fully qualified data set name including the absolute generation and
version number.

230 Utility Guide and Reference

 RECOVER

If the image copy data set is not a generation data set and there is
more than one image copy data set with the same data set name, use
one of the following options to identify the data set exactly:

TOVOLUME
Identifies the image copy data set.

CATALOG Identifies the data set as cataloged. Use this option
only for an image copy that was created as a
cataloged data set. (Its volume serial is not recorded
in SYSIBM.SYSCOPY.)

| RECOVER refers to the SYSIBM.SYSCOPY catalog
| table during execution. If you use TOVOLUME

CATALOG, the data set must be cataloged. If you
remove the data set from the catalog after creating
it, you must catalog the data set again to make it
consistent with the record for this copy that appears
in SYSIBM.SYSCOPY.

vol-ser Identifies the data set by an alphanumeric volume
serial identifier of its first volume. Use this option
only for an image copy that was created as a
noncataloged data set. Specify the first vol-ser in the
SYSCOPY record to locate a data set stored on
multiple tape volumes.

TOSEQNO integer
Identifies the image copy data set by its
file sequence number.

integer is the file sequence number.

ERROR RANGE
Specifies that all pages within the range of reported I/O errors are to
be recovered. Recovering an error range is useful when the range is
small relative to the object containing it; otherwise, it is probably better
to recover the entire object.

There are some situations in which recovery using the ERROR
RANGE option is not possible, such as when a sufficient quantity of
alternate tracks cannot be obtained for all bad records within the error
range. The IBM Device Support Facility, ICKDSF service utility, can
be used to determine whether this situation exists. In such a situation,
the error data set should be redefined at a different location on the
volume or on a different volume and the RECOVER utility will run
without the ERROR RANGE option.

Refer to Section 4 (Volume 1) of DB2 Administration Guide for
additional information concerning the use of this keyword.

 Chapter 2-14. RECOVER 231

 RECOVER

Instructions for running RECOVER
To run RECOVER, you must:

1. Read “Before running RECOVER” in this chapter.

2. Prepare the necessary data sets, as described in “Data sets used by
RECOVER” on page 233.

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for RECOVER,
see “Sample control statements” on page 252.)

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 233. (For a
complete description of the syntax and options for RECOVER, see “Syntax and
options of the control statement” on page 226.)

5. Check the compatibility table in “Concurrency and compatibility” on page 250 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the RECOVER utility job does not complete, as described in
“Terminating or restarting RECOVER” on page 250.

 7. Run RECOVER.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

| Before running RECOVER
| Recovering data and indexes: You do not always need to recover both the data
| and indexes. If you recover the table space or index space to a current RBA or
| LRSN, then any referentially-related objects do not need to be recovered. If you
| plan to recover a damaged object to a point in time, ensure that you use a
| consistent point in time for all of its referentially-related objects, including related
| LOB table spaces. You must rebuild the indexes from the data if one of the
| following conditions is true:

| � The table space is recovered to a point-in-time
| � An index is damaged
| � An index is in REBUILD pending status
| � No image copy of the index is available

| If you need to recover both the data and the indexes, and no image copies of the
| indexes are available, use the following procedure:

| 1. Use RECOVER TABLESPACE to recover the data.

| 2. Run REBUILD INDEX on any related indexes to rebuild them from the data.

| If you have image copies of both the table spaces and the indexes, you can
| recover both sets of objects in the same RECOVER utility statement. The objects
| are recovered from the image copies and logs.

| If the table space or index space to be recovered is associated with a storage
| group, DB2 deletes and defines the necessary data sets. If the STOGROUP has
| been altered to remove the volume on which the table space or index space is
| located, RECOVER places the data set on another volume of the storage group.

232 Utility Guide and Reference

 RECOVER

Data sets used by RECOVER
Table 40 describes the data sets used by RECOVER. Include statements in your
JCL for each required data set, and any optional data sets you want to use.

The following objects are named in the utility control statement and do not require
DD cards in the JCL:

| Table space or Index space The name of the table space or index space to be
recovered. It is named in the control statement and
is accessed through the DB2 catalog. If you want to
recover less than an entire table space:

� Use the DSNUM option to recover a partition or
data set.

� Use the PAGE option to recover a single page.
� Use the ERROR RANGE option to recover a

range of pages with I/O errors.

Image copy data set This information is accessed through the DB2
| catalog. However, if you would like to preallocate
| your image copy data sets by using DD cards, refer
| to “Retaining tape mounts” on page 249 for more
| information.

Table 40. Data sets used by RECOVER

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Recovering a table space” on page 234
“Recovering a list of objects” on page 234
“Recovering a data set or partition” on page 235
“Recovering with incremental copies” on page 235
“Recovering a page” on page 236
“Recovering an error range” on page 236
“Recovering with a data set copy not made by DB2” on page 237
“Recovering catalog and directory objects” on page 238

| “Recovering a table space containing LOB data” on page 241
“Performing a point-in-time recovery” on page 242
“Avoiding specific image copy data sets” on page 245
“Improving performance” on page 246
“Optimizing the LOGAPPLY phase” on page 246
“Recovering image copies in a JES3 environment” on page 248
“Resetting RECOVER pending or REBUILD pending status” on page 248.

 Chapter 2-14. RECOVER 233

 RECOVER

Recovering a table space
The following RECOVER statement recovers table space DSN8S61D in database
DSN8D61A:

| RECOVER TABLESPACE DSN8D61A.DSN8S61D

You can also recover multiple table spaces by creating a list of table spaces to be
recovered; repeat the TABLESPACE keyword before each table space specified.
The following statement recovers partition 2 of the partitioned table space
DSN8D61A.DSN8S61E, and recovers the table space DSN8D61A.DSN8S61D to
the quiesce point (RBA X'%%%%%7425468').

| RECOVER TABLESPACE DSN8D61A.DSN8S61E DSNUM 2

| TABLESPACE DSN8D61A.DSN8S61D

| TORBA X'%%%%%7425468'

Each table space is unavailable for most other applications until recovery is
complete. If you make image copies by table space, you can recover the entire
table space, or a data set or partition from the table space. If you make image
copies separately by partition or data set, you must recover the partitions or data
sets by separate RECOVER operations. The following example shows the
RECOVER statement for recovering four data sets in database DSN8D61A, table
space DSN8S61E:

| RECOVER TABLESPACE DSN8D61A.DSN8S61E DSNUM 1

| TABLESPACE DSN8D61A.DSN8S61E DSNUM 2

| TABLESPACE DSN8D61A.DSN8S61E DSNUM 3

| TABLESPACE DSN8D61A.DSN8S61E DSNUM 4

The recovery of these data sets can be scheduled in four separate jobs to run in
parallel. In many cases, the four jobs can read the log data concurrently.

If a table space or data set is in the COPY pending status, recovering it might not
be possible. This status can be reset in several ways: see “Resetting the COPY
pending status” on page 174.

| Recovering a list of objects
You can recover any of the following objects:

| � Table space
| � Table space partition
| � Piece of a linear table space
| � Index space
| � Index space partition

| When you recover to a prior point-in-time, you should recover a set of referentially
related table spaces together to avoid putting any of the table spaces in CHECK
pending status. Use REPORT TABLESPACESET to get a table space listing.

RECOVER merges incremental copies serially and dynamically. As a result,
recovery of a table space list with numerous incremental copies can be
time-consuming and operator-intensive.

If referential integrity violations are not an issue, you can run a separate job to
recover each table space.

234 Utility Guide and Reference

 RECOVER

| When you specify the PARALLEL keyword, DB2 supports parallelism during the
| RESTORE phase for image copies on DASD devices. If RECOVER encounters a
| tape volume in the list, processing of remaining objects pauses until the tape object
| has completed, and then parallel processing resumes.

Recovering a data set or partition
You can use the RECOVER utility to recover individual partitions and data sets.
The phases for data set recovery are the same as for table space recovery.

When image copies are done at the data set level, then RECOVER must be done
at the data set level. To recover the whole table space, all the data sets must be
recovered individually in one or more RECOVER steps. If recovery is attempted at
the table space level, the following message is received:

DSNU514I DSNUCASA - RECOVERY DATA DOES NOT PERMIT

 TABLESPACE RECOVERY

| Alternatively, if image copies are taken at the table space, index, or index space
level, individual data sets can be recovered simply by coding the DSNUM
parameter.

| RECOVER does not support recovery of:

| � A single data set for non-partitioning indexes

| � A logical part of a nonpartitioning index

You should consider the effects of data compression on recovery. When you use
the option TOCOPY, TOLOGPOINT, or TORBA to recover a single data set of a
nonpartitioned table space, message DSNU520I is issued to warn you that the
table space might be inconsistent after the RECOVER job. This point-in-time
recovery might cause compressed data to exist without a dictionary or could even
overwrite the data set that contains the current dictionary.

Recovering with incremental copies
The RECOVER utility merges all incremental image copies since the last full image
copy, and must have all the image copies available at the same time. If there is any
likelihood that the requirement will strain your system resources—for example, by
demanding more tape units than are available—consider running MERGECOPY
regularly to merge image copies into one copy.

Even if you do not periodically merge multiple image copies into one copy when
there are not enough tape units, the utility can still perform. RECOVER dynamically
allocates the full image copy and attempts to allocate dynamically all the
incremental image copy data sets. If RECOVER successfully allocates every
incremental copy, recovery proceeds to merge pages to table spaces and apply the
log. If a point is reached where an incremental copy cannot be allocated,

| RECOVER notes the log RBA or LRSN of the last successfully allocated data set.
Attempts to allocate incremental copies cease, and the merge proceeds using only

| the allocated data sets. The log is applied from the noted RBA or LRSN, and the
incremental image copies that were not allocated are simply ignored.

 Chapter 2-14. RECOVER 235

 RECOVER

Recovering a page
RECOVER PAGE allows you to recover data on a page that has been damaged. In
some situations, you can determine (usually from an error message) which page of
an object has been damaged. You can use the PAGE option to recover a single
page. You can use the CONTINUE option to continue recovering a page that was
damaged during the LOGAPPLY phase of a RECOVER operation.

Recovering a page using PAGE and CONTINUE: Suppose you start RECOVER
for table space TSPACE1. During processing, message DSNI012I informs you of a
problem that damages page number 5. RECOVER completes, but the damaged
page, number 5, is in a stopped state and is not recovered. When RECOVER ends,
message DSNU501I informs you that page 5 is damaged.

To repair the damaged page:

1. Use the DUMP option of the REPAIR utility to view the contents of the
damaged page. Determine what change should have been made by the
applicable log record and apply it by using the REPLACE option of REPAIR.
Use the RESET option to turn off the inconsistent data indicator.

Attention: Be extremely careful when using the REPAIR utility to replace data.
Changing data to invalid values using REPLACE can produce unpredictable
results, particularly when changing page header information. Improper use of
REPAIR can result in damaged data, or in some cases, system failure.

2. Resubmit the RECOVER utility job specifying TABLESPACE(TSPACE1)
PAGE(5) CONTINUE. The RECOVER utility finishes recovering the damaged
page by applying the log records remaining after the one that caused the
problem.

If more than one page is damaged during RECOVER, do step 1 and step 2 for
each damaged page.

Recovering an error range
The ERROR RANGE option of RECOVER allows you to repair pages with reported
I/O errors. DB2 maintains a page error range for I/O errors for each data set; pages
within the range cannot be accessed. The DISPLAY DATABASE command
displays the range. When recovering an error range, RECOVER:

1. Locates, allocates, and applies image copies.
2. Applies changes from the log.

The following statement recovers any current error range problems for table space
TS1:

| RECOVER TABLESPACE DB1.TS1 ERROR RANGE

Recovering an error range is useful when the range is small relative to the object
containing it; otherwise, it is probably better to recover the entire object.

Message DSNU086I indicates that I/O errors were detected on a table space and
that you need to recover it. Before you attempt to use the ERROR RANGE option
of RECOVER, you should run the ICKDSF service utility to correct the DASD error.
If an I/O error is detected during RECOVER processing, DB2 issues message
DSNU538I to tell you which target tracks are involved. The message provides
enough information to run ICKDSF correctly.

236 Utility Guide and Reference

 RECOVER

There are some situations, announced by error messages, in which recovery of an
error range only is not possible. In such a situation, it is better to recover the entire
object.

| During the recovery of the entire table space or index space, DB2 might still
encounter I/O errors that indicate DB2 is still using a bad volume. For user-defined
data sets, you should use access method services to delete the data sets, and
redefine them with the same name on a new volume. If you use DB2 storage
groups, then you can remove the bad volume from the storage group using ALTER
STOGROUP.

Recovering with a data set copy not made by DB2
You can restore a data set to a point of consistency by using a data set copy that

| was not made by the COPY utility. After recovery to the point of consistency, if you
| choose to continue and recover to the current point in time, you do not want

RECOVER to begin processing by restoring the data set from a DB2 image copy.
Therefore, use the LOGONLY option of RECOVER, which will cause RECOVER to
skip the RESTORE phase and apply the log records only, starting from the first log
record written after the data set was backed up.

Because the data sets are restored offline without DB2's involvement, RECOVER
LOGONLY checks that the data set identifiers match those in the DB2 catalog. If
they do not match, message DSNU548I is issued and the job terminates with return
code 8.

| You can use the LOGONLY option on a list of objects.

To ensure that no other transactions can access DB2 objects between the time that
you restore a data set and the time that you run RECOVER LOGONLY:

1. Stop the DB2 objects being recovered by issuing the following command:

| -STOP DATABASE(database name) SPACENAM(space-name)

2. Restore all DB2 data sets that are being recovered.

3. Start the DB2 objects being recovered by issuing the following command:

-START DATABASE(database name) SPACENAM(space-name) ACCESS(UT)

| 4. Run the RECOVER utility without the TORBA or TOLOGPOINT parameters
and with the LOGONLY parameter to recover the DB2 data sets to the current
point in time and to perform forward recovery using DB2 logs. If you want to
recover the DB2 data sets to a prior point in time, run the RECOVER utility with

| either TORBA or TOLOGPOINT, and the LOGONLY parameters.

| 5. If you did not recover related indexes in the same RECOVER control
| statement, then rebuild all indexes on the recovered object.

6. Issue the following command to allow access to the recovered object if the
recovery completes successfully:

| -START DATABASE(database name) SPACENAM(space-name) ACCESS(RW)

With the LOGONLY option, when recovering a single piece of a multi-piece linear
page set, RECOVER opens the first piece of the page set. If the data set is
migrated by DFSMShsm, then the data set is recalled by DFSMShsm. Without
LOGONLY, no data set recall is requested.

 Chapter 2-14. RECOVER 237

 RECOVER

Backing up a single piece of a multi-piece linear page set is not recommended. It
can cause a data integrity problem if the backup is used to restore the data set at a
later time.

Recovering catalog and directory objects
If you are recovering any subset of the objects in the following list, start with the
object that appears first and continue in the order of the list. For example, if you
must recover SYSLGRNX, SYSUTILX, and SYSUSER, recover first SYSUTILX,
then SYSLGRNX, then SYSUSER. It is not necessary to recover all of the objects,
only those that require recovery.

 1. DSNDB01.SYSUTILX
| 2. All indexes on SYSUTILX
| 3. DSNDB01.DBD01

 4. DSNDB06.SYSCOPY
5. All IBM defined indexes on SYSCOPY3

 6. DSNDB01.SYSLGRNX
7. All indexes on SYSLGRNX

 8. DSNDB06.SYSDBAUT
9. All IBM defined indexes on SYSDBAUT3

10. DSNDB06.SYSUSER
11. DSNDB06.SYSDBASE
12. All IBM defined indexes on SYSDBASE and SYSUSER3

13. Other catalog and directory table spaces and indexes. The remaining catalog
table spaces, in database DSNDB06, are SYSGROUP, SYSGPAUT, SYSOBJ,
SYSPLAN, SYSPKAGE, SYSSEQ, SYSSEQ2, SYSSTATS, SYSSTR, and

SYSVIEWS. Most indexes are listed in DB2 SQL Reference . One index not
listed there is DSNVTH01. There are two remaining directory table spaces,
DSNDB01.SCT02, which has indexes SYSIBM.DSNSCT02, and
DSNDB01.SPT01, which has indexes SYSIBM.DSNSPT01 and
SYSIBM.DSNSPT02.

14. All user defined indexes on the catalog.
15. System utility table spaces such as QMF.
16. If used, the communications database (CDB), the object and application

registration tables, and the resource limit specification tables.
17. User table spaces.

| For all catalog and directory table spaces, the IBM-defined indexes with the COPY
| YES attribute can be listed in the same RECOVER utility statement.

| Recovery of the items on the list can be done concurrently or included in the same
job step. However, some restrictions apply:

1. When you recover the following table spaces or indexes, the job step in which
the RECOVER statement appears must not contain any other utility statements.
No other utilities can run while the RECOVER utility is running.

 � DSNDB01.SYSUTILX
| � All indexes on SYSUTILX
| � DSNDB01.DBD01

| 3 If there are no user defined indexes on the catalog, execute REBUILD INDEX (ALL) TABLESPACE DSNDB%6.SYSxxxx to rebuild all the
IBM defined indexes on a catalog table space. If user defined indexes are created on the catalog, the IBM defined indexes must

| be rebuilt individually and the user defined indexes rebuilt in a subsequent step. See Appendix D of DB2 SQL Reference for a list
of the IBM defined indexes.

238 Utility Guide and Reference

 RECOVER

2. When you recover the following table spaces, no other utilities can run while
the RECOVER utility is running. Other utility statements may exist in the same
job step.

 � DSNDB06.SYSCOPY
 � DSNDB01.SYSLGRNX
 � DSNDB06.SYSDBAUT
 � DSNDB06.SYSUSER
 � DSNDB06.SYSDBASE

Attention: If the logging environment requires adding or restoring active logs,
restoring archive logs, or performing any action that affects the log inventory in the
BSDS, you should recover the BSDS before catalog and directory objects. For
information on recovering the BSDS, see Section 4 (Volume 1) of DB2
Administration Guide .

The access method services REPRO function should be used to copy active log
data sets. For information on the JCL for the access method services REPRO
function, see:

� DFSMS/MVS: Access Method Services for the Integrated Catalog

� DFSMS/MVS: Access Method Services for VSAM Catalogs

Why the order is important: To recover one object, RECOVER must obtain
information about it from some other object. Table 41 lists the objects from which
RECOVER must obtain information.

You can use REPORT RECOVERY to get SYSCOPY information for
DSNDB01.SYSUTILX, DSNDB01.DBD01, and DSNDB06.SYSCOPY.

Units of Recovery: When you recover the DB2 catalog and directory, consider the
entire catalog and directory as one unit of recovery. Recover all table spaces and
index spaces of the catalog and directory to the same point of consistency. Sample

| Table 41. Objects the RECOVER utility accesses

Object Name Reason for Access by RECOVER

DSNDB01.SYSUTILX Utility restart information. It is not accessed when it is
recovered; RECOVER for this object is not restartable, and
there can be no other commands in the same job step.
SYSCOPY information for SYSUTILX is obtained from the
log.

DSNDB01.DBD01 Descriptors for the catalog database (DSNDB06), the work
file database (DSNDB07), and user databases. RECOVER
for this object is not restartable, and there can be no other
commands in the same job step. SYSCOPY information for
DBD01 is obtained from the log.

DSNDB06.SYSCOPY Locations of image copy data sets. SYSCOPY information for
SYSCOPY itself is obtained from the log.

DSNDB01.SYSLGRNX| The RBA or LRSN of the first log record after the most recent
copy.

DSNDB06.SYSDBAUT,
DSNDB06.SYSUSER

To verify that the authorization ID is authorized to run
RECOVER.

DSNDB06.SYSDBASE Descriptors of table spaces to be recovered.

 Chapter 2-14. RECOVER 239

 RECOVER

| queries and documentation are provided in DSNTESQ in the SDSNSAMP sample
library that can be used to check the consistency of the catalog.

| Indexes are rebuilt by REBUILD INDEX. If the only items you have recovered are
| table spaces in the catalog or directory, you might have to rebuild their indexes.

Use the CHECK INDEX utility to determine whether an index is inconsistent with
| the data it indexes. You can use the RECOVER utility to recover catalog and
| directory indexes if the index was defined with the COPY YES attribute and you
| have a full index image copy.

You must recover the catalog and directory before recovering user table spaces.

| Be aware that the following table spaces, along with the indexes over them, do not
| have entries in SYSIBM.SYSLGRNX, even if they were defined with COPY YES:

 � DSNDB01.SYSUTILX
 � DSNDB01.DBD01
 � DSNDB01.SYSLGRNX
 � DSNDB06.SYSCOPY
 � DSNDB06.SYSGROUP
 � DSNDB01.SCT02
 � DSNDB01.SPT01

These objects are assumed to be open from the point of their last image copy, so
the RECOVER utility processes the log from that point forward.

Point-in-time recovery: Full recovery of the catalog and directory table spaces and
indexes is strongly recommended. However, if you need to plan for point-in-time
recovery of the catalog and directory, then one method of creating a point of
consistency is to:

1. Quiesce all catalog and directory table spaces in a list, except for
DSNDB06.SYSCOPY and DSNDB01.SYSUTILX.

2. Quiesce DSNDB06.SYSCOPY.

We recommend that you quiesce DSNDB06.SYSCOPY in a separate utility
statement; when you recover DSNDB06.SYSCOPY to its own quiesce point, it
contains the ICTYPE = 'Q' (quiesce) SYSIBM.SYSCOPY records for the other
catalog and directory table spaces.

3. Quiesce DSNDB01.SYSUTILX in a separate job step.

If you need to recover to a point in time, recover DSNDB06.SYSCOPY and
DSNDB01.SYSUTILX to their own quiesce points, and recover other catalog and
directory table spaces to their common quiesce point. The catalog and directory
objects must be recovered in a particular order, as described on page 239.

Recovering critical catalog table spaces: An ID with a granted authority receives
message DSNT500I, “RESOURCE UNAVAILABLE,” while trying to recover a table
space in the catalog or directory if table space DSNDB06.SYSDBASE or
DSNDB06.SYSUSER is unavailable. If you get this message, you must either make
these table spaces available or run the RECOVER utility on the catalog or directory
using an authorization ID with the installation SYSADM or installation SYSOPR
authority.

240 Utility Guide and Reference

 RECOVER

Recovering a table space containing LOB data
| The RECOVER utility can set the auxiliary warning status for a LOB table space if it
| finds at least one invalid LOB column. A LOB can be marked invalid if all of the
| following are true:

| 1. The LOB table space was defined with the LOG(NO) attribute.

| 2. The LOB table space was recovered.

| 3. The LOB was updated since the last image copy.

| The status of an object related to a LOB table space can change due to a recovery
| operation, depending on the type of recovery performed. If all of the following
| objects for all LOB columns are recovered in a single RECOVER utility statement to
| the present point-in-time, a QUIESCE point, or a COPY SHRLEVEL(REFERENCE)
| point, no pending status will exist:

| � base table space
| � index on the auxiliary table
| � LOB table space

| Refer to Table 42 for information about the status of a base table space, index on
| the auxiliary table, or LOB table space that was recovered without its related
| objects.

| Table 42. Determining object status after recovery.

| Object| Recovery Type| Base table
| space Status
| Index on the
| auxiliary table
| Status

| LOB table space
| Status

| Base table space| Current RBA or LRSN| None| None| None

| Base table space| Point-in-time| CHECK pending| None| None

| Index on the
| auxiliary table
| Current RBA or LRSN| None| None| None

| Index on the
| auxiliary table
| Point-in-time| None| CHECK pending| None

| LOB table space| Current RBA or LRSN,
| LOB table space defined
| with LOG(YES)

| None| None| None

| LOB table space| Current RBA or LRSN,
| LOB table space defined
| with LOG(NO)

| None| None| auxiliary warning1

| LOB table space| TOCOPY, COPY was
| SHRLEVEL REFERENCE
| CHECK pending| REBUILD
| pending
| None

| LOB table space| TOCOPY, COPY was
| SHRLEVEL CHANGE
| CHECK pending| REBUILD
| pending
| CHECK pending-
| auxiliary warning1

| LOB table space| TOLOGPOINT or TORBA
| (not a quiesce point)
| CHECK pending| REBUILD
| pending
| CHECK pending-
| auxiliary warning1

| LOB table space| TOLOGPOINT or TORBA
| (at a quiesce point)
| CHECK pending| REBUILD
| pending
| None

| Note: 1 If at any time a log record is applied to the LOB table space that results in a LOB being marked invalid, the
| LOB table space is set to auxiliary warning status.

| For information about resetting any of these statuses, see Appendix C, “Resetting
| an advisory or restrictive status” on page 527.

 Chapter 2-14. RECOVER 241

 RECOVER

Performing a point-in-time recovery
A recovery operation done with the options TOLOGPOINT, TORBA or TOCOPY is

| known as a point-in-time recovery. A consistent point-in-time is a quiesce point or
| an image copy set that was taken with SHRLEVEL REFERENCE. It is not

necessary to take a full image copy after recovering to a point-in-time, except in the
case of fallback recovery; see “Performing fallback recovery” on page 248. DB2

| records the RBAs or LRSNs associated with the point-in-time recovery in the
SYSIBM.SYSCOPY catalog table to allow future recover operations to skip the
unwanted range of log records.

| Because a point-in-time recovery of only the table space leaves data in a consistent
| state and indexes in an inconsistent state, all indexes must be rebuilt using
| REBUILD INDEX. For more information, see “Resetting the REBUILD pending
| status” on page 218.

| An index cannot be recovered to a prior point-in-time if the index has had its key
length increased less than or equal to 16 distinct times since the specified
| point-in-time. An ALTER that increases the length of the index key column
| becomes distinct when the unit of work is committed— the ALTERs must take
| place in 16 different commit scopes. For example, if you ALTER, commit, and then
| ALTER again, this counts at two distinct ALTERs. Alternatively, if you ALTER,
| ALTER again and then commit, this counts as one distinct ALTER.

| If you use TOLOGPOINT, TORBA or TOCOPY to recover a single data set of a
| nonpartitioned table space, DB2 issues message DSNU520I to warn that the table
| space can become inconsistent following the RECOVER job. This point-in-time
| recovery can cause compressed data to exist without a dictionary or can even
| overwrite the data set that contains the current dictionary.

| The TORBA and TOLOGPOINT options reset the CHECK pending status on table
| spaces when:

| � All members of a table space set are recovered to the same quiesce point or
| SHRLEVEL REFERENCE point, and no referential constraints were defined on
| a dependent table after that point. The CHECK pending status is reset for any
| table space in the table space set.

| The TORBA and TOLOGPOINT options set the CHECK pending status on table
| spaces when:

| � One or more members of a table space set are recovered to a previous point in
| time that is not a common quiesce or SHRLEVEL(REFERENCE) point.
| Dependent table spaces are placed in CHECK pending status.

| � All members of a table space set are recovered to the same quiesce point, but
| referential constraints were defined on a dependent table after that quiesce
| point. Table spaces containing those dependent tables are placed in check
| pending status.

� Table spaces with LOB columns defined were recovered without recovering
their LOB table spaces.

| The TORBA and TOLOGPOINT options reset the CHECK pending status on
| indexes when:

242 Utility Guide and Reference

 RECOVER

| � The indexes have been recovered along with the related table space to the
| same quiesce point or SHRLEVEL REFERENCE point. RECOVER processing
| resets the CHECK pending status for any indexes in the RECOVER statement.

| The TORBA and TOLOGPOINT options set the CHECK pending status on indexes
| when:

| � One or more of the indexes have been recovered to a previous point in time,
| but the related table space was not recovered in the same RECOVER
| statement.

| � One or more of the indexes have been recovered along with the table space to
| a previous point in time that is not a quiesce point or SHRLEVEL REFERENCE
| point.

The auxiliary check pending status (ACHKP) is set on when the CHECK DATA
utility detects an inconsistency between a table space with LOB columns defined
and a LOB table space. For information about how to reset the ACHKP status, see
Appendix C, “Resetting an advisory or restrictive status” on page 527.

For more information about recovering data to a prior point of consistency, see
Section 4 (Volume 1) of DB2 Administration Guide.

| Recovery considerations after rebalancing partitions with REORG: Image
| copies taken prior to resetting the REORG pending status of any partition of a
| partitioned table space are not usable for recovering to a current RBA or LRSN.
| Avoid performing a point-in-time recovery for a partitioned table space to a
| point-in-time that is after the REORG pending status was set, but before a
| rebalancing REORG was performed. To determine an appropriate point-in-time:

| 1. Run REPORT RECOVERY.

| 2. Select an image copy where the recovery point is a point after the rebalancing
| REORG was performed.

| If you run the REORG utility to turn off a REORG pending status, and then recover
| to a point-in-time before that REORG, DB2 sets restrictive statuses on the all
| partitions that you specified in the REORG job as follows:

� Sets REORG pending (and possibly CHECK pending) on for the data partitions.
| � Sets REBUILD pending on for the associated index partitions.
| � Sets REBUILD pending on for the associated logical partitions of
| nonpartitioning indexes.

For information about resetting these restrictive statuses, see “REORG pending
status” on page 532 and “REBUILD pending status” on page 530.

| To create a new recovery point, it is strongly recommended that immediately
| following an ALTER INDEX operation, you either:

| � Run REORG with COPYDDN and SHRLEVEL NONE specified, or

| � Take a full image copy immediately after REORG completes.

| Use RECOVER LOGONLY after data has been redistributed among partitions using
| REORG. If you perform a point-in-time recovery, you must keep the off-line copies
| synchronized with the SYSIBM.SYSCOPY records. Therefore, do not delete any
| SYSCOPY='A' records, as they might be needed during the recovery. Only delete

 Chapter 2-14. RECOVER 243

 RECOVER

| these SYSCOPY records when you are sure you will no longer use the off-line
| copies taken before the rebalancing REORG.

Planning for point-in-time recovery: TOCOPY, TOLOGPOINT, and TORBA are
viable alternatives in many situations in which recovery to the current point-in-time
is not possible or desirable. To make these options work best for you, take periodic
quiesce points at points of consistency that are appropriate to your applications.

| When making copies of a single object, use SHRLEVEL REFERENCE to establish
consistent points for TOCOPY recovery. Copies made with SHRLEVEL CHANGE
do not copy data at a single instant, because changes can occur as the copy is
made. A subsequent RECOVER TOCOPY operation can produce inconsistent data.

| When copying a list of objects, use SHRLEVEL REFERENCE. If a subsequent
| recovery to a point-in-time is necessary, you can use a single RECOVER utility
| statement to list all of the objects, along with TOLOGPOINT to identify the common
| RBA or LRSN value. If you use SHRLEVEL CHANGE to copy a list of objects, you
| should follow it with a QUIESCE of the objects.

To improve the performance of the recovery, take a full image copy of the table
space or table space set, and then quiesce them using the QUIESCE utility. This
allows RECOVER TORBA to recover the table spaces to the quiesce point with
minimal use of the log.

Authorization: Restrict use of TOCOPY, TOLOGPOINT, and TORBA to personnel
with a thorough knowledge of the DB2 recovery environment.

Ensuring consistency: RECOVER TORBA, RECOVER TOLOGPOINT, and
RECOVER TOCOPY can be used on a single:

� partition of a partitioned table space
| � partition of a partitioning index space

� data set of a simple table space

For any of the previously-listed objects, all data sets must be restored to the same
level or the data will be inconsistent.

| If possible, a table space and all of its indexes (or a table space set and all related
| indexes) should be recovered in the same RECOVER utility statement, specifying
| TOLOGPOINT or TORBA to identify a QUIESCE point. This action avoids placing
| indexes in the CHECK pending or REBUILD pending status. If the TOLOGPOINT is
| not a common QUIESCE point for all objects, we recommend using the following
| procedure:

| 1. RECOVER table spaces to the log point.

| 2. Use concurrent REBUILD INDEX jobs to recover the indexes over each table
| space.

| This procedure ensures that the table spaces and indexes are synchronized, and
| eliminates the need to run the CHECK INDEX utility.

Point-in-time recovery can cause table spaces to be placed in CHECK pending
status if they have table check constraints or referential constraints defined on
them. When recovering tables involved in a referential constraint, you should
recover all the table spaces involved in a constraint. This is the table space set. To
avoid setting CHECK pending, you must do both of the following:

244 Utility Guide and Reference

 RECOVER

� Recover the table space or the table space set to a quiesce point or to an
image copy made with SHRLEVEL REFERENCE.

If you do not recover each table space of the table space set to the same
quiesce point, and if any of the table spaces are part of a referential integrity
structure:

– All dependent table spaces that are recovered are placed in CHECK
pending status with the scope of the whole table space.

– All dependent table spaces of the above recovered table spaces are placed
in CHECK pending status with the scope of the specific dependent tables.

� Do not add table check constraints or referential constraints after the quiesce
point or image copy.

If you recover each table space of a table space set to the same quiesce point,
but referential constraints were defined after the quiesce point, then the
CHECK pending status is set for the table space containing the table with the
referential constraint.

| For information about actions to take if CHECK INDEX identifies inconsistencies
| after you perform a RECOVER job, see “Reviewing CHECK INDEX output” on
| page 75.

| For information about resetting the CHECK pending status of table spaces, see
| “Chapter 2-4. CHECK DATA” on page 55. For information about resetting the
| CHECK pending status for indexes, see “CHECK pending status” on page 528.

Compressed data: Use caution when recovering a portion of a table space or
partition, say one data set, to a prior point in time. If the data set being recovered
has been compressed with a different dictionary, then you can no longer read the
data. The details of data compression are described in Section 2 (Volume 1) of
DB2 Administration Guide.

Avoiding specific image copy data sets
You can accidentally lose an image copy, or you might want to avoid a specific
image copy data set. Because the corresponding row is still present in
SYSIBM.SYSCOPY, RECOVER will always attempt to allocate the data set. The
following sections describe the options available if you want to skip a specific image
copy data set.

Image copy on tape: If the image copy is on tape, message IEF233D and
IEF455D will request the tape for RECOVER.

 IEF233D M BAB,COPY ,,R92341QJ,DSNUPROC,

OR RESPOND TO IEF455D MESSAGE

�42 IEF455D MOUNT COPY ON BAB FOR R92341QJ,DSNUPROC OR REPLY 'NO'

 R 42,NO

 IEF234E K BAB,COPY ,PVT,R92341QJ,DSNUPROC

By replying NO, you can initiate the fallback to the previous image copy.
RECOVER will respond with message DSNU030I and DSNU508I.

DSNU%3%I csect-name - UNABLE TO ALLOCATE R92341Q.UTQPS%%1.FCOPY%1%
 RC=4, CODE=X'%484%%%%'

DSNU5%8I csect-name - IN FALLBACK PROCESSING TO PRIOR FULL IMAGE COPY

Reason code X'0484' means "request denied by operator."

 Chapter 2-14. RECOVER 245

 RECOVER

Image copy on DASD: If the image copy is on DASD, you can delete or rename
the image copy data set before RECOVER starts executing. RECOVER issues
message DSNU030I and DSNU508I.

DSNU%3%I csect-name - UNABLE TO ALLOCATE R92341Q.UTQPS%%1.FCOPY%1%,
 RC=4, CODE=X'17%8%%%%'

DSNU5%8I csect-name - IN FALLBACK PROCESSING TO PRIOR FULL IMAGE COPY

Reason Code X'1708' means "ICF catalog entry not found".

 Improving performance
Use MERGECOPY to merge your table space image copies before recovering the
table space. If you do not merge your image copies, RECOVER automatically
merges them. If RECOVER cannot allocate all the incremental image copy data
sets when it merges the image copies, then RECOVER uses the log instead.

Include a table space list in your RECOVER utility statement to avoid scanning the
log more than once.

If you use RECOVER TOCOPY for full image copies, you can improve performance
by using data compression. The improvement is proportional to the degree of
compression.

| Consider specifying the PARALLEL keyword to restore image copies from DASD to
| a list of objects in parallel.

Optimizing the LOGAPPLY phase
The time required to recover a table space depends also on the time required to
read and apply log data. There are several things you can do to optimize the
process.

If possible, the required log records are read from the active log. That provides the
best performance.

Any log records not found in the active logs are read from the archive log data sets,
which are dynamically allocated to satisfy the requests. The type of storage used
for archive log data sets is a significant factor in the performance.

| � RECOVER a list of objects in one utility statement to take only a single pass of
| the log.

� Keeping archive logs on DASD provides the best possible performance.

� Controlling archive log data sets by DFSMShsm is next best. DB2 optimizes
recall of the data sets. After being recalled, the data set is read from DASD.

� If the archive log must be read from tape, DB2 optimizes access by means of
ready-to-process and look-ahead mount requests. DB2 also permits delaying
the deallocation of a tape drive if subsequent RECOVER jobs require the same
archive log tape. Those methods are described in more detail below.

Which log data sets to use and where they reside is recorded in the BSDS, which
must be kept current. If the archive log data sets are cataloged, the integrated
catalog facility catalog tells where to allocate the required data set.

246 Utility Guide and Reference

 RECOVER

| To improve recovery time, consider enabling the Fast Log Apply function on the
| DB2 subsystem. For more information about enabling this function, see the LOG
| APPLY STORAGE field on panel DSNTIPL, in Section 2 of DB2 Installation Guide.

DFSMShsm data sets: Recall for the first DFSMShsm archive log data set starts
automatically when the LOGAPPLY phase starts. When recall is complete and the
first log record is read, recall for the next archive log data set starts. This process is
known as look-ahead recalling. Its object is to recall the next data set in parallel
with reading the preceding one.

When a recall is complete, the data set is available to all RECOVER jobs that
require it. Reading proceeds in parallel.

Non-DFSMShsm tape data sets: DB2 reports on the console all tape volumes that
are required for the entire job. The report distinguishes two types of volumes:

� Any volume not marked with an asterisk (*) is required for the job to complete.
These volumes should be obtained from the tape library as soon as possible.

� Any volume that is marked with an asterisk (*) contains data that is also
contained in one of the active log data sets. The volume might or might not be
required.

As tapes are mounted and read, DB2 makes two types of mount requests:

� Ready-to-process: The current job needs this tape immediately. As soon as the
tape is loaded, DB2 allocates and opens it.

� Look-ahead: This is the next tape volume required by the current job.
Responding to this request enables DB2 to allocate and open the data set
before it is needed, thus reducing overall elapsed time for the job.

You can dynamically change the maximum number of input tape units that are used
to read the archive log by specifying the COUNT option of the SET ARCHIVE
command. For example, use

-SET ARCHIVE COUNT (1%)

to assign 10 tape units to your DB2 subsystem.

The DISPLAY ARCHIVE READ command shows the currently mounted tape
volumes and their statuses.

Delayed deallocation: DB2 can delay deallocating the tape units used to read the
archive logs. This is useful when several RECOVER utility statements run in
parallel. By delaying deallocation, DB2 can re-read the same volume on the same
tape unit for different RECOVER jobs, without taking time to allocate it again.

The amount of time DB2 delays deallocation can be dynamically changed with the
TIME option of the SET ARCHIVE command. For example, use:

-SET ARCHIVE TIME(6%)

to specify a 60 minute delay. In a data sharing environment, you might want to
specify (0) to avoid having one member hold onto a data set that another member
needs for recovery.

Performance summary:

1. Achieve the best performance by allocating archive logs on DASD.

 Chapter 2-14. RECOVER 247

 RECOVER

2. Consider staging cataloged tape data sets to DASD before allocation by the log
read process.

3. If the data sets are read from tape, set both the COUNT and the TIME value to
the maximum allowable within the system constraints.

Recovering image copies in a JES3 environment
Ensure that there are sufficient units available to mount the required image copies.
In a JES3 environment, if the number of image copies to be restored exceeds the
number of available online and offline units, and the RECOVER job successfully
allocates all available units, the job waits for more units to become available.

Resetting RECOVER pending or REBUILD pending status
Several possible operations on a table space can place the table space in the
RECOVER pending status and the index space in REBUILD pending status. The
status can be turned off in several ways, listed below:

� Recover the table space, index space, or partition.

| � Use REBUILD INDEX to rebuild the index space from existing data.

� Use the LOAD utility, with the REPLACE option, on the table space or partition.

� Use the REPAIR utility, with the NORCVRPEND option, on the table space,
| index space, or partition. Be aware that the REPAIR utility does not fix the data

inconsistency in the table space or index.

| � Run REORG INDEX SORTDATA on the affected index.

Considerations for running RECOVER
This section includes additional information to keep in mind when running
RECOVER.

Allocating incremental image copies
RECOVER will attempt to dynamically allocate ALL required incremental image
copy data sets. If any of the incremental image copies are missing, RECOVER will:

� Identify the first incremental image copy that is missing

� Use the incremental image copies up to the missing incremental image copy

� Not use the remaining incremental image copy data sets

| � Apply additional log records to compensate for any incremental image copies
| that were not used

For example, if the incremental image copies are on tape and not enough tape
drives are available, RECOVER will NOT use the remaining incremental image
copy data sets.

Performing fallback recovery
If the RECOVER utility cannot use the latest primary copied data set as a starting
point for recovery, it attempts to use the backup copied data set, if one is available.
If neither image copy is usable, it attempts to fall back to a previous recoverable
point. If a previous REORG LOG YES or LOAD REPLACE LOG YES was done, it
attempts to recover from the log. If there are no good full image copies, and no

248 Utility Guide and Reference

 RECOVER

previous REORG LOG YES or LOAD REPLACE LOG YES, the RECOVER utility
terminates.

| If RECOVER processes an index for which no full copy exists, or if the copy cannot
| be used due to utility activity that occurred on the index or on its underlying table
| space, the index remains untouched and utility processing terminates with return
| code 8. For more information about this situation, see “Setting and clearing the
| informational COPY pending status” on page 103.

If you always make multiple image copies, RECOVER should seldom fall back to
an earlier point. Instead, RECOVER relies on the backup copied data set should
the primary copied data set be unusable.

In a JES3 environment, fallback recovery can be accomplished by issuing a JES3
"cancel,s" command at the time the allocation mount message is issued. This
might be necessary in the case where a volume is not available or the given
volume is not desired.

Retaining tape mounts
If the image copy data sets from which you want to recover reside on the same
tape, you do not need to remove the tape. For noncataloged image copies, specify
the following parameters on the DD cards (in this example, the DD cards are
ddname1 and ddname2):

//ddname1 DD UNIT=348%,DSN=data-set-name1,DISP=(OLD,PASS),LABEL=1,
// VOL=(,RETAIN,SER=vol-ser)
//ddname2 DD UNIT=348%,DSN=data-set-name2,DISP=(OLD,PASS),LABEL=2,
// VOL=(,REF=�.ddname1)

This example only works for multiple image copies on a single volume. To use
multiple image copies on multiple volumes, the image copy data sets must be
cataloged. For cataloged image copies on one or more tape volumes, specify the
following parameters on the DD cards (in this example, the DD cards are ddname1,
ddname2, and ddname3):

//ddname1 DD DSN=data-set-name1,UNIT=348%,DISP=(OLD,PASS),VOL=(,RETAIN),
// LABEL=(1,SL)

//ddname2 DD DSN=data-set-name2,UNIT=348%,DISP=(OLD,PASS),VOL=(,RETAIN),
// LABEL=(2,SL)

//ddname3 DD DSN=data-set-name3,UNIT=348%,DISP=(OLD,PASS),VOL=(,RETAIN),
// LABEL=(3,SL)

Avoiding damaged media
When a media error is detected, DB2 prints a message giving the extent of the
damage. If an entire volume is bad, and storage groups are being used, you must
remove the bad volume first; otherwise, the RECOVER utility can re-access the
damaged media. You must:

1. Use -ALTER STOGROUP to remove the bad volume and add another
| 2. Execute the RECOVER utility for all objects on that volume.

If the RECOVER utility cannot complete because of severe errors caused by the
damaged media, it can be necessary to use access method services (IDCAMS) to
delete the cluster for the table space or index with the NOSCRATCH option. Refer
to the access method services reference manual for details. If the table space or
index is defined using STOGROUP, the RECOVER utility automatically redefines

 Chapter 2-14. RECOVER 249

 RECOVER

the cluster. For user-defined table spaces or indexes, you must redefine the cluster
before invoking the RECOVER utility.

| Recovering table spaces and index spaces with mixed volume IDs
| You cannot run RECOVER on a table space or index space on which mixed

specific and non-specific volume IDs were defined with CREATE STOGROUP or
ALTER STOGROUP.

Terminating or restarting RECOVER
For instructions on restarting a utility job, see “Restarting an online utility” on
page 48.

Terminating RECOVER: Terminating a RECOVER job with the -TERM UTILITY
| command leaves the table space being recovered in RECOVER pending status,
| and the index space being recovered in the REBUILD pending status. If you are
| recovering a table space to a previous point-in-time, then its indexes are left in the
| REBUILD pending status. The data is unavailable until the object has been

successfully recovered or rebuilt.

Restarting RECOVER: RECOVER can be restarted at the beginning of the phase
or at the current checkpoint.

If you attempt to recover multiple objects using a single RECOVER statement and
the utility fails in:

| � The RESTORE phase: All objects in the process of being restored are placed
| in the RECOVER or REBUILD pending status. The status of the remaining
| objects is unchanged.

| � The LOGAPPLY phase: All objects specified in the RECOVER statement are
| placed in the RECOVER or REBUILD pending status.

In both cases, you must identify and fix the causes of the failure before a current
restart is performed.

| If you specified the PARALLEL keyword in your RECOVER utility statement, use
| RESTART(PHASE) to restart at the beginning of the current phase, or restart from
| the last commit point of each object processed in parallel.

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are

| compatible. However, if a nonpartitioning index exists on a partitioned table space,
utilities operating on different partitions of a table space can be incompatible
because of contention on the nonpartitioning index.

Table 43 on page 251 shows which claim classes RECOVER claims and drains
and any restrictive state the utility sets on the target object.

Table 44 on page 251 shows which utilities can run concurrently with RECOVER
on the same target object. The target object can be a table space, an index space,

250 Utility Guide and Reference

 RECOVER

or a partition of a table space or index space. If compatibility depends on particular
options of a utility, that is also shown.

RECOVER does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

Table 43. Claim classes of RECOVER operations. Use of claims and drains; restrictive
states set on the target object.

Target RECOVER
(no option)

RECOVER
TORBA or
TOCOPY

RECOVER
PART
TORBA or
TOCOPY

RECOVER
ERROR-RANGE

Table space or
partition

DA/UTUT DA/UTUT DA/UTUT DA/UTUT
CW/UTRW1

Index or
physical
partition

| DA/UTUT DA/UTUT DA/UTUT| DA/UTUT
| CW/UTRW1

| Nonpartitioning
| index
| DA/UTUT DA/UTUT DR| DA/UTUT
| CW/UTRW1

RI dependents CHKP (YES) CHKP (YES)

Legend:

� CHKP (YES): Concurrently running applications see CHECK pending after
commit

� CW: Claim the write claim class
� DA: Drain all claim classes, no concurrent SQL access
� DR: Drain the repeatable read class, no concurrent access for SQL repeatable

readers
� UTRW: Utility restrictive state, read/write access allowed
� UTUT: Utility restrictive state, exclusive control
� Blank: Object is not affected by this utility

Notes:

1. During the UTILINIT phase, the claim and restrictive state change from DA/UTUT to
CW/UTRW.

Table 44 (Page 1 of 2). RECOVER compatibility

Action RECOVER
(no option)

RECOVER
TOCOPY or
TORBA

RECOVER
ERROR-RANGE

| CHECK DATA No No No

| CHECK INDEX No No No

| CHECK LOB No No No

| COPY INDEXSPACE| No| No| No

| COPY TABLESPACE No No No

DIAGNOSE Yes Yes Yes

LOAD No No No

MERGECOPY No No No

MODIFY No No No

 Chapter 2-14. RECOVER 251

 RECOVER

To run on DSNDB01.SYSUTILX, RECOVER must be the only utility in the job step
and the only utility running in the DB2 subsystem.

RECOVER on any catalog or directory table space is an “exclusive” job; such a job
can interrupt another job between job steps, possibly causing the interrupted job to
time out.

Table 44 (Page 2 of 2). RECOVER compatibility

Action RECOVER
(no option)

RECOVER
TOCOPY or
TORBA

RECOVER
ERROR-RANGE

QUIESCE No No No

| REBUILD INDEX No No No

REORG INDEX Yes No Yes

REORG TABLESPACE No No No

REPAIR LOCATE TABLESPACE No No No

REPAIR LOCATE INDEX Yes No Yes

REPORT Yes Yes Yes

RUNSTATS INDEX No No No

RUNSTATS TABLESPACE No No No

STOSPACE Yes Yes Yes

Sample control statements
Example 1: Recover an error range. Recover from reported media failure in
partition 2 of table space DSN8D61A.DSN8S61D.

| //STEP5 EXEC DSNUPROC,UID='HUIAU326.RESTORE',TIME=144%,

| // UTPROC='',

| // SYSTEM='V61A',DB2LEV=DB2A

| //SYSIN DD �

RECOVER TABLESPACE DSN8D61A.DSN8S61D DSNUM 2 ERROR RANGE

/�

Example 2: Recover a table space. Recover table space DSN8S61D, in database
DSN8D61A.

| RECOVER TABLESPACE DSN8D61A.DSN8S61D

Example 3: Recover a table space partition. Recover the second partition of
table space DSN8S61D.

| RECOVER TABLESPACE DSN8D61A.DSN8S61D DSNUM 2

Example 4: Recover a table space to a specific RBA. Recover table spaces
DSN8D61A.DSN8S61E and DSN8D61A.DSN8S61D to their quiesce point (RBA
X'%%%%%7425468').

| RECOVER TABLESPACE DSN8D61A.DSN8S61E DSNUM 2

| TABLESPACE DSN8D61A.DSN8S61D

| TORBA X'%%%%%7425468'

252 Utility Guide and Reference

 RECOVER

| Example 5: Recover a list of objects to a point in time. The point in time is the
| common LRSN value from the SYSIBM.SYSCOPY records for the list of objects in
| the COPY SHRLEVEL REFERENCE job on page 109. The objects in the list are
| synchronized after successful completion of this RECOVER utility statement. This
| example restores four objects in parallel.

| RECOVER TOLOGPOINT X'123456789%AB' PARALLEL(4)

| TABLESPACE DSN8D61A.DSN8S61D

| INDEX DSN861%.XDEPT1

| INDEX DSN861%.XDEPT2

| INDEX DSN861%.XDEPT3

| TABLESPACE DSN8D61A.DSN8S61E

| INDEX DSN861%.XEMP1

| INDEX DSN861%.XEMP2

 Chapter 2-14. RECOVER 253

 RECOVER

254 Utility Guide and Reference

 REORG INDEX

Chapter 2-15. REORG INDEX

The REORG INDEX utility reorganizes an index space to improve access
performance and reclaim fragmented space. You can specify the degree of access

| to your data during reorganization, and collect inline statistics using the
| STATISTICS keyword.

| You can determine when to run REORG INDEX by using the LEAFDISTLIMIT
| catalog query option. If you specify the REPORTONLY option, REORG INDEX will
| produce a report detailing if a REORG is recommended; a REORG is not
| performed.

For a diagram of REORG INDEX syntax and a description of available options, see
“Syntax and options of the control statement” on page 256. For detailed guidance
on running this utility, see “Instructions for running REORG INDEX” on page 264.

Output: The following list summarizes REORG INDEX output:

REORG specified Results

REORG INDEX Reorganizes the entire index (all parts if partitioning).

REORG INDEX PART n Reorganizes PART n of the partitioning index.

Authorization required: To execute this utility on a user index, the privilege set of
the process must include one of the following:

� REORG privilege for the database
� DBADM or DBCTRL authority for the database

 � SYSCTRL authority
 � SYSADM authority.

To execute this utility on an index space in the catalog or directory, the privilege set
of the process must include one of the following:

� REORG privilege for the DSNDB06 (catalog) database
� DBADM or DBCTRL authority for the DSNDB06 (catalog) database
� Installation SYSOPR authority

 � SYSCTRL authority
� SYSADM or Installation SYSADM authority

An authority other than installation SYSADM or installation SYSOPR can receive
message DSNT500I, “resource unavailable,” while trying to reorganize an index
space in the catalog or directory. This can happen when the DSNDB06.SYSDBAUT
or DSNDB06.SYSUSER catalog table space or one of the indexes is unavailable. If
this problem occurs, run the REORG INDEX utility again using an authorization ID
with the installation SYSADM or installation SYSOPR authority.

An ID with installation SYSOPR authority can also execute REORG INDEX, but
only on an index in the DSNDB06 database.

| To run REORG INDEX STATISTICS REPORT YES, the privilege set must include
| the SELECT privilege on the catalog tables.

Execution phases of REORG INDEX: The REORG utility operates in these
phases:

 Copyright IBM Corp. 1983, 1999 255

 REORG INDEX

Phase Description
UTILINIT Initialization and setup
UNLOAD Unloads index space and writes keys to a sequential data set.

| BUILD Builds indexes. Updates index statistics.
LOG Processes log iteratively. Used only if you specify SHRLEVEL

CHANGE.
SWITCH Switches access to shadow copy of index space or partition. Used

only if you specify SHRLEVEL REFERENCE or CHANGE.
UTILTERM Cleanup

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

��─ ─REORG─ ─INDEX─ ─index-name─ ──┬ ┬─────── ──┬ ┬─────────────── ────────────────────────────────�
| └ ┘| ─REUSE─ └ ┘| ─PART──integer─

 ┌ ┐─SHRLEVEL NONE────────────────────────────────────
�─ ──┼ ┼── ───────────────────────────────────�
 └ ┘──SHRLEVEL ──┬ ┬──REFERENCE─deadline spec─ ──────────
 └ ┘──CHANGE ─deadline spec──change spec─

�─ ──┬ ┬── ───�
| │ │┌ ┐─2%%─────
| └ ┘──LEAFDISTLIMIT ──┼ ┼───────── ──┬ ┬────────────
| └ ┘─integer─ └ ┘─REPORTONLY─

�─ ──┬ ┬─── ──┬ ┬─────────────────────── ───────────────�
| │ │┌ ┐─CONTINUE─ │ │┌ ┐─SYSUT1─
| └ ┘──UNLOAD ──┬ ┬| ──┴ ┴─PAUSE──── ─statistics-spec─ └ ┘──WORKDDN(──┴ ┴─ddname─)
| └ ┘| ─ONLY──────────────────────────

�─ ──┬ ┬─────────── ───��
 └ ┘ ─PREFORMAT─

256 Utility Guide and Reference

 REORG INDEX

deadline spec:

�─ ──┬ ┬─── ───�
 │ │┌ ┐─NONE────────────────────────
 └ ┘──DEADLINE ──┼ ┼─timestamp───────────────────

| └ ┘─labeled-duration-expression─

change spec:

�─ ──┬ ┬──────────────────── ──┬ ┬──────────────────── ──┬ ┬─────────────────────── ─────────────────────────�
 │ │┌ ┐─3%%───── │ │┌ ┐─WRITERS─ │ │┌ ┐─CONTINUE─
 └ ┘──MAXRO ──┼ ┼─integer─ └ ┘──DRAIN ──┴ ┴─ALL───── └ ┘──LONGLOG ──┼ ┼─TERM─────
 └ ┘─DEFER─── └ ┘─DRAIN────

�─ ──┬ ┬──────────────────── ──┬ ┬──────────────────── ──�
| │ │┌ ┐─12%%──── │ │┌ ┐─ABEND─
| └ ┘──DELAY ──┴ ┴─integer─ └ ┘──TIMEOUT ──┴ ┴─TERM──

| labeled-duration-expression:|

| ┌ ┐───────────────────────────────────────
| �─ ──┬ ┬─CURRENT DATE────── ───

�
┴──┬ ┬─ + ─| ─constant─ ──┬ ┬─YEAR───────── ─────────────────────────�

| └ ┘─CURRENT TIMESTAMP─ └ ┘─ – ─ ├ ┤─YEARS────────
| ├ ┤─MONTH────────
| ├ ┤─MONTHS───────
| ├ ┤─DAY──────────
| ├ ┤─DAYS─────────
| ├ ┤─HOUR─────────
| ├ ┤─HOURS────────
| ├ ┤─MINUTE───────
| ├ ┤─MINUTES──────
| ├ ┤─SECOND───────
| ├ ┤─SECONDS──────
| ├ ┤─MICROSECOND──
| └ ┘─MICROSECONDS─

| statistics-spec:|

| �─ ──┬ ┬─── ───────�
| └ ┘| ─STATISTICS─ ──┬ ┬───────────────── ──┬ ┬──────────────────────── ──┬ ┬────────────────────────
| │ │┌ ┐─NO── │ │┌ ┐─ALL──────── └ ┘─correlation-stats-spec─
| └ ┘| ─REPORT─ ──┴ ┴─YES─ └ ┘| ─UPDATE─ ──┼ ┼─ACCESSPATH─
| ├ ┤─SPACE──────
| └ ┘─NONE───────

| correlation-stats-spec:|

| �─ ──┬ ┬───────── ──┬ ┬─── ────────────────────────────�
| └ ┘| ─KEYCARD─ │ │┌ ┐───
| │ ││ │┌ ┐─1─────── ┌ ┐─1%──────
| └ ┘| ───

�
┴─FREQVAL──NUMCOLS─ ──┴ ┴─integer─ ─COUNT─ ──┴ ┴─integer─

 Chapter 2-15. REORG INDEX 257

 REORG INDEX

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

INDEX index-name
Specifies an index to be reorganized.

index-name is the qualified name of the index, in the form
creator-id.index-name. If you omit the qualifier creator ID, the user
identifier for the utility job is used.

| REUSE When used with SHRLEVEL NONE, specifies that REORG logically
| resets and reuses DB2-managed data sets without deleting and
| redefining them. If you do not specify REUSE and SHRLEVEL
| NONE, DB2 deletes and redefines DB2-managed data sets to reset
| them.

| If a data set has multiple extents, the extents will not be released if
| you use the REUSE parameter.

| REUSE does not apply if you also specified SHRLEVEL
| REFERENCE or CHANGE.

| PART integer Identifies a partition to be reorganized. You can reorganize a single
| partition of a partitioning index. integer must be in the range from 1
| to the number of partitions that are defined for the partitioning index.
| The maximum is 254.

| integer Designates a single partition.

| If you omit the PART keyword, the entire index is reorganized.

SHRLEVEL Specifies the method for performing the reorganization. The
parameter following SHRLEVEL indicates the type of access
allowed during the RELOAD phase of REORG.

NONE Specifies that reorganization operates by unloading
from the area being reorganized (while applications
can read but cannot write to the area), building into
that area (while applications have no access), and
then allowing read/write access again.

The default is NONE.

If you specify NONE (explicitly or by default), the
following parameters cannot be specified: MAXRO,
LONGLOG, DELAY, and DEADLINE.

REFERENCE Specifies that reorganization operates by unloading
from the area being reorganized (while applications
can read but cannot write to the area), building into
a shadow copy of that area (while applications can
read but cannot write to the original copy), switching
applications' future access from the original copy to
the shadow copy by exchanging the names of the
data sets, and then allowing read/write access
again.

258 Utility Guide and Reference

 REORG INDEX

To determine which data sets are required when
you execute REORG SHRLEVEL REFERENCE,
see “Data sets used by REORG INDEX” on
page 266.

If you specify REFERENCE, you cannot specify the
following parameters:

� UNLOAD. Reorganization with REFERENCE
always performs UNLOAD CONTINUE.

� MAXRO, LONGLOG, and DELAY.

CHANGE Specifies that reorganization operates by unloading
from the area being reorganized (while applications
can read and write to the area), building into a
shadow copy of that area (while applications have
read/write access to the original copy of the area),
applying the log of the original copy to the shadow
copy (while applications can read and usually write
to the original copy), switching applications' future
access from the original copy to the shadow copy by
exchanging the names of the data sets, and then
allowing read/write access again.

To determine which data sets are required when
you execute REORG SHRLEVEL CHANGE, see
“Data sets used by REORG INDEX” on page 266.

If you specify CHANGE, you cannot specify the
following parameters:

� UNLOAD. Reorganization with CHANGE always
performs UNLOAD CONTINUE.

DEADLINE Specifies the deadline for the switch phase to finish. If DB2
estimates that the SWITCH phase will not finish by the deadline,
DB2 issues the messages that the -DISPLAY UTILITY command
would issue and then terminates reorganization.

NONE Specifies that there is no deadline by which the SWITCH
phase of log processing must finish.

The default is NONE.

timestamp
timestamp specifies the deadline for the SWITCH phase of
log processing to finish. This deadline must not have
already occurred when REORG is executed.

| labeled-duration-expression
| Calculates the deadline for the SWITCH phase of log
| processing to finish. The calculation is either based on
| CURRENT TIMESTAMP or CURRENT DATE. This
| deadline must not have already occurred when REORG is
| executed.

 Chapter 2-15. REORG INDEX 259

 REORG INDEX

| For example, to ensure that the SWITCH phase is
| complete by 6:30 AM two days from now, use the following
| expression:

| DEADLINE CURRENT DATE + 2 DAYS + 6 HOURS + 3% MINUTES

| If REORG SHRLEVEL REFERENCE or SHRLEVEL CHANGE
| terminates due to a DEADLINE specification, DB2 issues message
| DSNU374I with reason code 2, but does not set a restrictive status.

MAXRO integer
Specifies the maximum amount of time for the last iteration of log
processing. During that iteration, applications have read-only
access.

The actual execution time of the last iteration might exceed the
value specified with MAXRO.

The ALTER UTILITY command can change the value of MAXRO.

The default is 300 seconds. The value must be an integer.

integer integer is the number of seconds. Specifying a small
positive value reduces the length of the period of
read-only access, but it might increase the elapsed time
for REORG to complete. If you specify a huge positive
value, the second iteration of log processing is probably
the last iteration.

DEFER Specifies that the iterations of log processing with
read/write access can continue indefinitely. REORG
never begins the final iteration with read-only access,
unless you change the MAXRO value with ALTER
UTILITY.

If you specify DEFER, you should also specify
LONGLOG CONTINUE.

If you specify DEFER, and DB2 determines that the
actual time for an iteration and the estimated time for the
next iteration are both less than 5 seconds, DB2 adds a
5 second pause to the next iteration. This pause reduces
consumption of processor time. The first time this
situation occurs for a given execution of REORG, DB2
sends message DSNU362I to the console. The message
states that the number of log records that must be
processed is small and that the pause will occur. The
message also suggests that this would be an appropriate
time to execute ALTER UTILITY to change the MAXRO
value and thus cause REORG to finish. DB2 adds the
pause whenever the situation occurs; however, DB2
sends the message only if 30 minutes have elapsed
since the last message was sent for a given execution of
REORG.

DRAIN Specifies drain behavior at the end of the log phase after the
MAXRO threshold is reached and when the last iteration of the log
is to be applied.

260 Utility Guide and Reference

 REORG INDEX

WRITERS Specifies the current default action, in which DB2
drains just writers during the log phase after the
MAXRO threshold is reached and subsequently issues
DRAIN ALL on entering the switch phase.

ALL Specifies that DB2 drain all readers and writers during
the log phase, after the MAXRO threshold is reached.

Consider specifying DRAIN ALL if the following
conditions are both true:

� There is a lot of SQL update activity during the log
phase.

� The default behavior results in a large number of
-911 SQL error messages.

LONGLOG Specifies the action that DB2 performs, after sending a message to
the console, if the number of records that the next iteration of log
process will process is not sufficiently lower than the number that
the previous iterations processed. This situation means that
reorganization's reading of the log is not catching up to applications'
writing of the log quickly enough.

CONTINUE Specifies that until the time on the JOB statement
expires, DB2 continues performing reorganization,
including iterations of log processing, if the estimated
time to perform an iteration exceeds the time specified
with MAXRO.

A value of DEFER for MAXRO and a value of
CONTINUE for LONGLOG together mean that
REORG continues allowing access to the original copy
of the area being reorganized and does not switch to
the shadow copy. The user can execute the -ALTER
UTILITY command with a large value for MAXRO
when the switching is desired.

The default is CONTINUE.

TERM Specifies that DB2 will terminate reorganization after
the delay specified by the DELAY parameter.

DRAIN Specifies that DB2 drains the write claim class after
the delay specified by the DELAY parameter. This
action forces the final iteration of log processing to
occur.

DELAY integer
Specifies the minimum interval between the time that REORG
sends the LONGLOG message to the console and the time REORG
that performs the action specified by the LONGLOG parameter.

integer is the number of seconds. The value must be an integer.
The default is 1200.

| TIMEOUT Specifies the action to be taken if the REORG utility gets a time out
| condition while trying to drain objects in either the LOG or SWITCH
| phases.

 Chapter 2-15. REORG INDEX 261

 REORG INDEX

| ABEND If a time out condition occurs, DB2 leaves the objects in
| a UTRO or UTUT state.

| TERM If you specify the TERM option and a time out condition
| occurs, then DB2:

| 1. Issues an implicit TERM UTILITY command, causing
| the utility to end with a return code 8

| 2. Issues the DSNU590I and DSNU170I messages

| 3. Leaves the objects in a RW state.

| LEAFDISTLIMIT
| The specified value is compared to LEAFDIST for the specified
| partitions in SYSIBM.SYSINDEXPART for the specified index. If any
| LEAFDIST exceeds the value specified for LEAFDISTLIMIT,
| REORG is performed or recommended.

| The default value is 200.

| REPORTONLY
| If you specify this option, the REORG is only recommended, not
| performed. REORG produces a report with one of the following
| return codes:

| 1 No limit met; no REORG performed or recommended.
| 2 REORG performed or recommended.

UNLOAD Specifies whether the utility job is to continue processing or end
after the data is unloaded.

CONTINUE Specifies that, after the data has been unloaded, the
utility continues processing.

The default is CONTINUE.

PAUSE Specifies that after the data has been unloaded,
processing ends. The utility stops and the RELOAD
status is stored in SYSIBM.SYSUTIL so that
processing can be restarted with RELOAD
RESTART(PHASE).

This option is useful if you want to redefine data sets
during reorganization. For example, with a user
defined data set, you can:

� Run REORG with the UNLOAD PAUSE option
� Redefine the data set using access method

services
� Restart REORG by resubmitting the previous job

and specifying RESTART(PHASE).

ONLY Specifies that after the data has been unloaded, the
utility job ends and the status in SYSIBM.SYSUTIL
corresponding to this utility ID is removed.

| STATISTICS Specifies the gathering of statistics for the index; the statistics are
| either reported or stored in the DB2 catalog.

262 Utility Guide and Reference

 REORG INDEX

REPORT Determines if a set of messages is generated to report the collected
statistics.

NO Indicates that the set of messages is not output to
SYSPRINT.

The default is REPORT NO.

YES Indicates that the set of messages is output to SYSPRINT.
The messages generated are dependent on the combination
of keywords (such as TABLESPACE, INDEX, TABLE, and
COLUMN) specified with the RUNSTATS utility. However,
these messages are not dependent on the specification of
the UPDATE option. REPORT YES always generates a
report of SPACE and ACCESSPATH statistics.

UPDATE Tells whether the collected statistics are inserted into the catalog
tables. UPDATE also allows you to select statistics used for access
path selection or statistics used by database administrators.

ALL Indicates that all collected statistics will be updated
in the catalog.

The default is UPDATE ALL.

ACCESSPATH Indicates that only the catalog table columns that
provide statistics used for access path selection
are updated.

SPACE Indicates that only the catalog table columns that
provide statistics to help the database administrator
assess the status of a particular table space or
index are updated.

NONE Indicates that no catalog tables are updated with
the collected statistics. This option is only valid
when REPORT YES is specified.

| KEYCARD Collects all of the distinct values in all of the 1 to n key column
| combinations for the specified indexes. n is the number of columns
| in the index.

FREQVAL Controls the collection of frequent value statistics. If you specify
FREQVAL, it must be followed by two additional keywords:

NUMCOLS Indicates the number of key columns to concatenate
together when collecting frequent values from the
specified index. Specifying '3' means to collect
frequent values on the concatenation of the first three
key columns. The default is 1, which means collect
frequent values on the first key column of the index.

COUNT Indicates the number of frequent values to be
collected. Specifying '15' means collect 15 frequent
values from the specified key columns. The default is
10.

WORKDDN(ddname)
ddname specifies the DD statement for the unload data set.

 Chapter 2-15. REORG INDEX 263

 REORG INDEX

ddname Is the DD name of the temporary work file for build input.

The default is SYSUT1.

Even though WORKDDN is an optional keyword, a DD card for the
unload output data set is required in the JCL. If you do not specify
WORKDDN, or if you specify it without a ddname, the JCL must
have a DD card with the name SYSUT1. If ddname is given, then a
DD card must be supplied that matches it.

PREFORMAT Specifies that the remaining pages are preformatted up to the high
allocated RBA in the index space. The preformatting occurs after
the index is built.

PREFORMAT can operate on an entire index space, or on a
partition of a partitioned index space.

PREFORMAT is ignored if you specify UNLOAD ONLY.

For more information on PREFORMAT, see “Improving performance
with LOAD or REORG PREFORMAT” on page 162.

Instructions for running REORG INDEX
To run REORG INDEX, you must:

1. Read “Before running REORG INDEX” in this chapter.

2. Prepare the necessary data sets, as described in “Data sets used by REORG
INDEX” on page 266.

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for REORG
INDEX, see “Sample control statements” on page 275.)

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 267. (For a
complete description of the syntax and options for REORG INDEX, see “Syntax
and options of the control statement” on page 256.)

5. Check the compatibility table in “Concurrency and compatibility” on page 273 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the REORG job doesn't complete, as described in
“Terminating or restarting REORG INDEX” on page 271.

 7. Run REORG.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Before running REORG INDEX
Region size: The recommended minimum region size is 4096K.

User-managed data sets and SHRLEVEL REFERENCE and CHANGE: If an
index or partition to be reorganized resides in user-managed data sets, then before
executing the REORG utility with SHRLEVEL REFERENCE or SHRLEVEL
CHANGE, you must create shadow data sets with the names and attributes
described in Section 2 (Volume 1) of DB2 Administration Guide. The data sets must
already exist when you execute REORG.

264 Utility Guide and Reference

 REORG INDEX

The names have the form catname.DSNDBx.dbname.psname.S%%%1.Annn. Define the
| data sets as LINEAR and use SHAREOPTIONS(3,3). An efficient method for
| defining shadow data sets specifies MODEL, so the shadow is created like the
| original. For example:

| DEFINE CLUSTER +

| (NAME('catname.DSNDBC.dbname.psname.S%%%1.A%%1') +

| MODEL('catname.DSNDBC.dbname.psname.I%%%1.A%%1')) +

| DATA +

| (NAME('catname.DSNDBD.dbname.psname.S%%%1.A%%1') +

| MODEL('catname.DSNDBD.dbname.psname.I%%%1.A%%1'))

If an index, or partition index resides in DB2-managed data sets and shadow data
sets do not already exist when you execute REORG, DB2 creates the shadow data
sets. At the end of REORG processing, the DB2-managed shadow data sets are

| deleted. You can create the shadows ahead of time for DB2-managed data sets,
| and it is strongly recommended that you do so for the shadow data set of the
| logical partition of nonpartitioning indexes.

Regardless of whether the area being reorganized resides in user-managed or
DB2-managed data sets, data sets with names that have the form
catname.DSNDBx.dbname.psname.T%%%1.Annn must not already exist when you
execute REORG with SHRLEVEL REFERENCE or SHRLEVEL CHANGE.

| Estimating the size of pre-allocated data sets: If you have not changed the
value of FREEPAGE or PCTFREE, the amount of space required for a shadow
data set should be comparable to the amount of space required for the original data
set.

Restart pending status and SHRLEVEL CHANGE: If you specify SHRLEVEL
CHANGE, REORG drains the write claim class near the end of REORG
processing. In a data sharing environment, if a data sharing member fails and that
member has restart pending status for a target page set, the drain can fail. You
must postpone running REORG with SHRLEVEL CHANGE until all restart pending
statuses have been removed. You can use the DISPLAY GROUP command to
determine whether a member's status is FAILED. You can use the DISPLAY
DATABASE command with the LOCKS option to determine if locks held.

Data sharing considerations for REORG: You must not execute REORG on an
object if another DB2 holds retained locks on the object or has long-running
noncommitting applications that use the object. You can use the -DISPLAY GROUP
command to determine whether a member's status is "FAILED." You can use the
-DISPLAY DATABASE command with the LOCKS option to determine if locks are
held.

RECOVER pending and REBUILD pending status: You cannot reorganize an
index if any partition of the index is in the RECOVER pending status or in the

| REBUILD pending status. Similarly, you cannot reorganize a single index partition if
| it is in the RECOVER pending status or in the REBUILD pending status.

| There is one RECOVER pending restrictive state:

RECP The index space or partition is in a RECOVER pending status. A single
logical partition in RECP does not restrict access to other logical partitions
not in RECP. RECP can be reset by recovering only the single logical
partition.

 Chapter 2-15. REORG INDEX 265

 REORG INDEX

| There are three REBUILD pending restrictive states:

| RBDP REBUILD pending status (RBDP) is set on a physical or logical index
| partition. The individual physical or logical partition is inaccessible and
| must be rebuilt using the REBUILD INDEX utility.
| PSRBD Page set REBUILD pending (PSRBD) is set for nonpartitioning indexes.
| The entire index space is inaccessible and must be rebuilt using the
| REBUILD utility.
| RBDP* A REBUILD pending status that is set only on logical partitions of
| nonpartitioning indexes. The entire index is inaccessible, but is made
| available again when the affected partitions are rebuilt using the REBUILD
| INDEX utility.

For information about resetting the REBUILD pending and RECOVER pending
| states, see Table 93 on page 531 and Table 92 on page 530.

CHECK pending status: You cannot reorganize an index when the data is in the
CHECK pending status. See “Chapter 2-4. CHECK DATA” on page 55 for more
information about resetting the CHECK pending status.

Data sets used by REORG INDEX
Table 53 on page 307 describes the data sets used by REORG. Include
statements in your JCL for each required data set, and any optional data sets you
want to use.

The following objects are named in the utility control statement and do not require
DD cards in the JCL:

Index The name of the index space to be reorganized. It is named in the
control statement and is accessed through the DB2 catalog.

Calculating the size of the work data sets: When reorganizing an index space,
you need a non-DB2 sequential work data set. That data set is identified by the DD
statement named in the WORKDDN option. During the UNLOAD phase, the index
keys and the data pointers are unloaded to the work data set. This data set is used
to build the index. It is required only during the execution of REORG.

To calculate the approximate size (in bytes) of the WORKDDN data set SYSUT1,
follow these steps:

| 1. Calculate the number of keys:

| number of keys = #tablerows

Table 45. Data sets used by REORG INDEX

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Work data set One temporary data set for unload output
and build input. The DD name is specified
with the WORKDDN option of the utility
control statement. The default DD name

for this data set is SYSUT1.

Yes

266 Utility Guide and Reference

 REORG INDEX

| where:

| #tablerows Number of records in the table.

| 2. Multiply the number of keys by the key length plus 9.

Creating the control statement
See “Syntax and options of the control statement” on page 256 for REORG syntax
and option descriptions. See “Sample control statements” on page 275 for
examples of REORG usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Determining when an object should be reorganized”
“Determining when an index requires reorganization”
“Specifying access with SHRLEVEL” on page 268
“Unloading without reloading” on page 270
“Considerations for fallback recovery” on page 270
“Changing data set definitions” on page 270
“Temporarily interrupting REORG” on page 270
“Improving performance” on page 270
“Improving performance with LOAD or REORG PREFORMAT” on page 162

Product-sensitive Programming Interface

Determining when an object should be reorganized
| You can determine when to run REORG for indexes by using the LEAFDISTLIMIT
| catalog query option. If you specify the REPORTONLY option, REORG will produce
| a report detailing if a REORG is recommended; a REORG is not performed.

| When you specify the catalog query options along with the REPORTONLY option,
| REORG produces a report with one of the following return codes:

| 1 No limit met; no REORG performed or recommended.
| 2 REORG performed or recommended.

Alternatively, information from the SYSINDEXPART catalog table can tell you which
indexes qualify for reorganization.

End of Product-sensitive Programming Interface

Determining when an index requires reorganization
Use this query to identify user created indexes and DB2 catalog indexes that you
should consider reorganizing with the REORG utility:

Product-sensitive Programming Interface

SELECT IXNAME, IXCREATOR

 FROM SYSIBM.SYSINDEXPART

WHERE LEAFDIST > 2%%;

 Chapter 2-15. REORG INDEX 267

 REORG INDEX

End of Product-sensitive Programming Interface

Be aware that using a LEAFDIST value of more than 200 as an indicator of a
disorganized index is merely a rough rule of thumb for general cases. It is not
absolute. There are cases where 200 is an acceptable value for LEAFDIST. For
example, with FREEPAGE 0 and index page splitting, the LEAFDIST value can
climb sharply. In this case, a LEAFDIST value higher than 200 can be acceptable.

After you run RUNSTATS, the following SQL statement provides the average
distance (multiplied by 100) between successive leaf pages during sequential
access of the ZZZ index.

Product-sensitive Programming Interface

SELECT LEAFDIST

 FROM SYSIBM.SYSINDEXPART

WHERE IXCREATOR = 'index_creator_name'

AND IXNAME = 'index_name';

End of Product-sensitive Programming Interface

If LEAFDIST increases over time, this probably indicates that the index should be
reorganized. The optimal value of the LEAFDIST catalog column is zero. However,
immediately after you run the REORG and RUNSTATS utilities, LEAFDIST might
be greater than zero, due to empty pages for FREEPAGE and non-leaf pages.

Specifying access with SHRLEVEL
For reorganizing an index, or a partition of a index, the SHRLEVEL option lets you
choose the level of access you have to your data during reorganization:

� REORG with SHRLEVEL NONE, the default, reloads the reorganized data into
the original area being reorganized. Applications have read-only access during

| unloading and no access during reloading. SHRLEVEL NONE is the only
| access level that resets REORG pending status.

� REORG with SHRLEVEL REFERENCE reloads the reorganized data into a
new (shadow) copy of the area being reorganized. Near the end of
reorganization, DB2 switches applications' future access from the original to the
shadow copy. For SHRLEVEL REFERENCE, applications have read-only
access during unloading and reloading, and a brief period of no access during
switching.

� REORG with SHRLEVEL CHANGE reloads the reorganized data into a shadow
copy of the area being reorganized. Applications can read and write the original
area, and DB2 records the writing in the log. DB2 then reads the log and
applies it to the shadow copy to bring the shadow copy up to date. This step
executes iteratively, with each iteration processing a sequence of log records.
Near the end of reorganization, DB2 switches applications' future access from
the original to the shadow copy. Applications have read/write access during
unloading and reloading, a brief period of read-only access during the last
iteration of log processing, and a brief period of no access during switching.

Log processing with SHRLEVEL CHANGE: When you specify SHRLEVEL
CHANGE, DB2 processes the log to update the shadow copy. This step executes

268 Utility Guide and Reference

 REORG INDEX

iteratively. The first iteration processes the log records that accumulated during the
previous iteration. The iterations continue until one of these conditions is met:

� DB2 estimates that the time to perform the log processing in the next iteration
will be less than or equal to the time specified by MAXRO. If this condition is
met, the next iteration will be the last.

� DB2 estimates that the SWITCH phase will not start by the deadline specified
by DEADLINE. If this condition is met, DB2 terminates reorganization.

� The number of log records that the next iteration will process is not sufficiently
lower than the number of log records processed in the previous iteration. If this
condition is met but the first two conditions are not, DB2 sends message
DSNU377I to the console. DB2 continues log processing for the length of time
specified by DELAY and then performs the action specified by LONGLOG.

Operator actions: LONGLOG specifies the action that DB2 performs if log
processing is not catching up. See “Option descriptions” on page 258 for a
description of the LONGLOG options. If no action is taken after message
DSNU377I is sent to the console, the LONGLOG option automatically goes into
effect. Some examples of possible actions you may take:

� Execute the START DATABASE(db) SPACENAM(ts) ... ACCESS(RO)
command and the QUIESCE utility to drain the write claim class. DB2 performs
the last iteration, if MAXRO is not DEFER. After the QUIESCE, you should also
execute the ALTER UTILITY command, even if you do not change any REORG
parameters.

� Execute the START DATABASE(db) SPACENAM(ts) ... ACCESS(RO)
command and the QUIESCE utility to drain the write claim class. Then, after
reorganization has made some progress, execute the START DATABASE(db)
SPACENAM(ts) ... ACCESS(RW) command. This increases the likelihood that
log processing will catch up. After the QUIESCE, you should also execute the
ALTER UTILITY command, even if you do not change any REORG
parameters.

� Execute the ALTER UTILITY command to change the value of MAXRO.
Changing it to a huge positive value, such as 9999999, causes the next
iteration to be the last iteration.

� Execute the ALTER UTILITY command to change the value of LONGLOG.

� Execute the TERM UTILITY command to terminate reorganization.

� Adjust the amount of buffer space allocated to reorganization and to
applications. This can increase the likelihood that log processing will catch up.
After adjusting the space, you should also execute the ALTER UTILITY
command, even if you do not change any REORG parameters.

� Adjust the scheduling priorities of reorganization and applications. This can
increase the likelihood that log processing will catch up. After adjusting the
priorities, you should also execute the ALTER UTILITY command, even if you
do not change any REORG parameters.

DB2 does not take the action specified in the LONGLOG phrase if any one of these
events occurs before the delay expires:

� An ALTER UTILITY command is issued.

� A TERM UTILITY command is issued.

 Chapter 2-15. REORG INDEX 269

 REORG INDEX

� DB2 estimates that the time to perform the next iteration will be less than or
equal to the time specified in the MAXRO phrase.

� REORG terminates for any reason (including the deadline).

Unloading without reloading
REORG can unload data without continuing and without leaving a
SYSIBM.SYSUTIL record after the job ends.

Considerations for fallback recovery
| Successful REORG INDEX processing inserts an SYSIBM.SYSCOPY row with
| ICTYPE='W' for an index that was defined with COPY YES. REORG also places a
| reorganized index in informational COPY pending status. You should take a full
| image copy of the index after the REORG job completes to create a valid point of
| recovery.

Changing data set definitions
If the index space is defined by storage groups, space allocation is handled by DB2
and data set definitions cannot be altered during the reorganization process. DB2
deletes and redefines the necessary data sets to reorganize the object.

For REORG with SHRLEVEL REFERENCE or CHANGE, you can use the ALTER
STOGROUP command to change the characteristics of a DB2-managed data set.
The user effectively changes the characteristics of a user-managed data set by
specifying the desired new characteristics when creating the shadow data set; see
page 264 for more information about user-managed data sets. In particular, placing
the original and shadow data sets on different DASD volumes might reduce
contention and thus improve the performance of REORG and the performance of
applications during REORG execution.

Temporarily interrupting REORG
You can temporarily pause REORG. If you specify UNLOAD PAUSE, REORG
pauses after unloading the index space into the work data set. The job completes
with return code 4. You can restart REORG using the phase restart or current
restart. The REORG statement must not be altered.

The SYSIBM.SYSUTIL record for the REORG utility remains in "stopped" status
until REORG is restarted or terminated.

While REORG is interrupted by PAUSE, you may re-define the table space
attributes for user defined table spaces. PAUSE is not required for STOGROUP
defined table spaces. Attribute changes are done automatically by a REORG
following an ALTER INDEX.

 Improving performance
To improve REORG performance:

� Run REORG concurrently on separate partitions of a partitioned index space.
The processor time it takes to run REORG INDEX on partitions of a partitioned
index is roughly the same as it would take to run a single REORG index job.
The elapsed time is a fraction of what it would take to run a single REORG job
on the entire index.

270 Utility Guide and Reference

 REORG INDEX

When to use SHRLEVEL CHANGE: Schedule REORG with SHRLEVEL CHANGE
when the rate of writing is low and transactions are short. Avoid scheduling
REORG with SHRLEVEL CHANGE when low-tolerance applications are executing.

Terminating or restarting REORG INDEX
If you terminate REORG with the TERM UTILITY command during the UNLOAD
phase, objects have not yet been changed and the job can be rerun.

If you terminate REORG with the TERM UTILITY command during the BUILD
phase, the behavior depends on the SHRLEVEL option:

� For SHRLEVEL NONE, the index is left in RECOVER pending status. After you
recover the index, rerun the REORG job.

� For SHRLEVEL REFERENCE or CHANGE, the index keys are reloaded into a
shadow index, so the original index has not been affected by REORG. You can
rerun the job.

If you terminate REORG with the TERM UTILITY command during the LOG phase,
the index keys are reloaded into a shadow index, so the original index has not
been affected by REORG. You can rerun the job.

If you terminate REORG with the TERM UTILITY command during the SWITCH
phase, all data sets that were renamed to their shadow counterparts are renamed
back, so the objects are left in their original state. You can rerun the job. If there is
a problem in renaming to the original data sets, the objects are left in RECOVER
pending status. You must recover the index.

| The REORG pending status is not reset until the UTILTERM execution phase. If
| the REORG INDEX utility abends or is terminated, the objects are left in RECOVER
| pending status. See Appendix C, “Resetting an advisory or restrictive status” on
| page 527 for information about resetting either status.

Restarting REORG: Table 47 on page 272 provides information about restarting
REORG INDEX.

Table 46. REORG INDEX phases and restrictive statuses

Phase Effect on restrictive status

UNLOAD No effect

BUILD| Sets REBUILD pending (RBDP) status at the beginning of the BUILD
| phase, and resets RBDP at the end of the phase. SHRLEVEL NONE
| places an index that was defined with the COPY YES attribute in
| RECOVER pending (RECP) status.

LOG No effect

SWITCH| Under certain conditions, if TERM UTILITY is issued, it must complete
| successfully or objects may be placed in RECP status or RBDP status.
| For SHRLEVEL REFERENCE or CHANGE, sets the RECP status if the
| index was defined with the COPY YES attribute at the beginning of the
| SWITCH phase, and resets RECP at the end of the phase. If the index
| was defined with COPY NO, sets the index in RBDP status at the
| beginning of the phase, and resets RBDP at the end of the phase.

 Chapter 2-15. REORG INDEX 271

 REORG INDEX

If you restart REORG in the UTILINIT phase, it re-executes from the beginning of
the phase. If REORG abends or system failure occurs while it is in the UTILTERM
phase, you must restart the job with RESTART(PHASE).

For each phase of REORG and for each type of REORG INDEX (with SHRLEVEL
NONE, with SHRLEVEL REFERENCE, and with SHRLEVEL CHANGE), the table
indicates the types of restart allowed (CURRENT and PHASE). "None" indicates
that no restart is allowed. A blank indicates that the phase does not occur. The
"Data Sets Required" column lists the data sets that must exist to perform the
specified type of restart in the specified phase.

Table 47. REORG INDEX utility restart information

Phase
Type for
NONE

Type for
REFERENCE

Type for
CHANGE Data Sets Required Notes

UNLOAD CURRENT
PHASE

CURRENT
PHASE

None
None

SYSUT1

BUILD CURRENT
PHASE

CURRENT
PHASE

None
None

SYSUT1
SYSUT1

1

LOG None
None

SWITCH CURRENT
PHASE

CURRENT
PHASE

originals and shadows
originals and shadows

1

Notes:

1. You can restart the utility with either RESTART or RESTART(PHASE). However, because this phase does not
take checkpoints, RESTART always re-executes from the beginning of the phase.

| If you restart a REORG STATISTICS job using RESTART CURRENT, inline
| statistics collection will not occur. To update catalog statistics, run the RUNSTATS
| utility after the restarted job completes. Restarting a REORG STATISTICS job with
| RESTART(PHASE) is conditional after executing UNLOAD PAUSE. To determine if
| catalog table statistics will be updated using RESTART(PHASE), see Table 48.

For instructions on restarting a utility job, see “Chapter 2-1. Invoking DB2 online
utilities” on page 27.

Restarting REORG after an out of space condition: See “Restarting after the
output data set is full” on page 49 for guidance in restarting REORG from the last
commit point after receiving an out of space condition.

| Table 48. REORG INDEX utility phase restart using STATISTICS keyword

| Phase| CURRENT| PHASE

| UTILINIT| NO| YES

| UNLOAD| NO| YES

| BUILD| NO| YES

272 Utility Guide and Reference

 REORG INDEX

Concurrency and compatibility
Individual index partitions are treated as distinct target objects. Utilities operating on
different partitions of the same index space are compatible.

REORG INDEX compatibility
Table 49 shows which claim classes REORG INDEX drains and any restrictive
state the utility sets on the target object. The target is an index or index partition.

Table 50 on page 274 shows which utilities can run concurrently with REORG
INDEX on the same target object. The target object can be an index space or a
partition. If compatibility depends on particular options of a utility, that is also
shown.

Table 49. Claim classes of REORG INDEX operations. Use of claims and drains; restrictive states set on the target
object.

Phase
REORG INDEX SHRLEVEL
NONE

REORG INDEX
SHRLEVEL
REFERENCE

REORG INDEX SHRLEVEL
CHANGE

UNLOAD DW/UTRO DW/UTRO CR/UTRW

BUILD DA/UTUT

Last iteration of LOG n/a| DA/UTUT1 DW/UTRO

SWITCH n/a DA/UTUT DA/UTUT

Legend:

� CR: Claim the read claim class
� DA: Drain all claim classes, no concurrent SQL access
� DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers
� DW: Drain the write claim class, concurrent access for SQL readers
� UTRO: Utility restrictive state, read only access allowed
� UTUT: Utility restrictive state, exclusive control
� Blank: Any claim, drain, or restrictive state for this object does not change in this phase.

| Notes:

| 1. Applicable if you specified DRAIN ALL.

| REORG INDEX does not set a utility restrictive state if the target object is an index
| on DSNDB01.SYSUTILX.

 Chapter 2-15. REORG INDEX 273

 REORG INDEX

To run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, REORG INDEX must be
the only utility in the job step and the only utility running in the DB2 subsystem.

Table 50. REORG INDEX compatibility

Action

REORG INDEX SHRLEVEL
NONE, REFERENCE, or
CHANGE

CHECK DATA No

CHECK INDEX No

CHECK LOB Yes

| COPY INDEXSPACE| No

COPY TABLESPACE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE No

| REBUILD INDEX| No

RECOVER INDEX No

| RECOVER INDEXSPACE| No

RECOVER TABLESPACE (no option) Yes

RECOVER TABLESPACE TOCOPY or TORBA No

RECOVER TABLESPACE ERROR RANGE Yes

REORG INDEX SHRLEVEL NONE, REFERENCE, or
CHANGE

No

| REORG TABLESPACE SHRLEVEL NONE UNLOAD
| CONTINUE or PAUSE, REORG SHRLEVEL
| REFERENCE, or REORG SHRLEVEL CHANGE

No

| REORG TABLESPACE SHRLEVEL NONE UNLOAD
| ONLY or EXTERNAL without cluster index

Yes

| REORG TABLESPACE SHRLEVEL NONE UNLOAD
| ONLY or EXTERNAL with cluster index

No

REPAIR LOCATE KEY No

REPAIR LOCATE RID DUMP, VERIFY, or REPLACE Yes

REPAIR LOCATE RID DELETE No

REPAIR LOCATE TABLESPACE PAGE REPLACE Yes

REPAIR LOCATE INDEX PAGE REPLACE No

REPORT Yes

RUNSTATS INDEX No

RUNSTATS TABLESPACE Yes

STOSPACE Yes

274 Utility Guide and Reference

 REORG INDEX

Reviewing REORG INDEX output
The output from REORG INDEX consists of a reorganized index or index partition.
Table 51 summarizes the effect of REORG.

When reorganizing an index, REORG leaves free pages and free space on each
page in accordance with the current values of the FREEPAGE and PCTFREE
parameters. (Those values can be set by the CREATE INDEX, or ALTER INDEX
statements). REORG leaves one free page after reaching the FREEPAGE limit for
each table in the index space.

Table 51. REORG INDEX summary

Specification Results

REORG INDEX Entire index (all parts if partitioned)

REORG INDEX
 PART n

Part n of partitioning index

Sample control statements
Example 1: Reorganizing an index. Reorganize index XMSGTXT1. Stop the utility
after the index keys have been unloaded, but allow for subsequent restart.

REORG INDEX DSN861%.XMSGTXT1

 UNLOAD PAUSE

Example 2: REORG INDEX using STATISTICS. Reorganize the index XEMPL1,
using the STATISTICS option to update the catalog table statistics for this index.

REORG INDEX DSN861%.XEMPL1

SHRLEVEL REFERENCE STATISTICS

 Chapter 2-15. REORG INDEX 275

 REORG INDEX

276 Utility Guide and Reference

 REORG TABLESPACE

Chapter 2-16. REORG TABLESPACE

The REORG TABLESPACE utility reorganizes a table space to improve access
performance and reclaim fragmented space. In addition, the utility can reorganize a

| single partition or range of partitions of a partitioned table space. You can specify
| the degree of access to your data during reorganization, and collect inline statistics
| using the STATISTICS keyword. If you specify REORG TABLESPACE UNLOAD
| EXTERNAL, the data is unloaded in a format that is acceptable to the LOAD utility
| of any DB2 subsystem. You can also delete rows during the REORG by specifying
| the DISCARD option.

| You can determine when to run REORG for non-LOB table spaces by using the
| OFFPOSLIMIT or INDREFLIMIT catalog query options. If you specify the
| REPORTONLY option, REORG will produce a report detailing if a REORG is
| recommended; a REORG is not performed.

| Run the REORG TABLESPACE utility on a LOB table space to help increase the
| effectiveness of prefetch. For a LOB table space, REORG TABLESPACE performs
| these actions:

| � Removes imbedded free space.
| � Attempts to make LOB pages contiguous.

For a diagram of REORG TABLESPACE syntax and a description of available
options, see “Syntax and options of the control statement” on page 279. For
detailed guidance on running this utility, see “Instructions for running REORG
TABLESPACE” on page 303.

Output: If the table space or partition has the COMPRESS YES attribute, then the
data is compressed when reloaded. If you specify the KEEPDICTIONARY option of
REORG, the current dictionary is used; otherwise a new dictionary is built.

REORG TABLESPACE can be executed on the table spaces in the DB2 catalog
database (DSNDB06) and some table spaces in the directory database
(DSNDB01). It cannot be executed on any table space in the DSNDB07 database.

| Table 52. Summary of REORG TABLESPACE output

| REORG Specified| Results

| REORG TABLESPACE| Reorganizes all data, entire partitioning index, and all non-partitioning
| indexes.

| REORG TABLESPACE PART n| Reorganizes data for PART n, PART n of the partitioning index, and
| index entries for PART n in all nonpartitioning indexes.

| REORG TABLESPACE PART n:m| Reorganizes data for PART n through PART m, parts n through m of
| the partitioning index, and index entries for those parts in all
| nonpartitioning indexes.

Authorization required: To execute this utility on a user table space, the privilege
set of the process must include one of the following:

� REORG privilege for the database
� DBADM or DBCTRL authority for the database

 � SYSCTRL authority

 Copyright IBM Corp. 1983, 1999 277

 REORG TABLESPACE

 � SYSADM authority.

To execute this utility on a table space in the catalog or directory, the privilege set
of the process must include one of the following:

� REORG privilege for the DSNDB06 (catalog) database
� DBADM or DBCTRL authority for the DSNDB06 (catalog) database
� Installation SYSOPR authority

 � SYSCTRL authority
� SYSADM or Installation SYSADM authority

If you use REORG TABLESPACE SHRLEVEL CHANGE, the privilege set must
include DELETE, INSERT, SELECT, and UPDATE privileges on the mapping table
(see page 304).

| To run REORG TABLESPACE STATISTICS REPORT YES, the privilege set must
| include the SELECT privilege on the catalog tables.

An authority other than installation SYSADM or installation SYSOPR can receive
message DSNT500I, “resource unavailable,” while trying to reorganize a table
space in the catalog or directory. This can happen when the DSNDB06.SYSDBAUT
or DSNDB06.SYSUSER catalog table space or one of the indexes is unavailable. If
this problem occurs, run the REORG TABLESPACE utility again using an
authorization ID with the installation SYSADM or installation SYSOPR authority.

Execution phases of REORG TABLESPACE: The REORG TABLESPACE utility
operates in these phases:

Phase Description
UTILINIT Initialization and setup
UNLOAD Unloads table space; sorts data if a clustering index exists and you

specified either SORTDATA or SHRLEVEL CHANGE. If you specified
NOSYSREC, passes rows in memory to the RELOAD phase,
otherwise writes them to a sequential data set.

