
DB2 for OS/390
Version 5 IBM

SQL Reference

 
 
 
 SC26-8966-03



  
 

 Note! 

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page ix.

First Edition (June 1997)

This edition applies to Version 5 of IBM DATABASE 2 Server for OS/390 (DB2 for OS/390), 5655-DB2, and to any subsequent
releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

The technical changes for this edition are summarized under “Summary of Changes to this Book” in the Introduction. Specific
changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption indicates that the figure
has changed. Editorial changes that have no technical significance are not noted.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed version by vertical
bars. Additional changes made to this softcopy version of the manual since the hardcopy manual was published are indicated by the
hash (#) symbol in the left-hand margin.

 Copyright International Business Machines Corporation 1982, 1997. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.



  Contents
 

 Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Programming Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Who Should Read This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
How to Use This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
SQL Standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
How to Read the Syntax Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

| Conventions for Describing Mixed Data Values . . . . . . . . . . . . . . . . . . . .  5
How to Use the DB2 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
How to Obtain DB2 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

| Summary of Changes to DB2 for OS/390 Version 5 . . . . . . . . . . . . . . . . .  9
| Summary of Changes to This Book . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Chapter 2. DB2 Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Structured Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Referential Integrity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Check Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Storage Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Storage Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Catalog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Application Processes, Concurrency, and Recovery . . . . . . . . . . . . . . . .  28
Packages and Application Plans . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Distributed Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Character Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 3. Language Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Tokens  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Naming Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Aliases and Synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
Authorization IDs and Authorization-names . . . . . . . . . . . . . . . . . . . . .  52
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Assignment and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Special Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Column Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Referencing Host Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Host Structures in PL/I, C, and COBOL . . . . . . . . . . . . . . . . . . . . . . .  90
Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Predicates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Search Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Options Affecting SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

 Copyright IBM Corp. 1982, 1997  iii



 Contents  
 

Chapter 4. Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Column Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Scalar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 5. Queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Authorization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
subselect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
fullselect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
select-statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Chapter 6. Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
How SQL Statements Are Invoked . . . . . . . . . . . . . . . . . . . . . . . . . .  195

| ALLOCATE CURSOR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
ALTER DATABASE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
ALTER INDEX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
ALTER STOGROUP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
ALTER TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
ALTER TABLESPACE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

| ASSOCIATE LOCATORS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
BEGIN DECLARE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246
CALL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
CLOSE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
COMMENT ON  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
COMMIT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
CONNECT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
CONNECT (Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  262
CONNECT (Type 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267
CREATE ALIAS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
CREATE DATABASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

| CREATE GLOBAL TEMPORARY TABLE . . . . . . . . . . . . . . . . . . . . . .  275
CREATE INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

# CREATE PROCEDURE (SQL procedure) . . . . . . . . . . . . . . . . . . . . . .  295
CREATE STOGROUP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
CREATE SYNONYM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
CREATE TABLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
CREATE TABLESPACE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
CREATE VIEW  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
DECLARE CURSOR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
DECLARE STATEMENT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
DECLARE TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
DELETE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
DESCRIBE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

| DESCRIBE CURSOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
# DESCRIBE INPUT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
| DESCRIBE PROCEDURE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

DROP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
END DECLARE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  380
EXECUTE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
EXECUTE IMMEDIATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
EXPLAIN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
FETCH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
GRANT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
GRANT (Collection Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  403
GRANT (Database Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404

iv SQL Reference  



  Contents
 

GRANT (Package Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  406
GRANT (Plan Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  408
GRANT (System Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  409
GRANT (Table or View Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . .  412
GRANT (Use Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  415
INCLUDE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
INSERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
LABEL ON  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
LOCK TABLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
OPEN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
PREPARE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
RELEASE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

| RENAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
REVOKE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
REVOKE (Collection Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  447
REVOKE (Database Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  448
REVOKE (Package Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  450
REVOKE (Plan Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  452
REVOKE (System Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  453
REVOKE (Table or View Privileges) . . . . . . . . . . . . . . . . . . . . . . . . .  456
REVOKE (Use Privileges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  458
ROLLBACK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
SELECT INTO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
SET CONNECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
SET CURRENT DEGREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  468
SET CURRENT PACKAGESET . . . . . . . . . . . . . . . . . . . . . . . . . . . .  470

# SET CURRENT PRECISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  472
SET CURRENT RULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  473
SET CURRENT SQLID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  474
SET host-variable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
UPDATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
WHENEVER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

# Chapter 7. SQL procedure statements . . . . . . . . . . . . . . . . . . . . . .  485
# Procedure body  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
# Assignment statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
# CASE statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
# Compound statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
# IF statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
# GET DIAGNOSTICS statement . . . . . . . . . . . . . . . . . . . . . . . . . . . .  497
# GOTO statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
# LEAVE statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
# LOOP statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
# REPEAT statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
# WHILE statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
# SQL procedure statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  504

Appendix A. Limits in DB2 for OS/390 . . . . . . . . . . . . . . . . . . . . . .  505

Appendix B. Characteristics of SQL Statements in DB2 for OS/390 . . . .  509
Actions Allowed on SQL Statements . . . . . . . . . . . . . . . . . . . . . . . . .  509

# SQL statements allowed in SQL procedures . . . . . . . . . . . . . . . . . . . .  511

Appendix C. SQLCA and SQLDA . . . . . . . . . . . . . . . . . . . . . . . . .  513

  Contents v



 Contents  
 

SQL Communication Area (SQLCA) . . . . . . . . . . . . . . . . . . . . . . . . .  513
SQL Descriptor Area (SQLDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  519

Appendix D. DB2 Catalog Tables . . . . . . . . . . . . . . . . . . . . . . . . .  529
Table Spaces and Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  529

| New and Changed Catalog Tables . . . . . . . . . . . . . . . . . . . . . . . . . .  534
| SYSIBM.IPNAMES Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
| SYSIBM.LOCATIONS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
| SYSIBM.LULIST Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
| SYSIBM.LUMODES Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
| SYSIBM.LUNAMES Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
| SYSIBM.MODESELECT Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