RELOAD Reloads from the sequential data set into the table space; creates full
image copies if you specify COPYDDN, RECOVERYDDN,
SHRLEVEL REFERENCE, or SHRLEVEL CHANGE. If you specify the

| SORTKEYS option, a subtask sorts the index keys. Updates table and
| table space statistics.

SORT Sorts index keys. If you specify the SORTKEYS option, the sorted
keys are passed in memory to the BUILD phase.

| BUILD Builds indexes. Updates index statistics.
| SORTBLD If you specify a parallel index build using the SORTKEYS keyword, all
| activities that normally occur in both the SORT and BUILD phases
| occur in the SORTBLD phase instead.

LOG Processes log iteratively; appends changed pages to the full image
copies. Used only if you specify SHRLEVEL CHANGE.

SWITCH Switches access to shadow copy of table space or partition. Used
only if you specify SHRLEVEL REFERENCE or CHANGE.

BUILD2 Corrects nonpartitioning indexes if you specify REORG TABLESPACE
PART SHRLEVEL REFERENCE or CHANGE.

UTILTERM Cleanup

278 Utility Guide and Reference

 REORG TABLESPACE

| Execution phases of REORG TABLESPACE on a LOB table space: The
| REORG TABLESPACE utility operates in these three phases when you run it on a
| LOB table space:

| Phase Description
| UTILINIT Initialization and setup
| REORGLOB Rebuilds the LOB table space in place; no LOBs are unloaded or
| reloaded. The LOB table space is set to RECOVER pending status at
| the start of processing; this status is reset on REORGLOB completion.
| If the REORGLOB phase fails, the LOB table space remains in
| RECOVER pending status.
| UTILTERM Cleanup

| You cannot restart REORG TABLESPACE on a LOB table space in the
| REORGLOB phase. Before executing REORG TABLESPACE on a LOB table
| space defined with LOG NO, you should take a full image copy to ensure
| recoverability.

| If the LOB table space was defined with LOG NO, it is left in COPY pending status
| after REORG TABLESPACE completes processing.

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

��─ ─REORG──TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ──┬ ┬─────── ──┬ ┬───────────────────────────── ───────────�
| └ ┘─database-name.─ └ ┘| ─REUSE─ └ ┘──PART ──┬ ┬─integer───────────
| └ ┘─integer1:integer2─

 ┌ ┐─LOG YES─
�─ ──┼ ┼───────── ──┬ ┬────────── ──┬ ┬──────────── ──┬ ┬──────────── ─copy spec──�
 └ ┘─LOG NO── └ ┘─SORTDATA─ └ ┘── ─NOSYSREC─ └ ┘── ─SORTKEYS─

 ┌ ┐─SHRLEVEL NONE──────────────────────────────────────
�─ ──┼ ┼── ───�
 └ ┘── ─SHRLEVEL─ ──┬ ┬ ─REFERENCE──DEADLINE spec───────────
 └ ┘ ─CHANGE──DEADLINE spec──change spec─

�─ ──┬ ┬── ───────────────────────────────────────�
| │ │┌ ┐─1%────── ┌ ┐─1%──────
| └ ┘──| ─OFFPOSLIMIT─ ──┼ ┼─────────| ─INDREFLIMIT─ ──┼ ┼───────── ──┬ ┬────────────
| └ ┘─integer─ └ ┘─integer─ └ ┘─REPORTONLY─

 ┌ ┐─UNLOAD CONTINUE─
�─ ──┬ ┬ ──┼ ┼───────────────── ──┬ ┬──────────────── ──┬ ┬───────────────── ──┬ ┬──────────────────────── ───────────────────�

| │ │└ ┘─UNLOAD PAUSE──── └ ┘─KEEPDICTIONARY─ └ ┘─statistics-spec─ │ │┌ ┐─SYSPUNCH─
| ├ ┤| ─UNLOAD ONLY── └ ┘| ─PUNCHDDN─ ──┴ ┴─ddname───
| └ ┘| ─UNLOAD EXTERNAL─ ──┬ ┬─────── ──┬ ┬───────────────────── ─────────
| └ ┘| ─NOPAD─ │ │┌ ┐───────────────────
| └ ┘───

�
┴─FROM TABLE spec─

�─ ──┬ ┬──────────────────────── ──┬ ┬────────────────────────── ──┬ ┬─── ─────────��
│ │┌ ┐─SYSDISC─ └ ┘─reorg tablespace options─ │ │┌ ┐───────────────────
└ ┘# ─DISCARDDN─ ──┴ ┴─ddname── └ ┘# ─DISCARD─ ──┬ ┬─────── ───

�
┴─FROM TABLE spec─

| └ ┘| ─NOPAD─

 Chapter 2-16. REORG TABLESPACE 279

 REORG TABLESPACE

copy spec:

�─ ──┬ ┬── ──┬ ┬──────────────────────────────────── ──────────────�
│ │┌ ┐─SYSCOPY─ └ ┘──RECOVERYDDN(ddname3 ──┬ ┬──────────)
└ ┘──COPYDDN(──┬ ┬──┴ ┴─ddname1─ ──┬ ┬──────────) └ ┘──,ddname4

│ │└ ┘──,ddname2
└ ┘──,ddname2 ─────────────────

DEADLINE spec:

�─ ──┬ ┬─── ──�
 │ │┌ ┐─NONE────────────────────────
 └ ┘──DEADLINE ──┼ ┼─timestamp───────────────────

| └ ┘─labeled-duration-expression─

change spec:

�─ ─MAPPINGTABLE──table-name─ ──┬ ┬──────────────────── ──┬ ┬──────────────────── ──────────────────────────�
 │ │┌ ┐─3 ───── │ │┌ ┐─WRITERS─
 └ ┘──MAXRO ──┼ ┼─integer─ └ ┘──DRAIN ──┴ ┴─ALL─────
 └ ┘─DEFER───

�─ ──┬ ┬─────────────────────── ──┬ ┬──────────────────── ──┬ ┬──────────────────── ─────────────────────────�
| │ │┌ ┐─CONTINUE─ │ │┌ ┐─12 ──── │ │┌ ┐─ABEND─
| └ ┘──LONGLOG ──┼ ┼─TERM───── └ ┘──DELAY ──┴ ┴─integer─ └ ┘──TIMEOUT ──┴ ┴─TERM──

 └ ┘─DRAIN────

| labeled-duration-expression:|

| ┌ ┐───────────────────────────────────────
| �─ ──┬ ┬─CURRENT DATE────── ───

�
┴──┬ ┬─ + ─| ─constant─ ──┬ ┬─YEAR───────── ────────────────────────────────────�

| └ ┘─CURRENT TIMESTAMP─ └ ┘─ – ─ ├ ┤─YEARS────────
| ├ ┤─MONTH────────
| ├ ┤─MONTHS───────
| ├ ┤─DAY──────────
| ├ ┤─DAYS─────────
| ├ ┤─HOUR─────────
| ├ ┤─HOURS────────
| ├ ┤─MINUTE───────
| ├ ┤─MINUTES──────
| ├ ┤─SECOND───────
| ├ ┤─SECONDS──────
| ├ ┤─MICROSECOND──
| └ ┘─MICROSECONDS─

280 Utility Guide and Reference

 REORG TABLESPACE

| statistics-spec:|

| �─| ─STATISTICS─ ──┬ ┬─── ────�
| │ │┌ ┐| ─(──ALL──)─
| ├ ┤| ─TABLE─ ──┴ ┴─────────── ──┬ ┬───────────────── ──
| │ │└ ┘| ─SAMPLE──integer─
| │ │┌ ┐───
| └ ┘───

�
┴─TABLE──(──table-name──)─ ──┬ ┬───────────────── ──┬ ┬───────────────────────────────────────

| └ ┘| ─SAMPLE──integer─ └ ┘| ─COLUMN─ ──┬ ┬───────────────────────────
| │ │┌ ┐| ─ALL─────────────
| │ ││ │┌ ┐─,───────────
| └ ┘| ─(─ ──┴ ┴───

�
┴─column-name─ ─)─

| �─ ──┬ ┬─── ──┬ ┬───────────────── ───────────────────────�
| └ ┘| ─INDEX─ ──┬ ┬── │ │┌ ┐─NO──
| │ │┌ ┐| ─ALL─ ──┬ ┬──────────────────────── ─────────── └ ┘| ─REPORT─ ──┴ ┴─YES─
| │ ││ │└ ┘| ─correlation-stats-spec─
| │ ││ │┌ ┐─,──────────────────────────────────────
| └ ┘| ─(─ ──┴ ┴───

�
┴─index-name─ ──┬ ┬──────────────────────── ─)─

| └ ┘| ─correlation-stats-spec─

| �─ ──┬ ┬──────────────────────── ───�
| │ │┌ ┐─ALL────────
| └ ┘| ─UPDATE─ ──┼ ┼─ACCESSPATH─
| ├ ┤─SPACE──────
| └ ┘─NONE───────

| correlation-stats-spec:|

| �─ ──┬ ┬───────── ──┬ ┬─── ────────────────────────────�
| └ ┘| ─KEYCARD─ │ │┌ ┐───
| │ ││ │┌ ┐─1─────── ┌ ┐─1%──────
| └ ┘| ───

�
┴─FREQVAL──NUMCOLS─ ──┴ ┴─integer─ ─COUNT─ ──┴ ┴─integer─

| FROM TABLE spec:|

| �─| ─FROM──TABLE──table-name─ ──┬ ┬────────────────────────────────────── ──�
| └ ┘| ─WHEN──(──selection condition spec──)─

| selection condition spec:|

| ┌ ┐──
| �─ ──┬ ┬─predicate───────────────── ───

�
┴┬ ┬── ───────────────────────�

| └ ┘| ─(──selection condition──)─ └ ┘| ──┬ ┬─AND─ ──┬ ┬─predicate─────────────────
| └ ┘─OR── └ ┘| ─(──selection condition──)─

| predicate:

�─ ──┬ ┬─basic predicate─── ───�
 ├ ┤─BETWEEN predicate─
 ├ ┤─IN predicate──────
 ├ ┤─LIKE predicate────
 └ ┘─NULL predicate────

 Chapter 2-16. REORG TABLESPACE 281

 REORG TABLESPACE

basic predicate:

Note: An exclamation point (!) is supported in place of the not symbol (¬). Therefore:

� != is equivalent to ¬=

� !> is equivalent to ¬>

� !< is equivalent to ¬<

�──column-name─ ──┬ ┬─ = ── ──┬ ┬─constant──────────────────── ──�
├ ┤─ <> ─ └ ┘─labeled-duration-expression─
├ ┤─ > ──
├ ┤─ < ──
├ ┤─ >= ─
├ ┤─ <= ─
├ ┤─ ¬= ─
├ ┤─ ¬> ─
└ ┘─ ¬< ─

BETWEEN predicate:

�─ ─column-name─ ──┬ ┬───── ─BETWEEN─ ──┬ ┬─constant──────────────────── ────────────────────────────────────�
 └ ┘─NOT─ └ ┘─labeled-duration-expression─

�─ ─AND─ ──┬ ┬─constant──────────────────── ──�
 └ ┘─labeled-duration-expression─

IN predicate:

 ┌ ┐─,────────
�─ ─column-name─ ──┬ ┬───── ─IN─ ──(───

�
┴─constant─) ──�

 └ ┘─NOT─

LIKE predicate:

�─ ─column-name─ ──┬ ┬───── ─LIKE──string-constant─ ──┬ ┬───────────────────────── ──────────────────────────�
 └ ┘─NOT─ └ ┘ ─ESCAPE──string-constant─

NULL predicate:

�──column-name──IS─ ──┬ ┬───── ─NULL───�
 └ ┘ ─NOT─

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it
belongs) that is to be reorganized.

If you reorganize a table space, its indexes are also reorganized.

database-name Is the name of the database to which the table
space belongs. The name cannot be DSNDB07.

The default is DSNDB04.

table-space-name Is the name of the table space to be
reorganized. The name cannot be SYSUTILX if
the database name specified is DSNDB01.

282 Utility Guide and Reference

 REORG TABLESPACE

| REUSE When used with SHRLEVEL NONE, specifies that REORG logically
| resets and reuses DB2-managed data sets without deleting and
| redefining them. If you do not specify REUSE and SHRLEVEL
| NONE, DB2 deletes and redefines DB2-managed data sets to reset
| them.

| If a data set has multiple extents, the extents will not be released if
| you use the REUSE parameter.

| REUSE does not apply if you also specified SHRLEVEL
| REFERENCE or CHANGE.

| PART integer
| PART integer1:integer2
| Identifies a partition to be reorganized. You can reorganize a single
| partition of a partitioned table space, or a range of partitions within
| a partitioned table space. integer must be in the range from 1 to the
| number of partitions that are defined for the table space or
| partitioning index. The maximum is 254.

| integer Designates a single partition.

| integer1:integer2 Designates a range of existing table space
| partitions from integer1 through integer2.

| If you omit the PART keyword, the entire table space is
| reorganized.

| If you specify the PART keyword for a LOB table space, DB2 issues
| an error message, and utility processing terminates with return code
| 8.

LOG Specifies whether records are logged during the reload phase of
REORG. If the records are not logged, the table space is
recoverable only after an image copy has been taken. If you specify
COPYDDN, RECOVERYDDN, SHRLEVEL REFERENCE, or
SHRLEVEL CHANGE, an image copy is taken during REORG
execution.

YES Logs records during the reload phase. This option is not
allowed for any table space in DSNDB01 or DSNDB06, or if
the SHRLEVEL REFERENCE or CHANGE options are
used.

If you specify SHRLEVEL NONE (explicitly or by default),
the default is LOG YES.

| You must specify LOG YES (explicitly or by default) for a
| LOB table space. Logging will occur only if the LOB table
| space was defined with the LOG YES attribute. If the LOB
| table space was defined with the LOG NO attribute, the
| LOB table space will be left in COPY pending status after
| the REORG.

NO Does not log records. Puts the table space in COPY
pending status if either of these conditions is true:

� REORG is executed at the local site, and neither
COPYDDN, SHRLEVEL REFERENCE, nor SHRLEVEL
CHANGE are specified.

 Chapter 2-16. REORG TABLESPACE 283

 REORG TABLESPACE

� REORG is executed at the remote site, and
RECOVERYDDN is not specified.

SORTDATA Specifies that the data is to be unloaded by table space scan, then
sorted in clustering order. Records always are sorted by the table in
order to retain the clustering of records of the same table.

This option is recommended to improve performance unless one of
the following is true:

� The data is in perfect clustering order and the REORG utility is
used to reclaim space from dropped tables.

� The data set is very large and there is not enough DASD
available for sorting.

� The longest possible composite record size is greater than
32760.

SORTDATA is ignored for some the catalog and directory table
spaces; see “Reorganizing the catalog and directory” on page 315.

NOSYSREC Specifies that the output of sorting (if there is a clustering index and
you specify SORTDATA) is the input to reloading, without using an
unload data set. You can specify this option only if you specify
REORG TABLESPACE, SORTDATA, SHRLEVEL REFERENCE, or
SHRLEVEL NONE, and only if you do not specify UNLOAD PAUSE
or UNLOAD ONLY. See “Omitting the output data set” on page 314
for additional information about using this option.

| SORTKEYS Specifies that index keys will be sorted and indexes will be built in
| parallel during the SORTBLD phase to improve performance. This

option is recommended if more than one index needs to be created.

| COPYDDN ddname1,ddname2
| Specifies the DD statements for the primary (ddname1) and backup
| (ddname2) copy data sets for the image copy.

| ddname is the DD name.

The default is SYSCOPY for the primary copy. A full image copy
data set is created when REORG executes. In the row in the
SYSIBM.SYSCOPY catalog table, the SHRLEVEL column is set to
"R," as it would be for the COPY SHRLEVEL REFERENCE. The
table space is not left in COPY pending status regardless of which
LOG option you specify.

If you specify SHRLEVEL NONE (explicitly or by default) for
REORG, and COPYDDN is not specified, then no image copy is
created at the local site.

COPYDDN(SYSCOPY) is assumed, and a DD statement for
SYSCOPY is required if:

� You specify REORG SHRLEVEL REFERENCE or CHANGE,
and do not specify COPYDDN

| � A partition is in REORG pending (REORP) status

284 Utility Guide and Reference

 REORG TABLESPACE

| RECOVERYDDN (ddname3,ddname4)
| Specifies the DD statements for the primary (ddname3) and backup
| (ddname4) copy data sets for the image copy at the recovery site.

| ddname is the DD name.

You cannot have duplicate image copy data sets. The same rules
apply for RECOVERYDDN as for COPYDDN.

SHRLEVEL Specifies the method for performing the reorganization. The
parameter following SHRLEVEL indicates the type of access
allowed during the RELOAD phase of REORG.

| For a LOB table space, you must specify SHRLEVEL NONE
| (explicitly or by default).

NONE Specifies that reorganization operates by unloading
from the area being reorganized (while applications
can read but cannot write to the area), reloading into
that area (while applications have no access), and
then allowing read/write access again.

The default is NONE.

If you specify NONE (explicitly or by default), the
following parameters cannot be specified:
MAPPINGTABLE, MAXRO, LONGLOG, DELAY,
and DEADLINE. If you omit SORTDATA, or specify
UNLOAD PAUSE or UNLOAD ONLY, then you
cannot specify NOSYSREC.

REFERENCE Specifies that reorganization operates by unloading
from the area being reorganized (while applications
can read but cannot write to the area), reloading into
a shadow copy of that area (while applications can
read but cannot write to the original copy), switching
applications' future access from the original copy to
the shadow copy by exchanging the names of the
data sets, and then allowing read/write access
again.

To determine which data sets are required when
you execute REORG SHRLEVEL REFERENCE,
see “Data sets used by REORG TABLESPACE” on
page 307.

If you specify REFERENCE, you cannot specify the
following parameters:

� LOG. Reorganization with REFERENCE always
creates an image copy and always refrains from
logging records during reloading.

� UNLOAD. Reorganization with REFERENCE
always performs UNLOAD CONTINUE.

� MAPPINGTABLE, MAXRO, LONGLOG, and
DELAY.

| SHRLEVEL REFERENCE is not allowed for a LOB
| table space.

 Chapter 2-16. REORG TABLESPACE 285

 REORG TABLESPACE

CHANGE Specifies that reorganization operates by unloading
from the area being reorganized (while applications
can read and write to the area), reloading into a
shadow copy of that area (while applications have
read/write access to the original copy of the area),
applying the log of the original copy to the shadow
copy (while applications can read and usually write
to the original copy), switching applications' future
access from the original copy to the shadow copy by
exchanging the names of the data sets, and then
allowing read/write access again.

To determine which data sets are required when
you execute REORG SHRLEVEL CHANGE, see
“Data sets used by REORG TABLESPACE” on
page 307.

If you specify CHANGE, you cannot specify the
following parameters:

� LOG. Reorganization with CHANGE always
creates an image copy and always refrains from
logging records during reloading.

� SORTDATA, NOSYSREC, SORTKEYS.
Reorganization with CHANGE always operates
as if these parameters were specified.

� UNLOAD. Reorganization with CHANGE always
performs UNLOAD CONTINUE.

| SHRLEVEL CHANGE is not allowed for a LOB table
| space.

DEADLINE Specifies the deadline for the switch phase to finish. If DB2
estimates that the SWITCH phase will not complete by the deadline,
DB2 issues the messages that the -DISPLAY UTILITY command
would issue and then terminates reorganization.

NONE Specifies that there is no deadline by which the
SWITCH phase of log processing must finish.

The default is NONE.

timestamp timestamp specifies the deadline for the SWITCH
phase of log processing to finish. This deadline must
not have already occurred when REORG is executed.

| labeled-duration-expression
| Calculates the deadline for the SWITCH phase of log
| processing to finish. The calculation is either based
| on CURRENT TIMESTAMP or CURRENT DATE. This
| deadline must not have already occurred when
| REORG is executed.

| For example, to ensure that the SWITCH phase is
| complete by 6:30 AM two days from now, use the
| following expression:

| DEADLINE CURRENT DATE + 2 DAYS + 6 HOURS + 3% MINUTES

286 Utility Guide and Reference

 REORG TABLESPACE

| If REORG SHRLEVEL REFERENCE or SHRLEVEL CHANGE
| terminates due to a DEADLINE specification, DB2 issues message
| DSNU374I with reason code 2, but does not set a restrictive status.

MAPPINGTABLE table-name
Specifies the name of the mapping table that REORG
TABLESPACE uses to map between the RIDs of data records in
the original copy of the area and the corresponding RIDs in the
shadow copy. This parameter is required if you specify REORG
TABLESPACE SHRLEVEL CHANGE, and you must create a
mapping table and an index for it before running REORG
TABLESPACE. The table must have the columns and the index that
appear in the SQL statements described on page 304.

MAXRO integer
Specifies the maximum amount of time for the last iteration of log
processing. During that iteration, applications have read-only
access.

The actual execution time of the last iteration might exceed the
value specified with MAXRO.

The ALTER UTILITY command can change the value of MAXRO.

The default is 300 seconds. The value must be an integer.

integer integer is the number of seconds. Specifying a small
positive value reduces the length of the period of
read-only access, but it might increase the elapsed time
for REORG to complete. If you specify a huge positive
value, the second iteration of log processing is probably
the last iteration.

DEFER Specifies that the iterations of log processing with
read/write access can continue indefinitely. REORG
never begins the final iteration with read-only access,
unless you change the MAXRO value with ALTER
UTILITY.

If you specify DEFER, you should also specify
LONGLOG CONTINUE.

If you specify DEFER, and DB2 determines that the
actual time for an iteration and the estimated time for the
next iteration are both less than 5 seconds, DB2 adds a
5 second pause to the next iteration. This pause reduces
consumption of processor time. The first time this
situation occurs for a given execution of REORG, DB2
sends message DSNU362I to the console. The message
states that the number of log records that must be
processed is small and that the pause will occur. The
message also suggests that this would be an appropriate
time to execute ALTER UTILITY to change the MAXRO
value and thus cause REORG to finish. DB2 adds the
pause whenever the situation occurs; however, DB2
sends the message only if 30 minutes have elapsed
since the last message was sent for a given execution of
REORG.

 Chapter 2-16. REORG TABLESPACE 287

 REORG TABLESPACE

DRAIN Specifies drain behavior at the end of the log phase after the
MAXRO threshold is reached and when the last iteration of the log
is to be applied.

WRITERS Specifies the current default action, in which DB2
drains just writers during the log phase after the
MAXRO threshold is reached and subsequently issues
DRAIN ALL on entering the switch phase.

ALL Specifies that DB2 drain all readers and writers during
the log phase, after the MAXRO threshold is reached.

Consider specifying DRAIN ALL if the following
conditions are both true:

� There is a lot of SQL update activity during the log
phase.

� The default behavior results in a large number of
-911 SQL error messages.

LONGLOG Specifies the action that DB2 performs, after sending a message to
the console, if the number of records that the next iteration of log
process will process is not sufficiently lower than the number that
the previous iterations processed. This situation means that
reorganization's reading of the log is not catching up to applications'
writing of the log quickly enough.

CONTINUE Specifies that until the time on the JOB statement
expires, DB2 continues performing reorganization,
including iterations of log processing, if the estimated
time to perform an iteration exceeds the time specified
with MAXRO.

A value of DEFER for MAXRO and a value of
CONTINUE for LONGLOG together mean that
REORG continues allowing access to the original copy
of the area being reorganized and does not switch to
the shadow copy. The user can execute the -ALTER
UTILITY command with a large value for MAXRO
when the switching is desired.

The default is CONTINUE.

TERM Specifies that DB2 will terminate reorganization after
the delay specified by the DELAY parameter.

DRAIN Specifies that DB2 drains the write claim class after
the delay specified by the DELAY parameter. This
action forces the final iteration of log processing to
occur.

DELAY integer
Specifies the minimum interval between the time that REORG
sends the LONGLOG message to the console and the time REORG
that performs the action specified by the LONGLOG parameter.

integer is the number of seconds. The value must be an integer.
The default is 1200.

288 Utility Guide and Reference

 REORG TABLESPACE

| TIMEOUT Specifies the action to be taken if the REORG utility gets a time out
| condition while trying to drain objects in either the LOG or SWITCH
| phases.

| ABEND If a time out condition occurs, DB2 leaves the objects in
| a UTRO or UTUT state.

| TERM If you specify the TERM option and a time out condition
| occurs, then DB2:

| 1. Issues an implicit TERM UTILITY command, causing
| the utility to end with a return code 8

| 2. Issues the DSNU590I and DSNU170I messages

| 3. Leaves the objects in a RW state.

| OFFPOSLIMIT
| The specified value is compared to the result of the calculation
| (NEAROFFPOSF + FAROFFPOSF) × 100 / CARDF for the
| specified partitions in SYSIBM.SYSINDEXPART for the explicit
| clustering indexes for every table in the specified table space.
Alternatively, the values in SYSINDEXPART are checked for a
single non-partitioned table space, or for each partition if you
specified an entire partitioned table space as the target object. If at
least one calculated value exceeds the OFFPOSLIMIT value,
| REORG is performed or recommended. This option is valid for
| non-LOB table spaces only.

| The default value is 10.

| INDREFLIMIT The specified value is compared to the result of the calculation
| (NEARINDREF + FARINDREF) × 100 / CARDF for the specified
| partitions in SYSIBM.SYSTABLEPART for the specified table space.
Alternatively, the values in SYSTABLEPART are checked for a
single non-partitioned table space, or for each partition if you
specified an entire partitioned table space as the target object. If at
least one calculated value exceeds the INDREFLIMIT value,
| REORG is performed or recommended. This option is valid for
| non-LOB table spaces only.

| The default value is 10.

| REPORTONLY
| If you specify this option, the REORG is only recommended, not
| performed. REORG produces a report with one of the following
| return codes:

| 1 No limit met; no REORG performed or recommended.
| 2 REORG performed or recommended.

UNLOAD Specifies whether the utility job is to continue processing or end
| after the data is unloaded. Unless you specify UNLOAD
| EXTERNAL, data can be reloaded only into the same table and

table space (as defined in the DB2 catalog) on the same
subsystem. (This does not preclude VSAM redefinition during
UNLOAD PAUSE.)

 Chapter 2-16. REORG TABLESPACE 289

 REORG TABLESPACE

You must specify UNLOAD ONLY for the data set to be in a format
that is compatible with the FORMAT UNLOAD option of LOAD.
However, with LOAD you can load the data only into the same

| object from which it is unloaded. This option is valid for non-LOB
| table spaces only.

| You must specify UNLOAD EXTERNAL for the data set to be in a
| format that is usable by LOAD without the FORMAT UNLOAD
| option. With UNLOAD EXTERNAL, you can load the data into any
| table with compatible columns in any table space on any
| subsystem.

CONTINUE Specifies that, after the data has been unloaded, the
utility continues processing. An edit routine may be
called to decode a previously encoded data row if an
index key requires extraction from that row.

| If you specify DISCARD, rows are decompressed and
| edit routine decoded. If you also specify DISCARD to
| a file, rows will be field procedure decoded, and
| SMALLINT, INTEGER, FLOAT, DECIMAL, DATE,
| TIME, and TIMESTAMP columns will be converted to
| external format. Otherwise, edit routines or field

procedures are bypassed on both the UNLOAD and
| RELOAD phases for table spaces. Validation
| procedures are not invoked during either phase.

The default is CONTINUE.

PAUSE Specifies that after the data has been unloaded,
processing ends. The utility stops and the RELOAD
status is stored in SYSIBM.SYSUTIL so that
processing can be restarted with RELOAD
RESTART(PHASE).

This option is useful if you want to redefine data sets
during reorganization. For example, with a user
defined data set, you can:

� Run REORG with the UNLOAD PAUSE option
� Redefine the data set using access method

services
� Restart REORG by resubmitting the previous job

and specifying RESTART(PHASE).

| If you specify DISCARD, rows are decompressed and
| edit routine decoded. If you also specify DISCARD to
| a file, rows will be field procedure decoded, and
| SMALLINT, INTEGER, FLOAT, DECIMAL, DATE,
| TIME, and TIMESTAMP columns will be converted to
| external format. Otherwise, edit routines or field
| procedures are bypassed on both the UNLOAD and
| RELOAD phases for table spaces. Validation
| procedures are not invoked during either phase.

ONLY Specifies that after the data has been unloaded, the
utility job ends and the status in SYSIBM.SYSUTIL
corresponding to this utility ID is removed.

290 Utility Guide and Reference

 REORG TABLESPACE

If you specify UNLOAD ONLY with REORG
TABLESPACE, any edit routine or field procedure is
executed during record retrieval in the unload phase.

This option is not allowed for any table space in
DSNDB01 or DSNDB06.

The DISCARD and WHEN options are not allowed
with UNLOAD ONLY.

| EXTERNAL Specifies that after the data has been unloaded, the
| utility job is to end and the status in SYSIBM.SYSUTIL
| corresponding to this utility ID is removed.

| If you specify UNLOAD EXTERNAL with REORG
| TABLESPACE, rows are decompressed, edit routines
| decoded, field procedures are decoded, and
| SMALLINT, INTEGER, FLOAT, DECIMAL, DATE,
| TIME, and TIMESTAMP columns are converted to
| external format. Validation procedures are not invoked.

| This option is not allowed for any table space in
| DSNDB01 or DSNDB06.

| The DISCARD option is not allowed with UNLOAD
| EXTERNAL.

KEEPDICTIONARY
Prevents REORG TABLESPACE from building a new compression
dictionary when unloading the rows. The efficiency of REORG
increases with the KEEPDICTIONARY option for the following
reasons:

� The processing cost of building the compression dictionary is
eliminated.

� Existing compressed rows do not have to be compressed again.
� Existing compressed rows do not have to be expanded, unless

indexes require it or SORTDATA is used.

| Possible reasons for omitting KEEPDICTIONARY are:

| � If the data has changed significantly since the last dictionary
| was built, rebuilding the dictionary might save a significant
| amount of space.

| � If the current dictionary was built using the LOAD utility, building
| it using REORG might produce a better compression dictionary.

| For more information about specifying or omitting the
| KEEPDICTIONARY option, see “Compressing data” on page 158.

KEEPDICTIONARY is valid only if a compression dictionary exists
and the table space or partition being reorganized has the
COMPRESS YES attribute. If a dictionary does not exist, one is
built, a warning message is issued, and all the records are
compressed.

Messages DSNU234I and DSNU244I, which show compression
statistics, are not issued when you specify REORG UNLOAD

 Chapter 2-16. REORG TABLESPACE 291

 REORG TABLESPACE

CONTINUE KEEPDICTIONARY or REORG UNLOAD PAUSE
KEEPDICTIONARY.

| REORG ignores the KEEPDICTIONARY option if a partition that is
| being reorganized is in REORG pending status.

For information regarding ESA data compression, see Section 2
(Volume 1) of DB2 Administration Guide.

| STATISTICS Specifies the gathering of statistics for the table space or associated
| index, or both; the statistics are reported or stored in the DB2
| catalog.

| If you specify a table space partition or a range of partitions along
| with the STATISTICS keyword, DB2 collects statistics only for the
| specified table space partitions. This option is valid for non-LOB
| table spaces only.

TABLE Specifies the table for which column information is to be gathered.
All tables must belong to the table space specified in the
TABLESPACE option.

| (ALL) Specifies that information is to be gathered for all columns
of all tables in the table space.

SAMPLE integer
Indicates the percentage of rows to sample when collecting
non-indexed column statistics. Any value from 1 through
100 can be specified. The default is 25. The SAMPLE
option is not allowed for LOB table spaces.

(table-name)
Specifies the tables for which column information is to be
gathered. The parentheses are required. If you omit the
qualifier, the user identifier for the utility job is used.

If you specify more than one table, you must repeat the
TABLE option.

COLUMN
Specifies columns for which column information is to be
gathered.

You can only specify this option if you specify a particular
tables for which statistics are to be gathered (TABLE
(table-name)). If you specify particular tables and do not
specify the COLUMN option, the default, COLUMN(ALL), is
used. If you do not specify a particular table when using the
TABLE option, you cannot specify the COLUMN option;
however, COLUMN(ALL) is assumed.

(ALL) Specifies that statistics are to be gathered for all
columns in the table.

(column-name, ...)
Specifies the columns for which statistics are to be
gathered. The parentheses are required.

292 Utility Guide and Reference

 REORG TABLESPACE

You can specify a list of column names; the
maximum is 10. If you specify more than one
column, separate each name with a comma.

INDEX Specifies indexes for which information is to be gathered. Column
information is gathered for the first column of the index. All the
indexes must be associated with the same table space, which must
be the table space specified in the TABLESPACE option.

(ALL) Specifies that the column information is to be
gathered for all indexes defined on tables contained
in the table space. The parentheses are required.

(index-name) Specifies the indexes for which information is to be
gathered. The parentheses are required.

REPORT Determines if a set of messages is generated to report the collected
statistics.

NO Indicates that the set of messages is not output to
SYSPRINT.

The default is REPORT NO.

YES Indicates that the set of messages is output to SYSPRINT.
The messages generated are dependent on the combination
of keywords (such as TABLESPACE, INDEX, TABLE, and
COLUMN) specified with the RUNSTATS utility. However,
these messages are not dependent on the specification of
the UPDATE option. REPORT YES always generates a
report of SPACE and ACCESSPATH statistics.

UPDATE Tells whether the collected statistics are inserted into the catalog
tables. UPDATE also allows you to select statistics used for access
path selection or statistics used by database administrators.

ALL Indicates that all collected statistics will be updated
in the catalog.

The default is UPDATE ALL.

ACCESSPATH Indicates that only the catalog table columns that
provide statistics used for access path selection
are updated.

SPACE Indicates that only the catalog table columns that
provide statistics to help the database administrator
assess the status of a particular table space or
index are updated.

NONE Indicates that no catalog tables are updated with
the collected statistics. This option is only valid
when REPORT YES is specified.

| KEYCARD Collects all of the distinct values in all of the 1 to n key column
| combinations for the specified indexes. n is the number of columns
| in the index.

 Chapter 2-16. REORG TABLESPACE 293

 REORG TABLESPACE

FREQVAL Controls the collection of frequent value statistics. If you specify
FREQVAL, it must be followed by two additional keywords:

NUMCOLS Indicates the number of key columns to concatenate
together when collecting frequent values from the
specified index. Specifying '3' means to collect
frequent values on the concatenation of the first three
key columns. The default is 1, which means collect
frequent values on the first key column of the index.

COUNT Indicates the number of frequent values to be
collected. Specifying '15' means collect 15 frequent
values from the specified key columns. The default is
10.

| NOPAD Specifies that the variable-length columns in the unloaded or
| discarded records occupy the actual data length without additional
| padding. The unloaded records may have varying lengths. If you do
| not specify NOPAD, default REORG processing pads
| variable-length columns in the unloaded or discarded records to
| their maximum length; the unloaded or discarded records have
| equal lengths for each table.

| The NOPAD option can only be specified with UNLOAD
| EXTERNAL or with DISCARD.

| While the LOAD utility processes records with variable-length
| columns that were unloaded or discarded using the NOPAD option,
| these records can not be processed by applications that only
| process fields in fixed positions.

| In order for the generated LOAD statement to provide a NULLIF
| condition for fields that are not in a fixed position, an input field
| definition is generated with a name in the form of
| DSN_NULL_IND_nnnnn, where nnnnn is the number of the associated
| column.

| For example, the LOAD statement generated for the EMP sample
| table would look similar to the LOAD statement shown in Figure 17
| on page 295.

294 Utility Guide and Reference

 REORG TABLESPACE

| LOAD DATA INDDN SYSREC LOG NO RESUME YES

| EBCDIC CCSID(%%5%%,%%%%%,%%%%%)

| INTO TABLE "DSN861% "."EMP "

| WHEN(%%%%4:%%%%5 = X'%%12')

| ("EMPNO " POSITION(%%%%7:%%%12) CHAR(%%6)

| , "FIRSTNME " POSITION(%%%13) VARCHAR

| , "MIDINIT " POSITION(�) CHAR(%%1)

| , "LASTNAME " POSITION(�) VARCHAR

| , DSN_NULL_IND_%%%%5 POSITION(�) CHAR(1)

| , "WORKDEPT " POSITION(�) CHAR(%%3)

| NULLIF(DSN_NULL_IND_%%%%5)=X'FF'

| , DSN_NULL_IND_%%%%6 POSITION(�) CHAR(1)

| , "PHONENO " POSITION(�) CHAR(%%4)

| NULLIF(DSN_NULL_IND_%%%%6)=X'FF'

| , DSN_NULL_IND_%%%%7 POSITION(�) CHAR(1)

| , "HIREDATE " POSITION(�) DATE EXTERNAL

| NULLIF(DSN_NULL_IND_%%%%7)=X'FF'

| , DSN_NULL_IND_%%%%8 POSITION(�) CHAR(1)

| , "JOB " POSITION(�) CHAR(%%8)

| NULLIF(DSN_NULL_IND_%%%%8)=X'FF'

| , DSN_NULL_IND_%%%%9 POSITION(�) CHAR(1)

| Figure 17 (Part 1 of 2). Sample LOAD statement generated by REORG TABLESPACE
| with the NOPAD keyword

| , "EDLEVEL " POSITION(�) SMALLINT

| NULLIF(DSN_NULL_IND_%%%%9)=X'FF'

| , DSN_NULL_IND_%%%1% POSITION(�) CHAR(1)

| , "SEX " POSITION(�) CHAR(%%1)

| NULLIF(DSN_NULL_IND_%%%1%)=X'FF'

| , DSN_NULL_IND_%%%11 POSITION(�) CHAR(1)

| , "BIRTHDATE " POSITION(�) DATE EXTERNAL

| NULLIF(DSN_NULL_IND_%%%11)=X'FF'

| , DSN_NULL_IND_%%%12 POSITION(�) CHAR(1)

| , "SALARY " POSITION(�) DECIMAL

| NULLIF(DSN_NULL_IND_%%%12)=X'FF'

| , DSN_NULL_IND_%%%13 POSITION(�) CHAR(1)

| , "BONUS " POSITION(�) DECIMAL

| NULLIF(DSN_NULL_IND_%%%13)=X'FF'

| , DSN_NULL_IND_%%%14 POSITION(�) CHAR(1)

| , "COMM " POSITION(�) DECIMAL

| NULLIF(DSN_NULL_IND_%%%14)=X'FF'

|)

| Figure 17 (Part 2 of 2). Sample LOAD statement generated by REORG TABLESPACE
| with the NOPAD keyword

| PUNCHDDN ddname
| Specifies the DD statement for a data set to receive the LOAD
| utility control statements that are generated by REORG
| TABLESPACE UNLOAD EXTERNAL or REORG TABLESPACE
| DISCARD FROM TABLE ... WHEN.

| ddname is the DD name.

| The default is SYSPUNCH.

| PUNCHDDN is required if the last partition of a partitioned table
| space has had its limit key reduced.

 Chapter 2-16. REORG TABLESPACE 295

 REORG TABLESPACE

| DISCARDDN ddname
| Specifies the DD statement for a discard data set, which is to hold
| copies of records that meet the DISCARD FROM TABLE ... WHEN
| specification.

| ddname is the DD name.

| If you omit the DISCARDDN option, the utility application program
| saves discarded records only if a SYSDISC DD statement is in the
| JCL input.

| The default is SYSDISC.

| DISCARD Specifies that records meeting the specified WHEN conditions are
| to be discarded during REORG TABLESPACE UNLOAD
| CONTINUE or UNLOAD PAUSE. If you specify DISCARDDN or a
| SYSDISC DD statement in the JCL input, discarded records are
| saved in the associated data set.

| DISCARD is valid only for SHRLEVEL NONE or SHRLEVEL
| REFERENCE. Discarding rows from a table that is part of a
| referential integrity set sets the CHECK pending status.

| Do not specify DISCARD with the UNLOAD EXTERNAL or
| UNLOAD ONLY option.

| FROM TABLE
| The table space that is specified in REORG TABLESPACE can store more
| than one table. All tables are unloaded for UNLOAD EXTERNAL, and all tables
| might be subject to DISCARD. If you want to qualify the rows to be unloaded
| or discarded, you must use the FROM TABLE statement.

| table-name
| Specifies the name of the table that is to be qualified by the following
| WHEN clause. The table must be described in the catalog and must not
| be a catalog table. If the table name is not qualified by an authorization ID,
| the authorization ID of the person who invokes the utility job step is used
| as the qualifier of the table name.

| WHEN
| The WHEN clause tells which records in the table space are to be
| unloaded (for UNLOAD EXTERNAL) or discarded (for DISCARD). If you
| do not specify a WHEN clause for a table in the table space, all of the
| records are unloaded (for UNLOAD EXTERNAL), or none of the records is
| discarded (for DISCARD).

| The option following WHEN describes the conditions for UNLOAD or
| DISCARD of records from a table.

| selection condition
| A selection condition specifies a condition that is true, false, or
| unknown about a given row. When the condition is true, the row
| qualifies for UNLOAD or DISCARD. When the condition is false or
| unknown, the row does not qualify.

| The result of a selection condition is derived by application of the
| specified logical operators (AND, OR, NOT) to the result of each
| specified predicate. If logical operators are not specified, the result of
| the selection condition is the result of the specified predicate.

296 Utility Guide and Reference

 REORG TABLESPACE

| Selection conditions within parentheses are evaluated first. If the order
| of evaluation is not specified by parentheses, AND is applied before
| OR.

| predicate
| A predicate specifies a condition that is true, false, or unknown about
| a row.

| labeled-duration-expression
| A labeled-duration-expression specifies an expression that begins with
| special register CURRENT DATE or special register CURRENT
| TIMESTAMP (the forms CURRENT_DATE and
| CURRENT_TIMESTAMP are also acceptable) and optionally contains
| arithmetic operations of addition or subtraction expressed by a
| number followed by one of the seven duration keywords: YEARS,
| MONTHS, DAYS, HOURS, MINUTES, SECONDS, or
| MICROSECONDS. (The singular form of these keywords is also
| acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and
| MICROSECOND.)

| Utilities always evaluate a labeled-duration-expression as a timestamp
| and implicitly performs a conversion to a date if the comparison is with
| a date column.

| Incrementing and decrementing CURRENT DATE: The result of
| adding a duration to a date, or of subtracting a duration from a date,
| is itself a date. (For the purposes of this operation, a month denotes
| the equivalent of a calendar page. Adding months to a date, then, is
| like turning the pages of a calendar, starting with the page on which
| the date appears.) The result must fall between the dates January 1,
| 0001 and December 31, 9999 inclusive. If a duration of years is
| added or subtracted, only the year portion of the date is affected. The
| month is unchanged, as is the day unless the result would be
| February 29 of a non-leap-year. Here the day portion of the result is
| set to 28.

| Similarly, if a duration of months is added or subtracted, only months
| and, if necessary, years are affected. The day portion of the date is
| unchanged unless the result would be invalid (September 31, for
| example). In this case the day is set to the last day of the month.

| Adding or subtracting a duration of days will affect the day portion of
| the date, and potentially the month and year.

| Date durations, whether positive or negative, can also be added to
| and subtracted from dates. As with labeled durations, the result is a
| valid date.

| When a positive date duration is added to a date, or a negative date
| duration is subtracted from a date, the date is incremented by the
| specified number of years, months, and days.

| When a positive date duration is subtracted from a date, or a negative
| date duration is added to a date, the date is decremented by the
| specified number of days, months, and years.

| Adding a month to a date gives the same day one month later unless
| that day does not exist in the later month. In that case, the day in the
| result is set to the last day of the later month. For example, January

 Chapter 2-16. REORG TABLESPACE 297

 REORG TABLESPACE

| 28 plus one month gives February 28; one month added to January
| 29, 30, or 31 results in either February 28 or, for a leap year,
| February 29. If one or more months is added to a given date and then
| the same number of months is subtracted from the result, the final
| date is not necessarily the same as the original date.

| The order in which labeled date durations are added to and
| subtracted from dates can affect the results. When you add labeled
| date durations to a date, specify them in the order of YEARS +
| MONTHS + DAYS. When you subtract labeled date durations from a
| date, specify them in the order of DAYS - MONTHS - YEARS. For
| example, to add one year and one day to a date, specify:

| CURRENT DATE + 1 YEAR + 1 DAY

| To subtract one year, one month, and one day from a date, specify:

| CURRENT DATE − 1 DAY − 1 MONTH − 1 YEAR

| Incrementing and decrementing timestamps: The result of adding a
| duration to a timestamp, or of subtracting a duration from a
| timestamp, is itself a timestamp. Date and time arithmetic is
| performed as previously defined, except that an overflow or underflow
| of hours is carried into the date part of the result, which must be
| within the range of valid dates.

| basic predicate
| A basic predicate compares a column with a constant. If the value of
| the column is null, the result of the predicate is unknown. Otherwise,
| the result of the predicate is true or false.

| Predicate Is true if and only if

| column = constant column is equal to constant or labeled duration
| expression.

| column < > constant column is not equal to constant or labeled
| duration expression.

| column > constant column is greater than constant or labeled
| duration expression.

| column < constant column is less than constant or labeled
| duration expression.

| column > = constant column is greater than or equal to constant or
| labeled duration expression.

| column < = constant column is less than or equal to constant or
| labeled duration expression.

| column ¬ = constant column is not equal to constant or labeled
| duration expression.

| column ¬ > constant column is not greater than constant or labeled
| duration expression.

| column ¬ < constant column is not less than constant or labeled
| duration expression.

| For ASCII table spaces, the constant must be specified in
| hexadecimal.

298 Utility Guide and Reference

 REORG TABLESPACE

| BETWEEN predicate
| The BETWEEN predicate determines whether a given value lies
| between two other given values specified in ascending order. Each of
| the predicate's two other forms has an equivalent search condition, as
| shown below:

| The predicate: column BETWEEN value1 AND value2

| is equivalent to: (column >= value1 AND column <= value2)

| The predicate: column NOT BETWEEN value1 AND value2

| is equivalent to: NOT(column BETWEEN value1 AND value2)

| and therefore also to: (column < value1 OR column > value2)

| The values can be constants or labeled duration expressions.

| For example, the following predicate is true for any row when salary is
| greater than or equal 10000 and less than or equal to 20000:

| SALARY BETWEEN 1%%%% AND 2%%%%

| IN predicate
| The IN predicate compares a value with a set of values. In the IN
| predicate, the second operand is a set of one or more values
| specified by constants.

| The predicate: value1 IN (value1, value2,..., valuen)

| is equivalent to: (value1 = value2 OR ... OR value1 = valuen)

| The predicate: value1 NOT IN (value1, value2,..., valuen)

| is equivalent to: (value1 ¬= value2 AND ... AND value1 ¬=
| valuen)

| For example, the following predicate is true for any row whose
| employee is in department D11, B01, or C01:

| WORKDEPT IN ('D11', 'B%1', 'C%1')

| LIKE predicate
| The LIKE predicate qualifies strings that have a certain pattern.
| Specify the pattern with a string in which the underscore and percent
| sign characters have special meanings.

| Let x denote the column to be tested and y denote the pattern in the
| string constant.

| The following rules apply to predicates of the form “x LIKE y....” If
| NOT is specified, the result is reversed.

| � When x and y are both neither empty nor null, the result of the
| predicate is true if x matches the pattern in y and false if x does
| not match the pattern in y. Matching the pattern is described
| below.

| � When x or y is null, the result of the predicate is unknown.

| � When y is empty and x is not, the result of the predicate is false.

| � When x is empty and y is not, the result of the predicate is false
| unless y consists only of one or more percent signs.

 Chapter 2-16. REORG TABLESPACE 299

 REORG TABLESPACE

| � When x and y are both empty, the result of the predicate is true.

| The pattern string and the string to be tested must be of the same
| type, that is, both x and y must be character strings or both x and y
| must be graphic strings. When x and y are graphic strings, a
| character is a DBCS character. When x and y are character strings
| and x is not mixed data, a character is a SBCS character and y is
| interpreted as SBCS data regardless of is subtype. The rules for
| mixed data patterns are described on page 301.

| Within the pattern, a percent sign or underscore character can have a
| special meaning, or it can represent the literal occurrence of a percent
| sign or underscore character. To have its literal meaning, it must be
| preceded by an escape character. If it is not preceded by an escape
| character, it has its special meaning.

| The ESCAPE clause designates a single character. That character—
| and only that character— can be used multiple times within the
| pattern as an escape character. When the ESCAPE clause is omitted,
| no character serves as an escape character, so that percent signs
| and underscores in the pattern always have their special meanings.

| The following rules apply to the use of the ESCAPE clause:

| � The ESCAPE clause cannot be used if x is mixed data.

| � If x is a character string, the data type of the string constant must
| be character string. If x is a graphic string, the data type of the
| string constant must be graphic string. In both cases, the length of
| the string constant must be 1.

| � The pattern must not contain the escape character except when
| followed by the escape character, '%' or '_'. For example, if '+'
| is the escape character, any occurrences of '+' other than '++',
| '+_', or '+%' in the pattern is an error.

| When that pattern does not include escape characters, a simple
| description of its meaning is:

| � The underscore character (_) represents a single arbitrary
| character.

| � The percent sign (%) represents a string of zero or more arbitrary
| characters.

| � Any other character represents a single occurrence of itself.

300 Utility Guide and Reference

 REORG TABLESPACE

| A more rigorous description of strings and patterns follows

| The string y is interpreted as a sequence of the minimum number of
| substring specifiers such that each character of y is part of exactly one
| substring specifier. A substring specifier is an underscore, a percent
| sign, or any non-empty sequence of characters other than an
| underscore or percent sign.

| The string x matches the pattern y if a partitioning of x into substrings
| exists, such that:

| � A substring of x is a sequence of zero or more contiguous
| characters and each character of x is part of exactly one substring.

| � If the nth substring specifier is an underscore, the nth substring of
| x is any single character.

| � If the nth substring specifier is a percent sign, the nth substring of
| x is any sequence of zero or more characters.

| � If the nth substring specifier is neither an underscore nor a percent
| sign, the nth substring of x is equal to that substring specifier and
| has the same length as that substring specifier.

| � The number of substrings of x is the same as the number of
| substring specifiers.

| When escape characters are present in the pattern string, an
| underscore, percent sign, or escape character represents a single
| occurrence of itself if and only if it is preceded by an odd number of
| successive escape characters.

| Mixed data patterns: If x is mixed data, the pattern is assumed to be
| mixed data, and its special characters are interpreted as follows:

| � A single-byte underscore refers to one single-byte character; a
| double-byte underscore refers to one double-byte character.

| � A percent sign, either single-byte or double-byte, refers to any
| number of characters of any type, either single-byte or double-byte.

| � Redundant shift bytes in x or y are ignored.

| NULL predicate
| The NULL predicate tests for null values.

| If the value of the column is null, the result is true. If the value is not
| null, the result is false. If NOT is specified, the result is reversed.

reorg tablespace options
For the descriptions of keywords and parameters included within reorg
tablespace options, see page 302.

 Chapter 2-16. REORG TABLESPACE 301

 REORG TABLESPACE

REORG TABLESPACE options syntax

reorg tablespace options:

�─ ──┬ ┬──────────────────── ──┬ ┬────────────────────────────────────── ──┬ ┬─────────────────────── ───────�
│ │┌ ┐─SYSREC─ │ │┌ ┐─SYSUT1── ┌ ┐──,SORTOUT └ ┘ ─SORTDEVT──device-type─
└ ┘──UNLDDN ──┴ ┴─ddname─ └ ┘──WORKDDN(──┴ ┴─ddname1─ ──┼ ┼──────────)

└ ┘──,ddname2

�─ ──┬ ┬────────────────── ──┬ ┬─────────── ───�
 └ ┘ ─SORTNUM──integer─ └ ┘ ─PREFORMAT─

Option descriptions for REORG TABLESPACE options
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

UNLDDN ddname Specifies the DD name of the unload data set.

ddname is the DD name of the unload data set.

The default is SYSREC.

WORKDDN(ddname1,ddname2)
ddname specifies the DD statement for a temporary data set
used for intermediate output.

ddname1 Is the DD name of the temporary work file for sort
input. DB2 requires a work data set for sort input
for tables with indexes, unless you specify
SORTKEYS.

The default is SYSUT1.

ddname2 Is the DD name of the temporary work file for sort
| output. DB2 requires a work data set for sort
| output, unless you specify SORTKEYS.

The default is SORTOUT.

Even though WORKDDN is an optional keyword, a DD card for
the sort output data set is required in the JCL unless you
specify SORTKEYS. If you do not specify WORKDDN, or if you
specify it without a ddname2, the JCL must have a DD card
with the name SORTOUT. If ddname2 is given, then a DD card
must be supplied that matches it.

WORKDDN is ignored for the catalog and directory table
spaces listed in “Reorganizing the catalog and directory” on
page 315.

SORTDEVT device-type
Specifies the device type for temporary data sets to be
dynamically allocated by DFSORT.

device-type is the device type, and can be any acceptable to
the DYNALLOC parameter of the SORT or OPTION control
statement for DFSORT.

302 Utility Guide and Reference

 REORG TABLESPACE

If you omit SORTDEVT and require a sort of the index keys,
you must provide the DD statements that the sort program
needs for the temporary data sets.

SORTDEVT is ignored for the catalog and directory table
spaces listed in “Reorganizing the catalog and directory” on
page 315.

SORTNUM integer Specifies the number of temporary data sets to be dynamically
allocated by the sort program.

integer is the number of temporary data sets.

If you omit SORTDEVT, SORTNUM is ignored. If you use
SORTDEVT and omit SORTNUM, no value is passed to
DFSORT. It is allowed to take its own default.

SORTNUM is ignored for the catalog and directory table
spaces listed in “Reorganizing the catalog and directory” on
page 315.

PREFORMAT Specifies that the remaining pages are preformatted up to the
high allocated RBA in the table space and index spaces
associated with the table specified in table-name. The
preformatting occurs after the data has been loaded and the
indexes are built.

PREFORMAT can operate on an entire table space and its
index spaces, or on a partition of a partitioned table space and
its corresponding partitioning index space.

| PREFORMAT is ignored if you specify UNLOAD ONLY or
| UNLOAD EXTERNAL.

For more information on PREFORMAT, see “Improving
performance with LOAD or REORG PREFORMAT” on
page 162.

Instructions for running REORG TABLESPACE
To run REORG TABLESPACE, you must:

1. Read “Before running REORG TABLESPACE” on page 304 in this chapter.

2. Prepare the necessary data sets, as described in “Data sets used by REORG
TABLESPACE” on page 307.

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for REORG
TABLESPACE, see “Sample control statements” on page 335.)

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 310. (For a
complete description of the syntax and options for REORG TABLESPACE, see
“Syntax and options of the control statement” on page 279.)

5. Check the compatibility table in “Concurrency and compatibility” on page 329 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the REORG TABLESPACE job doesn't complete, as
described in “Terminating or restarting REORG TABLESPACE” on page 325.

 Chapter 2-16. REORG TABLESPACE 303

 REORG TABLESPACE

7. Run REORG TABLESPACE.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Before running REORG TABLESPACE
Catalog and directory table spaces: Before running REORG on a catalog or
directory table space, you must take an image copy. Be aware that for the
DSNDB06.SYSCOPY, DSNDB01.DBD01, and DSNDB01. SYSUTILX catalog table
spaces, REORG scans logs to verify that an image copy is available. If the scan of
logs does not find an image copy, DB2 will request archive logs.

Region size: The recommended minimum region size is 4096K.

Mapping table and SHRLEVEL CHANGE: Before running REORG TABLESPACE
with SHRLEVEL CHANGE, you must create a mapping table and an index for it.
The table space that contains the mapping table must be segmented and cannot be
the table space to be reorganized. To create the mapping table, use a CREATE
TABLESPACE statement similar to the following:

CREATE TABLESPACE table-space-name SEGSIZE integer

The number of rows in the table should not exceed 110% of the number of rows in
the table space or partition to be reorganized. The mapping table must have only
the columns and the index created by the following SQL statements:

| CREATE TABLE table-name1

| (TYPE CHAR(1) NOT NULL,

| SOURCE_RID CHAR(5) NOT NULL,

| TARGET_XRID CHAR(9) NOT NULL,

| LRSN CHAR(6) NOT NULL);

| CREATE UNIQUE INDEX index-name1 ON table-name1

| (SOURCE_RID ASC, TYPE, TARGET_XRID, LRSN);

The TARGET_XRID column must be specified as CHAR(9) even though the RIDs
are still 5 bytes long.

You must have DELETE, INSERT, SELECT, and UPDATE authorization on the
mapping table.

You can run more than one REORG SHRLEVEL CHANGE job concurrently, either
on separate table spaces or different partitions of the same table space. When
running concurrently, each REORG must have a separate mapping table. The
mapping tables need not reside in separate table spaces. If only one mapping table
exists, the REORG jobs must be scheduled to run serially. If more than one
REORG tries to access the same mapping table at the same time, one of the
REORGs will fail.

For a sample of REORG with SHRLEVEL CHANGE and a sample mapping table
and index, see job sample DSNTEJ1 as described in DB2 Installation Guide.

User-managed data sets and SHRLEVEL REFERENCE and CHANGE: If a table
space, partition, or index to be reorganized resides in user-managed data sets,
then before executing the REORG utility with SHRLEVEL REFERENCE or
SHRLEVEL CHANGE, you must create shadow data sets with the names and

304 Utility Guide and Reference

 REORG TABLESPACE

attributes described in Section 2 (Volume 1) of DB2 Administration Guide. The data
sets must already exist when you execute REORG.

The names have the form catname.DSNDBx.dbname.psname.S%%%1.Annn. Define the
| data sets as LINEAR and use SHAREOPTIONS(3,3). An efficient method for
| defining shadow data sets specifies MODEL, so the shadow is created like the
| original. For example:

| DEFINE CLUSTER +

| (NAME('catname.DSNDBC.dbname.psname.S%%%1.A%%1') +

| MODEL('catname.DSNDBC.dbname.psname.I%%%1.A%%1')) +

| DATA +

| (NAME('catname.DSNDBD.dbname.psname.S%%%1.A%%1') +

| MODEL('catname.DSNDBD.dbname.psname.I%%%1.A%%1'))

 When reorganizing an entire table space, you must create the shadow data sets
for the table space and all indexes.

If a table space, partition, or index resides in DB2-managed data sets and shadow
data sets do not already exist when you execute REORG, DB2 creates the shadow
data sets. At the end of REORG processing, the DB2-managed shadow data sets

| are deleted. You can create the shadows ahead of time for DB2-managed data
| sets, and it is strongly recommended that you do so for the shadow data set of the
| logical partition of nonpartitioning indexes.

Regardless of whether the area being reorganized resides in user-managed or
DB2-managed data sets, data sets with names that have the form
catname.DSNDBx.dbname.psname.T%%%1.Annn must not already exist when you
execute REORG with SHRLEVEL REFERENCE or SHRLEVEL CHANGE.

| Estimating the size of pre-allocated data sets: If you have not changed the
value of FREEPAGE or PCTFREE, the amount of space required for a shadow
data set should be comparable to the amount of space required for the original data

| set. However, for REORG PART, the space required for the shadow of the logical
| partition of a nonpartitioning index is approximately equal to the percentage of
| space the partition occupies in the entire table space. For example, a partitioned
| table space with 100 partitions and data relatively evenly balanced across the
| partitions needs a shadow for the logical partition roughly 1 percent the size of the
| original nonpartitioning index.

| Pre-allocating shadow data sets for REORG PART: By creating the shadow data
| sets for REORG PART ahead of time, even for DB2-managed data sets, you
| prevent possible over-allocation of DASD during REORG processing. When

reorganizing a partition, you must create the shadow data sets for the partition of
the table space and the partition of the partitioning index. In addition, before
executing REORG PART with SHRLEVEL REFERENCE or SHRLEVEL CHANGE
on partition mmm of a partitioned table space, you must create, for each
nonpartitioning index that resides in user-defined data sets, a shadow data set for a
copy of the logical partition of the index. The name for this shadow data set has the
form catname.DSNDBx.dbname.psname.S%mmm.Annn.

| When reorganizing a range of partitions, you must allocate a single shadow data
| set for each logical partition. Each logical partition within the range specified will be
| contained in the single shadow data set. The name for this shadow data set must
| have the form catname.DSNDBx.dbname.psname.S%mmm.Annn, where mmm is the first
| partition in the range specification.

 Chapter 2-16. REORG TABLESPACE 305

 REORG TABLESPACE

Restart pending status and SHRLEVEL CHANGE: If you specify SHRLEVEL
CHANGE, REORG drains the write claim class near the end of REORG
processing. In a data sharing environment, if a data sharing member fails and that
member has restart pending status for a target page set, the drain can fail. You
must postpone running REORG with SHRLEVEL CHANGE until all restart pending
statuses have been removed. You can use the DISPLAY GROUP command to
determine whether a member's status is FAILED. You can use the DISPLAY
DATABASE command with the LOCKS option to determine if locks held.

Data sharing considerations for REORG: You must not execute REORG on an
object if another DB2 holds retained locks on the object or has long-running
noncommitting applications that use the object. You can use the -DISPLAY GROUP
command to determine whether a member's status is "FAILED." You can use the
-DISPLAY DATABASE command with the LOCKS option to determine if locks are
held.

RECOVER pending and REBUILD pending status: You cannot reorganize a
table space if:

| � Any partition or range of partitions of the partitioned table space is in the
RECOVER pending status

| � The clustered index is in the REBUILD pending status, and the data is
unloaded by the cluster index method.

Similarly, you cannot reorganize a single table space partition if:

� The partition is in the RECOVER pending status

| � The corresponding partitioning index is in the REBUILD pending or RECOVER
| pending status, and the data is unloaded by the cluster index method.

| � The table space is a subset of a range of partitions that are in REORG pending
| status; you must reorganize the entire range to reset the restrictive status.

| There is one RECOVER pending restrictive state:

| RECP The table space, index space, or partition of a table space or index space
is in a RECOVER pending status. A single logical partition in RECP does
not restrict access to other logical partitions not in RECP. RECP can be
reset by recovering only the single logical partition.

| There are three REBUILD pending restrictive states:

| RBDP REBUILD pending status (RBDP) is set on a physical or logical index
| partition. The individual physical or logical partition is inaccessible and
| must be rebuilt using the REBUILD INDEX utility.
| PSRBD Page set REBUILD pending (PSRBD) is set for nonpartitioning indexes.
| The entire index space is inaccessible and must be rebuilt using the
| REBUILD utility.
| RBDP* A REBUILD pending status that is set only on logical partitions of
| nonpartitioning indexes. The entire index is inaccessible, but is made
| available again when the affected partitions are rebuilt using the REBUILD
| INDEX utility.

For information about resetting the REBUILD pending and RECOVER pending
| states, see Table 93 on page 531 and Table 92 on page 530.

306 Utility Guide and Reference

 REORG TABLESPACE

CHECK pending status: If a table space is in both REORG pending and CHECK
pending status (or auxiliary CHECK pending status), run REORG first and then
CHECK DATA to clear the respective states. Otherwise, if a table space is not in
| REORG pending status, you cannot reorganize a table space or range of partitions
if the table space or any partition in the range until the CHECK pending status is
cleared. See “CHECK pending status” on page 528 for more information about

resetting the CHECK pending status.

| REORG pending status: You must allocate a discard data set (SYSDISC) or
| specify the DISCARDDN option if the last partition of the table space is in REORG
| pending status.

Data sets used by REORG TABLESPACE
Table 53 describes the data sets used by REORG TABLESPACE. Include
statements in your JCL for each required data set, and any optional data sets you
want to use.

Table 53 (Page 1 of 2). Data sets used by REORG TABLESPACE

Data Set Description Required?

| SYSDISC| Contains discarded records from REORG
| DISCARD; optional for REORG The
| default DD name is SYSDISC.

| DISCARDDN

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

| SYSPUNCH| Contains a LOAD statement that is
| generated by REORG, which loads
| records that REORG DISCARD or
| REORG UNLOAD EXTERNAL wrote to
| the DISCARD or UNLOAD data sets. The
| default DD name is SYSPUNCH.

| PUNCHDDN

Unload data set Data set for the unloaded data and the
data set to be loaded by the RELOAD
phase. The data set is identified by the
DD statement named in the UNLDDN
keyword or by the RECDSN field on the
DB2I Utilities Panel. The data set must be
a sequential data set that is readable by
BSAM. The default DD name is SYSREC.

The unload data set must be large
enough to contain all the unloaded
records from all the tables in the target
table space.

Yes2

Copies From 1 to 4 output data sets to contain
the image copies. Their DD names are
specified with the COPYDDN and
RECOVERYDDN options of the utility
control statement.

Yes3

Work data sets Temporary data sets for sort input and
output. The DD names have the form
DATAWKnn.

Yes4

 Chapter 2-16. REORG TABLESPACE 307

 REORG TABLESPACE

The following objects are named in the utility control statement and do not require
DD cards in the JCL:

Table space The name of the table space to be reorganized. It is named in the
control statement and is accessed through the DB2 catalog.

Calculating the size of the unload data set: The size required for the unload data
set varies depending on the options used for REORG.

1. If you use REORG with UNLOAD PAUSE or CONTINUE and with
KEEPDICTIONARY (assuming a compression dictionary already exists), the
size of the unload data set, in bytes, can be roughly calculated as the VSAM
hi-used RBA for the table space. The hi-used RBA can be obtained from the
associated VSAM catalog. For SHRLEVEL CHANGE, add (number of records
* 11) bytes to the VSAM hi-used RBA.

2. If you use REORG UNLOAD ONLY, or UNLOAD PAUSE or CONTINUE
without KEEPDICTIONARY, the size of the unload data set, in bytes, can be
calculated as the maximum row length multiplied by the number of rows. The
maximum row length is the row length, including the 6 byte record prefix, plus
the length of the longest clustering key. If there are multiple tables in the table
space, the formula is:

Sum over all tables (row length × number of rows)

| For SHRLEVEL CHANGE, also add:

| (21 × ((NEARINDREF + FARINDREF) × 1.1))

| where:

| NEARINDREF Value obtained from the NEARINDREF column of the

Table 53 (Page 2 of 2). Data sets used by REORG TABLESPACE

Data Set Description Required?

Work data sets Temporary data sets for sort input and
output. The DD names have the form
SORTWKnn.

Yes5

Work data sets Two temporary data sets for sort input
and sort output. Their DD names are
specified with the WORKDDN option of
the utility control statement. The default
DD name for sort input is SYSUT1. The
default DD name for sort output is
SORTOUT.

No1

Note:

1 Not required if SORTKEYS is used; otherwise, required for tables with indexes.

2 Required unless NOSYSREC or SHRLEVEL CHANGE is specified.

3 Required if COPYDDN, RECOVERYDDN, SHRLEVEL REFERENCE, or
SHRLEVEL CHANGE is specified.

4 Required if NOSYSREC or SHRLEVEL CHANGE is specified but SORTDEVT is
not specified.

5 Required if any indexes exist and SORTDEVT is not specified.

308 Utility Guide and Reference

 REORG TABLESPACE

| SYSIBM.SYSTABLEPART catalog table4.

| FARINDREF Value obtained from the FARINDREF column of the
| SYSIBM.SYSTABLEPART catalog table4.

3. If you have variable length fields, the calculation in 2 on page 308 might give
you excessive space. Use the average uncompressed row length multiplied by
the number of rows.

For certain table spaces in the catalog and directory, the unload data set for the
table spaces will have a different format. The calculation for the size of this data set
is as follows:

data set size in bytes = (28 + longrow) × numrows

where:

longrow Length of the longest row in the table space

numrows The number of rows in the data set

The length of the row is calculated:

Sum of column lengths + 4 bytes for each link

The length of the column is calculated:

Maximum length of the column + 1 (if nullable) + 2 (if varying

 length)

See “Reorganizing the catalog and directory” on page 315 for more information
about reorganizing catalog and directory table spaces.

Calculating the size of the work data sets: When reorganizing an index space or
a table space with indexes, you need a non-DB2 sequential work data set unless
you specify the SORTKEYS keyword. That data set is identified by the DD
statement named in the WORKDDN option. During the RELOAD phase, the index
keys and the data pointers are unloaded to the work data set. This data set is used
to update the index data pointers after the data has been moved. It is required only
during the execution of REORG.

To calculate the approximate size (in bytes) of both WORKDDN data sets
SORTOUT and SYSUT1, follow these steps:

| 1. For each table, calculate the number of keys:

| number of keys = (#tablerows × #indexes)

| where:

| #tablerows Number of records in the table.

| #indexes Number of indexes defined on the table.

| For SHRLEVEL CHANGE, #indexes should count the number of indexes on
| the table, plus 1 for the mapping index.

| 2. Add the sums obtained in step 1.

| For SHRLEVEL CHANGE, also add:

| ((NEARINDREF + FARINDREF) × 1.1)

| 4 The accuracy of the data set size calculation depends on recent information in the SYSTABLEPART catalog table.

 Chapter 2-16. REORG TABLESPACE 309

 REORG TABLESPACE

| where:

| NEARINDREF Value obtained from the NEARINDREF column of the
| SYSIBM.SYSTABLEPART catalog table4.

| FARINDREF Value obtained from the FARINDREF column of the
| SYSIBM.SYSTABLEPART catalog table4.

| 3. Multiply the sum in step 2 by the longest key length plus 9. When determining
| the longest key length, remember that the length of the mapping index is 21
| bytes.

Allocating twice the space used by the input data sets is usually adequate for the
sort work data sets. For compressed data, double again the space allocated for the
sort work data sets if you use the following REORG options:

� UNLOAD PAUSE without KEEPDICTIONARY
� UNLOAD CONTINUE without KEEPDICTIONARY

| Two or three large SORTWKnn data sets are preferable to several small ones. If
adequate space is not available, you cannot run REORG.

Specifying a destination for DFSORT messages: The REORG utility job step
must contain a UTPRINT DD statement to define a destination for messages issued
by DFSORT during the SORT phase of REORG. The default DD statement used

| by DB2I and the %DSNU CLIST command and by the DSNUPROC procedure is:

//UTPRINT DD SYSOUT=A

Creating the control statement
See “Syntax and options of the control statement” on page 279 for REORG
TABLESPACE syntax and option descriptions. See “Sample control statements” on
page 335 for examples of REORG TABLESPACE usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Determining when an object should be reorganized” on page 311
“Specifying access with SHRLEVEL” on page 312
“Omitting the output data set” on page 314
“Unloading without reloading” on page 314
“Reclaiming space from dropped tables” on page 315
“Considerations for fallback recovery” on page 315
“Reorganizing the catalog and directory” on page 315
“Changing data set definitions” on page 317
“Temporarily interrupting REORG” on page 317
“Building a compression dictionary” on page 317
“Overriding dynamic DFSORT and SORTDATA allocation” on page 318

| “Rebalancing partitions using REORG” on page 318
| “Using inline COPY with REORG TABLESPACE” on page 319

“Improving performance” on page 319
“Improving performance with LOAD or REORG PREFORMAT” on page 162
“Building indexes in parallel for REORG TABLESPACE” on page 321

Product-sensitive Programming Interface

310 Utility Guide and Reference

 REORG TABLESPACE

Determining when an object should be reorganized
| You can determine when to run REORG for non-LOB table spaces and indexes by
| using the OFFPOSLIMIT, INDREFLIMIT catalog query options. If you specify the
| REPORTONLY option, REORG will produce a report detailing if a REORG is
| recommended; a REORG is not performed.

| When you specify the catalog query options along with the REPORTONLY option,
| REORG produces a report with one of the following return codes:

| 1 No limit met; no REORG performed or recommended.
| 2 REORG performed or recommended.

Alternatively, information from the SYSTABLEPART and SYSINDEXPART catalog
tables can tell you which table spaces and indexes qualify for reorganization. This
information can also be used to determine when the DB2 catalog table spaces
require reorganization. For table spaces SYSDBASE, SYSVIEWS, and SYSPLAN
of the catalog, the value for columns FAROFFPOS and NEAROFFPOS of
SYSINDEXPART should not be used when determining whether to reorganize.

| Table spaces or partitions that are in REORG pending status should be
| reorganized. Use the DISPLAY DATABASE RESTRICT command to display those
| table spaces and partitions that require reorganization. See Appendix C, “Resetting
| an advisory or restrictive status” on page 527 for more information.

Information from the SYSTABLEPART catalog table can also tell you how well
DASD space is being used. If you want to find the number of varying-length rows
relocated to other pages because of an update, run RUNSTATS and issue this
statement:

SELECT CARD, NEARINDREF, FARINDREF

 FROM SYSIBM.SYSTABLEPART

WHERE DBNAME = 'XXX'

AND TSNAME = 'YYY';

A large number (relative to previous values you have received) for FARINDREF
indicates that I/O activity on the table space is high. If you find that this number
increases over a period of time, you probably need to reorganize the table space to
improve performance, and increase PCTFREE or FREEPAGE for the table space
with the ALTER TABLESPACE statement.

The following statement returns the percentage of unused space in nonsegmented
table space YYY. In nonsegmented table spaces, the space used by dropped
tables is not reclaimed until you reorganize the table space.

SELECT PERCDROP

 FROM SYSIBM.SYSTABLEPART

WHERE DBNAME = 'XXX'

AND TSNAME = 'YYY';

Issue the following statement to determine whether the rows of a table are stored in
the same order as the entries of its clustering index (XXX.YYY):

 Chapter 2-16. REORG TABLESPACE 311

 REORG TABLESPACE

SELECT NEAROFFPOSF, FAROFFPOSF

 FROM SYSIBM.SYSINDEXPART

WHERE IXCREATOR = 'index_creator_name'

AND IXNAME = 'index_name';

There are several indicators available to signal a time for reorganizing the table
spaces. A large value for FAROFFPOSF might indicate that clustering is
degenerating. Reorganizing the table space would improve performance.

A large value for NEAROFFPOSF might indicate also that reorganization might
improve performance. However, in general it is not as critical a factor as
FAROFFPOSF.

FAROFFPOSF and NEAROFFPOSF do not have performance considerations for
certain DB2 catalog tables.

 DSNDB06.SYSDBASE
 DSNDB06.SYSDBAUT
 DSNDB06.SYSGROUP
 DSNDB06.SYSPLAN
 DSNDB06.SYSVIEWS
 DSNDB01.DBD01

For any table, the REORG utility repositions rows into the sequence of the key of
the clustering index defined on that table. If you specify the SORTDATA option of
the REORG utility, the data is unloaded using a sequential scan. If you do not
specify the SORTDATA option, REORG uses the clustering index to unload the
data.

For nonclustering indexes, the statistical information recorded by RUNSTATS in
SYSINDEXES and SYSINDEXPART might appear even worse after the clustering
index is used to reorganize the data. This applies only to CLUSTERING and
CLUSTERED in SYSINDEXES and to NEAROFFPOS and FAROFFPOS in
SYSINDEXPART.

| In general, it is a good practice to run RUNSTATS if the statistics are not current. If
| you have an object that should also be reorganized, run REORG with STATISTICS
| and take inline copies. If you run REORG PART and nonpartitioning indexes exist,
| subsequently run RUNSTATS for each nonpartitioning index.

End of Product-sensitive Programming Interface

Specifying access with SHRLEVEL
For reorganizing a table space, or a partition of a table space, the SHRLEVEL
option lets you choose the level of access you have to your data during
reorganization:

� REORG with SHRLEVEL NONE, the default, reloads the reorganized data into
the original area being reorganized. Applications have read-only access during

| unloading and no access during reloading. SHRLEVEL NONE is the only
| access level that resets REORG pending status.

� REORG with SHRLEVEL REFERENCE reloads the reorganized data into a
new (shadow) copy of the area being reorganized. Near the end of
reorganization, DB2 switches applications' future access from the original to the
shadow copy. For SHRLEVEL REFERENCE, applications have read-only

312 Utility Guide and Reference

 REORG TABLESPACE

access during unloading and reloading, and a brief period of no access during
switching.

� REORG with SHRLEVEL CHANGE reloads the reorganized data into a shadow
copy of the area being reorganized. For REORG TABLESPACE SHRLEVEL
CHANGE, a mapping table maps between RIDs in the original copy of the table
space or partition and RIDs in the shadow copy; see page 304 for instructions
on creating the mapping table. Applications can read and write the original
area, and DB2 records the writing in the log. DB2 then reads the log and
applies it to the shadow copy to bring the shadow copy up to date. This step
executes iteratively, with each iteration processing a sequence of log records.
Near the end of reorganization, DB2 switches applications' future access from
the original to the shadow copy. Applications have read/write access during
unloading and reloading, a brief period of read-only access during the last
iteration of log processing, and a brief period of no access during switching.

Log processing with SHRLEVEL CHANGE: When you specify SHRLEVEL
CHANGE, DB2 processes the log to update the shadow copy. This step executes
iteratively. The first iteration processes the log records that accumulated during the
previous iteration. The iterations continue until one of these conditions is met:

� DB2 estimates that the time to perform the log processing in the next iteration
will be less than or equal to the time specified by MAXRO. If this condition is
met, the next iteration will be the last.

� DB2 estimates that the SWITCH phase will not start by the deadline specified
by DEADLINE. If this condition is met, DB2 terminates reorganization.

� The number of log records that the next iteration will process is not sufficiently
lower than the number of log records processed in the previous iteration. If this
condition is met but the first two conditions are not, DB2 sends message
DSNU377I to the console. DB2 continues log processing for the length of time
specified by DELAY and then performs the action specified by LONGLOG.

Operator actions: LONGLOG specifies the action that DB2 performs if log
processing is not catching up. See “Option descriptions” on page 282 for a
description of the LONGLOG options. If no action is taken after message
DSNU377I is sent to the console, the LONGLOG option automatically goes into
effect. Some examples of possible actions you may take:

� Execute the START DATABASE(db) SPACENAM(ts) ... ACCESS(RO)
command and the QUIESCE utility to drain the write claim class. DB2 performs
the last iteration, if MAXRO is not DEFER. After the QUIESCE, you should also
execute the ALTER UTILITY command, even if you do not change any REORG
parameters.

� Execute the START DATABASE(db) SPACENAM(ts) ... ACCESS(RO)
command and the QUIESCE utility to drain the write claim class. Then, after
reorganization has made some progress, execute the START DATABASE(db)
SPACENAM(ts) ... ACCESS(RW) command. This increases the likelihood that
log processing will catch up. After the QUIESCE, you should also execute the
ALTER UTILITY command, even if you do not change any REORG
parameters.

� Execute the ALTER UTILITY command to change the value of MAXRO.
Changing it to a huge positive value, such as 9999999, causes the next
iteration to be the last iteration.

 Chapter 2-16. REORG TABLESPACE 313

 REORG TABLESPACE

� Execute the ALTER UTILITY command to change the value of LONGLOG.

� Execute the TERM UTILITY command to terminate reorganization.

� Adjust the amount of buffer space allocated to reorganization and to
applications. This can increase the likelihood that log processing will catch up.
After adjusting the space, you should also execute the ALTER UTILITY
command, even if you do not change any REORG parameters.

� Adjust the scheduling priorities of reorganization and applications. This can
increase the likelihood that log processing will catch up. After adjusting the
priorities, you should also execute the ALTER UTILITY command, even if you
do not change any REORG parameters.

DB2 does not take the action specified in the LONGLOG phrase if any one of these
events occurs before the delay expires:

� An ALTER UTILITY command is issued.

� A TERM UTILITY command is issued.

� DB2 estimates that the time to perform the next iteration will be less than or
equal to the time specified in the MAXRO phrase.

� REORG terminates for any reason (including the deadline).

Omitting the output data set
For REORG TABLESPACE, you can use the NOSYSREC option to omit the unload
data set. You can use this option only if you specify SORTDATA, SHRLEVEL
REFERENCE, or SHRLEVEL NONE, and only if you do not specify UNLOAD
PAUSE or UNLOAD ONLY. This option provides a performance advantage.
However, you should be aware of the following:

� For REORG TABLESPACE SORTDATA NOSYSREC, DB2 assumes there is a
clustering index present.

� For REORG TABLESPACE SHRLEVEL CHANGE, REORG omits the unload
data set, even if you omit NOSYSREC, unless there is no explicit clustering
index.

� For REORG TABLESPACE SHRLEVEL REFERENCE, if you do not use the
NOSYSREC option and an error occurs during reloading, you can restart at the
RELOAD phase of REORG using the contents of the unload data set.
However, if you specify both SORTDATA and NOSYSREC, you must restart at
the UNLOAD phase.

� For REORG TABLESPACE SHRLEVEL NONE with NOSYSREC, if an error
occurs during reloading, you must execute the RECOVER TABLESPACE utility,
starting from the most recent image copy. Therefore, if you specify NOSYSREC
with SHRLEVEL NONE, you must create an image copy before starting
REORG TABLESPACE in addition to any image copies you create during or
after REORG.

Unloading without reloading
REORG can unload data without continuing and without leaving a
SYSIBM.SYSUTIL record after the job ends.

If you specify UNLOAD ONLY, REORG unloads data from the table space and
then ends. You can reload the data at a later date with the LOAD utility, specifying
FORMAT UNLOAD.

314 Utility Guide and Reference

 REORG TABLESPACE

Between unloading and reloading, you may add a validation routine to a table. On
reloading, all the rows will be checked by the validation procedure.

| REORG UNLOAD ONLY should not be used for data propagation. When you
| specify the UNLOAD ONLY option, REORG only unloads what physically resides in
| the base table space; LOBs are not unloaded. For purposes of data propagation,
| you should use REORG UNLOAD EXTERNAL instead.

Reclaiming space from dropped tables
Reorganization omits tables that have been previously dropped, reclaiming the
space they acquired. See “Reclaiming space in the DBD” on page 199 for actions
to take when you drop a table.

Considerations for fallback recovery
If RECOVER cannot use the latest image copy or copies as a starting point for the
recovery, it attempts to use previous copies; if that attempt fails, it restores from the
log.

However, if you use REORG SHRLEVEL NONE LOG NO, RECOVER cannot
restore from the log past the point at which the object was last reorganized
successfully. Therefore, you must take an image copy after running REORG with
LOG NO to establish a level of fall back recovery.

| To create a new recovery point, it is strongly recommended that immediately
| following an ALTER INDEX operation that modifies key values, you either:

| � Run REORG with COPYDDN and SHRLEVEL NONE specified, or

| � Take a full image copy immediately after REORG completes.

| If you performed a REORG to turn off REORG pending status (REORP), you
| should also take an inline image copy, or run the COPY utility. Image copies taken
| prior to resetting the REORG pending status cannot be used for recovery to current
| RBA or LRSN.

| Successful REORG LOG NO processing inserts an SYSIBM.SYSCOPY row with
| ICTYPE='W' for each index that was defined with COPY YES. REORG also places
| a reorganized index in informational COPY pending status. You should take a full
| image copy of the index after the REORG job completes to create a valid point of
| recovery.

Reorganizing the catalog and directory
You can run REORG TABLESPACE on the table spaces in the catalog database
(DSNDB06) and the SCT02, SPT01, and DBD01 table spaces in the directory
database (DSNDB01).

Attention: You must take a full image copy before and after reorganizing any
catalog or directory object.

When you REORG the DSNDB06.SYSCOPY table space with the LOG NO option
and omit the COPYDDN option, DB2 places the table space in COPY pending
status. Take a full image copy of the table space to remove the COPY pending
status before continuing to reorganize the catalog or directory table spaces.

 Chapter 2-16. REORG TABLESPACE 315

 REORG TABLESPACE

Running REORG LOG NO COPYDDN avoids the COPY pending status, because
an inline copy is taken during the REORG.

When to run REORG on the catalog and directory: You should not need to run
REORG TABLESPACE on the catalog and directory table spaces as often as you
do on user table spaces. The statistics collected by RUNSTATS that you use to
determine if a REORG is required for a user table space can also be used for the
catalog table spaces. The only difference is the information in the columns
NEAROFFPOS and FAROFFPOS in table SYSINDEXPART. These columns can
tolerate a higher value before a reorganization is needed if the table space is
DSNDB06.SYSDBASE, DSNDB06.SYSVIEWS, or DSNDB06.SYSPLAN. When it
is determined that any of the following catalog table spaces require reorganization,
you should also reorganize the corresponding directory table space:

Fragmentation and wasted space in the catalog table spaces affect the
performance of user queries against the catalog and performance of DB2 functions.

Associated directory table spaces: When certain catalog table spaces are
reorganized, you should reorganize the associated directory table space as well.

Limitations for reorganizing the catalog and directory:

| � You cannot reorganize DSNDB01.SYSUTILX or DSNDB01.SYSLGRNGX.

� The UNLOAD ONLY and LOG YES options are not allowed for catalog and
directory table spaces

� The WORKDDN, SORTDATA, SORTDEVT, SORTNUM, SORTKEYS,
COPYDDN, and RECOVERYDDN options are ignored for the following catalog
and directory table spaces:

 DSNDB06.SYSDBASE
 DSNDB06.SYSDBAUT
 DSNDB06.SYSGROUP
 DSNDB06.SYSPLAN
 DSNDB06.SYSVIEWS
 DSNDB01.DBD01

� REORG TABLESPACE with SHRLEVEL REFERENCE or CHANGE cannot
operate on the following catalog and directory table spaces:

 DSNDB06.SYSDBASE
 DSNDB06.SYSDBAUT
 DSNDB06.SYSGROUP
 DSNDB06.SYSPLAN
 DSNDB06.SYSVIEWS
 DSNDB01.DBD01

Phases for reorganizing the catalog and directory: REORG TABLESPACE
processes certain catalog and directory table spaces differently from other table

Catalog Table Space Directory Table Space

DSNDB06.SYSDBASE DSNDB01.DBD01

DSNDB06.SYSPLAN DSNDB01.SCT02

DSNDB06.SYSPKAGE DSNDB01.SPT01

316 Utility Guide and Reference

 REORG TABLESPACE

spaces; it does not execute the build and sort phases for the following table
spaces:

 DSNDB06.SYSDBASE
 DSNDB06.SYSDBAUT
 DSNDB06.SYSGROUP
 DSNDB06.SYSPLAN
 DSNDB06.SYSVIEWS
 DSNDB01.DBD01

For these table spaces, REORG TABLESPACE reloads the indexes (in addition to
the table space) during the reload phase, rather than storing the index keys in a
work data set for sorting.

Changing data set definitions
If the table space is defined by storage groups, space allocation is handled by DB2
and data set definitions cannot be altered during the reorganization process. DB2
deletes and redefines the necessary data sets to reorganize the object.

For REORG with SHRLEVEL REFERENCE or CHANGE, you can use the ALTER
STOGROUP command to change the characteristics of a DB2-managed data set.
The user effectively changes the characteristics of a user-managed data set by
specifying the desired new characteristics when creating the shadow data set; see
page 304 for more information about user-managed data sets. In particular, placing
the original and shadow data sets on different DASD volumes might reduce
contention and thus improve the performance of REORG and the performance of
applications during REORG execution.

Temporarily interrupting REORG
You can temporarily pause REORG. If you specify UNLOAD PAUSE, REORG
pauses after unloading the table space into the unload data set. You cannot use
NOSYSREC and PAUSE. The job completes with return code 4. You can restart
REORG using the phase restart or current restart. The REORG statement must not
be altered.

The SYSIBM.SYSUTIL record for the REORG utility remains in "stopped" status
until REORG is restarted or terminated.

While REORG is interrupted by PAUSE, you may re-define the table space
attributes for user defined table spaces. PAUSE is not required for STOGROUP
defined table spaces. Attribute changes are done automatically by a REORG
following an ALTER TABLESPACE.

Building a compression dictionary
The compression dictionary is built during the UNLOAD phase. This dictionary is
then used during the RELOAD phase to compress the data. Specify the
KEEPDICTIONARY option to save the cost of rebuilding the dictionary if you are
satisfied with the current compression ratio.

 Chapter 2-16. REORG TABLESPACE 317

 REORG TABLESPACE

Overriding dynamic DFSORT and SORTDATA allocation
When you specify SORTDATA on your REORG statement, DB2 estimates how
many rows are to be sorted and passes this information to DFSORT on the
parameter FILSZ, letting DFSORT dynamically allocate the necessary sort
workspace.

If the table space contains rows with VARCHAR columns, DB2 might not be able to
accurately estimate the number of rows. If the estimated number of rows is too
high, and the sort work space is not available, DFSORT might fail and cause an
abend.

If compression is defined for the table space, REORG doubles the estimated FILSZ
so that DFSORT allocates enough space to expand the compressed records during
the UNLOAD phase.

You can override this dynamic allocation of sort workspace in two ways:

� Allocate the sort work data sets with SORTWKnn DD statements in your JCL

� Override DB2's row estimate in FILSZ using control statements passed to
DFSORT. However, using control statements overrides size estimates passed
to DFSORT in all invocations of DFSORT in the job step, including sorting keys
to build indexes, and any sorts done in any other utility executed in the same
step. The result might be reduced sort efficiency or an abend due to an out of
space condition.

| Rebalancing partitions using REORG
| If you use ALTER INDEX to modify the limit keys for partition boundaries, you must
| subsequently use REORG TABLESPACE to redistribute data in the partitioned
| table spaces based on the new key values and to reset the REORG pending
| status. The following example specifies options that help maximize performance
| while performing the necessary rebalancing REORG:

| REORG TABLESPACE DSN8S61E PART 2:3

| SORTDATA

| NOSYSREC

| SORTKEYS

| COPYDDN SYSCOPY

| STATISTICS TABLE INDEX(ALL)

| You can reorganize a range of partitions, even if the partitions are not in REORG
| pending status. If you specify the STATISTICS keyword, REORG collects data on
| the specified range of partitions.

| If you perform a REORG on partitions that are in the REORG pending status, be
| aware that:

| � You must specify SHRLEVEL NONE if the object is in REORG pending status.
| Otherwise, REORG terminates and issues message DSNU273I and return code
| 8.
| � REORG ignores the KEEPDICTIONARY option for any partition that is in
| REORG pending status; REORG automatically rebuilds the dictionaries for the
| affected partitions. However, if you specify a range of partitions that includes
| some partitions that are not in REORG pending restrictive status, REORG
| honors the KEEPDICTIONARY option for those non-restricted partitions.

318 Utility Guide and Reference

 REORG TABLESPACE

| � If any partition is in REORG pending status when REORG executes, DB2
| writes a SYSCOPY record with STYPE='A' for each partition that is specified
| on the REORG job.
| � If you take an inline image copy of a range of partitions, DB2 writes one
| SYSCOPY record with ICTYPE='F' for each part, and each record has the
| same data set name.
| � Specify the DISCARDDN and PUNCHDDN data sets for a table space that is
| defined as LARGE or DSSIZE, but has subsequently had an ALTER INDEX
| statement reduce the limit key for the last partition of the table space.
| Otherwise, REORG will terminate issuing message DSNU035I and return code
| 8.

| You cannot reorganize a subset of a range of partitions that are in REORG pending
| status; you must reorganize the entire range to reset the restrictive status.

| Using inline COPY with REORG TABLESPACE
| You can create a full image copy data set (SHRLEVEL REFERENCE) during
| REORG TABLESPACE execution. The new copy is an inline copy. The advantage
| to using inline copy is that the table space is not left in COPY pending status
| regardless of which LOG option was specified for the utility. Thus, data availability
| is increased.

| To create an inline copy, use the COPYDDN and RECOVERYDDN keywords. You
| can specify up to two primary and two secondary copies. Inline copies are
| produced during the RELOAD phase of REORG processing.

| The SYSCOPY record produced by an inline copy contains ICTYPE=F,
| SHRLEVEL=R. The STYPE column contains an X if the image copy was produced
| by REORG TABLESPACE LOG(YES), and an W if the image copy was produced
| by REORG TABLESPACE LOG(NO). The data set produced by the inline copy is
| logically equivalent to a full image copy with SHRLEVEL REFERENCE, but the
| data within the data set differs in some respects:

| � Data pages might be out of sequence and some might be repeated. If pages
| are repeated, the last one is always the correct copy.

| � Space map pages will be out of sequence and might be repeated

| The total number of duplicate pages will be small, with a negligible effect on the
| space required for the data set. One exception to this guideline is in the case of
| running REORG SHRLEVEL CHANGE, where the number of duplicate pages will
| vary with the number of records applied during the LOG phase.

 Improving performance
To improve REORG performance:

� We strongly recommend that you specify SORTDATA on your REORG
statement unless your data set is very large, and you do not want to allocate
the extra DASD required by DFSORT. In this case, DB2 unloads the data by
table space scan and executes DFSORT to sort the data into clustering order.
SORTDATA is useful if either:

– Your table's CLUSTERRATIOF is less than 95% or

– FAROFFPOS/CARD for your table is greater than 5%

 Chapter 2-16. REORG TABLESPACE 319

 REORG TABLESPACE

In general, the lower the CLUSTERRATIOF of your tables, the greater the
performance improvement of REORG when specifying SORTDATA.

� Run REORG concurrently on separate partitions of a partitioned table space.
When you run REORG on partitions of a partitioned table space, the sum of
each job's processor usage is greater than for a single REORG of the entire
table space. However, the elapsed time of reorganizing the entire table in
parallel may be significantly less than it would be for a single REORG job.

� Specify SORTKEYS on your REORG statement to sort index keys in parallel
with the reload and build phases. This option passes index keys in sort to
memory rather than writing them to sort input and output data files. In addition
to improving performance, this option reduces work space requirements
because the SYSUT1 and SORTOUT data sets are not required. This option is

| recommended if more than one index needs to be created. REORG will
| implicitly use SORTKEYS if you specified SHRLEVEL CHANGE. However, if a

job using SORTKEYS abends in the RELOAD, SORT, BUILD, or SORTBLD
phase, it can only be restarted at the beginning of the reload phase.

| Use parallel index build for table spaces or partitions with more than one index
| defined. For more information, see “Building indexes in parallel for REORG
| TABLESPACE” on page 321.

� Specify NOSYSREC on your REORG statement. See “Omitting the output data
set” on page 314 for restrictions.

� If you are using 3990 caching, and you have the nonpartitioning indexes on
RAMAC, consider specifying YES on the UTILITY CACHE OPTION field of
installation panel DSNTIPE. This allows DB2 to use sequential prestaging when
reading data from RAMAC for the following utilities:

– LOAD PART integer RESUME

– REORG TABLESPACE PART

For these utilities, prefetch reads remain in the cache longer, thus possibly
improving performance of subsequent writes.

When to use SHRLEVEL CHANGE: Schedule REORG with SHRLEVEL CHANGE
when the rate of writing is low and transactions are short. Avoid scheduling
REORG with SHRLEVEL CHANGE when low-tolerance applications are executing.

Performance implications with SHRLEVEL CHANGE: Under certain
circumstances, the log records used by REORG SHRLEVEL CHANGE contain
additional information, as if DATA CAPTURE CHANGES were used. Generation of
the additional information can slow applications and increase consumption of log
space. The additional information is generated for all the tables in the table space if
at least one table satisfies all these conditions:

� The table has undergone ALTER TABLE ADD column

� The table does not use DATA CAPTURE CHANGES

� One of these conditions is true:

– The area being reorganized uses data compression

– The area is a partitioned table space, and at least one partition uses data
compression

320 Utility Guide and Reference

 REORG TABLESPACE

| Building indexes in parallel for REORG TABLESPACE: Use parallel index build
| to reduce the elapsed time for a REORG TABLESPACE job by sorting the index
| keys and rebuilding multiple indexes in parallel, rather than sequentially. Optimally,
| a pair of subtasks process each index; one subtask sorts extracted keys while the
| other subtask builds the index. REORG TABLESPACE begins building each index
| as soon as the corresponding sort emits its first sorted record. For more information
| about improving index key sort performance, see “Improving performance” on
| page 319.

| Figure 18 shows a REORG TABLESPACE flow with parallel index build, which
| requires SORTKEYS. DB2 starts multiple subtasks to sort index keys and build
| indexes in parallel. If you specified STATISTICS, additional subtasks collect the
| sorted keys and update the catalog table in parallel, eliminating the need for a
| second scan of the index by a separate RUNSTATS job.

| Figure 18. Building indexes using parallel index build

| REORG TABLESPACE uses parallel index build if all of the following conditions are
| true:

| � There is more than one index to be built (including the mapping index for
| SHRLEVEL CHANGE).
| � You specify either SORTKEYS or SHRLEVEL CHANGE in the utility statement.
| � You either allow the utility to dynamically allocate the data sets needed by
| SORT, or provide the necessary data sets yourself.

| Select one of the following methods to allocate sort work and message data sets:

| Method 1: REORG TABLESPACE determines the optimal number of sort work and
| message data sets.

| 1. Specify the SORTKEYS and SORTDEVT keywords in the utility statement.

| 2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn
| DD statements in the REORG TABLESPACE utility JCL.

| 3. Allocate UTPRINT to SYSOUT.

| Method 2: Allows you to control allocation of sort work data sets, while REORG
| TABLESPACE allocates message data sets.

 Chapter 2-16. REORG TABLESPACE 321

 REORG TABLESPACE

| 1. Specify the SORTKEYS keyword in the utility statement.

| 2. Provide DD statements with DDNAMEs in the form SWnnWKmm.

| 3. Allocate UTPRINT to SYSOUT.

| Method 3: Allows the most control over rebuild processing; you must specify both
| sort work and message data sets.

| 1. Specify the SORTKEYS keyword in the utility statement.

| 2. Provide DD statements with DDNAMEs in the form SWnnWKmm.

| 3. Provide DD statements with DDNAMEs in the form UTPRINnn.

| Data sets used: If you select Method 2 or 3 above, use the information provided
| here along with “Determining the number of sort subtasks,” “Allocation of sort
| subtasks” on page 323 , and “Estimating the sort work file size” on page 323 to
| define the necessary data sets.

| Each sort subtask must have its own group of sort work data sets and its own print
| message data set. Possible reasons to allocate data sets in the utility job JCL
| rather than using dynamic allocation are:

| � To control the size and placement of the data sets.
| � To minimize device contention.
| � To optimally utilize DASD free space.
| � To limit the number of utility subtasks used to build indexes.

| The DDNAMEs SWnnWKmm define the sort work data sets used during utility
| processing. nn identifies the subtask pair, while mm identifies one or more data
| sets to be used by that subtask pair. For example:

| SW01WK01 The first sort work data set used by the subtask building the first
| index.

| SW01WK02 The second sort work data set used by the subtask building the
| first index.

| SW02WK01 The first sort work data set used by the subtask building the
| second index.

| SW02WK02 The second sort work data set used by the subtask building the
| second index.

| The DDNAMEs UTPRINnn define the sort work message data sets used by the
| utility subtask pairs. nn identifies the subtask pair.

| Determining the number of sort subtasks: The maximum number of utility subtask
| pairs started for parallel index build is equal to the number of indexes to be built.

| REORG TABLESPACE determines the number of subtask pairs according to the
| following guidelines:

| � The number of subtask pairs equals the number of sort work data set groups
| allocated.

| � The number of subtask pairs equals the number of message data sets
| allocated.

322 Utility Guide and Reference

 REORG TABLESPACE

| � If you allocate both sort work and message data set groups, the number of
| subtask pairs equals the smallest number of data sets allocated.

| Allocation of sort subtasks: REORG TABLESPACE attempts to assign one sort
| subtask pair for each index to be built. If REORG TABLESPACE cannot start
| enough subtasks to build one index per subtask pair, it allocates any excess
| indexes across the pairs, so one or more subtask pairs might build more than one
| index.

| During parallel index build processing, REORG distributes all indexes among the
| subtask pairs according to the index creation date, assigning the first created index
| to the first subtask pair. For SHRLEVEL CHANGE, the mapping index is assigned
| last.

| Estimating the sort work file size: If you choose to provide the data sets, you will
| need to know the size and number of keys present in all of the indexes being
| processed by the subtask in order to calculate each sort work file size. After you've
| determined which indexes are assigned to which subtask pairs, use the following
| formula to calculate the space required:

| 2 × (longest index key + 9) × (number of keys extracted)

| longest key The length of the longest index key that will be processed by the
| subtask. For SHRLEVEL CHANGE, the mapping index key
| length is 21.

| number of keys The number of keys from all indexes to be sorted that will be
| processed by the subtask.

Considerations for running REORG
This section discusses additional points to keep in mind when running REORG.
See Appendix C, “Resetting an advisory or restrictive status” on page 527 for
information on resetting REORG pending status.

Sorting data in clustering order
When you specify SORTDATA:

� If an explicit clustering index exists on any table in the table space being
reorganized, rows of the table space are unloaded in physical sequence. (If
the object being reorganized is a partition, rows of that partition are unloaded in
physical sequence.) DFSORT then uses the clustering index key to sort the
rows. If any other table in the table space has no explicit clustering index, the
key of the implicit clustering index (if one exists) is used for the sort.

� If no explicit clustering index exists, SORTDATA is ignored.

� If the largest possible composite record to be sorted exceeds 32760 bytes in
length, which is the maximum record size for a BSAM data set, SORTDATA is
ignored if you specified SHRLEVEL NONE or REFERENCE (REORG cannot
operate if a table has a clustering index and you specified SHRLEVEL
CHANGE). This condition can occur only when the table space contains pages
of 32 KB size. The largest possible composite record in the table space may
be calculated by the following formula:

max(K) + max(R + E) + 18 bytes for NONE or REFERENCE or 29 bytes for

CHANGE

 Chapter 2-16. REORG TABLESPACE 323

 REORG TABLESPACE

where:

max(K) = number of bytes in the longest possible clustering key (K)

max(R + E) = number of bytes in the longest possible record (R) plus edit
procedure work area (E). E = 10 bytes if an edit procedure is
used, otherwise E = 0 bytes.

When SORTDATA is not specified:

� If an explicit clustering index exists, segmented table spaces are unloaded
using that index

� If an explicit clustering index does not exist, the table space is unloaded by
table. Multi-table simple table spaces are unloaded by table space scan, in
which case rows are reloaded in the same order that they were unloaded.

Methods of unloading data
Data is unloaded by one of three methods:

� Table space scan with sort: Chosen if you specified the SORTDATA option,
and at least one table in the table space has an explicit clustering index.

� Table space scan: Chosen for simple table spaces that contain more than one
table, or contain one table but do not have an explicit clustering index.

� Clustering index: Always chosen for partitioned table spaces (unless you
specified the SORTDATA option); chosen for simple table spaces that contain
one table and have an explicit clustering index; and chosen for tables in a
segmented table space that have an explicit clustering index.

Encountering an error in the RELOAD phase
Failure during the RELOAD phase (after the data has been unloaded and data sets
have been deleted, but before the data has been reloaded) results in an unusable
table space.

If the error is on the table space data:

� If you have defined data sets, you can allocate new data sets.

� If STOGROUP has defined data sets, you can alter the new table space to
change the primary and secondary quantities.

� If you do allocate new data sets, do alter the table space, or do add volumes to
the storage group, restart the REORG job at the beginning of the phase.
Otherwise, you can restart either at the last commit point, or at the beginning of
the phase.

If the error is on the unloaded data, or if you used the NOSYSREC option,
terminate REORG using the TERM UTILITY command. Then recover the table
space, using RECOVER, and run the REORG job again.

Reorganizing partitioned table spaces
| If you reorganize a single partition or a range of partitions, all indexes of the table

space are affected. Depending on how disorganized the nonpartitioning indexes
are, you might want to reorganize them as well. For more information about when
to reorganize, see “Determining when an index requires reorganization” on
page 267.

324 Utility Guide and Reference

 REORG TABLESPACE

Reorganizing segmented table spaces
If the target table space is segmented, REORG unloads and reloads by table.

If an explicit clustering index exists on a table in a segmented table space, that
table is unloaded in clustering sequence. If NO explicit clustering index exists, the
table is unloaded in physical row and segment order.

For segmented table spaces, REORG does NOT normally have to reclaim space
from dropped tables. Space freed by dropping tables in a segmented table space is
immediately available if the table space can be accessed when DROP TABLE is
executed. If the table space cannot be accessed when DROP TABLE is executed,
then REORG reclaims the space for dropped tables.

After you run REORG, the segments for each table are contiguous.

Counting records loaded during RELOAD phase
At the end of the RELOAD phase, REORG checks the count of the records that
were actually loaded against the count of the records that were unloaded. If the
counts do not the match, the actions taken depend on the UNLOAD option you
specified on the original job:

� If you specified UNLOAD PAUSE, REORG sets return code 4 and continues
processing the job.

� If you specified UNLOAD CONTINUE, DB2 issues an error message and
abends the job. The table space or partition remains in RECOVER pending
status.

| Reorganizing a LOB table space
| Reorganizing a LOB table space is a separate task from reorganizing the base
| table space. A LOB table space that was defined with LOG YES or LOG NO will
| affect logging while reorganizing a LOB column. Table 25 on page 170 shows the
| logging output and LOB table space effect, if any.

| Specify LOG YES and SHRLEVEL NONE when you reorganize a LOB table space
| to avoid leaving the LOB table space in COPY pending status after the REORG.

Terminating or restarting REORG TABLESPACE
If you terminate REORG TABLESPACE with the TERM UTILITY command during
the UNLOAD phase, objects have not yet been changed and the job can be rerun.

If you terminate REORG TABLESPACE with the TERM UTILITY command during
the RELOAD phase, the behavior depends on the SHRLEVEL option:

� For SHRLEVEL NONE, the data records are not erased. The table space and
indexes are left in RECOVER pending status. After you recover the table
space, rerun the REORG job.

� For SHRLEVEL REFERENCE or CHANGE, the data records are reloaded into
shadow objects, so the original objects have not been affected by REORG. You
can rerun the job.

If you terminate REORG with the TERM UTILITY command during the SORT,
BUILD, or LOG phases, the behavior depends on the SHRLEVEL option:

 Chapter 2-16. REORG TABLESPACE 325

 REORG TABLESPACE

� For SHRLEVEL NONE, the indexes not yet built are left in RECOVER pending
status. You can run REORG with the SORTDATA option or you can run

| REBUILD INDEX to rebuild those indexes.

� For SHRLEVEL REFERENCE or CHANGE, the records are reloaded into
shadow objects, so the original objects have not been affected by REORG. You
can rerun the job.

If you terminate REORG with the TERM UTILITY command during the SWITCH
phase, all data sets that were renamed to their shadow counterparts are renamed
back, so the objects are left in their original state. You can rerun the job. If there is
a problem in renaming to the original data sets, the objects are left in RECOVER
pending status. You can then recover the table space using the image copy created
by REORG. You must also recover the indexes. After recovery, the objects have
completed reorganization.

If you terminate REORG with the TERM UTILITY command during the BUILD2
phase, the logical partition is left in RECOVER pending status. After you run

| REBUILD INDEX for the logical partition, all objects have completed reorganization.

If you restart a REORG job of certain catalog or directory table spaces, you cannot
restart from the last checkpoint. For the following table spaces, you must specify
RESTART(PHASE):

 DSNDB06.SYSDBASE
 DSNDB06.SYSDBAUT
 DSNDB06.SYSGROUP
 DSNDB06.SYSPLAN
 DSNDB06.SYSVIEWS
 DSNDB01.DBD01

| The REORG pending status is not reset until the UTILTERM execution phase. If
| the REORG utility abends or is terminated, the objects are left in REORG pending
| and RECOVER pending status, depending on the phase where the failure occurred.
| See Appendix C, “Resetting an advisory or restrictive status” on page 527 for
| information about resetting either status.

326 Utility Guide and Reference

 REORG TABLESPACE

Recovering a failed REORG job: If you terminate REORG SHRLEVEL NONE in
the RELOAD phase, all SYSLGRNX records associated with the reorganization are
deleted. Use the RECOVER TABLESPACE utility to recover to the current point in
time, which recovers the table space to its state before the failed reorganization.

Restarting REORG: Table 55 on page 328 provides information about restarting
REORG TABLESPACE, depending on the phase REORG was in when the job
stopped.

If you restart REORG in the UTILINIT phase, it re-executes from the beginning of
the phase. If REORG abends or system failure occurs while it is in the UTILTERM
phase, you must restart the job with RESTART(PHASE).

For each phase of REORG and for each type of REORG TABLESPACE (with
SHRLEVEL NONE, with SHRLEVEL REFERENCE, and with SHRLEVEL
CHANGE), the table indicates the types of restart allowed (CURRENT and
PHASE). "None" indicates that no restart is allowed. A blank indicates that the
phase does not occur. The "Data Sets Required" column lists the data sets that
must exist to perform the specified type of restart in the specified phase.

Table 54. REORG TABLESPACE phases and restrictive statuses

Phase Effect on restrictive status

UNLOAD No effect

RELOAD SHRLEVEL NONE has these effects:

� Places table space in RECOVER pending status at the beginning of
the phase and resets the status at the end of the phase.

� Places indexes in RECOVER pending status.
� Places the table space in COPY pending status. If COPYDDN is

specified and SORTKEYS is not specified, the COPY pending
status is reset at the end of the phase.

 SHRLEVEL REFERENCE or CHANGE has no effect.

SORT No effect

BUILD| SHRLEVEL NONE resets RECOVER pending status for indexes and, if
| both COPYDDN and SORTKEYS are specified, resets copy pending
| status for table spaces at the end of the phase. SHRLEVEL

REFERENCE or CHANGE has no effect.

| SORTBLD| Same effects as in the SORT and BUILD phases.

LOG No effect

SWITCH No effect. Under certain conditions, if TERM UTILITY is issued, it must
complete successfully or objects may be placed in RECOVER pending
status.

BUILD2 If TERM UTILITY is issued, the logical partitions for nonpartitioning
indexes are placed in logical RECOVER pending status.

 Chapter 2-16. REORG TABLESPACE 327

 REORG TABLESPACE

Table 55. REORG TABLESPACE utility restart information

Phase Type for
NONE

Type for
REFERENCE

Type for
CHANGE

Data Sets Required Notes

UNLOAD CURRENT
PHASE

CURRENT
PHASE

None
None

SYSREC

RELOAD CURRENT
PHASE

CURRENT
PHASE

None
None

SYSREC and SYSUT1
SYSREC

1,2
1,2

SORT CURRENT
PHASE

CURRENT
PHASE

None
None

SYSUT1
SYSUT1

2,3
2

BUILD CURRENT
PHASE

CURRENT
PHASE

None
None

SORTOUT
SORTOUT

2,3,4
2,4

SORTBLD| CURRENT
| PHASE

CURRENT
PHASE

None
None

 2
2

LOG None
None

SWITCH CURRENT
PHASE

CURRENT
PHASE

originals and shadows
originals and shadows

3

BUILD2 CURRENT

PHASE

CURRENT

PHASE

shadows for
nonpartitioning
indexes
shadows for
nonpartitioning
indexes

3,4

4

Note:

1. For NONE, if you specified NOSYSREC, then RESTART is not possible, and you must execute the
RECOVER TABLESPACE utility for the table space or partition. For REFERENCE, if you specified both
SORTDATA and NOSYSREC, then RESTART or RESTART(PHASE) restarts at the beginning of the
UNLOAD phase.

2. For NONE and REFERENCE, if you specified SORTKEYS, then use RESTART or RESTART(PHASE) to
restart at the beginning of the RELOAD phase.

3. You can restart the utility with RESTART or RESTART(PHASE). However, because this phase does not
take checkpoints, RESTART restarts from the beginning of the phase.

4. If you specified the PART option with REORG TABLESPACE, you cannot restart the utility at the
beginning of the BUILD or BUILD2 phase if any nonpartitioning index is in a page set REBUILD pending
(PSRBD) status.

| If you restart a REORG STATISTICS job using RESTART CURRENT, inline
| statistics collection will not occur. To update catalog statistics, run the RUNSTATS
| utility after the restarted job completes. Restarting a REORG STATISTICS job with
| RESTART(PHASE) is conditional after executing UNLOAD PAUSE. To determine if
| catalog table statistics will be updated using RESTART(PHASE), see Table 56 on
| page 329.

328 Utility Guide and Reference

 REORG TABLESPACE

For instructions on restarting a utility job, see “Chapter 2-1. Invoking DB2 online
utilities” on page 27.

Restarting REORG after an out of space condition: See “Restarting after the
output data set is full” on page 49 for guidance in restarting REORG from the last
commit point after receiving an out of space condition.

| Table 56. Statistics collection for REORG TABLESPACE utility phase restart

| Phase| CURRENT| PHASE

| UTILINIT| NO| YES

| UNLOAD| NO| YES

| RELOAD| NO| YES

| SORT| NO| NO

| BUILD| NO| YES

| SORTBLD| NO| YES

Concurrency and compatibility
Individual data and index partitions, and individual logical partitions of
nonpartitioning indexes, are treated as distinct target objects. Utilities operating on
different partitions of the same table space or index space are compatible.

| REORG of a LOB table space is not compatible with any other utility. The LOB
| table space is unavailable to other applications during REORG processing.

REORG TABLESPACE compatibility
Table 57 on page 330, Table 58 on page 331, Table 59 on page 331, and
Table 60 on page 332 show which claim classes REORG drains and any
restrictive state the utility sets on the target object.

For nonpartitioning indexes, REORG PART:

� Drains only the logical partition (and the repeatable read class for the entire
index)

| � Does not set the page set REBUILD pending status (PSRCP)
� Does not respect PCTFREE or FREEPAGE attributes when inserting keys

Table 61 on page 332 shows which utilities can run concurrently with REORG on
the same target object. The target object can be a table space, an index space, or
a partition of a table space or index space. If compatibility depends on particular
options of a utility, that is also shown.

Table 62 on page 333 shows which DB2 operations can be affected when
reorganizing catalog table spaces.

For SHRLEVEL NONE, Table 57 on page 330 shows which claim classes REORG
drains and any restrictive state the utility sets on the target object. For each
column, the table indicates the claim or drain that is acquired and the restrictive
state that is set in the corresponding phase. UNLOAD CONTINUE and UNLOAD
PAUSE, unlike UNLOAD ONLY, include the RELOAD phase and thus include the
drains and restrictive states of that phase.

 Chapter 2-16. REORG TABLESPACE 329

 REORG TABLESPACE

Table 57. Claim classes of REORG TABLESPACE SHRLEVEL NONE operations. Use of claims and drains;
restrictive states set on the target object.

Target UNLOAD phase of
REORG

RELOAD phase of
REORG if
UNLOAD
CONTINUE or
PAUSE

UNLOAD phase of
REORG PART

RELOAD phase of
REORG PART if
UNLOAD
CONTINUE or
PAUSE

Table space,
| partition, or a range
| of partitions of a

table space

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning index or
partition of
partitioning index

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Nonpartitioning index DW/UTRO DA/UTUT DR

Logical partition of
nonpartitioning index

DW/UTRO DA/UTUT

Legend:

� DA: Drain all claim classes, no concurrent SQL access
� DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers
� DW: Drain the write claim class, concurrent access for SQL readers
� UTUT: Utility restrictive state, exclusive control
� UTRO: Utility restrictive state, read only access allowed
� Blank: Any claim, drain, or restrictive state for this object does not change in this phase

For SHRLEVEL REFERENCE, Table 58 on page 331 shows which claim classes
REORG drains and any restrictive state the utility sets on the target object. For
each column, the table indicates the claim or drain that is acquired and the
restrictive state that is set in the corresponding phase.

330 Utility Guide and Reference

 REORG TABLESPACE

Table 58. Claim classes of REORG TABLESPACE SHRLEVEL REFERENCE operations. Use of claims and drains;
restrictive states set on the target object.

Target UNLOAD
phase of
REORG

SWITCH
phase of
REORG

UNLOAD
phase of
REORG PART

SWITCH
phase of
REORG PART

BUILD2 phase
of REORG
PART

Table space or
partition of table
space

DW/UTRO DA/UTUT DW/UTRO DA/UTUT UTRW

Partitioning index
or partition of
partitioning index

DW/UTRO DA/UTUT DW/UTRO DA/UTUT UTRW

Nonpartitioning
index

DW/UTRO DA/UTUT DR

Logical partition
of nonpartitioning
index

DW/UTRO DA/UTUT

Legend:

� DA: Drain all claim classes, no concurrent SQL access
� DDR: Dedrain the read claim class, concurrent SQL access
� DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers
� DW: Drain the write claim class, concurrent access for SQL readers
� UTUT: Utility restrictive state, exclusive control
� UTRO: Utility restrictive state, read only access allowed
� Blank: Any claim, drain, or restrictive state for this object does not change in this phase

For REORG of an entire table space with SHRLEVEL CHANGE, Table 59 shows
which claim classes REORG drains and any restrictive state the utility sets on the
target object.

Table 59. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations. Use of claims and drains;
restrictive states set on the target object.

Target UNLOAD phase Last iteration of LOG
phase

SWITCH phase

Table space CR/UTRW1 DW/UTRO DA/UTUT

Index CR/UTRW1 DW/UTRO DA/UTUT

Legend:

� CR: Claim the read claim class
� DA: Claim all claim classes, no concurrent SQL access
� DW: Drain the write claim class, concurrent access for SQL readers
� UTUT: Utility restrictive state, exclusive control
� UTRO: Utility restrictive state, read only access allowed
� UTRW: Utility restrictive state, read/write access allowed

Notes:

1. If the target object is a segmented table space, SHRLEVEL CHANGE does not allow you to concurrently execute
an SQL searched DELETE without the WHERE clause.

For REORG of a partition with SHRLEVEL NONE, Table 60 on page 332 shows
which claim classes REORG drains and any restrictive state the utility sets on the
target object.

 Chapter 2-16. REORG TABLESPACE 331

 REORG TABLESPACE

Table 60. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations. Use of claims and drains;
restrictive states set on the target object.

Target UNLOAD phase Last iteration of
LOG phase

SWITCH phase BUILD2 phase

Partition of table
space

CR/UTRW| DW/UTRO or
| DA/UTUT1

DA/UTUT UTRW

Partition of
partitioning index

CR/UTRW| DW/UTRO or
| DA/UTUT1

DA/UTUT UTRW

Nonpartitioning index DR

Logical partition of
nonpartitioning index

CR/UTRW| DW/UTRO or
| DA/UTUT1

DA/UTUT

Legend:

� CR: Claim the read claim class
� DA: Drain all claim classes, no concurrent SQL access
� DDR: Dedrain the read claim class, no concurrent access for SQL repeatable readers
� DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers
� DW: Drain the write claim class, concurrent access for SQL readers
� UTUT: Utility restrictive state, exclusive control
� UTRO: Utility restrictive state, read only access allowed
� UTRW: Utility restrictive state, read/write access allowed
� Blank: Any claim, drain, or restrictive state for this object does not change in this phase

| Notes:

| 1. DA/UTUT applies if you specified DRAIN ALL.

Table 61 (Page 1 of 2). REORG TABLESPACE compatibility

Action REORG SHRLEVEL
NONE UNLOAD
CONTINUE or
PAUSE, REORG
SHRLEVEL
REFERENCE, or
REORG SHRLEVEL
CHANGE

REORG SHRLEVEL
NONE UNLOAD
ONLY without
cluster index

REORG SHRLEVEL
NONE UNLOAD ONLY
with cluster index

CATMAINT No No No

CHECK DATA No No No

CHECK INDEX No Yes Yes

| CHECK LOB| No| No| No

| COPY INDEXSPACE| No| Yes| Yes

COPY TABLESPACE No Yes Yes

DIAGNOSE Yes Yes Yes

LOAD No No No

MERGECOPY No No No

MODIFY No No No

QUIESCE No Yes Yes

| REBUILD INDEX| No| Yes| No

RECOVER INDEX No Yes No

| RECOVER INDEXSPACE| No| No| No

332 Utility Guide and Reference

 REORG TABLESPACE

Table 61 (Page 2 of 2). REORG TABLESPACE compatibility

Action REORG SHRLEVEL
NONE UNLOAD
CONTINUE or
PAUSE, REORG
SHRLEVEL
REFERENCE, or
REORG SHRLEVEL
CHANGE

REORG SHRLEVEL
NONE UNLOAD
ONLY without
cluster index

REORG SHRLEVEL
NONE UNLOAD ONLY
with cluster index

RECOVER TABLESPACE No No No

REORG INDEX No Yes No

| REORG TABLESPACE SHRLEVEL
| NONE UNLOAD CONTINUE or
| PAUSE, REORG SHRLEVEL
| REFERENCE, or REORG
| SHRLEVEL CHANGE

No No No

| REORG TABLESPACE SHRLEVEL
| NONE UNLOAD ONLY or
| EXTERNAL

No Yes Yes

REPAIR DUMP or VERIFY No Yes Yes

REPAIR LOCATE KEY or RID
DELETE or REPLACE

No No No

REPAIR LOCATE TABLESPACE
PAGE REPLACE

No No No

REPAIR LOCATE INDEX PAGE
REPLACE

No Yes No

REPORT Yes Yes Yes

RUNSTATS No Yes Yes

STOSPACE No Yes Yes

Table 62. DB2 operations affected by reorganizing catalog table spaces

Catalog Table Space Actions That Might Not Run Concurrently

Any table space except SYSCOPY and SYSSTR CREATE, ALTER, and DROP statements

SYSCOPY, SYSDBASE,SYSDBAUT, SYSSTATS,
SYSUSER

Utilities

SYSDBASE, SYSDBAUT, SYSGPAUT, SYSPKAGE,
SYSPLAN, SYSUSER

GRANT and REVOKE statements

SYSDBAUT, SYSDBASE, SYSGPAUT, SYSPKAGE,
SYSPLAN, SYSSTATS, SYSUSER, SYSVIEWS

BIND and FREE commands

SYSPKAGE, SYSPLAN Plan or package execution

 Chapter 2-16. REORG TABLESPACE 333

 REORG TABLESPACE

Reviewing REORG TABLESPACE output
The output from REORG TABLESPACE consists of a reorganized table space,

| partition, or a range of partitions; from REORG INDEX it consists of a reorganized
index or index partition. Table 63 summarizes the effect of REORG on a table
space partition and on the corresponding index partition.

When reorganizing a segmented table space, REORG leaves free pages and free
space on each page in accordance with the current values of the FREEPAGE and
PCTFREE parameters. (Those values can be set by the CREATE TABLESPACE,
ALTER TABLESPACE, CREATE INDEX, or ALTER INDEX statements). REORG
leaves one free page after reaching the FREEPAGE limit for each table in the table
space. When reorganizing a nonsegmented table space, REORG leaves one free
page after reaching the FREEPAGE limit, regardless of whether the records loaded
belong to the same or different tables.

Segments that contain a table that has an explicit cluster index are unloaded using
the cluster index; when the table is loaded, all data records are in cluster key order.

Table 63. REORG summary

Specification Results

REORG
TABLESPACE

All data + entire partitioning index + all nonpartitioning indexes

REORG
TABLESPACE
 PART n

Data for part n + part n of the partitioning index + index entries for
part n in all nonpartitioning indexes

| REORG
| TABLESPACE
| PART n1:n2

| Data for parts n1 through n2 + parts n1 through n2 of the
| partitioned index + index entries for those parts in all
| nonpartitioning indexes

After running REORG TABLESPACE
After a reorganization has completed:

� If you have used LOG YES, consider taking an image copy of the reorganized
table space or partition to:

– Provide a full image copy for recovery. This prevents having to process the
log records written during reorganization.

– Permit making incremental image copies later.

You might not need to take an image copy of a table space for which all the
following are true:

– It is relatively small
– It is used only in read-only applications
– It can be easily loaded again in the event of failure.

See “Chapter 2-7. COPY” on page 85 for information on making image copies.

� If you use REORG SHRLEVEL NONE LOG NO on a LOB table space and the
LOB manager determines that nothing needs to be done to the table space, no
COPY pending status is set. However, if the LOB manager indicates that
changes are needed, REORG places the reorganized LOB table space or

partition in COPY pending status. In this situation, perform a full image copy to

334 Utility Guide and Reference

 REORG TABLESPACE

reset the COPY pending status and to ensure that a backup is available for
recovery.

| You should also run the COPY utility if the REORG was performed to turn off
| REORG pending status (REORP), and an inline copy was not taken. You can
| not use an image copy created before turning off REORP.

� If you use COPYDDN, SHRLEVEL REFERENCE, or SHRLEVEL CHANGE,
and the object you are reorganizing is not a catalog or directory table space for
which COPYDDN is ignored, you do not need to take an image copy.

| � Use the RUNSTATS utility on the table space and its indexes if inline statistics
| were not collected, so that the DB2 catalog statistics take into account the

newly reorganized data, and SQL paths can be selected with accurate
| information. You only need to run RUNSTATS on nonpartitioning indexes if
| you reorganized a subset of the partitions.

� If you have used REORG TABLESPACE SHRLEVEL CHANGE, you can drop
the mapping table and its index.

� If you have used SHRLEVEL REFERENCE or CHANGE, and a table space,
partition, or index resides in user-managed data sets, you can delete the
user-managed shadow data sets.

| � If you specified DISCARD on a REORG of a table involved in a referential
| integrity set, you will need to run CHECK DATA against any affected
| referentially-related objects that were placed in CHECK pending status.

Sample control statements
Example 1: REORG using default sort output data set. This example shows the
DDNAME for the unload data set is UNLD, the DDNAME for the sort input data set
is WORK, and the DDNAME for the sort output data set is defaulted to SORTOUT.

| //STEP1 EXEC DSNUPROC,UID='IUJLU1%1.REORG',

| // UTPROC='',

| // SYSTEM='V61A'

| //UTPRINT DD SYSOUT=�

| //UNLD DD DSN=IUJLU1%1.REORG.STEP1.UNLD,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SORTWK%1 DD DSN=IUJLU1%1.REORG.STEP1.SORTWK%1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SORTWK%2 DD DSN=IUJLU1%1.REORG.STEP1.SORTWK%2,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

//WORK DD DSN=IUJLU1%1.REORG.STEP1.WORK,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SORTOUT DD DSN=IUJLU1%1.REORG.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

REORG TABLESPACE (DSN8D61A.DSN8S61D)

| SORTDATA

 UNLDDN (UNLD)

 WORKDDN (WORK)

//�

Example 2: Reorganizing a table space. Reorganize table space DSN8S61D in
database DSN8D61A.

 Chapter 2-16. REORG TABLESPACE 335

 REORG TABLESPACE

| REORG TABLESPACE DSN8D61A.DSN8S61D

| SORTDATA

Example 3: Reorganizing a table space partition. Reorganize partition 3 of table
space DSN8S61E in database DSN8D61A.

| REORG TABLESPACE DSN8D61A.DSN8S61E

| PART 3

| SORTDATA

| SORTDEVT SYSDA

Example 4: REORG with DFSORT unloading by table space scan. Reorganize
table space DSN8S61E in database DSN8D61A. Specify that DFSORT unloads the
data by table space scan.

REORG TABLESPACE DSN8D61A.DSN8S61E SORTDATA

| Example 5: REORG Using SORTKEYS. Use the SORTKEYS option to invoke
| parallel index build for a reorganization of the table space DSN8S61D in database
| DSNDB04. This example does not specify that dynamic allocation is to be used by
| DFSORT. Instead, it allocates sort work data sets in two groups, which limits the
| number of utility subtask pairs to two. This example does not require UTPRINnn
| DD statements, because it uses DSNUPROC to invoke utility processing, which
| includes a DD statement that allocates UTPRINT to SYSOUT.

| //SAMPJOB JOB ...

| //STEP1 EXEC DSNUPROC,UID='SAMPJOB.REORG',UTPROC='',SYSTEM='V61A'

| //SYSREC DD DSN=SAMPJOB.REORG.STEP1.SYSREC,DISP=(NEW,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //� First group of sort work data sets for parallel index build

| //SW%1WK%1 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SW%1WK%2 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SW%1WK%3 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //� Second group of sort work data sets for parallel index build

| //SW%2WK%1 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SW%2WK%2 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SW%2WK%3 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //� Sort work data sets for use by SORTDATA

| //SORTWK%1 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SORTWK%2 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SORTWK%3 DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND)

| //SYSIN DD �

| REORG TABLESPACE DSNDB%4.DSN8S61D LOG NO SORTDATA SORTKEYS

| /�

| Example 6: REORG Using SORTKEYS while allowing read-write access. Use
| the SORTKEYS option to invoke parallel index build for reorganization of the table
| space DSN8S61E in database DSNDB04 in database DSNDB04. The name of the
| mapping table is DSN8MAP. DFSORT dynamically allocates sort work data sets.
| This example does not require UTPRINnn DD statements, because it uses
| DSNUPROC to invoke utility processing, which includes a DD statement that
| allocates UTPRINT to SYSOUT.

336 Utility Guide and Reference

 REORG TABLESPACE

| //SAMPJOB JOB ...

| //STEP1 EXEC DSNUPROC,UID='SAMPJOB.REORG',UTPROC='',SYSTEM='V61A'

| //SYSCOPY DD UNIT=SYSDA,SPACE=(CYL,(1%,2%),,,ROUND),

| // DSN=SAMPJOB,COPY,DISP=(NEW,CATLG,CATLG)

| //SYSIN DD �

| REORG TABLESPACE DSNDB%4.DSN8S61E LOG NO SORTDEVT SYSDA SORTNUM 4

| SHRLEVEL CHANGE MAPPINGTABLE DSN8MAP

| /�

Example 7: Reorganizing a table while allowing read-only access. Reorganize
table space DSN8S61D in database DSN8D61A. The deadline for start of the
SWITCH phase is 3:15 on February 4, 1997.

REORG TABLESPACE DSN8D61A.DSN8S61D COPYDDN(MYCOPY1)

RECOVERYDDN(MYCOPY2) SHRLEVEL REFERENCE

 DEADLINE 1997-2-4-%3.15.%%

Example 8: Reorganizing a table while allowing read-write access. Reorganize
table space DSN8S61D in database DSN8D61A. The deadline for start of the
SWITCH phase is 3:15 on February 4, 1997. The name of the mapping table is
MYMAPTABLE. The maximum desired amount of time for the log processing in the
read-only (last) iteration of log processing is 240 seconds. If reorganization's
reading of the log is not catching up to applications' writing of the log quickly
enough, DB2 will drain the write claim class after sending the LONGLOG message
to the operator. That draining will take place at least 900 seconds after the
LONGLOG message is sent.

REORG TABLESPACE DSN8D61A.DSN8S61D COPYDDN(MYCOPY1)

RECOVERYDDN(MYCOPY2) SHRLEVEL CHANGE

 DEADLINE 1997-2-4-%3.15.%%

 MAPPINGTABLE

| DSN861%.MAP_TBL MAXRO 24% LONGLOG DRAIN DELAY 9%%

| Example 9: Reorganizing a range of table space partitions. Reorganize
| partitions 3 through 5 of table space DSN8S61E in database DSN8D61A.

| REORG TABLESPACE DSN8D61A.DSN8S61E

| PART 3:5

| STATISTICS

| SORTDEVT SYSDA

| SHRLEVEL NONE

| COPYDDN SYSCOPY

| SORTDATA

Example 10: REORG a partition using STATISTICS. Reorganize partition 3 of
table space DSN8S61E in database DSN8D61A, using the STATISTICS option to
update catalog table statistics for that table.

REORG TABLESPACE DSN8D61A.DSN8S61E

SORTDATA STATISTICS PART 3

Example 11: REORG using STATISTICS to update table space and index
statistics. Reorganize table space DSN8S61E in database DSN8D61A, using the
STATISTICS option to update catalog statistics for the table space and all indexes
defined on that table.

 Chapter 2-16. REORG TABLESPACE 337

 REORG TABLESPACE

REORG TABLESPACE DSN8D61A.DSN8S61E SORTDATA STATISTICS

 TABLE

INDEX(ALL) KEYCARD FREQVAL NUMCOLS 1

COUNT 1% REPORT YES UPDATE NONE

| Example 12: Checking if a table should be reorganized. Report if the
| OFFPOSLIMIT or INDREFLIMIT values are exceeded for the TPHR5201 table
| space in database DBHR5201.

| //STEP1 EXEC DSNUPROC,UID='HUHRU252.REORG2',TIME=144%,

| // UTPROC='',

| // SYSTEM='V61A',DB2LEV=DB2A

| //SYSREC DD DSN=HUHRU252.REORG2.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSCOPY DD DSN=HUHRU252.REORG2.STEP1.SYSCOPY,DISP=(MOD,CATLG,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSUT1 DD DSN=HUHRU252.REORG2.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SORTOUT DD DSN=HUHRU252.REORG2.STEP1.SORTOUT,

| // DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

| // SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

| REORG TABLESPACE DBHR52%1.TPHR52%1 PART 11

| SORTDATA SORTKEYS NOSYSREC

| REPORTONLY

| SHRLEVEL CHANGE MAPPINGTABLE ADMF%%1.MAP1

| COPYDDN (SYSCOPY)

| OFFPOSLIMIT 11 INDREFLIMIT 15

| STATISTICS UPDATE SPACE

| /�

| On successful completion, DB2 returns output similar to the following output:

| DSNU%5%I DSNUGUTC - REORG TABLESPACE DBHR52%1.TPHR52%1 PART 11 SORTDATA SORTKEYS NOSYSREC REPORTONLY SHRLEVEL CHA

| NGE MAPPINGTABLE ADMF%%1.MAP1 COPYDDN(SYSCOPY) OFFPOSLIMIT 11 INDREFLIMIT 15 STATISTICS UPDATE SPACE

| DSNU286I (DSNURLIM - REORG TABLESPACE DBHR52%1.TPHR52%1 OFFPOSLIMIT SYSINDEXPART ROWS

| CREATOR .IXNAME CREATOR .TBNAME PART CARDF FAROFFPOSF NEAROFFPOSF STATSTIME

| � ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 11 6.758E+%3 2.972E+%3 7.38E+%2 1999-%2-%5-%8.27.%4

| DSNU287I (DSNURLIM - REORG TABLESPACE DBHR52%1.TPHR52%1 INDREFLIMIT SYSTABLEPART ROWS

| DBNAME .TSNAME PART CARD FARINDREF NEARINDREF STATSTIME

| DBHR52%1.TPHR52%1 11 6758 % % 1999-%2-%5-%8.27.%4

| DSNU289I (DSNURLIM - REORG LIMITS HAVE BEEN MET

| DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=2

| DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = HUHRU252.REORG2

| DSNU%5%I DSNUGUTC - REORG INDEX ADMF%%1.IPHR52%1 PART 11 LEAFDISTLIMIT 2 REPORTONLY

| DSNU288I (DSNURLIM - REORG INDEX ADMF%%1.IPHR52%1 LEAFDISTLIMIT SYSINDEXPART ROWS

| CREATOR .IXNAME PART LEAFDIST STATSTIME

| � ADMF%%1 .IPHR52%1 11 3 1999-%2-%5-%8.27.%4

| DSNU289I (DSNURLIM - REORG LIMITS HAVE BEEN MET

| DSNU%5%I DSNUGUTC - CHECK INDEX(ADMF%%1.IPHR52%1 PART 11)

| DSNU7%%I (DSNUKGET - 6761 INDEX ENTRIES UNLOADED FROM INDEX='ADMF%%1.IPHR52%1' PARTITION= 11

| DSNU7%5I DSNUK%%1 - UNLOAD PHASE COMPLETE - ELAPSED TIME=%%:%%:%%

| DSNU%42I DSNUGSOR - SORT PHASE STATISTICS -

| NUMBER OF RECORDS=6761

| ELAPSED TIME=%%:%%:%1

| DSNU717I (DSNUKTER - 6761 ENTRIES CHECKED FOR INDEX 'ADMF%%1.IPHR52%1' PARTITION= 11

| DSNU72%I DSNUK%%1 - CHECKIDX PHASE COMPLETE, ELAPSED TIME=%%:%%:%2

| DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=2

| Figure 19. Sample output showing REORG limits have been met

| Example 13: Conditionally reorganizing a table. To ensure recent statistics for
| the table space, execute the RUNSTATS utility for the TPHR5201 table space.

338 Utility Guide and Reference

 REORG TABLESPACE

| Then, reorganize the TPHR5201 table space in database DBHR5201 if the
| OFFPOSLIMIT or INDREFLIMIT value is exceeded.

| //��

| //� COMMENT: UPDATE STATISTICS

| //��

| //STEP1 EXEC DSNUPROC,UID='HUHRU252.REORG1',TIME=144%,

| // UTPROC='',

| // SYSTEM=V61AR',DB2LEV=DB2A

| //SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSUT1 DD DSN=HUHRU252.REORG1.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SORTOUT DD DSN=HUHRU252.REORG1.STEP1.SORTOUT,

| // DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

| // SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

| RUNSTATS TABLESPACE DBHR52%1.TPHR52%1

| UPDATE SPACE

| /�

| //��

| //� COMMENT: REORG THE TABLESPACE

| //��

| //STEP2 EXEC DSNUPROC,UID='HUHRU252.REORG1',TIME=144%,

| // UTPROC='',

| // SYSTEM='V61A',DB2LEV=DB2A

| //SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSCOPY1 DD DSN=HUHRU252.REORG1.STEP1.SYSCOPY1,

| // DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

| // SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSUT1 DD DSN=HUHRU252.REORG1.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

| // UNIT=SYSDA,SPACE=(4%%%,(2%,2%),,,ROUND)

| //SORTOUT DD DSN=HUHRU252.REORG1.STEP1.SORTOUT,

| // DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

| // SPACE=(4%%%,(2%,2%),,,ROUND)

| //SYSIN DD �

| REORG TABLESPACE DBHR52%1.TPHR52%1

| SORTDATA NOSYSREC SORTKEYS

| COPYDDN SYSCOPY1

| OFFPOSLIMIT

| INDREFLIMIT

| STATISTICS TABLE(ALL) INDEX(ALL)

| /�

| On successful completion, DB2 returns output similar to the following output:

 Chapter 2-16. REORG TABLESPACE 339

 REORG TABLESPACE

| DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = HUHRU252.REORG1

| DSNU%5%I DSNUGUTC - RUNSTATS TABLESPACE DBHR52%1.TPHR52%1 UPDATE SPACE

| DSNU61%I - DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DBHR52%1.TPHR52%1 SUCCESSFUL

| DSNU62%I - DSNUSDRA - RUNSTATS CATALOG TIMESTAMP = 1999-%5-%3-14.57.58.921242

| DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=%

| DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = HUHRU252.REORG1

| DSNU%5%I DSNUGUTC - REORG TABLESPACE DBHR52%1.TPHR52%1 SORTDATA NOSYSREC SORTKEYS COPYDDN(SYSCOPY1) OFFPOSLIMIT

| INDREFLIMIT STATISTICS TABLE ALL INDEX(ALL)

| DSNU286I - DSNURLIM - REORG TABLESPACE DBHR52%1.TPHR52%1 OFFPOSLIMIT SYSINDEXPART ROWS

| CREATOR .IXNAME CREATOR .TBNAME PART CARDF FAROFFPOSF NEAROFFPOSF STATSTIME

| � ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 1 3.6E+%1 8.%E+%% 4.%E+%% 1999-%5-%3-14.57.43

| ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 2 5.%E+%% %.%E% %.%E% 1999-%5-%3-14.57.43

| ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 3 5.4E+%1 %.%E% %.%E% 1999-%5-%3-14.57.43

| ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 4 3.%E+%1 1.%E+%% %.%E% 1999-%5-%3-14.57.43

| � ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 5 2.1E+%1 2.%E+%% 1.%E+%% 1999-%5-%3-14.57.43

| ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 6 5.%E+%% %.%E% %.%E% 1999-%5-%3-14.57.43

| ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 7 4.%E+%% %.%E% %.%E% 1999-%5-%3-14.57.43

| � ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 8 3.5E+%1 9.%E+%% 8.%E+%% 1999-%5-%3-14.57.43

| � ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 9 2.5E+%1 4.%E+%% 1.%E+%% 1999-%5-%3-14.57.43

| ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 1% 1.%E+%% %.%E% %.%E% 1999-%5-%3-14.57.43

| � ADMF%%1 .IPHR52%1 ADMF%%1 .TBHR52%1 11 6.758E+%3 2.972E+%3 7.38E+%2 1999-%5-%3-14.57.43

| DSNU287I - DSNURLIM - REORG TABLESPACE DBHR52%1.TPHR52%1 INDREFLIMIT SYSTABLEPART ROWS

| DBNAME .TSNAME PART CARD FARINDREF NEARINDREF STATSTIME

| DBHR52%1.TPHR52%1 1 36 % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 2 5 % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 3 54 % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 4 3% % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 5 21 % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 6 5 % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 7 4 % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 8 35 % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 9 25 % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 1% 1 % % 1999-%5-%3-14.57.58

| DBHR52%1.TPHR52%1 11 6758 % % 1999-%5-%3-14.57.58

| DSNU289I - DSNURLIM - REORG LIMITS HAVE BEEN MET

| DSNU29%I - DSNURLIM - REORG WILL BE PERFORMED

| DSNU252I DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=6974 FOR TABLESPACE DBHR52%1.TPHR52%1

| DSNU25%I DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=%%:%%:%3

| DSNU4%%I DSNURBID - COPY PROCESSED FOR TABLESPACE DBHR52%1.TPHR52%1

| NUMBER OF PAGES=1%34

| AVERAGE PERCENT FREE SPACE PER PAGE = 14.96

| PERCENT OF CHANGED PAGES =1%%.%%

| ELAPSED TIME=%%:%1:46

| DSNU61%I - DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DBHR52%1.TPHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR ADMF%%1.TBHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF%%1.TBHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUTB - SYSTABLES CATALOG UPDATE FOR ADMF%%1.TBHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF%%1.TBHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DBHR52%1.TPHR52%1 SUCCESSFUL

| DSNU62%I - DSNURDRT - RUNSTATS CATALOG TIMESTAMP = 1999-%5-%3-14.58.16.924784

| DSNU3%4I - DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=6974 FOR TABLE ADMF%%1.TBHR52%1

| DSNU3%2I DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=6974

| DSNU3%%I DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=%%:%1:48

| DSNU%42I DSNUGSOR - SORT PHASE STATISTICS -

| NUMBER OF RECORDS=27896

| ELAPSED TIME=%%:%%:%%

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=36 FOR INDEX ADMF%%1.IPHR52%1 PART 1

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=5 FOR INDEX ADMF%%1.IPHR52%1 PART 2

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=54 FOR INDEX ADMF%%1.IPHR52%1 PART 3

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=3% FOR INDEX ADMF%%1.IPHR52%1 PART 4

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=21 FOR INDEX ADMF%%1.IPHR52%1 PART 5

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=5 FOR INDEX ADMF%%1.IPHR52%1 PART 6

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=4 FOR INDEX ADMF%%1.IPHR52%1 PART 7

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=35 FOR INDEX ADMF%%1.IPHR52%1 PART 8

| Figure 20 (Part 1 of 2). Sample showing RUNSTATS and conditional REORG output

340 Utility Guide and Reference

 REORG TABLESPACE

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=25 FOR INDEX ADMF%%1.IPHR52%1 PART 9

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=1 FOR INDEX ADMF%%1.IPHR52%1 PART 1%

| DSNU348I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=6758 FOR INDEX ADMF%%1.IPHR52%1 PART 11

| DSNU349I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=6974 FOR INDEX ADMF%%1.IXHR521B

| DSNU349I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=6974 FOR INDEX ADMF%%1.IXHR521C

| DSNU349I - DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=6974 FOR INDEX ADMF%%1.IXHR521D

| DSNU61%I - DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF%%1.IPHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUPI - SYSINDEXSTATS CATALOG UPDATE FOR ADMF%%1.IPHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUPD - SYSCOLDISTSTATS CATALOG UPDATE FOR ADMF%%1.IPHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF%%1.TBHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF%%1.IPHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF%%1.TBHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF%%1.IPHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF%%1.IXHR521B SUCCESSFUL

| DSNU61%I - DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF%%1.IXHR521B SUCCESSFUL

| DSNU61%I - DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF%%1.TBHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF%%1.IXHR521B SUCCESSFUL

| DSNU61%I - DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF%%1.IXHR521C SUCCESSFUL

| DSNU61%I - DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF%%1.IXHR521C SUCCESSFUL

| DSNU61%I - DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF%%1.TBHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF%%1.IXHR521C SUCCESSFUL

| DSNU61%I - DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF%%1.IXHR521D SUCCESSFUL

| DSNU61%I - DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF%%1.IXHR521D SUCCESSFUL

| DSNU61%I - DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF%%1.TBHR52%1 SUCCESSFUL

| DSNU61%I - DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF%%1.IXHR521D SUCCESSFUL

| DSNU62%I - DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 1999-%5-%3-15.%%.%5.%1%574

| DSNU258I DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=4

| DSNU259I DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=%%:%%:11

| DSNU4%5I DSNURORG - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DBHR52%1.TPHR52%1

| DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=2

| Figure 20 (Part 2 of 2). Sample showing RUNSTATS and conditional REORG output

 Chapter 2-16. REORG TABLESPACE 341

 REORG TABLESPACE

342 Utility Guide and Reference

 REPAIR

Chapter 2-17. REPAIR

The REPAIR online utility repairs data. The data can be your own data, or data you
would not normally access, such as space map pages and index entries.

REPAIR is intended as a means of replacing invalid data with valid data. Be
extremely careful using REPAIR. Improper use can damage the data even further.

| You can use the REPAIR utility to:

| � Test DBDs
| � Repair DBDs
| � Reset a pending status on a table space or index
| � Verify the contents of data areas in table spaces and indexes
| � Replace the contents of data areas in table spaces and indexes
| � Delete a single row from a table space
| � Produce a hexadecimal dump of an area in a table space or index
| � Delete an entire LOB from a LOB table space
| � Dump LOB pages
| � Rebuild OBDs for a LOB table space

For a diagram of REPAIR syntax and a description of available options, see
“Syntax and options of the control statement” on page 344. For detailed guidance
on running this utility, see “Instructions for running REPAIR” on page 355.

Output: The potential output from the REPAIR utility consists of a modified page or
pages in the specified DB2 table space or index, and a dump of the contents.

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

� REPAIR privilege for the database
� DBADM or DBCTRL authority for the database
� SYSCTRL or SYSADM authority.

An ID with installation SYSOPR authority can also execute REPAIR, but only on a
table space in the DSNDB01 or DSNDB06 database.

To execute REPAIR DBD, the privilege set must include SYSADM, SYSCTRL, or
installation SYSOPR authority.

REPAIR should only be used by a knowledgeable person. Be careful to grant
REPAIR authorization only to appropriate people.

Execution phases of REPAIR: One of the following phases can be identified if the
job terminates.

The phases for REPAIR are:

Phase Description
UTILINIT Initialization
REPAIR
UTILTERM Cleanup.

 Copyright IBM Corp. 1983, 1999 343

 REPAIR

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

��─ ─REPAIR─ ──┬ ┬──┬ ┬── ──────────────��
 │ ││ │┌ ┐─OBJECT─ ┌ ┐──────────────────────────────

│ │└ ┘── ──┴ ┴──────── ──┬ ┬────────────── ──┬ ┬───
�

┴┬ ┬─set tablespace statement─
 │ ││ │┌ ┐─YES─ │ │└ ┘─locate block─────────────
 │ │└ ┘──LOG ──┴ ┴─NO── └ ┘─dbd-statement──────────────────
 └ ┘─level-id statement───

level-id statement:

�─ ─LEVELID─ ──┬ ┬─table-space spec─ ──┬ ┬─────────────── ──�
| └ ┘─index spec─────── └ ┘| ─PART──integer─

table-space spec:

�─ ─TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ──�
 └ ┘─database-name.─

| index spec:|

| �─| ─INDEX──index-name──�

REPAIR option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

OBJECT Is optional, and used for clarity only.

LOG Tells whether to log the changes made by REPAIR. If the changes
are logged, they are applied again if the data is recovered.

YES Logs the changes.

The default is LOG YES.

| REPAIR LOG YES cannot override the LOG NO attribute of a
| table space.

NO Does not log the changes. You cannot use this option with a
DELETE statement.

| REPAIR LOG NO can override the LOG YES attribute of a
| table space.

344 Utility Guide and Reference

 REPAIR

| LEVELID Sets the level identifier of the named table space, table space
| partition, index, or index space partition to a new identifier. Use

LEVELID to accept the use of a down-level data set. You cannot
specify multiple LEVELIDs.

| You cannot use LEVELID with a table space, table space partition,
| index, or index space partition with outstanding indoubt log records or

pages in the logical page list (LPL).

Attention: Accepting the use of a down-level data set might cause
data inconsistencies. Problems with inconsistent data resulting from
resetting the level identifier are the responsibility of the user.

| TABLESPACE database-name.table-space-name
| Specifies the table space (and, optionally, the database to which it
| belongs) whose level identifier is set.

| database-name Specifies the name of the database the table
| space belongs to.

| The default is DSNDB04.

| table-space-name Specifies the name of the table space.

| INDEX Specifies the index whose level identifier is set.

| index-name Specifies the index to be processed.

| PART Identifies a partition of the table space or index.

integer is the number of the partition and must be in the range from
| one to the number of partitions defined for the object. The maximum

is 254.

SET TABLESPACE and SET INDEX statement syntax
The SET TABLESPACE statement resets the COPY pending, RECOVER pending,

| CHECK pending, auxiliary warning (AUXW), and auxiliary CHECK pending
| (ACHKP) statuses for a table space or data set. The SET INDEX statement resets
| the informational COPY pending (ICOPY), RECOVER pending, REBUILD pending,
| or CHECK pending status for an index.

�──SET─ ──┬ ┬──table space spec ──┬ ┬─NOCOPYPEND── ──┬ ┬─────────────── ─────── ───�
 │ │├ ┤─NORCVRPEND── └ ┘ ─PART──integer─
 │ │├ ┤─NOCHECKPEND─

| │ │├ ┤─NOAUXWARN───
| │ │└ ┘─NOAUXCHKP───
| └ ┘──INDEX ──┬ ┬──(index-name ──┬ ┬───────────────) ──┬ ┬─NOCOPYPEND──

 │ │└ ┘ ─PART──integer─ ├ ┤─NORCVRPEND──
| └ ┘| ─(──ALL──)──table space spec───── ├ ┤─NORBDPEND───
| └ ┘─NOCHECKPEND─

table space spec:

�─ ─TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ──�
 └ ┘─database-name.─

 Chapter 2-17. REPAIR 345

 REPAIR

SET TABLESPACE and SET INDEX option descriptions
TABLESPACE database-name.table-space-name

Specifies the table space (and, optionally, the database to
which it belongs) whose pending status is to be reset.

database-name Specifies the name of the database the
table space belongs to.

The default is DSNDB04.

table-space-name Specifies the name of the table space.

| INDEX Specifies the index whose RECOVER pending, CHECK
| pending, REBUILD pending, or informational COPY pending

status is to be reset.

(index-name) Specifies the index to be processed.

(ALL) Specifies that all indexes in the table space will
be processed.

The keyword INDEXES is still accepted following a table space
spec and causes all indexes to be processed. All indexes can
also be processed by specifying INDEX(ALL) followed by a
table space spec.

NOCOPYPEND Resets the COPY pending status of the specified table space,
| or informational COPY pending (ICOPY) status of the specified
| index.

NORCVRPEND Resets the RECOVER pending (RECP) status of the specified
table space or index.

| NORBDPEND Resets the REBUILD pending (RBDP) status, the page set
| REBUILD pending status (PSRBDP), or the RBDP* status of
| the specified index.

NOCHECKPEND Resets the CHECK pending (CHECKP) status of the specified
| table space or index.

| NOAUXWARN Resets the auxiliary warning (AUXW) status of the specified
| table space. The specified table space must be a base table
| space or a LOB table space.

| NOAUXCHKP Resets the auxiliary CHECK pending (ACHKP) status of the
| specified table space. The specified table space must be a
| base table space.

PART integer Specifies a particular partition whose COPY pending,
| informational COPY pending, or RECOVER pending status is to

be reset. If you do not specify PART, REPAIR resets the
pending status of the entire table space or index.

integer is the number of the partition and must be in the range
| from one to the number of partitions defined for the object. The

maximum is 254.

You can specify PART for NOCHECKPEND on a table space,
and for NORCVRPEND on indexes.

346 Utility Guide and Reference

 REPAIR

| The PART keyword is not valid for a LOB table space or an
| index on the auxiliary table.

LOCATE block syntax
A LOCATE block is a set of statements, each with its own options, that begins with
a LOCATE statement and ends with the next LOCATE or SET statement, or with
the end of the job. There can be more than one LOCATE block in a REPAIR utility
statement.

In any LOCATE block, you can use VERIFY, REPLACE, or DUMP as often as you
like; you can use DELETE only once.

 ┌ ┐───────────────────────
| �─| ─LOCATE─ ──┬ ┬| ──┬ ┬──table space spec ──┬ ┬| ──┬ ┬───────────────| ─PAGE─ ──┬ ┬─integer──────── ───

�
┴┬ ┬─verify statement── ─────�

| │ ││ ││ │└ ┘| ─PART──integer─ └ ┘──X'byte-string' ├ ┤─replace statement─
 │ ││ │├ ┤─RID─ ──X'byte-string' ──────────────────────── ├ ┤─delete statement──
 │ ││ │└ ┘─KEY──literal──INDEX──index-name───────────── └ ┘─dump statement────

| │ │└ ┘| ─INDEX──index-name─ ──┬ ┬───────────────| ─PAGE─ ──┬ ┬─integer──────── ───
| │ │└ ┘| ─PART──integer─ └ ┘──X'byte-string'
| └ ┘| ─table space spec──ROWID─ ──X'byte-string'| ─VERSION─ ──X'byte-string' ──┬ ┬─delete statement─ ────────
| └ ┘─dump statement───

table space spec:

�─ ─TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ──�
 └ ┘─database-name.─

LOCATE TABLESPACE statement option descriptions
The LOCATE TABLESPACE statement locates data to be repaired within a table
space.

One LOCATE statement is required for each unit of data to be repaired. Several
LOCATE statements can appear after each REPAIR statement.

If a REPAIR statement is followed by several LOCATE statements, all processing
caused by VERIFY, REPLACE, and DUMP statements is committed before the
next LOCATE is processed.

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it
belongs) in which data is to be located for repair.

database-name Is the name of the database to which the table
space belongs and is optional.

The default is DSNDB04.

table-space-name Is the name of the table space containing the
data you want to repair.

| PART integer Valid only for partitioned table spaces.

| integer is the number of the partition containing the page to be
| located.

 Chapter 2-17. REPAIR 347

 REPAIR

| PAGE Specifies the relative page number within the table space,
| partitioned table space, or index that is to be operated on. The first
| page in either case is 0 (zero).

| integer integer is a decimal number from one to six digits
| in length.

| X'byte-string' Specifies that the data of interest is an entire
| page. The offsets given in byte-string and in
| subsequent statements are relative to the
| beginning of the page. The first byte of the page
| is 0.

| byte-string is a value from one to eight
| hexadecimal characters in length. You do not
| need to enter leading zeros. Enclose the
| byte-string between apostrophes and precede it
| with X.

RID X'byte-string'
Specifies that the data to be located is a single row. The offsets
given in byte-string and in subsequent statements are relative to the
beginning of the row. The first byte of the stored row prefix is 0.

byte-string can be one to eight hexadecimal characters. You do not
need to enter leading zeros. Enclose the byte string between single
quotation marks and precede it with an X.

KEY literal Specifies that the data to be located is a single row, identified by
literal. The offsets given in subsequent statements are relative to
the beginning of the row. The first byte of the stored row prefix is at
offset 0.

literal is any SQL constant that can be compared with the key
values of the named index.

Character constants specified within the LOCATE KEY option may
not be specified as ASCII character strings. No conversion of the
values is performed. To use this option when the table space is
ASCII, the values should be specified as hexadecimal constants.

If more than one row has the value literal in the key column,
REPAIR returns a list of record identifiers (RIDs) for records with
that key value, but does NOT perform any other operations (verify,
replace, delete, or dump) until the next LOCATE TABLESPACE
statement is encountered. To repair the proper data, write a
LOCATE TABLESPACE statement that selects the desired row,
using the RID option, the PAGE option, or a different KEY and
INDEX option. Then execute REPAIR again.

INDEX index-name
Specifies a particular index that is to be used to find the row
containing the key. When you are locating by key, the index you
specify must be single-column.

index-name is the qualified or unqualified name of the index.

348 Utility Guide and Reference

 REPAIR

| ROWID X'byte-string'
| Specifies that the data to be located is a LOB in a LOB table space.

| byte-string is the row ID that identifies the LOB column.

| The most likely source of a row ID is an orphaned LOB that is
| reported by the CHECK LOB utility. If you specify the ROWID
| keyword, the specified table space must be a LOB table space.

| VERSION X'byte-string'
| Specifies that the data to be located is a LOB in a LOB table space.

| byte-string is the version number that identifies the version of the
| LOB column.

| The most likely source of a version number is an orphaned LOB
| that is reported by the CHECK LOB utility, or an out-of-synch LOB
| that is reported by the CHECK DATA utility. If you specify the
| VERSION keyword, the specified table space must be a LOB table
| space.

LOCATE INDEX statement option descriptions
The LOCATE INDEX statement locates data to be repaired within an index.

One LOCATE statement is required for each unit of data to be repaired. Several
LOCATE statements can appear after each REPAIR statement.

If a REPAIR statement is followed by several LOCATE statements, all processing
caused by VERIFY, REPLACE, and DUMP statements is committed before the
next LOCATE is processed.

index-name Specifies the index containing the data you want to repair.

index-name is the qualified name of the index, in the form
creator-id.index-name. If you omit the qualifier creator ID, the user
identifier for the utility job is used.

| PART integer Valid only for indexes of partitioned table spaces.

| integer is the number of the partitioning index containing the page
| to be located.

PAGE integer Specifies the relative page number within the index space to be
operated on. The first page is 0 (zero).

integer integer is a decimal number from one to six digits
in length.

| X'byte-string' Specifies that the data of interest is an entire
| page. The offsets given in byte-string and in
| subsequent statements are relative to the
| beginning of the page. The first byte of the page
| is 0.

| byte-string is a value from one to eight
| hexadecimal characters in length. You do not
| need to enter leading zeros. Enclose the
| byte-string between apostrophes and precede it
| with X.

 Chapter 2-17. REPAIR 349

 REPAIR

VERIFY statement syntax
The VERIFY statement tests whether a particular data area contains a specified
value. If the data area does contain the value, subsequent operations in the same
LOCATE block are allowed to proceed. If any data area does not contain its
specified value, all subsequent operations in the same LOCATE block are inhibited.

�─ ─VERIFY─ ──┬ ┬──────────────────────────── ─DATA─ ──┬ ┬──X'byte-string' ──── ──────────────────────────────�
│ │┌ ┐─%────────────── └ ┘──'character-string'

 └ ┘──OFFSET ──┼ ┼─integer────────
└ ┘──X'byte-string'

VERIFY statement option descriptions
OFFSET Locates the data to be tested by a relative byte address within the row

or page.

integer Gives the offset as an integer. The default is 0, the
first byte of the area identified by the previous
LOCATE statement.

X'byte-string' Gives the offset as one to four hexadecimal
characters. You need not enter leading zeros. Enclose
the byte string between single quotation marks and
precede it with X.

DATA Tells what data is assumed to be present before a change is made.

Character constants specified within the VERIFY DATA option may
not be specified as ASCII character strings. No conversion of the
values is performed. To use this option when the table space is
ASCII, the values should be specified as hexadecimal constants.

X'byte-string' Can be an even number, from two to thirty-two, of
hexadecimal characters that must be present. You
need not enter leading zeros. Enclose the byte
string between single quotation marks and
precede it with X.

'character-string' Can be any character string that must be present.

REPLACE statement syntax
The REPLACE statement replaces data at a particular location. The statement falls
within a LOCATE block. If any VERIFY statement within that block finds a data
area that does not contain its specified data, the REPLACE operation is inhibited.

�─ ─REPLACE─ ──┬ ┬─RESET── ───────────────────────────�
 └ ┘──┬ ┬──
 │ │┌ ┐─%──────────────

└ ┘──OFFSET ──┼ ┼─integer──────── DATA ──┬ ┬──X'byte-string' ────
└ ┘──X'byte-string' └ ┘──'character-string'

350 Utility Guide and Reference

 REPAIR

REPLACE statement option descriptions
RESET Resets the inconsistent data indicator. A page for which this indicator is

on is considered in error, and the indicator must be reset before you can
access the page. Numbers of pages with inconsistent data are reported
at the time they are encountered.

The option also resets the PGCOMB flag bit in the first byte of the page
to agree with the bit code in the last byte of the page.

OFFSET Tells where data is to be replaced by a relative byte address within the
row or page.

integer Gives the offset as an integer. The default is 0, the first
byte of the area identified by the previous LOCATE
statement.

X'byte-string' Gives the offset as one to four hexadecimal characters.
You need not enter leading zeros. Enclose the byte
string between single quotation marks and precede it
with X.

DATA Defines the new data that is to be entered. Only one OFFSET and one
DATA specification are acted on for each REPLACE statement.

Character constants specified within the VERIFY DATA option may not
be specified as ASCII character strings. No conversion of the values is
performed. To use this option when the table space is ASCII, the values
should be specified as hexadecimal constants.

X'byte-string' Can be an even number, from two to thirty-two, of
hexadecimal characters to replace the current data.
You need not enter leading zeros. Enclose the byte
string between single quotation marks and precede
it with X.

'character-string' Can be any character string to replace the current
data.

DELETE statement syntax and description
The DELETE statement deletes a single row of data that has been located by a
RID or KEY option. The statement falls within a LOCATE block. If any VERIFY
statement within that block finds a data area that does not contain its specified
data, the DELETE operation is inhibited.

The DELETE statement operates without regard for referential constraints. If you
delete a parent row, its dependent rows remain unchanged in the table space.
However, in the DB2 catalog and directory table spaces, where links are used to
reference other tables in the catalog, deleting a parent row causes all child rows to
be deleted as well. Moreover, deleting a child row in the DB2 catalog tables also
updates its predecessor and successor pointer to reflect the deletion of this row.
Therefore, if the child row has incorrect pointers, the DELETE might lead to an
unexpected result. See page 363 for a possible method of deleting a child row
without updating its predecessor and successor.

In any LOCATE block, you can use DELETE only once.

 Chapter 2-17. REPAIR 351

 REPAIR

You cannot use DELETE if you have used any of these options:

� The LOG NO option on the REPAIR statement

� A LOCATE INDEX statement to begin the LOCATE block

� The PAGE option on the LOCATE TABLESPACE statement in the same
LOCATE block

� A REPLACE statement for the same row of data.

| When you specify LOCATE ROWID for a LOB table space, the LOB specified by
| ROWID is deleted with its index entry. All pages occupied by the LOB are
| converted to free space. The DELETE statement will not remove any reference to
| the deleted LOB from the base table space.

�──DELETE───�

DUMP statement syntax
The DUMP statement produces a hexadecimal dump of data identified by offset
and length. DUMP statements have no effect on VERIFY or REPLACE operations.

| When you specify LOCATE ROWID for a LOB table space, one or more map or
| data pages of the LOB are dumped. The DUMP statement dumps all of the LOB
| column pages if you do not specify either the MAP or DATA keyword.

�─ ─DUMP─ ──┬ ┬ ──┬ ┬──────────────────────────── ──┬ ┬──────────────────────────── ──┬ ┬─────────────────────────── ────────�
│ ││ │┌ ┐─%────────────── └ ┘──LENGTH ──┬ ┬──X'byte-string' └ ┘──PAGES ──┬ ┬──X'byte-string'

 │ │└ ┘──OFFSET ──┼ ┼─integer──────── └ ┘─integer──────── ├ ┤─integer────────
│ │└ ┘──X'byte-string' └ ┘─�──────────────

| └ ┘──┬ ┬| ─MAP─ ──┬ ┬─────── ─ ──
| │ │└ ┘─pages─
| └ ┘| ─DATA─ ──┬ ┬───────
| └ ┘─pages─

DUMP statement option descriptions
OFFSET Optionally, locates the data to be dumped by a relative byte

address within the row or page.

integer Gives the offset as an integer. The default is 0, the
first byte of the row or page.

X'byte-string' Gives the offset as one to four hexadecimal
characters. You need not enter leading zeros.
Enclose the byte string between single quotation
marks and precede it with X.

LENGTH Optionally, tells the number of bytes of data to dump. If you omit
both LENGTH and PAGE, the dump continues from OFFSET to the
end of the row or page.

352 Utility Guide and Reference

 REPAIR

If you give a number of bytes (with LENGTH) and a number of
pages (with PAGE) the dump contains the same relative bytes from
each page. That is, from each page you see the same number of
bytes, at the same offset.

X'byte-string' Can be one to four hexadecimal characters. You
need not enter leading zeros. Enclose the byte
string between single quotation marks and precede
it with X.

integer Gives the number as an integer.

PAGES Optionally, tells a number of pages to dump. You can use this
option only if you used PAGE in the preceding LOCATE
TABLESPACE control statement.

X'byte-string' Can be one to four hexadecimal characters. You
need not enter leading zeros. Enclose the byte
string between single quotation marks and precede
it with X.

integer Gives the number as an integer.

* Dumps all pages from the starting point to the end
of the table space or partition.

| MAP pages Dumps only the LOB map pages.

| pages specifies the number of LOB map pages to dump. If you do
| not specify pages, all LOB map pages of the LOB that is specified
| by ROWID and version are dumped.

| DATA pages Dumps only the LOB data pages.

| pages specifies the number of LOB data pages to dump. If you do
| not specify pages, all LOB data pages of the LOB that is specified
| by ROWID and version are dumped.

DBD statement syntax
The DBD statement allows you to:

� Compare the definition of a database in the DB2 catalog with its definition in
the DB2 directory

� Rebuild a database definition in the directory from the information in the DB2
| catalog, including LOB information

� Drop an inconsistent database definition from the DB2 catalog and the DB2
directory.

REPAIR also assumes that the links in table spaces DSNDB01.DBD01,
DSNDB06.SYSDBAUT, DSNDB06.SYSDBASE are intact. Before executing
REPAIR with the DBD statement, run the DSN1CHKR utility (page 439) on these
table spaces to ensure that the links are not broken.

The database on which REPAIR DBD is run must be started for access by utilities
only. For more information about using the DBD statement, see page “Using the
DBD statement” on page 358.

 Chapter 2-17. REPAIR 353

 REPAIR

You can use REPAIR DBD on declared temporary tables, which must be created in
a database that is defined with the AS TEMP clause. No other DB2 utilities can be
used on a declared temporary table, its indexes, or its table spaces.

�─ ─DBD─ ──┬ ┬ ─DROP──DATABASE──database-name──DBID─ ──X'dbid' ───────────── ────────────────────────────────�
 └ ┘ ──┬ ┬─TEST───── ─DATABASE──database-name─ ──┬ ┬────────────────
 ├ ┤─DIAGNOSE─ └ ┘ ─OUTDDN──ddname─
 └ ┘─REBUILD──

DBD statement option descriptions
DROP Drops the specified database from both the DB2 catalog and the

DB2 directory. Use this keyword if the SQL DROP DATABASE
statement fails because the description of the database is not in
both the DB2 catalog and the DB2 directory.

Attention: Use the DROP option with extreme care. For further
assistance, you can contact the IBM Support Center.

DATABASE database-name
Specifies the target database.

database-name is the name of the target database, which cannot
be DSNDB01 (the DB2 directory) or DSNDB06 (the DB2 catalog).

If you use TEST, DIAGNOSE, or REBUILD, database-name cannot
be DSNDB07 (the work file database).

If you use DROP, database-name cannot be DSNDB04 (the default
database).

DBID X'dbid' Specifies the database descriptor identifier for the target database.

dbid is the database descriptor identifier.

TEST Builds a DBD from information in the DB2 catalog, and compares it
with the DBD in the DB2 directory. TEST reports significant
differences between the two DBDs.

If the condition code is 0, then the DBD in the DB2 directory is
consistent with the information in the DB2 catalog.

If the condition code is not 0, then the information in the DB2
catalog and the DBD in the DB2 directory can be inconsistent. Run
REPAIR DBD with the DIAGNOSE option to gather information
necessary for resolving any possible inconsistency.

DIAGNOSE Produces information necessary for resolving an inconsistent
database definition. Like the TEST option, DIAGNOSE builds a
DBD based on the information in the DB2 catalog and compares it
with the DBD in the DB2 directory. In addition, DIAGNOSE reports
any differences between the two DBDs, and produces hexadecimal
dumps of the inconsistent DBDs.

If the condition code is 0, then the information in the DB2 catalog
and the DBD in the DB2 directory is consistent.

354 Utility Guide and Reference

 REPAIR

If the condition code is 8, then the information in the DB2 catalog
and the DBD in the DB2 directory can be inconsistent.

Use your electronic link with IBM Support Center, if available, for
help in resolving any inconsistencies.

REBUILD Rebuilds the DBD associated with the specified database from the
information in the DB2 catalog.

Attention: Use the REBUILD option with extreme care. For further
assistance, you can contact the IBM Support Center.

OUTDDN ddname
Specifies the DD statement for an optional output data set. This
data set contains copies of the DB2 catalog records used to rebuild
the DBD.

ddname is the name of the DD statement.

Instructions for running REPAIR
To run REPAIR, you must:

1. Read “Before running REPAIR” in this chapter.

2. Prepare the necessary data sets, as described in 343.

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for REPAIR,
see “Sample control statements” on page 363.)

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 357. (For a
complete description of the syntax and options for REPAIR, see “Syntax and
options of the control statement” on page 344.)

5. Check the compatibility table in “Concurrency and compatibility” on page 359 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the REPAIR job doesn't complete, as described in
“Terminating or restarting REPAIR” on page 359.

 7. Run REPAIR.

Attention: Be extremely careful when using the REPAIR utility to replace data.
Changing data to invalid values using REPLACE might produce unpredictable
results, particularly when changing page header information. Improper use of
REPAIR can result in damaged data, or in some cases, system failure.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Before running REPAIR

 Chapter 2-17. REPAIR 355

 REPAIR

Making a copy of the table space
Before starting to use REPAIR to change data, it may be useful to have a copy (full
image copy or DSN1COPY) of the affected table space to enable fallback.

Restoring damaged indexes
| Because REPAIR can only access index data by referring to a page and an offset
| within the page, identifying a problem and correcting it can be difficult. Use
| REBUILD INDEX or RECOVER INDEX to restore damaged index data.

Data sets used by REPAIR
Table 64 describes the data sets used by REPAIR. Include statements in your JCL
for each required data set, and any optional data sets you want to use.

The following object is named in the utility control statement and does not require a
DD card in the JCL:

Table space
Object to be repaired. It is named in the REPAIR control statement
and is accessed through the DB2 catalog.

Calculating output data set size: Use the following calculation to estimate the
size of the output data set:

SPACE = (4096,(n,n))

where n = total number of records in your catalog relating to the database on which
REPAIR DBD is being executed.

An estimate for n can be calculated by summing the results of SELECT COUNT(*)
from all of the catalog tables in the SYSDBASE table space where the name of the
database associated with the record matches the database on which REPAIR DBD
is being executed.

Table 64. Data sets used by REPAIR

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Optional output data set Data set containing copies of the DB2
catalog records use to rebuild the DBD.
The DD name is defined by the user.

No

Creating the control statement
See “Syntax and options of the control statement” on page 344 for REPAIR syntax
and option descriptions. See “Sample control statements” on page 363 for
examples of REPAIR usage.

356 Utility Guide and Reference

 REPAIR

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Resetting table space status”
“Repairing a damaged page” on page 358
“Using the DBD statement” on page 358
“Locating rows by key” on page 358
“Using VERIFY, REPLACE, and DELETE operations” on page 359
“Repairing critical catalog table spaces and indexes” on page 359

Resetting table space status
In most cases, it is better to reset the COPY pending restriction by taking a full
image copy rather than using REPAIR. This is because RECOVER can not be
executed successfully until an image copy has been made.

It is better to reset the RECOVER pending status by running RECOVER or LOAD
rather than using REPAIR. This is because RECOVER uses DB2 controlled
recovery information, while REPAIR SET TABLESPACE or INDEX resets the
recovery pending status without considering the recoverability of the table space,
such as the availability of image copies, of rows in SYSIBM.SYSCOPY, and of log
data sets.

It is better to verify and possibly correct referential integrity constraints by running
CHECK DATA. CHECK DATA performs a complete check of all referential integrity
constraints of the table space set, while REPAIR leaves you with the responsibility
of checking all the referential integrity constraints violations.

| To reset the CHECK pending status for a LOB table space, it is recommended that
| you:

| 1. Run the CHECK DATA utility again with the AUXERROR INVALIDATE
| keywords specified, then

| 2. Update the invalid LOBs.

| To reset the auxiliary warning (AUXW) status for a LOB table space, it is
| recommended that you:

| 1. Update the invalid LOBs, then

| 2. Run the CHECK LOB utility.

| Resetting index space status
| It is better to run COPY INDEXSPACE to reset the informational COPY pending
| status than to use the REPAIR utility to reset the status.

| Consider using the REBUILD INDEX or RECOVER INDEX utility on an index that is
| in REBUILD pending status, rather than running REPAIR SET INDEX
| NORBDPEND. This is because RECOVER uses DB2 controlled recovery
| information, while REPAIR SET INDEX resets the rebuild pending status without
| considering the recoverability of the index, such as the availability of image copies,
| of rows in SYSIBM.SYSCOPY, and of log data sets.

 Chapter 2-17. REPAIR 357

 REPAIR

Repairing a damaged page
1. Execute REPAIR with the LOG YES option and the DUMP control statement,

specifying the pages you suspect are damaged. Verify that the dump you
receive contains the desired pages.

2. If you know which page is damaged and you can see how to resolve the error,
repair the page and reset the “inconsistent data” indicator. Run REPAIR with
the REPLACE RESET DATA control statement. Keep track of your actions in
case you need to undo anything later.

3. If you determined that the page is not really damaged, but merely has the
“inconsistent data” indicator on, reset the indicator by running REPAIR with the
REPLACE RESET control statement.

Using the DBD statement
The following is the recommended procedure for using the DBD statement:

1. Run the DSN1CHKR utility on the DSNDB01.DBD01, DSNDB06.SYSDBAUT,
and DSNDB06.SYSDBASE table spaces.

2. Issue the STOP DATABASE (database-name) command, then issue the
START DATABASE (database-name) ACCESS(UT) command to allow only
utilities to access the database that is associated with the DBD.

3. Run REPAIR DBD with the TEST option to determine if the information in the
DB2 catalog is consistent with the DBD in the DB2 directory.

4. If inconsistencies exist (condition code is not 0), use the DIAGNOSE option
with the OUTDDN keyword to produce diagnostic information. Use your
electronic link with IBM Support Center, if available, for assistance in analyzing
this information.

5. You might be instructed to replace the existing DBD with the REBUILD option.
DO NOT use this option if you suspect that information in the catalog is
causing the inconsistency. REBUILD uses information in the catalog to rebuild
the DBD; if the catalog is incorrect, the rebuilt DBD will be incorrect.

DB2 reads each table space in the database during the REBUILD process to
gather information. If the data sets for the table spaces do not exist or are not
accessible to DB2, then the REBUILD abends.

6. If you think there is an inconsistency in the DBD of the work file database, run
REPAIR DBD DROP or DROP DATABASE (SQL) and then recreate it. If you
receive errors when you drop the work file database, contact your IBM Support
Center for assistance.

Locating rows by key
If you use LOCATE TABLESPACE KEY, a number of rows might satisfy the
condition. In this case, REPAIR only returns the RIDs of the rows, and does not
perform any VERIFY, REPLACE, DELETE or DUMP which might be coded in that
LOCATE block. The RID option of LOCATE TABLESPACE can then be used to
identify a specific row. Examples of the messages issued are shown below:

358 Utility Guide and Reference

 REPAIR

DSNU658I - DSNUCBRL - MULTIPLE RECORDS FOUND WITH SPECIFIED KEY

DSNU66%I - DSNUCBRL - POSSIBLE RID - X%%%%%1%%B'

DSNU66%I - DSNUCBRL - POSSIBLE RID - X%%%%%%C18'

DSNU66%I - DSNUCBRL - POSSIBLE RID - X%%%%%%916'

DSNU66%I - DSNUCBRL - POSSIBLE RID - X%%%%%%513'

DSNU65%I - DSNUCBRP - DUMP

DSNU%12I DSNUGBAC - UTILITY EXECUTION TERMINATED,

HIGHEST RETURN CODE=8

Multiple column indexes: The KEY option only supports single column indexes.
The following message will be received if an attempt is made to locate a row using
a multiple column index.

DSNUCBRK - INDEX USED HAS MULTIPLE-FIELD KEY

Using VERIFY, REPLACE, and DELETE operations
If any data area does not contain the value required by a VERIFY statement, all
REPLACE and DELETE operations in the same locate block are inhibited. VERIFY
and REPLACE statements following the next LOCATE are not affected.

Repairing critical catalog table spaces and indexes
An ID with a granted authority receives message DSNT500I, “RESOURCE
UNAVAILABLE,” while trying to repair a table space or index in the catalog or
directory if table space DSNDB06.SYSDBASE or DSNDB06.SYSUSER is
unavailable. If you get this message, you must either make these table spaces
available or run the REPAIR utility on the catalog or directory using an authorization
ID with the installation SYSADM or installation SYSOPR authority.

Terminating or restarting REPAIR
REPAIR can be terminated with the TERM UTILITY command. See Chapter 2 of
DB2 Command Reference for information about TERM UTILITY.

REPAIR cannot be restarted. If you attempt to restart REPAIR, you receive
message DSNU181I, and the job abends. You must terminate the job with the
TERM UTILITY command, and rerun REPAIR from the beginning.

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Table 65 on page 360 shows which claim classes REPAIR drains and any
restrictive state the utility sets on the target object.

Table 66 on page 360 and Table 67 on page 361 show which utilities can run
concurrently with REPAIR on the same target object. The target object can be a
table space, an index space, or a partition of a table space or index space. If
compatibility depends on particular options of a utility, that is also shown.

 Chapter 2-17. REPAIR 359

 REPAIR

REPAIR does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

Table 65. Claim classes of REPAIR operations. Use of claims and drains; restrictive states
set on the target object.

Action Table space
or partition

Index
or partition

REPAIR LOCATE KEY
DUMP or VERIFY

DW/UTRO DW/UTRO

REPAIR LOCATE KEY
DELETE or REPLACE

DA/UTUT DA/UTUT

REPAIR LOCATE RID
DUMP or VERIFY

DW/UTRO

REPAIR LOCATE RID
DELETE

DA/UTUT DA/UTUT

REPAIR LOCATE RID
REPLACE

DA/UTUT

REPAIR LOCATE TABLESPACE
DUMP or VERIFY

DW/UTRO

REPAIR LOCATE TABLESPACE
REPLACE

DA/UTUT

REPAIR LOCATE INDEX PAGE
DUMP or VERIFY

DW/UTRO

REPAIR LOCATE INDEX PAGE
DELETE

DA/UTUT

Legend:

� DA - Drain all claim classes - no concurrent SQL access
� DW - Drain the write claim class - concurrent access for SQL readers
� UTUT - Utility restrictive state - exclusive control
� UTRO - Utility restrictive state - read only access allowed
� Blank - Object is not affected by this utility.

Table 66 (Page 1 of 2). Compatibility with REPAIR, LOCATE by KEY or RID

 DUMP or VERIFY DELETE or REPLACE

CHECK DATA No No

CHECK INDEX Yes No

| CHECK LOB| Yes| No

| COPY INDEXSPACE| Yes| No

COPY TABLESPACE Yes No

DIAGNOSE Yes Yes

LOAD No No

MERGECOPY Yes Yes

MODIFY Yes Yes

QUIESCE Yes No

| REBUILD INDEX| No| No

360 Utility Guide and Reference

 REPAIR

Table 66 (Page 2 of 2). Compatibility with REPAIR, LOCATE by KEY or RID

 DUMP or VERIFY DELETE or REPLACE

RECOVER INDEX No No

Note: RECOVER INDEX is compatible with LOCATE by RID, DUMP or VERIFY.

RECOVER TABLESPACE No No

REORG INDEX No No

Note: REORG INDEX is compatible with LOCATE by RID, DUMP, VERIFY, or REPLACE.

| REORG TABLESPACE
| UNLOAD CONTINUE or
| PAUSE

No No

| REORG TABLESPACE UNLOAD
| ONLY or EXTERNAL

Yes No

REPAIR
DUMP or VERIFY

Yes No

REPAIR
DELETE or REPLACE

No No

Note: REPAIR LOCATE INDEX PAGE REPLACE is compatible with LOCATE by RID
REPLACE.

REPORT Yes Yes

RUNSTATS INDEX
SHRLEVEL REFERENCE

Yes No

RUNSTATS INDEX
SHRLEVEL CHANGE

Yes Yes

RUNSTATS TABLESPACE Yes No

STOSPACE Yes Yes

Table 67 (Page 1 of 2). Compatibility with REPAIR, LOCATE by PAGE

 TABLESPACE
DUMP or
VERIFY

TABLESPACE
REPLACE

INDEX
DUMP or
VERIFY

INDEX
REPLACE

SQL Read Yes No Yes No

SQL Write No No No No

CHECK DATA No No No No

CHECK INDEX Yes No Yes No

| CHECK LOB| Yes| No| Yes| No

| COPY INDEXSPACE| Yes| Yes| Yes| No

| COPY TABLESPACE Yes No Yes No

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

MERGECOPY Yes Yes Yes Yes

MODIFY Yes Yes Yes Yes

QUIESCE Yes No Yes No

| REBUILD INDEX| Yes| No| No| n/a

RECOVER INDEX Yes No No No

 Chapter 2-17. REPAIR 361

 REPAIR

Table 67 (Page 2 of 2). Compatibility with REPAIR, LOCATE by PAGE

 TABLESPACE
DUMP or
VERIFY

TABLESPACE
REPLACE

INDEX
DUMP or
VERIFY

INDEX
REPLACE

RECOVER TABLESPACE
(no option)

No No Yes Yes

RECOVER TABLESPACE
TOCOPY or TORBA

No No No No

RECOVER TABLESPACE
ERROR RANGE

No No Yes Yes

REORG INDEX Yes Yes No No

| REORG TABLESPACE
| UNLOAD CONTINUE
| or PAUSE

No No No No

| REORG TABLESPACE
| UNLOAD ONLY
| or EXTERNAL

Yes No Yes Yes

REPAIR
DUMP or VERIFY

Yes No Yes No

REPAIR
DELETE or REPLACE

No No No No

Note: REPAIR LOCATE INDEX PAGE REPLACE is compatible with LOCATE TABLESPACE PAGE.

REPORT Yes Yes Yes Yes

RUNSTATS INDEX Yes Yes Yes No

RUNSTATS TABLESPACE Yes No Yes Yes

STOSPACE Yes Yes Yes Yes

Reviewing REPAIR output
The potential output from the REPAIR utility consists of a modified page or pages
in the specified DB2 table space or index, and a dump of the contents.

Error messages: At each LOCATE statement, the last data page and the new
page being located are checked for a few common errors, and messages are
issued.

Data checks: Although REPAIR enables you to manipulate both user and DB2
data by bypassing SQL, it does carry out some checking of data. For example,
REPAIR is unable to write a page with the wrong page number, DB2 will abend
with a 04E code and reason code C200B0. If the page is broken because the
broken page bit is on or the incomplete page flag is set, REPAIR will issue the
following message:

DSNU67%I + DSNUCBRP - PAGE X'%%%%%4' IS A BROKEN PAGE

362 Utility Guide and Reference

 REPAIR

After running REPAIR
CHECK pending status: You are responsible for violations of referential
constraints caused by running REPAIR. These violations cause the target table
space to be placed in the CHECK pending status. See “Chapter 2-4. CHECK
DATA” on page 55 for information about resetting this status.

Sample control statements
Example 1: Replacing damaged data and verifying replacement. Repair the
specified page of table space DSN8S61E. Verify that, at the specified offset (50),
the damaged data (A00) is found. Replace it with the desired data (D11). Initiate a
dump beginning at offset 50, for 4 bytes, to verify the replacement.

| //STEP1 EXEC DSNUPROC,UID='IUIQU1UH',UTPROC='',SYSTEM='V61A'

| //SYSIN DD �

REPAIR OBJECT

LOCATE TABLESPACE DSN8D61A.DSN8S61D PAGE X'%2'

VERIFY OFFSET 5% DATA X'A%%'

REPLACE OFFSET 5% DATA X'D11'

DUMP OFFSET 5% LENGTH 4

Example 2: Removing a nonindexed row found by REORG. When reorganizing
table space DSNDB04.TS1, you received the following message:

DSNU34%1 DSNURBXA - ERROR LOADING INDEX, DUPLICATE KEY

INDEX = EMPINDEX

TABLE = EMP

RID OF INDEXED ROW = X'%%%%%2%1'

RID OF NONINDEXED ROW = X'%%%%%5%3'

To resolve this error message, delete the nonindexed row and log the change. (The
LOG keyword is not required; it is logged by default.)

REPAIR

LOCATE TABLESPACE DSNDB%4.TS1 RID (X'%%%%%5%3')

 DELETE

Example 3: Report whether catalog and directory DBDs differ. Determine if the
DBDs in the DB2 catalog and the DB2 directory are consistent for database
DSN8D2AP.

REPAIR DBD TEST DATABASE DSN8D2AP

Example 4: Report differences between catalog and directory DBDs. After
running the TEST option on database DSN8D2AP, and determining that the DBDs
are inconsistent, determine the differences between the DBDs.

REPAIR DBD DIAGNOSE DATABASE DSN8D2AP OUTDDN SYSREC

Example 5: REPAIR table space with orphan row. After running DSN1CHKR on
table space SYSDBASE, you received the following message:

DSN1812I ORPHAN ID = 2% ID ENTRY = %19% FOUND IN

PAGE = %%%%24

From a DSN1PRNT of page X'000024' and X'00002541', you identify that RID
X'00002420' has a forward pointer of X'00002521'.

Repair the table space as follows:

 Chapter 2-17. REPAIR 363

 REPAIR

1. Set the orphan's backward pointer to zeros.

REPAIR OBJECT LOG YES

 LOCATE TABLESPACE DSNDB%6.SYSDBASE RID X'%%%%242%

VERIFY OFFSET X'%A' DATA X'%%%%2422'

REPLACE OFFSET X'%A' DATA X'%%%%%%%%'

Setting the pointer to zeros prevents the next step from updating link pointers
while deleting, which can cause DB2 to abend if the orphan's pointers are
incorrect.

2. Delete the orphan.

REPAIR OBJECT LOG YES

 LOCATE TABLESPACE DSNDB%6.SYSDBASE RID X'%%%%242%'

VERIFY OFFSET X'%6' DATA X'%%%%2521'

 DELETE

364 Utility Guide and Reference

 REPORT

Chapter 2-18. REPORT

The REPORT online utility provides information about table spaces. Use REPORT
TABLESPACESET to find the names of all the table spaces and tables in a

| referential structure, including LOB table spaces. Use REPORT RECOVERY to find
| information necessary for recovering a table space, index, or a table space and all
| of its indexes. The REPORT utility also provides the LOB table spaces associated
| with a base table space.

For a diagram of REPORT syntax and a description of available options, see
“Syntax and options of the control statement” on page 366. For detailed guidance
on running this utility, see “Instructions for running REPORT” on page 368.

Output: The output from REPORT TABLESPACESET consists of the names of all
table spaces in the table space set you specify. It also lists all tables in the table
spaces and all tables dependent on those tables.

The output from REPORT RECOVERY consists of the recovery history from the
SYSIBM.SYSCOPY catalog table, log ranges from the SYSIBM.SYSLGRNX
directory table, and volume serial numbers where archive log data sets from the

| BSDS reside. In addition, REPORT RECOVERY output includes information about
| any indexes on the table space that are in the informational COPY pending status,
| because this affects the recoverability of an index. For more information about this
| situation, see “Setting and clearing the informational COPY pending status” on
| page 103.

In a data sharing environment, the output provides:

� The RBA when migrated to Version 6

� The high and low RBA values of the migrated member

� A list of any SYSLGRNX records from before data sharing was enabled that
cannot be used to recover to any point in time after data sharing was enabled

� For SYSCOPY, the member that the image copy was deleted from

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

� RECOVERDB privilege for the database
� DBADM or DBCTRL authority for the database
� SYSCTRL or SYSADM authority.

An ID with DBCTRL or DBADM authority over database DSNDB06 can run the
REPORT utility on any table space in DSNDB01 (the directory) or DSNDB06 (the
catalog), as can any ID with installation SYSOPR, SYSCTRL, or SYSADM
authority.

Execution phases of REPORT: The REPORT utility operates in these phases:

Phase Description
UTILINIT Initialization and setup
REPORT Information collection
UTILTERM Cleanup

 Copyright IBM Corp. 1983, 1999 365

 REPORT

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

| ��─| ─REPORT─ ──┬ ┬| ─RECOVERY─ ──┬ ┬| ─TABLESPACE──table space spec─ ──┬ ┬──────────────── ──┬ ┬────────────── ─────────────────��
| │ ││ ││ │┌ ┐─INDEX NONE─ └ ┘─info options─
| │ ││ │└ ┘| ──┴ ┴─INDEX ALL──
| │ │└ ┘| ─index spec───────────────────────────────────────

 └ ┘─TABLESPACESET─ ──┬ ┬──────────── ─table space spec──────────────────────────────────
| └ ┘─TABLESPACE─

table space spec:

�─ ── ──┬ ┬──────────────── table-space-name ──�
 └ ┘─database-name.─

| index spec:|

| �─ ──┬ ┬| ─INDEXSPACE─ ── ──┬ ┬──────────────── index-space-name ──�
| │ │└ ┘─database-name.─
| └ ┘| ─INDEX─ ── ──┬ ┬───────────── index-name ──────────────
| └ ┘─creator-id.─

info options:

�─ ──┬ ┬──────────────────── ──�
 │ │┌ ┐─ALL─────
 └ ┘──DSNUM ──┴ ┴─integer─

�─ ──┬ ┬───────── ──┬ ┬───────── ──┬ ┬─────────── ──┬ ┬────────────── ──┬ ┬────────────────── ───────────────────�
| └ ┘─CURRENT─ └ ┘─SUMMARY─ └ ┘─LOCALSITE─ └ ┘─RECOVERYSITE─ │ │┌ ┐─1───
| └ ┘| ─ARCHLOG─ ──┼ ┼─2───
| └ ┘─ALL─

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

| RECOVERY Indicates that recovery information for the specified table space or
| index is to be reported.

TABLESPACESET
Indicates that the names of all table spaces in the table space set,

| as well as the names of all indexes over tables in the table space
| set are to be reported.

TABLESPACE database-name.table-space-name
For REPORT RECOVERY, specifies the table space (and,
optionally, the database to which it belongs) being reported.

366 Utility Guide and Reference

 REPORT

For REPORT TABLESPACESET, specifies a table space (and,
optionally, the database to which it belongs) in the table space set.

database-name Optionally specifies the database the table
space belongs to.

table-space-name Specifies the table space.

| INDEXSPACE database-name.index-space-name
| Specifies the index space being reported.

| database-name Optionally specifies the database the index
| space belongs to.

| index-space-name Specifies the index space name for the index
| being reported.

| INDEX creator-id.index-name
| Specifies the index in the index space being reported.

| creator-id Optionally specifies the creator of the index.

| index-name Specifies the index name to be reported.

The following keywords are optional:

| INDEX NONE Does not report recovery information for index spaces associated
| with the specified table space.

| INDEX ALL Reports recovery information for index spaces associated with the
specified table space.

DSNUM For a table space, identifies a partition or data set, for which
information is to be reported; or it reports information for the entire

| table space. For an index space, identifies a partition for which
| information is to be reported; or it reports information for the entire
| index space.

| ALL Reports information for the entire table space or index
| space. The default is ALL.

integer Is the number of a partition or data set for which
information is to be reported. The maximum is 254.

For a partitioned table space or index space, the integer
is its partition number.

For a nonpartitioned table space, find the integer at the
end of the data set name as cataloged in the VSAM
catalog. The data set name has this format:

catname.DSNDBx.dbname.tsname.I%%%1.Annn

where:

catname The VSAM catalog name or alias
x C or D
dbname The database name
tsname The table space name

| nnn The data set integer.

 Chapter 2-18. REPORT 367

 REPORT

CURRENT Specifies that only the entries since the last recoverable point of the
table space are to be reported. The last recoverable point is the last
full image copy, LOAD REPLACE LOG YES or REORG LOG YES.
If you specify DSNUM ALL, then the last recoverable point is a full

| image copy that was taken for the entire table space or index
| space.