SYSIBM.SYSCHECKDEP Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
SYSIBM.SYSCHECKS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
SYSIBM.SYSCOLAUTH Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
SYSIBM.SYSCOLDIST Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
SYSIBM.SYSCOLDISTSTATS Table  . . . . . . . . . . . . . . . . . . . . . . . . . 548
SYSIBM.SYSCOLSTATS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
SYSIBM.SYSCOLUMNS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
SYSIBM.SYSCOPY Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
SYSIBM.SYSDATABASE Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
SYSIBM.SYSDBAUTH Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
SYSIBM.SYSDBRM Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

| SYSIBM.SYSDUMMY1 Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
SYSIBM.SYSFIELDS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
SYSIBM.SYSFOREIGNKEYS Table  . . . . . . . . . . . . . . . . . . . . . . . . . 566
SYSIBM.SYSINDEXES Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
SYSIBM.SYSINDEXPART Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
SYSIBM.SYSINDEXSTATS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . 572
SYSIBM.SYSKEYS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
SYSIBM.SYSPACKAGE Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
SYSIBM.SYSPACKAUTH Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
SYSIBM.SYSPACKDEP Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
SYSIBM.SYSPACKLIST Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
SYSIBM.SYSPACKSTMT Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
SYSIBM.SYSPKSYSTEM Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
SYSIBM.SYSPLAN Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
SYSIBM.SYSPLANAUTH Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
SYSIBM.SYSPLANDEP Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
SYSIBM.SYSPLSYSTEM Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
SYSIBM.SYSPROCEDURES Table  . . . . . . . . . . . . . . . . . . . . . . . . . 590
SYSIBM.SYSRELS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
SYSIBM.SYSRESAUTH Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
SYSIBM.SYSSTMT Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
SYSIBM.SYSSTOGROUP Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
SYSIBM.SYSSTRINGS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
SYSIBM.SYSSYNONYMS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
SYSIBM.SYSTABAUTH Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
SYSIBM.SYSTABLEPART Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
SYSIBM.SYSTABLES Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
SYSIBM.SYSTABLESPACE Table  . . . . . . . . . . . . . . . . . . . . . . . . . . 610
SYSIBM.SYSTABSTATS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
SYSIBM.SYSUSERAUTH Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
SYSIBM.SYSVIEWDEP Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

vi SQL Reference  



  Contents
 

SYSIBM.SYSVIEWS Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
SYSIBM.SYSVOLUMES Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

| SYSIBM.USERNAMES Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

Appendix E. SQL Reserved Words . . . . . . . . . . . . . . . . . . . . . . . .  621

Appendix F. DB2 Objects Required by the DB2 for OS/390 SQL
Procedure Processor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Table Spaces and Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  625
The SQL Procedure Source Table (SYSIBM.SYSPSM) . . . . . . . . . . . . . .  625
The SQL Procedure Options Table (SYSIBM.SYSPSMOPTS) . . . . . . . . . .  626
Temporary Table SYSIBM.SYSPSMOUT . . . . . . . . . . . . . . . . . . . . . .  627

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

  Contents vii



 Contents  
 

viii SQL Reference  



  
 

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM's valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

# IBM may have patents or pending patent applications covering subject matter in
# this document. The furnishing of this document does not give you any license to
# these patents. You can send license inquiries, in writing, to:

# IBM Director of Licensing
#  IBM Corporation
# North Castle Drive
# Armonk, NY 10504-1785
#  U.S.A.

# Licensees of this program who wish to have information about it for the purpose of
# enabling (1) the exchange of information between independently created programs
# and other programs (including this one) and (2) the mutual use of the information
# that has been exchanged, should contact:

#  IBM Corporation
#  IBM Corporation
#  J74/G4
# 555 Bailey Avenue
# P.O. Box 49023
# San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information
This book is intended to help you to code SQL statements. This book primarily
documents General-use Programming Interface and Associated Guidance
Information provided by IBM DATABASE 2 Server for OS/390 (DB2 for OS/390).

General-use programming interfaces allow the customer to write programs that
obtain the services of DB2 for OS/390.

However, this book also documents Product-sensitive Programming Interface and
Associated Guidance Information.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
this IBM software product. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive

 Copyright IBM Corp. 1982, 1997  ix



  
 

programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by an introductory statement to a chapter or section or by
the following marking:

Product-sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information ...

End of Product-sensitive Programming Interface

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

Throughout the library, the DB2 for OS/390 licensed program and a particular DB2
for OS/390 subsystem are each referred to as “DB2.” In each case, the context
makes the meaning clear.

The term MVS is used to represent the MVS/Enterprise Systems Architecture
(MVS/ESA). CICS is used to represent CICS/MVS and CICS/ESA; IMS is used to
represent IMS/ESA; COBOL is used to represent OS/VS COBOL, VS COBOL II,

| IBM COBOL for MVS & VM (formerly called COBOL/370); unless noted otherwise,
| C and C language are used to represent C/370 and C/C++ for MVS/ESA

programming languages.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

AD/Cycle
AIX
APL2
AS/400
BookManager
C/370
CICS
CICS/ESA
CICS/MVS
COBOL/370
DATABASE 2
DataPropagator
DB2
DFSMS
DFSMS/MVS
DFSMSdfp
DFSMShsm
Distributed Relational
 Database Architecture
DProp

DRDA
IBM
IMS
IMS/ESA
Language Environment
MVS/ESA
MVS/XA
OS/2
OS/390
OS/400
QMF
RACF
RRDF
SAA
SQL/DS
System/370
System/390
Systems Application Architecture
VTAM

x SQL Reference  



  
 

 Chapter 1. Introduction

Who Should Read This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
How to Use This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
SQL Standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
How to Read the Syntax Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

| Conventions for Describing Mixed Data Values . . . . . . . . . . . . . . . . . . . .  5
How to Use the DB2 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
How to Obtain DB2 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

DB2 on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
DB2 Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
How to Order the DB2 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

| Summary of Changes to DB2 for OS/390 Version 5 . . . . . . . . . . . . . . . . .  9
| Server Solution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
| Performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
| Increased Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
| Improved Availability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
| Client/Server and Open Systems . . . . . . . . . . . . . . . . . . . . . . . . .  13
| User Productivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
| Summary of Changes to This Book . . . . . . . . . . . . . . . . . . . . . . . . . .  16

 Copyright IBM Corp. 1982, 1997  1



  
 

2 SQL Reference  



  
 

Who Should Read This Book
This book serves as a reference for Structured Query Language (SQL) for DB2 for
OS/390. It is intended for end users, application programmers, system and
database administrators, and for persons involved in error detection and diagnosis.