If you do not specify CURRENT or if no last recoverable point
| exists, all SYSCOPY and SYSLGRNX entries for that table space or
| index space are reported, including those on archive logs. However,

if you specify the CURRENT option, but the last recoverable point
does not exist on the active log, DB2 prompts you to mount archive
tapes until this point is found.

SUMMARY Specifies that only a summary of volume serial numbers is to be
reported. It reports the following volume serial numbers:

� Where the archive log data sets from the BSDS reside
� Where the image copy data sets from SYSCOPY reside.

If you do not specify SUMMARY, recovery information is reported in
addition to the summary of volume serial numbers.

LOCALSITE Specifies a report of all SYSCOPY records copied from a local site
system.

RECOVERYSITE
Specifies a report of all SYSCOPY records copied for the recovery
site system.

| ARCHLOG Specifies which archive log data sets are to be reported.

| 1 Reports archive log data set 1 only.

| The default is 1.

| 2 Reports archive log data set 2 only.

| ALL Optionally reports both archive log data sets 1 and 2.

Instructions for running REPORT
To run REPORT, you must:

1. Prepare the necessary data sets, as described in “Data sets used by REPORT”
on page 369.

2. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for REPORT,
see “Sample control statements” on page 374.)

3. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 369. (For a
complete description of the syntax and options for REPORT, see “Syntax and
options of the control statement” on page 366.)

4. Check the compatibility table in “Concurrency and compatibility” on page 371 if
you want to run other jobs concurrently on the same target objects.

368 Utility Guide and Reference

 REPORT

5. Plan for restart if the REPORT job doesn't complete, as described in
“Terminating or restarting REPORT” on page 371.

 6. Run REPORT.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Data sets used by REPORT
Table 68 describes the data sets used by REPORT. Include statements in your
JCL for each required data set, and any optional data sets you want to use.

The following object is named in the utility control statement and does not require a
DD card in the JCL:

Table space
Object to be reported. It is named in the REPORT control statement
and is accessed through the DB2 catalog.

Table 68. Data sets used by REPORT

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Creating the control statement
See “Syntax and options of the control statement” on page 366 for REPORT
syntax and option descriptions. See “Sample control statements” on page 374 for
examples of REPORT usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Reporting recovery information”
“Running REPORT on the catalog and directory” on page 370

Reporting recovery information
You can use the REPORT utility in planning for recovery. REPORT provides
information necessary for recovering a table space. You can request report
information for LOCALSITE or RECOVERYSITE, or both. REPORT RECOVERY
displays:

� Recovery information from the SYSIBM.SYSCOPY catalog table, including
QUIESCE, COPY, LOAD, REORG, RECOVER TOCOPY, and RECOVER
TORBA (or TOLOGPOINT) history. It also indicates device type and whether
this is the primary or backup copy for LOCALSITE or RECOVERYSITE.

� Log ranges of the table space from the SYSIBM.SYSLGRNX directory.

| � Archive log data sets ARCHLOG1, ARCHLOG2, or both from the bootstrap
data set.

You can use REPORT TABLESPACESET to find the names of all members of a
table space set.

 Chapter 2-18. REPORT 369

 REPORT

You can also use REPORT to obtain recovery information about the catalog and
directory. When doing so, use the CURRENT option to avoid unnecessary
mounting of archive tapes.

REPORT denotes any non-COPY entries it finds in the SYSCOPY catalog table
with asterisks. For example, an entry added by the QUIESCE utility is marked with
asterisks in the REPORT output.

The following statement reports the names of all table spaces in the table space set
containing table space DSN8S61E:

REPORT TABLESPACESET TABLESPACE DSN8D61A.DSN8S61E

The following statement reports recovery information for table space DSN8S61D for
the local subsystem only:

REPORT RECOVERY TABLESPACE DSN8D61A.DSN8S61D LOCALSITE

For image copies of partitioned table spaces taken with the DSNUM ALL option, we
recommend that you run REPORT RECOVERY DSNUM ALL. If you run REPORT
RECOVERY DSNUM ALL CURRENT, DB2 reports additional historical information
dating back to the last full image copy taken for the entire table space.

| The REPORT RECOVERY utility output indicates if any image copies are unusable;
| image copies taken prior to REORG or LOAD events to reset REORG pending
| status are marked as unusable. REPORT output indicates which image copies will
| reset the REORG pending status by displaying the ICTYPE field as <R>, as shown
| in Figure 21.

| DSNU582I = DSNUPPCP - REPORT RECOVERY TABLESPACE LDB1.TS1 SYSCOPY ROWS

| TIMESTAMP = 1998-%9-1%-%8.45.38.522996, IC TYPE = <R>, SHR LVL = , DSNUM = %%%%, START LRSN =AAE19AEEEOD4

| DEV TYPE = , IC BACK = , STYPE = A, FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

| LOW DSNUM = %%%%, HIGH DSNUM = %%%%

| DSNAME = LDB1.TS1 , MEMBER NAME =

| LOWDSNUM = %%%1 HIGHDSNUM = %%%5

| Figure 21. Example of REPORT RECOVERY unusable copy indication

Running REPORT on the catalog and directory
REPORT RECOVERY shows the image copies for those table spaces that are not
included in SYSIBM.SYSCOPY:

| � DSNDB01.SYSUTILX
 � DSNDB01.DBD01
 � DSNDB06.SYSCOPY

When you execute REPORT RECOVERY on DSNDB01.DBD01,
DSNDB01.SYSUTIL, or DSNDB06.SYSCOPY, specify the CURRENT option to
avoid unnecessarily mounting archive tapes. If you do not specify CURRENT, DB2
searches for and reports all SYSCOPY records in the log, including those on
archive tapes. However, if the CURRENT option is specified and the last
recoverable point does not exist on the active log, DB2 prompts you to mount
archive tapes until this point is found.

REPORT TABLESPACESET can be used on the DB2 catalog and directory table
spaces.

370 Utility Guide and Reference

 REPORT

Terminating or restarting REPORT
| You can restart a REPORT utility job, but it starts from the beginning again.

You can terminate REPORT with the TERM UTILITY command.

For guidance in restarting online utilities, see “Restarting an online utility” on
page 48.

Concurrency and compatibility
REPORT does not set a utility restrictive state on the target table space or partition.

REPORT can run concurrently on the same target object with any utility or SQL
operation.

Reviewing REPORT output
REPORT TABLESPACESET output: The output from REPORT
TABLESPACESET consists of the names of all table spaces in the table space set
you specify. It also specifies all tables in the table spaces, and specifies all tables

| dependent on those tables, including LOB table spaces.

For example, REPORT TABLESPACESET TABLESPACE LDB1.TS1 generates the
following output:

DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = RECTS%%4.CFD1

DSNU%5%I DSNUGUTC - REPORT TABLESPACESET TABLESPACE LDB1.TS1

DSNU587I - DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE LDB1.TS1

 TABLESPACE TABLE DEPENDENT TABLE

 LDB1.TS1 SYSADM.T1

 SYSADM.T2

DSNU58%I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=%%:%%:%%

DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=%

Figure 22. Example of REPORT TABLESPACESET

REPORT RECOVERY output: REPORT RECOVERY displays all the information
about the image copy data sets and archive log data set that might be required
during the recover.

If the DSVOLSER column of SYSIBM.SYSCOPY is blank, REPORT RECOVERY
does not display volume serial numbers for image copy data sets.

The report contains 3 sections, which include the following types of information:

� Recovery history from the SYSIBM.SYSCOPY catalog table.

For a description of the fields in the SYSCOPY rows, see the table describing
SYSIBM.SYSCOPY in Appendix D of DB2 SQL Reference.

� Log ranges from SYSIBM.SYSLGRNX.

� Volume serial numbers where archive log data sets from the BSDS reside.

If there is no data to report for one or more of these topics, the corresponding
sections of the report contain this message:

DSNU588I - NO DATA TO BE REPORTED

 Chapter 2-18. REPORT 371

 REPORT

Figure 23 on page 372 is a sample of REPORT RECOVERY output in a data
sharing environment.

DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = RECTS%%4.CFD1

DSNU%5%I DSNUGUTC - REPORT RECOVERY TABLESPACE LDB1.TS1

DSNU581I - DSNUPREC - REPORT RECOVERY TABLESPACE LDB1.TS1

DSNU593I - DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

' MINIMUM RBA: %%%%%%%%%%%%

' MAXIMUM RBA: %%%%%1DD9AE8

' MIGRATING RBA: %%%%%1DD9AE8

DSNU582I - DSNUPPCP - REPORT RECOVERY TABLESPACE LDB1.TS1 SYSCOPY ROWS

TIMESTAMP = 1998-%9-1%-%8.21.25.912161, IC TYPE = �Y�, SHR LVL = , DSNUM = %%%%, START LRSN =AAE19AEEE%D4

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

LOW DSNUM = %%%%, HIGH DSNUM = %%%%

DSNAME = LDB1.TS1 , MEMBER NAME = V61A

TIMESTAMP = 1998-%9-1%-%8.21.46.464782, IC TYPE = F , SHR LVL = R, DSNUM = %%%%, START LRSN =AAE19B%B1%7B

DEV TYPE = 339% , IC BACK = , STYPE = , FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

LOW DSNUM = %%%%, HIGH DSNUM = %%%%

DSNAME = CPYLPF1 , MEMBER NAME = V61A

TIMESTAMP = 1998-%9-1%-%8.22.%7.674391, IC TYPE = �Q�, SHR LVL = , DSNUM = %%%%, START LRSN =AAE19B1EBCAF

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

LOW DSNUM = %%%%, HIGH DSNUM = %%%%

DSNAME = LDB1.TS1 , MEMBER NAME = V61A

TIMESTAMP = 1998-%9-1%-%8.22.15.786373, IC TYPE = I , SHR LVL = R, DSNUM = %%%%, START LRSN =AAE19B24CC8A

DEV TYPE = 339% , IC BACK = , STYPE = , FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

LOW DSNUM = %%%%, HIGH DSNUM = %%%%

DSNAME = CPYLPF2 , MEMBER NAME = V61A

TIMESTAMP = 1998-%9-1%-%8.22.22.81%734, IC TYPE = �Q�, SHR LVL = , DSNUM = %%%%, START LRSN =AAE19B3C986B

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

LOW DSNUM = %%%%, HIGH DSNUM = %%%%

DSNAME = LDB1.TS1 , MEMBER NAME = V61A

TIMESTAMP = 1998-%9-1%-%8.22.35.62391%, IC TYPE = I , SHR LVL = R, DSNUM = %%%%, START LRSN =AAE19B4342EC

DEV TYPE = 339% , IC BACK = , STYPE = , FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

LOW DSNUM = %%%%, HIGH DSNUM = %%%%

DSNAME = CPYLPF3 , MEMBER NAME = V61A

DSNU586I - DSNUPSUM - REPORT RECOVERY TABLESPACE LDB1.TS1 SUMMARY

DSNU588I - DSNUPSUM - NO DATA TO BE REPORTED

DSNU592I - DSNUPREC - REPORT RECOVERY INFORMATION FOR DATA SHARING MEMBER : V61A

DSNU583I - DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE LDB1.TS1

 UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID

%91%98 16375569 %%%%%2%17A57 %%%%%2%19%33 AAE19AD84EB1 AAE19AD8BA67 %%%% %%%1

%91%98 1638%534 %%%%%2%1C61C %%%%%2%22F16 AAE19AE1822F AAE19AEE6DE6 %%%% %%%1

%91%98 16382567 AAE19AF4653C AAE19AF4653C AAE19AF4653C AAE19AF4653C %%%% %%%1

%91%98 1639%23% %%%%%2%297AB %%%%%2%2FA14 AAE19B17C9D3 AAE19B1E7E32 %%%% %%%1

%91%98 16392787 %%%%%2%34448 %%%%%2%663CE AAE19B3%37E6 AAE19B37FE%1 %%%% %%%1

DSNU586I - DSNUPSUM - REPORT RECOVERY TABLESPACE LDB1.TS1 SUMMARY

DSNU588I - DSNUPSUM - NO DATA TO BE REPORTED

DSNU592I - DSNUPREC - REPORT RECOVERY INFORMATION FOR DATA SHARING MEMBER : V61B

DSNU586I - DSNUPSUM - REPORT RECOVERY TABLESPACE LDB1.TS1 SUMMARY

DSNU588I - DSNUPSUM - NO DATA TO BE REPORTED

DSNU592I - DSNUPREC - REPORT RECOVERY INFORMATION FOR DATA SHARING MEMBER : V61C

Figure 23 (Part 1 of 2). Example of REPORT RECOVERY

372 Utility Guide and Reference

 REPORT

DSNU586I - DSNUPSUM - REPORT RECOVERY TABLESPACE LDB1.TS1 SUMMARY

DSNU588I - DSNUPSUM - NO DATA TO BE REPORTED

DSNU589I - DSNUPREC - REPORT RECOVERY TABLESPACE LDB1.TS1 COMPLETE

DSNU58%I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=%%:%%:%%

DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=%

Figure 23 (Part 2 of 2). Example of REPORT RECOVERY

Figure 24 is a sample of REPORT RECOVERY TABLESPACE ARCHLOG output.

DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REPORT

DSNU%5%I DSNUGUTC - REPORT RECOVERY TABLESPACE MYDBASE.MYSPACE ARCHLOG ALL

DSNU581I - DSNUPREC - REPORT RECOVERY TABLESPACE MYDBASE.MYSPACE

DSNU593I - DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

' MINIMUM RBA: %%%%%%%%%%%%

' MAXIMUM RBA: FFFFFFFFFFFF

' MIGRATING RBA: %%%%%%%%%%%%

DSNU582I - DSNUPPCP - REPORT RECOVERY TABLESPACE MYDBASE.MYSPACE SYSCOPY ROWS

TIMESTAMP = 1998-12-11-%9.38.21.734394, IC TYPE = �Y�, SHR LVL = , DSNUM = %%%%, START LRSN =%%%%%264B9A

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

LOW DSNUM = %%%%, HIGH DSNUM = %%%%

DSNAME = MYCOPYA , MEMBER NAME =

DS VOLSER = SCR%3 ,

TIMESTAMP = 1998-12-11-%9.38.48.913881, IC TYPE = F , SHR LVL = R, DSNUM = %%%%, START LRSN =%%%%%266354

DEV TYPE = 339% , IC BACK = , STYPE = , FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

LOW DSNUM = %%%%, HIGH DSNUM = %%%%

DSNAME = MYCOPYIA , MEMBER NAME = V61A

DS VOLSER = SCR%3 ,

TIMESTAMP = 1998-12-11-%9.39.%9.542154, IC TYPE = �Q�, SHR LVL = , DSNUM = %%%%, START LRSN =%%%%%2674A2

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = %%%%, PIT LRSN = %%%%%%%%%%%%

LOW DSNUM = %%%%, HIGH DSNUM = %%%%

DSNAME = MYCOPYIB , MEMBER NAME = V61A

DS VOLSER = SCR%3 ,

DSNU586I - DSNUPSUM - REPORT RECOVERY TABLESPACE MYDBASE.MYSPACE SUMMARY

IC COPY VOLSER(S) SCR%3

DSNU583I - DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE MYDBASE.MYSPACE

 START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID

%%%%%262E3A6 %%%%%262E86F %%%%%262E3A6 %%%%%262E86F %%%% %%%%

%%%%%2632CC8 %%%%%26394D4 %%%%%2632CC8 %%%%%26394D4 %%%% %%%%

%%%%%2652EEF %%%%%26535A1 %%%%%2652EEF %%%%%26535A1 %%%% %%%%

%%%%%2671E1C %%%%%26724B9 %%%%%2671E1C %%%%%26724B9 %%%% %%%%

%%%%%26792AA %%%%%2679B%8 %%%%%26792AA %%%%%2679B%8 %%%% %%%%

DSNU5834I - DSNUPPBS - REPORT RECOVERY TABLESPACE MYDBASE.MYSPACE ARCHLOG1 BSDS VO

START RBA END RBA UNIT VOLSER DATA SET NAME

%%%%%2328%%% %%%%%263DFFF SYSDA SCR%3 DSNC42%.ARCHLOG1.A%%%%%%3

%%%%%263E%%% %%%%%2643FFF SYSDA SCR%3 DSNC42%.ARCHLOG1.A%%%%%%4

%%%%%2644%%% %%%%%2648FFF SYSDA SCR%3 DSNC42%.ARCHLOG1.A%%%%%%5 �

%%%%%2649%%% %%%%%264CFFF SYSDA SCR%3 DSNC42%.ARCHLOG1.A%%%%%%6 �

%%%%%264D%%% %%%%%2653FFF SYSDA SCR%3 DSNC42%.ARCHLOG1.A%%%%%%7 �

%%%%%2654%%% %%%%%2658FFF SYSDA SCR%3 DSNC42%.ARCHLOG1.A%%%%%%8 �

%%%%%2659%%% %%%%%265EFFF SYSDA SCR%3 DSNC42%.ARCHLOG1.A%%%%%%9 �

%%%%%265F%%% %%%%%2666FFF SYSDA SCR%3 DSNC42%.ARCHLOG1.A%%%%%1% �

%%%%%2667%%% %%%%%266BFFF SYSDA SCR%4 DSNC42%.ARCHLOG1.A%%%%%11 �

%%%%%266C%%% %%%%%267BFFF SYSDA SCR%4 DSNC42%.ARCHLOG1.A%%%%%12 �

Figure 24 (Part 1 of 2). Example of REPORT RECOVERY TABLESPACE ARCHLOG

 Chapter 2-18. REPORT 373

 REPORT

DSNU5834I - DSNUPPBS - REPORT RECOVERY TABLESPACE MYDBASE.MYSPACE ARCHLOG2 BSDS VO

START RBA END RBA UNIT VOLSER DATA SET NAME

%%%%%2328%%% %%%%%263DFFF SYSDA SCR%3 DSNC42%.ARCHLOG2.A%%%%%%3

%%%%%263E%%% %%%%%2643FFF SYSDA SCR%3 DSNC42%.ARCHLOG2.A%%%%%%4

%%%%%2644%%% %%%%%2648FFF SYSDA SCR%3 DSNC42%.ARCHLOG2.A%%%%%%5 �

%%%%%2649%%% %%%%%264CFFF SYSDA SCR%3 DSNC42%.ARCHLOG2.A%%%%%%6 �

%%%%%264D%%% %%%%%2653FFF SYSDA SCR%3 DSNC42%.ARCHLOG2.A%%%%%%7 �

%%%%%2654%%% %%%%%2658FFF SYSDA SCR%3 DSNC42%.ARCHLOG2.A%%%%%%8 �

%%%%%2659%%% %%%%%265EFFF SYSDA SCR%3 DSNC42%.ARCHLOG2.A%%%%%%9 �

%%%%%265F%%% %%%%%2666FFF SYSDA SCR%3 DSNC42%.ARCHLOG2.A%%%%%1% �

%%%%%2667%%% %%%%%266BFFF SYSDA SCR%4 DSNC42%.ARCHLOG2.A%%%%%11 �

%%%%%266C%%% %%%%%267BFFF SYSDA SCR%4 DSNC42%.ARCHLOG2.A%%%%%12 �

SNU586I - DSNUPSUM - REPORT RECOVERY TABLESPACE MYDBASE.MYSPACE SUMMARY

ARCHLOG1 BSDS VOLSERS(S) SCR%3 �

 SCR%4 �

ARCHLOG2 BSDS VOLSERS(S) SCR%3 �

 SCR%4 �

DSNU589I - DSNUPREC - REPORT RECOVERY TABLESPACE MYDBASE.MYSPACE COMPLETE

DSNU58%I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=%%:%%:%%

DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=%

Figure 24 (Part 2 of 2). Example of REPORT RECOVERY TABLESPACE ARCHLOG

Sample control statements
Example 1: Sample JCL for REPORT RECOVERY.

| //STEP1 EXEC DSNUPROC,UID='IUKUU2%6.REPORT2',

| // UTPROC='',SYSTEM='V61A'

| //SYSIN DD �

REPORT RECOVERY

 TABLESPACE DSN8D61A.DSN8S61E

//�

Example 2: Sample control statement for REPORT TABLESPACESET.

REPORT TABLESPACESET

 TABLESPACE UTQPD22A.UTQPS22E

Example 3: REPORT referentially related table spaces. The following statement
reports the names of all table spaces in the table space set containing table space
DSN8D61A.DSN8S61E.

REPORT TABLESPACESET TABLESPACE DSN8D61A.DSN8S61E

Example 4: REPORT RECOVERY information for a table space. This statement
reports recovery information for table space DSN8D61A.DSN8S61D.

REPORT RECOVERY TABLESPACE DSN8D61A.DSN8S61D DSNUM ALL

374 Utility Guide and Reference

 RUNSTATS

Chapter 2-19. RUNSTATS

The RUNSTATS online utility gathers summary information about the
characteristics of data in table spaces, indexes, and partitions. DB2 records this
information in the DB2 catalog and uses it to select access paths to data during the
bind process. It is available to the database administrator for evaluating database
design and to aid in determining when table spaces or indexes must be
reorganized.

There are two formats for the RUNSTATS utility: RUNSTATS TABLESPACE and
RUNSTATS INDEX. RUNSTATS TABLESPACE gathers statistics on a table space
and, optionally, on indexes or columns; RUNSTATS INDEX gathers statistics only
on indexes.

| Use the STATISTICS keyword with LOAD, REBUILD INDEX, and REORG jobs to
| eliminate the need to execute RUNSTATS for updating catalog statistics. If you
| restart a LOAD or REBUILD INDEX job that uses the STATISTICS keyword, inline
| statistics collection does not occur. To update catalog statistics, run the
| RUNSTATS utility after the restarted utility job completes. For information about
| restarting a REORG job which uses the STATISTICS keyword, see page 328.

| You can specify that a LOB table space is to have space statistics collected so you
| can determine when the LOB table space should be reorganized. No statistics on
| the LOB table space affect access path selection.

DB2 invalidates statements in the dynamic statement cache when you run
RUNSTATS against objects to which those statements refer. In a data sharing
environment, the relevant statements are also invalidated in the cache of other
members in the group. DB2 invalidates the cached statements to ensure that the
next invocations of those statements are fully prepared and pick up the latest
access path changes.

For a diagram of RUNSTATS syntax and a description of available options, see
“Syntax and options of the control statement” on page 376. For detailed guidance
on running this utility, see “Instructions for running RUNSTATS” on page 382.

Output: RUNSTATS updates the DB2 catalog with table space or index space
statistics or prints a report. The information updated by RUNSTATS is used by DB2
to select access paths to the data. You can query the catalog tables to obtain the
updated statistics. See “Reviewing RUNSTATS output” on page 387 for a list of all
the catalog tables and columns updated by RUNSTATS.

Additional information:

� STATS privilege for the database
� DBADM, DBCTRL, or DBMAINT authority for the database
� SYSCTRL or SYSADM authority.

An ID with installation SYSOPR authority can also execute RUNSTATS, but only on
a table space in the DSNDB06 database.

To use REPORT YES, you must have the SELECT privilege on the tables reported.
Values are not reported from the tables the user is not authorized to see.

 Copyright IBM Corp. 1983, 1999 375

 RUNSTATS

Execution phases of RUNSTATS: The RUNSTATS utility operates in these
phases:

Phase Description
UTILINIT Initialization and setup
RUNSTATS Scanning table space or index and updating catalog
UTILTERM Cleanup

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

RUNSTATS TABLESPACE syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

��─ ─RUNSTATS──TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ──┬ ┬─────────────── ────────────────────�
 └ ┘─database-name.─ └ ┘ ─PART──integer─

�─ ──┬ ┬─── ─────�
 │ │┌ ┐─ALL─

| ├ ┤──TABLE──(1) (──┴ ┴─────) ──┬ ┬─────────────────────── ──
| │ ││ │┌ ┐─25──────
| │ │└ ┘──| ─SAMPLE─ ──┴ ┴─integer─

 │ │┌ ┐───
└ ┘───

�
┴TABLE(table-name)──(1) ──┬ ┬─────────────────────── ──┬ ┬─────────────────────────────────────

| │ │┌ ┐─25────── └ ┘──COLUMN ──┬ ┬─────────────────────────
| └ ┘──| ─SAMPLE─ ──┴ ┴─integer─ │ │┌ ┐─ALL─────────────

 │ ││ │┌ ┐─,───────────
 └ ┘──(──┴ ┴───

�
┴─column-name─)

�─ ──┬ ┬── ────────────────�
 └ ┘──INDEX ──┬ ┬───
 │ │┌ ┐ ─ALL─ ──┬ ┬──────────────────────── ────────────────────────────
 │ ││ │└ ┘─correlation-stats-spec─
 │ ││ │┌ ┐─,───
 └ ┘──(──┴ ┴───

�
┴index-name ──┬ ┬─────────────── ──┬ ┬────────────────────────)

 └ ┘ ─PART──integer─ └ ┘─correlation-stats-spec─

�─ ──┬ ┬───────────────────────── ──┬ ┬───────────────── ──┬ ┬──────────────────────── ─────────────────────��
 │ │┌ ┐─REFERENCE─ │ │┌ ┐─NO── │ │┌ ┐─ALL────────
 └ ┘──SHRLEVEL ──┴ ┴─CHANGE──── └ ┘──REPORT ──┴ ┴─YES─ └ ┘──UPDATE ──┼ ┼─ACCESSPATH─
 ├ ┤─SPACE──────
 └ ┘─NONE───────

Note:
1 The TABLE keyword is not valid for a LOB table space.

correlation-stats-spec

�─ ──┬ ┬───────── ──┬ ┬─── ──────────────────────────�
 └ ┘──KEYCARD │ │┌ ┐───
 │ ││ │┌ ┐─1─────── ┌ ┐─1%──────
 └ ┘── ───

�
┴─FREQVAL──NUMCOLS─ ──┴ ┴─integer─ ─COUNT─ ──┴ ┴─integer─

376 Utility Guide and Reference

 RUNSTATS

RUNSTATS TABLESPACE option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it
belongs) for which table space and table information is to be
gathered. It must not be a table space in DSNDB01 or DSNDB07.

database-name Is the name of the database to which the table
space belongs.

The default is DSNDB04.

table-space-name Is the name of the table space about which
information is gathered.

| If the table space specified by the TABLESPACE keyword is a LOB
| table space, these are the only keywords allowed: SHRLEVEL
| REFERENCE or CHANGE, REPORT YES or NO, and UPDATE ALL
| or NONE.

PART integer
Identifies a table space partition for which statistics are to be
collected.

integer is the number of the partition and must be in the range from 1
to the number of partitions defined for the table space. The maximum
is 254.

TABLE Specifies the table for which column information is to be gathered. All
tables must belong to the table space specified in the TABLESPACE
option.

| (ALL) Specifies that information is to be gathered for all
columns of all tables in the table space.

The default is ALL.

| The TABLE option is not valid for a LOB table
| space.

SAMPLE integer Indicates the percentage of rows to sample when
collecting non-indexed column statistics. Any
value from 1 through 100 can be specified. The
default is 25.

| The SAMPLE option is not allowed for LOB table
| spaces.

(table-name) Specifies the tables for which column information
is to be gathered. The parentheses are required.
If you omit the qualifier, the user identifier for the
utility job is used.

If you specify more than one table, you must
repeat the TABLE option.

 Chapter 2-19. RUNSTATS 377

 RUNSTATS

COLUMN Specifies columns for which column information is
to be gathered.

You can only specify this option if you specify a
particular tables for which statistics are to be
gathered (TABLE (table-name)). If you specify
particular tables and do not specify the COLUMN
option, the default, COLUMN(ALL), is used. If you
do not specify a particular table when using the
TABLE option, you cannot specify the COLUMN
option; however, COLUMN(ALL) is assumed.

(ALL) Specifies that statistics are to be
gathered for all columns in the table.

| The COLUMN (ALL) option is not
| allowed for LOB table spaces.

(column-name, ...)
Specifies the columns for which statistics
are to be gathered. The parentheses are
required.

You can specify a list of column names;
the maximum is 10. If you specify more
than one column, separate each name
with a comma.

INDEX Specifies indexes for which information is to be gathered. Column
| information is gathered for the first column of the index, and might be
| gathered for additional index columns depending on the options you
| specify. All the indexes must be associated with the same table

space, which must be the table space specified in the TABLESPACE
option.

| INDEX is valid for gathering statistics on an index on the auxiliary
| table.

(ALL) Specifies that the column information is to be
gathered for all indexes defined on tables
contained in the table space. The parentheses are
required.

The default is ALL.

(index-name, ...) Specifies the indexes for which information is to be
gathered. The parentheses are required.

You can specify a list of index names. If you
specify more than one index, separate each name
with a comma.

PART integer Identifies an index partition for which statistics are
to be collected.

integer is the number of the partition.

378 Utility Guide and Reference

 RUNSTATS

SHRLEVEL Tells whether other programs that access the table space while
RUNSTATS is running must use read-only access, or can change the
table space.

REFERENCE Allows only read-only access by other programs.

The default is REFERENCE.

CHANGE Allows other programs to change the table space or
index. With SHRLEVEL CHANGE, uncommitted data
can be collected into statistical summaries.

REPORT Determines if a set of messages is generated to report the collected
statistics.

NO Indicates that the set of messages is not output to SYSPRINT.

The default is REPORT NO.

YES Indicates that the set of messages is output to SYSPRINT.
The messages generated are dependent on the combination
of keywords (such as TABLESPACE, INDEX, TABLE, and
COLUMN) specified with the RUNSTATS utility. However,
these messages are not dependent on the specification of the
UPDATE option. REPORT YES always generates a report of
SPACE and ACCESSPATH statistics.

UPDATE Tells whether the collected statistics are inserted into the catalog
tables. UPDATE also allows you to select statistics used for access
path selection or statistics used by database administrators.

ALL Indicates that all collected statistics will be updated in
the catalog.

The default is UPDATE ALL.

ACCESSPATH Indicates that only the catalog table columns that
provide statistics used for access path selection are
updated.

SPACE Indicates that only the catalog table columns that
provide statistics to help the database administrator
assess the status of a particular table space or index
are updated.

NONE Indicates that no catalog tables are updated with the
collected statistics. This option is only valid when
REPORT YES is specified.

| KEYCARD Collects all of the distinct values in all of the 1 to n key column
| combinations for the specified indexes. n is the number of columns in
| the index.

FREQVAL Controls the collection of frequent value statistics. If you specify
FREQVAL, it must be followed by two additional keywords:

NUMCOLS Indicates the number of key columns to concatenate
together when collecting frequent values from the
specified index. Specifying '3' means to collect frequent
values on the concatenation of the first three key

 Chapter 2-19. RUNSTATS 379

 RUNSTATS

columns. The default is 1, which means collect frequent
values on the first key column of the index.

COUNT Indicates the number of frequent values to be collected.
Specifying '15' means collect 15 frequent values from the
specified key columns. The default is 10.

RUNSTATS INDEX syntax diagram

��─ ─RUNSTATS──INDEX───�

 ┌ ┐─,───
�─ ──┬ ┬──(───

�
┴─index-name─ ──┬ ┬─────────────── ──┬ ┬────────────────────────) ─────────────── ──────────────�

 │ │└ ┘ ─PART──integer─ └ ┘ ─correlation-stats-spec─
 └ ┘──(─ALL─)TABLESPACE ──┬ ┬──────────────── tablespace-name ──┬ ┬────────────────────────
 └ ┘─database-name.─ └ ┘─correlation-stats-spec─

�─ ──┬ ┬───────────────────────── ──┬ ┬───────────────── ──┬ ┬──────────────────────── ─────────────────────��
 │ │┌ ┐─REFERENCE─ │ │┌ ┐─NO── │ │┌ ┐─ALL────────
 └ ┘──SHRLEVEL ──┴ ┴─CHANGE──── └ ┘──REPORT ──┴ ┴─YES─ └ ┘──UPDATE ──┼ ┼─ACCESSPATH─
 ├ ┤─SPACE──────
 └ ┘─NONE───────

correlation-stats-spec:

�─ ──┬ ┬───────── ──┬ ┬─── ──────────────────────────�
 └ ┘──KEYCARD │ │┌ ┐───
 │ ││ │┌ ┐─1─────── ┌ ┐─1%──────
 └ ┘── ───

�
┴─FREQVAL──NUMCOLS─ ──┴ ┴─integer─ ─COUNT─ ──┴ ┴─integer─

RUNSTATS INDEX option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

INDEX Specifies indexes for which information is to be gathered. Column
information is gathered for the first column of the index. All the
indexes must be associated with the same table space.

(index-name, ...) Specifies the indexes for which information is to be gathered. The
parentheses are required.

You can specify a list of index names. If you specify more than
one index, separate each name with a comma.

PART integer Identifies the index partition for which statistics are
to be collected.

integer is the number of the partition.

(ALL) Specifies that information is to be gathered for all indexes defined
on all tables in the specified table space.

TABLESPACE Names the table space and, optionally, the database it belongs
to.

380 Utility Guide and Reference

 RUNSTATS

database-name The name of the database that the table
space belongs to.

The default is DSNDB04.

tablespace-name The name of the table space.

SHRLEVEL Tells whether other programs that access the table space while
RUNSTATS is running must use read-only access, or can change
the table space.

REFERENCE Allows only read-only access by other programs.

The default is REFERENCE.

CHANGE Allows other programs to change the table space
or index. With SHRLEVEL CHANGE,
uncommitted data can be used to collect statistical
summaries.

REPORT Determines if a set of messages is generated to report the
collected statistics.

NO Indicates that the set of messages is not output to
SYSPRINT.

The default is REPORT NO.

YES Indicates that the set of messages is output to
SYSPRINT. The messages generated are dependent on
the combination of keywords (such as TABLESPACE,
INDEX, TABLE, and COLUMN) specified with the
RUNSTATS utility. However, these messages are not
dependent on the specification of the UPDATE option.
REPORT YES always generates a report of SPACE and
ACCESSPATH statistics.

UPDATE Tells whether the collected statistics are inserted into the catalog
tables. UPDATE also allows you to select statistics used for
access path selection or statistics used by database
administrators.

ALL Indicates that all collected statistics will be
updated in the catalog.

The default is UPDATE ALL.

ACCESSPATH Indicates that only the catalog table columns that
provide statistics used for access path selection
are updated.

SPACE Indicates that only the catalog table columns that
provide statistics to help the database
administrator assess the status of a particular
table space or index are updated.

NONE Indicates that no catalog tables are updated with
the collected statistics. This option is only valid
when REPORT YES is specified.

 Chapter 2-19. RUNSTATS 381

 RUNSTATS

| KEYCARD Collects all of the distinct values in all of the 1 to n key column
| combinations for the specified indexes. n is the number of
| columns in the index.

FREQVAL Controls the collection of frequent value statistics. If you specify
FREQVAL, it must be followed by two additional keywords:

NUMCOLS Indicates the number of key columns to concatenate
together when collecting frequent values from the
specified index. Specifying '3' means to collect
frequent values on the concatenation of the first
three key columns. The default is 1, which means
collect frequent values on the first key column of the
index.

COUNT Indicates the number of frequent values to be
collected. Specifying '15' means collect 15 frequent
values from the specified key columns. The default
is 10.

Instructions for running RUNSTATS
To run RUNSTATS, you must:

1. Read “Before running RUNSTATS” in this chapter.

2. Prepare the necessary data sets, as described in “Data sets used by
RUNSTATS” on page 383.

3. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for
RUNSTATS, see “Sample control statements” on page 394.)

4. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 383. (For a
complete description of the syntax and options for RUNSTATS, see “Syntax
and options of the control statement” on page 376.)

5. Check the compatibility table in “Concurrency and compatibility” on page 385 if
you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the RUNSTATS job doesn't complete, as described in
“Terminating or restarting RUNSTATS” on page 385. RUNSTATS can be
restarted, but it starts over again from the beginning.

 7. Run RUNSTATS.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for a description of
ways to execute DB2 utilities.

Before running RUNSTATS
The columns RUNSTATS updates can be updated manually using SQL. Use
caution when running RUNSTATS after another user has updated the statistical
columns of the catalog. Because RUNSTATS puts information in these columns,
values changed by the user are replaced.

382 Utility Guide and Reference

 RUNSTATS

Data sets used by RUNSTATS
Table 69 describes the data sets used by RUNSTATS. Include statements in your
JCL for each required data set, and any optional data sets you want to use.

The following objects are named in the utility control statement and do not require
DD cards in the JCL:

Table space or index
Object to be scanned. It is named in the RUNSTATS control
statement and is accessed through the DB2 catalog.

Table 69. Data sets used by RUNSTATS

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Creating the control statement
See “Syntax and options of the control statement” on page 376 for RUNSTATS
syntax and option descriptions. See “Sample control statements” on page 394 for
examples of RUNSTATS usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Deciding when to use RUNSTATS”
“Assessing table space status” on page 384
“Updating statistics for a partitioned table space” on page 384
“Running RUNSTATS on the DB2 catalog” on page 384
“Improving performance” on page 384

Deciding when to use RUNSTATS
DB2 uses the statistics generated by RUNSTATS to determine access paths to
data. If no statistics are available, DB2 makes fixed default assumptions. To ensure
the effectiveness of the paths selected, use RUNSTATS:

� After a table is loaded
� After an index is physically created

| � After a table space is reorganized and inline statistics were not collected
� After there have been extensive updates, deletions, or insertions in a table

space
| � After you have run RECOVER TABLESPACE, REBUILD INDEX, or REORG
| INDEX, and you did not collect inline statistics with that utility
| � Before running REORG with the OFFPOSLIMIT, INDREFLIMIT, or
| LEAFDISTLIMIT options.

 Chapter 2-19. RUNSTATS 383

 RUNSTATS

Assessing table space status
Changes to a table space can also change its space requirements and
performance. A database administrator can use RUNSTATS to assess the current
status of the table space and help decide whether to reorganize or redesign the
table space.

Updating statistics for a partitioned table space
If statistics do not exist for every partition, then RUNSTATS does not compute
aggregate statistics (used for access path selection). After newly created partitioned
table spaces have been loaded, run RUNSTATS on the entire table space (or on
every partition) to take best advantage of access path selection.

Running RUNSTATS on the DB2 catalog
RUNSTATS may be used for the DB2 catalog, for index space and table space
statistics. The following sample execution shows part of the output of RUNSTATS
against a catalog table space and its indexes:

DSNU%%%I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = DSNTEX

DSNU%5%I DSNUGUTC - RUNSTATS TABLESPACE DSNDB%6.SYSBASE INDEX(ALL)

DSNU61%I # DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DSNDB%6.SYSDBASE SUCCESSFUL

DSNU61%I # DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DSNDB%6.SYSDBASE SUCCESSFUL

DSNU61%I # DSNUSUTB - SYSTABLES CATALOG UPDATE FOR SYSIBM.SYSTABLESPACE SUCCESSFUL

DSNU61%I # DSNUSUTB - SYSTABLES CATALOG UPDATE FOR SYSIBM.SYSSYNONYMS SUCCESSFUL

DSNU61%I # DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR SYSIBM.DSNDSX%1 SUCCESSFUL

DSNU61%I # DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR SYSIBM.DSNDSX%1 SUCCESSFUL

DSNU61%I # DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR SYSIBM.DSNDSX%1 SUCCESSFUL

DSNU61%I # DSNUSUFL - SYSFIELDS CATALOG UPDATE FOR SYSIBM.DSNDSX%1 SUCCESSFUL

DSNU61%I # DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR SYSIBM.DSNDYX%1 SUCCESSFUL

DSNU61%I # DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR SYSIBM.DSNDYX%1 SUCCESSFUL

DSNU61%I # DSNUSUCO - SYSCOLUMN CATALOG UPDATE FOR SYSIBM.DSNDYX%1 SUCCESSFUL

DSNU61%I # DSNUSUFL - SYSFIELDS CATALOG UPDATE FOR SYSIBM.DSNDYX%1 SUCCESSFUL

DSNU%1%I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=%

DB2 uses the statistics collected on the catalog to determine the access path for
user queries.

 Improving performance
| You can specify the STATISTICS keyword in LOAD, REBUILD INDEX, and
| REORG utility statements, which results in updated table space or index space
| catalog statistics for the objects the utility was run on. Another method of improving
| RUNSTATS performance is to specify the SAMPLE option on tablespaces that
| were defined with the LARGE option, which reduces the number of rows sampled
| for statistics.

When you run RUNSTATS concurrently against partitions of a partitioned table
space or index, the sum of the processor time for the concurrent jobs will be
roughly equivalent to the processor time it takes to run a single RUNSTATS job
against the entire table space or index. However, the total elapsed time for the
concurrent jobs can be significantly less than when you run RUNSTATS against an
entire table space or index.

When requesting nonindexed column statistics, provide a list of columns that might
be used in queries as search conditions in a WHERE clause. Collecting statistics
on all columns of a table is costly and might not be necessary.

384 Utility Guide and Reference

 RUNSTATS

Terminating or restarting RUNSTATS
You can restart a RUNSTATS utility job, but it starts from the beginning again.

| You can terminate RUNSTATS with the TERM UTILITY command.

For guidance in restarting online utilities, see “Restarting an online utility” on
page 48.

Concurrency and compatibility
Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Table 70 shows which claim classes RUNSTATS claims and drains and any
restrictive state the utility sets on the target object.

Table 71 shows which utilities can run concurrently with RUNSTATS on the same
target object. The target object can be a table space, an index space, or a partition
of a table space or index space. If compatibility depends on particular options of a
utility, that is also shown.

Table 70. Claim classes of RUNSTATS operations. Use of claims and drains; restrictive
states set on the target object.

Target RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX
SHRLEVEL
REFERENCE

RUNSTATS
INDEX
SHRLEVEL
CHANGE

Table space
or partition

DW/UTRO CR/UTRW1

Index
or partition

DW/UTRO CR/UTRW

Legend:

� DW - Drain the write claim class - concurrent access for SQL readers
� CR - Claim the read claim class
� UTRO - Utility restrictive state - read only access allowed
� UTRW - Utility restrictive state - read/write access allowed
� Blank - Object is not affected by this utility.

Notes:

1. If the target object is a segmented table space, SHRLEVEL CHANGE does not allow
you to concurrently execute an SQL searched DELETE without the WHERE clause.

Table 71 (Page 1 of 2). RUNSTATS compatibility

 RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX
SHRLEVEL
REFERENCE

RUNSTATS
INDEX
SHRLEVEL
CHANGE

CHECK DATA No No No No

CHECK INDEX Yes Yes Yes Yes

| CHECK LOB| Yes| Yes| Yes| Yes

 Chapter 2-19. RUNSTATS 385

 RUNSTATS

Table 71 (Page 2 of 2). RUNSTATS compatibility

 RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX
SHRLEVEL
REFERENCE

RUNSTATS
INDEX
SHRLEVEL
CHANGE

| COPY INDEXSPACE| Yes| Yes| Yes| Yes

| COPY TABLESPACE Yes Yes Yes Yes

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

MERGECOPY Yes Yes Yes Yes

MODIFY Yes Yes Yes Yes

QUIESCE Yes Yes Yes Yes

| REBUILD INDEX| Yes| Yes| No| No

RECOVER INDEX Yes Yes No No

RECOVER TABLESPACE
(no options)

No No Yes Yes

RECOVER TABLESPACE
TOCOPY or TORBA

No No No No

RECOVER
ERROR RANGE

No No Yes Yes

REORG INDEX Yes Yes No No

| REORG TABLESPACE
| UNLOAD CONTINUE
| or PAUSE

No No No No

| REORG TABLESPACE
| UNLOAD ONLY or EXTERNAL

Yes Yes Yes Yes

REPAIR
DUMP or VERIFY

Yes Yes Yes Yes

REPAIR
LOCATE KEY or RID
DELETE or REPLACE

No No No Yes

REPAIR LOCATE
TABLESPACE PAGE
REPLACE

No No Yes Yes

REPAIR LOCATE
INDEX PAGE REPLACE

Yes Yes No No

REPORT Yes Yes Yes Yes

RUNSTATS Yes Yes Yes Yes

STOSPACE Yes Yes Yes Yes

386 Utility Guide and Reference

 RUNSTATS

Reviewing RUNSTATS output
RUNSTATS alters the tables and columns in the DB2 catalog tables listed below. A
report of statistics gathered during processing is generated with the REPORT YES
option.

RUNSTATS sets the following columns to -1 for large table spaces.

� CARD in SYSTABLES
� CARD in SYSINDEXPART
� FAROFFPOS in SYSINDEXPART
� NEAROFFPOS in SYSINDEXPART
� FIRSTKEYCARD in SYSINDEXES
� FULLKEYCARD in SYSINDEXES

Index statistics and table space statistics: The following catalog tables are
updated depending on the source of the statistics as well as the value of the
UPDATE option.

Table 72 (Page 1 of 2). Catalog tables updated by RUNSTATS

Keyword UPDATE Option Catalog Table

TABLESPACE

UPDATE ALL

UPDATE ACCESSPATH2

UPDATE SPACE2

SYSTABLESPACE
SYSTABLEPART2

SYSTABLES2

SYSTABSTATS1,2

SYSLOBSTATS
| 3

SYSTABLESPACE
SYSTABLES

SYSTABSTATS1

SYSTABLEPART
| SYSLOBSTATS

TABLE

UPDATE ALL

UPDATE ACCESSPATH

SYSCOLUMNS
SYSCOLSTATS1

SYSCOLUMNS
SYSCOLSTATS1

 Chapter 2-19. RUNSTATS 387

 RUNSTATS

Table 72 (Page 2 of 2). Catalog tables updated by RUNSTATS

Keyword UPDATE Option Catalog Table

INDEX UPDATE ALL

UPDATE ACCESSPATH

UPDATE SPACE

SYSCOLUMNS
SYSCOLDIST
SYSCOLDISTSTATS1

SYSCOLSTATS1

SYSINDEXES
SYSINDEXPART
SYSINDEXSTATS1

SYSCOLUMNS
SYSCOLDIST
SYSCOLDISTSTATS1

SYSCOLSTATS
SYSINDEXES
SYSINDEXSTATS1

SYSINDEXPART

| Notes:

| 1. Only updated for partitioned cases. When you run RUNSTATS against single partitions
| of an object, the partition-level statistics that result are used to update the aggregate
| statistics for the entire object. The catalog tables containing these partition-level
| statistics are the following:

| � SYSCOLSTATS
| � SYSCOLDISTSTATS
| � SYSTABSTATS
| � SYSINDEXSTATS

| 2. If the specified table space is a LOB table space, this is not applicable.

| 3. Only applicable when the specified table space is a LOB table space.

Access path statistics
The catalog table columns listed in Table 73 are used by DB2 to select access
paths to data during the bind process. Refer to Section 5 (Volume 2) of DB2
Administration Guide for further information regarding these columns.

| Table 73 does not describe information about LOB columns, because those
| statistics are not used for access path selection. For indexes on auxiliary tables,
| only the NLEVELS and FIRSTKEYCARDF columns in SYSIBM.SYSINDEXES have
| an effect on the access path. For information on what values in these columns
| indicate for LOBs, see Appendix D of DB2 SQL Reference.

A value in the column “Use” indicates whether information about the DB2 catalog
column is General-use Programming Interface and Associated Guidance
Information (G) or Product-sensitive Programming Interface and Associated
Guidance Information (S), as defined in Appendix E, “Notices” on page 545.

Table 73 (Page 1 of 3). DB2 catalog columns used to select data access paths

Column Name Column Description Use

SYSTABLES
CARDF Total number of rows in the table. S
NPAGES Total number of pages on which rows of this table

appear.
S

388 Utility Guide and Reference

 RUNSTATS

Table 73 (Page 2 of 3). DB2 catalog columns used to select data access paths

Column Name Column Description Use

PCTROWCOMP Percentage of rows compressed within the total
number of active rows in the table.

S

STATSTIME The date and time when RUNSTATS was last
executed to update the statistics.

G

SYSTABSTATS

CARD or CARDF Total number of rows in the partition. S
NPAGES Total number of pages on which rows of this partition

appear.
S

SYSCOLUMNS
COLCARDF Estimated number of distinct values for the column.

| For an indicator column, this is the number of
| non-zero length, non-null LOBs. The value is -1 if
| statistics have not been gathered. The value is -2 for
| columns of an auxiliary table.

S

HIGH2KEY| Second highest value of the column. Blank if statistics
| have not been gathered or the column is an indicator
| column or a column of an auxiliary table. If the
| column has a non-character data type, the data might
| not be printable. This is an updatable column.

S

LOW2KEY| Second lowest value of the column. Blank if statistics
| have not been gathered or the column is an indicator
| column or a column of an auxiliary table. If the
| column has a non-character data type, the data might
| not be printable. This is an updatable column.

S

STATSTIME The date and time when RUNSTATS was last
executed to update the statistics.

G

SYSCOLDIST
CARDF The number of distinct values for the column group.

This number is only valid for cardinality (TYPE C) key
column statistics.

S

COLGROUPCOLNO Identifies the set of columns associated with the key
column statistics.

S

COLVALUE Actual index column value that is being counted for
distribution index statistics.

S

FREQUENCYF Percentage of rows, multiplied by 100, that contain
the values specified in COLVALUE.

S

NUMCOLUMNS The number of columns associated with the key
column statistics

G

STATSTIME The date and time when RUNSTATS was last
executed to update the statistics.

G

SYSTABLESPACE

NACTIVE or
NACTIVEF

Number of active pages in the table space; shows the
number of pages that are touched if a record cursor

is used to scan the entire file. The value is -1 if
statistics have not been gathered.

S

STATSTIME The date and time when RUNSTATS was last
executed to update the statistics.

G

| DSSIZE| Maximum size of a data set in kilobytes.| G

SYSINDEXES

 Chapter 2-19. RUNSTATS 389

 RUNSTATS

Table 73 (Page 3 of 3). DB2 catalog columns used to select data access paths

Column Name Column Description Use

| CLUSTERRATIOF| A number between 0 and 1 that when multiplied by
| 100 gives the percentage of rows in clustering order.
| For example, a value of 1 indicates that all rows are
| in clustering order. A value of .87825 indicates that
| 87.825% rows are in clustering order.

S

CLUSTERING Whether CLUSTER was specified when the index
was created.

G

FIRSTKEYCARDF Number of distinct values of the first key column. S
FULLKEYCARDF Number of distinct values of the full key. S
NLEAF Number of leaf pages in the index. S
NLEVELS Number of levels in the index tree. S
STATSTIME The date and time when RUNSTATS was last

executed to update the statistics.
G

| SYSINDEXSTATS
| CLUSTERRATIOF| A number between 0 and 1 that when multiplied by
| 100 gives the percentage of rows in clustering order.
| For example, a value of 1 indicates that all rows are
| in clustering order. A value of .87825 indicates that
| 87.825% rows are in clustering order.

S

FIRSTKEYCARD or
FIRSTKEYCARDF
For the index partition, number of distinct values of
the first key column.
| S

FULLKEYCARD or
FULLKEYCARDF
For the index partition, number of distinct values of
the key.
| S

| NLEAF| Number of active leaf pages in the index partition.| S
| NLEVELS| Number of levels in the index tree in the partition.| S
KEYCOUNT or
KEYCOUNTF
Total number of rows in the partition. S

Space statistics (columns for tuning information)
The following catalog table columns are updated by RUNSTATS to help database
administrators assess the status of a particular table space or index.

A value in the column “Use” indicates whether information about the DB2 catalog
column is General-use Programming Interface and Associated Guidance
Information (G) or Product-sensitive Programming Interface and Associated
Guidance Information (S), as defined in Appendix E, “Notices” on page 545.

Table 74 (Page 1 of 5). DB2 catalog columns for tuning information

Column Name Column Description Use

SYSTABLEPART
CARD Total number of rows in the table space or partition,

| or number of LOBs in the table space if the table
| space is a LOB table space. The value is -1 if
| statistics have not been gathered.

The database administrator can validate design
assumptions against this actual count. Over a
period of time, it can show the rate of change or
growth of the table space.

G

NEARINDREF Number of rows relocated near their original page.

See the description following FARINDREF.

S

390 Utility Guide and Reference

 RUNSTATS

Table 74 (Page 2 of 5). DB2 catalog columns for tuning information

Column Name Column Description Use

FARINDREF Number of rows relocated far from their original
page.

If an update operation increases the length of a
record by more than the amount of space available
in the page in which it is stored, the record is
moved to another page. Until the table space is
reorganized, the record requires an additional page
reference when it is accessed. The sum of
NEARINDREF and FARINDREF is the total number
of such records.

For nonsegmented table spaces, a page is
considered “near” the present page if the two page
numbers differ by 16 or less; otherwise, it is “far
from” the present page.

For segmented table spaces, a page is considered
“near” the present page if the two page numbers
differ by (SEGSIZE * 2) or less. Otherwise, it is “far
from” its original page.

A record relocated near its original page tends to
be accessed more quickly than one relocated far
from its original page.

S

PAGESAVE Percentage of pages saved in the table space or
partition as a result of using data compression. For
example, a value of 25 indicates a savings of 25
percent, so that the pages required are only 75
percent of what would be required without data
compression. The value is 0 if there are no savings
from using data compression, or if statistics have
not been gathered. The value can be negative if
using data compression causes an increase in the
number of pages in the data set.

This calculation includes the overhead bytes for
each row, the bytes required for the dictionary, and
the bytes required for the current FREEPAGE and
PCTFREE specification for the table space and
partition.

This calculation is based on an average row length
and the result varies depending on the actual
lengths of the rows.

S

PERCACTIVE| Percentage of space occupied by rows of data from
| active tables. The value is -1 if statistics have not
| been gathered. The value is -2 if the table space is
| a LOB table space.

A database administrator can use this figure to
validate design assumptions, and tell how much of
the space allocated to the table space is utilized.

This value is influenced by the PCTFREE and the
FREEPAGE parameters on the CREATE
TABLESPACE statement, and by unused segments
of segmented table spaces.

S

 Chapter 2-19. RUNSTATS 391

 RUNSTATS

Table 74 (Page 3 of 5). DB2 catalog columns for tuning information

Column Name Column Description Use

PERCDROP For nonsegmented table spaces, the percentage of
space occupied by rows of data from dropped
tables. For segmented table spaces, this value is
zero. After reorganization, this value is always
zero.

Space occupied by dropped tables is reclaimed by
reorganization. Hence, this figure is one indicator of
when a table space should be reorganized.

S

| CARDF| Total number of rows in the table space or partition,
| or if the table space is a LOB table space, the
| number of LOBs in the table space. The value is -1
| if statistics have not been gathered.

| The database administrator can validate design
| assumptions against this actual count. Over a
| period of time, it can show the rate of change or
| growth of the table space.

| G

SPACE The number of kilobytes of space currently
allocated for all extents. A value of -1 indicates
that the data set was defined with the DEFINE NO
attribute, and the first insert operation has not
occurred.

G

PQTY
(user-managed)

The primary space allocation in 4-KB blocks for the
data set.

G

SQTY
(user-managed)

The secondary space allocation in 4-KB blocks for
the data set, in small integer format.

G

SECQTYI
(user-managed)

The secondary space allocation in 4-KB blocks for
the data set, in integer format.

G

SYSINDEXPART
CARDF Number of rows referred to by the index or

partition.

Those figures, for all the partitions, tell the
database administrator how the key ranges
specified for each partition have divided the rows
among the several partitions.

S

392 Utility Guide and Reference

 RUNSTATS

Table 74 (Page 4 of 5). DB2 catalog columns for tuning information

Column Name Column Description Use

NEAROFFPOSF Number of times it would be necessary to access a
different, “near-off” page when accessing all the
data records in index order.

Each time, it is probable that accessing the “next”
record would require I/O activity. See the
description following FAROFFPOS.

NEAROFFPOS is incremented if the current
indexed row is not on the same or next data page
of the previous indexed row, and the distance
between the two data pages does not qualify for
FAROFFPOS.

For nonsegmented table spaces, a page is
considered near-off the present page if the
difference between the two page numbers is
greater than or equal to 2, and less than 16. For
segmented table spaces, a page is considered
near-off the present page if the difference between
the two page numbers is greater than or equal to 2,
and less than SEGSIZE * 2. A nonzero value in the
NEAROFFPOS field after a REORG might be
attributed to the number of space map pages

| contained in the segmented table space.Not
| applicable for the index on an auxiliary table (-1).

S

FAROFFPOSF Number of times is would be necessary to access a
different, “far-off” page when accessing all the data
records in index order.

Each time, it is almost certain that accessing the
“next” record would require I/O activity.

For nonsegmented table spaces, a page is
considered far-off the present page if the two page
numbers differ by 16 or more. For segmented table
spaces, a page is considered far-off the present
page if the two page numbers differ by SEGSIZE *
2 or more.

Together, NEAROFFPOS and FAROFFPOS tell
how well the index follows the cluster pattern of the
table space. For a clustering index, NEAROFFPOS
and FAROFFPOS approach a value of 0 as
clustering improves. A reorganization should bring
them nearer their optimal values; however, if a
nonzero FREEPAGE value was specified on the
CREATE TABLESPACE statement, the
NEAROFFPOS after reorganization reflects the
table on which the index is defined. Optimal values
should not be expected for nonclustering indexes.

| Not applicable for the index on an auxiliary table
| (-1).

S

 Chapter 2-19. RUNSTATS 393

 RUNSTATS

Table 74 (Page 5 of 5). DB2 catalog columns for tuning information

Column Name Column Description Use

LEAFDIST 100 times the average distance in page IDs
between successive leaf pages during a sequential
access of the index.

This value helps to tell how well an index is
organized. The value is at its lowest just after the
index has been reorganized. Changes increase it;
and you can reduce it again by reorganizing the
index, either explicitly or as part of a general table
space reorganization.

S

SPACE The number of kilobytes of space currently
allocated for all extents. A value of -1 indicates
that the data set was defined with the DEFINE NO
attribute, and the first insert operation has not
occurred.

G

PQTY
(user-managed)

The primary space allocation in 4-KB blocks for the
data set.

G

SQTY
(user-managed)

The secondary space allocation in 4-KB blocks for
the data set, in small integer format.

G

SECQTYI
(user-managed)

The secondary space allocation in 4-KB blocks for
the data set, in integer format.

G

| SYSLOBSTATS
| FREESPACE# The number of kilobytes of available space in the
LOB table space.
| S

| ORGRATIO| The ratio of organization in the LOB table space. A
| value of 1 indicates perfect organization of the LOB
| table space. The greater the value exceeds 1, the
| more disorganized the LOB table space.

| S

After running RUNSTATS
After running RUNSTATS, rebind any application plans that use the tables or
indexes so that they use the new statistics.

Sample control statements
Example 1: Update catalog statistics while allowing changes. Update the
catalog statistic columns for table space DSN8S61E and all its associated indexes,

| sampling 25 percent of the rows. Permit other processes to make changes while
this utility is executing.

| //STEP1 EXEC DSNUPROC,UID='IUJQU225.RUNSTA',TIME=144%,

| // UTPROC='',

| // SYSTEM='V61A',DB2LEV=DB2A

| //UTPRINT DD SYSOUT=�

| //SYSIN DD �

RUNSTATS TABLESPACE DSN8D61A.DSN8S61E

| TABLE(ALL) SAMPLE 25

| INDEX(ALL)

 SHRLEVEL CHANGE

Example 2: Update catalog statistics, do not allow updates. Update the catalog
statistics for indexes XEMPL1 and XEMPL2. Do not permit other processes to
change the table space associated with XEMPL1 and XEMPL2 (table space
DSN8S61E) while this utility is executing.

394 Utility Guide and Reference

 RUNSTATS

RUNSTATS INDEX (DSN861%.XEMPL1,DSN861%.XEMPL2)

Example 3: Update index statistics. Obtain statistics on the index XEMPL1.

RUNSTATS INDEX (DSN861%.XEMPL1)

Example 4: Update statistics for several tables. Update the catalog statistics for
all columns in the TCONA and TOPTVAL tables in table space
DSN8D61P.DSN8S61C. Update the column statistics for the LINENO and
DSPLINE columns in the TDSPTXT table in table space DSN8D61P.DSN8S61C.

RUNSTATS TABLESPACE(DSN8D61P.DSN8S61C) TABLE (TCONA)

TABLE (TOPTVAL) COLUMN(ALL)

TABLE (TDSPTXT) COLUMN(LINENO,DSPLINE)

Example 5: Update all statistics for a table space. Update all catalog statistics
(table space, tables, columns, and indexes) for a table space.

RUNSTATS TABLESPACE(DSN8D61P.DSN8S61C) TABLE INDEX

Example 6: Update statistics used for access path selection. Update the
catalog with only the statistics that are collected for access path selection. Report
the collected statistics and route the statistics to SYSPRINT.

RUNSTATS TABLESPACE DSN8D61A.DSN8S61E

 REPORT YES

 UPDATE ACCESSPATH

Example 7: Update all statistics and generate report. Update the catalog with
all the statistics (access path and space). Report the collected statistics and route
the statistics to SYSPRINT.

RUNSTATS TABLESPACE DSN8D61A.DSN8S61E

 REPORT YES

 UPDATE ALL

Example 8: Report statistics without updating catalog. Do not update the
catalog with the collected statistics. Report the collected statistics and route the
statistics to SYSPRINT.

RUNSTATS TABLESPACE DSN8D61A.DSN8S61E

 REPORT YES

 UPDATE NONE

Example 9: Update statistics for a partition. Update the statistics for the table
space and the partitioning index after a change to partition 1.

RUNSTATS TABLESPACE DSN8D61A.DSN8S61E PART 1 INDEX(DSN861%.XEMP1 PART 1)

 Chapter 2-19. RUNSTATS 395

 RUNSTATS

396 Utility Guide and Reference

 STOSPACE

Chapter 2-20. STOSPACE

The STOSPACE online utility updates DB2 catalog columns that indicate how much
space is allocated for storage groups and related table spaces and indexes.

How to use this chapter: For a diagram of STOSPACE syntax and a description
of available options, see “Syntax and options of the control statement.” For detailed
guidance on running this utility, see “Instructions for running STOSPACE” on
page 398 .

Output: The output from STOSPACE consists of new values in a number of
catalog tables. See “Reviewing STOSPACE output” on page 401 for a list of
columns and tables STOSPACE updates.

Authorization required: To execute this utility, the privilege set of the process
must include one of the following:

 � STOSPACE privilege
� SYSCTRL or SYSADM authority

Execution phases of STOSPACE: The STOSPACE utility operates in these
phases:

Phase Description
UTILINIT Initialization and setup
STOSPACE
UTILTERM Cleanup

Syntax and options of the control statement
The utility control statement defines the function the utility job performs. You can
create a control statement with the ISPF/PDF edit function. After creating it, save it
in a sequential or partitioned data set. When you create the JCL for running the job,
use the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

 Syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

 ┌ ┐─,─────────────
��──STOSPACE─ ──STOGROUP(──┬ ┬───

�
┴─stogroup-name─) ───��

 └ ┘─�─────────────────

 Copyright IBM Corp. 1983, 1999 397

 STOSPACE

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 27.

STOGROUP
Identifies the groups to be processed.

(stogroup-name, ...) Is the name of a storage group. You can use a
list of from one to eight storage group names.
Separate items in the list by commas and
enclose them in parentheses.

* Processes all storage groups.

Instructions for running STOSPACE
To run STOSPACE, you must:

1. Prepare the necessary data sets, as described in “Data sets used by
STOSPACE.”

2. Create JCL statements, by using one of the methods described in “Chapter 2-1.
Invoking DB2 online utilities” on page 27. (For examples of JCL for
STOSPACE, see “Sample control statement” on page 402.)

3. Prepare a utility control statement, specifying the options for the tasks you want
to perform, as described in “Instructions for specific tasks” on page 399. (For a
complete description of the syntax and options for STOSPACE, see “Syntax
and options of the control statement” on page 397.)

4. Check the compatibility rules in “Concurrency and compatibility” on page 401 if
you want to run other jobs concurrently on the same target objects.

5. Plan for restart if the STOSPACE job doesn't complete, as described in
“Terminating or restarting STOSPACE” on page 401.

 6. Run STOSPACE.

See “Chapter 2-1. Invoking DB2 online utilities” on page 27 for an explanation of
ways to execute DB2 utilities.

Data sets used by STOSPACE
Table 75 describes the data sets used by STOSPACE. Include statements in your
JCL for each required data set, and any optional data sets you want to use.

The following object is named in the utility control statement and does not require a
DD card in the JCL:

Table 75. Data sets used by STOSPACE

Data Set Description Required?

SYSIN Input data set containing the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

398 Utility Guide and Reference

 STOSPACE

Storage group
Object to be reported. It is named in the STOSPACE control
statement and is accessed through the DB2 catalog.

Creating the control statement
See “Syntax and options of the control statement” on page 397 for STOSPACE
syntax and option descriptions. See “Sample control statement” on page 402 for
examples of STOSPACE usage.

Instructions for specific tasks
To perform the following tasks, specify the options and values for those tasks in
your utility control statement:

“Ensuring availability of objects required by STOSPACE”
“Obtaining statistical information with STOSPACE”
“Understanding the values in a SPACE column” on page 400

Ensuring availability of objects required by STOSPACE
For each specified storage group, STOSPACE looks at the
SYSIBM.SYSTABLESPACE and SYSIBM.SYSINDEXES catalog tables to tell which
objects belong to that storage group. For each object, the amount of space
allocated is determined from an appropriate VSAM catalog. Hence the table spaces
and indexes need not be available to DB2 when STOSPACE is running; only the
DB2 catalog and appropriate VSAM catalogs are required. However, to gain access
to the VSAM catalog, the utility must have available to it the DBD for the objects
involved. This requires that the appropriate database, table spaces, and index
spaces not be in the stopped state.

Obtaining statistical information with STOSPACE
Table 76 lists statistical information recorded by the STOSPACE utility that is
useful for space allocation decisions.

Table 76. DB2 catalog data collected by STOSPACE

Catalog Table Column Name Column Description

SYSTABLESPACE SPACE Number of kilobytes of storage allocated to
the table space

SYSTABLEPART SPACE Number of kilobytes of storage allocated to
the table space partition

SYSINDEXES SPACE Number of kilobytes of storage allocated to
the index

SYSINDEXPART SPACE Number of kilobytes of storage allocated to
the index partition

SYSSTOGROUP SPACE Number of kilobytes of storage allocated to
the storage group

SYSSTOGROUP SPCDATE Date when STOSPACE was last run on a
particular storage group

SYSSTOGROUP STATSTIME Time when STOSPACE was last run on a
particular storage group

 Chapter 2-20. STOSPACE 399

 STOSPACE

When DB2 storage groups are used in the creation of table spaces and indexes,
DB2 defines the data sets for them. The STOSPACE utility permits a site to monitor
the DASD space allocated for the storage group.

STOSPACE does not accumulate information for more than one storage group. If
a partitioned table space or index space has partitions in more than one storage
group, the information in the catalog about that space comes from only the group
for which STOSPACE was run.

When you run the STOSPACE utility, the SPACE column of the catalog represents
the high allocated RBA of the VSAM linear data set. Use the value in the SPACE
column to project space requirements for table spaces, table space partitions, index
spaces, and index space partitions over time. Use the output from the access
method services LISTCAT command to determine which table spaces and index
spaces have allocated secondary extents; when you find these, it is a good idea to
increase the primary quantity value for the data set and run the REORG utility.

For information about space utilization in the DSN8S61E table space in the
DSN8D61A database, first run the STOSPACE utility, and then execute this SQL
statement:

General-use Programming Interface

SELECT SPACE

 FROM SYSIBM.SYSTABLESPACE

WHERE NAME = 'DSN8S61E

AND DBNAME = 'DSN8D61A';

End of General-use Programming Interface

Alternatively, you can use TSO to look at data set and pack descriptions.

To update SYSIBM.SYSSTOGROUP for storage group DSN8G610, as well as
SYSIBM.SYSTABLESPACE and SYSIBM.SYSINDEXES for every table space and
index belonging to DSN8G610, use the following utility:

STOSPACE STOGROUP DSN8G61%

Understanding the values in a SPACE column
The value in a SPACE column is total allocated space, not only space allocated on
the current list of volumes in the storage groups. Volumes can be deleted from a
storage group even though space on those volumes is still allocated to DB2 table
spaces or indexes. Deletion of a volume from a storage group prevents future
allocations; it does not withdraw a current allocation.

For each specified storage group, STOSPACE looks at the
SYSIBM.SYSTABLESPACE and SYSIBM.SYSINDEXES catalog tables to tell which
objects belong to that storage group. For each object, the amount of space
allocated is determined from an appropriate VSAM catalog. Therefore, the table
spaces and indexes need not be available to DB2 when STOSPACE is running;
only the DB2 catalog and appropriate VSAM catalogs are needed. However, to gain
access to the VSAM catalog, the utility must have available to it the DBD for the
objects involved. This requires that the appropriate database, table spaces, and
index spaces not be in the stopped state.

400 Utility Guide and Reference

 STOSPACE

Considerations for running STOSPACE
For user-defined spaces, STOSPACE does not record any statistics.

Terminating or restarting STOSPACE
You can terminate STOSPACE with the TERM UTILITY command.

You can restart a STOSPACE utility job; however, it starts again from the
beginning.

For more guidance in restarting online utilities, see “Restarting an online utility” on
page 48.

Concurrency and compatibility
STOSPACE does not set a utility restrictive state on the target object.

STOSPACE can run concurrently on the same target object with any utility.
However, because STOSPACE updates the catalog, concurrent STOSPACE utility
jobs or other concurrent applications that update the catalog might cause timeouts
and deadlocks.

Reviewing STOSPACE output
The output from STOSPACE consists of new values in the columns and tables
listed. In each case, an amount of space is given in kilobytes.

� SPACE in SYSIBM.SYSINDEXES shows the amount of space allocated to
indexes. If the index is not defined using STOGROUP, or STOSPACE has not
been executed, the value is zero.

� SPACE in SYSIBM.SYSTABLESPACE shows the amount of space allocated to
table spaces. If the table space is not defined using STOGROUP, or
STOSPACE has not been executed, the value is zero.

� SPACE in SYSIBM.SYSINDEXPART shows the amount of space allocated to
index partitions. If the partition is not defined using STOGROUP, or
STOSPACE has not been executed, the value is zero.

� SPACE in SYSIBM.SYSTABLEPART shows the amount of space allocated to
table partitions. If the partition is not defined using STOGROUP, or STOSPACE
has not been executed, the value is zero.

� SPACE in SYSIBM.SYSSTOGROUP shows the amount of space allocated to
storage groups.

� SPCDATE in SYSIBM.SYSSTOGROUP shows, in the form yyddd, the date
when STOSPACE was last used on a particular storage group.

� STATSTIME in SYSIBM.SYSSTOGROUP shows the timestamp for the time.

 Chapter 2-20. STOSPACE 401

 STOSPACE

Sample control statement
Example: Update catalog SPACE columns. Update the DB2 catalog SPACE
columns for storage group DSN8G610.

| //STEP1 EXEC DSNUPROC,UID='FUAUU33%.STOSPCE',

| // UTPROC='',

| // SYSTEM='V61A'

| //SYSIN DD �

STOSPACE STOGROUP DSN8G61%

//�

402 Utility Guide and Reference

Section 3. Stand-alone utilities

Chapter 3-1. Invoking stand-alone utilities . 407
Creating utility statements and EXEC PARM parameters 407

Creating utility control statements . 407
Specifying options using the JCL EXEC PARM parameter 407
Example of an option description . 408

Chapter 3-2. DSNJLOGF (Preformat Active Log) 409
Before running DSNJLOGF . 409

Environment . 409
Control statement . 409

Sample control statement . 409
DSNJLOGF output . 410

Chapter 3-3. DSNJU003 (Change Log Inventory) 411
Syntax and options of the control statement . 411

DSNJU003 (change log inventory) syntax diagram 411
Option descriptions . 413

Before running DSNJU003 . 419
Environment . 419
Authorization required . 420
Control statement . 420

Using DSNJU003 . 421
Running DSNJU003 . 421
Making changes for active logs . 421
Making changes for archive logs . 423
Creating a conditional restart control record 423
Deleting log data sets with errors . 424
Altering references to NEWLOG and DELETE data sets 425
Specifying the NEWCAT statement . 425
Renaming DB2 system data sets . 426
Renaming DB2 active log data sets . 426
Renaming DB2 archive log data sets . 426

Sample control statements . 427

Chapter 3-4. DSNJU004 (Print Log Map) . 429
Syntax and options of the control statement . 429

DSNJU004 (print log map) syntax diagram . 429
Option descriptions . 429

Before running DSNJU004 . 430
Environment . 430
Authorization required . 430
Control statement . 430
Recommendations . 431

Sample control statement . 431
DSNJU004 (Print Log Map) output . 431

Timestamps in the BSDS . 432
Active log data set status . 433
Reading conditional restart control records . 437

Chapter 3-5. DSN1CHKR . 439

 Copyright IBM Corp. 1983, 1999 403

Syntax and options of the control statement . 439
DSN1CHKR syntax diagram . 439
Option descriptions . 439

Before running DSN1CHKR . 441
Environment . 441
Authorization required . 441
Control statement . 441
Restrictions . 441

Sample control statements . 442
DSN1CHKR output . 445

Chapter 3-6. DSN1COMP . 447
Syntax and options of the control statement . 447

DSN1COMP syntax diagram . 447
Option descriptions . 447

Before running DSN1COMP . 450
Environment . 450
Authorization required . 450
Control statement . 450
Recommendation . 450

Using DSN1COMP . 451
Estimating compression savings achieved by REORG 451
Including free space in compression calculations 451
Running DSN1COMP on a table space with identical data 452

Sample control statements . 452
DSN1COMP output . 452

Message DSN1941 . 452
Sample DSN1COMP report . 452

Chapter 3-7. DSN1COPY . 455
Syntax and options of the control statement . 455

DSN1COPY syntax diagram . 455
Option descriptions . 456

Before running DSN1COPY . 460
Environment . 460
Authorization required . 460
Control statement . 461
Restrictions . 465
Recommendations . 465

Using DSN1COPY . 466
Altering a table before running DSN1COPY 466
Checking for inconsistent data . 466
Translating DB2 internal identifiers . 466
Using an image copy as input to DSN1COPY 467
Resetting page log RBAs . 467
Copying multiple data set table spaces . 467
Restoring indexes with DSN1COPY . 467
Restoring table spaces with DSN1COPY . 468
Printing with DSN1COPY . 468

Copying tables from one subsystem to another 468
Sample control statements . 469
DSN1COPY output . 470

Chapter 3-8. DSN1LOGP . 471

404 Utility Guide and Reference

Syntax and options of the control statement . 471
DSN1LOGP syntax diagram . 471
Option descriptions . 472

Before running DSN1LOGP . 477
Environment . 478
Authorization required . 478
Control statement . 478

Using DSN1LOGP . 479
Reading archive log data sets on tape . 480
Locating table and index identifiers . 480

Sample control statements . 481
DSN1LOGP output . 483

Reviewing DSN1LOGP output . 483
Interpreting error codes . 491

Chapter 3-9. DSN1PRNT . 493
Syntax and options of the control statement . 493

DSN1PRNT syntax diagram . 493
Option descriptions . 494

Before running DSN1PRNT . 498
Environment . 498
Authorization required . 498
Control statement . 498
Recommendations . 498

Sample control statements . 499
DSN1PRNT output . 500

Chapter 3-10. DSN1SDMP . 501
Syntax and options of the control statement . 501

DSN1SDMP syntax diagram . 501
Option descriptions . 501

Before running DSN1SDMP . 504
Environment . 504
Authorization required . 504
Control statement . 505

Using DSN1SDMP . 505
Assigning buffers . 506
Generating a dump . 506

Stopping or modifying DSN1SDMP traces . 506
Sample control statements . 507
DSN1SDMP output . 509

 Running DB2 stand-alone utilities 405

406 Utility Guide and Reference

Chapter 3-1. Invoking stand-alone utilities

This chapter contains procedures and guidelines for creating utility control
statements and EXEC PARM parameters for invoking the stand-alone utilities.

Creating utility statements and EXEC PARM parameters
Utility control statements and parameters define the function a utility job performs.
Some stand-alone utilities read the control statements from an input stream, and
others obtain the function definitions from JCL EXEC PARM parameters.

Creating utility control statements
You can create the utility control statements with the ISPF/PDF edit function. After
you create the control statements, save them in a sequential or partitioned data set.

The following utilities read control statements from the input stream file of the
specified DD name:

Utility DD name

DSNJU003 (Change Log Inventory) SYSIN

DSNJU004 (Print Log Map) SYSIN (optional)

DSN1LOGP SYSIN

DSN1SDMP SDMPIN

| Control statement coding rules
Utility control statements are read from the DD name input stream. The statements
in that stream must conform to these rules:

� The logical record length (LRECL) must be 80 characters. Columns 73 through
80 are ignored.

� The records are concatenated into a single stream before being parsed. No
concatenation character is necessary.

� The SYSIN stream can contain multiple utility control statements.

Specifying options using the JCL EXEC PARM parameter
The following stand-alone utilities obtain function options from the EXEC PARM
parameter:

 DSN1CHKR
 DSN1COMP
 DSN1COPY
 DSN1PRNT

Following OS/390 JCL EXEC PARM specification rules
The parameters you specify must obey these OS/390 JCL EXEC PARM parameter
specification rules:

� Enclose multiple subparameters in single quotes or parentheses, separating
subparameters with commas. For example:

//name EXEC PARM='ABC,...,XYZ'

 Copyright IBM Corp. 1983, 1999 407

� The total length cannot exceed 100 characters.

� Blanks are not allowed within the parameter specification.

To specify the parameter across multiple lines:

1. Enclose it in parentheses

2. End the first line with a subparameter, followed by a comma

3. Continue the subparameters on the next line, beginning before column 17.

For example:

//stepname EXEC PARM=(ABC,...LMN,

 OPQ,...,XYZ)

Example of an option description
Where the syntax of each utility control statement is described, parameters are
indented under the option keyword they must follow. Here is an example:

AFTER(integer) Specifies that the action is to be performed after the trace point
is reached integer times.

integer must be between 1 and 32767. The default is
AFTER(1).

In the example, AFTER is an option keyword, and integer is a parameter. Values of
parameters are usually enclosed in parentheses. The syntax diagrams for utility
control statements show parentheses where they are required.

408 Utility Guide and Reference

 DSNJLOGF (Preformat Active Log)

Chapter 3-2. DSNJLOGF (Preformat Active Log)

When writing to an active log data set for the first time, DB2 must preformat a
VSAM control area before writing the log records. The DSNJLOGF utility avoids this
delay by preformatting the active log data sets before bringing them online to DB2.

Before running DSNJLOGF
This section contains information you need to be aware of prior to running
DSNJLOGF.

 Environment
Run DSNJLOGF as an MVS job.

 Control statement
See “Sample control statement” for an example of using DSNJLOGF to preformat
the active log data sets.

Required data sets: DSNJLOGF recognizes DD statements with the following DD
names.

SYSUT1 Defines the newly defined active log data set to be preformatted.
The data set must be an empty VSAM linear data set.

SYSPRINT Defines the print spool class or data set for print output. The logical
record length (LRECL) is 132.

Sample control statement
The following sample control statement preformats the active log data sets.

//JOBLIB DD DSN=DSN61%.SDSNLOAD,DISP=SHR

//STEP1 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSUT1 DD DSN=DSNC61%.LOGCOPY1.DS%1,DISP=SHR

//STEP2 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSUT1 DD DSN=DSNC61%.LOGCOPY1.DS%2,DISP=SHR

//STEP3 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSUT1 DD DSN=DSNC61%.LOGCOPY2.DS%1,DISP=SHR

//STEP4 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSUT1 DD DSN=DSNC61%.LOGCOPY2.DS%2,DISP=SHR

 Copyright IBM Corp. 1983, 1999 409

 DSNJLOGF (Preformat Active Log)

 DSNJLOGF output
DSNJ991I DSNJLOGF START OF LOG DATASET PREFORMAT FOR JOB LOGFRMT STEP1

DSNJ992I DSNJLOGF LOG DATA SET NAME = DSNC61%.LOGCOPY1.DS%1

DSNJ996I DSNJLOGF LOG PREFORMAT COMPLETED SUCCESSFULLY, %%%15%%%

 RECORDS FORMATTED

410 Utility Guide and Reference

 DSNJU003 (Change Log Inventory)

Chapter 3-3. DSNJU003 (Change Log Inventory)

The DSNJU003 stand-alone utility changes the bootstrap data sets (BSDSs). You
can use the utility to:

� Add or delete active or archive log data sets

� Add or delete checkpoint records

� Create a conditional restart control record to control the next start of the DB2
subsystem

� Change the VSAM catalog name entry in the BSDS

� Modify the communication record in the BSDS

� Modify the value for the highest-written log RBA value (relative byte address
within the log) or the highest-offloaded RBA value

Syntax and options of the control statement
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

DSNJU003 (change log inventory) syntax diagram

NEWLOG statement

��──NEWLOG─ ──DSNAME=data-set-name ──┬ ┬─new active log── ──┬ ┬─────────────────────────────────── ────────��
└ ┘─new archive log─ └ ┘──STARTIME=startime,ENDTIME=endtime

new active log:

�─ ──┬ ┬──,COPY1 ──┬ ┬────────────────────────────────── ──�
└ ┘──,COPY2 └ ┘──,STARTRBA=startrba,ENDRBA=endrba

new archive log:

�─ ──┬ ┬─── ──┬ ┬──────────────────── ───�
└ ┘── ──┬ ┬──,COPY1VOL=vol-id ,STARTRBA=startrba,ENDRBA=endrba,UNIT=unit-id │ │┌ ┐─NO──

└ ┘──,COPY2VOL=vol-id └ ┘──,CATALOG= ──┴ ┴─YES─

�─ ──┬ ┬──────────────────────────────────── ──�
└ ┘──STRTLRSN=startlrsn,ENDLRSN=endlrsn

DELETE statement

��──DELETE─ ──DSNAME=data-set-name ──┬ ┬────────────────── ──��
├ ┤──,COPY1VOL=vol-id
└ ┘──,COPY2VOL=vol-id

 Copyright IBM Corp. 1983, 1999 411

 DSNJU003 (Change Log Inventory)

CRESTART statement

��─ ─CRESTART─ ──┬ ┬ ─CREATE──create spec─ ───��
 └ ┘─CANCEL──────────────

create spec:

�─ ──┬ ┬── ──┬ ┬──────────────────── ────────────────────────────�
 ├ ┤──┬ ┬──────────────────── ──┬ ┬──────────────── └ ┘──,CHKPTRBA=chkptrba

│ │└ ┘──,STARTRBA=startrba └ ┘──,ENDRBA=endrba
└ ┘──,ENDLRSN=endlrsn ──────────────────────────

�─ ──┬ ┬── ──�
 ├ ┤ ──┬ ┬──────────────────── ──┬ ┬────────────────────
 │ ││ │┌ ┐─YES─ │ │┌ ┐─YES─

│ │└ ┘──,FORWARD= ──┴ ┴─NO── └ ┘──,BACKOUT= ──┴ ┴─NO──
└ ┘──,CSRONLY ──────────────────────────────────────

NEWCAT statement

��──NEWCAT─ ──VSAMCAT=catalog-name ──��

DDF statement

 ┌ ┐─,─────────────────────────
��──DDF─ ─── ────

�
┴──┬ ┬──LOCATION=locname ───── ──��

├ ┤──LUNAME=luname ────────
├ ┤──┬ ┬──PASSWORD=password

 │ │└ ┘─NOPASSWD──────────
├ ┤──┬ ┬──GENERIC=gluname ──

 │ │└ ┘─NGENERIC────────
├ ┤──PORT=port ────────────
└ ┘──RESPORT=resport ──────

CHECKPT statement

��─ ─CHECKPT─ ──STARTRBA=startrba ──┬ ┬──,ENDRBA=endrba ──,TIME=time ──┬ ┬────────────────── ────────────────��
│ │└ ┘──,ENDLRSN=endlrsn
└ ┘──,CANCEL ───

HIGHRBA statement

��──HIGHRBA─ ──┬ ┬──STARTRBA=startrba ──┬ ┬────────────────── ,TIME=time ──────────────────────────────────��
│ │└ ┘──,OFFLRBA=offlrba
└ ┘──OFFLRBA=offlrba ──────────────────────────────────

412 Utility Guide and Reference

 DSNJU003 (Change Log Inventory)

 Option descriptions
For a description of how utility statements are parsed, and how to read a list of
option identifiers and specifications like the one that follows, see “Control statement
coding rules” on page 407.

NEWLOG Declares one of the following data sets:

� A VSAM data set that is available for use as an active log data
set.

Use only the keywords DSNAME=, COPY1, and COPY2.

� An active log data set that is replacing one that encountered an
I/O error.

Use only the keywords DSNAME=, COPY1, COPY2,
STARTRBA=, and ENDRBA=.

� An archive log data set volume.

Use only the keywords DSNAME= ,COPY1VOL=,
COPY2VOL=, STARTRBA=, ENDRBA=, UNIT=, CATALOG=,
STRTLRSN=, and ENDLRSN=.

If you create an archive log data set and add it to the BSDS
with this utility, you can specify a name that DB2 might also
generate. DB2 generates archive log data set names of the
form DSNCAT.ARCHLOGx.Annnnnnn where:

– DSNCAT and ARCHLOG are parts of the data set prefix
you specified on install panels DSNTIPA2 and DSNTIPH.

– x is 1 for the first copy of the logs and 2 for the second
copy.

– Annnnnnn represents the series of low-level qualifiers DB2
generates for archive log data set names, beginning with
A0000001, and incrementing to A0000002, A0000003, and
so forth.

For data sharing, the naming convention is
DSNCAT.ARCHLOG1 or DSNCAT.DSN1.ARCLG1.

If you do specify a name using the same naming convention as
DB2, you receive a dynamic allocation error when DB2
generates that name. The error message, DSNJ103I, is issued
once. DB2 then increments the low-level qualifier to generate
the next data set name in the series and offloads to it the next
time DB2 archives. (The active log that previously was not
offloaded is offloaded to this data set.)

The newly-defined active logs cannot specify a start and end
LRSN. The start and end LRSN for new active logs that contain
active log data are read at DB2 start-up time from the new
active log data sets specified in the Change Log Inventory
NEWLOG statements. For new archive logs defined with
Change Log Inventory, the user must specify the start and end
RBAs. For data sharing, the user must also specify the start
and end LRSNs. DB2 startup does not attempt to find these
values from the new archive log data sets.

 Chapter 3-3. DSNJU003 (Change Log Inventory) 413

 DSNJU003 (Change Log Inventory)

DELETE Deletes all information about the specified log data set or data set
volume from the bootstrap data sets.

CRESTART Controls the next restart of DB2, either by creating a new
conditional restart control record or by canceling the one that is
currently active.

Attention: This statement can override DB2's efforts to maintain
data in a consistent state. Do not use this statement without
understanding the conditional restart process, which is described in
Section 4 (Volume 1) of DB2 Administration Guide.

NEWCAT Changes the VSAM catalog name in the BSDS.

DDF Updates the LOCATION, LUNAME, and PASSWORD values in the
BSDS. If you use this statement to insert new values into the
BSDS, you must include at least the LOCATION and LUNAME in
the DDF statement. To update an existing set of values, you need
only include those values you want to change. The DDF record
cannot be deleted from the BSDS after it has been added, it can
only be modified.

NOPASSWD removes the DDF password from the DDF record in
the BSDS. No other keywords can be used with NOPASSWD.

CHECKPT Allows updating of the checkpoint queue with the start checkpoint
and end checkpoint log records.

Attention: This statement can override DB2's efforts to maintain
data in a consistent state. Do not use the statement without
understanding the conditional restart and checkpoint processing
processes, which are described in Section 4 (Volume 1) of DB2
Administration Guide.

HIGHRBA Updates the highest-written log RBA in either the active or archive
log data sets.

Attention: This statement can override DB2's efforts to maintain
data in a consistent state. Do not use the statement without
understanding the conditional restart process, which is described in
Section 4 (Volume 1) of DB2 Administration Guide.

DSNAME=data-set-name
Specifies a log data set.

data-set-name can be up to 44 characters long.

STARTIME=startime
Enables you to record the start time of the RBA in the BSDS. This
is an optional field. The timestamp format with valid values in
parentheses is as follows:

yyyydddhhmmsst

where:

yyyy Indicates the year (1989-2099).
ddd Indicates the day of the year (0-365; 366 in leap years).
hh Indicates the hour (0-23).
mm Indicates the minutes (0-59).
ss Indicates the seconds (0-59).

414 Utility Guide and Reference

 DSNJU003 (Change Log Inventory)

t Indicates tenths of a second.

If fewer than 14 digits are specified for the STARTIME or ENDTIME
parameter, trailing zeros are added.

If STARTIME is specified, the ENDTIME, STARTRBA and
ENDRBA must also be specified.

ENDTIME=endtime
Enables you to record the end time of the RBA in the BSDS. This
is an optional field. For the timestamp format, see the STARTIME
option. The ENDTIME value must be greater than or equal to the
value of STARTIME.

COPY1 Makes the data set an active log copy-1 data set.

COPY2 Makes the data set an active log copy-2 data set.

STARTRBA=startrba
startrba is a hexadecimal number of up to 12 characters. If you use
fewer than 12 characters, leading zeros are added. startrba must
end with '000' or DB2 returns a DSNJ4381 error message. The
RBA can be obtained from messages or by printing the log map.

On the NEWLOG statement, startrba gives the log RBA of the
beginning of the replacement active log data set or the archive log
data set volume specified by DSNAME.

On the CRESTART statement, startrba is the earliest RBA of the
log to be used during restart. If you omit STARTRBA, DB2
determines the beginning of the log range.

On the CHECKPT statement, startrba indicates the start
checkpoint log record.

STARTRBA is required when STARTIME is specified.

for the startrba format, see the NEWLOG statement.

On the HIGHRBA statement, startrba denotes the log RBA of the
highest-written log record in the active log data sets.

For the startrba format, see the NEWLOG statement.

ENDRBA=endrba
endrba is a hexadecimal number of up to 12 characters. If you use
fewer than 12 characters, leading zeros are added. endrba must
end with 'FFF' or DB2 will return a DSNJ4381 error message.

On the NEWLOG statement, endrba gives the log RBA (relative
byte address within the log) of the end of the replacement active
log data set or the archive log data set volume specified by
DSNAME.

On the CRESTART statement, endrba is the last RBA of the log
that is to be used during restart, and it is also the starting RBA of
the next active log written after restart. Any log information in the
bootstrap data set and the active logs with an RBA greater than
endrba is discarded. If you omit ENDRBA, DB2 determines the end
of the log range.

 Chapter 3-3. DSNJU003 (Change Log Inventory) 415

 DSNJU003 (Change Log Inventory)

The value of ENDRBA must be a multiple of 4096. (The
hexadecimal value must end in 000.) Also, the value must be
greater than or equal to the value of STARTRBA. If STARTRBA
and ENDRBA are equal, the next restart is a cold start; that is, no
log records are processed during restart. The specified RBA
becomes the beginning RBA of the new log.

On the CHECKPT statement , endrba indicates the end
checkpoint log record that corresponds to the start checkpoint log
record.

For the endrba format, see the NEWLOG statement.

COPY1VOL=vol-id
vol-id is the volume serial of the copy-1 archive log data set that is
specified after DSNAME.

COPY2VOL=vol-id
vol-id is the volume serial of the copy-2 archive log data set that is
specified after DSNAME.

UNIT=unit-id unit-id is the device type of the archive log data set that is named
after DSNAME.

CATALOG Indicates whether the archive log data set is cataloged.

NO Indicates that the archive log data set is not cataloged. All
subsequent allocations of the data set are made using the
unit and volume information specified on the statement.

YES Indicates that the archive log data set is cataloged. All
subsequent allocations of the data set are made using the
catalog.

DB2 requires that all archive log data sets on DASD be
cataloged. Select CATALOG=YES if the archive log data
set is on DASD.

STRTLRSN=startlrsn
On the NEWLOG statement, startlrsn is the LRSN in log record
header of the first complete log record on the new archive data set.
startlrsn is a hexadecimal number of up to 12 characters. If you use
fewer than 12 characters, leading zeros are added. In a data
sharing environment, run the Print Log Map utility to find an archive
log data set and start and end RBAs and LRSNs.

ENDLRSN=endlrsn
endlrsn is a hexadecimal number of up to 12 characters. If you use
fewer than 12 characters, leading zeros are added. In a data
sharing environment, run the Print Log Map utility to find an archive
log data set and start and end RBAs and LRSNs.

On the NEWLOG statement, endlrsn is the LRSN in log record
header of the last log record on the new archive data set.

On the CRESTART statement, endlrsn is the LRSN of the last log
record to be used during restart. Any log information in the
bootstrap data set and the active logs with an LRSN greater than
endlrsn is discarded. If you omit ENDLRSN, DB2 determines the
end of the log range.

416 Utility Guide and Reference

 DSNJU003 (Change Log Inventory)

The ENDLRSN option is valid only in a data sharing environment. It
cannot be specified with STARTRBA or ENDRBA.

On the CHECKPT statement, endlrsn is the LRSN of the end
checkpoint log record.

CREATE Creates a new conditional restart control record. When the new
record is created, the previous control record becomes inactive.

CANCEL On the CRESTART statement, CANCEL deactivates the currently
active conditional restart control record. The record remains in the
BSDS as historical information.

No other keyword can be used with CANCEL.

On the CHECKPT statement, CANCEL deletes the checkpoint
queue entry that contains a starting RBA that matches the
parameter specified by the STARTRBA keyword.

CHKPTRBA=chkptrba
Is the log RBA of the start of the checkpoint record that is to be
used during restart.

If you use STARTRBA or ENDRBA, and you do not use
CHKPTRBA, the DSNJU003 utility selects the RBA of an
appropriate checkpoint record. If you do use CHKPTRBA, you
override the value selected by the utility. However, chkptrba must
be in the range determined by startrba and endrba or their default
values. If possible, do not use CHKPTRBA; let the utility determine
the RBA of the checkpoint record.

CHKPTRBA=0 overrides any selection by the utility; at restart, DB2
attempts to use the most recent checkpoint record taken.

FORWARD= Indicates whether to use the forward-log-recovery phase of DB2
restart, which reads the log forward to recover any units of recovery
that were in one of the following two states when DB2 was last
stopped:

� Indoubt (the units of recovery had finished the first phase of
commit, but had not started the second phase)

� In-commit (had started but had not finished the second phase
of commit)

YES Allows forward-log recovery.

If you specify a cold start (by using the same value for
STARTRBA and ENDRBA), no recovery processing is
performed.

NO Terminates forward-log recovery before log records are
processed.

BACKOUT= Indicates whether to use the backward-log-recovery phase of DB2
restart, which rolls back any units of recovery that were in one of
the following two states when DB2 was last stopped:

� Inflight (did not complete the first phase of commit)
� In-abort (had started but not finished an abort)

 Chapter 3-3. DSNJU003 (Change Log Inventory) 417

 DSNJU003 (Change Log Inventory)

YES Allows backward-log recovery.

If you specify a cold start (by using the same value for
STARTRBA and ENDRBA), no recovery processing is
performed.

NO Terminates backward-log recovery before log records are
processed.

CSRONLY Performs only the first and second phases of restart processing
(log initialization and current-status rebuild). After these phases, the
system status is displayed and restart terminates. Some parts of
the log initialization are not performed, including any updating of
the log and display of STARTRBA and ENDRBA information.

When DB2 is restarted with this option in effect, the conditional
restart control record is not deactivated. To prevent the control
record from remaining active, use the DSNJU003 utility again with
CRESTART CANCEL, or with CRESTART CREATE to create a
new active control record.

VSAMCAT=catalog-name
Changes the VSAM catalog name entry in the BSDS.

catalog-name can be up to eight characters long. The first
character must be alphabetic, and the remaining characters can be
alphanumeric.

LOCATION=location-name
Changes the LOCATION value in the BSDS.

location-name specifies the name of your local DB2 site.

LUNAME=luname
Changes the LUNAME value in the BSDS.

The LUNAME in the BSDS must always contain the value that
identifies your local DB2 subsystem to the VTAM network.