This book is a reference rather than a tutorial. It assumes that you are already
familiar with SQL programming concepts.

Unless otherwise stated, references to SQL in this book imply SQL for DB2 for
OS/390, and all objects described in this book are objects of DB2 for OS/390. The
syntax and semantics of most SQL statements are essentially the same in all IBM
relational database products, and the language elements common to the products
provide a base for the definition of IBM SQL. Consult IBM SQL Reference if you
intend to develop applications that adhere to IBM SQL.

How to Use This Book
This book has the following sections:

� “Chapter 1. Introduction” on page 1 identifies the purpose, the audience, and
the use of the book.

� “Chapter 2. DB2 Concepts” on page 19 describes the basic concepts of
relational databases and SQL.

� “Chapter 3. Language Elements” on page 43 describes the basic syntax of
SQL and the language elements that are common to many SQL statements.

� “Chapter 4. Functions” on page 127 contains syntax diagrams, semantic
descriptions, rules, and use examples of SQL column and scalar functions.

� “Chapter 5. Queries” on page 167 describes the various forms of a query,
which is a component of various SQL statements.

� “Chapter 6. Statements” on page 193 contains syntax diagrams, semantic
descriptions, rules, and examples of all SQL statements.

# � “Chapter 7. SQL procedure statements” on page 485 contains syntax
# diagrams, semantic descriptions, rules, and examples of SQL procedure
# statements.

� The appendixes contain information about DB2 limits, SQLCA, SQLDA, catalog
tables, and SQL reserved words.

When you first use this book, consider reading Chapters 2 and 3 sequentially. The
rest of the book is designed for the quick location of answers to specific SQL
questions.

 SQL Standards
In this book, the use of the term SQL standard refers collectively to:

� FIPS (Federal Information Processing Standards) publication 127-2, Database
Language SQL, which announces ANSI X3.135-1992 as the standard for SQL

� ANSI (American National Standards Institute) X3.135-1992, Database
Language SQL

  Chapter 1. Introduction 3



  
 

� ISO (International Standards Organization) 9075-1992, Database Language
SQL

How to Read the Syntax Diagrams
The following rules apply to the syntax diagrams used in this book:

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Required items appear on the horizontal line (the main path). 

��──required_item────────────────────────────────────────────────────��

� Optional items appear below the main path. 

��─ ─required_item─ ──┬ ┬─────────────── ────────────────────────────────��
 └ ┘─optional_item─

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability. 

 ┌ ┐─optional_item─
��─ ─required_item─ ──┴ ┴─────────────── ────────────────────────────────��

� If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path. 

��─ ─required_item─ ──┬ ┬─required_choice1─ ─────────────────────────────��
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the
main path. 

��─ ─required_item─ ──┬ ┬────────────────── ─────────────────────────────��
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

If one of the items is the default, it appears above the main path and the
remaining choices are shown below. 

 ┌ ┐─default_choice──
��─ ─required_item─ ──┼ ┼───────────────── ──────────────────────────────��
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

4 SQL Reference  



  
 

� An arrow returning to the left, above the main line, indicates an item that can
be repeated. 

 ┌ ┐───────────────────
��─ ─required_item─ ───

�
┴─repeatable_item─ ──────────────────────────────��

If the repeat arrow contains a comma, you must separate repeated items with a
comma. 

 ┌ ┐─,───────────────
��─ ─required_item─ ───

�
┴─repeatable_item─ ──────────────────────────────��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

� Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example,
column-name). They represent user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

| Conventions for Describing Mixed Data Values
At sites using a double-byte character set (DBCS), character strings can include a
mixture of single-byte and double-byte characters. When mixed data values are
shown in the examples, the following conventions apply:

How to Use the DB2 Library
Titles of books in the library begin with DB2 for OS/390 Version 5. However,
references from one book in the library to another are shortened and do not include
the product name, version, and release. Instead, they point directly to the section
that holds the information. For a complete list of books in the library, and the
sections in each book, see the bibliography at the back of this book.

Throughout the library, the DB2 for OS/390 licensed program and a particular DB2
for MVS/ESA subsystem are each referred to as “DB2.” In each case, the context
makes the meaning clear.

  Chapter 1. Introduction 5



  
 

The most rewarding task associated with a database management system is asking
questions of it and getting answers, the task called end use. Other tasks are also
necessary—defining the parameters of the system, putting the data in place, and so
on. The tasks associated with DB2 are grouped into the following major categories
(but supplemental information relating to all of the below tasks for new releases of
DB2 can be found in Release Guide):

Installation: If you are involved with DB2 only to install the system, Installation
Guide might be all you need.

If you will be using data sharing then you also need Data Sharing: Planning and
Administration, which describes installation considerations for data sharing.

End use: End users issue SQL statements to retrieve data. They can also insert,
update, or delete data, with SQL statements. They might need an introduction to
SQL, detailed instructions for using SPUFI, and an alphabetized reference to the
types of SQL statements. This information is found in Application Programming and
SQL Guide and this book.

End users can also issue SQL statements through the Query Management Facility
(QMF) or some other program, and the library for that program might provide all the
instruction or reference material they need. For a list of some of the titles in the
QMF library, see the bibliography at the end of this book.

Application Programming: Some users access DB2 without knowing it, using
programs that contain SQL statements. DB2 application programmers write those
programs. Because they write SQL statements, they need Application Programming
and SQL Guide, SQL Reference, and Call Level Interface Guide and Reference just
as end users do.

Application programmers also need instructions on many other topics:

� How to transfer data between DB2 and a host program—written in COBOL, C,
or FORTRAN, for example

� How to prepare to compile a program that embeds SQL statements

� How to process data from two systems simultaneously, say DB2 and IMS or
DB2 and CICS

� How to write distributed applications across platforms

| � How to write applications that use DB2 Call Level Interface to access DB2
| servers

| � How to write applications that use Open Database Connectivity (ODBC) to
| access DB2 servers

| � How to write applications in the Java programming language to access DB2
| servers

The material needed for writing a host program containing SQL is in Application
Programming and SQL Guide and Application Programming Guide and Reference

| for Java. The material needed for writing applications that use DB2 Call Level
| Interface or ODBC to access DB2 servers is in Call Level Interface Guide and
| Reference.

For handling errors, see Messages and Codes.

6 SQL Reference  



  
 

Information about writing applications across platforms can be found in Distributed
Relational Database Architecture: Application Programming Guide.

System and Database Administration: Administration covers almost everything
else. Administration Guide divides those tasks among the following sections:

� Section 2 (Volume 1) of Administration Guide discusses the decisions that must
be made when designing a database and tells how to bring the design into
being by creating DB2 objects, loading data, and adjusting to changes.

� Section 3 (Volume 1) of Administration Guide describes ways of controlling
access to the DB2 system and to data within DB2, to audit aspects of DB2
usage, and to answer other security and auditing concerns.

� Section 4 (Volume 1) of Administration Guide describes the steps in normal
day-to-day operation and discusses the steps one should take to prepare for
recovery in the event of some failure.

� Section 5 (Volume 2) of Administration Guide explains how to monitor the
performance of the DB2 system and its parts. It also lists things that can be
done to make some parts run faster.

In addition, the appendixes in Administration Guide contain valuable information on
DB2 sample tables, National Language Support (NLS), writing exit routines,
interpreting DB2 trace output, and character conversion for distributed data.

If you are involved with DB2 only to design the database, or plan operational
procedures, you need Administration Guide. If you also want to carry out your own
plans by creating DB2 objects, granting privileges, running utility jobs, and so on,
then you also need:

� SQL Reference, which describes the SQL statements you use to create, alter,
and drop objects and grant and revoke privileges

� Utility Guide and Reference, which explains how to run utilities

� Command Reference, which explains how to run commands

If you will be using data sharing, then you need Data Sharing: Planning and
Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in
Messages and Codes, which lists messages and codes issued by DB2, with
explanations and suggested responses.

Diagnosis: Diagnosticians detect and describe errors in the DB2 program. They
might also recommend or apply a remedy. The documentation for this task is in
Diagnosis Guide and Reference and Messages and Codes.

How to Obtain DB2 Information

  Chapter 1. Introduction 7



  
 

DB2 on the Web
Stay current with the latest information about DB2. View the DB2 home page on
the World Wide Web. News items keep you informed about the latest
enhancements to the product. Product announcements, press releases, fact sheets,
and technical articles help you plan your database management strategy. Technical
professionals can access DB2 publications on the Web and follow links to other
Web sites with more information about DB2 family and OS/390 solutions. Access
DB2 on the Web with the following URL:

 http://www.ibm.com/software/db2os390

 DB2 Publications
The DB2 publications are available in both hardcopy and softcopy format. Using
online books on CD-ROM, you can read, search across books, print portions of the
text, and make notes in these BookManager books. With the appropriate
BookManager READ product or IBM Library Readers, you can view these books on
the MVS, VM, OS/2, DOS, AIX and Windows platforms.

When you order DB2 Version 5, you are entitled to one copy of the following
CD-ROM, which contains the DB2 licensed book for no additional charge:

DB2 Server for OS/390 Version 5 Licensed Online Book, LK2T-9075.

You can order multiple copies for an additional charge by specifying feature code
8207.

When you order DB2 Version 5, you are entitled to one copy of the following
CD-ROM, which contains the DB2 and DATABASE 2 Performance Monitor online
books for no additional charge:

DB2 Server for OS/390 Version 5 Online Library, SK2T-9092

You can order multiple copies for an additional charge through IBM's publication
ordering service.

Periodic updates will be provided on the following collection kit available to
licensees of DB2 Version 5:

IBM Online Library Transaction Processing and Data Collection, SK2T-0730

SK2T-9092 will be superseded by SK2T-0730 when updates to the online library
are available.

In some countries,including the United States and Canada, you receive one copy of
the collection kit at no additional charge when you order DB2 Version 5. You will
automatically receive one copy of the collection kit each time it is updated, for no
additional charge. To order multiple copies of SK2T-0730 for an additional charge,
see “How to Order the DB2 Library” on page 9. In other countries, updates will be
available in displayable softcopy format in the IBM Online Book Library Offering
(5636–PUB), SK2T-0730 IBM Online Library Transaction Processing and Data
Collection at a later date.

See your IBM representative for assistance in ordering the collection.

DB2 Server for OS/390 books are also available for an additional charge on the
following collection kits, which contain online books for many IBM products:

8 SQL Reference  



  
 

IBM Online Library MVS Collection, SK2T-0710, in English

Online Library Omnibus Edition OS/390 Collection, SK2T-6700, in English

IBM Online Library MVS Collection Kit, SK88-8002, in Japanese, for viewing on
DOS and Windows platforms

How to Order the DB2 Library
You can order DB2 publications and CD-ROMs through your IBM representative or
the IBM branch office serving your locality. If you are located within the United
States or Canada, you can place your order by calling one of the toll-free numbers :

� In the U.S., call 1-800-879-2755.
� In Canada, call 1-800-565-1234.