PASSWORD= The DDF password follows VTAM convention, but DB2 restricts it
to one to eight alphanumeric characters. The first character must
be either a capital letter or an alphabetic extender. The remaining
characters can consist of alphanumeric characters and alphabetic
extenders.

password Specifying a password is optional. It assigns a
password to the distributed data facility
communication record that establishes
communications for a distributed data environment.
See VTAM for MVS/ESA Resource Definition
Reference for a description of the
PRTCT=password option on the APPL definition
statement that is used to define DB2 to VTAM.

NOPASSWD Removes the archive password protection for all
archives created after this operation. It also
removes a previously existing password from the
DDF record. No other keyword can be used with
NOPASSWD.

418 Utility Guide and Reference

 DSNJU003 (Change Log Inventory)

GENERIC= gluname
Replaces the value of the DB2 GENERIC LUNAME subsystem
parameter in the BSDS.

NGENERIC Changes the DB2 GENERIC LUNAME to binary zeros in the
BSDS, indicating that no VTAM generic LU name support is
requested.

PORT Identifies the TCP/IP port number used by DDF to accept incoming
connection requests. This value must be a decimal number
between 0 and 65534; zero indicates that DDF's TCP/IP support is
to be deactivated.

If DB2 is part of a data sharing group, all the members of the DB2
data sharing group must have the same value for PORT.

RESPORT Identifies the TCP/IP port number used by DDF to accept incoming
DRDA two-phase commit resynchronization requests. This value
must be a decimal number between 0 and 65534; zero indicates
that DDF's TCP/IP support is to be deactivated. If RESPORT is
non-zero, RESPORT must not be the same as the value supplied
on PORT.

For data sharing DB2 systems, RESPORT must be uniquely
assigned to each DB2 member, so that no two DB2 members use
the same TCP/IP port for two-phase commit resynchronization.

TIME=time On the CHECKPT statement, TIME gives the time the start
checkpoint record was written.

For timestamp format, see the STARTIME option on the NEWLOG
statement on page 414.

On the HIGHRBA statement, TIME specifies when the log record
with the highest RBA was written to the log.

For timestamp format, see the STARTIME option on the NEWLOG
statement on page 414.

OFFLRBA=offlrba
Specifies the highest offloaded RBA in the archive log.

offlrba is a hexadecimal number of up to 12 characters. If you use
fewer than 12 characters, leading zeros are added. The value must
end with hexadecimal 'FFF'.

Before running DSNJU003
This section contains information you need to be aware of prior to running
DSNJU003.

 Environment
The utility should be executed only as a batch job when DB2 is not running. It can
be executed when DB2 is running, but results can be inconsistent.

 Chapter 3-3. DSNJU003 (Change Log Inventory) 419

 DSNJU003 (Change Log Inventory)

 Authorization required
The authorization ID of the DSNJU003 job must have the requisite RACF
authorization.

 Control statement
See “Syntax and options of the control statement” on page 411 for DSNJU003
syntax and option descriptions.

Required and optional data sets
DSNJU003 recognizes DD statements with the following ddnames:

JOBCAT
STEPCAT Specifies the catalog in which the bootstrap data sets (BSDSs) are

cataloged. This statement is optional. Typically, the high-level
qualifier of the BSDS name points to the integrated facility catalog
that contains an entry for the BSDS.

SYSUT1 Specifies and allocates the bootstrap data set. This statement is
required.

SYSUT2 Specifies and allocates a second copy of the bootstrap data set.
This statement is required if you use dual BSDSs.

Dual BSDSs and DSNJU003: With each execution of DSNJU003,
the BSDS timestamp field is updated with the current system time.
If you run DSNJU003 separately for each copy of a dual copy
BSDS, the timestamp fields are not synchronized, and DB2 fails at
startup. If you changed the contents of the BSDS copy by running
DSNJU003, DB2 issues error message DSNJ122I. Therefore, if
you use DSNJU003 to update dual copy BSDSs, update both
BSDSs within a single execution of DSNJU003.

SYSPRINT Specifies a data set for print output. This statement is required. The
logical record length (LRECL) is 125.

SYSIN Specifies the input data set for statements. This statement is
required. The logical record length (LRECL) is 80.

 Optional statements
The Change Log Inventory utility provides the following statements:

 � NEWLOG
 � DELETE
 � SYSTEMDB
 � CRESTART
 � NEWCAT
 � DDF
 � CHECKPT
 � HIGHRBA

You can specify any statement one or more times. In each statement, separate the
operation name from the first parameter by one or more blanks. You can use
parameters in any order; separate them by commas with no blanks. Do not split a
parameter description across two SYSIN records.

420 Utility Guide and Reference

 DSNJU003 (Change Log Inventory)

A statement containing an asterisk in column 1 is considered a comment and is
ignored. However, it appears in the output listing. To include a comment or
sequence number in a SYSIN record, separate it from the last comma by a blank.
When a blank is encountered following a comma, the rest of the record is ignored.

During execution of DSNJU003, a significant error in any statement causes that
statement and all subsequent statements to be skipped. However, all remaining
statements are checked for syntax errors. Therefore, BSDS updates are not made
for any operation specified in the statement in error and in any subsequent
statements.

 Using DSNJU003
This section describes the following tasks associated with running the DSNJU003
utility:

“Running DSNJU003”
“Making changes for active logs”
“Making changes for archive logs” on page 423
“Creating a conditional restart control record” on page 423
“Deleting log data sets with errors” on page 424
“Altering references to NEWLOG and DELETE data sets” on page 425
“Specifying the NEWCAT statement” on page 425
“Renaming DB2 system data sets” on page 426
“Renaming DB2 active log data sets” on page 426
“Renaming DB2 archive log data sets” on page 426

 Running DSNJU003
The following statement executes the utility and can be included only in a batch job:

//EXEC PGM=DSNJU%%3

Making changes for active logs
Adding: If an active log is in stopped status, it is not reused for output logging;
however, it continues to be used for reading. To add a new active log:

1. Use the access method services DEFINE command to define new active log
data sets.

2. Use DSNJLOGF to preformat the new active log data sets.

3. Use DSNJU003 to register the new data sets in the BSDS.

For example, specify:

NEWLOG DSNAME=DSNC61%.LOGCOPY1.DS%4,COPY1

NEWLOG DSNAME=DSNC61%.LOGCOPY2.DS%4,COPY2

If you are copying the contents of an old active log data set to the new one, you
can also give the RBA range and the starting and ending timestamp on the
NEWLOG statement.

If you are archiving to DASD and the size of your active logs has been increased,
you might find it necessary to increase the size of your archive log data sets.

Deleting: To delete information about an active log data set from the BSDS, you
might specify:

 Chapter 3-3. DSNJU003 (Change Log Inventory) 421

 DSNJU003 (Change Log Inventory)

DELETE DSNAME=DSNC61%.LOGCOPY1.DS%1

DELETE DSNAME=DSNC61%.LOGCOPY2.DS%1

Recording: To record information about an existing active log data set in the
BSDS, you might specify:

NEWLOG DSNAME=DSNC61%.LOGCOPY2.DS%5,COPY2,STARTIME=1991%2122%5198,

 ENDTIME=1991%4122%52%%,STARTRBA=43F8%%%,ENDRBA=65F3FFF

You can insert a record of that information into the BSDS for any of these reasons:

� The data set has been deleted and is needed again.

� You are copying the contents of one active log data set to another data set
(copy 1 to copy 2).

� You are recovering the BSDS from a backup copy.

Enlarging: When DB2 is inactive (down), use one of the following procedures.

If you can use the access method services REPRO command, follow these steps:

1. Stop DB2. This step is required because DB2 allocates all active log data sets
when it is up.

2. Use the access method services ALTER command with the NEWNAME option
to rename your active log data sets.

3. Use the access method services DEFINE command to define larger active log
data sets. Refer to installation job DSNTIJIN to see the definitions that create
the original active log data sets. See DB2 Installation Guide.

By reusing the old data set names, you don't have to run the Change Log
Inventory utility to establish new names in the BSDSs. The old data set names
and the correct RBA ranges are already in the BSDSs.

4. Use the access method services REPRO command to copy the old (renamed)
data sets into their respective new data sets.

 5. Start DB2.

If you cannot use the access method services REPRO command, follow this
procedure:

1. Ensure that all active log data sets except the current active log data sets have
been archived. Active log data sets that have been archived are marked
REUSABLE in Print Log Map utility (DSNJU004) output.

 2. Stop DB2.

3. Rename or delete the reusable active logs. Allocate new, larger active log data
sets with the same names as the old active log data sets.

| 4. Run the DSNJLOGF utility to preformat the new log data sets.

5. Run the Change Log Inventory utility (DSNJU003) with the DELETE statement
to delete all active logs except the current active logs from the BSDS.

6. Run the Change Log Inventory utility with the NEWLOG statement to add to the
BSDS the active logs that you just deleted. So that the logs are added as
empty, do not specify an RBA range.

 7. Start DB2.

422 Utility Guide and Reference

 DSNJU003 (Change Log Inventory)

8. Execute the ARCHIVE LOG command to cause DB2 to truncate the current
active logs and switch to one of the new sets of active logs.

9. Repeat steps 2 on page 422 through 7 on page 422 to enlarge the active logs
that were just archived.

Although it is not necessary for all log data sets to be the same size, from an
operational standpoint it is more consistent and efficient. If the log data sets are not
the same size, it is more difficult to track your system's logs. Space can be wasted
if you are using dual data sets of different sizes because they will fill only to the
size of the smallest, not using the remaining space on the larger one.

If you are archiving to DASD and the size of your active logs has been increased,
| you might find it necessary to increase the size of your archive log data sets. Refer
| to the PRIMARY QUANTITY and SECONDARY QTY fields on installation panel
| DSNTIPA to modify the primary and secondary allocation space quantities. See
| DB2 Installation Guide for more information.

Making changes for archive logs
Adding: When the recovery of an object depends on reading an existing archive
log data set, the BSDS must contain information about that data set, so that the
recovery job can find it. To register information about an existing archive log data
set in the BSDS, you might specify:

NEWLOG DSNAME=DSNC61%.ARCHLOG1.D89%21.T22%5197.A%%%%%15,COPY1VOL=DSNV%4,

UNIT=TAPE,STARTRBA=3A19%%%%,ENDRBA=3A1F%FFF,CATALOG=NO

Deleting: To delete an entire archive log data set from one or more volumes, you
might specify:

DELETE DSNAME=DSNC61%.ARCHLOG1.D89%21.T22%5197.A%%%%%15,COPY1VOL=DSNV%4

Creating a conditional restart control record
To create a new conditional restart control record in the BSDS, you must execute
the change log inventory utility and use the CRESTART control statement. For
example, to truncate the log, to specify the earliest log RBA, and to bypass
back-out, use a statement similar to this:

CRESTART CREATE,STARTRBA=28894,ENDRBA=58%%%,BACKOUT=NO

To specify a cold start, make the values of STARTRBA and ENDRBA equal, with a
statement similar to this:

CRESTART CREATE,STARTRBA=4A%%%,ENDRBA=4A%%%

In most cases, when doing a cold start, make sure that the STARTRBA and
ENDRBA are set to an RBA value greater than the highest RBA used.

An existing conditional restart control record governs any START DB2 operation
until one of these events occurs:

� A restart operation completes.
� A CRESTART CANCEL statement is issued.
� A new conditional restart control record is created.

 Chapter 3-3. DSNJU003 (Change Log Inventory) 423

 DSNJU003 (Change Log Inventory)

Deleting log data sets with errors
If an active log data set has encountered an I/O error, perform the following steps:

1. If you have been using dual active log data sets, check if the data from the bad
active log data set is saved in the other active log. If it is, you can use the other
active log.

2. If you cannot use the other active log or the active log is in the STOPPED
status, you must fix the problem manually.

a. Check to see if the data set has been offloaded. For example, check the
list of archive log data sets to see if one has the same RBA range as the
active log data set. This list can be created by using the DSNJU004 (Print
Log Map) utility.

b. If the data set has not been offloaded, copy the data to a new VSAM data
set. If the data set has been offloaded, create a new VSAM data set that is
to be used as an active log data set.

c. Specify DELETE to remove information about the bad data set from the
BSDS.

d. Specify NEWLOG to identify the new data set as the new active log. The
DELETE and NEWLOG operations can be performed by the same job step
(the DELETE statement precedes the NEWLOG statement in the SYSIN
input data set).

3. Delete the bad data set, using VSAM access method services.

Use the Print Log Map utility before and after running the Change Log Inventory
utility to ensure correct execution and to document changes.

When using dual active logs, choose a naming convention that distinguishes
primary and secondary active log data set. The naming convention should also
identify the log data sets within the series of primary or secondary active log data
sets. For example, the default naming convention established at DB2 installation
time is:

| prefix.LOGCOPYn.DSmm

where n=1 for all primary dog data sets and n=2 for all secondary log data sets,
and mm is the data set number within each series.

If a naming convention such as the default convention is used, pairs of data sets
with equal mm values are usually used together. For example,
DSNC120.LOGCOPY1.DS02 and DSNC120.LOGCOPY2.DS02 are used together.

However, after running the Change Log Inventory utility with the DELETE and
NEWLOG statements, the primary and secondary series can become
unsynchronized, even if the NEWLOG data set name you specify is the same as
the old data set name. To avoid this situation, always do maintenance on both data
sets of a pair in the same Change Log Inventory execution:

� Delete both data sets together.
� Define both data sets together with NEWLOG statements.

The data set themselves do not require deletion and redefinition.

424 Utility Guide and Reference

 DSNJU003 (Change Log Inventory)

To ensure consistent results, execute the Change Log Inventory utility on the same
MVS system where the DB2 online subsystem is executing.

If misused, the Change Log Inventory utility can compromise the viability and
integrity of the DB2 subsystem. Only highly-skilled people, such as the DB2 System
Administrator, should use this utility, and then only after careful consideration.

Before initiating a conditional restart or cold restart, you should consider making
backup copies of all DASD volumes containing any DB2 data sets. This will enable
a possible fallback. The backup data sets must be generated when DB2 is not
active.

Altering references to NEWLOG and DELETE data sets
The NEWLOG and DELETE statements add and delete references to data sets in
the BSDS. The log data sets are not changed in any way. If DELETE and
NEWLOG are used for a reference in the BSDS to an active log data set, the
referenced log data set itself does not require alteration.

Specifying the NEWCAT statement
NEWCAT defines the high-level qualifier used for:

� Catalog table spaces and index spaces
� Directory table spaces and index spaces

At startup, the DB2 system checks that the name recorded with NEWCAT in the
BSDS is the high-level qualifier of the DB2 system table spaces that are defined in
the load module for subsystem parameters.

NEWCAT is normally used only at installation time. See “Renaming DB2 system
data sets” on page 426 for an additional function of NEWCAT.

When you change the high-level qualifier using the NEWCAT statement, you might
specify:

//S2 EXEC PGM=DSNJU%%3

//SYSUT1 DD DSN=DSNC12%.BSDS%1,DISP=OLD

//SYSUT2 DD DSN=DSNC12%.BSDS%2,DISP=OLD

//SYSPRINT DD SYSOUT=�

 NEWCAT VSAMCAT=DBP1

After running the Change Log Inventory utility with the NEWCAT statement, output
similar to the output in Figure 25 is generated.

 NEWCAT VSAMCAT=DBP1

SNJ21%I OLD VASAM CATALOG NAME=DSNC12% NAME=DBP1

DSNJ225I NEWCAT OPERATION COMPLETED SUCCESSFULLY

DSNJ2%%I DSNJU%%3 CHANGE LOG INVENTORY UTILITY

PROCESSING COMPLETED SUCCESSFULLY

Figure 25. Output produced when changing high-level qualifier

 Chapter 3-3. DSNJU003 (Change Log Inventory) 425

 DSNJU003 (Change Log Inventory)

Renaming DB2 system data sets
Occasionally, you may want to rename the DB2 system table spaces. In that case
you should perform the following steps:

1. Stop DB2 in a consistent state.

2. Create a full system backup so you can recover from operational errors.

3. Execute the Change Log Inventory utility with NEWCAT.

4. Rename the BSDS and all DB2 directory and catalog table spaces and index
spaces with IDCAMS.

5. Reassemble DSNZPARM to redefine the high-level qualifier for the system
table spaces.

6. Update the BSDS name in the DB2 startup procedure.

 7. Start DB2.

8. Drop and recreate the work file database.

9. Optionally use the ALTER command for table spaces in DSNDB04 and user
databases.

Renaming DB2 active log data sets
When you rename system data sets, you may also want to rename the log data
sets. In that case:

1. Stop DB2 in a consistent state.

2. Create a full system backup so you can recover from operational errors.

3. Delete the reusable active log data sets with IDCAMS, but keep the current
active log.

4. Define a new set of active log data sets with IDCAMS.

5. Execute the Change Log Inventory utility to remove names of deleted active log
data sets and to define the new active log data set names in the BSDS.

6. Start and use DB2 normally.

When the current active log is archived and becomes reusable, it can be deleted.

Renaming DB2 archive log data sets
You do not need to rename archive log data sets, because:

� Old archive logs are replaced as a part of the normal maintenance cycle.

� The RECOVER utility works with archive logs containing different high-level
qualifiers.

To modify the high-level qualifier for archive log data sets, you need to reassemble
DSNZPARM.

426 Utility Guide and Reference

 DSNJU003 (Change Log Inventory)

Sample control statements
Example 1: Adding a new archive log data set

NEWLOG DSNAME=DSNREPAL.A%%%1187,COPY1VOL=DSNV%4,UNIT=SYSDA,

STARTRBA=3A19%%%%,ENDRBA=3A1F%%%%,CATALOG=NO

Example 2: Deleting a data set

DELETE DSNAME=DSNREPAL.A%%%1187,COPY1VOL=DSNV%4

Example 3: Creating a new conditional restart record. The following statement
creates a new conditional restart control record, specifying no backward-log
recovery and log truncation (a new relative byte address for the end of the log).

CRESTART CREATE,BACKOUT=NO,ENDRBA=%%%%%%%1%%%%

Example 4: Adding a communication record to the BSDS

DDF LOCATION=USIBMSTODB22,LUNAME=STL#M%8,PASSWORD=$STL@29%

 Chapter 3-3. DSNJU003 (Change Log Inventory) 427

 DSNJU003 (Change Log Inventory)

428 Utility Guide and Reference

 DSNJU004 (Print Log Map)

Chapter 3-4. DSNJU004 (Print Log Map)

The Print Log Map (DSNJU004) utility lists the following information:

� Log data set name, log RBA association, and log LRSN for both copy1 and
copy2 of all active and archive log data sets

� Active log data sets that are available for new log data
� Status of all conditional restart control records in the bootstrap data set
� Contents of the queue of checkpoint records in the bootstrap data set
� The communication record of the BSDS, if one exists
� Contents of the quiesce history record
� System and utility timestamps
� Contents of the checkpoint queue

In a data sharing environment, the DSNJU004 utility can list information from any or
all BSDSs of a data sharing group.

Additional information regarding the DSNJU004 utility appears in Section 4 (Volume
1) of DB2 Administration Guide.

Syntax and options of the control statement
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

Using the SYSIN data set allows you to list information from any or all BSDSs of a
data sharing group.

DSNJU004 (print log map) syntax diagram

��─ ──┬ ┬───────────────────────────────── ───��
 │ │┌ ┐─�───────────────────
 └ ┘──MEMBER ──┼ ┼─DDNAME──────────────
 │ │┌ ┐─,───────────
 └ ┘──(───

�
 ┴─member-name─)

 Option descriptions
The following keywords can be used in an optional control statement on the SYSIN
data set:

MEMBER
This option specifies which member's BSDS information to print.

* Prints the information from the BSDS of each member in
the data sharing group.

DDNAME Prints information from only those BSDSs pointed to by the
MxxBSDS DD statements.

 Copyright IBM Corp. 1983, 1999 429

 DSNJU004 (Print Log Map)

(member-name)
Prints information for only the group members named.

Before running DSNJU004
This section contains information you need to be aware of prior to running
DSNJU004.

 Environment
The DSNJU004 program runs as a batch job.

This utility can be executed both when DB2 is running and when it is not running.
However, to ensure consistent results from the utility job, the utility and the DB2
online subsystem must both be executing under the control of the same MVS
system.

 Authorization required
The user ID of the DSNJU004 job must have requisite RACF authorization.

 Control statement
See “DSNJU004 (print log map) syntax diagram” on page 429 for DSNJU004
syntax and option descriptions. See “Sample control statement” on page 431 for an
example of a control statement.

Required and optional data sets
DSNJU004 recognizes DD statements with the following ddnames:

JOBCAT
STEPCAT Specifies the catalog in which the bootstrap data set (BSDS) is

cataloged. This statement is optional. Typically, the high-level
qualifier of the BSDS name points to the integrated catalog facility
catalog that contains an entry for the BSDS.

SYSUT1 Specifies and allocates the bootstrap data set. This statement is
required. It allocates the BSDS. If the BSDS must be shared with a
concurrently executing DB2 online subsystem, use DISP=SHR on
the DD statement.

SYSPRINT Specifies a data set or print spool class for print output. This
statement is required. The logical record length (LRECL) is 125.

SYSIN (optional)
Contains the control statement. If you do not specify the SYSIN DD
statement, BSDS information is printed only from the BSDS data
set identified by the SYSUT1 DD statement.

GROUP Names a single BSDS. DB2 can use this BSDS to find the names
of all BSDSs in the group. Be sure the BSDS name you specify is
not the BSDS of a member that has been quiesced since before
new members joined the group. This statement is required if the
control statement specifies either of these options:

430 Utility Guide and Reference

 DSNJU004 (Print Log Map)

MEMBER *

MEMBER(member-name))

MnnBSDS Names the BSDS data set of a group member whose information is
to be listed. You must specify one such DD statement for each
member. The statements are required if the control statement
specifies MEMBER DDNAME. nn represents a two-digit number.
You must use consecutive two-digit numbers from 01 to the total
number of members required. If a break occurs in the sequence of
numbers, any number after the break is ignored.

Running the DSNJU004 utility
Use the following EXEC statement to execute this utility:

// EXEC PGM=DSNJU%%4

 Recommendations
� For dual BSDSs, execute the Print Log Map utility twice, once for each BSDS,

to compare their contents.

� To ensure consistent results for this utility, execute the utility job on the same
MVS system where the DB2 online subsystem is executing.

� Execute the Print Log Map utility regularly, possibly daily, to keep a record of
recovery log data set usage.

� Use the Print Log Map utility to document changes made by the Change Log
Inventory utility.

Sample control statement
The following statement prints information from the BSDS of each member in the
data sharing group:

//PLM EXEC PGM=DSNJU%%4

//SYSUT1 DD DSN=DBD1.BSDS%1,DISP=SHR

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 MEMBER �

DSNJU004 (Print Log Map) output
Figure 26 on page 435 shows an example of the Print Log Map utility output, with
the following information:

� The data set name (DSN) of the BSDS.

� The system date and time (SYSTEM TIMESTAMP), which is set at the time the
subsystem stops.

� The date and time the BSDS was last changed by the Change Log Inventory
utility (listed as the UTILITY TIMESTAMP).

� The integrated catalog facility catalog name associated with the BSDS.

 Chapter 3-4. DSNJU004 (Print Log Map) 431

 DSNJU004 (Print Log Map)

� The highest RBA written. The value is updated each time the log buffers are
physically written to DASD.

� The highest RBA offloaded.

� Log RBA ranges (STARTRBA and ENDRBA) and data set information for
active and archive log data sets. The last active log data set shown is the
current active log.

� Information about each active log data set. This information includes the
starting and ending RBAs within the data set, the date and time the data set
was created, and the data set's name (DSN), and status.

� Information about each archive log data set. This information includes the
starting and ending RBAs within the data set, the date and time the data set
was created, and the data set's name (DSN), unit and volume of storage, and
status.

� Conditional restart control records. For a description of these records and the
format of this part of the output from the Print Log Map utility, see “Reading
conditional restart control records” on page 437.

� The contents of the checkpoint description queue. For a description of this
output, see Figure 27 on page 437.

� The distributed data facility (DDF) communication record. This record contains
the DB2-defined location name, the VTAM-defined LUNAME. DB2 uses this
information to establish the distributed database environment.

Timestamps in the BSDS
The output of the Print Log Map utility reveals that many timestamps are recorded
in the BSDS. Those timestamps record the date and time of various system events.

Timestamps in the output column LTIME are in local time. All other timestamps are
in Greenwich Mean Time (GMT).

Figure 26 on page 435 shows an example of the Print Log Map utility output. The
following timestamps are included in the header section of the report:

System timestamp Reflects the date and time the BSDS was last updated. The
BSDS can be updated by several events:

 � DB2 startup.

� During log write activities, whenever the write threshold is
reached.

Depending on the number of output buffers you have
specified and the system activity rate, the BSDS can be
updated several times a second, or might not be updated
for several seconds, minutes, or even hours.

� When, due to an error, DB2 drops into single-BSDS
mode from its normal dual BSDS mode. This can occur
when a request to GET, INSERT, POINT to, UPDATE, or
DELETE a BSDS record is unsuccessful. When this error
occurs, DB2 updates the timestamp in the remaining
BSDS to purposely force a timestamp mismatch with the
disabled BSDS.

432 Utility Guide and Reference

 DSNJU004 (Print Log Map)

Utility timestamp The date and time the contents of the BSDS were altered by
the Change Log Inventory utility (DSNJU003).

The following timestamps are included in the active and archive log data sets
portion of the report:

Active log date The date the active log data set was originally allocated on
the DB2 subsystem.

Active log time The time the active log data set was originally allocated on
the DB2 subsystem.

Archive log date The date of creation (not allocation) of the archive log data
set.

Archive log time The time of creation (not allocation) of the archive log data
set.

The following timestamps are included in the conditional restart control record
portion of the report shown in Figure 28 on page 437:

Conditional restart control record
The current time and date. This data is reported as
information only and is not kept in the BSDS.

CRCR created The time and date of creation of the CRCR via the
CRESTART option in the Change Log Inventory utility.

Begin restart The time and date the conditional restart was attempted.

End restart The time and date the conditional restart ended.

STARTRBA (timestamp)
The time the control interval was written.

ENDRBA (timestamp)
The time the last control interval was written.

Time of checkpoint The time and date associated with the checkpoint record that
was used during the conditional restart process.

The following timestamps are included in the checkpoint queue and the DDF
communication record sections of the report shown in Figure 27 on page 437:

Checkpoint queue The current time and date. This data is reported as
information only and is not kept in the BSDS.

Time of checkpoint The time and date the checkpoint was taken.

DDF communication record (heading)
The current time and date. This data is reported as
information only, and is not kept in the BSDS.

Active log data set status
The BSDS records the status of an active log data set as one of the status values
listed in Table 77 on page 434. For an example of how the status appears in Print
Log Map utility output, see Figure 26 on page 435.

 Chapter 3-4. DSNJU004 (Print Log Map) 433

 DSNJU004 (Print Log Map)

Table 77. Statuses of active log data sets

Status Meaning

NEW The data set has been defined but never used by DB2, or the log was truncated at a point
prior to the data set. In either case, the data set starting and ending RBA values are reset to
zero.

REUSABLE Either the data set is new and has no records, or the data set has been offloaded. In the
Print Log Map output, the start RBA value for the last REUSABLE data set is equal to the
start RBA value of the last archive log data set.

NOT REUSABLE The data set contains records that have not been offloaded.

STOPPED The offload processor encountered an error while reading a record, and that record could
| not be obtained from the other copy of the active log. Alternatively, an error occurred while
| truncating the data set following a write I/O error. See Section 4 (Volume 1) of DB2

Administration Guide.

TRUNCATED One of these conditions exists:

� An I/O error occurred, and DB2 has stopped writing to this data set. The active log data
set is offloaded, beginning with the starting RBA and continuing up to the last valid
record segment in the truncated active log data set. (The RBA of the last valid record
segment is less than the ending RBA of the active log data set.) Logging is switched to
the next available active log data set and continues uninterrupted.

� The log was truncated by a conditional restart at a point within the data set RBA range.

� The DB2 ARCHIVE LOG command was issued while this data set was the current
active log data set.

434 Utility Guide and Reference

 DSNJU004 (Print Log Map)

��

� �

� LOG MAP OF THE BSDS DATA SET BELONGING TO MEMBER 'V61A ' OF GROUP 'DSNCAT '. �

� �

��

RELEASE LEVEL OF BSDS - ACTIVE=2.3 AND ABOVE ARCHIVE=2.3 AND ABOVE DDNAME=SYSUT1

LOG MAP OF BSDS DATA SET COPY 1, DSN=DSNC61%.BSDS%1

LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.

DATA SHARING MODE IS ON

 SYSTEM TIMESTAMP - DATE=1995.23% LTIME=15:%1:%2.7%

 UTILITY TIMESTAMP - DATE=1995.23% LTIME= 9:4%:37.%2

VSAM CATALOG NAME=DSNC61%

HIGHEST RBA WRITTEN %%%%%2%648F8 1995.23% 22:%%:13.%

HIGHEST RBA OFFLOADED %%%%%%%%%%%%

RBA WHEN CONVERTED TO V4 %%%%%1DD9AE8

MAX RBA FOR TORBA %%%%%1DD9AE8

MIN RBA FOR TORBA %%%%%%%%%%%%

STCK TO LRSN DELTA %%%%%%%%%%%%

THIS BSDS HAS MEMBER RECORDS FOR THE FOLLOWING MEMBERS:

HOST MEMBER NAME: V61A

 MEMBER ID: 1

 GROUP NAME: DSNCAT

BSDS COPY 1 DATA SET NAME: DSNC61%.BSDS%1

BSDS COPY 2 DATA SET NAME: DSNC61%.BSDS%2

 MEMBER NAME: V61B

 MEMBER ID: 2

 GROUP NAME: DSNCAT

BSDS COPY 1 DATA SET NAME: DSNC61%.BSDS%1

BSDS COPY 2 DATA SET NAME: DSNC61%.BSDS%2

ACTIVE LOG COPY 1 DATA SETS

START RBA/LRSN/TIME END RBA/LRSN/TIME DATE LTIME DATA SET INFORMATION

-------------------- -------------------- -------- ----- --------------------

%%%%%189C%%% %%%%%1C1FFFF 1995.168 16:3% DSN=DSNC61%.LOGCOPY1.DS%2

 A974FB6CC2FD A974FBBFD37C PASSWORD=(NULL) STATUS=REUSABLE

1995.171 %9:26:32.1 1995.171 %9:27:59.2

%%%%%1C2%%%% %%%%%1DD9FFF 1995.168 16:3% DSN=DSNC61%.LOGCOPY1.DS%3

 A974FBC%D182 A994BA682B38 PASSWORD=(NULL) STATUS=TRUNCATED, REUSABLE

1995.171 %9:28:%%.2 1995.196 15:26:%2.2

%%%%%1DDA%%% %%%%%215DFFF 1995.168 16:3% DSN=DSNC61%.LOGCOPY1.DS%1

 A994BA682B39 PASSWORD=(NULL) STATUS=REUSABLE

1995.196 15:26:%2.2

ARCHIVE LOG COPY 1 DATA SETS

NO ARCHIVE DATA SETS DEFINED FOR THIS COPY

ACTIVE LOG COPY 2 DATA SETS

START RBA/LRSN/TIME END RBA/LRSN/TIME DATE LTIME DATA SET INFORMATION

-------------------- -------------------- -------- ----- --------------------

%%%%%189C%%% %%%%%1C1FFFF 1995.168 16:3% DSN=DSNC61%.LOGCOPY2.DS%2

 A974FB6CC2FD A974FBBFD37C STATUS=REUSABLE

1995.171 %9:26:32.1 1995.171 %9:27:59.2

%%%%%1C2%%%% %%%%%1DD9FFF 1995.168 16:3% DSN=DSNC61%.LOGCOPY2.DS%3

 A974FBC%D182 A994BA682B38 STATUS=TRUNCATED, REUSABLE

1995.171 %9:28:%%.2 1995.196 15:26:%2.2

%%%%%1DDA%%% %%%%%215DFFF 1995.168 16:3% DSN=DSNC61%.LOGCOPY2.DS%1

 A994BA682B39 STATUS=REUSABLE

1995.196 15:26:%2.2

ARCHIVE LOG COPY 2 DATA SETS

NO ARCHIVE DATA SETS DEFINED FOR THIS COPY

DSNJ4%1I DSNRJPCR RESTART CONTROL RECORD NOT FOUND

Figure 26 (Part 1 of 2). Sample print log map utility output

 Chapter 3-4. DSNJU004 (Print Log Map) 435

 DSNJU004 (Print Log Map)

 CHECKPOINT QUEUE

22:%2:23 AUGUST 18, 1995

TIME OF CHECKPOINT 22:%1:41 AUGUST 18, 1995

BEGIN CHECKPOINT RBA %%%%%2%65%9%

END CHECKPOINT RBA %%%%%2%66C9A

TIME OF CHECKPOINT 22:%%:1% AUGUST 18, 1995

BEGIN CHECKPOINT RBA %%%%%2%62D%8

END CHECKPOINT RBA %%%%%2%648F8

 SHUTDOWN CHECKPOINT

TIME OF CHECKPOINT 21:5%:48 AUGUST 18, 1995

BEGIN CHECKPOINT RBA %%%%%2%61%9%

END CHECKPOINT RBA %%%%%2%62C9A

TIME OF CHECKPOINT 21:19:46 AUGUST 18, 1995

BEGIN CHECKPOINT RBA %%%%%2%5ED%8

END CHECKPOINT RBA %%%%%2%6%8F8

 SHUTDOWN CHECKPOINT

...

TIME OF CHECKPOINT 23:41:41 JUNE 17, 1995

BEGIN CHECKPOINT RBA %%%%%%%74F3%

END CHECKPOINT RBA %%%%%%%79A42

TIME OF CHECKPOINT 23:41:15 JUNE 17, 1995

BEGIN CHECKPOINT RBA %%%%%%%35%%%

END CHECKPOINT RBA %%%%%%%39EBC

TIME OF CHECKPOINT 23:34:35 JUNE 17, 1995

BEGIN CHECKPOINT RBA %%%%%%%%%%BA

END CHECKPOINT RBA %%%%%%%%1C1E

DSNJ4%1I DSNJU1%4 ARCHIVE LOG COMMAND HISTORY RECORD NOT FOUND

���� DISTRIBUTED DATA FACILITY ����

 COMMUNICATION RECORD

22:%2:23 AUGUST 18, 1995

LOCATION=SANTA_TERESA_LAB LUNAME=LUND% PASSWORD=(D%2DN)

DSNJ2%%I DSNJU%%4 PRINT LOG UTILITY PROCESSING COMPLETED SUCCESSFULLY

Figure 26 (Part 2 of 2). Sample print log map utility output

The ARCHIVE LOG COMMAND HISTORY in the output above was created as
follows:

� The first entry in the history was created by issuing the ARCHIVE LOG
command:

-ARCHIVE LOG MODE(QUIESCE) WAIT(YES) TIME(999)

� The next entry was created by issuing the ARCHIVE LOG command without a
time parameter. The D after the time signifies that the default DSNZPARM
TIME value (3 seconds) was used.

-ARCHIVE LOG MODE(QUIESCE)

� The last two entries in the history were created by issuing the ARCHIVE LOG
command as follows:

-ARCHIVE LOG

� The values in the TIME column of the ARCHIVE LOG COMMAND HISTORY
section of the report represent the time the ARCHIVE LOG command was
issued. This time value is saved in the BSDS and is converted to printable
format at the time the Print Log Map utility is run. Therefore this value, when
printed, can differ from other time values that were recorded concurrently.
Some time values are converted to printable format when they are recorded,
and then they are saved in the BSDS. These printed values remain the same
when the printed report is run.

436 Utility Guide and Reference

 DSNJU004 (Print Log Map)

Reading conditional restart control records
In addition to listing information about log records, the Print Log Map utility lists
information about each conditional restart control record and each checkpoint
description. A sample description of a checkpoint record in the queue is shown in
Figure 27.

 CHECKPOINT QUEUE

13:%2:5% MAY 14, 1999

TIME OF CHECKPOINT 13:35:2% MAY 14, 1999

BEGIN CHECKPOINT RBA %%%%%%%47C1%

END CHECKPOINT RBA %%%%%%%4851%

TIME OF CHECKPOINT 13:21:49 MAY 14, 1999

BEGIN CHECKPOINT RBA %%%%%%%35%1%

END CHECKPOINT RBA %%%%%%%3578%

TIME OF CHECKPOINT 13:%1:26 MAY 14, 1999

BEGIN CHECKPOINT RBA %%%%%%%29%%%

END CHECKPOINT RBA %%%%%%%297A%

Figure 27. Sample print log map description of checkpoints

A sample description of a conditional restart control record is shown in Figure 28.

CRCR IDENTIFIER %%%1

 USE COUNT 1

 RECORD STATUS

CRCR NOT ACTIVE

 SUCCESSFUL RESTART

 PROCESSING STATUS

FORWARD = YES

BACKOUT = NO

 STARTRBA %%%%%%%28894

 ENDRBA %%%%%%%58%%%

EARLIEST REQUESTED RBA %%%%%%%27B%%

FIRST LOG RECORD RBA %%%%%%%288B%

ORIGINAL CHECKPOINT RBA %%%%%%%5A39%

NEW CHECKPOINT RBA (CHKPTRBA) %%%%%%%47C1%

END CHECKPOINT RBA %%%%%%%4851%

CRCR CREATED 11:21:%8 MAY 14, 1999

BEGIN RESTART 11:26:26 MAY 14, 1999

END RESTART 11:31:38 MAY 14, 1999

TIME OF CHECKPOINT 1%:34:31 MAY 14, 1999

 RESTART PROGRESS STARTED ENDED

 ======= =====

CURRENT STATUS REBUILD YES YES

FORWARD RECOVERY PHASE YES YES

BACKOUT RECOVERY PHASE YES YES

Figure 28. Sample print log map description of a CRCR

 Chapter 3-4. DSNJU004 (Print Log Map) 437

 DSNJU004 (Print Log Map)

438 Utility Guide and Reference

 DSN1CHKR

Chapter 3-5. DSN1CHKR

The DSN1CHKR utility verifies the integrity of DB2 directory and catalog table
spaces. DSN1CHKR scans the specified table space for broken links, broken hash
chains, and records that are not part of any link or chain.

Use DSN1CHKR on a regular basis to promptly detect any damage to the catalog
and directory.

Syntax and options of the control statement
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

DSN1CHKR syntax diagram

��─ ──┬ ┬─── ─────────────────────────────────��
└ ┘──PARM= ──┬ ┬──

 ├ ┤─DUMP───
 ├ ┤─FORMAT───
 │ │┌ ┐─,────────────────────

├ ┤──HASH(───
�

┴─hexadecimal-constant─) ────────────────
 │ │┌ ┐─,────────

└ ┘──MAP= ──┬ ┬──ANCHOR(───
�

┴id,integer) ────────────────
 │ │┌ ┐─,──────────────────────────

├ ┤──RID(───
�

┴integer,hexadecimal-constant) ─
 │ │┌ ┐─,──────────────────────────

├ ┤──HASH(───
�

┴hexadecimal-constant,integer)
 │ │┌ ┐─,──────────────────────────

└ ┘──PAGE(───
�

┴integer,hexadecimal-constant)

 Option descriptions
The following parameters are optional. Parameters should be specified on the
EXEC card and can be specified in any order. If you specify more than one
parameter, separate them with commas but no blanks. If you do not specify any
parameters, DSN1CHKR scans all table space pages for broken links and for
records that are not part of any link or chain, and prints the appropriate diagnostic
messages.

DUMP Specifies that printed table space pages, if any, are in dump
format. If you specify DUMP, you cannot specify the FORMAT
parameter.

FORMAT Specifies that printed table space pages, if any, are formatted on
output. If you specify FORMAT, you cannot specify the DUMP
parameter.

HASH(hexadecimal-constant, ...)
Specifies a hash value for a hexadecimal database identifier (DBID)
in table space DBD01. DSN1CHKR returns hash values for each
DBID in page and anchor point offset form.

 Copyright IBM Corp. 1983, 1999 439

 DSN1CHKR

hexadecimal-constant is the hash value for a DBID. The maximum
number of DBIDs is 10.

MAP= Identifies a record whose pointer is followed. DSN1CHKR prints
each record as it follows the pointer. Use this parameter only after
you have determined which chain is broken. You can determine if it
is broken by running DSN1CHKR without any parameters, or with
FORMAT or DUMP only.

The options for this parameter help DSN1CHKR locate the record
whose pointer it follows. Each option must point to the beginning of
the 6-byte prefix area of a valid record or to the beginning of the
hash anchor. If the value you specify does not point to one of
these, DSN1CHKR issues an error message and continues with the
next pair of values.

ANCHOR(id,integer)
Specifies the anchor point that DSN1CHKR maps.

id identifies the starting page and anchor point in the form
ppppppaa, where pppppp is the page number and aa is the
anchor point number.

integer determines which pointer to follow while mapping. 0
specifies the forward pointer; 4 specifies the backward pointer.

The maximum number of pairs is five.

RID(integer, hexadecimal-constant, ...)
Identifies the record or hash anchor from which DSN1CHKR
starts mapping.

integer is the page and record, in the form pppppprr, where
pppppp is the page number and rr is the record number.

hexadecimal-constant specifies the hexadecimal displacement
from the beginning of the record to the pointer in the record
from which mapping starts.

The maximum number of pairs is five.

HASH(hexadecimal-constant, integer, ...)
Specifies the value that DSN1CHKR hashes and maps for table
space DBD01.

hexadecimal constant is the database identifier in table space
DBD01.

integer determines which pointer to follow while mapping. 0
specifies the forward pointer; 4 specifies the backward pointer.

The maximum number of pairs is five.

PAGE(integer, hexadecimal-constant, ...)
integer specifies the page number on which the record or hash
anchor is located.

hexadecimal-constant specifies the offset to the pointer from
the beginning of the page.

440 Utility Guide and Reference

 DSN1CHKR

When you use the PAGE option, DSN1CHKR follows the
forward pointer while mapping. If a forward pointer does not
exist, DSN1CHKR stops mapping after the first record.

The maximum number of pairs is five.

Before running DSN1CHKR
This section contains information you need to know before you run DSN1CHKR.

DSN1CHKR is a diagnosis tool; it executes outside the control of DB2. Detailed
knowledge of DB2 data structures is required to make proper use of this service
aid.

 Environment
Run the DSN1CHKR program as an MVS job.

You must not run DSN1CHKR on a table space while it is active under DB2.
Ensure that no database operations are performed while DSN1CHKR runs by
issuing the STOP DATABASE command for the database and table space you
want to check.

 Authorization required
None is required. However, if any of the data sets is RACF protected, the
authorization ID of the job must have the necessary RACF authority.

 Control statement
See “Syntax and options of the control statement” on page 439 for DSN1CHKR
syntax and option descriptions.

Required data sets: DSN1CHKR uses two DD cards. Specify the data set for the
utility's output with the DD card SYSPRINT. Specify the first data set piece of the
table space that is to be checked with the DD card SYSUT1.

SYSPRINT Defines the data set that contains output messages from the
DSN1CHKR program and all hexadecimal dump output.

SYSUT1 Defines the input data set. This data set can be a DB2 data set or a
copy of the DB2 data set created by the DSN1COPY utility. Disposition
for this data set must be specified as DISP=OLD to ensure that it is not
in use by DB2. Disposition for this data set must be specified as
DISP=SHR only when the table space you want to check has been
stopped by the STOP DATABASE command.

 Restrictions
This section contains restrictions to be aware of before running DSN1COMP.

 Chapter 3-5. DSN1CHKR 441

 DSN1CHKR

Running DSN1COPY before DSN1CHKR
DSN1CHKR requires a VSAM data set as input; it cannot check a physical
sequential data set.

Full image copies created with the COPY utility cannot be used directly as input to
DSN1CHKR. If the image copy is created with SHRLEVEL REFERENCE and is a
full image copy, you can copy it into a VSAM data set with DSN1COPY and check
it with DSN1CHKR.

Full image copies created with DFSMS concurrent copy cannot be used by
DSN1CHKR. The file format is incompatible with DSN1COPY, so the DFSMS
Concurrent Copy IC data set cannot be copied to a VSAM data set.

Recommendation: First copy the stopped table space to a temporary data set
using DSN1COPY. Use the DB2 naming convention for the copied data set. Run
DSN1CHKR on the copy, which frees the actual table space for restart to DB2.

When you run DSN1COPY, use the CHECK option to examine the table space for
page integrity errors. Although DSN1CHKR does check for these errors, running
DSN1COPY with CHECK prevents an unnecessary invocation of DSN1CHKR.

Running DSN1CHKR on a valid table space
Run DSN1CHKR only on a valid table space.

Do not run DSN1CHKR on the following table spaces:

 � DSNDB06.SYSCOPY
 � DSNDB06.SYSDDF
 � DSNDB06.SYSGPAUT
 � DSNDB06.SYSPKAGE
 � DSNDB06.SYSSTATS
 � DSNDB06.SYSSTR
 � DSNDB06.SYSUSER
 � DSNDB01.SCT02
 � DSNDB01.SPT01
 � DSNDB01.SYSLGRNX
 � DSNDB01.SYSUTILX

Sample control statements
Example 1: Running DSN1CHKR on a temporary data set. STEP1 allocates a
temporary data set. STEP2 stops database DSNDB06 with the STOP DATABASE
command. STEP3 copies the target table space into the temporary data set with
DSN1COPY. The CHECK option is used to check the table space for page integrity
errors. After DSN1COPY with the check option has ensured that no errors exist,
STEP4 restarts the table space for access to DB2 again. STEP5 runs DSN1CHKR
on the temporary data set.

DSN1CHKR prints the chains beginning at the pointers specified on the RID option
of the MAP parameter. In this example, the first pointer is located on page 2, at an
offset of 6 bytes from record 1, and the second pointer is located on page B, at an
offset of 6 bytes from record 1.

442 Utility Guide and Reference

 DSN1CHKR

The RIDs in STEP5 of the example are for example purposes only. Using them
results in a error message. Change them to the actual RIDs to be checked.

//YOUR JOBCARD

//�

//JOBCAT DD DSNAME=DSNCAT1.USER.CATALOG,DISP=SHR

//STEP1 EXEC PGM=IDCAMS

//��

//� ALLOCATE A TEMPORARY DATA SET FOR SYSDBASE �

//��

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSIN DD �

 DELETE -

 (TESTCAT.DSNDBC.TEMPDB.TMPDBASE.I%%%1.A%%1) -

 CATALOG(DSNCAT)

 DEFINE CLUSTER -

 (NAME(TESTCAT.DSNDBC.TEMPDB.TMPDBASE.I%%%1.A%%1) -

 NONINDEXED -

 REUSE -

 CONTROLINTERVALSIZE(4%96) -

 VOLUMES(XTRA%2) -

 RECORDS(783 783) -

 RECORDSIZE(4%89 4%89) -

SHAREOPTIONS(3 3)) -

 DATA -

 (NAME(TESTCAT.DSNDBD.TEMPDB.TMPDBASE.I%%%1.A%%1)) -

 CATALOG(DSNCAT)

/�

//STEP2 EXEC PGM=IKJEFT%1,DYNAMNBR=2%

//��

//� STOP DSNDB%6.SYSDBASE �

//��

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTSIN DD �

 DSN SYSTEM(V61A)

-STOP DB(DSNDB%6) SPACENAM(SYSDBASE)

 END

/�

//STEP3 EXEC PGM=DSN1COPY,PARM=(CHECK)

//��

//� CHECK SYSDBASE AND RUN DSN1COPY �

//��

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB%6.SYSDBASE.I%%%1.A%%1,DISP=SHR

//SYSUT2 DD DSN=TESTCAT.DSNDBC.TEMPDB.TMPDBASE.I%%%1.A%%1,DISP=SHR

/�

Figure 29 (Part 1 of 2). Sample JCL for running DSN1CHKR on a temporary data set

 Chapter 3-5. DSN1CHKR 443

 DSN1CHKR

//STEP4 EXEC PGM=IKJEFT%1,DYNAMNBR=2%

//��

//� START DSNDB%6.SYSDBASE �

//��

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTSIN DD �

 DSN SYSTEM(V61A)

-START DB(DSNDB%6) SPACENAM(SYSDBASE)

 END

/�//STEP5 EXEC PGM=DSN1CHKR,PARM='MAP=RID(%%%%%2%1,%6,%%%%%B%1,%6)',

// COND=(4,LT)

//��

//� CHECK LINKS OF SYSDBASE �

//��

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=TESTCAT.DSNDBC.TEMPDB.TMPDBASE.I%%%1.A%%1,DISP=SHR

/�

Figure 29 (Part 2 of 2). Sample JCL for running DSN1CHKR on a temporary data set

Example 2: Running DSN1CHKR on an actual table space. STEP1 stops
database DSNDB06 with the STOP DATABASE command. STEP2 runs
DSN1CHKR on the target table space; its output is identical to the output in
Example 1. STEP3 restarts the database with the START DATABASE command.

//YOUR JOBCARD

//�

//STEP1 EXEC PGM=IKJEFT%1,DYNAMNBR=2%

//��

//� EXAMPLE 2 �

//� �

//� STOP DSNDB%6.SYSDBASE �

//��

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTSIN DD �

 DSN SYSTEM(V61A)

-STOP DB(DSNDB%6) SPACENAM(SYSDBASE)

 END

/�

Figure 30 (Part 1 of 2). Sample JCL for running DSN1CHKR on a stopped table space.

444 Utility Guide and Reference

 DSN1CHKR

//STEP2 EXEC PGM=DSN1CHKR,PARM='MAP=RID(%%%%%2%1,%6,%%%%%B%1,%6)',

// COND=(4,LT)

//��

//� CHECK LINKS OF SYSDBASE �

//��

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBD.DSNDB%6.SYSDBASE.I%%%1.A%%1,DISP=SHR

/�

//STEP3 EXEC PGM=IKJEFT%1,DYNAMNBR=2%

//��

//� RESTART DSNDB%6.SYSDBASE �

//��

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTSIN DD �

 DSN SYSTEM(V61A)

-START DB(DSNDB%6) SPACENAM(SYSDBASE)

 END

/�

Figure 30 (Part 2 of 2). Sample JCL for running DSN1CHKR on a stopped table space.

 DSN1CHKR output
 Interpreting output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2, you might need to refer to licensed
documentation to interpret output from this utility.

 Chapter 3-5. DSN1CHKR 445

 DSN1CHKR

446 Utility Guide and Reference

 DSN1COMP

Chapter 3-6. DSN1COMP

DSN1COMP estimates space savings to be achieved by DB2 data compression in
table spaces. For more information regarding ESA data compression, see Section 2
(Volume 1) of DB2 Administration Guide.

This utility can be run on the following types of data sets containing uncompressed
data:

� DB2 full image copy data sets
� VSAM data sets that contain DB2 table spaces
� Sequential data sets that contain DB2 table spaces (for example, DSN1COPY

output)

| DSN1COMP does not estimate savings for data sets that contain LOB table spaces
or index spaces.

Syntax and options of the control statement
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

DSN1COMP syntax diagram

��─ ─DSN1COMP─ ──┬ ┬───────────────────────── ──┬ ┬────────────────────── ──┬ ┬─────────────────── ───────────�
| ├ ┤─32K───(1) ────────────────── ├ ┤| ─DSSIZE─| ──(integer ──G) └ ┘──NUMPARTS(integer)
| └ ┘| ─PAGESIZE──(─ ──┬ ┬─4K── ─)─ └ ┘─LARGE───(2) ─────────────
| ├ ┤─8K──
| ├ ┤─16K─
| └ ┘─32K─

�─ ──┬ ┬─────────────────── ──┬ ┬────────────────── ──┬ ┬──────────────── ──┬ ┬─────── ────────────────────────�
└ ┘──FREEPAGE(integer) └ ┘──PCTFREE(integer) └ ┘── ─── ──FULLCOPY─ └ ┘─REORG─

�─ ──┬ ┬─────────────────── ──┬ ┬────────────────── ──��
└ ┘──ROWLIMIT(integer) └ ┘──MAXROWS(integer)

Notes:
1 The preferred option is PAGESIZE(32K).
2 The preferred method of specifying LARGE is DSSIZE(4G).

Important: If you specify more than one parameter:

� Separate them by commas (no blanks).
� Specify them in any order.

 Option descriptions
Specify one or more of the parameters listed below on the EXEC card to run
DSN1COMP.

32K Specifies that the input data set, SYSUT1, has a 32-KB page size.
If the SYSUT1 data set has a 32-KB page size, and you do not
specify this option, DSN1COMP produces unpredictable results,
because the default page size is 4 KB.

 Copyright IBM Corp. 1983, 1999 447

 DSN1COMP

| The preferred option is PAGESIZE(32K).

| PAGESIZE Specifies the page size of the input data set that is defined by
| SYSUT1. If you specify an incorrect page size, DSN1COMP may
| produce unpredictable results.

| If you omit PAGESIZE, DSN1COMP tries to determine the page
| size from the input data set. DB2 issues an error message if
| DSN1COMP cannot determine the input page size. This might
| happen if the header page is not in the input data set, or the page
| size field in the header page contains an invalid page size.

| DSSIZE(integer G)
| Specifies the data set size, in gigabytes, for the input data set. If
| you omit DSSIZE, DB2 assumes that the input data set size is 2
| GB.

| integer must match the DSSIZE value specified when the table
| space was defined.

| If you omit DSSIZE and the data set is not one of the default sizes,
| the results from DSN1COMP are unpredictable.

| LARGE Specifies that the input data set is table space that was defined
| with the LARGE option. If you specify LARGE, then DB2 assumes
| that the data set has a 4-GB boundary.

| The preferred method of specifying a table space defined with
| LARGE is DSSIZE(4G).

| If you omit the LARGE or DSSIZE(4G) option when it is needed, or
| if you specify LARGE for a table space that was not defined with
| the LARGE option, the results from DSN1COMP are unpredictable.

NUMPARTS(integer)
Specifies the number of partitions associated with the input data
set. Valid specifications range from 1 to 254. If you omit
NUMPARTS or specify it as 0, DSN1COMP assumes that your
input file is not partitioned. If you specify a number greater than 64,

| DSN1COMP assumes that the data set is for a partitioned table
| space that was defined with the LARGE option, even if the LARGE

keyword is not specified.

DSN1COMP cannot always validate the NUMPARTS parameter. If
you specify it incorrectly, DSN1COMP may produce unpredictable
results.

DSN1COMP terminates and issues message DSN1946I when it
encounters an image copy containing multiple partitions; a
compression report is issued for the first partition.

FREEPAGE(integer)
Specifies how often to leave a page of free space when calculating
the percentage of pages saved. You must specify an integer in the
range 0 to 255. If you specify 0, no pages are included as free
space when reporting the percentage of pages saved. Otherwise,
one free page is included after every n pages, where n is the
specified integer.

The default is 0.

448 Utility Guide and Reference

 DSN1COMP

Specify the same value that you specify for the FREEPAGE option
of the SQL statement CREATE TABLESPACE or ALTER
TABLESPACE.

PCTFREE(integer)
Indicates what percentage of each page to leave as free space
when calculating the percentage of pages saved. You must specify
an integer in the range 0 to 99. When calculating the savings,
DSN1COMP allows for at least n percent of free space for each
page, where n is the specified integer.

The default is 5.

Specify the same value that you specify for the PCTFREE option of
the SQL statement CREATE TABLESPACE or ALTER
TABLESPACE.

FULLCOPY Specifies that a DB2 full image copy (not a DFSMS concurrent
copy) of your data is used as input. Omitting this parameter when
the input is a full image copy can cause error messages or
unpredictable results. If this data is partitioned, also specify the
NUMPARTS parameter to identify the number of partitions.

REORG Provides an estimate of compression savings comparable to the
savings that the REORG utility would achieve. If this keyword is not
specified, the results are similar to the compression savings that
the LOAD utility would achieve.

ROWLIMIT(integer)
Specifies the maximum number of rows to evaluate in order to
provide the compression estimate. This option prevents
DSN1COMP from examining every row in the input data set. Valid
specifications range from 1 to 99,000,000.

Use this option to limit the elapsed time and processor time that
DSN1COMP requires. An analysis of the first 5-10 MB of a table
space provides a fairly representative sample of the table space for
estimating compression savings. Therefore, specify a ROWLIMIT
value that restricts DSN1COMP to the first 5-10 MB of the table
space. For example, if the row length of the table space is 200
bytes, specifying ROWLIMIT(50000) causes DSN1COMP to
analyze approximately 10 MB of the table space.

MAXROWS(integer)
Specifies the maximum number of rows that DSN1COMP is to
consider when calculating the percentage of pages saved. You
must specify an integer in the range 1 to 255. The default is 255.

Specify the same value that you specify for the MAXROWS option
of the SQL statement CREATE TABLESPACE or ALTER
TABLESPACE.

 Chapter 3-6. DSN1COMP 449

 DSN1COMP

Before running DSN1COMP
This section contains information to keep in mind before you run DSN1COMP.

 Environment
Run DSN1COMP as an MVS job.

You can run DSN1COMP even when the DB2 subsystem is not operational. If you
choose to use DSN1COMP when the DB2 subsystem is operational, issue the DB2
STOP DATABASE command to be sure that the DB2 data sets that are to be used
are not currently allocated to DB2.

DSN1COMP is not meant to be run on table spaces in DSNDB01, DSNDB06, or
DSNDB07.

 Authorization required
None is required. However, if any of the data sets is RACF-protected, the
authorization ID of the job must have RACF authority.

 Control statement
See “Syntax and options of the control statement” on page 447 for DSN1COMP
syntax and option descriptions.

Required data sets: DSN1COMP uses the DD cards described below:

SYSPRINT Defines the data set that contains output messages from
DSN1COMP and all hexadecimal dump output.

SYSUT1 Defines the input data set, which can be a sequential data set or a
VSAM data set.

Disposition for this data set must be specified as OLD
(DISP=OLD) to ensure that it is not in use by DB2. Disposition for
this data set must be specified as SHR (DISP=SHR) only in
circumstances where the DB2 STOP DATABASE command does
not work.

The requested operation takes place only for the data set
specified. If the input data set belongs to a linear table space or
index space that is larger than 2 gigabytes, or if it is a partitioned
table space or index space, you must ensure that the correct data
set is specified.

 Recommendation
This section contains a recommendation for running DSN1COMP.

| Determining page size and DSSIZE: Before using DSN1COMP, be sure you
| know the page size and data set size (DSSIZE) for the table space. Use the
| following query on the DB2 catalog to get the information you need:

450 Utility Guide and Reference

 DSN1COMP

| SELECT T.CREATOR,

| T.NAME,

| S.PGSIZE,

| CASE S.DSSIZE

| WHEN % THEN

| CASE S.TYPE

| WHEN ' ' THEN 2%97152

| WHEN 'I' THEN 2%97152

| WHEN 'L' THEN 41943%4

| WHEN 'K' THEN 41943%4

| ELSE NULL

| END

| ELSE S.DSSIZE

| END

| FROM SYSIBM.SYSTABLES T,

| SYSIBM.SYSTABLESPACE S

| WHERE T.DBNAME=S.DBNAME

| AND T.TSNAME=S.NAME;

 Using DSN1COMP
This section describes the following tasks associated with running the DSN1COMP
utility:

“Estimating compression savings achieved by REORG”
“Including free space in compression calculations”
“Running DSN1COMP on a table space with identical data” on page 452

Estimating compression savings achieved by REORG
If you run DSN1COMP with the REORG option on small data sets or specify a
small number (n) for the ROWLIMIT keyword, the estimates produced might vary
greatly from the estimates produced without the REORG option (the default
invocation).

Without the REORG option, DSN1COMP uses the first n rows to fill the
compression dictionary. The remaining rows are processed to provide the
compression estimate. Therefore, if the number of rows used to build the dictionary
is a significant percentage of the total number of rows in the data set, very little
savings will result. With the REORG option, DSN1COMP processes all the rows,
including those used to build the dictionary, which produces a greater compression
savings estimate.

Including free space in compression calculations
In the DSN1COMP utility's compression estimates, the PCTFREE and FREEPAGE
options you specify are taken into consideration. So, if you run the utility using
different PCTFREE or FREEPAGE values than the input table space was created
with, you get a different value for noncmppages in the DSN1940I message than
the actual number of pages in the input table space.

 Chapter 3-6. DSN1COMP 451

 DSN1COMP

Running DSN1COMP on a table space with identical data
If you run DSN1COMP on a table space in which the data is the same for all rows,
message DSN1941I is issued, and DSN1COMP does not compute any statistics.

Sample control statements
Example 1: Running DSN1COMP

//jobname JOB acct info

//COMPEST EXEC PGM=DSN1COMP,PARM='FULLCOPY'

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBC.DB254A.TS254A.I%%%1.A%%1,DISP=SHR

Example 2: Running DSN1COMP using the PCTFREE and FREEPAGE options

//DSN1COMP JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=A,REGION=3%%%K,

// USER=SYSADM,PASSWORD=SYSADM

/�ROUTE PRINT STLXXXX.USERID

//STEP1 EXEC PGM=DSN1COMP,PARM='PCTFREE(2%),FREEPAGE(5)'

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A

//SYSDUMP DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//SYSUT1 DD DSN=DSNC61%.DSNDBD.DB254SP4.TS254SP4.I%%%1.A%%1,DISP=SHR

/�

//STEP2 EXEC PGM=DSN1COMP,PARM='ROWLIMIT(2%%%%)'

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A

//SYSDUMP DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//SYSUT1 DD DSN=DSNC61%.DSNDBD.DB254SP4.TS254SP4.I%%%1.A%%1,DISP=SHR

/�

//

 DSN1COMP output
This section contains sample output generated by the DSN1COMP utility.

 Message DSN1941
If you receive this message, use a data set with more rows as input, or specify a
larger ROWLIMIT.

Sample DSN1COMP report
Figure 31 on page 453 shows a sample of the output that DSN1COMP generates.

452 Utility Guide and Reference

 DSN1COMP

DSN194%I DSN1COMP COMPRESSION REPORT

3%1 KB WITHOUT COMPRESSION

224 KB WITH COMPRESSION

25 PERCENT OF THE BYTES WOULD BE SAVED

1,975 ROWS SCANNED TO BUILD DICTIONARY

4,665 ROWS SCANNED TO PROVIDE COMPRESSION ESTIMATE

 4,%96 DICTIONARY ENTRIES

81 BYTES FOR AVERAGE UNCOMPRESSED ROW LENGTH

52 BYTES FOR AVERAGE COMPRESSED ROW LENGTH

16 DICTIONARY PAGES REQUIRED

11% PAGES REQUIRED WITHOUT COMPRESSION

99 PAGES REQUIRED WITH COMPRESSION

1% PERCENT OF THE DB2 DATA PAGES WOULD BE SAVED

Figure 31. Sample DSN1COMP report

 Chapter 3-6. DSN1COMP 453

 DSN1COMP

454 Utility Guide and Reference

 DSN1COPY

Chapter 3-7. DSN1COPY

With the DSN1COPY stand-alone utility, you can copy:

� DB2 VSAM data sets to sequential data sets
� DSN1COPY sequential data sets to DB2 VSAM data sets
� DB2 image copy data sets to DB2 VSAM data sets
� DB2 VSAM data sets to other DB2 VSAM data sets
� DSN1COPY sequential data sets to other sequential data sets

Using DSN1COPY, you can also print hexadecimal dumps of DB2 data sets and
databases, check the validity of data or index pages (including dictionary pages for
compressed data), translate database object identifiers (OBIDs) to enable moving
data sets between different systems, and reset to 0 the log RBA that is recorded in
each index page or data page.

| DSN1COPY is compatible with LOB table spaces, when you specify the LOB
| keyword, and omit the SEGMENT and INLCOPY keywords.

Syntax and options of the control statement
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

DSN1COPY syntax diagram

��─ ─DSN1COPY─ ──┬ ┬─────── ──┬ ┬───────────────────────── ──┬ ┬────────── ──┬ ┬────────────────────── ─────────�
| └ ┘─CHECK─ ├ ┤─32K───(1) ────────────────── ├ ┤─FULLCOPY─ └ ┘| ─DSSIZE─| ──(integer ──G)
| └ ┘| ─PAGESIZE──(─ ──┬ ┬─4K── ─)─ ├ ┤─INCRCOPY─
| ├ ┤─8K── ├ ┤─SEGMENT──
| ├ ┤─16K─ └ ┘─INLCOPY──
| └ ┘─32K─

�─ ──┬ ┬───────── ──┬ ┬─────────────────── ──�
├ ┤─LARGE───(2) └ ┘──NUMPARTS(integer)

| └ ┘─LOB───(3) ──

�─ ──┬ ┬── ──────────�
 └ ┘──PRINT ──┬ ┬─── ──┬ ┬──────────────────────────

| └ ┘──(hexadecimal-constant,hexadecimal-constant) └ ┘──PIECESIZ(integer ──┬ ┬─K─)
 ├ ┤─M─
 └ ┘─G─

�─ ──┬ ┬─────────────────────────────────── ──┬ ┬────────── ──┬ ┬─────── ───────────────────────────────────��
└ ┘──VALUE(──┬ ┬─string───────────────) └ ┘─OBIDXLAT─ └ ┘─RESET─

 └ ┘─hexadecimal-constant─

Notes:
1 The preferred option is PAGESIZE(32K).
2 The preferred method of specifying LARGE is DSSIZE(4G).
3 You cannot specify the SEGMENT and INLCOPY keywords with the LOB keyword.

Important: If you specify more than one parameter:

� Separate them by commas (no blanks).
� Specify them in any order.

 Copyright IBM Corp. 1983, 1999 455

 DSN1COPY

 Option descriptions
Specify one or more of the parameters listed below on the EXEC card to run
DSN1COPY.

CHECK Checks each page from the SYSUT1 data set for validity. The
validity checking operates on one page at a time and does not
include any cross-page checking. If an error is found, a message is
issued describing the type of error, and a dump of the page is sent
to the SYSPRINT data set. If you do not receive any messages, no
errors were found. If more than one error exists in a given page, the
check identifies only the first of the errors. However, the entire page
is dumped.

32K Specifies that the SYSUT1 data set has a 32-KB page size. If the
SYSUT1 data set has a 32-KB page size, and you do not specify this
option, DSN1COPY may produce unpredictable results, because the
default page size is 4 KB.

| The preferred option is PAGESIZE(32K).

| PAGESIZE Specifies the page size of the input data set that is defined by
| SYSUT1. If you specify an incorrect page size, DSN1COPY may
| produce unpredictable results.

| If you omit PAGESIZE, DSN1COPY tries to determine the page size
| from the input data set. DB2 issues an error message if DSN1COPY
| cannot determine the input page size. This might happen if the
| header page is not in the input data set, or if the page size field in
| the header page contains an invalid page size.

FULLCOPY Specifies that a DB2 full image copy (not a DFSMS concurrent copy)
of your data is to be used as input. If this data is partitioned, specify
NUMPARTS to identify the total number of partitions. If you specify
FULLCOPY without NUMPARTS, DSN1COPY assumes that your
input file is not partitioned.

Specify FULLCOPY when using a full image copy as input. Omitting
the parameter can cause error messages or unpredictable results.

The FULLCOPY parameter requires SYSUT2 (output data set) to be
either a DB2 VSAM data set or a DUMMY data set.

INCRCOPY Specifies that an incremental image copy of the data is used as
input. DSN1COPY with the INCRCOPY parameter updates existing
data sets; do not redefine the existing data sets. INCRCOPY
requires that the output data set (SYSUT2) be a DB2 VSAM data
set.

Before you apply an incremental image copy to your data set, you
must first apply a full image copy to the data set using the
FULLCOPY parameter. Make sure that you apply the full image copy
in a separate execution step, because you receive an error message
if you specify both the FULLCOPY and the INCRCOPY parameters
in the same step. Then, apply each incremental image copy in a
separate step starting with the oldest incremental image copy.

456 Utility Guide and Reference

 DSN1COPY

Specifying neither FULLCOPY nor INCRCOPY implies that the input
is not image copy data sets. Therefore, only a single output data set
is used.

SEGMENT Specifies that you want to use a segmented table space as input to
DSN1COPY. Zeroed pages in the table space are copied, but no
error messages are issued. You cannot specify FULLCOPY or
INCRCOPY if you specify SEGMENT.

If you are using DSN1COPY with the OBIDXLAT to copy a DB2 data
set to another DB2 data set, the source and target table spaces must
have the same SEGSIZE attribute.

| You cannot specify the SEGMENT option with the LOB parameter.

INLCOPY Specifies that the input data is an inline copy data set.

| You cannot specify the INLCOPY option with the LOB parameter.

| DSSIZE(integer G)
| Specifies the data set size, in gigabytes, for the input data set. If you
| omit DSSIZE, DB2 assumes that the input data set size is 2 GB
| unless the input data set is a LOB, in which case DB2 assumes a 4
| GB input data set size.

| integer must match the DSSIZE value specified when the table
| space was defined.

| If you omit DSSIZE and the data set is not one of the default sizes,
| the results from DSN1COPY are unpredictable.

| LARGE Specifies that the input data set is a table space that was defined
| with the LARGE option, or an index on such a table space. If you
| specify the LARGE keyword, DB2 assumes that the data set has a
| 4-GB boundary.

| The preferred method of specifying a table space that was defined
| with the LARGE option is DSSIZE(4G).

| If you omit the LARGE or DSSIZE(4G) option when it is needed, or if
| you specify LARGE for a table space that was not defined with the
| LARGE option, the results from DSN1COPY are unpredictable.

| LOB Specifies that SYSUT1 data set is a LOB table space. Empty pages
| in the table space are copied, but no error messages are issued.
| You cannot specify the SEGMENT and INLCOPY options with the
| LOB parameter.

| DB2 attempts to determine if the input data set is a LOB data set. If
| you specify the LOB option but the data set is not a LOB data set, or
| if you omit the LOB option but the data set is a LOB data set, DB2
| issues an error message and terminates.

NUMPARTS(integer)
Specifies the total number of partitions associated with the data set
you are using as input or whose page range you are printing.

integer can range from 1 to 254.

DSN1COPY uses this value to calculate the size of its output data
sets and to help locate the first page in a range to be printed. If you
omit NUMPARTS or specify it as 0, DSN1COPY assumes that your

 Chapter 3-7. DSN1COPY 457

 DSN1COPY

input file is not partitioned. If you specify a number greater than 64,
DSN1COPY assumes the data set is for a partitioned table space

| that was defined with the LARGE option, even if the LARGE keyword
is not specified for DSN1COPY.

If you specify the number of partitions incorrectly, DSN1COPY can
copy the data to the wrong data sets, return an error message
indicating that an unexpected page number was encountered, or fail
to allocate the data sets correctly. In the last case, a VSAM PUT
error might be detected, resulting in a request parameter list (RPL)
error code of 24.

PRINT(hexadecimal-constant,hexadecimal-constant)
Causes the SYSUT1 data set to be printed in hexadecimal format on
the SYSPRINT data set. You can specify the PRINT parameter with
or without the page range specifications
(hexadecimal-constant,hexadecimal-constant). If you do not specify a
range, all pages of the SYSUT1 are printed. If you want to limit the
range of pages printed, indicate the beginning and ending page. If
you want to print a single page, supply only that page number. In
either case, your range specifications must be from one to eight
hexadecimal characters in length.

The following example shows how you code the PRINT parameter if
you want to begin printing at page X'2F0' and stop at page X'35C':

PRINT(2F%,35C)

Because the CHECK and RESET options and the COPY function run
independently of the PRINT range, these options apply to the entire
input file regardless of whether a range of pages is being printed.

PIECESIZ(integer)
Specifies the maximum piece size (data set size) for non-partitioned

| indexes. The value you specify must match the value specified when
| the nonpartitioning index was created or altered.

The defaults for PIECESIZ are 2G (2 GB) for indexes backed by
non-large table spaces and 4G (4 GB) for indexes backed by table

| spaces that were defined with the LARGE option. This option is
required if a print range is specified and the piece size is not one of
the default values. If PIECESIZ is omitted and the index is backed by

| a table space that was defined with the LARGE option, the LARGE
option is required for DSN1COPY.

The subsequent keyword K, M, or G, indicates the units of the value
specified in integer.

K Indicates that the integer value is to be multiplied by 1 KB to
specify the maximum piece size in bytes. integer must be
either 256 or 512.

M Indicates that the integer value is to be multiplied by 1 MB to
specify the maximum piece size in bytes. integer must be a
power of two, between 1 and 512.

G Indicates that the integer value is to be multiplied by 1 GB to
specify the maximum piece size in bytes. integer must be 1,
2, or 4.

458 Utility Guide and Reference

 DSN1COPY

Valid values for piece size are:

� 1 MB or 1 GB
� 2 MB or 2 GB
� 4 MB or 4 GB

 � 8 MB
 � 16 MB
 � 32 MB
 � 64 MB
 � 128 MB
� 256 KB or 256 MB
� 512 KB or 512 MB

VALUE Causes each page of the SYSUT1 input data set to be scanned for
the character string you specify in parentheses following the VALUE
parameter. Each page that contains that character string is printed
in the SYSPRINT data set. You can specify the VALUE parameter in
conjunction with any of the other DSN1COPY parameters.

string can consist of 1 to 20 alphanumeric characters.

hexadecimal-constant can consist of 2 to 40 hexadecimal characters.
You must specify two single quotation mark characters before and
after the hexadecimal character string.

If you want to search your input file for the string '12345', your JCL
should look like this:

//STEP1 EXEC PGM=DSN1COPY,PARM='VALUE(12345)'

If you want to search for the equivalent hexadecimal character string,
your JCL should look like this:

//STEP1 EXEC PGM=DSN1COPY,PARM='VALUE(''F1F2F3F4F5'')'

OBIDXLAT Specifies that OBID translation must be done before the DB2 data
set is copied. This parameter requires additional input from the
SYSXLAT file by using the DD cards. DSN1COPY can only translate

| up to 500 record OBIDs at a time. If you specify OBIDXLAT, CHECK
| processing is performed regardless of whether you specify the
| CHECK option.

RESET Causes the log RBAs in each index page or data page to be reset to
0. If you specify this option, CHECK processing is performed
regardless of whether you specify the CHECK option.

You must use RESET when the output file is used to build a DB2
table space to be processed on a DB2 subsystem with a different
recovery log than the source subsystem. Failure to specify RESET in
such a case can result in an abend during subsequent update
activity. The abend reason code of 00C200C1 indicates that the
specified RBA value is outside the valid range of the recovery log. A
condition code of 0 indicates successful completion.

If you do not specify RESET when copying a table space from one
DB2 system to another, a down-level ID check may result in abend
reason code 00C2010D when the table space is accessed. For more
information about down-level detection, see Section 4 (Volume 1) of
DB2 Administration Guide.

 Chapter 3-7. DSN1COPY 459

 DSN1COPY

Before running DSN1COPY
This section contains information to keep in mind before you run DSN1COPY.

Attention: DSN1COPY is not intended to be used in place of the COPY utility or
standard backup and recovery procedures. Improper use of DSN1COPY can result
in unrecoverable damage and loss of data.

 Environment
Execute DSN1COPY as an MVS job, when the DB2 subsystem is either active or
not active.

If you execute DSN1COPY when DB2 is active, follow the procedure below:

1. Start the table space as read-only using -START DATABASE.

2. Run the QUIESCE utility with the WRITE (YES) option to externalize all data
pages and index pages.

3. Run DSN1COPY with DISP=SHR on the SYSUT1 DD card.

4. Start the table space as read-write using -START DATABASE to return to
normal operations.

 Authorization required
None is required. However, if any of the data sets is RACF-protected, the
authorization ID of the job must have the necessary RACF authority.

The SYSUT1 data set can be any of the following types:

� A DB2 table space data set
� A DB2 index space data set
� A full image copy
� An incremental image copy
� A sequential data set previously created by DSN1COPY

SYSUT1 should be defined with DISP=OLD to ensure that it is exclusively used by
| DSN1COPY. If SYSUT1 is a table space or index space, use the following
| procedure before running DSN1COPY:

| 1. Issue the following command to determine if the object is stopped:

| -DISPLAY DATABASE (database_name) SPACENAM(space_name) RESTRICT

| 2. If the object is not stopped, issue the following command to stop the object:

| -STOP DATABASE (database_name) SPACENAME(space_name)

Only one input DSN1COPY data set is allowed. Concatenated input data sets are
not permitted. For a table space consisting of multiple data sets, ensure that you
specify the correct data set. For example, if you specify the CHECK option to
validate the pages of the second partition of a partitioned table space, code the
second data set of the table space for SYSUT1.

460 Utility Guide and Reference

 DSN1COPY

 Control statement
See “Syntax and options of the control statement” on page 455 for DSN1COPY
syntax and option descriptions.

Required data sets
DSN1COPY uses the data sets described below:

Input data set Input to DSN1COPY. The DD name is SYSUT1.

Output data set Output from DSN1COPY. The DD name is SYSUT2.
Optional.

Message data set Data set for output messages. The DD name is SYSPRINT.

OBIDXLAT data set Data set that defines the OBID translation values. The DD
name is SYSXLAT.

DSN1COPY uses several DD cards. They are:

SYSPRINT Defines the data set that contains output messages from the
DSN1COPY program and all hexadecimal dump output.

SYSUT1 Defines the input data set. This data set can be a sequential data
set created by the DSN1COPY or COPY utilities, or a VSAM data
set. DSN1COPY assumes that the block size is 4096 bytes (the
standard for DB2 data sets).

Disposition for this data set must be specified as DISP=OLD to
ensure that it is not in use by DB2. Disposition for this data set
must be specified as DISP=SHR only when the DB2 STOP
DATABASE command does not work.

The requested operation takes place only for the specified data
set. If the input data set is a partitioned table space or partitioning
index, ensure that you specify the NUMPARTS parameter and the
correct data set. For example, to print a page range in the second
partition of a four-partition table space, specify NUMPARTS(4) and
the data set name of the second data set in the group of VSAM
data sets comprising the table space (in other words,
DSN=...A002).

SYSUT2 Defines the output data set. This data set can be a sequential data
set, a VSAM data set, or a DUMMY data set.

DSN1COPY assumes that the output data sets are empty (that is,
the program adds the blocks) except when INCRCOPY is
specified. If your output data sets are not defined REUSE, you
must use access method services to redefine all the VSAM output
data sets you are restoring before you run DSN1COPY. Be sure
that any output VSAM data sets are empty (newly defined or
REUSE) before running this program.

You might want to specify a DUMMY SYSUT2 DD card if you are
doing only page checking or page dumping.

To enable DB2 to obtain necessary information from the integrated
catalog facility catalog, do not code unit and volume serial
parameters when using VSAM data sets.

 Chapter 3-7. DSN1COPY 461

 DSN1COPY

SYSXLAT Defines the DBIDs, PSIDs, and OBIDs (ISOBIDs for indexes) to be
translated.

If you have dropped a table without a subsequent REORG of the
table space, you must reorganize the source table space before
running DSN1COPY with the OBIDXLAT option. This removes any
records that have been previously dropped from the table space.

Each record in the SYSXLAT file must contain a pair of decimal
integers and be separated by a nonnumeric character. The first
integer of each record pertains to the source, and the second
integer pertains to the target. The first record in the SYSXLAT file
contains the source and target DBIDs; these values can range
from -32767 to 65535. The second record contains the source and
target PSIDs or ISOBIDs for indexes; these values can range from
0 to 32767. All subsequent records in the SYSXLAT data set are
for table OBIDs. For an index, the SYSXLAT data set must
contain the index fan set OBID in addition to the DBID and
ISOBID. Sample data in a SYSXLAT file can look like this:

| 26%,28%

| 2,1%

| 3,55

| 6,56

| 7,57

To obtain the names, DBIDs, PSIDs, ISOBIDs, and OBIDs of the
tables and indexes needed to create the SYSXLAT file, run the
DSNTEP2 sample application on both the source and target
systems. The following SQL statements yield the above
information:

Note: The example for indexes yields the above information,
along with an additional column of data.

Product-sensitive Programming Interface

For table spaces:

SELECT DBID, PSID FROM SYSIBM.SYSTABLESPACE

 WHERE NAME='tablespace_name'

 AND DBNAME='database_name';

SELECT NAME, OBID FROM SYSIBM.SYSTABLES

 WHERE TSNAME='tablespace_name'

 AND CREATOR='creator_name';

For index spaces:

SELECT DBID, ISOBID, OBID FROM SYSIBM.SYSINDEXES

 WHERE NAME='index_name'

 AND CREATOR='creator_name';

End of Product-sensitive Programming Interface

Several examples of using DSN1COPY are identified below:

� Create a backup copy of a DB2 data set:

 – SYSUT1: DB2-VSAM

462 Utility Guide and Reference

 DSN1COPY

– SYSUT2: sequential data set

� Restore a backup copy of a DB2 data set:

– SYSUT1: DSN1COPY sequential data set
 – SYSUT2: DB2-VSAM

� Move a DB2 data set to another DB2 data set:

 – SYSUT1: DB2-VSAM
 – SYSUT2: DB2-VSAM
– Parameters: OBIDXLAT, RESET

� Perform validity checking on a DB2 data set:

 – SYSUT1: DB2-VSAM
 – SYSUT2: DUMMY
 – Parameter: CHECK

� Perform validity checking on and print a DB2 data set:

 – SYSUT1: DB2-VSAM
 – SYSUT2: DUMMY
– Parameters: CHECK, PRINT

� Restore a table space from a nonpartitioned image copy data set or page set:

– SYSUT1: DB2 full image copy
 – SYSUT2: DB2-VSAM
 – Parameter: FULLCOPY

� Restore a table space from a partitioned image copy data or page set:

– SYSUT1: DB2 full image copy
 – SYSUT2: DB2-VSAM
– Parameters: FULLCOPY, NUMPARTS(nn)

� Perform RBA RESET on a DB2 data set:

– SYSUT1: DB2-VSAM or DSN1COPY sequential data set
 – SYSUT2: DB2-VSAM
 – Parameter: RESET

Defining the output data set
The SYSUT2 data set can be any of the following types:

� A sequential data set
� A DB2 table space data set
� A DB2 index space data set
� A DUMMY data set

Specify a DUMMY SYSUT2 DD card if you are using DSN1COPY for page
checking or page dumping. Except when an incremental image copy is being
applied (the INCRCOPY parameter), the DB2 table spaces and index spaces either
must be empty or must have been defined with the VSAM REUSE parameter.
STOGROUP-defined table spaces and index spaces have the REUSE attribute.

Naming the output data set: For your output data set to be useful, you must
make sure that it has the same name as the data set you are resetting. You can do
this in one of two ways:

 � Method 1:

 Chapter 3-7. DSN1COPY 463

 DSN1COPY

1. Use DSN1COPY to copy your existing data set to a sequential data set.
Specify this target data set as SYSUT1.

2. If your existing data set was defined without the REUSE parameter, delete
and redefine the data set. Specify your existing data set as SYSUT2.

 � Method 2:

1. Use your existing DB2 data set as the SYSUT1 specification, creating a
new VSAM data set for SYSUT2.

2. After the reset operation has been completed, delete the data set you
specified as SYSUT1, and rename the SYSUT2 data set, giving it the name
of the data set that you just deleted.

If you are using full or incremental copies as input, specify the SYSUT2 data sets
according to the following guidelines:

� If SYSUT1 is an image copy of a single partition, SYSUT2 should be the
name of the first data set of the table space. DSN1COPY determines the
correct target data set. Specify the NUMPARTS parameter to identify the
number of partitions in the whole table space.

� If SYSUT1 is an image copy of a whole partitioned table space, SYSUT2
should be the name of the first data set of the table space. DSN1COPY
allocates all of the target data sets. However, the target data sets must be
previously defined using IDCAMS. Specify the NUMPARTS parameter to
identify the number of partitions in the whole table space.

� If SYSUT1 is an image copy of a single data set of a nonpartitioned table
space, SYSUT2 should be the name of the actual output data set. Do not
specify the NUMPARTS parameter, because this parameter is only for
partitioned table spaces.

� If SYSUT1 is an image copy of all data sets of a multiple data set linear
table space, SYSUT2 should be the name of the first data set of the table
space. DSN1COPY allocates all target data sets. However, the target data sets
must be previously defined using IDCAMS.

Adding additional volumes for SYSUT2: When a table space or index space is
created using STOGROUP, the integrated catalog facility catalog entry has only
one volume in the volume list. If the amount of data being restored by DSN1COPY
requires more than one volume for SYSUT2, use the IDCAMS command ALTER
ADDVOLUMES to add additional volume IDs to the integrated catalog entry. The
extension to new volumes uses the primary size on each new volume. This is
normal VSAM extension. If you want the data set to use the secondary size on the
candidate volumes:

 1. Run DSN1COPY.
2. Run REORG, or make a full image copy and recover the table space.

This resets the data set and causes normal extensions through DB2.

464 Utility Guide and Reference

 DSN1COPY

 Restrictions
This section contains restrictions for running DSN1COPY.

You cannot use DSN1COPY to alter data set structure; for example, you cannot
copy a partitioned or segmented table space into a simple table space. The output
data set is a page-for-page copy of the input data set. If the intended use of
DSN1COPY is to move or restore data, ensure that data definitions for the source
and target table spaces, tables, and indexes are identical; otherwise, unpredictable
results can occur.

You cannot use DSN1COPY to copy DB2 recovery log data sets. The format of a
DB2 log page is different from that of a table or index page. If you try to use this
utility to recover log data sets, DSN1COPY abends.

 Recommendations
This section contains recommendations for running the DSN1COPY utility.

Printing with DSN1PRNT instead of DSN1COPY
If you require only a printed hexadecimal dump of a data set, use DSN1PRNT

| rather than DSN1COPY. For more information, see “Printing with DSN1PRNT
| instead of DSN1COPY” on page 499.

| Determining page size and DSSIZE
| Before using DSN1COPY, be sure you know the page size and data set size
| (DSSIZE) for the page set. Use the following query on the DB2 catalog to get the
| information you need:

| SELECT I.CREATOR,

| I.NAME,

| S.PGSIZE,

| CASE S.DSSIZE

| WHEN % THEN CASE S.TYPE

| WHEN ' ' THEN 2%97152

| WHEN 'I' THEN 2%97152

| WHEN 'L' THEN 41943%4

| WHEN 'K' THEN 41943%4

| ELSE NULL

| END

| ELSE S.DSSIZE

| END

| FROM SYSIBM.SYSINDEXES I,

| SYSIBM.SYSTABLES T,

| SYSIBM.SYSTABLESPACE S

| WHERE I.CREATOR='DSN861%' AND

| I.NAME='XEMP1' AND

| I.TBCREATOR=T.CREATOR AND

| I.TBNAME=T.NAME AND

| T.DBNAME=S.DBNAME AND

| T.TSNAME=S.NAME;

 Chapter 3-7. DSN1COPY 465

 DSN1COPY

 Using DSN1COPY
This section describes the following tasks associated with running the DSN1COPY
utility:

“Altering a table before running DSN1COPY”
“Checking for inconsistent data”
“Translating DB2 internal identifiers”
“Using an image copy as input to DSN1COPY” on page 467
“Resetting page log RBAs” on page 467
“Copying multiple data set table spaces” on page 467
“Restoring indexes with DSN1COPY” on page 467
“Restoring table spaces with DSN1COPY” on page 468
“Printing with DSN1COPY” on page 468

“Copying tables from one subsystem to another” on page 468

Altering a table before running DSN1COPY
If you do an ALTER TABLE ADD COLUMN, only the description of the table
changes. You must run REORG on the table space (so the data matches its
description) before you run DSN1COPY on the table space.

Checking for inconsistent data
When critical data is involved, use the CHECK option to prevent the undetected
copying of inconsistent data to the output data set. The CHECK option performs
validity checking on one page at a time.

You must run a CHECK utility job on the table space involved to ensure that no
inconsistencies exist between data and indexes on that data:

� Before using DSN1COPY to save critical data that is indexed
� After using DSN1COPY to restore critical data that is indexed

The CHECK utility performs validity checking between pages.

Translating DB2 internal identifiers
| If you use DSN1COPY to load data into a table space or index and you do not

specify the OBIDXLAT parameter, be careful not to invalidate DB2 internal
identifiers (like object descriptors or OBIDs) that are embedded within the data.
Those OBIDs can become invalid in the following ways:

� When tables are dropped and recreated after the data DSN1COPY saved was
created and before it was used

� When a difference exists among the following attributes between the target
subsystem and the source subsystem:

– Table space attributes of BUFFERPOOL or NUMPARTS

– Table attributes other than table name, table space name, and database
name

– The order that all table spaces, indexes, and tables are defined or dropped
in the source and target databases

To protect against invalidating the OBIDs, specify the OBIDXLAT parameter of
DSN1COPY. This performs OBID, DBID, or PSID translation before the data is
copied.

466 Utility Guide and Reference

 DSN1COPY

Using an image copy as input to DSN1COPY
If you want to include the FULLCOPY parameter in order to use image copies as
input to DSN1COPY, be sure that those image copies are produced using the
COPY utility with the SHRLEVEL REFERENCE parameter. Using this parameter

| ensures that the data contained in your image copies is consistent. DSN1COPY
| accepts an index image copy as input when you specify the FULLCOPY option.

Resetting page log RBAs
The RESET option resets to 0 the log RBAs that are recorded in a table space or
index space. DSN1COPY performs CHECK processing whether it is explicitly
requested or not.

Do not specify the RESET parameter for page sets that are in group buffer pool
RECOVER-pending (GRECP) status.

Copying multiple data set table spaces
When using DSN1COPY to copy from an image copy of an individual data set or all
data sets of a multiple data set table space to a table space data set, specify the
following SYSUT2 data sets:

� If SYSUT1 is an image of a single partition, SYSUT2 should be the name of
the first data set of the table space. DSN1COPY determines the correct target
data set. Code the NUMPARTS(nn) parameter, where nn is the number of
partitions in the whole table space.

� If SYSUT1 is an image copy of a whole partitioned table space, SYSUT2
should be the name of the first data set of the table space. In this case,
DSN1COPY allocates all of the target data sets. However, the target data sets
must be previously defined using IDCAMS. Code the NUMPARTS(nn)
parameter, where nn is the number of partitions in the whole table space.

� If SYSUT1 is an image copy of a single data set of a multiple data set
linear (non-partitioned) table space, SYSUT2 should be the name of the
actual output data set. Do not specify NUMPARTS, because this parameter is
only for partitioned table spaces.

� If SYSUT1 is an image copy of all data sets of a multiple data set linear
table space, SYSUT2 should be the name of the first data set of the table
space. DSN1COPY allocates all target data sets.

Restoring indexes with DSN1COPY
When a table space has been restored to an earlier point using either the TOCOPY

| option of RECOVER or the DSN1COPY utility, restore the indexes in one of three
ways:

| � Use the RECOVER utility if the index was defined with COPY YES and you
| have a full image copy available.

| � An alternative is to use DSN1COPY on the indexes, if a copy is available. If
you specified the OBIDXLAT option for the data, you must also specify the
OBIDXLAT option for the indexes. Also, the indexes must have been copied at
the same time as the data; otherwise, inconsistencies may exist.

| � If you don't have an image copy of the index available, a safe option is to use
| the REBUILD INDEX utility, which will reconstruct the indexes from the data.
| However, for table spaces with millions of rows, REBUILD INDEX might take a

 Chapter 3-7. DSN1COPY 467

 DSN1COPY

| long time. For more information about the REBUILD INDEX utility, refer to
| “Chapter 2-13. REBUILD INDEX” on page 209.

Restoring table spaces with DSN1COPY
It is not possible to use RECOVER TOCOPY to apply an image copy data set that
is not referred to in a SYSIBM.SYSCOPY row for that table space or data set. An
attempt to do so results in the message "TOCOPY DATASET NOT FOUND".

The SYSIBM.SYSCOPY row might have been removed by the MODIFY utility. If
this has happened, and the image copy is a full image copy with SHRLEVEL
REFERENCE, you can restore the table space or data set with DSN1COPY.

It is also possible to restore to an incremental image copy with DSN1COPY but, to
ensure data integrity, you need to have first restored the previous full image copy
and any intermediate incremental image copies. It is your responsibility to get the
sequence of image copies right. DB2 cannot help ensure the proper sequence.

If you use DSN1COPY for point-in-time recovery, the table space becomes not
recoverable. Because DSN1COPY executed outside of DB2's control, DB2 is not
aware that you recovered to a point-in-time. To ensure recoverability of the affected
table space after point-in-time recovery using DSN1COPY:

1. Clean out old image copies, with MODIFY AGE(*).
2. Create one or more full image copies with SHRLEVEL REFERENCE.

Printing with DSN1COPY
If you want to print one or more pages without having the copy function, use
DSN1PRNT to avoid unnecessary reading of the input file.

When you use DSN1COPY for printing, you must specify the PRINT parameter.
The requested operation takes place only for the data set specified. If the input
data set belongs to a linear table space or index space that is larger than 2
gigabytes or if it is a partitioned table space or partitioning index, you must ensure
that you specify the correct data set. For example, to print a page range in the
second partition of a four-partition table space, specify NUMPARTS(4) and the data
set name of the second data set in the group of VSAM data sets comprising the
table space (in other words, DSN=...A002).

To print a full image copy data set (rather than recovering a table space), specify a
DUMMY SYSUT2 DD card and specify the FULLCOPY parameter.

Copying tables from one subsystem to another
Special care must be taken when copying a table containing an identity column
from one DB2 subsystem to another:

1. Stop the table space on the source subsystem.

2. Issue a SELECT statement to query the SYSIBM.SYSSEQUENCES entry
corresponding to the identity column for this table on the source subsystem.
Add the INCREMENT value to the MAXASSIGNEDVAL value to determine the
next value to be assigned (nv).

3. Create the table on the target subsystem. On the identity column specification,
specify nv for the START WITH value, and ensure that all of the other identity
column attributes are the same as for the source table.

468 Utility Guide and Reference

 DSN1COPY

4. Stop the table space on the target subsystem.

5. Copy the data using DSN1COPY.

6. Start the table space on the source subsystem for read-write access.

7. Start the table space on the target subsystem for read-write access.

Sample control statements
| Example 1: Running DSN1COPY with the CHECK option

//RUNCOPY EXEC PGM=DSN1COPY,PARM='CHECK'

//� COPY VSAM TO SEQUENTIAL AND CHECK PAGES

//STEPLIB DD DSN=PDS CONTAINING DSN1COPY

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB%1.SYSUTILX.I%%%1.A%%1,DISP=OLD

//SYSUT2 DD DSN=TAPE.DS,UNIT=TAPE,DISP=(NEW,KEEP),VOL=SER=UTLBAK

| Example 2: Translating DB2 internal identifiers using the OBIDXLAT
| parameter

//EXECUTE EXEC PGM=DSN1COPY,PARM='OBIDXLAT'

//STEPLIB DD DSN=PDS CONTAINING DSN1COPY

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNC61%.DSNDBC.DSN8D61P.DSN8S61C.I%%%1.A%%1,

// DISP=OLD

//SYSUT2 DD DSN=DSNC618.DSNDBC.DSN8D61P.DSN8S61C.I%%%1.A%%1,

// DISP=OLD

//SYSXLAT DD �

26%,28%

2,1%

3,55

6,56

7,57

/�

| Example 3: Printing a single page of a partitioned table space

//PRINT EXEC PGM=DSN1COPY,PARM='PRINT(2%%2A1),NUMPARTS(8)'

//� PRINT A PAGE IN THE THIRD PARTITION OF A TABLE SPACE CONSISTING

//� OF 8 PARTITIONS.

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DUMMY

//SYSUT1 DD DSN=DSNCAT.DSNDBD.MMRDB.PARTEMP1.I%%%1.A%%3,DISP=OLD

Example 4: Printing 16 pages of a nonpartitioning index

//PRINT2 EXEC PGM=DSN1COPY,PARM=(PRINT(F%%%%,F%%%F),PIECESIZ(64M))

//� PRINT 16 PAGES IN THE 61ST PIECE OF AN NPI WITH PIECE SIZE OF 64M

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DUMMY

//SYSUT1 DD DISP=OLD,DSN=DSNCAT.DSTDBD.MMRDB.NPI1.I%%%1.A%61

 Chapter 3-7. DSN1COPY 469

 DSN1COPY

 DSN1COPY output
 Interpreting output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2, you might need to refer to licensed
documentation to interpret output from this utility.