To order additional copies of licensed publications, specify the SOFTWARE option.
To order additional publications or CD-ROMs, specify the PUBLICATIONS & SLSS
option. Be prepared to give your customer number, the product number, and the
feature code(s) or order numbers you want.

| Summary of Changes to DB2 for OS/390 Version 5
| DB2 for OS/390 Version 5 delivers a database server solution for OS/390. Version
| 5 supports all functions available in DB2 for MVS/ESA Version 4 plus
| enhancements in the areas of performance, capacity, and availability, client/server
| and open systems, and user productivity.

| If you are currently using DB2, you can migrate only from a DB2 for MVS/ESA
| Version 4 subsystem. This summary gives you an overview of the differences to
| be found between these versions.

|  Server Solution
| OS/390 retains the classic strengths of the traditional MVS/ESA operating system,
| while offering a network-ready, integrated operational environment.

| The following features work directly with DB2 for OS/390 applications to help you
| use the full potential of your DB2 subsystem:

| � Net.Data for OS/390
|  � DB2 Installer
| � DB2 Estimator for Windows
| � DB2 Visual Explain
| � Workstation-based Performance Analysis and Tuning
| � DATABASE 2 Performance Monitor

| Net.Data for OS/390
| Net.Data provides support for Internet access to DB2 data through a Web server.
| Applications built with Net.Data make data stored in any DB2 server more
| accessible and useful. Net.Data Web applications provide continuous application
| availability, scalability, security, and high performance.

| This no charge feature can be ordered with DB2 Version 5 or downloaded from
| Internet. The Net.Data URL is:

# http://www.ibm.com/software/data/net.data/downloads.html

  Chapter 1. Introduction 9



  
 

|  DB2 Installer
| DB2 Installer offers the option to install DB2 on an OS/2 workstation. Now, you
| can use a friendly graphical interface to complete installation tasks easily with DB2
| Installer.

| This function is delivered on CD-ROM with DB2 Visual Explain.

| DB2 Estimator for Windows
| DB2 Estimator provides an easy-to-use capacity planning tool. You can estimate
| the sizes of tables and indexes, and the performance of SQL statements, groups of
| SQL statements (transactions), utility runs, and groups of transactions (capacity
| runs). From a simple table sizing to a detailed performance analysis of an entire
| DB2 application, DB2 Estimator saves time and lowers costs. You can investigate
| the impact of new or modified applications on your production system, before you
| implement them.

| This no charge feature can be ordered with DB2 Version 5 or downloaded from the
| Internet. From the internet, use the IBM Software URL:

# http://www.ibm.com/software/

| From here, you can access information about DB2 Estimator using the download
| function.

| DB2 Visual Explain
| DB2 Visual Explain lets you tune DB2 SQL statements on an OS/2 workstation.
| You can see DB2 EXPLAIN output in a friendly graphical interface and easily
| access, modify, and analyze applications with DB2 Visual Explain.

| Workstation-based Performance Analysis and Tuning
| The new workstation-based Performance Analysis and Tuning function simplifies
| system administration. You can access statistical data to help you analyze and
| improve system performance. This function works with the optional DB2 PM feature
| to provide full analysis and tuning functionality.

| DATABASE 2 Performance Monitor (DB2 PM)
| DB2 PM lets you monitor, analyze, and optimize the performance of DB2 Version 5
| and its applications. An online monitor, for both host and workstation environments,
| provides an immediate "snap-shot" view of DB2 activities and allows for exception
| processing while the system is operational. The workstation-based online monitor
| can connect directly to the Visual Explain function of the DB2 base product.

| DB2 PM also offers a history facility, a wide variety of customizable reports for
| in-depth performance analysis, and an EXPLAIN function to analyze and optimize
| SQL statements. For more information, see DB2 PM for OS/390 General
| Information .

| This feature can be ordered with DB2 Version 5.

10 SQL Reference  



  
 

|  Performance

| Sysplex Query Parallelism
| The increased power of Sysplex query parallelism in DB2 for OS/390 Version 5
| allows DB2 to go far beyond DB2 for MVS/ESA Version 4 capabilities; from the
| ability to split and process a single query within a DB2 subsystem to processing
| that same query across many different DB2 subsystems in a data sharing group.

| The advances this release offers in scalable query processing let you process
| queries quickly while accommodating the potential growth of data sharing groups
| and the increasing complexity of queries.

| Prepared Statement Caching
| DB2 reduces the cost of duplicate prepares for the same dynamic SQL statement
| by saving them in a cache. Now, different application processes can share
| prepared statements and they are preserved past the commit point. This
| performance improvement offers the most benefit for:

| � Client/server applications that frequently use dynamic SQL for repeated
| execution of SQL statements

| � Relatively short dynamic SQL statements for which PREPARE cost accounts
| for most of the CPU expended

|  Reoptimization
| When host variables, parameter markers, or special registers were used in previous
| releases, DB2 could not always determine the best access path because the values
| for these variables were unknown. Now, you can tell DB2 to reevaluate the access
| path at run time, after these values are known. As a result, queries can be
| processed more efficiently, and response time is improved.

| Faster Transactions and Batch
| � Caching of package authorization improves performance at run time for remote
| packages and applications that use pattern-matching characters in a package
| list.

| � You can define a table space to use selective partition locking, which can
| reduce locking costs for applications that do partition-at-a-time processing. It
| also can reduce locking costs for certain data sharing applications that rely on
| an affinity between members and data partitions.

| � A new standalone utility lets you preformat active logs.

| � With LOAD and REORG, you can preformat data sets up to the high allocated
| RBA, which can make processing for sequential inserts more predictable.

|  Faster Utilities
| � LOAD and REORG jobs run faster and more efficiently with enhanced index
| key sorting that reduces CPU and elapsed time, and an inline copy feature that
| lets you make an image copy without a separate copy step.

# � New REORG options let you select rows to discard during a REORG and,
# optionally, write the discarded records to a file.

# � When you run the REBUILD, RECOVER, REORG, or LOAD utility on
# DB2-managed indexes or table spaces, a new option lets you logically reset
# and reuse the DB2-managed objects.

  Chapter 1. Introduction 11



  
 

| � RECOVER INDEX and LOAD run faster on large numbers of rows per page.

| � Sampling support for RUNSTATS reduces the processing required to collect
| nonindexed column statistics.

| � BSAM striping improves the I/O capability of DB2 utilities.

| Other Performance Enhancements
| � There are several significant performance enhancements to data sharing,
| including selective partition locking, the MAXROWS option, and several
| optimizations to reduce data sharing overhead.

# � DB2 installations that run in the OS/390 Version 2 Release 6 environment can
# now have as many as (approximately) 25 000 open DB2 data sets at one time.
# The maximum number of open data sets in earlier releases of OS/390 is
# 10000.

# � You can easily alter the length of variable-length character columns using the
# new ALTER COLUMN clause of the ALTER TABLE statement.

| � SQL CASE expressions let you eliminate queries with multiple UNIONs and
| improve performance by using only one table scan.

| � You can collect a new statistic on concatenated index keys to improve the
| performance of queries with correlated columns. The statistic lets DB2 estimate
| the number of rows that qualify for the query more accurately, and select
| access paths more efficiently.

| � DB2 scans partitions more efficiently and allows scans during parallel
| processing.

# � Query enhancements include the ability to:

# – Use indexes for joins on string columns that have different lengths
# – Use an index to access predicates with noncorrelated IN subqueries

| � Noncolumn expressions in simple predicates are evaluated at stage 1 and can
| be indexable.

|  Increased Capacity
| DB2 for OS/390 Version 5 introduces the concept of a large partitioned table space.
| Defining your table space as large allows a substantial capacity increase: to
| approximately one terabyte of data and up to 254 partitions. In addition to
| accommodating growth potential, large partitioned table spaces make database
| design more flexible, and can improve availability.

|  Improved Availability

|  Online REORG
| DB2 for OS/390 Version 5 adds a major improvement to availability with Online
| REORG. Now, you can avoid the severe availability problems that occurred while
| offline reorganization of table spaces restricted access to read only during the
| unload phase and no access during reload phase of the REORG utility. Online
| REORG gives you full read and write access to your data through most phases of
| the process with only very brief periods of read only or no access.

12 SQL Reference  



  
 

| Data Sharing Enhancements
# � Version 5 provides continuous availability with group buffer pool duplexing.
# Prior releases of DB2 rely on DASD and the merged recovery logs to recover
# group buffer pool (GBP) data that is lost if a coupling facility fails. With group
# buffer pool duplexing, DB2 writes changed pages to both a primary GBP and a
# secondary GBP. Overlapped writes to the GBPs provide good performance and
# eliminate the writes to DASD.

| � Group buffer pool rebuild makes coupling facility maintenance easier and
| improves access to the group buffer pool during connectivity losses.

| � Automatic group buffer pool recovery accelerates GBP recovery time,
| eliminates operator intervention, and makes data available faster when GBPs
| are lost because of coupling facility failures.

| � Improved restart performance for members of a data sharing group reduces the
| impact of retained locks by making data available faster when a group member
| fails.

| � Changes to traces and DISPLAY GROUPBUFFERPOOL output improve
| monitoring.

# Tracker site for disaster recovery
# You can set up a tracker site that shadows the activity of a primary site, and
# eliminate the need to constantly ship image copies.

| Client/Server and Open Systems

| Native TCP/IP Network Support
| DB2's support of TCP/IP networks allows DRDA clients to connect directly to DDF
| and eliminate the gateway machine. In addition, customers can now use
| asynchronous transfer mode (ATM) as the underlying communication protocol for
| both SNA and TCP/IP connections to DB2.

|  Stored Procedures
| � Return multiple SQL result sets to local and remote clients in a single network
| operation.

| � Receive calls from applications that use standard interfaces, such as Open
| Database Connectivity** (ODBC) and X/Open** Call Level Interface, to access
| data in DB2 for OS/390.

| � Run in an enhanced environment. DB2 supports multiple stored procedures
| address spaces managed by the MVS Workload Manager (WLM). The WLM
| environment offers efficient program management and allows WLM-managed
| stored procedures to run as subprograms and use RACF security.

| � Use individual MVS dispatching priorities to improve stored procedure
| scheduling.

| � Access data sources outside DB2 with two-phase commit coordination.

| � Use an automatic COMMIT feature on return to the caller that reduces network
| traffic and the length of time locks are held.

# � Have the ability to invoke utilities, which means you can now invoke utilities
# from an application that uses the SQL CALL statement.

  Chapter 1. Introduction 13



  
 

# � Support IMS Open Database Access (ODBA). Now a DB2 stored procedure
# can directly connect to IMS DBCTL and access IMS data.

| Dynamic Query and Network Performance
| Improvements for DRDA Applications

| � Reduced processing costs for block fetch operations

| � DRDA support for OPTIMIZE FOR n ROWS on SELECT

| � Faster dynamic SQL queries and reduced processing costs for VTAM network
| operations

| � Reduced message traffic for dynamic SQL SELECT statements

| Improved Application Portability
| � DB2 for OS/390 Version 5 introduces the DB2 Call Level Interface (CLI) to
| MVS/ESA. Unlike applications that use embedded SQL to access DB2 data,
| applications that choose CLI are not tied to a precompiler, packages, or a plan.

| Workstation and desktop applications use standard interfaces, such as Open
| Database Connectivity (ODBC), to access relational data. Standard interfaces
| need one version of an application to access many data sources. Now, you can
| port UNIX workstation and PC desktop applications to DB2 for OS/390 and
| exploit the CLI (ODBC) capabilities without modification. In addition,
| applications can issue ODBC or CLI calls from within a stored procedure.

# � You can now access DB2 for OS/390 databases in your Java applications. You
# can use DB2 Connect Java Database Connectivity (JDBC) for your dynamic
# SQL applications, or SQLJ for your static SQL applications.