470 Utility Guide and Reference

 DSN1LOGP

Chapter 3-8. DSN1LOGP

The DSN1LOGP utility formats the contents of the recovery log for display. The two
recovery log report formats are:

� A detail report of individual log records. This information helps IBM Support
Center personnel analyze the log in detail. (This book does not include a full
description of the detail report.)

� A summary report helps you:

– Perform a conditional restart
– Resolve indoubt threads with a remote site
– Detect problems with data propagation

You can specify the range of the log to process and select criteria within the range
to limit the records in the detail report. For example, you can specify:

� One or more units of recovery identified by URID
� A single database

By specifying a URID and a database, you can display recovery log records that
correspond to the use of one database by a single unit of recovery.

Syntax and options of the control statement
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

DSN1LOGP syntax diagram

 Copyright IBM Corp. 1983, 1999 471

 DSN1LOGP

��─ ──┬ ┬── ──┬ ┬───────────────────── ──────────�
 ├ ┤ ──┬ ┬──────────────────────── ──┬ ┬──────────────────────────── │ │┌ ┐─NO──

│ │└ ┘──RBASTART(hex-constant) │ │┌ ┐─FFFFFFFFFFFF─ └ ┘──DATAONLY(──┴ ┴─YES─)
│ │└ ┘──RBAEND(──┴ ┴─hex-constant─)
└ ┘──LRSNSTART(hex-constant) ──┬ ┬───────────────────────────── ──

 │ │┌ ┐─FFFFFFFFFFFF─
└ ┘──LRSNEND(──┴ ┴─hex-constant─)

�─ ──┬ ┬──────────────────── ──┬ ┬──────────────────── ──┬ ┬──────────────────── ────────────────────────────�
│ │┌ ┐─NO── └ ┘──DBID(hex-constant) └ ┘──OBID(hex-constant)
└ ┘──SYSCOPY(──┴ ┴─YES─)

 ┌ ┐──────────────────────── ┌ ┐─────────────────────── ┌ ┐──────────────────────── ┌ ┐──────────────────
�─ ───

�
┴┬ ┬──────────────────── ───

�
┴┬ ┬─────────────────── ───

�
┴┬ ┬──────────────────── ───

�
┴┬ ┬────────────── ───�

└ ┘──PAGE(hex-constant) └ ┘──RID(hex-constant) └ ┘──URID(hex-constant) └ ┘──LUWID(luwid)

�─ ──┬ ┬─── ───────────────────────────────────────�
 ├ ┤─TYPE──(──hex-constant──)────────────────────────────────
 └ ┘─SUBTYPE──(──hex-constant──)─ ──┬ ┬────────────────────────
 └ ┘─value/offset statement─

�─ ──┬ ┬───────────────────────────────── ──��
 │ │┌ ┐─NO───

└ ┘──SUMMARY(──┼ ┼─YES──) ──┬ ┬────────
 └ ┘─ONLY─ └ ┘ ─FILTER─

value/offset statement:

�─ ─VALUE/OFFSET─ ──┬ ┬─── ───────────────────────────────────────�
 └ ┘──VALUE(hex-constant) ──OFFSET(hex-constant)

Attention: If you specify more than one parameter:

� Separate them by commas (no blanks)
� Specify them in any order.

 Option descriptions
To execute DSN1LOGP, construct a batch job. The utility name, DSN1LOGP,
should appear on the EXEC statement, as shown in “Sample control statements”
on page 481.

Specify keywords in up to 50 control statements in the SYSIN file. Each control
statement can have up to 72 characters. To specify no keywords, either use a
SYSIN file with no keywords following it or omit the SYSIN file from the job JCL.

The keywords are described below; alternative spellings or abbreviations are noted.

You can include blanks between keywords, and also between the keywords and the
corresponding values.

RBASTART(hex-constant)
Specifies the hexadecimal log RBA from which to begin reading. If
the value does not match the beginning RBA of one of the log
records, DSN1LOGP begins reading at the beginning RBA of the
next record. For any given job, specify this keyword only once.
Alternative spellings: STARTRBA, ST.

hex-constant is a hexadecimal value consisting of 1 to 12
characters (6 bytes), and leading zeros are not required.

The default is 0.

472 Utility Guide and Reference

 DSN1LOGP

RBAEND(hex-constant)
Specifies the last valid hexadecimal log RBA to extract. If the
specified RBA is in the middle of a log record, DSN1LOGP
continues reading the log in an attempt to return a complete log
record.

To read to the last valid RBA in the log, specify
RBAEND(FFFFFFFFFFFF). For any given job, specify this keyword
only once. Alternative spellings: ENDRBA, EN.

hex-constant is a hexadecimal value consisting of 1 to 12
characters (6 bytes), and leading zeros are not required.

The default is FFFFFFFFFFFF.

RBAEND can be specified only if RBASTART is specified.

LRSNSTART(hex-constant)
Specifies the log record sequence number (LRSN) from which to
begin the log scan. DSN1LOGP starts its processing on the first log
record containing an LRSN value greater than or equal to the
LRSN value specified on LRSNSTART. The default LRSN is the
LRSN at the beginning of the data sets. Alternative spellings:
STARTLRSN, STRTLRSN, and LRSNSTRT.

For any given job, specify this keyword only once.

You must specify this keyword to search the member BSDSs and
locate the log data sets from more than one DB2 subsystem. You
can specify either the LRSNSTART keyword or the RBASTART
keyword to search the BSDS of a single DB2 subsystem and locate
the log data sets.

LRSNEND(hex-constant)
Specifies the LRSN value of the last log record to be scanned.
When LRSNSTART is specified, the default is X'FFFFFFFFFFFF'.
Otherwise, it is the end of the data sets. Alternative spelling:
ENDLRSN.

For any given job, specify this keyword only once.

DATAONLY Limits the log records in the detail report to those that represent
data changes (insert, page repair, update space map, and so on).

The default is DATAONLY(NO).

(YES) Extracts log records for data changes only. For example,
DATAONLY(YES), together with a DBID and OBID, reads
only the log records that modified data for that DBID and
OBID.

(NO) Extracts all record types.

SYSCOPY Limits the detail report to SYSCOPY log records.

The default is SYSCOPY(NO).

(YES) Includes only SYSCOPY log records in the detail report.

(NO) Does not limit records to SYSCOPY records only.

 Chapter 3-8. DSN1LOGP 473

 DSN1LOGP

DBID(hex-constant)
Specifies a hexadecimal database identifier (DBID). DSN1LOGP
extracts only records associated with that DBID. For any given job,
specify this keyword only once.

hex-constant is a hexadecimal value consisting of 1 to 4
characters. Leading zeros are not required.

The DBID is displayed in many DB2 messages. You can also find
the DBID in the DB2 catalog for a specific object (for example, in
the column named “DBID” of the SYSIBM.SYSTABLESPACE
catalog table).

When you select a DBID from a catalog table, the value is
displayed in decimal format. Use the following SQL HEX function in
a SELECT statement to convert a DBID to hexadecimal format:

SELECT NAME, DBNAME, HEX(DBID), HEX(PSID)

FROM SYSIBM.SYSTABLESPACE

WHERE NAME ='table space name'

SELECT NAME, DBNAME, HEX(DBID), HEX(ISOBID)

FROM SYSIBM.SYSINDEXES

WHERE NAME ='index name'

OBID(hex-constant)
Specifies a hexadecimal database object identifier, either a data
page set identifier (PSID) or an index page set identifier (ISOBID).
DSN1LOGP extracts only records associated with that identifier.

hex-constant is a hexadecimal value consisting of 1 to 4
characters. Leading zeros are not required.

Whenever DB2 makes a change to data, the log record describing
the change identifies the database by DBID and the table space by
page set ID (PSID). You can find the PSID column in the
SYSIBM.SYSTABLESPACE catalog table.

You can also find a column named OBID in the
SYSIBM.SYSTABLESPACE catalog table. That column actually
contains the OBID of a file descriptor; don't confuse this with the
PSID, which is the information you must include when you execute
DSN1LOGP.

Whenever DB2 makes a change to an index, the log record
describing the change identifies the database (by DBID) and the
index space (by index space OBID, or ISOBID). You can find the
ISOBID for an index space in the column named ISOBID in the
SYSIBM.SYSINDEXES catalog table.

You will also find a column named OBID in the
SYSIBM.SYSINDEXES catalog table. This column actually contains
the identifier of a fan set descriptor; don't confuse this with the
ISOBID, which is the information you must include when you
execute DSN1LOGP.

When you select either the PSID or the ISOBID from a catalog
table, the value is displayed in decimal format. Use the SQL HEX
function in your select statement to convert them to hexadecimal.

474 Utility Guide and Reference

 DSN1LOGP

For any given DSN1LOGP job, use this keyword only once. If you
specify OBID, you must also specify DBID.

PAGE(hex-constant)
Specifies a hexadecimal page number. When data or an index is
changed, a recovery log record is written to the log, identifying the
object identifier and the page number of the changed data page or
index page. Specifying a page number limits the search to a single
page; otherwise, all pages for a given combination of DBID and
OBID are extracted. The log output also contains page set control
log records for the specified DBID and OBID, as well as the system
event log records, unless DATAONLY(YES) is also specified.

hex-constant is a hexadecimal value consisting of a maximum of
eight characters.

You can specify a maximum of 100 PAGE keywords in any given
DSN1LOGP job. You must also specify the DBID and OBID
keywords that correspond to those pages.

The PAGE and RID keywords cannot both be specified.

RID(hex-constant)
Specifies a record identifier, which is a hexadecimal value
consisting of 10 characters, with the first eight characters
representing the page number and the last two characters
representing the page ID map entry number. The option limits the
log records extracted to those associated with that particular
record. The log records extracted include not only those directly
associated with the RID, such as insert and delete, but also the
control records associated with the DBID and OBID specifications,
such as page set open, page set close, set write, reset write, page
set write, data set open, and data set close.

You can specify a maximum of 40 RID keywords in any given
DSN1LOGP job. You must also specify the DBID and OBID
keywords that correspond to the specified records.

The PAGE and RID keywords are mutually exclusive.

URID(hex-constant)
Specifies a hexadecimal unit of recovery identifier (URID). Changes
to data and indexes occur in the context of a DB2 unit of recovery,
which is identified on the log by a BEGIN UR record. Using the log
RBA of that record as the URID value limits the extraction of
information from the DB2 log to that unit of recovery.

hex-constant is a hexadecimal value consisting of 1 to 12
characters (6 bytes). Leading zeros are not required.

You can specify a maximum of 10 URID keywords in any given
DSN1LOGP job.

LUWID(luwid) Specifies up to 10 LUWIDs to include information about in the
summary report.

luwid consists of three parts: an LU network name, an LUW
instance number, and a commit sequence number. If you supply
the first two parts, the summary report includes an entry for each
commit performed in the logical unit of work (within the search

 Chapter 3-8. DSN1LOGP 475

 DSN1LOGP

range). If you supply all three parts, the summary report includes
an entry for only that LUWID.

The LU network name consists of a one- to eight-character network
ID, a period, and a one- to eight-character network LU name. The
LUW instance number consists of a period followed by 12 hex
characters. The last element of the LUWID is the commit sequence
number of 4 hex characters, preceded by a period.

TYPE(hex-constant)
Limits the log records extracted to records of a specified type. The
TYPE and SUBTYPE options are mutually exclusive.

hex-constant indicates the type, as follows:

Constant Description
2 Page set control record
4 SYSCOPY utility record
10 System event record
20 UR control record
100 Checkpoint record
200 UR-UNDO record
400 UR-REDO record
800 Archive quiesce record
1000 to 8000 Assigned by the resource manager

SUBTYPE(hex-constant)
Restricts formatting to a particular subtype of unit of recovery undo
and redo log records (types 200 and 400). The TYPE and
SUBTYPE options are mutually exclusive.

hex-constant indicates the subtype, as follows:

Constant Description
1 Update data page
2 Format page or update space map
3 Update space map bits
4 Update to index space map
5 Update to index page
6 DBA table update log record
7 Checkpoint DBA table log record
9 DBD virtual memory copy
A Exclusive lock on page set partition or DBD
B Format file page set
C Format index page set
F Update by repair (first half if 32 KB)
10 Update by repair (second half if 32 KB)
11 Allocating or deallocating a segment entry
12 Undo/redo log record for modified page or redo log

record for formatted page
14 Savepoint
15 Other DB2 component log records written for RMID

14
17 Checkpoint record of modified page set
19 Type 2 Index update
1A Type 2 Index under/redo or redo log record
1B Type 2 Index change notification log record

476 Utility Guide and Reference

 DSN1LOGP

1C Type 2 Index space map update
1D DBET log record with exception data
1E DBET log record with LPL/GRECP data
65 Data propagation diagnostic log
81 Index dummy compensation log record

The VALUE and OFFSET options must be used together. You can
specify a maximum of 10 VALUE/OFFSET pairs. The SUBTYPE
parameter is required when using the VALUE and OFFSET
options.

VALUE(hex-constant)
Specifies a value that must appear in a log record to be
extracted.

hex-constant is a hexadecimal value consisting of a maximum
of 64 characters and must be an even number of characters.

The SUBTYPE keyword must be specified before the VALUE
option.

OFFSET(hex-constant)
Specifies an offset from the log record header at which the
value specified in the VALUE option must appear.

hex-constant is a hexadecimal value consisting of a maximum
of 8 characters.

The SUBTYPE keyword must be specified before specifying the
OFFSET option.

SUMMARY Summarizes all recovery information within the RBASTART and
RBAEND specifications. You can use summary information to
determine what work is incomplete when DB2 starts. You cannot
limit the output of the summary report with any of the other options,
except by using the FILTER option with a URID or LUWID
specification.

The default is SUMMARY(NO).

(YES) Generates both a detail and summary report.

(NO) Generates only a detail report.

(ONLY) Generates only a summary report.

FILTER Restricts the summary report to include messages for only the
specified URIDs and LUWIDs. Specify this option only once.

The SUMMARY keyword must be specified before FILTER.

Before running DSN1LOGP
This section contains information you need to know before you run DSN1LOGP.

 Chapter 3-8. DSN1LOGP 477

 DSN1LOGP

 Environment
DSN1LOGP runs as a batch MVS job.

You can use DSN1LOGP on archive data sets, but not active data sets, when DB2
is running.

 Authorization required
DSN1LOGP requires no special authorization. However, if any of the data sets
involved is RACF-protected, the authorization ID of the job must have RACF
authority.

 Control statement
See “Syntax and options of the control statement” on page 471 for DSN1LOGP
syntax and option descriptions.

Required data sets
When you execute DSN1LOGP, you must provide the following DD statements:

SYSPRINT All error messages, exception conditions, and the detail report are
written to the SYSPRINT file. The logical record length (LRECL) is
131.

SYSIN Keywords are specified in this file. The control statement keywords
are described under “Option descriptions” on page 472. The LRECL
must be 80. Keywords and values must appear in characters 1
through 72. You can specify as many as 50 control statements for a
given job. All records are concatenated into a single string.

SYSSUMRY The formatted output of a summary report is written to the
SYSSUMRY file. The LRECL is 131. For an example of the
appropriate JCL, see page 482.

The recovery log is identified by DD statements described by the stand-alone log
services. For a description of these services, see Appendix C (Volume 2) of DB2
Administration Guide.

Identifying log data sets
You must identify to DSN1LOGP the log data sets to process by including at least
one of the following DD statements.

BSDS The BSDS identifies and provides information about all active log data
sets and archive log data sets that exist in your DB2 subsystem.
When you identify the BSDS to DSN1LOGP, you must also provide
the beginning and ending relative byte addresses (RBAs) for the
range of the recovery log you want displayed. DSN1LOGP then
associates the beginning and ending RBA specifications you provide
with the appropriate data set names.

See Example 1 on page 481 for guidance in using this DD statement.

ACTIVEn If the BSDS is not available, and if the active log data sets involved
have been copied and sent to you, you can specify the set of active
log data sets to be processed by DSN1LOGP by specifying one or
more ACTIVE DD statements. If the REPRO command of access

478 Utility Guide and Reference

 DSN1LOGP

method services was used to copy the active log to tape, you must
identify this data set in an ARCHIVE DD statement.

Each DD statement that you include identifies another active log data
set. If you identify more than one active log data set, you must list
the ACTIVEn DD statements in ascending log RBA sequence. For
example, ACTIVE1 must identify a portion of the log that is less than
ACTIVE2; ACTIVE2 must identify a portion of the log that is less than
ACTIVE3. If you do not specify this correctly, errors that DSN1LOGP
does not detect can occur.

When you identify active log data sets, you do not need to use the
RBASTART and RBAEND keywords (as you do when you identify the
BSDS). DSN1LOGP scans all active log data sets the job indicates,
but they must be in the correct log RBA sequence.

See Example 2 on page 481 for guidance in using these DD
statements.

ARCHIVE If the BSDS is not available (as described under ACTIVEn, above),
you can specify which archive log data sets are to be processed by
specifying one ARCHIVE DD statement, concatenated with one or
more DD statements as shown in Example 3 on page 481.

Each DD statement you include identifies another archive log data set.
If you identify more than one archive log data set, you must list the
DD statements corresponding to the multiple archive log data sets in
ascending log RBA sequence. If you do not specify this correctly,
errors that DSN1LOGP does not detect can occur.

When you identify archive log data sets, you do not need to use the
RBASTART and RBAEND keywords. DSN1LOGP scans all archive
log data sets the job indicates, but they must be in the correct log
RBA sequence.

See Example 3 on page 481 for guidance in using the ARCHIVE DD
statement.

Data sharing requirements: When selecting log records from more than one DB2
subsystem, you must use all of the following DD statements to locate the log data
sets:

 GROUP
 MxxBSDS
 MxxARCHV
 MxxACTn

See Appendix C (Volume 2) of DB2 Administration Guide for descriptions of those
statements. If you use GROUP or MxxBSDSs to locate the log data sets, you must
use LRSNSTART to define the selection range.

 Using DSN1LOGP
This section describes the following tasks associated with running the DSN1LOGP
utility:

“Reading archive log data sets on tape” on page 480
“Locating table and index identifiers” on page 480

 Chapter 3-8. DSN1LOGP 479

 DSN1LOGP

Reading archive log data sets on tape
If your archive logs are stored on tape, two files are constructed on tape during the
archiving process. The first file is the BSDS, and the second is a dump of the
active log that is currently being archived. If a failure occurs during the time the
BSDS is being archived, DB2 might omit the BSDS. In this case, the first file
contains the active log.

If archiving is performed on tape, the first letter of the lowest-level qualifier of the
archived information varies for the first and second data sets on the tape. The first
letter of the first data set is B (for BSDS), and the first letter of the second data set
is A (for archive). Hence, the data set names all end in Axxxxxxx, and the DD
statement identifies each of them as the second data set on the corresponding
tape:

LABEL=(2,SL)

When reading archive log data sets on tape (or copies of active log data sets on
tape), add one or more of the following MVS JES statements:

JES2 environment JCL Description

/*SETUP Alert the MVS operator to prepare to mount a
specified list of tapes.

/*HOLD Place the job in HOLD status until the operator has
located the tapes and is ready to release the job.

TYPRUN=HOLD Perform the same function as /*HOLD. This JCL is
placed on the JOB card.

JES3 Environment JCL Description

//*MAIN SETUP=JOB Alert the MVS operator to mount the initial volumes
before the job executes.

//*MAIN HOLD=YES Place the job in HOLD status until the operator is
ready to release the job.

TYPRUN=HOLD Perform the same function as //*MAIN HOLD=YES.
This JCL is placed on the JOB card.

Alternatively, you can submit the job to an MVS initiator that has been established
by your operations center for exclusive use by jobs that require tape mounts. You
can specify the initiator class using the CLASS parameter on the JOB card, in both
JES2 and JES3 environments.

| For additional information on these options, refer to the OS/390 MVS JCL User's
| Guide or the OS/390 MVS JCL Reference.

Locating table and index identifiers
You can use the DSN1PRNT utility to find the DBIDs, PSIDs, ISOBIDs, and OBIDs
of the tables and indexes from the system tables. For more information, see
“Chapter 3-9. DSN1PRNT” on page 493.

480 Utility Guide and Reference

 DSN1LOGP

Sample control statements
Example 1: Using DSN1LOGP with an available BSDS. This example shows
how to extract the information from the recovery log when you have the BSDS
available. The extraction starts at the log RBA of X'AF000' and ends at the log
RBA of X'B3000', for the table space or index space identified by the DBID of
X'10A' (266 decimal) and the OBID of X'1F' (31 decimal).

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//BSDS DD DSN=DSNCAT.BSDS%1,DISP=SHR

//SYSIN DD �

RBASTART (AF%%%) RBAEND (B3%%%)

DBID (1%A) OBID(1F)

/�

You can think of the DB2 recovery log as a large sequential file. Whenever
recovery log records are written, they are written to the end of the log. A log RBA is
the address of a byte on the log. Because the recovery log is larger than a single
data set, the recovery log is physically stored on many data sets. DB2 records the
RBA ranges and their corresponding data sets in the BSDS. To determine which
data set contains a specific RBA, read the information about the DSNJU004 utility
on page 429and see Section 4 (Volume 1) of DB2 Administration Guide. During
normal DB2 operation, messages are issued that include information about log
RBAs.

Example 2: Using DSN1LOGP on the active log (no BSDS available). This
example shows how to extract the information from the active log when the BSDS
is not available. The extraction includes log records that apply to the table space or
index space identified by the DBID of X'10A' and the OBID of X'1F'. The only
information that is extracted is information relating to page numbers X'3B' and
X'8C'. You can omit beginning and ending RBA values for ACTIVEn or ARCHIVE
DD statements, because the DSN1LOGP search includes all specified ACTIVEn
DD statements. The DD statements ACTIVE1, ACTIVE2, and ACTIVE3 specify the
log data sets in ascending log RBA range. Use the DSNJU004 utility to determine
what the log RBA range is for each active log data set. If the BSDS is not available
and you cannot determine the ascending log RBA order of the data sets, you must
run each log data set individually.

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//ACTIVE1 DD DSN=DSNCAT.LOGCOPY1.DS%2,DISP=SHR RBA X'A%%%' - X'BFFF'

//ACTIVE2 DD DSN=DSNCAT.LOGCOPY1.DS%3,DISP=SHR RBA X'C%%%' - X'EFFF'

//ACTIVE3 DD DSN=DSNCAT.LOGCOPY1.DS%1,DISP=SHR RBA X'F%%%' - X'12FFF'

//SYSIN DD �

DBID (1%A) OBID(1F) PAGE(3B) PAGE(8C)

/�

Example 3: Using DSN1LOGP on archive log data (no BSDS available). This
example shows how to extract the information from archive logs when the BSDS is
not available. The extraction includes log records that apply to a single unit of
recovery (whose URID is X'61F321'). Because the BEGIN UR is the first record

 Chapter 3-8. DSN1LOGP 481

 DSN1LOGP

for the unit of recovery and is at X'61F321', the beginning RBA is specified to
indicate that it is the first RBA in the range from which to extract recovery log
records. Also, because no ending RBA value is specified, all specified archive logs
are scanned for qualifying log records. The specification of DBID(4) limits the scan
to changes that the specified unit of recovery made to all table spaces and index
spaces in the database whose DBID is X'4'.

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//ARCHIVE DD DSN=DSNCAT.ARCHLOG1.A%%%%%37,UNIT=TAPE,VOL=SER=T1%%67,

// DISP=(OLD,KEEP),LABEL=(2,SL)

// DD DSN=DSNCAT.ARCHLOG1.A%%%%%39,UNIT=TAPE,VOL=SER=T3%897,

// DISP=(OLD,KEEP),LABEL=(2,SL)

// DD DSN=DSNCAT.ARCHLOG1.A%%%%%41,UNIT=TAPE,VOL=SER=T%6573,

// DISP=(OLD,KEEP),LABEL=(2,SL)

//SYSIN DD �

 RBASTART (61F321)

URID (61F321) DBID(4)

/�

Example 4: Using DSN1LOGP with the SUMMARY option. The DSN1LOGP
SUMMARY option allows you to scan the recovery log to determine what work is
incomplete at restart time. You can specify this option either by itself or when you
use DSN1LOGP to produce a detail report of log data. Summary log results appear
in SYSSUMRY; therefore, you must include a SYSSUMRY DD statement as part of
the JCL with which you execute DSN1LOGP.

This example produces both a detail and a summary report using the BSDS to
identify the log data sets. The summary report summarizes all recovery log
information within the RBASTART and RBAEND specifications. You cannot limit the
output of the summary report with any of the other options, except by using the
FILTER option with a URID or LUWID specification. RBASTART and RBAEND
specification use depends on whether a BSDS is used.

This example is similar to Example 1, in that it shows how to extract the information
from the recovery log when you have the BSDS available. However, this example
also shows you how to specify a summary report of all logged information between
the log RBA of X'AF000' and the log RBA of X'B3000'. This summary is
generated with a detail report, but will be printed to SYSSUMRY separately.

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT DD SYSOUT=A

//SYSSUMRY DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//BSDS DD DSN=DSNCAT.BSDS%1,DISP=SHR

//SYSIN DD �

RBASTART (AF%%%) RBAEND (B3%%%)

DBID (1%A) OBID(1F) SUMMARY(YES)

/�

Example 5: Data sharing— using DSN1LOGP on all members of a data
sharing group. This example shows extract log information pertaining to the table
space identified by DBID X'112' and OBID X'1D', from all members of a data
sharing group.

482 Utility Guide and Reference

 DSN1LOGP

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT SYSOUT=A

//SYSABEND SYSOUT=A

//GROUP DD DSN=DSNDB%G.BSDS%1,DISP=SHR

//SYSIN DD �

 DATAONLY (YES)

LRSNSTART (A7951A%%1AD5) LRSNEND (A7951A%%3B6A)

DBID (112) OBID(1D)

/�

Example 6: Data sharing— using DSN1LOGP on a single member of a data
sharing group. This example shows extract log information pertaining to the table
space identified by DBID X'112' and OBID X'1D', from a single member of a data
sharing group.

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT SYSOUT=A

//SYSABEND SYSOUT=A

//M%1BSDS DD DSN=DSNDB%G.DB1G.BSDS%1,DISP=SHR

//SYSIN DD �

 DATAONLY (YES)

LRSNSTART (A7951A%%1AD5) LRSNEND (A7951A%%3B6A)

DBID (112) OBID(1D)

/�

 DSN1LOGP output
 Interpreting output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2, you might need to refer to licensed
documentation to interpret output from this utility.

Reviewing DSN1LOGP output
With the SUMMARY option, you can produce a summary report, a detail report, or
both.

Figure 32 on page 485 shows a sample of the summary report. Figure 33 on
page 486 shows a sample of the detail report. Figure 34 on page 491 shows a
sample of data propagation information from a summary report. A description of the
output precedes each sample.

Description of the summary report
The summary report on page Figure 32 on page 485 contains a summary of
completed events, consisting of an entry for each completed unit of work. Each
entry shows, among other information, the start time, user, and all page sets that
were modified.

The summary report is divided into two distinct sections:

� The first section is headed by the message:

DSN115%I SUMMARY OF COMPLETED EVENTS

 Chapter 3-8. DSN1LOGP 483

 DSN1LOGP

� The second section is headed by the message:

DSN1157I RESTART SUMMARY

The first section lists all completed units of recovery (URs) and checkpoints within
the range of the log scanned. Events are listed chronologically, with URs listed by
the order of their completion and checkpoints listed when the end of a checkpoint is
processed. The page sets changed by each completed UR are listed. If a log
record associated with a UR is unavailable (as it would be if, for example, the
range of the log scanned is not large enough to contain all records for a given UR),
the attribute INFO=PARTIAL is displayed for the UR. Otherwise, the UR is marked
INFO=COMPLETE.

The DISP attribute can be one of the following: COMMITTED, ABORTED,
| INFLIGHT, IN-COMMIT, IN-ABORT, or POSTPONED ABORT. The DISP attributes

COMMITTED and ABORTED are used in the first section; the remaining attributes
are used in the second section.

The list in the second section shows the work required of DB2 at restart as it is
recorded in the log you specified. If the log is available, the checkpoint to be used
is identified, as is each outstanding UR together with the page sets it changed.
Each page set with pending writes is also identified, as is the earliest log record
required to complete those writes. If a log record associated with a UR is
unavailable, the attribute INFO=PARTIAL is displayed, and the identification of
modified page sets is incomplete for that UR.

484 Utility Guide and Reference

 DSN1LOGP

DSN1212I DSN1LGRD FIRST LOG LRSN ENCOUNTERED AA52696822%D

==

DSN115%I SUMMARY OF COMPLETED EVENTS

DSN1151I DSN1LPRT MEMBER=V61B UR CONNID=V61B CORRID=%21.OPNLGR%% AUTHID=SYSOPR PLAN=SYSTEM

START DATE=94.347 TIME=11:15:22 DISP=COMMITTED INFO=COMPLETE

STARTRBA=%%%%%%%%E57% ENDRBA=%%%%%%%%EB64 STARTLRSN=AA52696B1269 ENDLRSN=AA526999D14D NID=�

 LUWID=USIBMSY.SYEC1B.AA52696825CE.%%%1 COORDINATOR=�

 PARTICIPANTS=�

 DATA MODIFIED:

 DATABASE=%%%1=DSNDB%1 PAGE SET=%%CF=SYSLGRNX

 DATABASE=%%%1=DSNDB%1 PAGE SET=%%87=DSNLLX%1

 DATABASE=%%%1=DSNDB%1 PAGE SET=%%86=DSNLLX%2

DSN1151I DSN1LPRT MEMBER=V61B UR CONNID=V61B CORRID=%21.OPNLGR%% AUTHID=SYSOPR PLAN=SYSTEM

START DATE=94.347 TIME=11:16:14 DISP=COMMITTED INFO=COMPLETE

STARTRBA=%%%%%%%%ECFC ENDRBA=%%%%%%%%F2%A STARTLRSN=AA52699C97A9 ENDLRSN=AA52699CADC5 NID=�

 LUWID=USIBMSY.SYEC1B.AA52699C95%8.%%%1 COORDINATOR=�

 PARTICIPANTS=�

 DATA MODIFIED:

 DATABASE=%%%1=DSNDB%1 PAGE SET=%%CF=SYSLGRNX

 DATABASE=%%%1=DSNDB%1 PAGE SET=%%87=DSNLLX%1

 DATABASE=%%%1=DSNDB%1 PAGE SET=%%86=DSNLLX%2

....

DSN1213I DSN1LGRD LAST LOG LRSN ENCOUNTERED AA527C9B8392

DSN1214I NUMBER OF LOG RECORDS READ %%%%%%%%%%%%4991

==

DSN1157I RESTART SUMMARY

DSN1153I DSN1LSIT CHECKPOINT MEMBER=V61B

STARTRBA=%%%%%%%68CD3 ENDRBA=%%%%%%%6CAED STARTLRSN=AA527AA8%9DF ENDLRSN=AA527AA829F4

 DATE=94.347 TIME=12:32:29

DSN1162I DSN1LPRT MEMBER=V61C UR CONNID=BATCH CORRID=S5529927 AUTHID=ADMF%%1 PLAN=PLNFW543

START DATE=94.347 TIME=12:41:%4 DISP=INFLIGHT INFO=COMPLETE

STARTRBA=%%%%%%%16%%% STARTLRSN=AA527C9278DF NID=�

 LUWID=USIBMSY.SYEC1C.AA527C22E283.%%%1 COORDINATOR=�

 PARTICIPANTS=�

 DATA MODIFIED:

 DATABASE=%113=DBFW54%1 PAGE SET=%%%2=TPFW54%1

 DATABASE=%113=DBFW54%1 PAGE SET=%%%5=IPFW54%1

DSN1162I DSN1LPRT MEMBER=V61A UR CONNID=BATCH CORRID=S5529925 AUTHID=ADMF%%1 PLAN=PLNFW541

START DATE=94.347 TIME=12:41:%4 DISP=INFLIGHT INFO=COMPLETE

STARTRBA=%%%%%1F9A3C1 STARTLRSN=AA527C92E419 NID=�

 LUWID=USIBMSY.SYEC1DB2.AA527C1D674B.%%%1 COORDINATOR=�

 PARTICIPANTS=�

 DATA MODIFIED:

 DATABASE=%113=DBFW54%1 PAGE SET=%%%2=TPFW54%1

 ...

 DSN116%I DATABASE WRITES PENDING:

 DATABASE=%%%1=DSNDB%1 PAGE SET=%%46=DSNLUX%2 START=%%%%%%%68CD3

 DATABASE=%%%1=DSNDB%1 PAGE SET=%%44=DSNLUX%1 START=%%%%%%%68CD3

 ...

 DATABASE=%%%6=DSNDB%6 PAGE SET=%%76=DSNUCX%1 START=%%%%%%%68CD3

 DATABASE=%%%6=DSNDB%6 PAGE SET=%%72=DSNUCH%1 START=%%%%%%%68CD3

 ...

Figure 32. Sample DSN1LOGP summary report

 Chapter 3-8. DSN1LOGP 485

 DSN1LOGP

Description of the detail report
The detail report on page Figure 33 includes the following records:

� Redo/undo log records

� System events log records, including begin and end checkpoint records, begin
current status rebuild records, and begin forward and backward recovery
records

� Page set control log records, including open and close page set log records,
open and close data set log records, set write, reset write, and page set write
log records

� UR control log records for the complete or incomplete unit of recovery

You can reduce the volume of the detail log records by specifying an optional
parameter.

DSN1212I DSN1LGRD FIRST LOG RBA ENCOUNTERED %%%%%335916E

%%%%%33591D4 MEMBER(M%1) LRSN(AB62536BE583) DBID(%%%6) OBID(%%B2)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET STATUS RECORD)

�LRH� %%66%%66 %%%2%%%9 %E8%%%%% %%%%%%%% %%%%%335 916E%126 %%%%%335 916EAB62

 536BE583 %%%1

%%%% %%%6%%B2 C4E2D5C4 C2F%F64% C4E2D5E3 D5E7F%F1 %%%1%%%% 92%18%%% %%%%%334

%%2% EC3AAB62 526%AB%B %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%%

%%%%%%%1%9E2 MEMBER(M%2) LRSN(AB6253746CE3) DBID(%113) OBID(%%%8)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET OPEN)

�LRH� %%A%%%6E %%%2%%%1 %E8%%%%% %%%%%%%% %%%%%%%% %%%%%126 %%%%%%%% %%%%AB62

 53746CE3 %%%2

%%%% %113%%%8 6C%1%1%% %%%%%%%5 %%4%C4C2 C6E6F%F% F1F1C9C3 C6E6F%F% F%F1%%%1

%%2% %%%6%%%% 1%%%92%1 %%13%%2% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%%

%%4% %%%%%%%% %%%%%%1% %%%1%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%%

%%6% %%AB624B 192CEEAB 624B4783 F8%%%%%% %%%%C4E2 D5C3F4F1 F%4%

%%%%%%%1%A82 MEMBER(M%2) URID(%%%%%%%1%A82) LRSN(AB62537478%1)

 TYPE(UR CONTROL) SUBTYPE(BEGIN UR)

�LRH� %%9%%%A% %%2%%%%1 %38%%%%% %%%1%A82 %%%%%%%% %%%%%126 %%%%%%%% %%%%AB62

 537478%1 %%%2

%%%% %%%1%%%% %%%%D%%% %%%%%%%% %%%%%7%% %%%%D4F% F%F%F1F% F2F54%4% 4%4%D7C6

%%2% E5E3F%F% F34%AB62 537477FC B8%3C4E2 D5E3C5D7 F34%C2C1 E3C3C84% 4%4%C2C1

%%4% E3C3C84% 4%4%%%%% %%%%%%%% %%%%%%1A %%%1E4E2 C9C2D4E2 E84%E2E8 C5C3F1C4

%%6% 4%4%AB62 5362554A %%%1

%%%%%%%1%B12 MEMBER(M%2) URID(%%%%%%%1%A82) LRSN(AB62537478%7)

TYPE(UNDO) SUBTYPE(SAVEPOINT)

�LRH� %%2F%%9% 22%%%%14 %E8%%%%% %%%1%A82 %%%%%%%1 %A82%126 %%%%%%%1 %A82AB62

 537478%7 %%%2

%%%% %%E7D9E4 C9%%%%%% %2

%%%%%%%1%B42 MEMBER(M%2) URID(%%%%%%%1%A82) LRSN(AB62537478%E) DBID(%113) OBID(%%%8) PAGE(%%%%%%%3)

TYPE(UNDO REDO) SUBTYPE(TYPE 2 INDEX UPDATE) CLR(NO) PROCNAME(DSNKDLE)

�LRH� %%53%%2F %6%%%%19 %E8%%%%% %%%1%A82 %%%%%%%1 %B12%126 %%%%%%%1 %B12AB62

 537478%E %%%2

�LG�� 84%113%% %8%%%%%3 63%%%%%% %%%%%%%% %%%%

%%%% %%1B3%%% %%B4%%%1 %%%%%2%1 %%%A%%%% %2C5C5F% F6C1C1D4 F3F1C1

Figure 33 (Part 1 of 5). Sample DSN1LOGP detail report

486 Utility Guide and Reference

 DSN1LOGP

%%%%%%%1%B94 MEMBER(M%2) URID(%%%%%%%1%A82) LRSN(AB6253747CEF) DBID(%113) OBID(%%%8) PAGE(%%%%%%%3)

TYPE(UNDO REDO) SUBTYPE(TYPE 2 INDEX UPDATE) CLR(NO) PROCNAME(DSNKINSL)

�LRH� %%53%%53 %6%%%%19 %E8%%%%% %%%1%A82 %%%%%%%1 %B42%126 %%%%%%%1 %B42AB62

 53747CEF %%%2

�LG�� %4%113%% %8%%%%%3 64%%%%%% %%%%%%%% %%%%

%%%% %%1B1%%% %%B3%%%1 %%%%%2%1 %%%A2%%% %%C5C5F% F6C1C1D7 D7D3F4

......

%%%%%%%11%A% MEMBER(M%2) URID(%%%%%%%11%A%) LRSN(AB625379B94A)

 TYPE(UR CONTROL) SUBTYPE(BEGIN UR)

�LRH� %%9%%%A% %%2%%%%1 %38%%%%% %%%11%A% %%%%%%%% %%%%%126 %%%%%%%% %%%%AB62

 5379B94A %%%2

%%%% %%%2%%%% %%%%4%%% %%%%%%%% %%%%%7%% %%%%F%F2 F14BD6D7 D5D3C7D9 F%F%E2E8

%%2% E2D6D7D9 4%4%AB62 5379B945 %7%44%4% 4%4%4%4% 4%4%%%%% %%%%%%%% %%%%E5F4

%%4% F2C44%4% 4%4%%%%% %%%%%%%% %%%%%%1A %%%1E4E2 C9C2D4E2 E84%E2E8 C5C3F1C4

%%6% 4%4%AB62 53782F9A %%%1

%%%%%%%1113% MEMBER(M%2) URID(%%%%%%%11%A%) LRSN(AB625379B955) DBID(%%%1) OBID(%%CF) PAGE(%%%%%%%9)

TYPE(UNDO REDO) SUBTYPE(INSERT IN A DATA PAGE) CLR(NO) PROCNAME(DSNISMRT)

�LRH� %%74%%9% %6%%%%%1 %E8%%%%% %%%11%A% %%%%%%%1 1%A%%126 %%%%%%%1 1%A%AB62

 5379B955 %%%2

�LG�� 9%%%%1%% CF%%%%%9 31%%AB62 51C6F5F1 %%%%

%%%% %%3C5%36 %%D1%%%% %%%%34%% D136%113 %%%5F%F7 F1F8F9F5 F%F1F4F5 F2F8F4F8

%%2% %%%%%%%1 %EB7%%%% %%%%%%%% 8%%%AB62 53782F89 %%%%%%%% %%%%%%%2

%%%%%%%111A4 MEMBER(M%2) LRSN(AB625379D424) DBID(%%%1) OBID(%%87)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET OPEN)

�LRH� %%A%%%74 %%%2%%%1 %E8%%%%% %%%%%%%% %%%%%%%1 1%%%%126 %%%%%%%1 1%%%AB62

 5379D424 %%%2

%%%% %%%1%%87 6C%1%1%% %%%%%%CF %%4%C4E2 D5C4C2F% F14%C4E2 D5D3D3E7 F%F1%%%1

%%2% %%D1%%%% 1%%%92%% %%13%%2% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%%

%%4% %%%%%%%% %%%%%%1% %%%1%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%%

%%6% %%AA6F9F 3E74EFAA 8%DE586F F5%%%%%% %%%%C4E2 D5C3F4F1 F%4%

%%%%%%%11244 MEMBER(M%2) URID(%%%%%%%11%A%) LRSN(AB625379D47D) DBID(%%%1) OBID(%%87) PAGE(%%%%%%%5)

TYPE(UNDO REDO) SUBTYPE(TYPE 2 INDEX UPDATE) CLR(NO) PROCNAME(DSNKINSL)

�LRH� %%57%%A% %6%%%%19 %E8%%%%% %%%11%A% %%%%%%%1 113%%126 %%%%%%%1 113%AB62

 5379D47D %%%2

�LG�� %%%%%1%% 87%%%%%5 64%%%%%% %%%%%%%% %%%%

%%%% %%1F1%%% %%7F%%%1 %%%%%936 %%%E2%%% %%%113%% %58%%%%% %2549DAC 87D%76

%%%%%33592A% MEMBER(M%1) LRSN(AB62537A111E) DBID(%%%1) OBID(%%86)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET STATUS RECORD)

�LRH� %%66%%66 %%%2%%%9 %E8%%%%% %%%%%%%% %%%%%335 923A%126 %%%%%335 923AAB62

 537A111E %%%1

%%%% %%%1%%86 C4E2D5C4 C2F%F14% C4E2D5D3 D3E7F%F2 %%%1%%%% 92%18%%% %%%%%334

%%2% EC3AAB62 526%AB%B %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%%

%%%%%%%1129B MEMBER(M%2) LRSN(AB62537B4%E6) DBID(%%%1) OBID(%%86)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET OPEN)

�LRH� %%A%%%57 %%%2%%%1 %E8%%%%% %%%%%%%% %%%%%%%1 11A4%126 %%%%%%%1 11A4AB62

 537B4%E6 %%%2

%%%% %%%1%%86 6C%1%1%% %%%%%%CF %%4%C4E2 D5C4C2F% F14%C4E2 D5D3D3E7 F%F2%%%1

%%2% %%D1%%%% 1%%%92%% %%13%%2% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%%

%%4% %%%%%%%% %%%%%%1% %%%1%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%%

%%6% %%AB624E 7933BEAB 625%13%9 25%%%%%% %%%%C4E2 D5C3F4F1 F%4%

%%%%%%%1133B MEMBER(M%2) URID(%%%%%%%11%A%) LRSN(AB62537B4242) DBID(%%%1) OBID(%%86) PAGE(%%%%%%%5)

TYPE(UNDO REDO) SUBTYPE(TYPE 2 INDEX UPDATE) CLR(NO) PROCNAME(DSNKINSL)

�LRH� %%53%%A% %6%%%%19 %E8%%%%% %%%11%A% %%%%%%%1 1244%126 %%%%%%%1 1244AB62

 537B4142 %%%2

�LG�� %%%%%1%% 86%%%%%5 64%%%%%% %%%%%%%% %%%%

%%%% %%1B1%%% %%7F%%%1 %%%%%936 %%%A2%%% %%%113%% %5AB6253 782F89

Figure 33 (Part 2 of 5). Sample DSN1LOGP detail report

 Chapter 3-8. DSN1LOGP 487

 DSN1LOGP

%%%%%%%1138E MEMBER(M%2) URID(%%%%%%%11%A%) LRSN(AB62537B4931)

 TYPE(UR CONTROL) SUBTYPE(BEGIN COMMIT1)

�LRH� %%5C%%53 %%2%%%%2 %38%%%%% %%%11%A% %%%%%%%1 133B%126 %%%%%%%1 133BAB62

 537B4931 %%%2

%%%% %%%2%%%% %%%%4%%% %%%%%%%% %%%%%7%% %%%%F%F2 F14BD6D7 D5D3C7D9 F%F%4%4%

%%2% 4%4%4%4% 4%4%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%

%%%%%%%113EA MEMBER(M%2) URID(%%%%%%%11%A%) LRSN(AB62537B494%)

TYPE(UR CONTROL) SUBTYPE(PHASE 1 TO 2)

�LRH� %%34%%5C %%2%%%%C %38%%%%% %%%11%A% %%%%%%%1 138E%126 %%%%%%%1 138EAB62

 537B494% %%%2

%%%% %%%2%%%% %%%%4%%% %%%%%%%% %%%%

%%%%%33685DE MEMBER(M%1) LRSN(AB6254D9A231) DBID(%%%1) OBID(%%1F)

TYPE(CHECKPOINT) SUBTYPE(DBE TABLE WITH EXCEPTION DATA)

�LRH� %%61%%3E 21%%%%1D %E8%%%%% %%%%%%%% %%%%%336 85A%%126 %%%%%336 85A%AB62

 54D9A231 %%%1

%%%% %%%%%%%% C4E2D5C4 C2F%F14% C4C2C4F% F14%4%4% %%%1%%1F %%%%%%%% %%%%%%%%

%%2% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%

%%%%%336863F MEMBER(M%1) LRSN(AB6254D9A237) DBID(%%%1) OBID(%%1F)

TYPE(CHECKPOINT) SUBTYPE(DBE TABLE WITH PIECE DATA)

�LRH� %1F6%%61 21%%%%1E %E8%%%%% %%%%%%%% %%%%%336 85DE%126 %%%%%336 85DEAB62

 54D9A237 %%%1

%%%% %%%%%1%% 1FC4E2D5 C4C2F%F1 4%C4C2C4 F%F14%4% 4%%%%%%% %%2%FFFF FFFFFFFF

%%2% %%%%%%%% %%%%%%%% %%%%%%6C %%%%%%9% FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF

%%4% FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%%

%%6% %%%%%%%% FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF

%%8% FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%% FFFFFFFF %%%%%%%%

%%A% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF

%%C% FFFFFF%% %%%%%%%% %%%%%%%% FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%%

%%E% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%%

%1%% FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%%

%12% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%% FFFFFFFF %%%%%%%% %%%%%%%%

%14% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%%

%16% %%%%%%%% %%%%%%%% FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%%

%18% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%% FFFFFFFF

%1A% %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%%

%1C% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%%

%%%%%%%3956D MEMBER(M%2) LRSN(AB6254EE48E9) DBID(%%%6) OBID(%%%9)

TYPE(CHECKPOINT) SUBTYPE(DBE TABLE WITH EXCEPTION DATA)

�LRH� %%61%%3E 21%%%%1D %E8%%%%% %%%%%%%% %%%%%%%3 952F%126 %%%%%%%3 952FAB62

 54EE48E9 %%%2

%%%% %%%%%%%% C4E2D5C4 C2F%F64% E2E8E2C4 C2C1E2C5 %%%6%%%9 %%%%%%%% %%%%%%%%

%%2% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%

%%%%%%%395CE MEMBER(M%2) LRSN(AB6254EE48F2) DBID(%%%6) OBID(%%%9)

TYPE(CHECKPOINT) SUBTYPE(DBE TABLE WITH PIECE DATA)

�LRH� %1F6%%61 21%%%%1E %E8%%%%% %%%%%%%% %%%%%%%3 956D%126 %%%%%%%3 956DAB62

 54EE48F2 %%%2

%%%% %%%%%6%% %9C4E2D5 C4C2F%F6 4%E2E8E2 C4C2C1E2 C5%%%%%% %%2%FFFF FFFFFFFF

%%2% %%%%%%%% %%%%%%%% %%%%%1BC %%%%%1D4 FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF

%%4% FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%%

%%6% %%%%%%%% FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF

%%8% FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%% FFFFFFFF %%%%%%%%

%%A% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF

%%C% FFFFFF%% %%%%%%%% %%%%%%%% FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%%

%%E% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%%

%1%% FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%%

%12% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%% FFFFFFFF %%%%%%%% %%%%%%%%

%14% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%%

%16% %%%%%%%% %%%%%%%% FFFFFFFF %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%%

%18% %%%%FFFF FFFF%%%% %%%%%%%% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%% FFFFFFFF

%1A% %%%%%%%% %%%%%%%% %%FFFFFF FF%%%%%% %%%%%%%% %%%%FFFF FFFF%%%% %%%%%%%%

%1C% %%%%%%FF FFFFFF%% %%%%%%%% %%%%%%%%

Figure 33 (Part 3 of 5). Sample DSN1LOGP detail report

488 Utility Guide and Reference

 DSN1LOGP

%%%%%%%57B32 MEMBER(M%2) LRSN(AB62564FD672) DBID(%%%1) OBID(%%CF)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET OPEN)

�LRH� %%A%%%6C %%%2%%%1 %E8%%%%% %%%%%%%% %%%%%%%5 7AC6%126 %%%%%%%5 7AC6AB62

 564FD672 %%%2

%%%% %%%1%%CF 6C%1%1%% %%%%%%%% %%4%C4E2 D5C4C2F% F14%E2E8 E2D3C7D9 D5E7%%%1

%%2% %%%%%%%% 1%%%8%%% %%13%%2% %%%%%%%% %%%%%%%% %%%%%%%% 2A%C%%%% %%%%%%%%

%%4% %%%%%%%% %%%%%%1% %%%1%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%%%%%

%%6% %%AB6251 91E1F9AB 6256%CB6 B8%%%%%% %%%%C4E2 D5C3F4F1 F%4%

%%%%%%%57BD2 MEMBER(M%2) URID(%%%%%%%57BD2) LRSN(AB62564FD6D3)

 TYPE(UR CONTROL) SUBTYPE(BEGIN UR)

�LRH� %%74%%A% %%2%%%%1 %38%%%%% %%%57BD2 %%%%%%%% %%%%%126 %%%%%%%% %%%%AB62

 564FD6D3 %%%2

%%%% %%%7%%%% %%%%4%%% %%%%%%%% %%%%%7%% %%%%F%F2 F14BC3D3 E2D3C7D9 F%F%E2E8

%%2% E2D6D7D9 4%4%AB62 564FD6D% F7%34%4% 4%4%4%4% 4%4%%%%% %%%%%%%% %%%%E5F4

%%4% F2C44%4% 4%4%%%%% %%%%%%%% %%%%

%%%%%%%57C46 MEMBER(M%2) URID(%%%%%%%57BD2) LRSN(AB62564FD6DD) DBID(%%%1) OBID(%%CF) PAGE(%%%%%%%9)

TYPE(UNDO REDO) SUBTYPE(UPDATE NOT IN-PLACE , DATA PART ONLY IN A DATA PAGE) CLR(NO) PROCNAME(DSNIREPR)

�LRH� %%6C%%74 %6%%%%%1 %E8%%%%% %%%57BD2 %%%%%%%5 7BD2%126 %%%%%%%5 7BD2AB62

 564FD6DD %%%2

�LG�� 9%%%%1%% CF%%%%%9 2D%%AB62 54DA2429 %%%%

%%%% %%346137 %%D182%% %%21%%13 %%13%57A 9C8%%1AB 625391D6 C4AB6256 4FB%47%%

%%2% %2%%%%%% 8%%1AB62 5391D6C4 %%%%%%%% %%%%%%%2

%%%%%%%57CB2 MEMBER(M%2) URID(%%%%%%%57BD2) LRSN(AB62564FD6FA)

 TYPE(UR CONTROL) SUBTYPE(BEGIN COMMIT1)

�LRH� %%5C%%6C %%2%%%%2 %38%%%%% %%%57BD2 %%%%%%%5 7C46%126 %%%%%%%5 7C46AB62

 564FD6FA %%%2

%%%% %%%7%%%% %%%%4%%% %%%%%%%% %%%%%7%% %%%%F%F2 F14BC3D3 E2D3C7D9 F%F%4%4%

%%2% 4%4%4%4% 4%4%%%%% %%%%%%%% %%%%%%%% %%%%%%%% %%%%

%%%%%%%57D%E MEMBER(M%2) URID(%%%%%%%57BD2) LRSN(AB62564FD7%9)

TYPE(UR CONTROL) SUBTYPE(PHASE 1 TO 2)

�LRH� %%34%%5C %%2%%%%C %38%%%%% %%%57BD2 %%%%%%%5 7CB2%126 %%%%%%%5 7CB2AB62

 564FD7%9 %%%2

%%%% %%%7%%%% %%%%4%%% %%%%%%%% %%%%

%%%%%%%57D42 MEMBER(M%2) LRSN(AB62564FE492) DBID(%%%1) OBID(%%CF)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET WRITE)

�LRH� %%6C%%34 %%%2%%%7 %E8%%%%% %%%%%%%% %%%%%%%5 7B32%126 %%%%%%%5 7B32AB62

 564FE492 %%%2

%%%% %%%%F5E2 C3D4%%%1 %%CFC4E2 D5C4C2F% F14%E2E8 E2D3C7D9 D5E7%%%% %%%%%%%%

%%2% %%%%AB62 564FD672 AB62564F D672%%%% %%%%%%%% %1%17EFD EAB8%%%% %9%%%%%9

 %%4% AB62564F D6DD

%%%%%%%57DAE MEMBER(M%2) URID(%%%%%%%57BD2) LRSN(AB62564FE4C9)

 TYPE(UR CONTROL) SUBTYPE(END COMMIT2)

�LRH� %%34%%6C %%2%%%1% %38%%%%% %%%57BD2 %%%%%%%5 7D%E%126 %%%%%%%5 7D%EAB62

 564FE4C9 %%%2

%%%% %%%7%%%% %%%%4%%% %%%%%%%% %%%%

%%%%%%%57DE2 MEMBER(M%2) LRSN(AB62564FE55%) DBID(%115) OBID(%%%2)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET CLOSE)

�LRH� %%2A%%34 %%%2%%%3 %E8%%%%% %%%%%%%% %%%%%%%5 7D42%126 %%%%%%%5 7D42AB62

 564FE55% %%%2

 %%%% %115%%%2

%%%%%%%57E%C MEMBER(M%2) LRSN(AB62564FEAB1) DBID(%113) OBID(%%%C)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET WRITE)

�LRH� %%6C%%2A %%%2%%%7 %E8%%%%% %%%%%%%% %%%%%%%5 7DE2%126 %%%%%%%5 7DE2AB62

 564FEAB1 %%%2

%%%% %%%%F5D7 C3D6%113 %%%CC4C2 C6E6F%F% F1F1C9E4 C6E6F%F% F%F3%%%% %%%%%%%%

%%2% %%%%%%%% %%%4D98E %%%%%%%4 D98E%%%% %%%%%%%% 11%1%%%% %%%%%%%% %3%%%%%3

 %%4% AB62553F 9821

Figure 33 (Part 4 of 5). Sample DSN1LOGP detail report

 Chapter 3-8. DSN1LOGP 489

 DSN1LOGP

%%%%%%%57E78 MEMBER(M%2) LRSN(AB62564FF%72) DBID(%113) OBID(%%%C)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET CLOSE)

�LRH� %%2A%%6C %%%2%%%3 %E8%%%%% %%%%%%%% %%%%%%%5 7E%C%126 %%%%%%%5 7E%CAB62

 564FF%72 %%%2

 %%%% %113%%%C

%%%%%%%57EA2 MEMBER(M%2) LRSN(AB62564FF6%6) DBID(%113) OBID(%%%A)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET WRITE)

�LRH� %%9C%%2A %%%2%%%7 %E8%%%%% %%%%%%%% %%%%%%%5 7E78%126 %%%%%%%5 7E78AB62

 564FF6%6 %%%2

%%%% %%%%F5D7 C3D6%113 %%%AC4C2 C6E6F%F% F1F1C9E4 C6E6F%F% F%F2%%%% %%%%%%%%

%%2% %%%%%%%% %%%4D98E %%%%%%%4 D98E%%%% %%%%%%%% 11%4%%%% %%%%%%%% %3%%%%%3

%%4% AB62553F 9878%%%% %%%%%%%% %4%%%%%4 AB62553F 93%C%%%% %%%%%%%% %5%%%%%5

%%6% AB62553F 95C3%%%% %%%%%%%% %6%%%%%6 AB62553F 9855

%%%%%%%57F3E MEMBER(M%2) LRSN(AB62564FFFBA) DBID(%113) OBID(%%%A)

TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET CLOSE)

�LRH� %%2A%%9C %%%2%%%3 %E8%%%%% %%%%%%%% %%%%%%%5 7EA2%126 %%%%%%%5 7EA2AB62

 564FFFBA %%%2

 %%%% %113%%%A

DSN1213I DSN1LGRD LAST LOG RBA ENCOUNTERED %%%%%337A%%%

DSN1214I NUMBER OF LOG RECORDS READ %%%%%%%%%%%%4661

Figure 33 (Part 5 of 5). Sample DSN1LOGP detail report

Interpreting data propagation information in the summary report
The sample output on page Figure 34 on page 491 shows information from the
DSN1LOGP summary report about log records of changes to DB2 tables that were
defined with DATA CAPTURE CHANGES.

The fields show the following:

� START RBA and END RBA show the first and last RBAs captured for the unit
of recovery that was not retrieved. The range that the start and end RBA cover
can include one or all of the SQL statements within the scope of the unit of
recovery.

� TABLE LIST OVERFLOW tells whether more than 10 distinct data capture
table IDs were updated by this unit of recovery. This example shows no
overflow occurred.

� LR WRITTEN shows the number of written log records that represented
changes to tables defined for data capture and were available to the
DB2CDCEX routine. Recursive SQL changes from DB2CDCEX and changes
from other attachments not associated with DB2CDCEX are not included. If you
receive a value of 2147483647, an overflow occurred and the count is not valid.

� LR RETRIEVED is the number of captured RBAs that were retrieved by
DB2CDCEX. If you receive a value of 2147483647, an overflow occurred and
the count is not valid.

� LR NOT RETRIEVED is the difference between the number of written log
records (LR WRITTEN) and the number of retrieved log records (LR
RETRIEVED). This example shows that four log records were written, and
none were retrieved.

490 Utility Guide and Reference

 DSN1LOGP

DATA PROPAGATION INFORMATION:

START RBA=%%%%%4A1%7F4 END RBA=%%%%%4A1%A5C TABLE LIST OVERFLOW=NO

LR WRITTEN=%%%%%%%%%%%%%%%4 LR RETRIEVED=%%%%%%%%%%%%%%%% LR NOT RETRIEVED=%%%%%%%%%%%%%%%4

 DATABASE=%112=DBCS17%1 PAGESET=%%%2=TSCS17%1 TABLE OBID=%%%5

Figure 34. Sample data propagation information from the summary report

Interpreting error codes
When an error occurs, DSN1LOGP formats a reason code from the DB2
stand-alone log service in the SYSPRINT output. For information about the
stand-alone log service and the reason codes it issues, see Appendix C (Volume 2)
of DB2 Administration Guide.

DSN1LOGP can abend with a user abend code of X'099'. You can find the
corresponding abend reason code in register 15 (at the time of error).

 Chapter 3-8. DSN1LOGP 491

 DSN1LOGP

492 Utility Guide and Reference

 DSN1PRNT

Chapter 3-9. DSN1PRNT

With the DSN1PRNT stand-alone utility, you can print:

� DB2 VSAM data sets that contain table spaces or index spaces (including
dictionary pages for compressed data)

� Image copy data sets
� Sequential data sets that contain DB2 table spaces or index spaces

Using DSN1PRNT, you can print hexadecimal dumps of DB2 data sets and
databases. If you specify the FORMAT option, DSN1PRNT formats the data and
indexes for any page that does not contain an error that would prevent formatting. If
DSN1PRNT detects such an error, it prints an error message just before the page
and dumps the page without formatting. Formatting resumes with the next page.

Compressed records are printed in compressed format.

DSN1PRNT is especially useful when you want to identify the contents of a table
space or index. You can run DSN1PRNT on image copy data sets as well as table

| spaces and indexes. DSN1PRNT accepts an index image copy as input when you
| specify the FULLCOPY option.

| DSN1PRNT is compatible with LOB table spaces, when you specify the LOB
| keyword, and omit the INLCOPY keyword.

Syntax and options of the control statement
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

DSN1PRNT syntax diagram

 Copyright IBM Corp. 1983, 1999 493

 DSN1PRNT

��─ ──┬ ┬───────────────────────── ──┬ ┬────────── ──┬ ┬────────────────────── ──┬ ┬───────── ─────────────────�
| ├ ┤─32K───(1) ────────────────── ├ ┤─FULLCOPY─ └ ┘| ─DSSIZE─| ──(integer ──G) ├ ┤─LARGE───(2)

| └ ┘| ─PAGESIZE──(─ ──┬ ┬─4K── ─)─ ├ ┤─INCRCOPY─ └ ┘─LOB───(3) ──
| ├ ┤─8K── └ ┘─INLCOPY──
| ├ ┤─16K─
| └ ┘─32K─

�─ ──┬ ┬─────────────────── ───�
└ ┘──NUMPARTS(integer)

�─ ──┬ ┬── ──────────�
 └ ┘──PRINT ──┬ ┬─── ──┬ ┬──────────────────────────

| └ ┘──(hexadecimal-constant,hexadecimal-constant) └ ┘──PIECESIZ(integer ──┬ ┬─K─)
 ├ ┤─M─
 └ ┘─G─

�─ ──┬ ┬─────────────────────────────────── ──┬ ┬──────────────────────────────── ────────────────────────��
└ ┘──VALUE(──┬ ┬─string───────────────) └ ┘ ─FORMAT─ ──┬ ┬────────────────────

 └ ┘─hexadecimal-constant─ └ ┘ ─EXPAND─ ──┬ ┬────────
 └ ┘─SWONLY─

Notes:
1 The preferred option is PAGESIZE(32K).
2 The preferred method of specifying LARGE is DSSIZE(4G).
3 Do not specify INLCOPY with the LOB parameter.

Important: If you specify more than one parameter:

� Separate them by commas (no blanks).
� Specify them in any order.

 Option descriptions
Specify one or more of the parameters listed below on the EXEC card to run
DSN1PRNT.

32K Specifies that the SYSUT1 data set has a 32-KB page size. If the
SYSUT1 data set has a 32-KB page size and you do not specify
this option, DSN1PRNT may produce unpredictable results,
because the default page size is 4 KB.

| The preferred option is PAGESIZE(32K).

| PAGESIZE Specifies the page size of the input data set that is defined by
| SYSUT1. If you specify an incorrect page size, DSN1PRNT may
| produce unpredictable results.

| If you omit PAGESIZE, DSN1PRNT tries to determine the page
| size from the input data set. DB2 issues an error message if
| DSN1PRNT cannot determine the input page size. This might
| happen if the header page is not in the input data set, or if the
| page size field in the header page contains an invalid page size.

| DSSIZE(integer G)
| Specifies the data set size, in gigabytes, for the input data set. If
| you omit DSSIZE, DB2 assumes that the input data set size is 2
| GB unless the input data set is a LOB, in which case DB2 assumes
| a 4 GB input data set size.

| integer must match the DSSIZE value specified when the table
| space was defined.

494 Utility Guide and Reference

 DSN1PRNT

| If you omit DSSIZE and the data set is not one of the default sizes,
| the results from DSN1PRNT are unpredictable.

| LARGE Specifies that the input data set is a table space that was defined
| with the LARGE option, or an index on such a table space. If you
| specify LARGE, then DB2 assumes that the data set has a 4-GB
| boundary.

| The preferred method of specifying a table space that was defined
| with the LARGE option is DSSIZE(4G).

| If you omit the LARGE or DSSIZE(4G) option when it is needed, or
| if you specify LARGE for a table space that was not defined with
| the LARGE option, the results from DSN1PRNT are unpredictable.

| LOB Specifies that the SYSUT1 data set is a LOB table space. You
| cannot specify the INLCOPY option with the LOB parameter.

| DB2 attempts to determine if the input data set is a LOB data set. If
| you specify the LOB option but the data set is not a LOB data set,
| or if you omit the LOB option but the data set is a LOB data set,
| DB2 issues an error message and DSN1PRNT terminates.

NUMPARTS(integer)
Specifies the number of partitions associated with the input data

set. NUMPARTS is required if the input data set is partitioned.
Valid specifications range from 1 to 254. DSN1PRNT uses this
value to help locate the first page in a range to be printed. If you
omit NUMPARTS or specify it as 0, DSN1PRNT will assume that
your input file is not partitioned. If you specify a number greater
than 64, DSN1PRNT assumes that the data set is for a partitioned

| table space that was defined with the LARGE option, even if the
LARGE keyword is not specified for DSN1PRNT.

DSN1PRNT cannot always validate the NUMPARTS parameter. If
you specify it incorrectly, DSN1PRNT might print the wrong data
sets or return an error message indicating that an unexpected page
number was encountered.

PRINT(hexadecimal-constant,hexadecimal-constant)
Causes the SYSUT1 data set to be printed in hexadecimal format
on the SYSPRINT data set. You can specify the PRINT parameter
with or without page range specifications. If you do not specify a
range, all pages of the SYSUT1 are printed. If you want to limit the
range of pages printed, you can do so by indicating the beginning
and ending page numbers with the PRINT parameter or, if you
want to print a single page, by indicating only the beginning page.
In either case, your range specifications must be from one to eight
hexadecimal characters in length.

The following example shows how to code the PRINT parameter if
you want to begin printing at page X'2F0' and to stop at page
X'35C':

PRINT(2F%,35C)

To print only the header page for a nonpartitioned table space,
specify PRINT(%). For guidance on specifying page numbers for

 Chapter 3-9. DSN1PRNT 495

 DSN1PRNT

partitioned table spaces, see “Using VERIFY, REPLACE, and
DELETE operations” on page 359.

PIECESIZ(integer)
Specifies the maximum piece size (data set size) for

| non-partitioned indexes. The value you specify must match the
| value specified when the nonpartitioning index was created or
| altered.

The defaults for PIECESIZ are 2G (2 GB) for indexes backed by
non-large table spaces and 4G (4 GB) for indexes backed by table

| spaces that were defined with the LARGE option. . This option is
required if a print range is specified and the piece size is not one of
the default values. If PIECESIZ is omitted and the index is backed

| by a table space that was defined with the LARGE option, the
LARGE keyword is required for DSN1PRNT.

The subsequent keyword K, M, or G, indicates the units of the
value specified in integer.

K Indicates that the integer value is to be multiplied by 1
KB to specify the maximum piece size in bytes. integer
must be either 256 or 512.

M Indicates that the integer value is to be multiplied by 1
MB to specify the maximum piece size in bytes. integer
must be a power of two, between 1 and 512.

G Indicates that the integer value is to be multiplied by 1
GB to specify the maximum piece size in bytes. integer
must be 1, 2, or 4.

Valid values for piece size are:

� 1 MB or 1 GB
� 2 MB or 2 GB
� 4 MB or 4 GB

 � 8 MB
 � 16 MB
 � 32 MB
 � 64 MB
 � 128 MB
� 256 KB or 256 MB
� 512 KB or 512 MB

VALUE Causes each page of the input data set SYSUT1 to be scanned for
the character string you specify in parentheses following the
VALUE parameter. Each page that contains that character string is
then printed in SYSPRINT. You can specify the VALUE parameter
in conjunction with any of the other DSN1PRNT parameters.

(string)
Can consist of from 1 to 20 alphanumeric characters.

(hexadecimal-constant)
Can consist of 2 to 40 hexadecimal characters. You must
specify two single quotation mark characters before and after
the hexadecimal character string.

496 Utility Guide and Reference

 DSN1PRNT

If, for example, you want to search your input file for the string
'12345', your JCL might look like the following example:

//STEP1 EXEC PGM=DSN1PRNT,PARM='VALUE(12345)'

On the other hand, you might want to search for the equivalent
hexadecimal character string, in which case your JCL might look
like this:

//STEP1 EXEC PGM=DSN1PRNT,PARM='VALUE(''F1F2F3F4F5'')'

FORMAT Causes the printed output to be formatted. Page control fields are
identified and individual records are printed. Empty fields are not
displayed.

EXPAND
Specifies that the data is compressed and causes
DSN1PRNT to expand it before formatting. This option is
intended to be used only under the direction of your IBM
Support Center.

SWONLY
Causes DSN1PRNT to use software to expand
the compressed data, even when the
compression hardware is available. This option is
intended to be used only under the direction of
your IBM Support Center.

FULLCOPY Specifies that a DB2 full image copy (not a DFSMS concurrent
copy) of your data is used as input. If this data is partitioned, you
also need to specify the NUMPARTS parameter to identify the
number and length of the partitions. If you specify FULLCOPY
without including a NUMPARTS specification, DSN1PRNT assumes
that the input file is not partitioned.

The FULLCOPY parameter must be specified when using an image
copy as input to DSN1PRNT. Omitting the parameter can cause
error messages or unpredictable results.

INCRCOPY Specifies that an incremental image copy of the data used as input.
If the data is partitioned, also specify NUMPARTS to identify the
number and length of the partitions. If you specify INCRCOPY
without NUMPARTS, DSN1PRNT assumes that the input file is not
partitioned.

The INCRCOPY parameter must be specified when using an
incremental image copy as input to DSN1PRNT. Omitting the
parameter can cause error messages or unpredictable results.

INLCOPY Specifies that the input data is an inline copy data set.

When you use DSN1PRNT to print a page or a page range from an
inline copy produced by LOAD or REORG, DSN1PRNT prints all
instances of the pages. The last instance of the page or pages

| printed is the last one created by the utility.

 Chapter 3-9. DSN1PRNT 497

 DSN1PRNT

Before running DSN1PRNT
This section contains information you need to know before you run DSN1PRNT.

 Environment
Run DSN1PRNT as an MVS job.

You can run DSN1PRNT even when the DB2 subsystem is not operational. If you
choose to use DSN1PRNT when the DB2 subsystem is operational, ensure that the
DB2 data sets that are to be printed are not currently allocated to DB2.

To make sure that a data set is not currently allocated to DB2, issue the DB2
STOP DATABASE command, specifying the table spaces and indexes you want to
print.

 Authorization required
None is required. However, if any of the data sets is RACF-protected, the
authorization ID of the job must have RACF authority.

 Control statement
See “Syntax and options of the control statement” on page 493 for DSN1PRNT
syntax and option descriptions.

Required data sets: DSN1PRNT uses the DD cards described below:

SYSPRINT Defines the data set that contains output messages from
DSN1PRNT and all hexadecimal dump output.

SYSUT1 Defines the input data set. That data set can be a sequential data
set or a VSAM data set. DSN1PRNT assumes that block size is a
multiple of 4096 bytes (as is standard for DB2 data sets).

Disposition for this data set must be specified as OLD
(DISP=OLD) to ensure that it is not in use by DB2. Disposition for
this data set must be specified as SHR (DISP=SHR) only in
circumstances where the DB2 STOP DATABASE command does
not work.

The requested operation takes place only for the data set
specified. If the input data set belongs to a linear table space or
index space that is larger than 2 gigabytes, or if it is a partitioned
table space or index space, you must ensure the correct data set
is specified. For example, to print a page range in the second
partition of a four partition table space, specify NUMPARTS(4) and
the data set name of the data set in the group of VSAM data sets
comprising the table space. (In other words, DSN=...A%%2.)

 Recommendations
This section contains recommendations for running the DSN1PRNT utility.

498 Utility Guide and Reference

 DSN1PRNT

Printing with DSN1PRNT instead of DSN1COPY
If you want to print information about a data set, use the DSN1PRNT utility rather
than the DSN1COPY utility. This is because DSN1COPY scans the whole SYSUT1
data set, but DSN1PRNT may be able to stop scanning before the end. Also, the
DSN1PRNT utility can write a formatted dump.

| Determining page size and DSSIZE
| Before using DSN1PRNT, determine the page size and data set size (DSSIZE) for
| the page set. Use the following query on the DB2 catalog to get the information you
| need:

| SELECT I.CREATOR,

| I.NAME,

| S.PGSIZE,

| CASE S.DSSIZE

| WHEN % THEN CASE S.TYPE

| WHEN ' ' THEN 2%97152

| WHEN 'I' THEN 2%97152

| WHEN 'L' THEN 41943%4

| WHEN 'K' THEN 41943%4

| ELSE NULL

| END

| ELSE S.DSSIZE

| END

| FROM SYSIBM.SYSINDEXES I,

| SYSIBM.SYSTABLES T,

| SYSIBM.SYSTABLESPACE S

| WHERE I.CREATOR='DSN861%' AND

| I.NAME='XEMP1' AND

| I.TBCREATOR=T.CREATOR AND

| I.TBNAME=T.NAME AND

| T.DBNAME=S.DBNAME AND

| T.TSNAME=S.NAME;

Sample control statements
Example 1: Running DSN1PRNT

//jobname JOB acct info

//RUNPRNT EXEC PGM=DSN1PRNT,PARM='PRINT,FORMAT'

//STEPLIB DD DSN=prefix.SDSNLOAD
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB%1.SYSUTIL.I%%%1.A%%1,DISP=SHR

Example 2: Printing a nonpartitioning index with a 64 MB piece size

//PRINT2 EXEC PGM=DSN1PRNT,

// PARM=(PRINT(F%%%%,F%%%F),FORMAT,PIECESIZ(64M))

//� PRINT 16 PAGES IN THE 61ST PIECE OF AN NPI WITH PIECE SIZE OF 64M

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DISP=OLD,DSN=DSNCAT.DSNDBD.MMRDB.NPI1.I%%%1.A%61

 Chapter 3-9. DSN1PRNT 499

 DSN1PRNT

 DSN1PRNT output
 Interpreting output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2, you might need to refer to licensed
documentation to interpret output from this utility.

500 Utility Guide and Reference

 DSN1SDMP

Chapter 3-10. DSN1SDMP

Under the direction of the IBM Support Center, use the IFC Selective Dump
(DSN1SDMP) utility to:

� Force dumps when selected DB2 trace events occur.
� Write DB2 trace records to a user-defined MVS data set.

For information about the format of trace records, see Appendix D (Volume 2) of
DB2 Administration Guide.

Syntax and options of the control statement
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

DSN1SDMP syntax diagram

��──START TRACE─ ──(trace-parameters) ──┬ ┬── ────────────────�
 │ │┌ ┐────────────────────────────────────
 └ ┘─SELECT─ ───

�
┴function,offset,data-specification

�─ ──┬ ┬──────────────────────────── ──┬ ┬────────────────────── ──┬ ┬──────────────────── ─────────────────��
└ ┘──ACTION(action(abend-code)) │ │┌ ┐─1─────── │ │┌ ┐─1───────

└ ┘──AFTER(──┴ ┴─integer─) └ ┘──FOR(──┴ ┴─integer─)

 Option descriptions
START TRACE (trace-parameters)

START TRACE is a required keyword and must be the first
keyword specified in the SDMPIN input stream. The trace
parameters that you use are those described in Chapter 2 of DB2
Command Reference, except you do not use the subsystem
recognition character.

If the START TRACE command in the SDMPIN input stream is not
valid, or the user is not properly authorized, the IFI (instrumentation
facility interface) returns an error code and -START TRACE does
not take effect. DSN1SDMP writes the error message to the
SDMPPRNT data set.

Trace Destination: If DB2 trace data is to be written to the SDMPTRAC data set,
the trace destination must be an IFI online performance buffer (OP). OP buffer
destinations are specified in the DEST keyword of -START TRACE. There are eight
OP buffer destinations, OP1 to OP8. The OPX trace destination assigns the next
available OP buffer.

The DB2 output text from the START TRACE command is written to SDMPPRNT.

START TRACE and its associated keywords must be specified first. Specify the
remaining selective dump keywords in any order following the START TRACE
command.

 Copyright IBM Corp. 1983, 1999 501

 DSN1SDMP

SELECT function,offset,data-specification
Specifies selection criteria in addition to those specified on the START TRACE
command. SELECT expands the data available to select on in a trace record
and allows more specific selection of data in the trace record than using
START TRACE alone. A maximum of eight SELECT criteria can be specified.

The selection criteria use the concept of the current-record pointer. The
current-record pointer is initialized to zero, meaning the beginning of the trace
record. For this instance of the DSN1SDMP trace, the trace record begins with
the self-defining section. For information on the fields in the DB2 trace records,
see Appendix D (Volume 2) of DB2 Administration Guide.

The selection criteria are specified with the following parameters:

function Specifies the type of search to be performed on the trace
record. The specified value must be two characters. The
possible values are:

DR Direct comparison of data from the specified offset. The
offset is always calculated from the current-record
pointer.

The current-record pointer locates the point in the trace
record where the offset is calculated. The
current-record pointer is initialized to zero (the start of
the trace record) and is modified by previous Px and
LN functions (below).

GE Greater than or equal comparison of data from the
specified offset. The offset is always calculated from
the current-record pointer. The test succeeds if the data
from the specified offset is greater than or equal to
data-specification, which is specified on the SELECT
option.

The current-record pointer locates the point in the trace
record where the offset is calculated. The
current-record pointer is initialized to zero (the start of
the trace record) and is modified by previous Px and
LN functions (below).

LE Less than or equal comparison of data from the
specified offset. The offset is always calculated from
the current-record pointer. The test succeeds if the data
from the specified offset is less than or equal to
data-specification, which is specified on the SELECT
option.

The current-record pointer locates the point in the trace
record where the offset is calculated. The
current-record pointer is initialized to zero (the start of
the trace record) and is modified by previous Px and
LN functions (below).

P1, P2, or P4
Selects the 1, 2, or 4 byte field located offset bytes
past the start of the record. Moves the current-record
pointer that number of bytes into the record. P1, P2,

502 Utility Guide and Reference

 DSN1SDMP

and P4 always start from the beginning of the record
(plus the offset you specify).

This offset is saved as the current-record pointer to be
used on subsequent DR, LE, GR, and LN requests.

For example, suppose the user knows the offset to the
standard header is 4 bytes long and is located in the
first four bytes of the record. P4,00 reads that offset
and moves the current-record pointer to the start of the
standard header.

LN Advances the current-record pointer by the number of
bytes indicated in the 2-byte field located offset bytes
from the previous current-record pointer.

This offset is saved as the current-record pointer to be
used on subsequent DR, LE, GR, and LN requests.

offset A decimal value that specifies the number of bytes into the
trace record where the comparison with the data-specification
field begins. The offset starts from the beginning of the trace
record after a P1, P2, or P4, and from the current-record
pointer after a GE, LE, LN, or DR.

The format of the DB2 trace record at data-specification
comparison time is:

Figure 35. Format of the DB2 trace record

� The format of the self-defining section depends on the
trace type.

� The format and contents of the data sections depend on
the IFCID being recorded. Each record can have one or
more data sections. Each data section can have multiple
repeating groups.

� The format and content of the trace header section
depends on the trace type.

For more information on the format of DB2 trace records, refer
to Appendix D (Volume 2) of DB2 Administration Guide.

data-specification
Specifies that the data can be hexadecimal (for example,
X'9FECBA10') or character (C'FIELD').

ACTION(action(abend-code))
Specifies the action to perform when a trace record passes the selection
criteria of the START TRACE and SELECT keywords.

Attention: The purpose of the ACTION keyword is to facilitate problem
analysis, and it should be used with extreme caution. Not all abends are
recoverable, even if the ABENDRET parameter is specified. Some abends may
force the DB2 subsystem to terminate, particularly those that occur during

 Chapter 3-10. DSN1SDMP 503

 DSN1SDMP

end-of-task or end-of-memory processing due to the agent having experienced
a previous abend.

action(abend-code)
Possible values for action are:

ABENDRET ABEND and retry the agent.

ABENDTER ABEND and terminate the agent.

If action is not specified, the record is written with no action performed.

An abend reason code can also be specified on this parameter. The codes
must be in the range %%E6%1%%-%%E6%199. If no abend code is specified,
%%E6%1%% is used.

AFTER(integer)
Specifies that the ACTION is to be performed after the trace point is reached
integer times.

integer must be between 1 and 32767. The default is AFTER(1).

FOR(integer)
FOR is an optional keyword that specifies the number of times that the ACTION
is to take place on reaching the specified trace point. After integer times, the
trace is stopped and DSN1SDMP terminates.

integer must be between 1 and 32767 and includes the first action. If no
SELECT criteria are specified, use an integer greater than 1; the START
TRACE command automatically causes the action to take place one time. The
default is FOR(1).

Before running DSN1SDMP
This section contains information you need to know before you run DSN1SDMP.

 Environment
Run DSN1SDMP as an MVS job and execute it with the DSN TSO command
processor. To execute DSN1SDMP, the DB2 subsystem must be running.

The MVS job completes only under the following conditions:

� The TRACE and any additional selection criteria started by DSN1SDMP meet
the criteria specified in the FOR parameter.

� The TRACE started by DSN1SDMP is stopped using the STOP TRACE
command.

� The job is canceled by the operator.

If you must stop DSN1SDMP, use the STOP TRACE command.

 Authorization required
To execute this utility, the privilege set of the process must include one of the
following privileges or authorities:

� TRACE system privilege
 � SYSOPR authority
 � SYSADM authority

504 Utility Guide and Reference

 DSN1SDMP

� MONITOR1 or MONITOR2 privileges (if you are using user-defined data sets)

The user who executes DSN1SDMP must have EXECUTE authority on the plan
specified in the trace-parameters of the START TRACE keyword.

 Control statement
See “Syntax and options of the control statement” on page 501 for DSN1SDMP
syntax and option descriptions.

Required data sets: DSN1SDMP uses the DD cards described below:

SDMPIN Defines the control data set that specifies the input parameters to
DSN1SDMP. This DD card is required. The LRECL is 80. Only the
first 72 columns are checked by DSN1SDMP.

SDMPPRNT Defines the sequential message data set used for DSN1SDMP
messages. If the SDMPPRNT DD statement is omitted, no messages
are written. The LRECL is 131.

SYSABEND Defines the data set to contain an ABEND dump in case
DSN1SDMP abends. This DD card is optional.

SDMPTRAC Defines the sequential DB2 trace record data set used for trace
records returned to DSN1SDMP from DB2. This DD card is required
only if trace data is written to an OPX trace destination. If the
destination is anything other than an OPX buffer SDMPTRAC is
ignored.

Trace records written to SDMPTRAC are of the same format as
records written to SMF or GTF, except that, instead of containing the
SMF or GTF headers, the SDMPTRAC trace records contain the
monitor header (mapped by DSNDQWIW). The DCB parameters are
VB, BLKSIZE=8192, LRECL=8188.

SYSTSIN Defines the DSN commands to connect to DB2 and to execute an
IFC selective dump:

DSN SYSTEM(subsystem name)

RUN PROG(DSN1SDMP) LIB('prefix.SDSNLOAD') PLAN(DSNEDCL)

The DB2 subsystem name must be filled in by the user. The DSN
RUN command must specify a plan for which the user has execute
authority. DSN1SDMP dump does not execute the specified plan; the
plan is only used to connect to DB2.

When no plan name is specified on the DSN RUN command, DSN
defaults the plan name to the program. When DSN1SDMP is
executed without a plan, DSN generates an error if no DSN1SDMP
plan exists for which the user has execute authority.

 Using DSN1SDMP
This section describes the following tasks associated with running the DSN1SDMP
utility:

“Assigning buffers” on page 506
“Generating a dump” on page 506
“Stopping or modifying DSN1SDMP traces” on page 506

 Chapter 3-10. DSN1SDMP 505

 DSN1SDMP

 Assigning buffers
The OPX trace destination assigns the next available OP buffer. You must specify
the OPX destination for all traces being recorded to an OPn buffer, thereby
avoiding the possibility of starting a trace to a buffer that has already been
assigned.

If a trace is started to an OPn buffer that has already been assigned, DSN1SDMP
waits indefinitely until the trace is manually stopped. MONITOR-type traces default
to the OPX destination (the next available OP buffer). Other trace types must be
explicitly directed to OP destinations via the DEST keyword of the START TRACE
command. DSN1SDMP interrogates the IFCAOPN field after the START TRACE
COMMAND call to determine if the trace was started to an OP buffer.

Trace records are written to the SDMPTRAC data set when the trace destination is
an OP buffer (see page 501). Instrumentation facilities component (IFC) writes
trace records to the buffer and posts DSN1SDMP to read the buffer when it fills to
half of the buffer size.

You can specify the buffer size on the BUFSIZE keyword of the START TRACE
command. The default buffer size is 8KB. All returned records are written to
SDMPTRAC.

If the number of generated trace records requires a larger buffer size than was
specified, you can lose some trace records. If this happens, you will receive error
message DSN2724I.

Generating a dump
All of the following must occur before DSN1SDMP generates a DB2 dump:

� DB2 produces a trace record that satisfies all of the selection criteria.
� An abend action (ABENDRET or ABENDTER) is specified.
� The AFTER and FOR conditions for the trace are satisfied.

If all of these three things occur, an 00E601xx abend occurs. xx is an integer
between 1 and 99 that DB2 obtains from the user-specified value on the ACTION
keyword.

Stopping or modifying DSN1SDMP traces
If you must stop DSN1SDMP, use the STOP TRACE command.

If DSN1SDMP does not finish execution, you can stop the utility by issuing the
STOP TRACE command; for example:

-STOP TRACE=P CLASS(32)

DSN1SDMP is designed to execute as a stand-alone batch utility without requiring
external intervention from the console operator or other programs. During
execution, DSN1SDMP issues an IFI READA request to obtain the data from the
OPn buffer, and a STOP TRACE command to terminate the original trace started
by DSN1SDMP.

A STOP TRACE or MODIFY TRACE command entered from a console against the
trace started by DSN1SDMP causes immediate abnormal termination of
DSN1SDMP processing. The IFI READA function terminates with an appropriate IFI

506 Utility Guide and Reference

 DSN1SDMP

termination message and reason code. Additional error messages and reason
codes associated with the DSN1SDMP STOP TRACE command will vary
depending on the specific trace command entered by the console operator.

If the console operator terminates the original trace using the STOP TRACE
command, the subsequent STOP TRACE command issued by DSN1SDMP fails.

If the console operator enters a MODIFY TRACE command, the modified trace
might also be terminated by the STOP TRACE command issued by DSN1SDMP if
MODIFY TRACE processing completes before the DSN1SDMP command is
issued.

Sample control statements
Example 1: Skeleton JCL for DSN1SDMP

//DSN1J%18 JOB 'IFC SD',CLASS=A,

// MSGLEVEL=(1,1),USER=SYSADM,PASSWORD=SYSADM,REGION=1%24K

//��

//�

//� THIS IS A SKELETON OF THE JCL USED TO RUN DSN1SDMP.

//� YOU MUST INSERT SDMPIN DD.

//�

//��

//IFCSD EXEC PGM=IKJEFT%1,DYNAMNBR=2%,COND=(4,LT)

//STEPLIB DD DISP=SHR,DSN=prefix.SDSNLOAD
//SYSPRINT DD SYSOUT=�

//SYSTSPRT DD SYSOUT=�

//SDMPPRNT DD SYSOUT=�

//SDMPTRAC DD DISP=(NEW,CATLG,CATLG),DSN=IFCSD.TRACE,

// UNIT=SYSDA,SPACE=(8192,(1%%,1%%)),DCB=(DSORG=PS,

// LRECL=8188,RECFM=VB,BLKSIZE=8192)

//SDMPIN DD �

//��

//�

//� INSERT SDMPIN DD HERE. IT MUST BEGIN WITH A VALID

//� START TRACE COMMAND (WITHOUT THE SUBSYSTEM RECOGNITION CHAR)

//�

//��

(VALID SDMPIN GOES HERE)

/�

//��

//SYSUDUMP DD SYSOUT=�

//SYSTSIN DD �

 DSN SYSTEM(DSN)

 RUN PROG(DSN1SDMP) PLAN(DSNEDCL)

 END

//�

 Chapter 3-10. DSN1SDMP 507

 DSN1SDMP

Example 2: SDMPIN for ABEND and TERMINATE AGENT on -904 SQL CODE

//SDMPIN DD �

� START ONLY IFCID 58, END SQL STATEMENT

 START TRACE=P CLASS(32) IFCID(58) DEST(OPX)

 FOR(1)

 ACTION(ABENDTER(%%E6%188))

 SELECT

� OFFSET TO FIRST DATA SECTION CONTAINING THE SQLCA.

 P4,%8

� SQLCODE -9%4, RESOURCE UNAVAILABLE

 DR,74,X'FFFFFC78'

/�

Example 3: SDMPIN for ABEND and RETRY on RMID 20

//� ABEND AND RETRY AN AGENT WHEN EVENT ID X'%%25'

//� (AGENT ALLOCATION) IS RECORDED BY RMID 2% (SERVICE

//� CONTROLLER).

//�

//SDMPIN DD �

� ENSURE ONLY THE TRACE HEADER IS APPENDED WITH THE STANDARD HEADER

� VIA THE TDATA KEYWORD ON START TRACE

 START TRACE=P CLASS(3,8) RMID(2%) DEST(OPX) TDATA(TRA)

� ABEND AND RETRY THE AGENT WITH THE DEFAULT ABEND CODE (%%E6%1%%)

 ACTION(ABENDRET)

� SPECIFY THE SELECT CRITERIA FOR RMID.EID

 SELECT

� OFFSET TO THE STANDARD HEADER

 P4,%%

� ADD LENGTH OF STANDARD HEADER TO GET TO TRACE HEADER

 LN,%%

� LOOK FOR EID 37 AT OFFSET 4 IN THE TRACE HEADER

 DR,%4,X'%%25'

/�

Example 4: Dump on SQLCODE -811 RMID16 IFCID 58

//SDMPIN DD �

 START TRACE=P CLASS(3) RMID(22) DEST(SMF) TDATA(COR,TRA)

 AFTER(1)

 FOR(1)

 SELECT

� POSITION TO HEADERS (QWHS IS ALWAYS FIRST)

 P4,%%

� CHECK QWHS %1, FOR RMID 16, IFCID 58

 DR,%2,X'%116%%3A'

� POSITION TO SECOND SECTION (1ST DATA SECTION)

 P4,%8

� COMPARE SQLCODE FOR 811

 DR,74,X'FFFFFCD5'

 ACTION(ABENDRET(%%E6%188))

/�

508 Utility Guide and Reference

 DSN1SDMP

 DSN1SDMP output
 Interpreting output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2, you might need to refer to licensed
documentation to interpret output from this utility.

 Chapter 3-10. DSN1SDMP 509

 DSN1SDMP

510 Utility Guide and Reference

 Appendixes

 Copyright IBM Corp. 1983, 1999 511

512 Utility Guide and Reference

 Limits in DB2 for OS/390

Appendix A. Limits in DB2 for OS/390

System storage limits might preclude the limits specified here. The limit for items
not specified below is system storage.

Table 78. Identifier length limits

Item Limit

| Longest collection ID, correlation name, statement name,
| or name of an alias, column, cursor, index, table, table
| check constraint, stored procedure, synonym,
| user-defined function

18 bytes

| Longest authorization name, or name of a database,
| package, plan, referential constraint, schema, storage
| group, or trigger

8 bytes

Longest host identifier 64 bytes

Longest server name or location identifier 16 bytes

Table 79. Numeric limits

Item Limit

Smallest SMALLINT value -32768

Largest SMALLINT value 32767

Smallest INTEGER value -2147483648

Largest INTEGER value 2147483647

| Smallest REAL value| About -7.2×1075

| Largest REAL value| About 7.2×1075

| Smallest positive REAL value| About 5.4×10-79

| Largest negative REAL value| About -5.4×10-79

Smallest FLOAT value About -7.2×1075

Largest FLOAT value About 7.2×1075

Smallest positive FLOAT value About 5.4×10-79

Largest negative FLOAT value About -5.4×10-79

Smallest DECIMAL value 1 − 1031

Largest DECIMAL value 1031 − 1

Largest decimal precision 31

Table 80 (Page 1 of 2). String length limits

Item Limit

Maximum length of CHAR 255 bytes

Maximum length of GRAPHIC 127 DBCS characters

Maximum length of VARCHAR5| 4046 bytes for 4-KB pages
| 8128 bytes for 8-KB pages
| 16320 bytes for 16-KB pages
| 32704 bytes for 32-KB pages

 Copyright IBM Corp. 1983, 1999 513

 Limits in DB2 for OS/390

Table 80 (Page 2 of 2). String length limits

Item Limit

Maximum length of VARGRAPHIC5| 4046 bytes (2023 DBCS characters) for 4-KB pages
| 8128 bytes (4064 DBCS characters) for 8-KB pages
| 16320 bytes (8160 DBCS characters for 16-KB pages
| 32704 bytes (16352 DBCS characters) for 32-KB pages

| Maximum length of CLOB| 2 147 483 647 bytes (2 gigabytes - 1 byte)

| Maximum length of DBCLOB| 1 073 741 824 DBCS characters

| Maximum length of BLOB| 2 147 483 647 bytes (2 gigabytes - 1 byte)

Maximum length of a character constant 255 bytes

Maximum length of a hexadecimal constant 254 digits

Maximum length of a graphic string constant 124 DBCS characters

Maximum length of a concatenated character string| 2 147 483 647 bytes (2 gigabytes - 1 byte)

Maximum length of a concatenated graphic string| 1 073 741 824 DBCS characters

| Maximum length of a concatenated binary string| 2 147 483 647 bytes (2 gigabytes - 1 byte)

Table 81. Datetime limits

Item Limit

Smallest DATE value (shown in ISO format) 0001-01-01

Largest DATE value (shown in ISO format) 9999-12-31

Smallest TIME value (shown in ISO format) 00.00.00

Largest TIME value (shown in ISO format) 24.00.00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

Table 82 (Page 1 of 2). DB2 limits on SQL statements

Item Limit

Maximum number of columns in a table or view (the
value depends on the complexity of the CREATE VIEW
statement) or columns returned by a table function.

750 or fewer
749 if the table is a dependent

| Maximum number of base tables in a view, SELECT,
| UPDATE, INSERT, or DELETE
| 225

Maximum row and record sizes for a table See the description of CREATE TABLE in Chapter 6 of
DB2 SQL Reference

Maximum number of volume IDs in a storage group# 133

Maximum number of partitions in a partitioned table
space or partitioned index

| 64 for table spaces that are not defined
| with LARGE or a DSSIZE greater than 2G
| 254 for table spaces that are defined
| with LARGE or a DSSIZE greater than 2G

5 The maximum length can be achieved only if the column is the only column in the table. Otherwise, the maximum length depends
on the amount of space remaining on a page.

514 Utility Guide and Reference

 Limits in DB2 for OS/390

Table 82 (Page 2 of 2). DB2 limits on SQL statements

Item Limit

| Maximum size of a partition (table space or index) For table spaces that are not defined with LARGE or a
DSSIZE greater than 2G:

4 gigabytes, for 1 to 16 partitions
2 gigabytes, for 17 to 32 partitions
1 gigabyte, for 33 to 64 partitions

| For table spaces that are defined with LARGE:

4 gigabytes, for 1 to 254 partitions

| For table spaces that are defined with a DSSIZE greater
| than 2G:

| 64 gigabytes, for 1 to 254 partitions

Maximum size of a DBRM entry 131072 bytes

Longest index key 255 bytes less the number of key columns that allow
nulls.

Maximum number of bytes used in the partitioning of a
partitioned index6

| 255

Maximum number of columns in an index key 64

| Maximum number of tables in a FROM clause| 15

| Maximum number of subqueries in a statement| 14

Maximum total length of host and indicator variables
pointed to in an SQLDA

32767 bytes

| 2 147 483 647 bytes (2 gigabytes - 1 byte) for a LOB,
| subject to the limitations imposed by the application
| environment and host language

Longest host variable used for insert or update 32704 bytes for a non-LOB

| 2 147 483 647 bytes (2 gigabytes - 1 byte) for a LOB,
| subject to the limitations imposed by the application
| environment and host language

Longest SQL statement 32765 bytes

Maximum number of elements in a select list 750

Maximum number of predicates in a WHERE or HAVING
clause

750

Maximum total length of columns of a query operation
requiring a sort key (SELECT DISTINCT, ORDER BY,
GROUP BY, UNION without the ALL keyword, and the
DISTINCT column function)

4000 bytes

Maximum length of a table check constraint 3800 bytes

Maximum number of bytes that can be passed in a
single parameter of an SQL CALL statement

32765 bytes for a non-LOB

| 2 147 483 647 bytes (2 gigabytes - 1 byte) for a LOB,
| subject to the limitations imposed by the application
| environment and host language

| Maximum number of stored procedures, triggers, and
| user-defined functions that an SQL statement can
| implicitly or explicitly reference

| 16 nesting levels

| Maximum length of the SQL path| 254 bytes

 Appendix A. Limits in DB2 for OS/390 515

 Limits in DB2 for OS/390

Table 83. DB2 system limits

Item Limit

Maximum number of concurrent DB2 or application
agents

Limited by the EDM pool size, buffer pool size, and the
amount of storage used by each DB2 or application
agent

Largest table or table space| 16 terabytes

Largest log space 248

Largest active log data set 2 gigabytes

Largest archive log data set 2 gigabytes

Maximum number of active log copies 2

Maximum number of archive log copies 2

Maximum number of active log data sets (each copy) 31

Maximum number of archive log volumes (each copy) 1000

Maximum number of databases accessible to an
application or end user

Limited by system storage and EDM pool size

Largest EDM pool The installation parameter maximum depends on
available space

Maximum number of databases 65279

Maximum number of rows per page 255 for all table spaces except catalog and directory
tables spaces, which have a maximum of 127

Maximum simple or segmented data set size 2 gigabytes

Maximum partitioned data set size See item “maximum size of a partition” in Table 82 on
page 514

| Maximum LOB data set size| 64 gigabytes

| 6 If the key of a partitioned index is longer than 255 bytes, only the first 255 bytes are used to determine the high value for each
| partition.

516 Utility Guide and Reference

 DSNUTILS stored procedure

Appendix B. Invoking utilities as a stored procedure
(DSNUTILS)

The DSNUTILS stored procedure enables you use the SQL CALL statement to
execute DB2 utilities from a DB2 application program. When called, DSNUTILS
performs the following actions:

� Dynamically allocates the specified data sets

� Creates the utility input (SYSIN) stream

� Invokes DB2 utilities (Program DSNUTILB)

� Deletes all the rows currently in the created temporary table
(SYSIBM.SYSPRINT)

� Captures the utility output stream (SYSPRINT) into a created temporary table
(SYSIBM.SYSPRINT)

� Declares a cursor to select from SYSPRINT:

DECLARE SYSPRINT CURSOR WITH RETURN FOR

SELECT SEQNO, TEXT FROM SYSPRINT

ORDER BY SEQNO;

� Opens the SYSPRINT cursor and returns.

The calling program then fetches from the returned result set to obtain the captured
utility output.

 Environment
DSNUTILS must run in a WLM environment.

 Authorization required
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:

� The EXECUTE privilege on the package for DSNUTILS

� Ownership of the package

� PACKADM authority for the package collection

 � SYSADM authority

Then, to execute the utility, the privilege set must also include the authorization to
run the specified utility.

 Control statement
DSNUTILS dynamically allocates the specified data sets. Any utility that requires a
sort must include the SORTDEVT keyword in the utility control statement, and
optionally, the SORTNUM keyword.

 Copyright IBM Corp. 1983, 1999 517

 DSNUTILS stored procedure

If the DSNUTILS stored procedure invokes a new utility, refer to Table 84 on
page 518 for information about the default data dispositions specified for
dynamically allocated data sets.

Table 84. Data dispositions for dynamically allocated data sets

ddname
CHECK
DATA

CHECK
INDEX
or
CHECK
LOB COPY LOAD MERGECOPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLESPACE

SYSREC ignored ignored ignored OLD
KEEP
KEEP

ignored ignored ignored NEW CATLG
CATLG

SYSDISC ignored ignored ignored NEW
CATLG
CATLG

ignored ignored ignored NEW CATLG
CATLG

SYSPUNCH ignored ignored ignored ignored ignored ignored ignored NEW CATLG
CATLG

SYSCOPY ignored ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW CATLG
CATLG

ignored ignored NEW CATLG
CATLG

SYSCOPY2 ignored ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW CATLG
CATLG

ignored ignored NEW CATLG
CATLG

SYSRCPY1 ignored ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW CATLG
CATLG

ignored ignored NEW CATLG
CATLG

SYSRCPY2 ignored ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW CATLG
CATLG

ignored ignored NEW CATLG
CATLG

SYSUT1 NEW
DELETE
CATLG

NEW
DELETE
CATLG

ignored NEW
DELETE
CATLG

ignored NEW
DELETE
CATLG

NEW
CATLG
CATLG

NEW DELETE
CATLG

SORTOUT NEW
DELETE
CATLG

ignored ignored NEW
DELETE
CATLG

ignored ignored# ignored NEW DELETE
CATLG

SYSMAP ignored ignored ignored NEW
CATLG
CATLG

ignored ignored ignored ignored

SYSERR NEW
CATLG
CATLG

ignored ignored NEW
CATLG
CATLG

ignored ignored ignored ignored

FILTER# ignored# ignored# NEW
DELETE
CATLG

ignored# ignored# ignored# ignored# ignored

If the DSNUTILS stored procedure restarts a current utility, refer to Table 85 on
page 519 for information about the default data dispositions specified for
dynamically-allocated data sets.

518 Utility Guide and Reference

 DSNUTILS stored procedure

Table 85. Data dispositions for dynamically allocated data sets on RESTART

ddname
CHECK
DATA

CHECK
INDEX
or
CHECK
LOB COPY LOAD MERGECOPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLESPACE

SYSREC ignored ignored ignored OLD
KEEP
KEEP

ignored ignored ignored MOD CATLG
CATLG

SYSDISC ignored ignored ignored MOD
CATLG
CATLG

ignored ignored ignored MOD CATLG
CATLG

SYSPUNCH ignored ignored ignored ignored ignored ignored ignored MOD CATLG
CATLG

SYSCOPY ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD CATLG
CATLG

ignored ignored MOD CATLG
CATLG

SYSCOPY2 ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD CATLG
CATLG

ignored ignored MOD CATLG
CATLG

SYSRCPY1 ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD CATLG
CATLG

ignored ignored MOD CATLG
CATLG

SYSRCPY2 ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD CATLG
CATLG

ignored ignored MOD CATLG
CATLG

SYSUT1 MOD
DELETE
CATLG

MOD
DELETE
CATLG

ignored MOD
DELETE
CATLG

ignored MOD
DELETE
CATLG

MOD
CATLG
CATLG

MOD DELETE
CATLG

SORTOUT MOD
DELETE
CATLG

ignored ignored MOD
DELETE
CATLG

ignored ignored# ignored MOD DELETE
CATLG

SYSMAP ignored ignored ignored MOD
CATLG
CATLG

ignored ignored ignored ignored

SYSERR MOD
CATLG
CATLG

ignored ignored MOD
CATLG
CATLG

ignored ignored ignored ignored

FILTER# ignored# ignored# MOD
DELETE
CATLG

ignored# ignored# ignored# ignored# ignored

DSNUTILS syntax diagram
For guidance in interpreting syntax diagrams, see “How to read the syntax
diagrams” on page 4.

The following syntax diagram shows the SQL CALL statement for invoking utilities
as a stored procedure.

 Appendix B. DSNUTILS stored procedure 519

 DSNUTILS stored procedure

��─ ──CALL ──DSNUTILS ──(──utility-id,restart,utstmt,retcode ──, ──utility-name ─────────────────�

�─ ──,recdsn,recdevt,recspace ──,discdsn,discdevt,discspace ──,pnchdsn,pnchdevt,pnchspace ─────�

�─ ──,copydsn1,copydevt1,copyspace1 ──,copydsn2,copydevt2,copyspace2 ─────────────────────────�

�─ ──,rcpydsn1,rcpydevt1,rcpyspace1 ──,rcpydsn2,rcpydevt2,rcpyspace2 ─────────────────────────�

�─ ──,workdsn1,workdevt1,workspace1 ──,workdsn2,workdevt2,workspace2 ─────────────────────────�

�─ ──,mapdsn,mapdevt,mapspace ──,errdsn,errdevt,errspace ──,filtrdsn,filtrdevt,filtrspace ─────�

�─ ──) ───��

DSNUTILS option descriptions
utility-id Specifies a unique identifier for this utility within DB2.

This is an input parameter of type VARCHAR(16).

restart Specifies whether this restarts a current utility, and, if so, at what
point it is to be restarted.

This is an input parameter of type VARCHAR(8).

NO or null Indicates the utility is new, not a restart. There must
not be any other utility with the same utility identifier
(UID).

The default is null.

CURRENT Restarts the utility at the last commit point.

PHASE Restarts the utility at the beginning of the currently
stopped phase. Use the DISPLAY UTILITY to
determine the currently stopped phase.

utstmt Specifies the utility control statements.

This is an input parameter of type VARCHAR(32704).

retcode Specifies the utility highest return code.

This is an output parameter of type INTEGER.

utility-name Specifies the utility you want to invoke.

This is an input parameter of type VARCHAR(20).

Note: Because you can only specify a single utility here, there is
limited dynamic data set allocation support. Specify only a
single utility requiring data set allocation in the utstmt
parameter.

Select the utility name from the following list:

 CHECK DATA
 CHECK INDEX
 CHECK LOB
 COPY
 DIAGNOSE
 LOAD

520 Utility Guide and Reference

 DSNUTILS stored procedure

 MERGECOPY
 MODIFY RECOVERY
 QUIESCE
 REBUILD INDEX
 RECOVER
 REORG INDEX
 REORG LOB
 REORG TABLESPACE
 REPAIR
 REPORT RECOVERY
 REPORT TABLESPACESET
 RUNSTATS INDEX
 RUNSTATS TABLESPACE
 STOSPACE

recdsn Specifies the cataloged data set name required by LOAD for input,
or by REORG TABLESPACE as the unload data set. recdsn is
required for LOAD. It is also required for REORG TABLESPACE
unless you also specified NOSYSREC or SHRLEVEL CHANGE. If
you specify recdsn, it will be allocated to the SYSREC DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the INDDN parameter for LOAD, the value
specified for ddname MUST be SYSREC.

If you specified the UNLDDN parameter for REORG
TABLESPACE, the value specified for ddname MUST be
SYSREC.

recdevt Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the recdsn data set resides.

This is an input parameter of type CHAR(8).

recspace Specifies the number of cylinders to use as the primary space
allocation for the recdsn data set. The secondary space allocation
will be 10% of the primary.

This is an input parameter of type SMALLINT.

discdsn Specifies the cataloged data set name used by LOAD as a discard
data set to hold records not loaded, and by REORG TABLESPACE
as a discard data set to hold records not reloaded. If you specify
discdsn, it will be allocated to the SYSDISC DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the DISCARDDN parameter for LOAD or
REORG TABLESPACE, the value specified for ddname
MUST be SYSDISC.

discdevt Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the discdsn data set resides.

This is an input parameter of type CHAR(8).

discspace Specifies the number of cylinders to use as the primary space
allocation for the discdsn data set. The secondary space allocation
will be 10% of the primary.

 Appendix B. DSNUTILS stored procedure 521

 DSNUTILS stored procedure

This is an input parameter of type SMALLINT.

pnchdsn Specifies the cataloged data set name that REORG TABLESPACE
UNLOAD EXTERNAL or REORG TABLESPACE DISCARD uses to
hold the generated LOAD utility control statements. If you specify a
value for pnchdsn, it will be allocated to the SYSPUNCH DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the PUNCHDDN parameter for REORG
TABLESPACE, the value specified for ddname MUST be
SYSPUNCH.

pnchdevt Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the pnchdsn data set resides.

This is an input parameter of type CHAR(8).

pnchspace Specifies the number of cylinders to use as the primary space
allocation for the pnchdsn data set. The secondary space allocation
will be 10% of the primary.

This is an input parameter of type SMALLINT.

copydsn1 Specifies the name of the required target (output) data set, which is
needed when you specify the COPY utility or the MERGECOPY
utility. It is optional for LOAD and REORG TABLESPACE. If you
specify copydsn1, it will be allocated to the SYSCOPY DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the COPYDDN parameter for COPY,
MERGECOPY, LOAD, or REORG TABLESPACE, the value
specified for ddname1 MUST be SYSCOPY.

copydevt1 Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the copydsn1 data set resides.

This is an input parameter of type CHAR(8).

copyspace1 Specifies the number of cylinders to use as the primary space
allocation for the copydsn1 data set. The secondary space
allocation will be 10% of the primary.

This is an input parameter of type SMALLINT.

copydsn2 Specifies the name of the cataloged data set used as a target
(output) data set for the backup copy. It is optional for COPY,
MERGECOPY, LOAD, and REORG TABLESPACE. If you specify
copydsn2, it will be allocated to the SYSCOPY2 DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the COPYDDN parameter for COPY,
MERGECOPY, LOAD, or REORG TABLESPACE, the value
specified for ddname2 MUST be SYSCOPY2.

copydevt2 Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the copydsn2 data set resides.

This is an input parameter of type CHAR(8).

522 Utility Guide and Reference

 DSNUTILS stored procedure

copyspace2 Specifies the number of cylinders to use as the primary space
allocation for the copydsn2 data set. The secondary space
allocation will be 10% of the primary.

This is an input parameter of type SMALLINT.

rcpydsn1 Specifies the name of the cataloged data set required as a target
(output) data set for the remote site primary copy. It is optional for
COPY, LOAD, and REORG TABLESPACE. If you specified
rcpydsn1, it will be allocated to the SYSRCPY1 DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the RECOVERYDDN parameter for COPY,
MERGECOPY, LOAD, or REORG TABLESPACE, the value
specified for ddname1 MUST be SYSRCPY1.

rcpydevt1 Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the rcpydsn1 data set resides.

This is an input parameter of type CHAR(8).

rcpyspace1 Specifies the number of cylinders to use as the primary space
allocation for the rcpydsn1 data set. The secondary space allocation
will be 10% of the primary.

This is an input parameter of type SMALLINT.

rcpydsn2 Specifies the name of the cataloged data set required as a target
(output) data set for the remote site backup copy. It is optional for
COPY, LOAD, and REORG TABLESPACE. If you specify rcpydsn2,
it will be allocated to the SYSRCPY2 DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the RECOVERYDDN parameter for COPY,
MERGECOPY, LOAD, or REORG TABLESPACE, the value
specified for ddname2 MUST be SYSRCPY2.

rcpydevt2 Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the rcpydsn2 data set resides.

This is an input parameter of type CHAR(8).

rcpyspace2 Specifies the number of cylinders to use as the primary space
allocation for the rcpydsn2 data set. The secondary space allocation
will be 10% of the primary.

This is an input parameter of type SMALLINT.

workdsn1 Specifies the name of the cataloged data set required as a work
data set for sort input and output. It is required for CHECK DATA,
CHECK INDEX and REORG INDEX. It is also required for LOAD
and REORG TABLESPACE unless you also specified the
SORTKEYS keyword. It is optional for REBUILD INDEX. If you
specify workdsn1, it will be allocated to the SYSUT1 DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the WORKDDN parameter for CHECK
DATA, CHECK INDEX, LOAD, REORG INDEX, REORG

 Appendix B. DSNUTILS stored procedure 523

 DSNUTILS stored procedure

TABLESPACE, or REBUILD INDEX, the value specified for
ddname MUST be SYSUT1.

workdevt1 Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the workdsn1 data set resides.

This is an input parameter of type CHAR(8).

workspace1 Specifies the number of cylinders to use as the primary space
allocation for the workdsn1 data set. The secondary space
allocation will be 10% of the primary.

This is an input parameter of type SMALLINT.

workdsn2 Specifies the name of the cataloged data set required as a work
data set for sort input and output. It is required for CHECK DATA. It
is also required if you are using REORG INDEX to reorganize
non-unique type 1 indexes. It is required for LOAD or REORG
TABLESPACE unless you also specified the SORTKEYS keyword.
If you specify workdsn2, it will be allocated to the SORTOUT
DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the WORKDDN parameter for CHECK
DATA, LOAD, REORG INDEX, or REORG TABLESPACE,
the value specified for ddname MUST be SORTOUT.

workdevt2 Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the workdsn2 data set resides.

This is an input parameter of type CHAR(8).

workspace2 Specifies the number of cylinders to use as the primary space
allocation for the workdsn2 data set. The secondary space
allocation will be 10% of the primary.

This is an input parameter of type SMALLINT.

mapdsn Specifies the name of the cataloged data set required as a work
data set for error processing during LOAD with ENFORCE
CONSTRAINTS. It is optional for LOAD. If you specify mapdsn, it
will be allocated to the SYSMAP DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the MAPDDN parameter for LOAD, the
value specified for ddname MUST be SYSMAP.

mapdevt Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the mapdsn data set resides.

This is an input parameter of type CHAR(8).

mapspace Specifies the number of cylinders to use as the primary space
allocation for the mapdsn data set. The secondary space allocation
will be 10% of the primary.

This is an input parameter of type SMALLINT.

524 Utility Guide and Reference

 DSNUTILS stored procedure

errdsn Specifies the name of the cataloged data set required as a work
data set for error processing. It is required for CHECK DATA, and is
optional for LOAD. If you specify errdsn, it will be allocated to the
SYSERR DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the ERRDDN parameter for CHECK DATA
or LOAD, the value specified for ddname MUST be
SYSERR.

errdevt Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the errdsn data set resides.

This is an input parameter of type CHAR(8).

errspace Specifies the number of cylinders to use as the primary space
allocation for the errdsn data set. The secondary space allocation
will be 10% of the primary.

This is an input parameter of type SMALLINT.

filtrdsn Specifies the name of the cataloged data set required as a work
data set for error processing. It is optional for COPY
CONCURRENT. If you specify filtrdsn, it will be allocated to the
FILTER DDNAME.

This is an input parameter of type VARCHAR(54).

Note: If you specified the FILTERDDN parameter for COPY, the
value specified for ddname MUST be FILTER.

filtrdevt Specifies a unit address, a generic device type, or a user-assigned
group name for a device on which the filtrdsn data set resides.

This is an input parameter of type CHAR(8).

filtrspace Specifies the number of cylinders to use as the primary space
allocation for the filtrdsn data set. The secondary space allocation
will be 10% of the primary.

This is an input parameter of type SMALLINT.

Modifying the WLM-established address space
Add SYSIN and SYSPRINT to the JCL procedure for starting the WLM-established
address space, in which DSNUTILS runs. You must allocate SYSIN and

SYSPRINT in the procedure to temporarily store utility input statements and utility
output messages.

Sample program for calling DSNUTILS
Example program DSNTEJ6U in SDSNSAMP shows sample JCL for preparing and
executing DSN8EPU. Example program DSN8EPU in SDSNSAMP is a PL/I
program which shows creating and binding the DSNUTILS stored procedure to run
a utility.

 Appendix B. DSNUTILS stored procedure 525

 DSNUTILS stored procedure

 DSNUTILS output
DB2 creates the result set according to the DECLARE statement shown on page
on page 517.

Output from a successful execution of the DSNTEJ6U sample job or an equivalent
job lists the parameters specified followed by the messages generated by the DB2
DIAGNOSE DISPLAY MEPL utility.

526 Utility Guide and Reference

 Resetting an advisory or restrictive status

| Appendix C. Resetting an advisory or restrictive status

| DB2 sets a restrictive or advisory status on an object to control access and help
| ensure data integrity. This appendix outlines the restrictive and non-restrictive
| object states that affect utilities, and the steps required to correct each status for a
| particular object.

| Use the DISPLAY DATABASE command to display the current status for an object.

| The following states are described in this section:

| “Auxiliary CHECK pending status”
| “Auxiliary warning status” on page 528
| “CHECK pending status” on page 528
| “COPY pending status” on page 529
| “Group buffer pool RECOVER pending status” on page 530
| “Informational COPY pending status” on page 530
| “REBUILD pending status” on page 530
| “RECOVER pending status” on page 531
| “REORG pending status” on page 532
| “Restart pending status” on page 533

| Auxiliary CHECK pending status
| The auxiliary CHECK pending restrictive status is set on when at least one base
| table LOB column error is detected and not invalidated as a result of running
| CHECK DATA AUXERROR REPORT.

| Refer to Table 86 for information about resetting the auxiliary CHECK pending
| status.

| Table 86. Resetting auxiliary CHECK pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| Auxiliary
| CHECK
| pending

| ACHKP| base table space, LOB
| table space
| 1. Update or delete invalid LOBs using SQL.

2. Run the CHECK DATA utility with the
appropriate SCOPE option to verify the
| validity of LOBs and reset ACHKP status.

| You can use the REPAIR utility followed by
| CHECK DATA to reset the ACHKP status, but
| use caution.

| 1

| Notes:

| 1. A base table space in the ACHKP status is unavailable for processing by SQL.

 Copyright IBM Corp. 1983, 1999 527

 Resetting an advisory or restrictive status

| Auxiliary warning status
| Auxiliary warning (AUXW) status is set on when at least one base table LOB
| column has an invalidated LOB as a result of running CHECK DATA AUXERROR
| INVALIDATE. An attempt to retrieve an invalidated LOB results in a -904 SQL
| return code.

| The RECOVER utility also sets AUXW status if it finds an invalid LOB column.
| Invalid LOB columns might result from the following actions (all three must apply):

| 1. LOB table space was defined with LOG NO.

| 2. LOB table space was recovered.

| 3. LOB was updated since the last image copy.

| Refer to Table 87 for information about resetting the auxiliary warning status.

| Table 87. Resetting auxiliary warning status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| Auxiliary
| warning
| AUXW| Base table space| 1. Update or delete invalid LOBs using SQL.

| 2. Run CHECK DATA utility to verify the
| validity of LOBs and reset AUXW status.

| 1,2,3

| | | LOB table space| 1. Update or delete invalid LOBs using SQL.

| 2. Run CHECK LOB utility to verify the
| validity of LOBs and reset AUXW status.

| Alternatively, you can use the REPAIR utility to
| set NOLOBCHKP. Be aware that using the
| REPAIR utility to delete invalid LOBs might
| cause the base table and the index on the
| auxiliary table to reference invalid LOBs.

| 1

| Notes:

| 1. A base table space or LOB table space in the AUXW status is available for processing by SQL, even though it
| contains invalid LOBs. However, an attempt to retrieve an invalid LOB results in a -904 SQL return code.

| 2. DB2 can access all rows of a base table space that are in the AUXW status. SQL can update the invalid LOB
| column and delete base table rows, but the value of the LOB column cannot be retrieved. If DB2 attempts to
| access an invalid LOB column, a -904 SQL code is returned. The AUXW status remains on the base table space
| even when SQL deletes or updates the last invalid LOB column.

| 3. If CHECK DATA AUXERROR REPORT encounters only invalid LOB columns and no other LOB column errors,
| the base table space is set to the auxiliary CHECK pending (ACHKP) status.

| CHECK pending status
| The CHECK pending restrictive status indicates that an object might be in an
| inconsistent state and must be checked.

| The following utilities set the CHECK pending status on a table space if referential
| integrity constraints are encountered:

| � LOAD with ENFORCE NO

| � RECOVER to a point-in-time

528 Utility Guide and Reference

 Resetting an advisory or restrictive status

| � CHECK LOB

| The CHECK pending status can also affect a base table space or a LOB table
| space.

| Refer to Table 88 for information about resetting the CHECK pending status.

| Table 88. Resetting CHECK pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| CHECK
| pending
CHKP| Table space, base
| table space
| Check and correct referential integrity
| constraints using the CHECK DATA utility.

If a table space is in both REORG pending and
CHECK pending status (or auxiliary CHECK
pending status), run REORG first and then
CHECK DATA to clear the respective states.

|

| | | Partitioning index,
| nonpartitioning index,
| index on the auxiliary
| table

| 1. Run CHECK INDEX on the index.

| 2. If any errors are found, use the REBUILD
| INDEX utility to rebuild the index from
| existing data.

| 1

| | | LOB table space| Use the CHECK LOB utility to check the LOB
| table space. If any errors are found:

| 1. Correct any defects found in the LOB table
| space using the REPAIR utility.

| 2. Run CHECK LOB again to reset the
| CHECK pending status.

| 3. See Table 87 on page 528 if an AUXW
| status exists.

|

| Notes:

| 1. An index might be placed in the CHECK pending status if you recovered an index to a specific RBA or LRSN from
| a copy and applied the log records, but you did not recover the table space in the same list. The CHECK pending
| status can also be placed on an index if you specified the table space and the index in the same list, but the
| RECOVER point-in-time was not a QUIESCE or COPY SHRLEVEL REFERENCE point.

| COPY pending status
| The COPY pending restrictive status indicates that the affected object must be
| copied.

| Refer to Table 89 for information about resetting the COPY pending status.

| Table 89. Resetting COPY pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| COPY
| pending
| COPY| table space, table
| space partition
| Take an image copy of the affected object.|

 Appendix C. Resetting an advisory or restrictive status 529

 Resetting an advisory or restrictive status

| Group buffer pool RECOVER pending status
| The group buffer pool RECOVER pending status is set on when a coupling facility
| crashes with pages that were not externalized. The affected object must be
| recovered.

| Refer to Table 90 for information about resetting the group buffer pool RECOVER
| pending status.

| Table 90. Resetting group buffer pool RECOVER pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| Group buffer
| pool
| RECOVER
| pending

| GRECP| object| Recover the object, or use START DATABASE
| to recover the object.
|

| Informational COPY pending status
| The informational COPY pending advisory status indicates that the affected object
| should be copied.

| Refer to Table 91 for information about resetting the informational COPY pending
| status.

| Table 91. Resetting informational COPY pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| Informational
| COPY
| pending

| ICOPY| Partitioning index,
| nonpartitioning index,
| index on the auxiliary
| table

| Copy the affected index.|

| REBUILD pending status
| The REBUILD pending (RBDP) restrictive status indicates that the affected index or
| index partition is broken and must be rebuilt from the data.

| Refer to Table 92 for information about resetting the REBUILD pending status.

| Table 92 (Page 1 of 2). Resetting REBUILD pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| REBUILD
| pending
| RBDP| physical or logical
| index partition
| Run the REBUILD or RECOVER utility on the
| affected index partition.
| 1

| | RBDP*| logical partitions of
| nonpartitioning indexes
| Run REBUILD INDEX PART or RECOVER
| utility on the affected logical partitions.
|

| | PSRBD| nonpartitioning index,
| index on the auxiliary
| table

| Run REBUILD INDEX ALL, the RECOVER
| utility, or run REBUILD INDEX listing all
| indexes in the affected index space.

|

530 Utility Guide and Reference

 Resetting an advisory or restrictive status

| Table 92 (Page 2 of 2). Resetting REBUILD pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| | | | The following actions also reset the REBUILD
| pending status:

| � LOAD REPLACE the table space or
| partition.

| � REPAIR SET INDEX with NORBDPEND
| on the index partition. Be aware that this
| does not correct the data inconsistency in
| the index partition. Use CHECK INDEX
| instead of REPAIR to verify referential
| integrity constraints.

| � Start the database containing the index
| space with ACCESS FORCE. Be aware
| that this does not correct the data
| inconsistency in the index partition.

| � Run REORG INDEX SORTDATA on the
| affected index.

|

| Notes:

| 1. The entire nonpartitioning index is inaccessible until you reset the RBDP status.

| RECOVER pending status
| The RECOVER pending restrictive status indicates that a table space or table
| space partition is broken and must be recovered.

| Refer to Table 93 for information about resetting the RECOVER pending status.

| Table 93 (Page 1 of 2). Resetting RECOVER pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| RECOVER
| pending
| RECP| table space| Run the RECOVER utility on the affected
| object.
|

| | | Table space partition| Recover the logical partition.|

| | | Index on the auxiliary
| table
| Correct the RECOVER pending status using
| one of the following utilities:

| � REBUILD INDEX
| � RECOVER INDEX
| � REORG INDEX SORTDATA

|

 Appendix C. Resetting an advisory or restrictive status 531

 Resetting an advisory or restrictive status

| Table 93 (Page 2 of 2). Resetting RECOVER pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| | | Index space| In a coexistence situation, you might have an
| index space set in RECP status by a Version 5
| subsystem that is visible on a Version 6
| subsystem. Likewise, you might have an index
| space set in RBDP, RBDP*, or PSRBDP status
| by a Version 6 subsystem that is visible on a
| Version 5 subsystem. In either situation, run
| one of the following utilities on the affected
| index space to reset the pending status:

| � REBUILD INDEX
| � RECOVER INDEX
| � REORG INDEX SORTDATA

|

| | | | The following actions also reset the RECOVER
| pending status:

| � LOAD REPLACE the table space or
| partition.

| � REPAIR SET TABLESPACE or INDEX
| with NORCVRPEND on table space or
| partition. Be aware that this does not
| correct the data inconsistency in the table
| space or partition.

| � Start the database containing the table
| space or index space with ACCESS
| FORCE. Be aware that this does not
| correct the data inconsistency in the table
| space or partition.

|

| REORG pending status
| The REORG pending restrictive status indicates that a table space partition is
| broken and must be reorganized.

| Refer to Table 94 on page 533 for information about resetting the REORG pending
| status.

532 Utility Guide and Reference

 Resetting an advisory or restrictive status

| Table 94. Resetting REORG pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

REORG
pending
REORP# table space# Perform one of the following actions:

� LOAD REPLACE the entire table space.

� Run the REORG TABLESPACE utility with
SHRLEVEL NONE.

If a table space is in both REORG pending
and CHECK pending status (or auxiliary
CHECK pending status), run REORG first
and then CHECK DATA to clear the
respective states.

� Run REORG PARTm:n SHRLEVEL
NONE.

1,2,
3,4

| REORG
| pending
| REORP| partitioned table space| For row lengths <= 32KB:

| 1. Run REORG TABLESPACE SHRLEVEL
| NONE SORTDATA.

| For row lengths > 32KB:

| 1. Run REORG TABLESPACE UNLOAD
| ONLY.

| 2. Run LOAD TABLESPACE FORMAT
| UNLOAD.

|

Notes:

| 1. Consider running COPY after resetting the REORP status. Be aware that you can only use an image copy that
| was created before turning off the REORP status if you are performing a point-in-time recovery.

2. You cannot run SELECT, INSERT, DELETE, or UPDATE on data in a table space that is in REORP status; this
includes access through a partitioning or nonpartitioning index. The only SQL access that is allowed is DROP
TABLESPACE.

3. The START DATABASE ACCESS FORCE command does not remove the REORP status from an object.

4. You must allocate a discard data set (SYSDISC) or specify DISCARDDN if the last partition is in REORP.

| Restart pending status
| The restart pending status is set on if an object has back-out work pending at the
| end of DB2 restart.

| Refer to Table 95 for information about resetting the restart pending status.

| Table 95 (Page 1 of 2). Resetting restart pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| Restart
| pending
| RESTP| table space, table
| space partitions, index
| spaces, and physical
| index space partitions

| Objects in the RESTP status remain
| unavailable until back-out work is complete, or
| until restart is canceled and a conditional
| restart or cold start is performed in its place.
| See Section 4 (Volume 1) of DB2
| Administration Guide for information about the
| RESTP restrictive status.

| 1,2,3

 Appendix C. Resetting an advisory or restrictive status 533

 Resetting an advisory or restrictive status

| Table 95 (Page 2 of 2). Resetting restart pending status

| Status| Abbreviation| Object Affected| Corrective Action| Notes

| Notes:

| 1. Delay running REORG TABLESPACE SHRLEVEL CHANGE until all RESTP statuses are reset.

| 2. You cannot use LOAD REPLACE on an object that is in the RESTP status.

| 3. Utility activity against RESTP page sets or partitions is not allowed. Any attempt to access a RESTP page set or
| partition terminates with return code 8.

534 Utility Guide and Reference

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

| Appendix D. How to run sample programs DSNTIAUL,
| DSNTIAD, and DSNTEP2

| DB2 provides three sample programs that many users find helpful as productivity
| aids. These programs are shipped as source code, so you can modify them to
| meet your needs. The programs are:

| DSNTIAUL The sample unload program. This program, which is written in
| assembler language, unloads some or all rows from up to 100 DB2
| tables. With DSNTIAUL, you can unload data of any DB2 built-in
| data type or distinct type. You can unload up to 32KB of data from
| a LOB column. DSNTIAUL unloads the rows in a form that is
| compatible with the LOAD utility and generates utility control
| statements for LOAD. DSNTIAUL also lets you execute any SQL
| non-SELECT statement that can be executed dynamically.

| DSNTIAD A sample dynamic SQL program in assembler language. With this
| program, you can execute any SQL statement that can be
| executed dynamically, except a SELECT statement.

| DSNTEP2 A sample dynamic SQL program in the PL/I language. With this
| program, you can execute any SQL statement that can be
| executed dynamically. You can use the source version of
| DSNTEP2 and modify it to meet your needs, or, if you do not have
| a PL/I compiler at your installation, you can use the object code
| version of DSNTEP2.

| Because these three programs also accept the static SQL statements CONNECT,
| SET CONNECTION, and RELEASE, you can use the programs to access DB2
| tables at remote locations.

| DSNTIAUL and DSNTIAD are shipped only as source code, so you must
| precompile, assemble, link, and bind them before you can use them. If you want to
| use the source code version of DSNTEP2, you must precompile, compile, link and
| bind it. You need to bind the object code version of DSNTEP2 before you can use
| it. Usually, your system administrator prepares the programs as part of the
| installation process. Table 96 indicates which installation job prepares each sample
| program. All installation jobs are in data set DSN610.SDSNSAMP.

| To run the sample programs, use the DSN RUN command, which is described in
| detail in Chapter 2 of DB2 Command Reference. Table 97 on page 536 lists the
| load module name and plan name you must specify, and the parameters you can
| specify when you run each program. See the following sections for the meaning of
| each parameter.

| Table 96. Jobs that prepare DSNTIAUL, DSNTIAD, and DSNTEP2

| Program Name| Program Preparation Job

| DSNTIAUL| DSNTEJ2A

| DSNTIAD| DSNTIJTM

| DSNTEP2 (source)| DSNTEJ1P

| DSNTEP2 (object)| DSNTEJ1L

 Copyright IBM Corp. 1983, 1999 535

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

| The remainder of this appendix contains the following information about running
| each program:

| � Descriptions of the input parameters
| � Data sets you must allocate before you run the program
| � Return codes from the program
| � Examples of invocation

| See the sample jobs listed in Table 96 on page 535 for a working example of each
| program.

| Table 97. DSN RUN option values for DSNTIAUL, DSNTIAD, and DSNTEP2

| Program Name| Load Module| Plan| Parameters

| DSNTIAUL| DSNTIAUL| DSNTIB61| SQL

| DSNTIAD| DSNTIAD| DSNTIA61| RC0
| SQLTERM(termchar)

| DSNTEP2| DSNTEP2| DSNTEP61| ALIGN(MID)
| or ALIGN(LHS)
| MAXSEL(n)
| NOMIXED or MIXED
| SQLTERM(termchar)

| Running DSNTIAUL
| This section contains information that you need when you run DSNTIAUL, including
| parameters, data sets, return codes, and invocation examples.

| DSNTIAUL parameters: DSNTIAUL accepts one parameter, SQL. If you specify
| this parameter, your input data set contains one or more complete SQL statements,
| each of which ends with a semi-colon. You can include any SQL statement that can
| be executed dynamically in your input data set. In addition, you can include the
| static SQL statements CONNECT, SET CONNECTION, or RELEASE. The
| maximum length for a statement is 32765 bytes. DSNTIAUL uses the SELECT
| statements to determine which tables to unload and dynamically executes all other
| statements except CONNECT, SET CONNECTION, and RELEASE. DSNTIAUL
| executes CONNECT, SET CONNECTION, and RELEASE statically to connect to
| remote locations.

| If you do not specify the SQL parameter, your input data set must contain one or
| more single-line statements (without a semi-colon) that use the following syntax:

| table or view name [WHERE conditions] [ORDER BY columns]

| Each input statement must be a valid SQL SELECT statement with the clause
| SELECT * FROM omitted and with no ending semi-colon. DSNTIAUL generates a
| SELECT statement for each input statement by appending your input line to
| SELECT * FROM, then uses the result to determine which tables to unload. For
| this input format, the text for each table specification can be a maximum of 72
| bytes and must not span multiple lines.

| For both input formats, you can specify SELECT statements that join two or more
| tables or select specific columns from a table. If you specify columns, you will need
| to modify the LOAD statement that DSNTIAUL generates.

| DSNTIAUL data sets:

536 Utility Guide and Reference

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

| Data Set Description

| SYSIN Input data set. See DSNTIAUL parameters for information on the
| contents of the input data.

| You cannot enter comments in DSNTIAUL input.

| The record length for the input data set must be at least 72 bytes.
| DSNTIAUL reads only the first 72 bytes of each record.

| SYSPRINT Output data set. DSNTIAUL writes informational and error
| messages in this data set.

| The record length for the SYSPRINT data set is 121 bytes.

| SYSPUNCH Output data set. DSNTIAUL writes the LOAD utility control
| statements in this data set.

| SYSRECnn Output data sets. The value nn ranges from 00 to 99. You can
| have a maximum of 100 output data sets for a single execution of
| DSNTIAUL. Each data set contains the data unloaded when
| DSNTIAUL processes a SELECT statement from the input data set.
| Therefore, the number of output data sets must match the number
| of SELECT statements (if you specify parameter SQL) or table
| specifications in your input data set.

| Define all data sets as sequential data sets. You can specify the record length and
| block size of the SYSPUNCH and SYSRECnn data sets. The maximum record
| length for the SYSPUNCH and SYSRECnn data sets is 32760 bytes.

| DSNTIAUL return codes:

| Return Code Meaning

| 0 Successful completion.

| 4 An SQL statement received a warning code. If the SQL statement was a
| SELECT statement, DB2 did not perform the associated unload operation.

| 8 An SQL statement received an error code. If the SQL statement was a
| SELECT statement, DB2 did not perform the associated unload operation.

| 12 DSNTIAUL could not open a data set, an SQL statement returned a severe
| error code (-8nn or -9nn), or an error occurred in the SQL message
| formatting routine.

| Examples of DSNTIAUL invocation: Suppose you want to unload the rows for
| department D01 from the project table. You can fit the table specification on one
| line, and you do not want to execute any non-SELECT statements, so you do not
| need the SQL parameter. Your invocation looks like this:

 Appendix D. How to run sample programs DSNTIAUL, DSNTIAD, and DSNTEP2 537

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

| //UNLOAD EXEC PGM=IKJEFT%1,DYNAMNBR=2%

| //SYSTSPRT DD SYSOUT=�

| //SYSTSIN DD �

| DSN SYSTEM(DSN)

| RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB61) -

| LIB('DSN61%.RUNLIB.LOAD')

| //SYSPRINT DD SYSOUT=�

| //SYSUDUMP DD SYSOUT=�

| //SYSREC%% DD DSN=DSN8UNLD.SYSREC%%,

| // UNIT=SYSDA,SPACE=(3276%,(1%%%,5%%)),DISP=(,CATLG),

| // VOL=SER=SCR%3

| //SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,

| // UNIT=SYSDA,SPACE=(8%%,(15,15)),DISP=(,CATLG),

| // VOL=SER=SCR%3,RECFM=FB,LRECL=12%,BLKSIZE=12%%

| //SYSIN DD �

| DSN861%.PROJ WHERE DEPTNO='D%1'

| Figure 36. DSNTIAUL Invocation without the SQL parameter

| If you want to obtain the LOAD utility control statements for loading rows into a
| table, but you do not want to unload the rows, you can set the data set names for
| the SYSRECnn data sets to DUMMY. For example, to obtain the utility control
| statements for loading rows into the department table, you invoke DSNTIAUL like
| this:

| //UNLOAD EXEC PGM=IKJEFT%1,DYNAMNBR=2%

| //SYSTSPRT DD SYSOUT=�

| //SYSTSIN DD �

| DSN SYSTEM(DSN)

| RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB61) -

| LIB('DSN61%.RUNLIB.LOAD')

| //SYSPRINT DD SYSOUT=�

| //SYSUDUMP DD SYSOUT=�

| //SYSREC%% DD DUMMY

| //SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,

| // UNIT=SYSDA,SPACE=(8%%,(15,15)),DISP=(,CATLG),

| // VOL=SER=SCR%3,RECFM=FB,LRECL=12%,BLKSIZE=12%%

| //SYSIN DD �

| DSN861%.DEPT

| Figure 37. DSNTIAUL Invocation to obtain LOAD control statements

| Now suppose that you also want to use DSNTIAUL to do these things:

| � Unload all rows from the project table

| � Unload only rows from the employee table for employees in departments with
| department numbers that begin with D, and order the unloaded rows by
| employee number

| � Lock both tables in share mode before you unload them

| For these activities, you must specify the SQL parameter when you run DSNTIAUL.
| Your DSNTIAUL invocation looks like this:

538 Utility Guide and Reference

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

| //UNLOAD EXEC PGM=IKJEFT%1,DYNAMNBR=2%

| //SYSTSPRT DD SYSOUT=�

| //SYSTSIN DD �

| DSN SYSTEM(DSN)

| RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB61) PARMS('SQL') -

| LIB('DSN61%.RUNLIB.LOAD')

| //SYSPRINT DD SYSOUT=�

| //SYSUDUMP DD SYSOUT=�

| //SYSREC%% DD DSN=DSN8UNLD.SYSREC%%,

| // UNIT=SYSDA,SPACE=(3276%,(1%%%,5%%)),DISP=(,CATLG),

| // VOL=SER=SCR%3

| //SYSREC%1 DD DSN=DSN8UNLD.SYSREC%1,

| // UNIT=SYSDA,SPACE=(3276%,(1%%%,5%%)),DISP=(,CATLG),

| // VOL=SER=SCR%3

| //SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,

| // UNIT=SYSDA,SPACE=(8%%,(15,15)),DISP=(,CATLG),

| // VOL=SER=SCR%3,RECFM=FB,LRECL=12%,BLKSIZE=12%%

| //SYSIN DD �

| LOCK TABLE DSN861%.EMP IN SHARE MODE;

| LOCK TABLE DSN861%.PROJ IN SHARE MODE;

| SELECT � FROM DSN861%.PROJ;

| SELECT � FROM DSN861%.EMP

| WHERE WORKDEPT LIKE 'D%'

| ORDER BY EMPNO;

| Figure 38. DSNTIAUL Invocation with the SQL parameter

| Running DSNTIAD
| This section contains information that you need when you run DSNTIAD, including
| parameters, data sets, return codes, and invocation examples.

| DSNTIAD parameters:

| RC0
| If you specify this parameter, DSNTIAD ends with return code 0, even if the
| program encounters SQL errors. If you do not specify RC0, DSNTIAD ends
| with a return code that reflects the severity of the errors that occur. Without
| RC0, DSNTIAD terminates if more than 10 SQL errors occur during a single
| execution.

| SQLTERM(termchar)
| Specify this parameter to indicate the character that you use to end each SQL
| statement. You can use any special character except one of those listed in
| Table 98 on page 540. SQLTERM(;) is the default.

 Appendix D. How to run sample programs DSNTIAUL, DSNTIAD, and DSNTEP2 539

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

| Use a character other than a semicolon if you plan to execute a statement that
| contains embedded semicolons. For example, suppose you specify the
| parameter SQLTERM(#) to indicate that the character # is the statement
| terminator. Then a CREATE TRIGGER statement with embedded semicolons
| looks like this:

| CREATE TRIGGER NEW_HIRE

| AFTER INSERT ON EMP

| FOR EACH ROW MODE DB2SQL

| BEGIN ATOMIC

| UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;

| END#

| Be careful to choose a character for the statement terminator that is not used
| within the statement.

| DSNTIAD data sets:

| Data Set Description

| SYSIN Input data set. In this data set, you can enter any number of
| non-SELECT SQL statements, each terminated with a semi-colon.
| A statement can span multiple lines, but DSNTIAD reads only the
| first 72 bytes of each line.

| You cannot enter comments in DSNTIAD input.

| SYSPRINT Output data set. DSNTIAD writes informational and error messages
| in this data set. DSNTIAD sets the record length of this data set to
| 121 and the block size to 1210.

| Define all data sets as sequential data sets.

| DSNTIAD return codes:

| Return Code Meaning

| 0 Successful completion, or the user specified parameter RC0.

| 4 An SQL statement received a warning code.

| 8 An SQL statement received an error code.

| 12 DSNTIAD could not open a data set, the length of an SQL statement was
| more than 32 760 bytes, an SQL statement returned a severe error code
| (-8nn or -9nn), or an error occurred in the SQL message formatting routine.

| Table 98. Invalid special characters for the SQL terminator

| Name| Character
| Hexadecimal
| Representation

| blank| | X'40'

| comma| ,| X'5E'

| double quote| "| X'7F'

| left parenthesis| (| X'4D'

| right parenthesis|)| X'5D'

| single quote| '| X'7D'

| underscore| _| X'6D'

540 Utility Guide and Reference

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

| Example of DSNTIAD invocation: Suppose you want to execute 20 UPDATE
| statements, and you do not want DSNTIAD to terminate if more than 10 errors
| occur. Your invocation looks like this:

| //RUNTIAD EXEC PGM=IKJEFT%1,DYNAMNBR=2%

| //SYSTSPRT DD SYSOUT=�

| //SYSTSIN DD �

| DSN SYSTEM(DSN)

| RUN PROGRAM(DSNTIAD) PLAN(DSNTIA61) PARMS('RC%') -

| LIB('DSN61%.RUNLIB.LOAD')

| //SYSPRINT DD SYSOUT=�

| //SYSUDUMP DD SYSOUT=�

| //SYSIN DD �

| UPDATE DSN861%.PROJ SET DEPTNO='J%1' WHERE DEPTNO='A%1';

| UPDATE DSN861%.PROJ SET DEPTNO='J%2' WHERE DEPTNO='A%2';
| .| .| .

| UPDATE DSN861%.PROJ SET DEPTNO='J2%' WHERE DEPTNO='A2%';

| Figure 39. DSNTIAD Invocation with the RC0 Parameter

| Running DSNTEP2
| This section contains information that you need when you run DSNTEP2, including
| parameters, data sets, return codes, and invocation examples.

| DSNTEP2 parameters:

| Parameter
| Description

| ALIGN(MID) or ALIGN(LHS)
| If you want your DSNTEP2 output centered, specify ALIGN(MID). If you want
| the output left-aligned, choose ALIGN(LHS). The default is ALIGN(MID).

| MAXSEL(n)
| Specify MAXSEL(n) to limit the number of rows that DSNTEP2 returns from a
| SELECT statement. n is an integer between 0 and 32768. If you do not specify
| MAXSEL(n), DSNTEP2 returns all rows in the result table.

| NOMIXED or MIXED
| If your input to DSNTEP2 contains any DBCS characters, specify MIXED. If
| your input contains no DBCS characters, specify NOMIXED. The default is
| NOMIXED.

| SQLTERM(termchar)
| Specify this parameter to indicate the character that you use to end each SQL
| statement. You can use any character except one of those listed in Table 98
| on page 540. SQLTERM(;) is the default.

| Use a character other than a semicolon if you plan to execute a statement that
| contains embedded semicolons. For example, suppose you specify the
| parameter SQLTERM(#) to indicate that the character # is the statement
| terminator. Then a CREATE TRIGGER statement with embedded semicolons
| looks like this:

 Appendix D. How to run sample programs DSNTIAUL, DSNTIAD, and DSNTEP2 541

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

| CREATE TRIGGER NEW_HIRE

| AFTER INSERT ON EMP

| FOR EACH ROW MODE DB2SQL

| BEGIN ATOMIC

| UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;

| END#

| Be careful to choose a character for the statement terminator that is not used
| within the statement.

| If you want to change the SQL terminator within a series of SQL statements,
| you can use the --#SET TERMINATOR control statement. For example,
| suppose that you have an existing set of SQL statements to which you want to
| add a CREATE TRIGGER statement that has embedded semicolons. You can
| use the default SQLTERM value, which is a semicolon, for all of the existing
| SQL statements. Before you execute the CREATE TRIGGER statement,
| include the --#SET TERMINATOR # control statement to change the SQL
| terminator to the character #:

| SELECT � FROM DEPT;

| SELECT � FROM ACT;

| SELECT � FROM EMPPROJACT;

| SELECT � FROM PROJ;

| SELECT � FROM PROJACT;

| --#SET TERMINATOR #

| CREATE TRIGGER NEW_HIRE

| AFTER INSERT ON EMP

| FOR EACH ROW MODE DB2SQL

| BEGIN ATOMIC

| UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;

| END#

| See the discussion of the SYSIN data set for more information on the --#SET
| control statement.

| DSNTEP2 data sets:

| Data Set Description

| SYSIN Input data set. In this data set, you can enter any number of SQL
| statements, each terminated with a semi-colon. A statement can
| span multiple lines, but DSNTEP2 reads only the first 72 bytes of
| each line.

| You can enter comments in DSNTEP2 input with an asterisk (*) in
| column 1 or two hyphens (--) anywhere on a line. Text that follows
| the asterisk is considered to be comment text. Text that follows two
| hyphens can be comment text or a control statement. Comments
| and control statements cannot span lines.

| You can enter a number of control statements in the DSNTEP2
| input data set. Those control statements are of the form

| --#SET control-option value

| The control options are:

| TERMINATOR
| The SQL statement terminator. value is any single-byte
| character other than one of those listed in Table 98 on

542 Utility Guide and Reference

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

| page 540. The default is the value of the SQLTERM
| parameter.

| ROWS_FETCH
| The number of rows to be fetched from the result table. value is
| a numeric literal between -1 and the number of rows in the
| result table. -1 means that all rows are to be fetched. The
| default is -1.

| ROWS_OUT
| The number of fetched rows to be sent to the output data set.
| value is a numeric literal between -1 and the number of fetched
| rows. -1 means that all fetched rows are to be sent to the
| output data set. The default is -1.

| SYSPRINT Output data set. DSNTEP2 writes informational and error
| messages in this data set. DSNTEP2 writes output records of no
| more than 133 bytes.

| Define all data sets as sequential data sets.

| DSNTEP2 return codes:

| Return Code Meaning

| 0 Successful completion.

| 4 An SQL statement received a warning code.

| 8 An SQL statement received an error code.

| 12 The length of an SQL statement was more than 32 760 bytes, an SQL
| statement returned a severe error code (-8nn or -9nn), or an error occurred
| in the SQL message formatting routine.

| Example of DSNTEP2 invocation: Suppose you want to use DSNTEP2 to
| execute SQL SELECT statements that might contain DBCS characters. You also
| want your output left-aligned. Your invocation looks like this:

| //RUNTEP2 EXEC PGM=IKJEFT%1,DYNAMNBR=2%

| //SYSTSPRT DD SYSOUT=�

| //SYSTSIN DD �

| DSN SYSTEM(DSN)

| RUN PROGRAM(DSNTEP2) PLAN(DSNTEP61) PARMS('/ALIGN(LHS) MIXED') -

| LIB('DSN61%.RUNLIB.LOAD')

| //SYSPRINT DD SYSOUT=�

| //SYSUDUMP DD SYSOUT=�

| //SYSIN DD �

| SELECT � FROM DSN861%.PROJ;

| Figure 40. DSNTEP2 Invocation with the ALIGN(LHS) and MIXED parameters

 Appendix D. How to run sample programs DSNTIAUL, DSNTIAD, and DSNTEP2 543

 Running DSNTIAUL, DSNTIAD, and DSNTEP2

544 Utility Guide and Reference

 Appendix E. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

 Copyright IBM Corp. 1983, 1999 545

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

Programming interface information
This book is intended to help you to use DB2 for OS/390 utilities.

This book also documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and Associated
Guidance Information provided by IBM DATABASE 2 Universal Database Server
for OS/390 (DB2 for OS/390).

General-use programming interfaces allow the customer to write programs that
obtain the services of DB2 for OS/390.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, by an entry in a column of a table.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
this IBM software product. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive

546 Utility Guide and Reference

programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may require changes in order to
run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by an entry in a column of a table, or by the following
marking:

Product-sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information ...

End of Product-sensitive Programming Interface

 Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

Throughout the library, COBOL is used to represent OS/VS COBOL, VS COBOL II,
IBM COBOL, and COBOL/370 programming languages.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
or other countries, or both.

The following terms are trademarks of other companies as follows:

� Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

AIX
APL2
AS/400
BookManager
CICS
CICS/ESA
DATABASE 2
DataHub
DataPropagator
DB2
DB2 Connect
DB2 Universal Database
DFSMS
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMS/MVS
DFSORT
DRDA
DXT
eNetwork
Enterprise System/3090

Enterprise System/9000
ESA/390
IBM
IMS
IMS/ESA
Language Environment
MVS/DFP
MVS/ESA
Net.Data
OS/2
OS/390
Parallel Sysplex
QMF
RACF
RAMAC
RETAIN
RMF
SQL/DS
System/390
VTAM
3090

 Appendix E. Notices 547

� Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

� UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be trademarks or service marks of
others.

548 Utility Guide and Reference

 abend � AS

 Glossary

The following terms and abbreviations are defined as
they are used in the DB2 library. If you do not find the
term you are looking for, refer to the index or to IBM
Dictionary of Computing.

A
abend. Abnormal end of task.

abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with DB2. A complete list
of DB2 abend reason codes and their explanations is
contained in DB2 Messages and Codes.

abnormal end of task (abend). Termination of a task,
job, or subsystem because of an error condition that
recovery facilities cannot resolve during execution.

access method services. The facility that is used to
define and reproduce VSAM key-sequenced data sets.

access path. The path that is used to locate data that
is specified in SQL statements. An access path can be
indexed or sequential.

active log. The portion of the DB2 log to which log
records are written as they are generated. The active
log always contains the most recent log records,
whereas the archive log holds those records that are
older and no longer fit on the active log.

address space. A range of virtual storage pages that
is identified by a number (ASID) and a collection of
segment and page tables that map the virtual pages to
real pages of the computer's memory.

address space connection. The result of connecting
an allied address space to DB2. Each address space
that contains a task that is connected to DB2 has
exactly one address space connection, even though
more than one task control block (TCB) can be present.
See also allied address space and task control block.

agent. As used in DB2, the structure that associates
all processes that are involved in a DB2 unit of work.
An allied agent is generally synonymous with an allied
thread. System agents are units of work that process
independently of the allied agent, such as prefetch
processing, deferred writes, and service tasks.

alias. An alternative name that can be used in SQL
statements to refer to a table or view in the same or a
remote DB2 subsystem.

allied address space. An area of storage that is
external to DB2 and that is connected to DB2. An allied
address space is capable of requesting DB2 services.

allied thread. A thread that originates at the local DB2
subsystem and that can access data at a remote DB2
subsystem.

ambiguous cursor. A database cursor that is not
defined with the FOR FETCH ONLY clause or the FOR
UPDATE OF clause, is not defined on a read-only result
table, is not the target of a WHERE CURRENT clause
on an SQL UPDATE or DELETE statement, and is in a
plan or package that contains either PREPARE or
EXECUTE IMMEDIATE SQL statements.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

ANSI. American National Standards Institute.

API. Application programming interface.

APPL. A VTAM network definition statement that is
used to define DB2 to VTAM as an application program
that uses SNA LU 6.2 protocols.

application. A program or set of programs that
performs a task; for example, a payroll application.

application plan. The control structure that is
produced during the bind process. DB2 uses the
application plan to process SQL statements that it
encounters during statement execution.

application process. The unit to which resources and
locks are allocated. An application process involves the
execution of one or more programs.

application programming interface (API). A
functional interface that is supplied by the operating
system or by a separately orderable licensed program
that allows an application program that is written in a
high-level language to use specific data or functions of
the operating system or licensed program.

application server (AS). See server.

archive log. The portion of the DB2 log that contains
log records that have been copied from the active log.

AS. Application server. See server.

 Copyright IBM Corp. 1983, 1999 549

 ASCII � cast function

ASCII. An encoding scheme that is used to represent
strings in many environments, typically on PCs and
workstations. Contrast with EBCDIC.

attachment facility. An interface between DB2 and
TSO, IMS, CICS, or batch address spaces. An
attachment facility allows application programs to
access DB2.

attribute. A characteristic of an entity. For example, in
database design, the phone number of an employee is
one of that employee's attributes.

authorization ID. A string that can be verified for
connection to DB2 and to which a set of privileges are
allowed. It can represent an individual, an organizational
group, or a function, but DB2 does not determine this
representation.

auxiliary index. An index on an auxiliary table in
which each index entry refers to a LOB.

auxiliary table. A table that stores columns outside
the table in which they are defined. Contrast with base
table.

B
backward log recovery. The fourth and final phase of
restart processing during which DB2 scans the log in a
backward direction to apply UNDO log records for all
aborted changes.

base table. (1) A table that is created by the SQL
CREATE TABLE statement and that holds persistent
data. Contrast with result table and temporary table.

(2) A table containing a LOB column definition. The
actual LOB column data is not stored with the base
table. The base table contains a row identifier for each
row and an indicator column for each of its LOB
columns. Contrast with auxiliary table.

base table space. A table space that contains base
tables.

basic sequential access method (BSAM). An access
method for storing or retrieving data blocks in a
continuous sequence, using either a sequential access
or a direct access device.

binary integer. A basic data type that can be further
classified as small integer or large integer.

binary large object (BLOB). A sequence of bytes,
where the size of the value ranges from 0 bytes to
2 GB - 1. Such a string does not have an associated
CCSID.

bind. The process by which the output from the DB2
precompiler is converted to a usable control structure

(which is called a package or an application plan).
During the process, access paths to the data are
selected and some authorization checking is performed.

automatic bind. (More correctly automatic rebind).
A process by which SQL statements are bound
automatically (without a user issuing a BIND
command) when an application process begins
execution and the bound application plan or
package it requires is not valid.
dynamic bind. A process by which SQL statements
are bound as they are entered.
incremental bind. A process by which SQL
statements are bound during the execution of an
application process, because they could not be
bound during the bind process, and
VALIDATE(RUN) was specified.
static bind. A process by which SQL statements
are bound after they have been precompiled. All
static SQL statements are prepared for execution at
the same time.

BLOB. Binary large object.

BMP. Batch Message Processing (IMS).

bootstrap data set (BSDS). A VSAM data set that
contains name and status information for DB2, as well
as RBA range specifications, for all active and archive
log data sets. It also contains passwords for the DB2
directory and catalog, and lists of conditional restart and
checkpoint records.

BSAM. Basic sequential access method.

BSDS. Bootstrap data set.

buffer pool. Main storage that is reserved to satisfy
the buffering requirements for one or more table spaces
or indexes.

built-in function. A function that DB2 supplies.
Contrast with user-defined function.

C
CAF. Call attachment facility.

call attachment facility (CAF). A DB2 attachment
facility for application programs that run in TSO or MVS
batch. The CAF is an alternative to the DSN command
processor and provides greater control over the
execution environment.

cascade delete. The way in which DB2 enforces
referential constraints when it deletes all descendent
rows of a deleted parent row.

cast function. A function that is used to convert
instances of a (source) data type into instances of a

550 Utility Guide and Reference

 catalog � column function

different (target) data type. In general, a cast function
has the name of the target data type. It has one single
argument whose type is the source data type; its return
type is the target data type.

catalog. In DB2, a collection of tables that contains
descriptions of objects such as tables, views, and
indexes.

catalog table. Any table in the DB2 catalog.

CCSID. Coded character set identifier.

CDB. Communications database.

character large object (CLOB). A sequence of bytes
representing single-byte characters or a mixture of
single- and double-byte characters where the size of the
value can be up to 2 GB - 1. In general, character
large object values are used whenever a character
string might exceed the limits of the VARCHAR type.

character set. A defined set of characters.

character string. A sequence of bytes that represent
bit data, single-byte characters, or a mixture of single-
and double-byte characters.

CHECK clause. An extension to the SQL CREATE
TABLE and SQL ALTER TABLE statements that
specifies a table check constraint. See also table check
constraint.

check constraint. See table check constraint.

check integrity. The condition that exists when each
row in a table conforms to the table check constraints
that are defined on that table. Maintaining check
integrity requires DB2 to enforce table check constraints
on operations that add or change data.

check pending. A state of a table space or partition
that prevents its use by some utilities and some SQL
statements because of rows that violate referential
constraints, table check constraints, or both.

checkpoint. A point at which DB2 records internal
status information on the DB2 log; the recovery process
uses this information if DB2 abnormally terminates.

CI. Control interval.

CICS. Represents (in this publication) one of the
following products:

CICS Transaction Server for OS/390: Customer
Information Control Center Transaction Server for
OS/390
CICS/ESA: Customer Information Control
System/Enterprise Systems Architecture

CICS/MVS: Customer Information Control
System/Multiple Virtual Storage

CICS attachment facility. A DB2 subcomponent that
uses the MVS subsystem interface (SSI) and cross
storage linkage to process requests from CICS to DB2
and to coordinate resource commitment.

CIDF. Control interval definition field.

claim. A notification to DB2 that an object is being
accessed. Claims prevent drains from occurring until the
claim is released, which usually occurs at a commit
point. Contrast with drain.

claim class. A specific type of object access that can
be one of the following:

Cursor stability (CS)
Repeatable read (RR)

 Write

claim count. A count of the number of agents that are
accessing an object.

clause. In SQL, a distinct part of a statement, such as
a SELECT clause or a WHERE clause.

CLIST. Command list. A language for performing TSO
tasks.

CLOB. Character large object.

clustering index. An index that determines how rows
are physically ordered in a table space.

coded character set. A set of unambiguous rules that
establish a character set and the one-to-one
relationships between the characters of the set and their
coded representations.

coded character set identifier (CCSID). A 16-bit
number that uniquely identifies a coded representation
of graphic characters. It designates an encoding
scheme identifier and one or more pairs consisting of a
character set identifier and an associated code page
identifier.

cold start. A process by which DB2 restarts without
processing any log records. Contrast with warm start.

collection. A group of packages that have the same
qualifier.

column. The vertical component of a table. A column
has a name and a particular data type (for example,
character, decimal, or integer).

column function. An SQL operation that derives its
result from a collection of values across one or more
rows. Contrast with scalar function.

 Glossary 551

 command � cycle

command. A DB2 operator command or a DSN
subcommand. A command is distinct from an SQL
statement.

command recognition character (CRC). A character
that permits an MVS console operator or an IMS
subsystem user to route DB2 commands to specific
DB2 subsystems.

commit. The operation that ends a unit of work by
releasing locks so that the database changes that are
made by that unit of work can be perceived by other
processes.

commit point. A point in time when data is considered
consistent.

committed phase. The second phase of the multi-site
update process that requests all participants to commit
the effects of the logical unit of work.

communications database (CDB). A set of tables in
the DB2 catalog that are used to establish
conversations with remote database management
systems.

compression dictionary. The dictionary that controls
the process of compression and decompression. This
dictionary is created from the data in the table space or
table space partition.

concurrency. The shared use of resources by more
than one application process at the same time.

conditional restart. A DB2 restart that is directed by a
user-defined conditional restart control record (CRCR).

connection. In SNA, the existence of a
communication path between two partner LUs that
allows information to be exchanged (for example, two
DB2 subsystems that are connected and
communicating by way of a conversation).

connection ID. An identifier that is supplied by the
attachment facility and that is associated with a specific
address space connection.

consistency token. A timestamp that is used to
generate the version identifier for an application. See
also version.

constant. A language element that specifies an
unchanging value. Constants are classified as string
constants or numeric constants. Contrast with variable.

constraint. A rule that limits the values that can be
inserted, deleted, or updated in a table. See referential
constraint, table check constraint, and uniqueness
constraint.

control interval (CI). A fixed-length area or direct
access storage in which VSAM stores records and
creates distributed free space. Also, in a key-sequenced
data set or file, the set of records pointed to by an entry
in the sequence-set index record. The control interval
is the unit of information that VSAM transmits to or from
direct access storage. A control interval always includes
an integral number of physical records.

control interval definition field (CIDF). In VSAM, a
field located in the 4 bytes at the end of each control
interval; it describes the free space, if any, in the control
interval.

conversation. Communication, which is based on LU
6.2 or Advanced Program-to-Program Communication
(APPC), between an application and a remote
transaction program over an SNA logical unit-to-logical
unit (LU-LU) session that allows communication while
processing a transaction.

coordinator. The system component that coordinates
the commit or rollback of a unit of work that includes
work that is done on one or more other systems.

correlation ID. An identifier that is associated with a
specific thread. In TSO, it is either an authorization ID
or the job name.

CRC. Command recognition character.

CRCR. Conditional restart control record. See also
conditional restart.

created temporary table. A table that holds temporary
data and is defined with the SQL statement CREATE
GLOBAL TEMPORARY TABLE. Information about
created temporary tables is stored in the DB2 catalog,
so this kind of table is persistent and can be shared
across application processes. Contrast with declared
temporary table. See also temporary table.

CT. Cursor table.

current data. Data within a host structure that is
current with (identical to) the data within the base table.

current status rebuild. The second phase of restart
processing during which the status of the subsystem is
reconstructed from information on the log.

cursor table (CT). The copy of the skeleton cursor
table that is used by an executing application process.

cycle. A set of tables that can be ordered so that each
table is a descendent of the one before it, and the first
table is a descendent of the last table. A
self-referencing table is a cycle with a single member.

552 Utility Guide and Reference

 DASD � default value

D
DASD. Direct access storage device.

database. A collection of tables, or a collection of
table spaces and index spaces.

database access thread. A thread that accesses data
at the local subsystem on behalf of a remote
subsystem.

database administrator (DBA). An individual who is
responsible for designing, developing, operating,
safeguarding, maintaining, and using a database.

database descriptor (DBD). An internal
representation of a DB2 database definition, which
reflects the data definition that is in the DB2 catalog.
The objects that are defined in a database descriptor
are table spaces, tables, indexes, index spaces, and
relationships.

database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and the access to the data
stored within it.

database request module (DBRM). A data set
member that is created by the DB2 precompiler and
that contains information about SQL statements.
DBRMs are used in the bind process.

DATABASE 2 Interactive (DB2I). The DB2 facility that
provides for the execution of SQL statements, DB2
(operator) commands, programmer commands, and
utility invocation.

data currency. The state in which data that is
retrieved into a host variable in your program is a copy
of data in the base table.

data definition name (ddname). The name of a data
definition (DD) statement that corresponds to a data
control block containing the same name.

Data Language/I (DL/I). The IMS data manipulation
language; a common high-level interface between a
user application and IMS.

data partition. A VSAM data set that is contained
within a partitioned table space.

data type. An attribute of columns, literals, host
variables, special registers, and the results of functions
and expressions.

date. A three-part value that designates a day, month,
and year.

date duration. A decimal integer that represents a
number of years, months, and days.

DBA. Database administrator.

DBCLOB. Double-byte character large object.

DBCS. Double-byte character set.

DBD. Database descriptor.

DBID. Database identifier.

DBMS. Database management system.

DBRM. Database request module.

DB2 catalog. Tables that are maintained by DB2 and
that contain descriptions of DB2 objects, such as tables,
views, and indexes.

DB2 command. An instruction to the DB2 subsystem
allowing a user to start or stop DB2, to display
information on current users, to start or stop databases,
to display information on the status of databases, and
so on.

DB2 for VSE & VM. The IBM DB2 relational database
management system for the VSE and VM operating
systems.

DB2I. DATABASE 2 Interactive.

DCLGEN. Declarations generator.

DDF. Distributed data facility.

ddname. Data definition name.

deadlock. Unresolvable contention for the use of a
resource such as a table or an index.

declarations generator (DCLGEN). A subcomponent
of DB2 that generates SQL table declarations and
COBOL, C, or PL/I data structure declarations that
conform to the table. The declarations are generated
from DB2 system catalog information. DCLGEN is also
a DSN subcommand.

declared temporary table. A table that holds
temporary data and is defined with the SQL statement
DECLARE GLOBAL TEMPORARY TABLE. Information
about declared temporary tables is not stored in the
DB2 catalog, so this kind of table is not persistent and
can only be used by the application process that issued
the DECLARE statement. Contrast with created
temporary table. See also temporary table.

default value. A predetermined value, attribute, or
option that is assumed when no other is explicitly
specified.

 Glossary 553

 delimited identifier � embedded SQL

delimited identifier. A sequence of characters that
are enclosed within double quotation marks ("). The
sequence must consist of a letter followed by zero or
more characters, each of which is a letter, digit, or the
underscore character (_).

dependent. An object (row, table, or table space) that
has at least one parent. The object is also said to be a
dependent (row, table, or table space) of its parent. See
parent row, parent table, parent table space.

dependent row. A row that contains a foreign key that
matches the value of a primary key in the parent row.

dependent table. A table that is a dependent in at
least one referential constraint.

descendent. An object that is a dependent of an
object or is the dependent of a descendent of an object.

descendent row. A row that is dependent on another
row, or a row that is a descendent of a dependent row.

descendent table. A table that is a dependent of
another table, or a table that is a descendent of a
dependent table.

direct access storage device (DASD). A device in
which access time is independent of the location of the
data.

directory. The DB2 system database that contains
internal objects such as database descriptors and
skeleton cursor tables.

distinct type. A user-defined data type that is
internally represented as an existing type (its source
type), but is considered to be a separate and
incompatible type for semantic purposes.

distributed data facility (DDF). A set of DB2
components through which DB2 communicates with
another RDBMS.

Distributed Relational Database Architecture
(DRDA). A connection protocol for distributed relational
database processing that is used by IBM's relational
database products. DRDA includes protocols for
communication between an application and a remote
relational database management system, and for
communication between relational database
management systems.

DL/I. Data Language/I.

double-byte character large object (DBCLOB). A
sequence of bytes representing double-byte characters
where the size of the values can be up to 2 GB. In
general, double-byte character large object values are

used whenever a double-byte character string might
exceed the limits of the VARGRAPHIC type.

double-byte character set (DBCS). A set of
characters, which are used by national languages such
as Japanese and Chinese, that have more symbols
than can be represented by a single byte. Each
character is 2 bytes in length and therefore requires
special hardware to be displayed or printed. Contrast
with single-byte character set.

double-precision floating point number. A 64-bit
approximate representation of a real number.

drain. The act of acquiring a locked resource by
quiescing access to that object.

drain lock. A lock on a claim class that prevents a
claim from occurring.

DRDA. Distributed Relational Database Architecture.

DRDA access. A method of accessing distributed data
by which you can connect to another location, using an
SQL statement, to execute packages that have been
previously bound at that location. The SQL CONNECT
or three-part name statement is used to identify
application servers, and SQL statements are executed
using packages that were previously bound at those
servers. Contrast with private protocol access.

DSN. (1) The default DB2 subsystem name. (2) The
name of the TSO command processor of DB2. (3) The
first three characters of DB2 module and macro names.

duration. A number that represents an interval of time.
See date duration, labeled duration, and time duration.

dynamic SQL. SQL statements that are prepared and
executed within an application program while the
program is executing. In dynamic SQL, the SQL source
is contained in host language variables rather than
being coded into the application program. The SQL
statement can change several times during the
application program's execution.

E
EBCDIC. Extended binary coded decimal interchange
code. An encoding scheme that is used to represent
character data in the OS/390, MVS, VM, VSE, and
OS/400 environments. Contrast with ASCII.

EDM pool. A pool of main storage that is used for
database descriptors, application plans, authorization
cache, application packages, and dynamic statement
caching.

embedded SQL. SQL statements that are coded
within an application program. See static SQL.

554 Utility Guide and Reference

 escape character � HSM

escape character. The symbol that is used to enclose
an SQL delimited identifier. The escape character is the
double quotation mark ("), except in COBOL
applications, where the user assigns the symbol, which
is either a double quotation mark or an apostrophe (').

ESDS. Entry sequenced data set.

EUR. IBM European Standards.

exception table. A table that holds rows that violate
referential constraints or table check constraints that the
CHECK DATA utility finds.

exclusive lock. A lock that prevents concurrently
executing application processes from reading or
changing data. Contrast with shared lock.

executable statement. An SQL statement that can be
embedded in an application program, dynamically
prepared and executed, or issued interactively.

exit routine. A user-written (or IBM-provided default)
program that receives control from DB2 to perform
specific functions. Exit routines run as extensions of
DB2.

external function. A function for which the body is
written in a programming language that takes scalar
argument values and produces a scalar result for each
invocation. Contrast with sourced function and built-in
function.

F
fallback. The process of returning to a previous
release of DB2 after attempting or completing migration
to a current release.

field procedure. A user-written exit routine that is
designed to receive a single value and transform
(encode or decode) it in any way the user can specify.

fixed-length string. A character or graphic string
whose length is specified and cannot be changed.
Contrast with varying-length string.

foreign key. A key that is specified in the definition of
a referential constraint. Because of the foreign key, the
table is a dependent table. The key must have the
same number of columns, with the same descriptions,
as the primary key of the parent table.

forward log recovery. The third phase of restart
processing during which DB2 processes the log in a
forward direction to apply all REDO log records.

free space. The total amount of unused space in a
page. That is, the space that is not used to store
records or control information is free space.

function. A specific purpose of an entity or its
characteristic action such as a column function or scalar
function. (See also column function and scalar function.)

Functions can be user-defined, built-in, or generated by
DB2. (See built-in function, cast function, external
function, sourced function, and user-defined function.)

G
GB. Gigabyte (1 073 741 824 bytes).

GBP. Group buffer pool.

generalized trace facility (GTF). An MVS service
program that records significant system events such as
I/O interrupts, SVC interrupts, program interrupts, or
external interrupts.

getpage. An operation in which DB2 accesses a data
page.

global lock contention. Conflicts on locking requests
between different DB2 members of a data sharing
group when those members are trying to serialize
shared resources.

governor. See resource limit facility.

gross lock. The shared, update, or exclusive mode
locks on a table, partition, or table space.

group buffer pool (GBP). A coupling facility cache
structure that is used by a data sharing group to cache
data and to ensure that the data is consistent for all
members.

GTF. Generalized trace facility.

H
help panel. A screen of information presenting tutorial
text to assist a user at the terminal.

host language. A programming language in which you
can embed SQL statements.

host program. An application program that is written
in a host language and that contains embedded SQL
statements.

HSM. Hierarchical storage manager.

 Glossary 555

 IDCAMS � isolation level

I
IDCAMS. An IBM program that is used to process
access method services commands. It can be invoked
as a job or jobstep, from a TSO terminal, or from within
a user's application program.

identify. A request that an attachment service program
in an address space that is separate from DB2 issues
via the MVS subsystem interface to inform DB2 of its
existence and to initiate the process of becoming
connected to DB2.

identity column. A column that provides a way for
DB2 to automatically generate a guaranteed-unique
numeric value for each row that is inserted into the
table. Identity columns are defined with the AS
IDENTITY clause. A table can have no more than one
identity column.

IFCID. Instrumentation facility component identifier.

IFI. Instrumentation facility interface.

IFI call. An invocation of the instrumentation facility
interface (IFI) by means of one of its defined functions.

image copy. An exact reproduction of all or part of a
table space. DB2 provides utility programs to make full
image copies (to copy the entire table space) or
incremental image copies (to copy only those pages
that have been modified since the last image copy).

IMS. Information Management System.

IMS attachment facility. A DB2 subcomponent that
uses MVS subsystem interface (SSI) protocols and
cross-memory linkage to process requests from IMS to
DB2 and to coordinate resource commitment.

in-abort. A status of a unit of recovery. If DB2 fails
after a unit of recovery begins to be rolled back, but
before the process is completed, DB2 continues to back
out the changes during restart.

in-commit. A status of a unit of recovery. If DB2 fails
after beginning its phase 2 commit processing, it
“knows,” when restarted, that changes made to data are
consistent. Such units of recovery are termed
in-commit.

index. A set of pointers that are logically ordered by
the values of a key. Indexes can provide faster access
to data and can enforce uniqueness on the rows in a
table.

index key. The set of columns in a table that is used
to determine the order of index entries.

index partition. A VSAM data set that is contained
within a partitioning index space.

index space. A page set that is used to store the
entries of one index.

indoubt. A status of a unit of recovery. If DB2 fails
after it has finished its phase 1 commit processing and
before it has started phase 2, only the commit
coordinator knows if an individual unit of recovery is to
be committed or rolled back. At emergency restart, if
DB2 lacks the information it needs to make this
decision, the status of the unit of recovery is indoubt
until DB2 obtains this information from the coordinator.
More than one unit of recovery can be indoubt at
restart.

indoubt resolution. The process of resolving the
status of an indoubt logical unit of work to either the
committed or the rollback state.

inflight. A status of a unit of recovery. If DB2 fails
before its unit of recovery completes phase 1 of the
commit process, it merely backs out the updates of its
unit of recovery at restart. These units of recovery are
termed inflight.

inline copy. A copy that is produced by the LOAD or
REORG utility. The data set that the inline copy
produces is logically equivalent to a full image copy that
is produced by running the COPY utility with read-only
access (SHRLEVEL REFERENCE).

instrumentation facility component identifier
(IFCID). A value that names and identifies a trace
record of an event that can be traced. As a parameter
on the START TRACE and MODIFY TRACE
commands, it specifies that the corresponding event is
to be traced.

instrumentation facility interface (IFI). A
programming interface that enables programs to obtain
online trace data about DB2, to submit DB2 commands,
and to pass data to DB2.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that provides interactive dialog
services.

internal resource lock manager (IRLM). An MVS
subsystem that DB2 uses to control communication and
database locking.

IRLM. Internal resource lock manager.

ISO. International Standards Organization.

isolation level. The degree to which a unit of work is
isolated from the updating operations of other units of
work. See also cursor stability, read stability, repeatable
read, and uncommitted read.

556 Utility Guide and Reference

 ISPF � lock promotion

ISPF. Interactive System Productivity Facility.

ISPF/PDF. Interactive System Productivity
Facility/Program Development Facility.

J
Japanese Industrial Standards Committee (JISC).
An organization that issues standards for coding
character sets.

JCL. Job control language.

JES. MVS Job Entry Subsystem.

JIS. Japanese Industrial Standard.

job control language (JCL). A control language that
is used to identify a job to an operating system and to
describe the job's requirements.

Job Entry Subsystem (JES). An IBM licensed
program that receives jobs into the system and
processes all output data that is produced by the jobs.

K
KB. Kilobyte (1024 bytes).

key. A column or an ordered collection of columns
identified in the description of a table, index, or
referential constraint.

key-sequenced data set (KSDS). A VSAM file or data
set whose records are loaded in key sequence and
controlled by an index.

KSDS. Key-sequenced data set.

L
labeled duration. A number that represents a duration
of years, months, days, hours, minutes, seconds, or
microseconds.

large object (LOB). A sequence of bytes representing
bit data, single-byte characters, double-byte characters,
or a mixture of single- and double-byte characters. A
LOB can be up to 2 GB - 1 byte in length. See also
BLOB, CLOB, and DBCLOB.

leaf page. A page that contains pairs of keys and
RIDs and that points to actual data. Contrast with
nonleaf page.

linkage editor. A computer program for creating load
modules from one or more object modules or load
modules by resolving cross references among the
modules and, if necessary, adjusting addresses.

link-edit. The action of creating a loadable computer
program using a linkage editor.

L-lock. Logical lock.

load module. A program unit that is suitable for
loading into main storage for execution. The output of a
linkage editor.

LOB. Large object.

LOB locator. A mechanism that allows an application
program to manipulate a large object value in the
database system. A LOB locator is a fullword integer
value that represents a single LOB value. An application
program retrieves a LOB locator into a host variable
and can then apply SQL operations to the associated
LOB value using the locator.

LOB table space. A table space that contains all the
data for a particular LOB column in the related base
table.

local. A way of referring to any object that the local
DB2 subsystem maintains. A local table, for example, is
a table that is maintained by the local DB2 subsystem.
Contrast with remote.

local subsystem. The unique RDBMS to which the
user or application program is directly connected (in the
case of DB2, by one of the DB2 attachment facilities).

location name. The name by which DB2 refers to a
particular DB2 subsystem in a network of subsystems.
Contrast with LU name.

lock. A means of controlling concurrent events or
access to data. DB2 locking is performed by the IRLM.

lock duration. The interval over which a DB2 lock is
held.

lock escalation. The promotion of a lock from a row,
page, or LOB lock to a table space lock because the
number of page locks that are concurrently held on a
given resource exceeds a preset limit.

locking. The process by which the integrity of data is
ensured. Locking prevents concurrent users from
accessing inconsistent data.

lock mode. A representation for the type of access
that concurrently running programs can have to a
resource that a DB2 lock is holding.

lock object. The resource that is controlled by a DB2
lock.

lock promotion. The process of changing the size or
mode of a DB2 lock to a higher level.

 Glossary 557

 lock size � null

lock size. The amount of data controlled by a DB2
lock on table data; the value can be a row, a page, a
LOB, a partition, a table, or a table space.

log. A collection of records that describe the events
that occur during DB2 execution and that indicate their
sequence. The information thus recorded is used for
recovery in the event of a failure during DB2 execution.

logical index partition. The set of all keys that
reference the same data partition.

logical lock (L-lock). The lock type that transactions
use to control intra- and inter-DB2 data concurrency
between transactions. Contrast with P-lock.

logical unit. An access point through which an
application program accesses the SNA network in order
to communicate with another application program.

logical unit of work (LUW). The processing that a
program performs between synchronization points.

logical unit of work identifier (LUWID). A name that
uniquely identifies a thread within a network. This name
consists of a fully-qualified LU network name, an LUW
instance number, and an LUW sequence number.

log initialization. The first phase of restart processing
during which DB2 attempts to locate the current end of
the log.

log record sequence number (LRSN). A number that
DB2 generates and associates with each log record.
DB2 also uses the LRSN for page versioning. The
LRSNs that a particular DB2 data sharing group
generates form a strictly increasing sequence for each
DB2 log and a strictly increasing sequence for each
page across the DB2 group.

log truncation. A process by which an explicit starting
RBA is established. This RBA is the point at which the
next byte of log data is to be written.

LRH. Log record header.

LRSN. Log record sequence number.

LU name. Logical unit name, which is the name by
which VTAM refers to a node in a network. Contrast
with location name.

LUW. Logical unit of work.

LUWID. Logical unit of work identifier.

M
mapping table. A table that the REORG utility uses to
map between the RIDs of data records in the original
copy and in the shadow copy. This table is created by
the user.

MB. Megabyte (1 048 576 bytes).

menu. A displayed list of available functions for
selection by the operator. A menu is sometimes called a
menu panel.

migration. The process of converting a DB2
subsystem with a previous release of DB2 to an
updated or current release. In this process, you can
acquire the functions of the updated or current release
without losing the data you created on the previous
release.

mixed data string. A character string that can contain
both single-byte and double-byte characters.

MPP. Message processing program (IMS).

MTO. Master terminal operator.

multi-site update. Distributed relational database
processing in which data is updated in more than one
location within a single unit of work.

MVS. Multiple Virtual Storage.

MVS/ESA. Multiple Virtual Storage/Enterprise Systems
Architecture.

MVS/XA. Multiple Virtual Storage/Extended
Architecture.

N
network identifier (NID). The network ID that is
assigned by IMS or CICS, or if the connection type is
RRSAF, the OS/390 RRS Unit of Recovery ID (URID).

NID. Network ID.

nonleaf page. A page that contains keys and page
numbers of other pages in the index (either leaf or
nonleaf pages). Nonleaf pages never point to actual
data.

NUL. In C, a single character that denotes the end of
the string.

null. A special value that indicates the absence of
information.

558 Utility Guide and Reference

 NUL-terminated host variable � precompilation

NUL-terminated host variable. A varying-length host
variable in which the end of the data is indicated by the
presence of a NUL terminator.

NUL terminator. In C, the value that indicates the end
of a string. For character strings, the NUL terminator is
X'00'.

O
OASN (origin application schedule number). In IMS,
a 4-byte number that is assigned sequentially to each
IMS schedule since the last cold start of IMS. The
OASN is used as an identifier for a unit of work. In an
8-byte format, the first 4 bytes contain the schedule
number and the last 4 bytes contain the number of IMS
sync points (commit points) during the current schedule.
The OASN is part of the NID for an IMS connection.

OBID. Data object identifier.

OS/390. Operating System/390.

P
package. An object containing a set of SQL
statements that have been bound statically and that is
available for processing. A package is sometimes also
called an application package.

package list. An ordered list of package names that
may be used to extend an application plan.

package name. The name of an object that is created
by a BIND PACKAGE or REBIND PACKAGE
command. The object is a bound version of a database
request module (DBRM). The name consists of a
location name, a collection ID, a package ID, and a
version ID.

page. A unit of storage within a table space (4 KB, 8
KB, 16 KB, or 32 KB) or index space (4 KB). In a table
space, a page contains one or more rows of a table. In
a LOB table space, a LOB value can span more than
one page, but no more than one LOB value is stored on
a page.

page set. Another way to refer to a table space or
index space. Each page set consists of a collection of
VSAM data sets.

page set recovery pending (PSRCP). A restrictive
state of an index space. In this case, the entire page
set must be recovered. Recovery of a logical part is
prohibited.

panel. A predefined display image that defines the
locations and characteristics of display fields on a
display surface (for example, a menu panel).

parallel I/O processing. A form of I/O processing in
which DB2 initiates multiple concurrent requests for a
single user query and performs I/O processing
concurrently (in parallel), on multiple data partitions.

parent row. A row whose primary key value is the
foreign key value of a dependent row.

parent table. A table whose primary key is referenced
by the foreign key of a dependent table.

parent table space. A table space that contains a
parent table. A table space containing a dependent of
that table is a dependent table space.

participant. An entity other than the commit
coordinator that takes part in the commit process. The
term participant is synonymous with agent in SNA.

partition. A portion of a page set. Each partition
corresponds to a single, independently extendable data
set. Partitions can be extended to a maximum size of 1,
2, or 4 GB, depending on the number of partitions in the
partitioned page set. All partitions of a given page set
have the same maximum size.

partitioned page set. A partitioned table space or an
index space. Header pages, space map pages, data
pages, and index pages reference data only within the
scope of the partition.

partitioned table space. A table space that is
subdivided into parts (based on index key range), each
of which can be processed independently by utilities.

partner logical unit. An access point in the SNA
network that is connected to the local DB2 subsystem
by way of a VTAM conversation.

piece. A data set of a nonpartitioned page set.

plan. See application plan.

plan allocation. The process of allocating DB2
resources to a plan in preparation to execute it.

plan name. The name of an application plan.

point of consistency. A time when all recoverable
data that an application accesses is consistent with
other data. The term point of consistency is
synonymous with sync point or commit point.

precompilation. A processing of application programs
containing SQL statements that takes place before
compilation. SQL statements are replaced with
statements that are recognized by the host language
compiler. Output from this precompilation includes
source code that can be submitted to the compiler and

 Glossary 559

 prefix � redo

the database request module (DBRM) that is input to
the bind process.

prefix. A code at the beginning of a message or
record.

prepare. The first phase of a two-phase commit
process in which all participants are requested to
prepare for commit.

primary authorization ID. The authorization ID used
to identify the application process to DB2.

primary index. An index that enforces the uniqueness
of a primary key.

private connection. A communications connection
that is specific to DB2.

private protocol access. A method of accessing
distributed data by which you can direct a query to
another DB2 system. Contrast with DRDA access.

private protocol connection. A DB2 private
connection of the application process. See also private
connection.

privilege. The capability of performing a specific
function, sometimes on a specific object. The term
includes:

explicit privileges, which have names and are held
as the result of SQL GRANT and REVOKE
statements. For example, the SELECT privilege.
implicit privileges, which accompany the
ownership of an object, such as the privilege to
drop a synonym one owns, or the holding of an
authority, such as the privilege of SYSADM
authority to terminate any utility job.

privilege set. For the installation SYSADM ID, the set
of all possible privileges. For any other authorization ID,
the set of all privileges that are recorded for that ID in
the DB2 catalog.

process. In DB2, the unit to which DB2 allocates
resources and locks. Sometimes called an application
process, a process involves the execution of one or
more programs. The execution of an SQL statement is
always associated with some process. The means of
initiating and terminating a process are dependent on
the environment.

program. A single compilable collection of executable
statements in a programming language.

protected conversation. A VTAM conversation that
supports two-phase commit flows.

PSRCP. Page set recovery pending.

Q
QMF. Query Management Facility.

query. A component of certain SQL statements that
specifies a result table.

R
RACF. Resource Access Control Facility.

RBA. Relative byte address.

RCT. Resource control table (CICS attachment
facility).

read stability (RS). An isolation level that is similar to
repeatable read but does not completely isolate an
application process from all other concurrently executing
application processes. Under level RS, an application
that issues the same query more than once might read
additional rows that were inserted and committed by a
concurrently executing application process.

rebind. The creation of a new application plan for an
application program that has been bound previously. If,
for example, you have added an index for a table that
your application accesses, you must rebind the
application in order to take advantage of that index.

record. The storage representation of a row or other
data.

record identifier (RID). A unique identifier that DB2
uses internally to identify a row of data in a table stored
as a record. Compare with row ID.

record identifier (RID) pool. An area of main storage
above the 16-MB line that is reserved for sorting record
identifiers during list prefetch processing.

recovery. The process of rebuilding databases after a
system failure.

recovery log. A collection of records that describes
the events that occur during DB2 execution and
indicates their sequence. The recorded information is
used for recovery in the event of a failure during DB2
execution.

recovery pending (RECP). A condition that prevents
SQL access to a table space that needs to be
recovered.

RECP. Recovery pending.

redo. A state of a unit of recovery that indicates that
changes are to be reapplied to the DASD media to
ensure data integrity.

560 Utility Guide and Reference

 referential constraint � secondary authorization ID

referential constraint. The requirement that nonnull
values of a designated foreign key are valid only if they
equal values of the primary key of a designated table.

referential integrity. The condition that exists when all
intended references from data in one column of a table
to data in another column of the same or a different
table are valid. Maintaining referential integrity requires
that DB2 enforce referential constraints on all LOAD,
RECOVER, INSERT, UPDATE, and DELETE
operations.

relationship. A defined connection between the rows
of a table or the rows of two tables. A relationship is the
internal representation of a referential constraint.

relative byte address (RBA). The offset of a data
record or control interval from the beginning of the
storage space that is allocated to the data set or file to
which it belongs.

remote. Any object that is maintained by a remote
DB2 subsystem (that is, by a DB2 subsystem other than
the local one). A remote view, for example, is a view
that is maintained by a remote DB2 subsystem.
Contrast with local.

remote subsystem. Any RDBMS, except the local
subsystem, with which the user or application can
communicate. The subsystem need not be remote in
any physical sense, and might even operate on the
same processor under the same MVS system.

REORG pending (REORP). A condition that restricts
SQL access and most utility access to an object that
must be reorganized.

REORP. REORG pending.

repeatable read (RR). The isolation level that provides
maximum protection from other executing application
programs. When an application program executes with
repeatable read protection, rows referenced by the
program cannot be changed by other programs until the
program reaches a commit point.

request commit. The vote that is submitted to the
prepare phase if the participant has modified data and
is prepared to commit or roll back.

resource. The object of a lock or claim, which could
be a table space, an index space, a data partition, an
index partition, or a logical partition.

resource control table (RCT). A construct of the
CICS attachment facility, created by site-provided macro
parameters, that defines authorization and access
attributes for transactions or transaction groups.

resource limit facility (RLF). A portion of DB2 code
that prevents dynamic manipulative SQL statements

from exceeding specified time limits. The resource limit
facility is sometimes called the governor.

resource limit specification table. A site-defined
table that specifies the limits to be enforced by the
resource limit facility.

restart pending (RESTP). A restrictive state of a page
set or partition that indicates that restart (backout) work
needs to be performed on the object. All access to the
page set or partition is denied except for access by the:

� RECOVER POSTPONED command
� Automatic online backout (which DB2 invokes after

restart if the system parameter LBACKOUT=AUTO)

RESTP. Restart pending.

result table. The set of rows that are specified by a
SELECT statement.

RID. Record identifier.

RID pool. Record identifier pool.

RLF. Resource limit facility.

RMID. Resource manager identifier.

RO. Read-only access.

rollback. The process of restoring data changed by
SQL statements to the state at its last commit point. All
locks are freed. Contrast with commit.

ROWID. Row identifier.

row identifier (ROWID). A value that uniquely
identifies a row. This value is stored with the row and
never changes.

RS. Read stability.

S
SBCS. Single-byte character set.

scalar function. An SQL operation that produces a
single value from another value and is expressed as a
function name, followed by a list of arguments that are
enclosed in parentheses. Contrast with column function.

search condition. A criterion for selecting rows from a
table. A search condition consists of one or more
predicates.

secondary authorization ID. An authorization ID that
has been associated with a primary authorization ID by
an authorization exit routine.

 Glossary 561

 segmented table space � static SQL

segmented table space. A table space that is divided
into equal-sized groups of pages called segments.
Segments are assigned to tables so that rows of
different tables are never stored in the same segment.

sequential data set. A non-DB2 data set whose
records are organized on the basis of their successive
physical positions, such as on magnetic tape. Several of
the DB2 database utilities require sequential data sets.

server. A functional unit that provides services to one
or more clients over a network. In the DB2 environment,
a server is the target for a request from a remote
RDBMS and is the RDBMS that provides the data. A
server is sometimes also called an application server
(AS).

session. A link between two nodes in a VTAM
network.

shared lock. A lock that prevents concurrently
executing application processes from changing data, but
not from reading data. Contrast with exclusive lock.

shift-in character. A special control character (X'0F')
that is used in EBCDIC systems to denote that the
subsequent bytes represent SBCS characters. See also
shift-out character.

shift-out character. A special control character
(X'0E') that is used in EBCDIC systems to denote that
the subsequent bytes, up to the next shift-in control
character, represent DBCS characters. See also shift-in
character.

sign-on. A request that is made on behalf of an
individual CICS or IMS application process by an
attachment facility to enable DB2 to verify that it is
authorized to use DB2 resources.

simple table space. A table space that is neither
partitioned nor segmented.

single-byte character set (SBCS). A set of characters
in which each character is represented by a single byte.
Contrast with double-byte character set.

SMF. System management facility.

SMS. Storage Management Subsystem.

SNA. Systems Network Architecture.

sourced function. A function that is implemented by
another built-in or user-defined function that is already
known to the database manager. This function can be a
scalar function or a column (aggregating) function; it
returns a single value from a set of values (for example,
MAX or AVG). Contrast with external function and
built-in function.

source program. A set of host language statements
and SQL statements that is processed by an SQL
precompiler.

SPUFI. SQL Processor Using File Input.

SQL. Structured Query Language.

SQL authorization ID (SQL ID). The authorization ID
that is used for checking dynamic SQL statements in
some situations.

SQL communication area (SQLCA). A structure that
is used to provide an application program with
information about the execution of its SQL statements.

SQL descriptor area (SQLDA). A structure that
describes input variables, output variables, or the
columns of a result table.

SQL escape character. The symbol that is used to
enclose an SQL delimited identifier. This symbol is the
double quotation mark ("). See also escape character.

SQL Processor Using File Input (SPUFI). SQL
Processor Using File Input. A facility of the TSO
attachment subcomponent that enables the DB2I user
to execute SQL statements without embedding them in
an application program.

SQL return code. Either SQLCODE or SQLSTATE.

SQL string delimiter. A symbol that is used to
enclose an SQL string constant. The SQL string
delimiter is the apostrophe ('), except in COBOL
applications, where the user assigns the symbol, which
is either an apostrophe or a double quotation mark (").

SQLCA. SQL communication area.

SQLDA. SQL descriptor area.

SQL/DS. Structured Query Language/Data System.
This product is now obsolete and has been replaced by
DB2 for VSE & VM.

SSI. Subsystem interface (MVS).

SSM. Subsystem member.

stand-alone. An attribute of a program that means it is
capable of executing separately from DB2, without
using DB2 services.

static SQL. SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is executed).
After being prepared, the SQL statement does not
change (although values of host variables that are
specified by the statement might change).

562 Utility Guide and Reference

 storage group � type 1 indexes

storage group. A named set of DASD volumes on
which DB2 data can be stored.

string. See character string or graphic string.

Structured Query Language (SQL). A standardized
language for defining and manipulating data in a
relational database.

subsystem. A distinct instance of a relational
database management system (RDBMS).

sync point. See commit point.

synonym. In SQL, an alternative name for a table or
view. Synonyms can only be used to refer to objects at
the subsystem in which the synonym is defined.

system administrator. The person at a computer
installation who designs, controls, and manages the use
of the computer system.

system agent. A work request that DB2 creates
internally such as prefetch processing, deferred writes,
and service tasks.

system conversation. The conversation that two DB2
subsystems must establish to process system
messages before any distributed processing can begin.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
through and controlling the configuration and operation
of networks.