# � DB2 adds DRDA support for the DESCRIBE INPUT statement to improve
# performance for many ODBC applications.

# � Now, you can write multithreaded DB2 CLI applications, and restrictions on
# connection switching no longer exist.

| � DB2 now provides ASCII table support for clients and servers across platforms.
| This support reduces the cost of translation between EBCDIC and ASCII
| encoding schemes. ASCII table support also offers an alternative to writing field
| procedures that provide the ASCII sort sequence, which improves performance.

|  Improved Security
| � DB2 for OS/390 supports Distributed Computing Environment (DCE) for
| authenticating remote DRDA clients. DCE offers the following benefits:

| – Network security: By providing an encrypted DCE ticket for authentication,
| remote clients do not need to send an MVS password in readable text.

| – Simplified security administration: End users do not need to maintain a
| valid password on MVS to access DB2; instead, they maintain their DCE
| password only.

| � New descriptive error codes help you determine the cause of network security
| errors.

| � You can change end user MVS passwords from DRDA clients.

14 SQL Reference  



  
 

|  User Productivity

| Improved SQL Compatibility
| DB2 conforms to the ANSI/ISO SQL entry level standard of 1992. Application
| programmers can take advantage of a more complete set of standard SQL to use
| across the DB2 family to write portable applications. New SQL function includes:

| � More check options for view definitions.

| � Foreign keys that reference UNIQUE keys as well as PRIMARY keys.

| � An extension to GRANT that lets the REFERENCES privilege apply to a list of
| columns.

| � A new delete rule, NO ACTION, that you can use to define referential
| constraints for self-referencing tables.

| � SQL CASE expressions provide the capability to create conditional logic
| wherever an expression is allowed.

| � SQL temporary tables allow application programs to easily create and use
| temporary tables that store results of SQL transactions without logging or
| recovery.

| New Access Choice
| A new attachment facility, the Recoverable Resource Manager Services attachment
| facility, improves access in a client/server environment. It coordinates two-phase
| commit processing between DB2 and other participating resource managers in any
| MVS application environment. Other key features include the ability for multiple
| users to run in a single address space, thread reuse, and moving threads between
| MVS tasks.

| Image Copy Enhancements
| The COPY, LOAD, and REORG utilities provide:

| � Features of the COPY utility that help you quickly determine what type of image
| copy to take, when to take it, and let DB2 automatically take it for you.

| � Inline copy in LOAD and REORG that lets you create an image copy while
| improving data availability.

| Improved Integration of C++ and IBM COBOL for MVS & VM
| Support
| It is easier for application programmers to use object-oriented programming
| techniques in their DB2 applications. DB2 for OS/390 Version 5 adds COBOL and
| C++ languages as options on installation panels, DB2I panels, the DSNH command,
| and DCLGEN.

| Other Usability Enhancements
| � To prevent long running units of work and to help avoid unnecessary work
| during the recovery phase of restart, DB2 issues new warning messages at an
| interval of your choice.

# � A new special register for decimal precision provides better granualarity, so that
# applications that need different values for decimal precision can run in the
# same DB2 subsystem.

  Chapter 1. Introduction 15



  
 

| � Trace records for IFCID 0022 now include most information in the
| PLAN_TABLE.

| � An increase from 127 to 255 rows on a page improves table space processing
| and eliminates the need for compression.

| � Install SYSOPR can recover objects using the START DATABASE command.

| � A filtering capability for DISPLAY BUFFERPOOL limits statistics information to
| a specified set of page sets.

| � You can enter comments within the SYSIN input stream for DB2 utilities.

| Summary of Changes to This Book
| Listed below are the major changes to this edition of the book:

|  
| Refer to
| Page

| Stored procedures:

| The following statements are added to support stored
| procedures enhancements:

|  ALLOCATE CURSOR
|  ASSOCIATE LOCATORS
# CREATE PROCEDURE (SQL procedure)
|  DESCRIBE CURSOR
|  DESCRIBE PROCEDURE

|  200
|  243
|  295
|  368
|  372

# SQL procedures:

# Chapter 7. SQL procedure statements is added to describe
# the statements that can be used in an SQL procedure.

#  

# 485 

| Increased capacity:

| New syntax in the CREATE TABLESPACE statement allows
| you to define large partitioned table spaces, which can have
| a maximum of 254 partitions and hold up to one terabyte of
| data.

|  

| 233 

| ASCII table support:

| To support storing ASCII data in tables, the following SQL
| statements have a CCSID clause:

|  CREATE DATABASE
| CREATE GLOBAL TEMPORARY TABLE
|  CREATE TABLE
|  CREATE TABLESPACE

|  272
|  275
|  308
|  327

| SQL standards conformance:

| The check option of the CREATE VIEW statement is
| extended.

|  

| 341 

| The ALTER TABLE and CREATE TABLE statements are
| extended so that foreign keys can reference unique keys as
| well as primary keys.

| 217 and 308

16 SQL Reference  



  
 

|  
| Refer to
| Page

| The ALTER TABLE and CREATE TABLE statements are
| extended to support the new delete rule of NO ACTION.
| 217 and 308

| A list of columns can be specified on the REFERENCE
| privilege for the GRANT statement.
| 412 

| In a searched update or delete, the SELECT privilege is
| required in addition to the UPDATE or DELETE privilege for
| standards conformance.

| 357 and 477

| Additional SQL enhancements:

| SQL CASE expressions provide the ability to create
| conditional logic wherever an expression is allowed.

|  

| 103 

| The new NULLIF scalar function allows you to provide a null
| value when a nonnull might otherwise be returned. This
| function is passed two expressions and returns null if the
| arguments are equal.

| 153

| The new STRIP function removes blanks or another
| specified character from the end, the beginning, or both ends
| of a string expression.

| 155 

| The new CREATE GLOBAL TEMPORARY TABLE statement
| allows you to create and use temporary tables that store the
| results of SQL transactions without logging and recovery.

| 275

| The new MAXROWS clause of the ALTER and CREATE
| TABLESPACE statements allows you to specify a maximum
| number of rows to be inserted, loaded, or reorganized on
| each data page.

| 233 and 327 

| The new LOCKPART clause of the ALTER and CREATE
| TABLESPACE statements allows you to indicate whether
| selective partition locking is to be used when locking a
| partitioned table space.

| 233 and 327

| The new PIECESIZE clause of the ALTER and CREATE
| INDEX statements allows you to indicate how large DB2
| should make the data sets that make up a nonpartitioning
| index.

| 205 and 280

| The new RENAME statement allows you to rename existing
| tables.
| 440 

| Catalog tables:

| In addition to changes in existing catalog tables, there are
| eight new catalog tables. Some of these new catalog tables
| are to support the redesign of the communications database
| (CDB), which is now implemented within the DB2 catalog.