T
table. A named data object consisting of a specific
number of columns and some number of unordered
rows. See also base table or temporary table.

table check constraint. A user-defined constraint that
specifies the values that specific columns of a base
table can contain.

table space. A page set that is used to store the
records in one or more tables.

table space set. A set of table spaces and partitions
that should be recovered together for one of these
reasons:

� Each of them contains a table that is a parent or
descendent of a table in one of the others.

� The set contains a base table and associated
auxiliary tables.

A table space set can contain both types of
relationships.

task control block (TCB). A control block that is used
to communicate information about tasks within an
address space that are connected to DB2. An address
space can support many task connections (as many as
one per task), but only one address space connection.
See also address space connection.

TCB. Task control block (MVS).

temporary table. A table that holds temporary data;
for example, temporary tables are useful for holding or
sorting intermediate results from queries that contain a
large number of rows. The two kinds of temporary table,
which are created by different SQL statements, are the
created temporary table and the declared temporary
table. Contrast with result table. See also created
temporary table and declared temporary table.

thread. The DB2 structure that describes an
application's connection, traces its progress, processes
resource functions, and delimits its accessibility to DB2
resources and services. Most DB2 functions execute
under a thread structure. See also allied thread and
database access thread.

three-part name. The full name of a table, view, or
alias. It consists of a location name, authorization ID,
and an object name, separated by a period.

time. A three-part value that designates a time of day
in hours, minutes, and seconds.

time duration. A decimal integer that represents a
number of hours, minutes, and seconds.

Time-Sharing Option (TSO). An option in MVS that
provides interactive time sharing from remote terminals.

timestamp. A seven-part value that consists of a date
and time. The timestamp is expressed in years, months,
days, hours, minutes, seconds, and microseconds.

TMP. Terminal Monitor Program.

trace. A DB2 facility that provides the ability to monitor
and collect DB2 monitoring, auditing, performance,
accounting, statistics, and serviceability (global) data.

TSO. Time-Sharing Option.

TSO attachment facility. A DB2 facility consisting of
the DSN command processor and DB2I. Applications
that are not written for the CICS or IMS environments
can run under the TSO attachment facility.

type 1 indexes. Indexes that were created by a
release of DB2 before DB2 Version 4 or that are
specified as type 1 indexes in Version 4. Contrast with
type 2 indexes. As of Version 6, type 1 indexes are no
longer supported.

 Glossary 563

 type 2 indexes � VTAM

type 2 indexes. Indexes that are created on a release
of DB2 after Version 5 or that are specified as type 2
indexes in Version 4 or Version 5.

U
UDF. User-defined function.

UDT. User-defined data type. In DB2 for OS/390, the
term distinct type is used instead of user-defined
function.

uncommitted read (UR). The isolation level that
allows an application to read uncommitted data.

undo. A state of a unit of recovery that indicates that
the changes that the unit of recovery made to
recoverable DB2 resources must be backed out.

unique index. An index which ensures that no
identical key values are stored in a table.

unique constraint. An SQL rule that no two values in
a primary key, or in the key of a unique index, can be
the same.

unit of recovery. A recoverable sequence of
operations within a single resource manager, such as
an instance of DB2. Contrast with unit of work.

unit of work. A recoverable sequence of operations
within an application process. At any time, an
application process is a single unit of work, but the life
of an application process can involve many units of
work as a result of commit or rollback operations. In a
multi-site update operation, a single unit of work can
include several units of recovery. Contrast with unit of
recovery.

UR. Uncommitted read.

URID (unit of recovery ID). The LOGRBA of the first
log record for a unit of recovery. The URID also
appears in all subsequent log records for that unit of
recovery.

user-defined data type (UDT). See distinct type.

user-defined function (UDF). A function that is
defined to DB2 using the CREATE FUNCTION
statement and that can be referenced thereafter in SQL
statements. A user-defined function can be either an
external function or a sourced function. Contrast with
built-in function.

UT. Utility-only access.

V
value. The smallest unit of data that is manipulated in
SQL.

variable. A data element that specifies a value that
can be changed. A COBOL elementary data item is an
example of a variable. Contrast with constant.

varying-length string. A character or graphic string
whose length varies within set limits. Contrast with
fixed-length string.

version. A member of a set of similar programs,
DBRMs, packages, or LOBs.

A version of a program is the source code that is
produced by precompiling the program. The
program version is identified by the program name
and a timestamp (consistency token).
A version of a DBRM is the DBRM that is
produced by precompiling a program. The DBRM
version is identified by the same program name and
timestamp as a corresponding program version.
A version of a package is the result of binding a
DBRM within a particular database system. The
package version is identified by the same program
name and consistency token as the DBRM.
A version of a LOB is a copy of a LOB value at a
point in time. The version number for a LOB is
stored in the auxiliary index entry for the LOB.

view. An alternative representation of data from one or
more tables. A view can include all or some of the
columns that are contained in tables on which it is
defined.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed- and
varying-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA network.

VSAM. Virtual storage access method.

VTAM. Virtual Telecommunication Access Method
(MVS).

564 Utility Guide and Reference

 warm start

W
warm start. The normal DB2 restart process, which
involves reading and processing log records so that
data under the control of DB2 is consistent. Contrast
with cold start.

 Glossary 565

566 Utility Guide and Reference

 Bibliography

DB2 Universal Database Server for OS/390 Version
6 Product Libraries:

DB2 Universal Database for OS/390

� DB2 Administration Guide, SC26-9003

� DB2 Application Programming and SQL Guide,
SC26-9004

� DB2 Application Programming Guide and Reference
for Java, SC26-9018

� DB2 ODBC Guide and Reference, SC26-9005

� DB2 Command Reference, SC26-9006

� DB2 Data Sharing: Planning and Administration,
SC26-9007

� DB2 Data Sharing Quick Reference Card,
SX26-3843

� DB2 Diagnosis Guide and Reference, LY36-3736

� DB2 Diagnostic Quick Reference Card, LY36-3737

� DB2 Image, Audio, and Video Extenders
Administration and Programming, SC26-9650

� DB2 Installation Guide, GC26-9008

� DB2 Licensed Program Specifications, GC26-9009

� DB2 Messages and Codes, GC26-9011

� DB2 Master Index, SC26-9010

� DB2 Reference for Remote DRDA Requesters and
Servers, SC26-9012

� DB2 Reference Summary, SX26-3844

� DB2 Release Planning Guide, SC26-9013

� DB2 SQL Reference, SC26-9014

� DB2 Text Extender Administration and
Programming, SC26-9651

� DB2 Utility Guide and Reference, SC26-9015

� DB2 What's New? GC26-9017

� DB2 Program Directory, GI10-8182

DB2 Administration Tool

� DB2 Administration Tool for OS/390 User's Guide,
SC26-9847

DB2 Buffer Pool Tool

� DB2 Buffer Pool Tool for OS/390 User's Guide and
Reference, SC26-9306

DB2 DataPropagator

� DB2 Replication Guide and Reference, SC26-9642

Net.Data for OS/390

The following books are available at
http://www.ibm.com/software/net.data/library.html:

� Net.Data Library: Administration and Programming
Guide for OS/390

� Net.Data Library: Language Environment Interface
Reference

� Net.Data Library: Messages and Codes
� Net.Data Library: Reference

DB2 PM for OS/390

� DB2 PM for OS/390 Batch User's Guide,
SC26-9167

� DB2 PM for OS/390 Command Reference,
SC26-9166

� DB2 PM for OS/390 General Information,
GC26-9172

� DB2 PM for OS/390 Installation and Customization,
SC26-9171

� DB2 PM for OS/390 Messages, SC26-9169

� DB2 PM for OS/390 Online Monitor User's Guide,
SC26-9168

� DB2 PM for OS/390 Report Reference Volume 1,
SC26-9164

� DB2 PM for OS/390 Report Reference Volume 2,
SC26-9165

� DB2 PM for OS/390 Using the Workstation Online
Monitor, SC26-9170

� DB2 PM for OS/390 Program Directory, GI10-8183

Query Management Facility

� Query Management Facility: Developing QMF
Applications, SC26-9579

� Query Management Facility: Getting Started with
QMF on Windows, SC26-9582

� Query Management Facility: High Peformance
Option User's Guide for OS/390, SC26-9581

� Query Management Facility: Installing and
Managing QMF on OS/390, GC26-9575

� Query Management Facility: Installing and
Managing QMF on Windows, GC26-9583

� Query Management Facility: Introducing QMF,
GC26-9576

� Query Management Facility: Messages and Codes,
GC26-9580

� Query Management Facility: Reference, SC26-9577
� Query Management Facility: Using QMF,

SC26-9578

 Copyright IBM Corp. 1983, 1999 567

Ada/370

� IBM Ada/370 Language Reference, SC09-1297
� IBM Ada/370 Programmer's Guide, SC09-1414
� IBM Ada/370 SQL Module Processor for DB2

Database Manager User's Guide, SC09-1450

APL2

� APL2 Programming Guide, SH21-1072
� APL2 Programming: Language Reference,

SH21-1061
� APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

AS/400

� DB2 for OS/400 SQL Programming, SC41-4611
� DB2 for OS/400 SQL Reference, SC41-4612

BASIC

� IBM BASIC/MVS Language Reference, GC26-4026
� IBM BASIC/MVS Programming Guide, SC26-4027

BookManager READ/MVS

� BookManager READ/MVS V1R3: Installation
Planning & Customization, SC38-2035

C/370

� IBM SAA AD/Cycle C/370 Programming Guide,
SC09-1841

� IBM SAA AD/Cycle C/370 Programming Guide for
Language Environment/370, SC09-1840

� IBM SAA AD/Cycle C/370 User's Guide,
SC09-1763

� SAA CPI C Reference, SC09-1308

Character Data Representation Architecture

� Character Data Representation Architecture
Overview, GC09-2207

� Character Data Representation Architecture
Reference and Registry, SC09-2190

CICS/ESA

� CICS/ESA Application Programming Guide,
SC33-1169

� CICS for MVS/ESA Application Programming
Reference, SC33-1170

� CICS for MVS/ESA CICS-RACF Security Guide,
SC33-1185

� CICS for MVS/ESA CICS-Supplied Transactions,
SC33-1168

� CICS for MVS/ESA Customization Guide,
SC33-1165

� CICS for MVS/ESA Data Areas, LY33-6083
� CICS for MVS/ESA Installation Guide, SC33-1163
� CICS for MVS/ESA Intercommunication Guide,

SC33-1181

� CICS for MVS/ESA Messages and Codes,
GC33-1177

� CICS for MVS/ESA Operations and Utilities Guide,
SC33-1167

� CICS/ESA Performance Guide, SC33-1183
� CICS/ESA Problem Determination Guide,

SC33-1176
� CICS for MVS/ESA Resource Definition Guide,

SC33-1166
� CICS for MVS/ESA System Definition Guide,

SC33-1164
� CICS for MVS/ESA System Programming

Reference, GC33-1171

CICS/MVS

� CICS/MVS Application Programmer's Reference,
SC33-0512

� CICS/MVS Facilities and Planning Guide,
SC33-0504

� CICS/MVS Installation Guide, SC33-0506
� CICS/MVS Operations Guide, SC33-0510
� CICS/MVS Problem Determination Guide,

SC33-0516
� CICS/MVS Resource Definition (Macro), SC33-0509
� CICS/MVS Resource Definition (Online), SC33-0508

IBM C/C++ for MVS/ESA

� IBM C/C++ for MVS/ESA Library Reference,
SC09-1995

� IBM C/C++ for MVS/ESA Programming Guide,
SC09-1994

IBM COBOL

� IBM COBOL Language Reference, SC26-4769
� IBM COBOL for MVS & VM Programming Guide,

SC26-4767

Conversion Guide

� IMS-DB and DB2 Migration and Coexistence Guide,
GH21-1083

Cooperative Development Environment

� CoOperative Development Environment/370: Debug
Tool, SC09-1623

Data Extract (DXT)

� Data Extract Version 2: General Information,
GC26-4666

� Data Extract Version 2: Planning and Administration
Guide, SC26-4631

DataPropagator NonRelational

� DataPropagator NonRelational MVS/ESA
Administration Guide, SH19-5036

� DataPropagator NonRelational MVS/ESA
Reference, SH19-5039

568 Utility Guide and Reference

Data Facility Data Set Services

� Data Facility Data Set Services: User's Guide and
Reference, SC26-4388

Database Design

� DB2 Design and Development Guide, Gabrielle
Wiorkowski and David Kull, Addison Wesley, ISBN
0-20158-049-8

� Handbook of Relational Database Design, C.
Fleming and B. Von Halle, Addison Wesley, ISBN
0-20111-434-8

DataHub

� IBM DataHub General Information, GC26-4874

DB2 Connect

� DB2 Connect Enterprise Edition for OS/2 and
Windows NT: Quick Beginnings, GC09-2828

� DB2 Connect Personal Edition Quick Beginnings,
GC09-2830

� DB2 Connect User's Guide, SC09-2838

DB2 Server for VSE & VM

� DB2 Server for VM: DBS Utility, SC09-2394
� DB2 Server for VSE: DBS Utility, SC09-2395

DB2 Universal Database (UDB)

� DB2 UDB Administration Guide Volume 1: Design
and Implementation, SC09-2839

� DB2 UDB Administration Guide Volume 2:
Performance, SC09-2840

� DB2 UDB Administrative API Reference,
SC09-2841

� DB2 UDB Application Building Guide, SC09-2842
� DB2 UDB Application Development Guide,

SC09-2845
� DB2 UDB Call Level Interface Guide and

Reference, SC09-2843
� DB2 UDB SQL Getting Started, SC09-2856
� DB2 UDB SQL Reference Volume 1, SC09-2847
� DB2 UDB SQL Reference Volume 2, SC09-2848

Device Support Facilities

� Device Support Facilities User's Guide and
Reference, GC35-0033

DFSMS/MVS

� DFSMS/MVS: Access Method Services for the
Integrated Catalog, SC26-4906

� DFSMS/MVS: Access Method Services for VSAM
Catalogs, SC26-4905

� DFSMS/MVS: Administration Reference for
DFSMSdss, SC26-4929

� DFSMS/MVS: DFSMShsm Managing Your Own
Data, SH21-1077

� DFSMS/MVS: Diagnosis Reference for DFSMSdfp,
LY27-9606

� DFSMS/MVS Storage Management Library:
Implementing System-Managed Storage,
SC26–3123

� DFSMS/MVS: Macro Instructions for Data Sets,
SC26-4913

� DFSMS/MVS: Managing Catalogs, SC26-4914
� DFSMS/MVS: Program Management, SC26-4916
� DFSMS/MVS: Storage Administration Reference for

DFSMSdfp, SC26-4920
� DFSMS/MVS: Using Advanced Services,

SC26-4921
� DFSMS/MVS: Utilities, SC26-4926
� MVS/DFP: Using Data Sets, SC26-4749

DFSORT

� DFSORT Application Programming: Guide,
SC33-4035

Distributed Relational Database

� Data Stream and OPA Reference, SC31-6806
� IBM SQL Reference, SC26-8416
� Open Group Technical Standard (the Open Group

presently makes the following books available
through its Web site at http://www.opengroup.org):

– DRDA Volume 1: Distributed Relational
Database Architecture (DRDA), ISBN
1-85912-295-7

– DRDA Version 2 Volume 2: Formatted Data
Object Content Architecture, available only on
Web

– DRDA Volume 3: Distributed Database
Management (DDM) Architecture, ISBN
1-85912-206-X

Domain Name System

� DNS and BIND, Third Edition, Paul Albitz and
Cricket Liu, O'Reilly, SR23-8771

Education

� IBM Dictionary of Computing, McGraw-Hill, ISBN
0-07031-489-6

� 1999 IBM All-in-One Education and Training
Catalog, GR23-8105

Enterprise System/9000 and Enterprise System/3090

� Enterprise System/9000 and Enterprise
System/3090 Processor Resource/System Manager
Planning Guide, GA22-7123

High Level Assembler

� High Level Assembler for MVS and VM and VSE
Language Reference, SC26-4940

� High Level Assembler for MVS and VM and VSE
Programmer's Guide, SC26-4941

 Bibliography 569

Parallel Sysplex Library

� OS/390 Parallel Sysplex Application Migration,
GC28-1863

� System/390 MVS Sysplex Hardware and Software
Migration, GC28-1862

� OS/390 Parallel Sysplex Overview: An Introduction
to Data Sharing and Parallelism, GC28-1860

� OS/390 Parallel Sysplex Systems Management,
GC28-1861

� OS/390 Parallel Sysplex Test Report, GC28-1963
� System/390 9672/9674 System Overview,

GA22-7148

ICSF/MVS

� ICSF/MVS General Information, GC23-0093

IMS/ESA

� IMS Batch Terminal Simulator General Information,
GH20-5522

� IMS/ESA Administration Guide: System, SC26-8013
� IMS/ESA Administration Guide: Transaction

Manager, SC26-8731
� IMS/ESA Application Programming: Database

Manager, SC26-8727
� IMS/ESA Application Programming: Design Guide,

SC26-8016
� IMS/ESA Application Programming: Transaction

Manager, SC26-8729
� IMS/ESA Customization Guide, SC26-8020
� IMS/ESA Installation Volume 1: Installation and

Verification, SC26-8023
� IMS/ESA Installation Volume 2: System Definition

and Tailoring, SC26-8024
� IMS/ESA Messages and Codes, SC26-8028
� IMS/ESA Operator's Reference, SC26-8030
� IMS/ESA Utilities Reference: System, SC26-8035

ISPF

� ISPF V4 Dialog Developer's Guide and Reference,
SC34-4486

� ISPF V4 Messages and Codes, SC34-4450
� ISPF V4 Planning and Customizing, SC34-4443
� ISPF V4 User's Guide, SC34-4484

Language Environment

� Debug Tool User's Guide and Reference,
SC09-2137

National Language Support

� National Language Support Reference Volume 2,
SE09-8002

NetView

� NetView Installation and Administration Guide,
SC31-8043

� NetView User's Guide, SC31-8056

ODBC

� Microsoft ODBC 3.0 Programmer's Reference and
SDK Guide, Microsoft Press, ISBN 1-55615-658-8

OS/390

� OS/390 C/C++ Programming Guide, SC09-2362
� OS/390 C/C++ Run-Time Library Reference,

SC28-1663
� OS/390 C/C++ User's Guide, SC09-2361
� OS/390 eNetwork Communications Server: IP

Configuration, SC31-8513
� OS/390 Hardware Configuration Definition Planning,

GC28-1750
� OS/390 Information Roadmap, GC28-1727
� OS/390 Introduction and Release Guide,

GC28-1725
� OS/390 JES2 Initialization and Tuning Guide,

SC28-1791
� OS/390 JES3 Initialization and Tuning Guide,

SC28-1802
� OS/390 Language Environment for OS/390 & VM

Concepts Guide, GC28-1945
� OS/390 Language Environment for OS/390 & VM

Customization, SC28-1941
� OS/390 Language Environment for OS/390 & VM

Debugging Guide, SC28-1942
� OS/390 Language Environment for OS/390 & VM

Programming Guide, SC28-1939
� OS/390 Language Environment for OS/390 & VM

Programming Reference, SC28-1940
� OS/390 MVS Diagnosis: Procedures, LY28-1082
� OS/390 MVS Diagnosis: Reference, SY28-1084
� OS/390 MVS Diagnosis: Tools and Service Aids,

LY28-1085
� OS/390 MVS Initialization and Tuning Guide,

SC28-1751
� OS/390 MVS Initialization and Tuning Reference,

SC28-1752
� OS/390 MVS Installation Exits, SC28-1753
� OS/390 MVS JCL Reference, GC28-1757
� OS/390 MVS JCL User's Guide, GC28-1758
� OS/390 MVS Planning: Global Resource

Serialization, GC28-1759
� OS/390 MVS Planning: Operations, GC28-1760
� OS/390 MVS Planning: Workload Management,

GC28-1761
� OS/390 MVS Programming: Assembler Services

Guide, GC28-1762
� OS/390 MVS Programming: Assembler Services

Reference, GC28-1910
� OS/390 MVS Programming: Authorized Assembler

Services Guide, GC28-1763
� OS/390 MVS Programming: Authorized Assembler

Services Reference, Volumes 1-4, GC28-1764,
GC28-1765, GC28-1766, GC28-1767

� OS/390 MVS Programming: Callable Services for
High-Level Languages, GC28-1768

� OS/390 MVS Programming: Extended
Addressability Guide, GC28-1769

570 Utility Guide and Reference

� OS/390 MVS Programming: Sysplex Services
Guide, GC28-1771

� OS/390 MVS Programming: Sysplex Services
Reference, GC28-1772

� OS/390 MVS Programming: Workload Management
Services, GC28-1773

� OS/390 MVS Routing and Descriptor Codes,
GC28-1778

� OS/390 MVS Setting Up a Sysplex, GC28-1779
� OS/390 MVS System Codes, GC28-1780
� OS/390 MVS System Commands, GC28-1781
� OS/390 MVS System Messages Volume 1,

GC28-1784
� OS/390 MVS System Messages Volume 2,

GC28-1785
� OS/390 MVS System Messages Volume 3,

GC28-1786
� OS/390 MVS System Messages Volume 4,

GC28-1787
� OS/390 MVS System Messages Volume 5,

GC28-1788
� OS/390 MVS Using the Subsystem Interface,

SC28-1789
� OS/390 Security Server (RACF) Auditor's Guide,

SC28-1916
� OS/390 Security Server (RACF) Command

Language Reference, SC28-1919
� OS/390 Security Server (RACF) General User's

Guide, SC28-1917
� OS/390 Security Server (RACF) Introduction,

GC28-1912
� OS/390 Security Server (RACF) Macros and

Interfaces, SK2T-6700 (OS/390 Collection Kit),
SK27-2180 (OS/390 Security Server Information
Package)

� OS/390 Security Server (RACF) Security
Administrator's Guide, SC28-1915

� OS/390 Security Server (RACF) System
Programmer's Guide, SC28-1913

� OS/390 SMP/E Reference, SC28-1806
� OS/390 SMP/E User's Guide, SC28-1740
� OS/390 RMF User's Guide, SC28-1949
� OS/390 TSO/E CLISTS, SC28-1973
� OS/390 TSO/E Command Reference, SC28-1969
� OS/390 TSO/E Customization, SC28-1965
� OS/390 TSO/E Messages, GC28-1978
� OS/390 TSO/E Programming Guide, SC28-1970
� OS/390 TSO/E Programming Services, SC28-1971
� OS/390 TSO/E User's Guide, SC28-1968
� OS/390 DCE Administration Guide, SC28-1584
� OS/390 DCE Introduction, GC28-1581
� OS/390 DCE Messages and Codes, SC28-1591
� OS/390 UNIX System Services Command

Reference, SC28-1892
� OS/390 UNIX System Services Planning,

SC28-1890
� OS/390 UNIX System Services User's Guide,

SC28-1891
� OS/390 UNIX System Services Programming:

Assembler Callable Services Reference, SC28-1899

j

PL/I for MVS & VM

� IBM PL/I MVS & VM Language Reference,
SC26-3114

� IBM PL/I MVS & VM Programming Guide,
SC26-3113

OS PL/I

� OS PL/I Programming Language Reference,
SC26-4308

� OS PL/I Programming Guide, SC26-4307

Prolog

� IBM SAA AD/Cycle Prolog/MVS & VM
Programmer's Guide, SH19-6892

Remote Recovery Data Facility

� Remote Recovery Data Facility Program Description
and Operations, LY37-3710

Storage Management

� DFSMS/MVS Storage Management Library:
Implementing System-Managed Storage,
SC26-3123

� MVS/ESA Storage Management Library: Leading a
Storage Administration Group, SC26-3126

� MVS/ESA Storage Management Library: Managing
Data, SC26-3124

� MVS/ESA Storage Management Library: Managing
Storage Groups, SC26-3125

� MVS Storage Management Library: Storage
Management Subsystem Migration Planning Guide,
SC26-4659

System/370 and System/390

� ESA/370 Principles of Operation, SA22-7200
� ESA/390 Principles of Operation, SA22-7201
� System/390 MVS Sysplex Hardware and Software

Migration, GC28-1210

System Network Architecture (SNA)

� SNA Formats, GA27-3136
� SNA LU 6.2 Peer Protocols Reference, SC31-6808
� SNA Transaction Programmer's Reference Manual

for LU Type 6.2, GC30-3084
� SNA/Management Services Alert Implementation

Guide, GC31-6809

TCP/IP

� IBM TCP/IP for MVS: Customization &
Administration Guide, SC31-7134

� IBM TCP/IP for MVS: Diagnosis Guide, LY43-0105
� IBM TCP/IP for MVS: Messages and Codes,

SC31-7132

 Bibliography 571

� IBM TCP/IP for MVS: Planning and Migration
Guide, SC31-7189

VS COBOL II

� VS COBOL II Application Programming Guide for
MVS and CMS, SC26-4045

� VS COBOL II Application Programming: Language
Reference, GC26-4047

� VS COBOL II Installation and Customization for
MVS, SC26-4048

VS FORTRAN

� VS FORTRAN Version 2: Language and Library
Reference, SC26-4221

� VS FORTRAN Version 2: Programming Guide for
CMS and MVS, SC26-4222

VTAM

� Planning for NetView, NCP, and VTAM, SC31-8063
� VTAM for MVS/ESA Diagnosis, LY43-0069
� VTAM for MVS/ESA Messages and Codes,

SC31-6546
� VTAM for MVS/ESA Network Implementation Guide,

SC31-6548
� VTAM for MVS/ESA Operation, SC31-6549
� VTAM for MVS/ESA Programming, SC31-6550
� VTAM for MVS/ESA Programming for LU 6.2,

SC31-6551
� VTAM for MVS/ESA Resource Definition Reference,

SC31-6552

572 Utility Guide and Reference

 Index

Numerics
32K

option of DSN1COMP utility 447
option of DSN1COPY utility 456
option of DSN1PRNT utility 494

A
ABEND

option of DIAGNOSE utility 116
access method services

new active log definition 421
access path

RUNSTATS output 375
ACHKP (auxiliary CHECK pending status) 57

See also auxiliary CHECK pending status (ACHKP)
ACTION

option of DSN1SDMP utility 503
active log

adding to BSDS 423
data set

I/O error 424
defining in BSDS 421
deleting from BSDS 421
enlarging 422
status 433

AFTER
option of DSN1SDMP utility 504

ALL
option of REBUILD INDEX 210
option of RUNSTATS utility 380

ALLDUMPS
option of DIAGNOSE utility 115

ANCHOR
option of DSN1CHKR utility 440

archive log
BSDS 423
deleting 423

ARCHLOG
option of REPORT utility 368

ASCII
option of LOAD utility 132

authorization ID
naming convention 5
secondary

privileges 17
SQL

privileges exercised by 18
AUXERROR

option of CHECK DATA utility 57

auxiliary CHECK pending status (ACHKP)
CHECK DATA utility 57

auxiliary index
reorganizing after loading data 178

auxiliary warning status (AUXW)
CHECK DATA utility 57

LOB column errors 66
AUXW (auxiliary warning status) 57

See also auxiliary warning status (AUXW)
CHECK DATA utility

LOB column errors 66
availability

recovering
error range 236

B
BACKOUT

option of DSNJU003 utility 417
binding

RUNSTATS output 375, 388
BLOB

option of LOAD utility 147
BSDS (bootstrap data set)

determining log inventory contents 434
updating 411

C
CANCEL

option of DSNJU003 utility 417
CARD column

SYSTABLEPART catalog table
use by RUNSTATS 390

SYSTABSTATS catalog table
use by RUNSTATS 389

CARDF column
SYSCOLDIST catalog table

description 389
SYSINDEXPART catalog table

use by RUNSTATS 392
SYSTABLEPART catalog table

use by RUNSTATS 392
SYSTABLES catalog table

use by RUNSTATS 388
SYSTABSTATS catalog table

use by RUNSTATS 389
CATALOG

option of DSNJU003 utility 416
catalog tables

index recreation 240
order of recovering 239

 Copyright IBM Corp. 1983, 1999 573

catalog tables (continued)
SYSCOLDIST

CARDF column 389
COLGROUPCOLNO column 389
COLVALUE column 389
FREQUENCYF column 389
NUMCOLUMNS column 389
STATSTIME column 389

SYSCOLUMNS
COLCARDF column 389
HIGH2KEY column 389
LOW2KEY column 389
STATSTIME column 389

SYSCOPY
effects of COPY 96

SYSINDEXES
CLUSTERING column 390
CLUSTERRATIOF column 389
data collected by STOSPACE utility 399
FIRSTKEYCARDF column 390
FULLKEYCARDF column 390
NLEAF column 390
NLEVELS column 390
STATSTIME column 390
updating with STOSPACE utility 400

SYSINDEXPART
CARDF column 392
data collected by STOSPACE utility 399
example of query 268
FAROFFPOSF column 393
LEAFDIST column 393
NEAROFFPOSF column 392

SYSINDEXSTATS
CLUSTERRATIOF column 390
FIRSTKEYCARD column 390
FIRSTKEYCARDF column 390
FULLKEYCARD column 390
FULLKEYCARDF column 390
KEYCOUNT column 390
KEYCOUNTF column 390
NLEAF column 390
NLEVELS column 390

SYSLOBSTATS
FREESPACE column 394
ORGRATIO column 394

SYSSTOGROUP
data collected by STOSPACE utility 399
updating with STOSPACE utility 400

SYSTABLEPART
CARD column 390
CARDF column 392
data collected by STOSPACE utility 399
example of query 311
FARINDREF column 390
NEARINDREF column 390
PAGESAVE column 391
PERCACTIVE column 391

catalog tables (continued)
SYSTABLEPART (continued)

PERCDROP column 391
PQTY column 392
SECQTYI column 392
SPACE column 392
SQTY column 392

SYSTABLES
CARDF column 388
NPAGES column 388
PCTROWCOMP column 388
STATSTIME column 389

SYSTABLESPACE
data collected by STOSPACE utility 399
DSSIZE column 389
NACTIVE column 389
NACTIVEF column 389
STATSTIME column 389
updating with STOSPACE utility 400

SYSTABSTATS
CARD column 389
CARDF column 389
NPAGES column 389

catalog, DB2
order of recovering objects 238
recovery 240

catalog, VSAM
STOSPACE utility 400

CATMAINT utility
description 51
syntax diagram 51

CCSID
option of LOAD utility 132

CD-ROM, books on 10
change log inventory utility

active logs 421
archive logs 423
authorization required 420
data sets 420
DELETE option 421, 423
DELETE statement 425
description 411
examples 427
invoking 421
NEWCAT statement 425
NEWLOG option 421, 423
NEWLOG statement 425
option descriptions 413
renaming log data sets 426
renaming system data sets 426
statements 413
syntax diagram 411
SYSIN stream parsing 420

CHANGELIMIT
option of COPY utility 91

574 Utility Guide and Reference

CHAR
option of LOAD utility 143

CHECK
option of DSN1COPY utility 456

CHECK DATA utility
claims and drains 67
description 55
example 176
examples 68

use after LOAD RESUME 177
output 55
syntax diagram 56
use after LOAD REPLACE 175

CHECK INDEX utility
description 71
example 77
logical partitions 75
output 75
running on logical partition 72
syntax diagram 72
use after LOAD 177

CHECK LOB utility
claims and drains 84
description 79
example 84
output 79
restarting 83
syntax diagram 80
terminating 83

CHECK pending status
after LOAD 157
CHECK DATA utility 65
indoubt referential integrity 175
resetting 175

CHECKP (CHECK pending status) 65
See also CHECK pending status

CHECKPAGE
option of COPY utility 90

CHECKPT
option of DSNJU003 utility 414

CHKPTRBA
option of DSNJU003 utility 417

CLOB
option of LOAD utility 147

CLUSTERING column of SYSINDEXES catalog table
use by RUNSTATS 390

CLUSTERRATIOF column
SYSINDEXES catalog table

description 389
SYSINDEXSTATS catalog table 390

COLCARDF column
SYSCOLUMNS catalog table

description 389
cold start

example
creating a conditional restart control record 423

cold start (continued)
specifying for conditional restart 415

COLGROUPCOLNO column
SYSCOLDIST catalog table

description 389
COLUMN

option of RUNSTATS utility 127, 378
COLVALUE column

SYSCOLDIST catalog table
description 389

comment
SYSIN records 421

commit point
DSNU command 38
REPAIR utility 347, 349
restarting 49

compatibility
CHECK DATA utility 67
CHECK INDEX utility 76
CHECK LOB utility 84
COPY utility 107
DIAGNOSE utility 118
LOAD utility 173
MERGECOPY utility 192
MODIFY utility 200
QUIESCE utility 206
REBUILD INDEX utility 220
RECOVER utility 248, 251
REORG INDEX utility 273
REORG TABLESPACE utility 329, 331
REPAIR utility 359
REPORT utility 371
RUNSTATS utility 385
STOSPACE utility 401
utilities access description 46

compression
estimating DASD savings 447

concurrency
utilities access description 46

CONCURRENT
option of COPY utility 91

conditional REORG TABLESPACE
example 338

conditional restart
control record

change log inventory utility 417
creating 423
DSNJU003 utility 417
reading 437
status printed by print log map utility 429

CONLIST
option of DSNU command 36

connection-name
naming convention 6

CONTINUE
option of RECOVER utility 236

 Index 575

CONTINUEIF
option of LOAD utility 134

continuous operation
recovering an error range 236

CONTROL
option of DSNU command 36

COPY pending status
COPY utility 90
LOAD utility 174
REORG TABLESPACE utility 334
resetting 174
TERM utility 105

COPY utility
compatibility 107
copying a list of objects 99
description 85
examples

CHANGELIMIT 112
control statement in JCL utility 39
full image copy 95, 108
incremental image copy 96, 108
invoking DFSMS concurrent copy 110, 111
invoking DFSMS concurrent copy using filter 111
multiple image copy 97
REPORTONLY 111
unauthorized access prevention 32

full image copy 95
multiple image copy 97
option descriptions 87
output 85
performance recommendations 104
syntax diagram 86

COPY1
option of DSNJU003 utility 415

COPY1VOL
option of DSNJU003 utility 416

COPY2
option of DSNJU003 utility 415

COPY2VOL
option of DSNJU003 utility 416

COPYDDN
option of COPY utility 89
option of LOAD utility 126
option of MERGECOPY utility 187
option of REORG TABLESPACE utility 284

COPYDDN option
LOAD utility 160
REORG TABLESPACE utility 319

COPYDSN
option of DSNU command 37

COPYDSN2 option of DSNU command 37
correlation ID

naming convention 6
CREATE

option of DSNJU003 utility 417

CRESTART
option of DSNJU003 utility 414

CSRONLY
option of DSNJU003 utility 418

CURRENT
option of DSNU command 38
option of REPORT utility 368

D
DASD

checking space utilization 312
data

loading into tables 159
option of REPAIR utility 351, 353

DATA
option of CHECK DATA utility 56
option of LOAD utility 124
option of REPAIR utility 350

data compression
dictionary

building 158, 317
number of records needed to fill 158
using again 158

LOAD utility
description 158
KEEPDICTIONARY option 126, 158

REORG TABLESPACE utility
KEEPDICTIONARY option 291

REORG utility
description 158
KEEPDICTIONARY option 158

Data Facility Sort (DFSORT) 302
See also DFSORT (Data Facility Sort)

data set
copying table space in separate jobs 99
discard 176
error 176
naming convention 6
recovering

partition 235
security 31
space parameter, changing 270, 317
used by utilities

CHECK DATA utility 176
disposition 31

VSAM 413
data sets

change log inventory utility 420
data type

specifying with LOAD utility 143
database

DSNDB01 (DB2 directory database) 239
DSNDB06 (DB2 catalog database) 240

See also DSNDB06 database
limits 513

576 Utility Guide and Reference

database (continued)
naming convention 6

DATABASE
option of REPAIR utility 354

DATAONLY
option of DSN1LOGP utility 473

DATAWKnn
data set of REORG utility 29
purpose 29

DATE EXTERNAL
option of LOAD utility 146

DB2 books online 10
DB2 Interactive (DB2I) 32

See also DB2I (DB2 Interactive)
DB2I

option of DSNU command 37
DB2I (DB2 Interactive)

invoking utilities 32
DBCLOB

option of LOAD utility 147
DBD statement of REPAIR utility 353
DBD01 directory table space

incremental image copy not allowed 97
MERGECOPY restrictions 186, 192
order of recovering 238, 239

DBID
option of DSN1LOGP utility 474
option of REPAIR utility 354

DBRM member
naming convention 6

DBRM partitioned data set
naming convention 6

DD statements
data sets 28
DB2 utility 39

DDF
option of DSNJU003 utility 414

ddname
naming convention 6
option of DSNJU004 utility 429

DEADLINE
option of REORG INDEX utility 259
option of REORG TABLESPACE utility 286

DECIMAL
option of LOAD utility 144

DECIMAL EXTERNAL
option of LOAD utility 145

DECIMAL PACKED
option of LOAD utility 144

DECIMAL ZONED
option of LOAD utility 144

declared temporary table
REPAIR utility 354
utility compatibility 18

DEFAULTIF
option of LOAD utility 148

DELAY
option of REORG INDEX utility 261
option of REORG TABLESPACE utility 288

DELETE
option of CHECK DATA utility 58
option of DSNJU003 utility 414
option of MODIFY utility 197
statement of REPAIR utility

used in LOCATE block 347
DELETE statement of REPAIR utility 351
deleting

active log from BSDS 421
log data sets with errors 424

DFSMS (Data Facility Storage Management
Subsystem)

concurrent copy
invoking with COPY utility 91

DFSORT (Data Facility Sort)
allocates data sets for REORG TABLESPACE 302
determining values

SORTDEVT in CHECK INDEX utility 73
SORTDEVT in LOAD utility 133

messages 310
DIAGNOSE

option of REPAIR utility 354
DIAGNOSE utility

compatibility 118
description 113
example 118
option descriptions 114
syntax diagram 113

diagnosis tool
DSN1CHKR utility 441

directory
DBD01

incremental image copy not allowed 97
order of recovering 239

order of recovering
importance 239
objects 238

SYSLGRNX table
effects of COPY 96

SYSUTILX table space 97
DISCARD

option of REORG TABLESPACE utility 296
discard data set

specifying DD statement for LOAD utility 133
DISCARDDN

option of LOAD utility 133
option of REORG TABLESPACE utility 296

DISCARDS
option of LOAD utility 133

DISCDSN
option of DSNU command 37

DISPLAY
option of DIAGNOSE utility 115

 Index 577

DISPLAY DATABASE command
displaying range of pages in error 236

DISPLAY UTILITY command
monitoring utility status 45

displaying
status of

DB2 utilities 45
DL/I

loading data 159
DPropNR (DataPropagator NonRelational)

options 159
DRAIN

option of REORG INDEX utility 260
option of REORG TABLESPACE utility 288

DROP
option of REPAIR utility 354

DSN1CHKR utility
authorization 441
data sets required 441
description 439
examples 442
option descriptions 439
restrictions 441
syntax diagram 439

DSN1COMP utility
authorization required 450
compression calculations 451
data sets required 450
description 447
identical data rows 452
interpreting output 452
option descriptions 447
output example 452
recommendations 450
sample JCL 452
savings estimate 451
syntax diagram 447

DSN1COPY utility
authorization required 460
copying identity column tables 468
copying tables to other subsystems 468
data sets required 461
description 455
determine data set size 465
determine page size 465
example 462
JCL sample 469
multiple data set table spaces 467
option descriptions 456
preventing inconsistent data 466
printing data sets 468
recommendation 465
resetting log RBA 467
restoring indexes 467
restoring table spaces 468
restrictions 465

DSN1COPY utility (continued)
syntax diagram 455
tasks 466
translating internal identifiers 466
using image copy input 467

DSN1LOGP utility
data sharing example 482
description 471
example 481
JCL

requirements 478
output example 483

DSN1PRNT utility
authorization required 498
description 493
determine data set size 499
determine page size 499
JCL sample 499
option descriptions 494
recommendations 498
required data sets 498
syntax diagram 493

DSN1SDMP utility
authorization required 504
description 501
JCL sample 507
option descriptions 501
output 509
required data sets 505
syntax diagram 501

DSNAME
option of DSNJU003 utility 414

DSNDB01 database
RECOVER utility access 239

DSNDB06 database
RECOVER utility access 239

DSNJLOGF utility 409
data sets required 409
example 409
output 410

DSNJU003 utility
authorization required 420
examples 427
option descriptions 413
statements 413
syntax diagram 411

DSNJU004 utility
authorization required 430
description of output 431
example 431
option descriptions 429
recommendations 431
running 431
syntax diagram 429

DSNTEJ1 sample 304

578 Utility Guide and Reference

DSNTEP2 sample program
how to run 535
parameters 535
program preparation 535

DSNTIAD sample program
how to run 535
parameters 535
program preparation 535
specifying SQL terminator 539

DSNTIAUL sample program
how to run 535
parameters 535
program preparation 535

DSNU CLIST command
syntax diagram 35

DSNU command of TSO
description 34
editing generated JCL 40
example 40
invoking utilities 34
options 35
output 39

DSNUM
option of COPY utility 88
option of MERGECOPY utility 187
option of MODIFY utility 196
option of RECOVER utility 228
option of REPORT utility 367

DSNUPROC JCL procedure 41
syntax diagram 41

DSNUTILS stored procedure
authorization required 517
data sets 517, 518
description 517
option descriptions 520
output 526
sample JCL 525
syntax diagram 519

DSSIZE
option of DSN1COMP utility 448
option of DSN1COPY utility 457
option of DSN1PRNT utility 494

DSSIZE column
SYSTABLESPACE catalog table

use by RUNSTATS 389
DSSPRINT

data set of COPY utility 29
purpose 29

DUMP
option of DSN1CHKR utility 439
statement of REPAIR utility

used in LOCATE block 347
DUMP statement of REPAIR utility 352

E
EBCDIC

option of LOAD utility 132
EDIT

option of DSNU command 37
edit routine

LOAD utility 121
REORG TABLESPACE utility 290

END
option of DIAGNOSE utility 114

ENDLRSN
option of DSNJU003 utility 416

ENDRBA
option of DSNJU003 utility 415

ENDTIME
option of DSNJU003 utility 415

ENFORCE
option of LOAD utility 132, 157

ERRDDN
option of CHECK DATA utility 59
option of LOAD utility 132

error
range recovery 236

ERROR RANGE
option of RECOVER utility 231

ESA data compression
estimating DASD savings 447

estimating size of shadow data sets
REORG INDEX utility 265
REORG TABLESPACE utility 305

exception tables 60, 176
EXCEPTIONS

option of CHECK DATA utility 58
option of CHECK LOB utility 80

EXEC statement of DB2 utility 39, 44
executing

DSNU CLIST command 34
utilities

DB2I 32
DSNU CLIST command 34
JCL 41, 43

F
fallback

RECOVER utility 248
FARINDREF column of SYSTABLEPART catalog table

use by RUNSTATS 390
FAROFFPOSF column of SYSINDEXPART catalog

table
catalog query to retrieve value for 311
use by 393

field procedure
LOAD utility 169

 Index 579

FILTER
option of DSN1LOGP utility 477

FILTERDDN
option of COPY utility 91

FIRSTKEYCARD column
SYSINDEXSTATS catalog table 390

FIRSTKEYCARDF column
SYSINDEXES catalog table

description 390
SYSINDEXSTATS catalog table 390

FLOAT
option of LOAD utility 131, 145

FLOAT EXTERNAL
option of LOAD utility 145

FOR
option of DSN1SDMP utility 504

FOR EXCEPTION
option of CHECK DATA utility 57

FORMAT
data by DPropNR 159
option of DSN1CHKR utility 439
option of DSN1PRNT utility 497
option of LOAD utility 130

FORWARD
option of DSNJU003 utility 417

free space
REORG TABLESPACE utility 334
REORG utility 275

FREEPAGE
option of DSN1COMP utility 448

FREESPACE column of SYSLOBSTATS catalog table
description 394

FREQUENCYF column
SYSCOLDIST catalog table

description 389
FREQVAL

option of RUNSTATS TABLESPACE utility 128,
212, 263, 294, 379, 382

FROM TABLE
option of REORG TABLESPACE utility 296

FULL
option of COPY utility 90

FULLCOPY
option of DSN1COMP utility 449
option of DSN1COPY utility 456
option of DSN1PRNT utility 497

FULLKEYCARD column
SYSINDEXSTATS catalog table 390

FULLKEYCARDF column
SYSINDEXES catalog table

description 390
SYSINDEXSTATS catalog table 390

function
maximum number in select 514

G
GENERIC

option of DSNJU003 utility 419
GRAPHIC

option of LOAD utility 143
GRAPHIC EXTERNAL

option of LOAD utility 143

H
HASH

option of DSN1CHKR utility 439, 440
HELP PF key 34
hexadecimal-constant

naming convention 7
hexadecimal-string

naming convention 7
HIGH2KEY column

SYSCOLUMNS catalog table
description 389

HIGHRBA
option of DSNJU003 utility 414

I
I/O error

marks active log as TRUNCATED 433
image copy

COPY utility 85
full

description 85
incremental

description 85, 96
making 96
merging 185
taking 96

list of objects 99
making after loading a table 174
making in parallel 85
multiple 97

inconsistent data indicator 351
INCRCOPY

option of DSN1COPY utility 456
option of DSN1PRNT utility 497

INDDN
option of LOAD utility 125

index
checking 71, 177
naming convention 7
option of RUNSTATS utility 127
organization 267
rebuilding 213
recovering 210
space

recovery 209
storage allocated 400

580 Utility Guide and Reference

index (continued)
statistics 267

INDEX
option of COPY utility 88
option of RECOVER utility 228
option of REORG INDEX utility 258
option of REORG TABLESPACE utility 293
option of REPAIR utility 345, 346, 348
option of REPORT utility 367
option of RUNSTATS utility 378, 380

INDEX ALL
option of REPORT utility 367

INDEX NONE
option of REPORT utility 367

indexes
REBUILD INDEX utility 209
RECOVER utility 225

INDEXSPACE
option of COPY utility 88
option of RECOVER utility 228
option of REPORT utility 367

INDEXVAL phase of LOAD utility 175
INDREFLIMIT

option of REORG TABLESPACE utility 289
INDSN

option of DSNU command 36
informational COPY pending status

COPY utility 90
informational COPY pending status (ICOPY)

resetting 103
INLCOPY

option of DSN1COPY utility 457
option of DSN1PRNT utility 497

Inline COPY
creating with LOAD utility 160
creating with REORG TABLESPACE utility 319

INTEGER
option of LOAD utility 144

INTEGER EXTERNAL
option of LOAD utility 144

integrated catalog facility
COPY utility 88
MERGECOPY utility 187
RECOVER TABLESPACE utility 197, 228
REORG TABLESPACE utility 309
STOSPACE utility 399

Interactive System Productivity Facility (ISPF) 32
See also ISPF (Interactive System Productivity

Facility)
INTO TABLE

option of LOAD utility 135, 178
invoking 32

See also executing
ISPF (Interactive System Productivity Facility)

utilities panels 32

J
JCL (job control language)

COPY utility 110, 111
creating for DB2 utility 32
DSNUPROC utility 34

job control language (JCL) 95
See also JCL (job control language)

JOB statement
DB2 utility 39

K
KEEPDICTIONARY

option of LOAD utility 126
description of use 158

option of REORG TABLESPACE utility 291
option of REORG utility

description of use 158
key

foreign
LOAD operation 156

length
maximum 514

primary
LOAD operation 156, 157

KEY option
REPAIR utility 348

KEYCARD
option of RUNSTATS TABLESPACE utility 128,

212, 263, 293, 379, 382
KEYCOUNT column

SYSINDEXSTATS catalog table 390
KEYCOUNTF column

SYSINDEXSTATS catalog table 390

L
LARGE

option of DSN1COMP utility 448
option of DSN1COPY utility 457
option of DSN1PRNT utility 495

large partitioned table spaces
RUNSTATS utility 387

LEAFDIST column of SYSINDEXPART catalog table
description 393

LEAFDISTLIMIT
option of REORG INDEX utility 262

LENGTH
option of REPAIR utility 352

LEVELID
option of REPAIR utility 345

LIB
option of DSNUPROC utility 41

library
online 10

 Index 581

limits, DB2 513
LIST option

DSNU command 36
LOAD utility

building indexes 165
building indexes in parallel 165
collecting inline statistics 177
compatibility 173
compressing data 158
data conversion 163
description 121
example 178

one partition 155
replace tables in multi-table table space 153
simple case 178
table replacement 153

improving performance 161, 162
input to 179
KEEPDICTIONARY option 158
LOAD INTO TABLE options 137
loading DB2 tables 178
LOB column 169
LOG

LOB table space 170
making corrections 174
option descriptions 124
ordering records 153
output 121, 179
performance recommendations 160
restarting 172
RESUME with referential constraints 176
ROWID column 169
syntax diagram 123
varying-length data 152

loading
data

DL/I 159
referential constraints 156
unique indexes 153
variable-length 121

partitions 155
tables 159

LOB (large object)
option of DSN1COPY utility 457
option of DSN1PRNT utility 495

LOCALSITE
option of RECOVER utility 230
option of REPORT utility 368

LOCATE INDEX statement of REPAIR utility 349
LOCATE statement of REPAIR utility

description 347
LOCATE TABLESPACE statement of REPAIR

utility 347
LOCATION

option of DSNJU003 utility 418

location name
naming convention 7

lock
utilities

CHECK DATA utility 67
CHECK INDEX 76
CHECK LOB utility 84
COPY utility 106
LOAD utility 173
MERGECOPY utility 192
MODIFY utility 200
QUIESCE utility 206
REBUILD INDEX utility 220
RECOVER TABLESPACE utility 251
REORG INDEX utility 273
REORG TABLESPACE utility 329, 331
REPAIR utility 360
REPORT utility 371
RUNSTATS utility 385

locking
STOSPACE utility 401
utilities access description 46

LOG
data set

adding 411
deleting 411
printing map 429
printing names 429

option of LOAD utility 129
record structure

types 476
recovery 417
truncation 427
utilities

DSNJU004 (print log map) 429
utilities

DSNJU003 (change log inventory) 411
LOG

option of REORG TABLESPACE utility 283
option of REPAIR utility 344

logical unit name
naming convention 7

LOGONLY
option of RECOVER utility 229

LONGLOG
option of REORG INDEX utility 261
option of REORG TABLESPACE utility 288

LOW2KEY column
SYSCOLUMNS catalog table

description 389
LRSNEND

option of DSN1LOGP utility 473
LRSNSTART

option of DSN1LOGP utility 473
LUNAME

option of DSNJU003 utility 418

582 Utility Guide and Reference

LUWID
option of DSN1LOGP utility 475

M
MAP

option of DSN1CHKR utility 440
option of REPAIR utility 353

MAPDDN
option of LOAD utility 133

MAPPINGTABLE
option of REORG TABLESPACE utility 287

MAXRO
option of REORG INDEX utility 260
option of REORG TABLESPACE utility 287

MAXROWS
option of DSN1COMP utility 449

MEMBER
option of DSNJU004 utility 429

member name
naming convention 7

MERGECOPY utility
compatibility 192
description 185
example 193
option descriptions 186
output 185
syntax diagram 186

message
CHECK DATA utility 55
CHECK INDEX utility 71
CHECK LOB utility 79
DFSORT utility 310
DSNU command 40
MERGECOPY utility 187
MODIFY utility 195
option of DIAGNOSE utility 116
QUIESCE utility 201
RECOVER utility 225, 226
REORG INDEX utility 255
REORG TABLESPACE utility 277
REPORT utility 365
RUNSTATS utility 375
STOSPACE utility 397

message by identifier
DSNI012I 236
DSNJ200I 436
DSNU404I 98
DSNU501I 236

MIXED
option of LOAD utility 143, 147

MODIFY utility
compatibility 200
description 195
example 200
syntax diagram 196

monitoring
index organization 267
table space organization 267, 311
utility status 45

N
NACTIVE column

SYSTABLESPACE catalog table
use by RUNSTATS 389

NACTIVEF column
SYSTABLESPACE catalog table

use by RUNSTATS 389
naming convention

variables in command syntax 5
NEARINDREF column of SYSTABLEPART catalog

table 390
NEAROFFPOSF column of SYSINDEXPART catalog

table 392
catalog query to retrieve value for 311

NEWCAT
option of DSNJU003 utility 414

NEWCOPY
option of MERGECOPY utility 187

NEWLOG
option of DSNJU003 utility 413

NEWLOG statement of DSNJU003 utility 421
NGENERIC

option of DSNJU003 utility 419
NLEAF column

SYSINDEXES catalog table
description 390

SYSINDEXSTATS catalog table 390
NLEVELS column

SYSINDEXES catalog table
description 390

SYSINDEXSTATS catalog table 390
NOAUXCHKP

option of REPAIR utility 346
NOAUXWARN

option of REPAIR utility 346
NOCHECKPEND

option of REPAIR utility 346
NOCOPYPEND

option of LOAD utility 129
option of REPAIR utility 346

NODUMPS option of DIAGNOSE utility 115
NONE

option of DSNU command 36
NOPAD

option of REORG TABLESPACE utility 294
NOPASSWD

option of DSNJU003 utility 418
NORCVRPEND

option of REPAIR utility 346

 Index 583

NOSUBS
option of LOAD utility 132

NOSYSREC
option of REORG TABLESPACE utility 284

notices, legal 545
NPAGES column

SYSTABLES catalog table
description 388

SYSTABSTATS catalog table
description 389

NUCOLUMNS column
SYSCOLDIST catalog table

description 389
NULLIF

option of LOAD utility 147
NUMPARTS

option of DSN1COMP utility 448
option of DSN1COPY utility 457
option of DSN1PRNT utility 495

O
OBID

option of DSN1LOGP utility 474
OBIDXLAT

option of DSN1COPY utility 459
OBJECT

option of REPAIR utility 344
object status

advisory
resetting 527

restrictive
resetting 527

off-loading
error during 433

OFFLRBA
option of DSNJU003 utility 419

OFFPOSLIMIT
option of REORG TABLESPACE utility 289

OFFSET
option of DSN1LOGP utility 477
option of REPAIR utility 350, 351, 352

online books 10
ORGRATIO column of SYSLOBSTATS catalog table

description 394
OUTDDN

option of REPAIR utility 355

P
page

making incremental copies 97
option of REPAIR utility 349
recovering 236

PAGE option
DSN1CHKR utility 440

PAGE option (continued)
DSN1LOGP utility 475
RECOVER utility 229, 236
REPAIR utility 348

page set REBUILD pending status (PSRBD)
description 218
resetting 219

PAGES
option of REPAIR utility 353

PAGESAVE column of SYSTABLEPART catalog table
use by RUNSTATS 391

PAGESIZE
option of DSN1COMP utility 448
option of DSN1COPY utility 456
option of DSN1PRNT utility 494

panel 32
See also installation panel
DB2 UTILITIES 32
tutorial 34

PARALLEL
option of COPY utility 90
option of RECOVER utility 230

parameter
utility control statement 28, 408

parsing rules
utility control statements 27, 407

PART
option of CHECK DATA utility 57
option of CHECK INDEX utility 72
option of LOAD utility 137, 155
option of QUIESCE utility 202
option of REBUILD INDEX utility 210
option of REORG INDEX utility 258
option of REORG TABLESPACE utility 283
option of REPAIR utility 345, 346, 347, 349
option of RUNSTATS utility 377, 380

partitioned table space
loading 155
replacing a partition 155

PASSWORD
option of DSNJU003 utility 418

PCTFREE
option of DSN1COMP utility 449

PCTROWCOMP column
SYSTABLES catalog table

use by RUNSTATS 388
pending status

resetting
advisory 527
restrictive 527

PERCACTIVE column of SYSTABLEPART catalog
table

use by RUNSTATS 391
PERCDROP column of SYSTABLEPART catalog table

use by RUNSTATS 391

584 Utility Guide and Reference

performance
affected by

I/O activity 311
table space organization 312

COPY utility 104
LOAD utility

improving 160
monitoring

database 400
with the STOSPACE utility 400

RECOVER utility 246
REORG TABLESPACE utility

improving 319
REORG utility

improving 270
RUNSTATS utility 384

PHASE
option of DSNU command 38

phases of execution
initialization 38
termination 38
utilities

CATMAINT 51
CHECK DATA 55
CHECK INDEX 71
CHECK LOB 79
COPY 86
description 45
LOAD 121
MERGECOPY 185
MODIFY 195
QUIESCE 201
REBUILD INDEX 209
RECOVER 226
REORG INDEX 255
REORG TABLESPACE 278, 325
REPAIR 343
REPORT 365
RUNSTATS 376
STOSPACE 397

PIECESIZ
option of DSN1COPY utility 458
option of DSN1PRNT utility 496

point-in-time recovery
performing 242

populating
tables 159

PORT
option of DSNJU003 utility 419

PQTY column of SYSINDEXPART catalog table
description 394

PQTY column of SYSTABLEPART catalog table
use by RUNSTATS 392

PREFORMAT
option of LOAD utility 125, 137, 162
option of REORG INDEX utility 264

PREFORMAT (continued)
option of REORG TABLESPACE utility 303

preformatting active logs 409
data sets required 409
example 409
output 410

PRINT
option of DSN1COPY utility 458
option of DSN1PRNT utility 495

print log map utility
authorization required 430
BSDS timestamps 432
description 429
description of output 431
example 431
JCL requirements 430
option descriptions 429
output sample 434
recommendations 431
running 431
syntax diagram 429
SYSIN stream parsing 430

privilege set of a process 17
problem determination

media damage, avoiding 249
process

privilege set of 17
PROMPT

option of DSNU command 38
PSRBD (page set REBUILD pending) status

description 218
resetting 219

PUNCHDDN
option of REORG TABLESPACE utility 295

PUNCHDSN
option of DSNU command 37

Q
qualifier-name

naming convention 7
QUIESCE utility

compatibility 206
description 201
example 207
syntax diagram 202
TABLESPACE option 202

R
RBA (relative byte address)

range printed by print log map 431
range specified in active log 421

RBAEND
option of DSN1LOGP utility 473

 Index 585

RBASTART
option of DSN1LOGP utility 472

RBDP (REBUILD pending) status
description 218, 248
resetting 175, 219, 248

RBDP (RECOVER pending) status
description 175

RBDP* (REBUILD pending star) status
resetting 219

RBDP* (REBUILD pending) status
description 218

RCPYDSN1
option of DSNU command 37

RCPYDSN2
option of DSNU command 37

reading
conditional restart control records 437

rebinding
recommended after LOAD 174

REBUILD
option of REPAIR utility 355

REBUILD INDEX utility
building indexes in parallel 215
compatibility 220
description 209
example 221
option descriptions 210
performance recommendations 215
re-create index 209
syntax diagram 209

REBUILD pending status
resetting 219

REBUILD pending status (RBDP) 175, 218
See also RBDP (REBUILD pending) status

RECDSN
option of DSNU command 37

record count
REORG TABLESPACE utility 325

RECOVER INDEX utility 240
RECOVER TABLESPACE utility

merges multiple image copies 103
RECOVER utility

compatibility 251
description 225
examples

error range 236
JCL and control statements 252
multiple table spaces 234
single partition 235
single table space 234

hierarchy of dependencies 239
input data sets 233
merges multiple image copies 235
option descriptions 227
output 225
performance recommendations 246

RECOVER utility (continued)
syntax diagram 226
table spaces accessed 239
TABLESPACE

containing LOB data 241
recovery

catalog and directory 238
catalog objects 238
data set

partition 235
database

LOB table space 103
REBUILD INDEX utility 209
RECOVER utility 225
REORG makes image copies invalid 95, 103

directory objects 238
error range 236
page 236
partial 242
reporting information 369
table space

description 234
multiple spaces 234
point in time 213

recovery log
backward log 417
forward log 417

RECOVERY option of REPORT utility 366
RECOVERYDDN

option of COPY utility 89
option of LOAD utility 126, 160
option of MERGECOPY utility 188
option of REORG TABLESPACE utility 285, 319

RECOVERYSITE
option of RECOVER utility 230
option of REPORT utility 368

RECP (RECOVER pending) status
description 248
resetting 248

referential constraint
loading data 156

REORG
option of DSN1COMP utility 449

REORG INDEX utility
description 255
example 275
option descriptions 258
output 275
syntax diagram 256

REORG TABLESPACE utility
building indexes in parallel 321
compatibility 329, 331
description 277
example 335
LOB table space

avoiding COPY pending status 325

586 Utility Guide and Reference

REORG TABLESPACE utility (continued)
option descriptions 282
output 334
performance recommendations 319
rebalancing partitions 318
shadow data sets

defining 305
syntax diagram 279

REORG utility
compatibility

REORG INDEX 273
compressing data 158
KEEPDICTIONARY option 158
performance 267
performance recommendations 270
shadow data sets

defining 264
reorganizing

indexes 267
partitions 318
table spaces 267, 311

REPAIR utility
compatibility 359, 360
DBD statement 18, 354

description 353
option descriptions 354
syntax diagram 354

declared temporary table compatibility 18, 354
DELETE statement

description 351
syntax diagram 352

description 343
DUMP statement

description 352
option descriptions 352
syntax diagram 352

example 363
LOCATE INDEX statement

option descriptions 349
LOCATE statement

description 347
syntax diagram 347

LOCATE TABLESPACE statement
option descriptions 347

option descriptions 344
output 343, 362
REPLACE statement

description 350
option descriptions 351
syntax diagram 350

SET INDEX statement 346
description 345
option descriptions 346
syntax diagram 345

SET TABLESPACE statement
description 345
option descriptions 346

REPAIR utility (continued)
SET TABLESPACE statement (continued)

syntax diagram 345
syntax diagram 344
VERIFY statement

description 350
option descriptions 350
syntax diagram 350

REPLACE
option of LOAD utility 125
statement of REPAIR utility

used in LOCATE block 347
REPLACE statement of REPAIR utility 350
replacing

data in a partition 155
table 153

REPORT
option of RUNSTATS utility 128, 211, 263, 293,

379, 381
REPORT utility

compatibility 371
description 365
example 374
option descriptions 366
output 370
syntax diagram 366
SYSIBM.SYSLGRNX directory table 365
table space recovery 369

REPORTONLY
option of COPY utility 92
option of REORG INDEX utility 262
option of REORG TABLESPACE utility 289

RESET
option of DSN1COPY utility 459
option of REPAIR utility 351

resetting
pending status

advisory 527
auxiliary CHECK pending (ACHKP) 527
CHECK pending (CHKP) 528
COPY pending 529
group buffer pool RECOVER pending

(GRECP) 530
informational COPY pending (ICOPY) 103, 530
page set REBUILD pending (PSRBD) 219, 530
REBUILD pending (RBDP) 219, 248, 530
REBUILD pending star (RBDP*) 219
RECOVER pending (RECP) 248, 531
REORG pending (REORP) 532
restart pending 533
restrictive 527

warning status
auxiliary warning (AUXW) 528

RESPORT
option of DSNJU003 utility 419

 Index 587

RESTART
cannot restart CHECK DATA 67
cannot restart CHECK INDEX 76
cannot restart CHECK LOB 83
cannot restart MODIFY 199
cannot restart REPAIR 359
cannot restart REPORT 371
cannot restart RUNSTATS 385
cannot restart STOSPACE 401
conditional

control record governs 437
option of DSNU command 38

restarting
utilities

CATMAINT 53
CHECK LOB 83
COPY 106
creating your own JCL 49
data set name and volume serial 50
EXEC statement 44
LOAD 172
MERGECOPY 192
methods of restart 49
out of space condition 49
QUIESCE 205
REBUILD INDEX 219
RECOVER 250
REORG INDEX 271
REORG TABLESPACE 326
REPORT 371
RUNSTATS 385
STATISTICS keyword 50
using DB2I 49
using the DSNU CLIST command 49
UTPROC 42

RESUME
option of LOAD utility 125, 137

return code
CHANGELIMIT 102

REUSE
option of LOAD utility 129, 138
option of REBUILD INDEX 211
option of RECOVER utility 229
option of REORG INDEX utility 258
option of REORG TABLESPACE utility 283

RID
option of DSN1CHKR utility 440
option of DSN1LOGP utility 475
option of REPAIR utility 348

ROWID
option of LOAD utility 147
option of REPAIR utility 349

ROWLIMIT
option of DSN1COMP utility 449

running online utilities
data sharing environment 47

running online utilities (continued)
JCL 43

RUNSTATS INDEX utility
syntax diagram 380

RUNSTATS TABLESPACE utility
syntax diagram 376

RUNSTATS utility
compatibility 385
description 375
example 394
large partitioned table spaces 387
option descriptions 377
output 387
performance recommendations 384
recommended after LOAD 174
updating catalog columns 390

S
scanning rules

utility control statements 27, 407
SCOPE

option of CHECK DATA utility 57
SCOPE option

CHECK DATA utility 177
SECQTYI column of SYSINDEXPART catalog table

description 394
SECQTYI column of SYSTABLEPART catalog table

use by RUNSTATS 392
SEGMENT

option of DSN1COPY utility 457
segmented table space

loading and replacing 153
SELECT

option of DSN1SDMP utility 502
SELECT statement

example
SYSIBM.SYSTABLESPACE 400

list
maximum number of elements 514

sequential data set
loading data 178

SET INDEX statement of REPAIR utility 345
SET TABLESPACE statement of REPAIR utility 345
shadow data sets

allocating
REORG TABLESPACE PART 305

defining
REORG TABLESPACE utility 305
REORG utility 265

estimating size
REORG INDEX utility 265
REORG TABLESPACE utility 305

shift-in character
LOAD utility 140

588 Utility Guide and Reference

shift-out character
LOAD utility 140

SHRLEVEL
option of COPY utility 91
option of REORG INDEX utility 258
option of REORG TABLESPACE utility 285
option of RUNSTATS utility 379, 381

simple table space
loading and replacing 153

SIZE
option of DSNUPROC utility 41

SMALLINT
option of LOAD utility 144

softcopy publications 10
sort 73

See also DFSORT (Data Facility Sort)
SORTDATA

option of REORG TABLESPACE utility 284
SORTDEVT

option of CHECK DATA utility 59
option of CHECK INDEX utility 73
option of CHECK LOB utility 81
option of LOAD utility 133
option of REBUILD INDEX 211
option of REORG TABLESPACE utility 302

SORTKEYS
option of LOAD utility 130, 161, 165, 166
option of REBUILD INDEX 211
option of REORG TABLESPACE utility 284

SORTNUM
option of CHECK DATA utility 59
option of CHECK INDEX utility 73
option of CHECK LOB utility 81
option of LOAD utility 134
option of REBUILD INDEX 211
option of REORG TABLESPACE utility 303

SORTOUT data set 150
SORTOUT data set purpose 29
SORTWKnn data set purpose 29
SPACE column of SYSINDEXPART catalog table

description 394
SPACE column of SYSTABLEPART catalog table

use by RUNSTATS 392
space, free 275, 334

See also free space
SQL (Structured Query Language)

limits 513
SQL terminator

specifying in DSNTIAD 539
SQTY column of SYSINDEXPART catalog table

description 394
SQTY column of SYSTABLEPART catalog table

use by RUNSTATS 392
stand-alone utilities

control statements 408
option descriptions 408

START TRACE command
option of DSN1SDMP utility 501

STARTIME
option of DSNJU003 utility 414

STARTRBA
option of DSNJU003 utility 415

state
utility execution 45

STATISTICS
option of LOAD utility 127
option of REBUILD INDEX 211
option of REORG INDEX utility 262
option of REORG TABLESPACE utility 292
space utilization 267, 311

STATSTIME column
SYSCOLDIST catalog table 389
SYSCOLUMNS catalog table 389
SYSINDEXES catalog table 390
SYSTABLES catalog table 389
SYSTABLESPACE catalog table 389

status
CHECK pending

resetting 175
COPY pending, resetting 174
page set REBUILD pending (PSRBD) 218
REBUILD pending (RBDP) 175, 218
REBUILD pending star (RBDP*) 218

STOGROUP
option of STOSPACE utility 398

stopping 45
See also terminating

storage group, DB2
DASD space 400
storage allocated 400

stored procedure
DSNUTILS 517

STOSPACE utility
compatibility 401
description 397
example 402
monitoring database performance 400
syntax diagram 397

string
naming convention 7

STRTLRSN
option of DSNJU003 utility 416

SUBMIT
option of DSNU command 38

subsystem
naming convention 7

SUBTYPE
option of DSN1LOGP utility 476

SUMMARY
option of DSN1LOGP utility 477
option of REPORT utility 368

 Index 589

SWmmWKnn data set purpose 29
SYMLIST

option of DSNU command 36
syntax diagram

CATMAINT utility 51
change log inventory utility 411
CHECK DATA utility 56
CHECK INDEX utility 72
CHECK LOB utility 80
COPY utility 86
DIAGNOSE utility 113
DSN1CHKR utility 439
DSN1COMP utility 447
DSN1COPY utility 455
DSN1PRNT utility 493
DSN1SDMP utility 501
DSNJU003 utility 411
DSNJU004 utility 429
DSNU CLIST command 35
DSNUPROC JCL procedure 41
DSNUTILS stored procedure 519
LOAD utility 123
MERGECOPY utility 186
MODIFY utility 196
print log map utility 429
QUIESCE utility 202
REBUILD INDEX utility 209
RECOVER utility 226
REORG INDEX utility 256
REORG TABLESPACE utility 279
REPAIR utility 344

DBD statement 354
DELETE statement 352
DUMP statement 352
LOCATE statement 347
REPLACE statement 350
SET INDEX statement 345
SET TABLESPACE statement 345
VERIFY statement 350

REPORT utility 366
RUNSTATS INDEX utility 380
RUNSTATS TABLESPACE utility 376
STOSPACE utility 397

syntax diagrams, how to read 4
SYSCOPY

data set of COPY utility
purpose 29

option of DSN1LOGP utility 473
SYSDISC data set of LOAD utility

estimating size 150
purpose 29

SYSDISC data set of REORG utility
purpose 29

SYSERR data set of LOAD utility
estimating size 150
purpose 29

SYSIN data set purpose 29
SYSLGRNX directory table

information via REPORT utility 369
SYSMAP data set of LOAD utility

estimating size 150
purpose 29

SYSPRINT
data set for messages and printed output 29

SYSPUNCH
data set of REORG utility 29
purpose 29

SYSREC data set purpose 30
SYSTEM

limits 513
option of DSNU command 38
option of DSNUPROC utility 41

system monitoring
index organization 267
table space organization 267, 311

SYSUT1 data set
estimating size 150

SYSUT1 data set purpose 30
SYSUTILX directory table space

MERGECOPY restrictions 186, 192
order of recovering 238

T
table

dropping
reclaiming space 315

exception 60, 176
TABLE

option of REORG TABLESPACE utility 292
option of RUNSTATS utility 127, 377

table name
naming convention 7

table space
copying 85
determining when to reorganize 267, 311
loading data into 159
merging copies 185
naming convention 8
reorganizing

using SORTDATA option of REORG utility 312
utilization 267, 311

segmented
COPY utility 100
LOAD utility 153

statistics 267, 311
storage allocated 400

TABLESPACE
option of CHECK DATA utility 56
option of CHECK INDEX utility 73
option of CHECK LOB utility 80
option of COPY utility 87

590 Utility Guide and Reference

TABLESPACE (continued)
option of MERGECOPY utility 186
option of MODIFY utility 196
option of QUIESCE utility 202
option of REBUILD INDEX utility 210
option of RECOVER utility 227
option of REORG TABLESPACE utility 282
option of REPAIR utility 345, 346, 347
option of REPORT utility 366
option of RUNSTATS utility 377, 380

TABLESPACESET
option of QUIESCE utility 202
option of REPORT utility 366

TERM UTILITY command
description 47
effect on

RECOVER utility 250
REORG TABLESPACE utility 324
rerunning LOAD 170
restarting COPY 105

terminating
state of utility execution 45
utilities

CATMAINT 53
CHECK DATA 66
CHECK INDEX 76
CHECK LOB 83
COPY 105
description 47
DIAGNOSE 118
LOAD 170
MODIFY 199
QUIESCE 206
REBUILD INDEX 219
RECOVER 250
REORG INDEX 271
REORG TABLESPACE 325
REPAIR 359
REPORT 371
RUNSTATS 385
STOSPACE 401

TEST
option of REPAIR utility 354

TIME
option of DSNJU003 utility 419

TIME EXTERNAL
option of LOAD utility 146

TIMEOUT
option of REORG INDEX utility 261
option of REORG TABLESPACE utility 289

timestamp
BSDS 432

TIMESTAMP EXTERNAL
option of LOAD utility 146

TOCOPY
option of RECOVER utility 230

TOLOGPOINT
option of RECOVER utility 229

TORBA
option of RECOVER utility 229

TOSEQNO
option of RECOVER utility 231

TOVOLUME
option of RECOVER utility 231

TRACEID
option of DIAGNOSE utility 116

TS1 table space 236
TSO

CLISTs
DSNU 34

TYPE
option of DIAGNOSE utility 115
option of DSN1LOGP utility 476

U
UID

DSNUPROC utility 42
option of DSNU command 38

unique index
loading data 153

UNIT
option of DSNJU003 utility 416
option of DSNU command 39

unit of recovery
in-abort 417
inflight 417

unit of work
in-commit 417
indoubt

conditional restart 417
UNLDDN

option of REORG TABLESPACE utility 302
UNLOAD

option of REORG INDEX utility 262
option of REORG TABLESPACE utility 289

UPDATE
option of CATMAINT utility 51
option of RUNSTATS utility 128, 212, 263, 293,

379, 381
URID

option of DSN1LOGP utility 475
utilities

control statements 28
data set disposition 31
description 17
executing

DB2I 32
DSNU CLIST command 34
JCL 41, 43
phases 45
problems during 46
restart 48

 Index 591

utilities (continued)
monitoring and controlling 45
online 27, 43
option descriptions 28
target objects

declared temporary table 18
types

CATMAINT 51
change log inventory (DSNJU003) 411
CHECK DATA 55
CHECK INDEX 71
CHECK LOB 79
COPY 85
DIAGNOSE 113
DSN1CHKR 439
DSN1COMP 447
DSN1COPY 455
DSN1LOGP 471
DSN1PRNT 493
DSN1SDMP 501
LOAD 121
MERGECOPY 185
MODIFY 195
preformat active log (DSNJLOGF) 409
print log map (DSNJU004) 429
QUIESCE 201
REBUILD INDEX 209
RECOVER 225
REORG 274
REORG INDEX 255
REORG TABLESPACE 277
REPAIR 343
REPORT 365
RUNSTATS 375
STOSPACE 397

UTILITIES panel 32
UTILITY

option of DSNU command 35
utility-id

naming convention 8
UTPRINmm data set purpose 30
UTPRINT data set purpose 30
UTPROC

option of DSNUPROC utility 42

V
validation routine

LOAD utility 121
REORG TABLESPACE utility 290

VALUE
option of DSN1LOGP utility 477
option of DSN1PRNT utility 496

VALUE
option of DSN1COPY utility 459

VARCHAR
data type

loading 152
option of LOAD utility 143

VARGRAPHIC
data type

loading 152
option of LOAD utility 144

VERIFY
statement of REPAIR utility

used in LOCATE block 347
VERIFY statement of REPAIR utility 350
VERSION

option of REPAIR utility 349
VOLUME

option of DSNU command 39
VSAM (virtual storage access method) 187, 197, 228,

309, 399, 400
catalog 88

See also integrated catalog facility
data sets 413

VSAMCAT
option of DSNJU003 utility 418

W
WAIT option

DIAGNOSE utility 116
WHEN

option of LOAD utility 138
WORKDDN

option of CHECK DATA utility 59
option of CHECK INDEX utility 73
option of CHECK LOB utility 80
option of LOAD utility 130
option of MERGECOPY utility 187
option of REBUILD INDEX 211
option of REORG INDEX utility 263
option of REORG TABLESPACE utility 302

WRITE
option of QUIESCE utility 203

592 Utility Guide and Reference

How to send your comments

DB2 Universal Database for OS/390
Utility Guide and Reference
Version 6

Publication No. SC26-9015-01

Your feedback helps IBM to provide quality information. Please send any comments that
you have about this book or other DB2 for OS/390 documentation. You can use any of the
following methods to provide comments.

� Send your comments by e-mail to db2pubs@vnet.ibm.com and include the name of the
product, the version number of the product the number of the book. If you are
commenting on specific text, please list the location of the text (for example, a chapter
and section title, page number, or a help topic title).

� Send your comments from the Web. Visit the DB2 for OS/390 Web site at:

 http://www.ibm.com/software/db2os390

The Web site has a feedback page that you can use to send comments.

� Complete the readers' comment form at the back of the book and return it by mail, by
fax (800-426-7773 for the United States and Canada), or by giving it to an IBM
representative.

 Readers' Comments

DB2 Universal Database for OS/390
Utility Guide and Reference
Version 6

Publication No. SC26-9015-01

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-9015-01 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department BWE/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-9015-01

IBM

Program Number: 5645-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9%15-%1

	Contents
	 Section 1. Introduction
	Chapter 1-1. Introduction to this book and the DB2® for OS/390® library
	Who should read this book
	How to use this book
	Product terminology and citations
	How to read the syntax diagrams
	What naming conventions are used
	How to use the DB2 library
	How to obtain DB2 information
	DB2 on the Web
	DB2 publications
	BookManager® format
	PDF format
	CD-ROMs

	DB2 education
	How to order the DB2 library

	Summary of changes to DB2 UDB for OS/390 Version 6
	Capacity improvements
	Performance and availability
	Data sharing enhancements
	User productivity
	Network computing
	Object-relational extensions and active data
	More function
	Features of DB2 for OS/390
	Migration considerations

	Summary of changes to this book

	Chapter 1-2. Introduction to the DB2 utilities
	Types of DB2 utilities
	Description of online utilities
	Description of stand-alone utilities

	Privileges and authorization IDs
	Objects supported by DB2 utilities
	Running utilities when using undefined data sets

	Section 2. DB2 online utilities
	Chapter 2-1. Invoking DB2 online utilities
	Creating utility control statements
	Control statement coding rules
	Example of option description

	Data sets used by online utilities
	Concatenating data sets
	Controlling data set disposition
	Security

	Using the DB2 utilities panel in DB2I
	Using the DSNU CLIST command in TSO
	DSNU CLIST command syntax
	DSNU CLIST option descriptions
	Reviewing DSNU CLIST command output
	Editing the generated JCL data set
	Examples

	Using the supplied JCL procedure (DSNUPROC)
	DSNUPROC syntax
	DSNUPROC option descriptions
	Sample DSNUPROC listing

	Creating the JCL data set yourself
	EXEC statement

	Chapter 2-2. Monitoring and controlling online utilities
	Monitoring utilities with the DISPLAY UTILITY command
	Determining the status of a utility
	Determining which utility phase is currently executing
	Determining why a utility failed to complete

	Running utilities concurrently
	Running online utilities in a data sharing environment
	Terminating an online utility with the TERM UTILITY command
	Restarting an online utility
	Updating the JCL data set for restarting a utility
	Adding or deleting utility statements
	Restarting after the output data set is full
	Other restart hints

	Chapter 2-3. CATMAINT
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running CATMAINT
	Before running CATMAINT
	Data sets used by CATMAINT
	Instructions for specific tasks
	Terminating or restarting CATMAINT

	Concurrency and compatibility

	Chapter 2-4. CHECK DATA
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running CHECK DATA
	Before running CHECK DATA
	For a table with no LOB columns:
	For a table with LOB columns:
	Create exception tables:
	Exception processing a table with a LOB column:
	Example: creating an exception table for the project activity table
	Complete all LOB column definitions

	Data sets used by CHECK DATA
	Creating the control statement
	Instructions for specific tasks
	Specify the scope of CHECK DATA
	Checking several table spaces
	Finding violations
	Detecting and correcting constraint violations
	Resetting CHECK pending status
	Interpreting LOB column errors

	Terminating or restarting CHECK DATA
	Terminating CHECK DATA
	Restarting CHECK DATA

	Concurrency and compatibility
	Sample control statements

	Chapter 2-5. CHECK INDEX
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running CHECK INDEX
	Data sets used by CHECK INDEX
	Creating the control statement
	Instructions for specific tasks
	Checking a single logical partition

	Reviewing CHECK INDEX output
	Terminating or restarting CHECK INDEX

	Concurrency and compatibility
	Sample control statements

	Chapter 2-6. CHECK LOB
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running CHECK LOB
	Before running CHECK LOB
	Data sets used by CHECK LOB
	Creating the control statement
	Instructions for specific tasks
	Finding and resolving violations
	Resetting CHECK pending status for a LOB table space

	Terminating or restarting CHECK LOB
	Terminating CHECK LOB
	Restarting CHECK LOB

	Concurrency and compatibility
	Sample control statements

	Chapter 2-7. COPY
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running COPY
	Before running COPY
	Data sets used by COPY
	Creating the control statement
	Instructions for specific tasks
	Making full image copies
	Making incremental image copies
	Making multiple image copies
	Copying partitions or data sets in separate jobs
	Copying a list of objects
	Using more than one COPY statement
	Copying segmented table spaces
	Using DFSMS concurrent copy
	Specifying conditional image copies
	Preparing for recovery
	Improving performance

	Considerations for running COPY
	Copying table spaces with mixed volume IDs
	Defining generation data groups
	Using DB2 with DFSMS products
	Putting image copies on tape
	Copying a LOB table space

	Terminating or restarting COPY
	Warning against TERM UTILITY
	Implications of DISP on the DD statement
	Restarting with a new data set
	Restarting a COPY job
	Restarting COPY after an out of space condition

	Concurrency and compatibility
	Sample control statements

	Chapter 2-8. DIAGNOSE
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running DIAGNOSE
	Data sets used by DIAGNOSE
	Instructions for specific tasks
	Forcing a utility abend with DIAGNOSE

	Terminating or restarting DIAGNOSE

	Concurrency and compatibility
	Sample control statements

	Chapter 2-9. LOAD
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions
	INTO TABLE spec
	Option descriptions for INTO TABLE

	Instructions for running LOAD
	Before running LOAD
	Data sets used by LOAD
	Instructions for specific tasks
	Loading variable-length data
	Ordering loaded records
	Replacing data with LOAD
	Adding more data to a table or partition
	Deleting all the data in a table space
	Loading partitions
	Loading data with referential constraints
	Correcting referential constraint violations
	Compressing data
	Loading data from DL/I
	Using inline COPY with LOAD
	Improving performance
	Improving performance with SORTKEYS
	Improving performance with LOAD or REORG PREFORMAT

	Considerations for running LOAD
	Converting input data
	Specifying input fields
	Building indexes while loading data
	Building indexes in parallel for LOAD
	Leaving free space
	Loading with RECOVER pending or REBUILD pending status
	Using exit procedures
	Loading columns defined as ROWID
	Loading a LOB column
	Using LOAD LOG on a LOB table space
	Inline statistics collection for discarded rows
	Inline COPY for a base table space

	Terminating or restarting LOAD
	Restarting after an out of space condition

	Concurrency and compatibility
	After running LOAD
	Copying the loaded table space or partition
	Resetting the COPY pending status
	Resetting the REBUILD pending status
	Resetting the CHECK pending status
	DELETE YES
	Exception tables
	Error and sort data sets
	SCOPE PENDING

	Collecting inline statistics while loading a table
	Running CHECK INDEX after loading a table having indexes
	Recovering a failed LOAD job
	Reorganizing an auxiliary index after LOAD

	Sample control statements

	Chapter 2-10. MERGECOPY
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running MERGECOPY
	Data sets used by MERGECOPY
	Creating the control statement
	Instructions for specific tasks
	Specifying full or incremental image copy
	Merging inline copies
	Using MERGECOPY with individual data sets
	Deciding between MERGECOPY or COPY
	Avoiding MERGECOPY LOG RBA inconsistencies
	Creating image copies in a JES3 environment
	Running MERGECOPY on the directory

	Terminating or restarting MERGECOPY

	Concurrency and compatibility
	Sample control statements

	Chapter 2-11. MODIFY
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running MODIFY
	Before running MODIFY
	Data sets used by MODIFY
	Creating the control statement
	Instructions for specific tasks
	Deleting SYSLGRNX rows
	Deleting all image copy entries
	Deleting recovery rows for indexes
	Reclaiming space in the DBD
	Improving REORG performance after adding a column

	Terminating or restarting MODIFY

	Concurrency and compatibility
	Sample control statements

	Chapter 2-12. QUIESCE
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running QUIESCE
	Before running QUIESCE
	Data sets used by QUIESCE
	Creating the control statement
	Instructions for specific tasks
	Using QUIESCE for recovery
	Obtaining a common quiesce point
	Specifying a list of table spaces and table space sets

	Considerations for running QUIESCE
	Terminating or restarting QUIESCE

	Concurrency and compatibility
	Sample control statements

	Chapter 2-13. REBUILD INDEX
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running REBUILD INDEX
	Before running REBUILD INDEX
	Data sets used by REBUILD INDEX
	Creating the control statement
	Instructions for specific tasks
	Rebuilding index partitions
	Improving performance and space utilization
	Building indexes in parallel for REBUILD INDEX
	Resetting the REBUILD pending status
	Rebuilding critical catalog indexes
	Rebuilt index recoverability

	Terminating or restarting REBUILD INDEX

	Concurrency and compatibility
	Sample control statements

	Chapter 2-14. RECOVER
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running RECOVER
	Before running RECOVER
	Data sets used by RECOVER
	Instructions for specific tasks
	Recovering a table space
	Recovering a list of objects
	Recovering a data set or partition
	Recovering with incremental copies
	Recovering a page
	Recovering an error range
	Recovering with a data set copy not made by DB2
	Recovering catalog and directory objects
	Recovering a table space containing LOB data
	Performing a point-in-time recovery
	Avoiding specific image copy data sets
	Improving performance
	Optimizing the LOGAPPLY phase
	Recovering image copies in a JES3 environment
	Resetting RECOVER pending or REBUILD pending status

	Considerations for running RECOVER
	Allocating incremental image copies
	Performing fallback recovery
	Retaining tape mounts
	Avoiding damaged media
	Recovering table spaces and index spaces with mixed volume IDs

	Terminating or restarting RECOVER
	Concurrency and compatibility
	Sample control statements

	Chapter 2-15. REORG INDEX
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running REORG INDEX
	Before running REORG INDEX
	Data sets used by REORG INDEX
	Creating the control statement
	Instructions for specific tasks
	Determining when an object should be reorganized
	Determining when an index requires reorganization
	Specifying access with SHRLEVEL
	Unloading without reloading
	Considerations for fallback recovery
	Changing data set definitions
	Temporarily interrupting REORG
	Improving performance

	Terminating or restarting REORG INDEX

	Concurrency and compatibility
	REORG INDEX compatibility

	Reviewing REORG INDEX output
	Sample control statements

	Chapter 2-16. REORG TABLESPACE
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions
	REORG TABLESPACE options syntax
	Option descriptions for REORG TABLESPACE options

	Instructions for running REORG TABLESPACE
	Before running REORG TABLESPACE
	Data sets used by REORG TABLESPACE
	Creating the control statement
	Instructions for specific tasks
	Determining when an object should be reorganized
	Specifying access with SHRLEVEL
	Omitting the output data set
	Unloading without reloading
	Reclaiming space from dropped tables
	Considerations for fallback recovery
	Reorganizing the catalog and directory
	Changing data set definitions
	Temporarily interrupting REORG
	Building a compression dictionary
	Overriding dynamic DFSORT and SORTDATA allocation
	Rebalancing partitions using REORG
	Using inline COPY with REORG TABLESPACE
	Improving performance

	Considerations for running REORG
	Sorting data in clustering order
	Methods of unloading data
	Encountering an error in the RELOAD phase
	Reorganizing partitioned table spaces
	Reorganizing segmented table spaces
	Counting records loaded during RELOAD phase
	Reorganizing a LOB table space

	Terminating or restarting REORG TABLESPACE

	Concurrency and compatibility
	REORG TABLESPACE compatibility

	Reviewing REORG TABLESPACE output
	After running REORG TABLESPACE
	Sample control statements

	Chapter 2-17. REPAIR
	Syntax and options of the control statement
	Syntax diagram
	REPAIR option descriptions
	SET TABLESPACE and SET INDEX statement syntax
	SET TABLESPACE and SET INDEX option descriptions
	LOCATE block syntax
	LOCATE TABLESPACE statement option descriptions
	LOCATE INDEX statement option descriptions
	VERIFY statement syntax
	VERIFY statement option descriptions
	REPLACE statement syntax
	REPLACE statement option descriptions
	DELETE statement syntax and description
	DUMP statement syntax
	DUMP statement option descriptions
	DBD statement syntax
	DBD statement option descriptions

	Instructions for running REPAIR
	Before running REPAIR
	Making a copy of the table space
	Restoring damaged indexes

	Data sets used by REPAIR
	Creating the control statement
	Instructions for specific tasks
	Resetting table space status
	Resetting index space status
	Repairing a damaged page
	Using the DBD statement
	Locating rows by key
	Using VERIFY, REPLACE, and DELETE operations
	Repairing critical catalog table spaces and indexes

	Terminating or restarting REPAIR

	Concurrency and compatibility
	Reviewing REPAIR output
	After running REPAIR
	Sample control statements

	Chapter 2-18. REPORT
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running REPORT
	Data sets used by REPORT
	Creating the control statement
	Instructions for specific tasks
	Reporting recovery information
	Running REPORT on the catalog and directory

	Terminating or restarting REPORT

	Concurrency and compatibility
	Reviewing REPORT output
	Sample control statements

	Chapter 2-19. RUNSTATS
	Syntax and options of the control statement
	RUNSTATS TABLESPACE syntax diagram
	RUNSTATS TABLESPACE option descriptions
	RUNSTATS INDEX syntax diagram
	RUNSTATS INDEX option descriptions

	Instructions for running RUNSTATS
	Before running RUNSTATS
	Data sets used by RUNSTATS
	Creating the control statement
	Instructions for specific tasks
	Deciding when to use RUNSTATS
	Assessing table space status
	Updating statistics for a partitioned table space
	Running RUNSTATS on the DB2 catalog
	Improving performance

	Terminating or restarting RUNSTATS

	Concurrency and compatibility
	Reviewing RUNSTATS output
	Access path statistics
	Space statistics (columns for tuning information)

	After running RUNSTATS
	Sample control statements

	Chapter 2-20. STOSPACE
	Syntax and options of the control statement
	Syntax diagram
	Option descriptions

	Instructions for running STOSPACE
	Data sets used by STOSPACE
	Creating the control statement
	Instructions for specific tasks
	Ensuring availability of objects required by STOSPACE
	Obtaining statistical information with STOSPACE
	Understanding the values in a SPACE column

	Considerations for running STOSPACE
	Terminating or restarting STOSPACE

	Concurrency and compatibility
	Reviewing STOSPACE output
	Sample control statement

	Section 3. Stand-alone utilities
	Chapter 3-1. Invoking stand-alone utilities
	Creating utility statements and EXEC PARM parameters
	Creating utility control statements
	Control statement coding rules

	Specifying options using the JCL EXEC PARM parameter
	Following OS/390 JCL EXEC PARM specification rules

	Example of an option description

	Chapter 3-2. DSNJLOGF (Preformat Active Log)
	Before running DSNJLOGF
	Environment
	Control statement

	Sample control statement
	DSNJLOGF output

	Chapter 3-3. DSNJU003 (Change Log Inventory)
	Syntax and options of the control statement
	DSNJU003 (change log inventory) syntax diagram
	Option descriptions

	Before running DSNJU003
	Environment
	Authorization required
	Control statement
	Required and optional data sets
	Optional statements

	Using DSNJU003
	Running DSNJU003
	Making changes for active logs
	Making changes for archive logs
	Creating a conditional restart control record
	Deleting log data sets with errors
	Altering references to NEWLOG and DELETE data sets
	Specifying the NEWCAT statement
	Renaming DB2 system data sets
	Renaming DB2 active log data sets
	Renaming DB2 archive log data sets

	Sample control statements

	Chapter 3-4. DSNJU004 (Print Log Map)
	Syntax and options of the control statement
	DSNJU004 (print log map) syntax diagram
	Option descriptions

	Before running DSNJU004
	Environment
	Authorization required
	Control statement
	Required and optional data sets
	Running the DSNJU004 utility

	Recommendations

	Sample control statement
	DSNJU004 (Print Log Map) output
	Timestamps in the BSDS
	Active log data set status
	Reading conditional restart control records

	Chapter 3-5. DSN1CHKR
	Syntax and options of the control statement
	DSN1CHKR syntax diagram
	Option descriptions

	Before running DSN1CHKR
	Environment
	Authorization required
	Control statement
	Restrictions
	Running DSN1COPY before DSN1CHKR
	Running DSN1CHKR on a valid table space

	Sample control statements
	DSN1CHKR output

	Chapter 3-6. DSN1COMP
	Syntax and options of the control statement
	DSN1COMP syntax diagram
	Option descriptions

	Before running DSN1COMP
	Environment
	Authorization required
	Control statement
	Recommendation

	Using DSN1COMP
	Estimating compression savings achieved by REORG
	Including free space in compression calculations
	Running DSN1COMP on a table space with identical data

	Sample control statements
	DSN1COMP output
	Message DSN1941
	Sample DSN1COMP report

	Chapter 3-7. DSN1COPY
	Syntax and options of the control statement
	DSN1COPY syntax diagram
	Option descriptions

	Before running DSN1COPY
	Environment
	Authorization required
	Control statement
	Required data sets
	Defining the output data set

	Restrictions
	Recommendations
	Printing with DSN1PRNT instead of DSN1COPY
	Determining page size and DSSIZE

	Using DSN1COPY
	Altering a table before running DSN1COPY
	Checking for inconsistent data
	Translating DB2 internal identifiers
	Using an image copy as input to DSN1COPY
	Resetting page log RBAs
	Copying multiple data set table spaces
	Restoring indexes with DSN1COPY
	Restoring table spaces with DSN1COPY
	Printing with DSN1COPY
	Copying tables from one subsystem to another

	Sample control statements
	DSN1COPY output

	Chapter 3-8. DSN1LOGP
	Syntax and options of the control statement
	DSN1LOGP syntax diagram
	Option descriptions

	Before running DSN1LOGP
	Environment
	Authorization required
	Control statement
	Required data sets
	Identifying log data sets

	Using DSN1LOGP
	Reading archive log data sets on tape
	Locating table and index identifiers

	Sample control statements
	DSN1LOGP output
	Reviewing DSN1LOGP output
	Description of the summary report
	Description of the detail report
	Interpreting data propagation information in the summary report

	Interpreting error codes

	Chapter 3-9. DSN1PRNT
	Syntax and options of the control statement
	DSN1PRNT syntax diagram
	Option descriptions

	Before running DSN1PRNT
	Environment
	Authorization required
	Control statement
	Recommendations
	Printing with DSN1PRNT instead of DSN1COPY
	Determining page size and DSSIZE

	Sample control statements
	DSN1PRNT output

	Chapter 3-10. DSN1SDMP
	Syntax and options of the control statement
	DSN1SDMP syntax diagram
	Option descriptions

	Before running DSN1SDMP
	Environment
	Authorization required
	Control statement

	Using DSN1SDMP
	Assigning buffers
	Generating a dump
	Stopping or modifying DSN1SDMP traces

	Sample control statements
	DSN1SDMP output

	Appendixes
	Appendix A. Limits in DB2 for OS/390
	Appendix B. Invoking utilities as a stored procedure (DSNUTILS)
	Environment
	Authorization required
	Control statement
	DSNUTILS syntax diagram
	DSNUTILS option descriptions
	Modifying the WLM-established address space
	Sample program for calling DSNUTILS
	DSNUTILS output

	Appendix C. Resetting an advisory or restrictive status
	Auxiliary CHECK pending status
	Auxiliary warning status
	CHECK pending status
	COPY pending status
	Group buffer pool RECOVER pending status
	Informational COPY pending status
	REBUILD pending status
	RECOVER pending status
	REORG pending status
	Restart pending status

	Appendix D. How to run sample programs DSNTIAUL, DSNTIAD, and DSNTEP2
	Running DSNTIAUL
	Running DSNTIAD
	Running DSNTEP2

	Appendix E. Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index