  Chapter 1. Introduction 17



  
 

|  
| Refer to
| Page

|  SYSIBM.IPNAMES
|  SYSIBM.LOCATIONS
|  SYSIBM.LULIST
|  SYSIBM.LUNAMES
|  SYSIBM.LUMODES
|  SYSIBM.MODESELECT
|  SYSIBM.SYSDUMMY1
|  SYSIBM.USERNAMES

| 534

18 SQL Reference  



  DB2 Concepts
 

 Chapter 2. DB2 Concepts

Structured Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Static SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Dynamic SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Deferred Embedded SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Interactive SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

| DB2 Call Level Interface (CLI) . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Unique Keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Primary Keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

| Parent Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Foreign Keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Referential Integrity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Check Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Storage Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Storage Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Catalog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Application Processes, Concurrency, and Recovery . . . . . . . . . . . . . . . .  28

Locking, Commit, and Rollback . . . . . . . . . . . . . . . . . . . . . . . . . .  28
Unit of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Unit of Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Rolling Back Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Packages and Application Plans . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Distributed Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

DB2 Private Protocol Access . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
DRDA Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Remote Unit of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Connection Management for DB2 Private Protocol and DRDA Access . . . .  33

Character Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
| Character Sets and Code Pages . . . . . . . . . . . . . . . . . . . . . . . . . .  38
| System CCSIDs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Restrictions on BIT Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
Expanding Conversions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

| Contracting Conversions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

 Copyright IBM Corp. 1982, 1997  19



 DB2 Concepts  
 

20 SQL Reference  



  DB2 Concepts
 

Structured Query Language
Structured Query Language (SQL) is a standardized language for defining and
manipulating data in a relational database. In accordance with the relational model
of data, the database is perceived as a set of tables, relationships are represented
by values in tables, and data is retrieved by specifying a result table that can be
derived from one or more tables. DB2 for OS/390 transforms the specification of a
result table into a sequence of internal operations that optimize data retrieval. This
transformation occurs when the SQL statement is prepared. This transformation is
also known as binding.

All executable SQL statements must be prepared before they can be executed.
The result of preparation is the executable or operational form of the statement.
The method of preparing an SQL statement and the persistence of its operational
form distinguish static SQL from dynamic SQL.

 Static SQL
The source form of a static SQL statement is embedded within an application
program written in a host language such as COBOL. The statement is prepared
before the program is executed and the operational form of the statement persists
beyond the execution of the program.

A source program containing static SQL statements must be processed by an SQL
precompiler before it is compiled. The precompiler checks the syntax of the SQL
statements, turns them into host language comments, and generates host language
statements to invoke DB2.

The preparation of an SQL application program includes precompilation, the
preparation of its static SQL statements, and compilation of the modified source
program, as described in Section 5 of Application Programming and SQL Guide.

 Dynamic SQL
Programs containing embedded dynamic SQL statements must be precompiled like
those containing static SQL, but unlike static SQL, the dynamic statements are
constructed and prepared at run time. The source form of a dynamic statement is a
character string that is passed to DB2 by the program using the static SQL

| statement PREPARE or EXECUTE IMMEDIATE. Whether the operational form of
| the statement is persistent depends on whether dynamic statement caching is
| enabled. For details on dynamic statement caching, see Section 6 of Application
| Programming and SQL Guide.

Deferred Embedded SQL
A deferred embedded SQL statement is neither fully static nor fully dynamic. Like a
static statement, it is embedded within an application, but like a dynamic statement,
it is prepared during the execution of the application. Although prepared at run time,
a deferred embedded SQL statement is processed with bind-time rules such that
the authorization ID and qualifier determined at bind time for the plan or package
owner are used. Deferred embedded SQL statements are used for DB2 private
protocol access to remote data.

  Chapter 2. DB2 Concepts 21



 DB2 Concepts  
 

 Interactive SQL
In this book, interactive SQL refers to SQL statements submitted to SPUFI (SQL
processor using file input). SPUFI prepares and executes these statements
dynamically. For more details about using SPUFI, see Section 2 of Application
Programming and SQL Guide.

| DB2 Call Level Interface (CLI)
| DB2 Call Level Interface (DB2 CLI) is an alternative to using embedded static or
| dynamic SQL. DB2 CLI is an application programming interface in which functions
| are provided to application programs to process SQL statements. The function calls
| are available only for C and C++

| application programs. Through the interface, the application invokes a C function
| at execution time to connect to the data source, to issue SQL statements, and to
| get returned data and status information. Unlike using embedded SQL, no
| precompilation is required. Applications developed using this interface might be
| executed on a variety of data sources without being compiled against each of the
| databases. Note that only C and C++ applications can use this interface. Some of
| the features DB2 CLI provides that are not available in embedded SQL include:

| � DB2 CLI provides a consistent interface to query and retrieve system catalog
| information across the DB2 family of database management systems. This
| reduces the need to write catalog queries that are specific to each database
| server. DB2 CLI can return result sets to those programs.

| The Call Level Interface Guide and Reference describes the APIs supported with
| this interface.

 Tables
Tables are logical structures maintained by DB2. Tables are made up of columns
and rows. There is no inherent order of the rows within a table. At the intersection
of every column and row is a specific data item called a value. A column is a set of
values of the same type. A row is a sequence of values such that the nth value is a
value of the nth column of the table. Every table must have one or more columns,
but the number of rows can be zero.

Some types of tables include:

base table A table created with the SQL statement CREATE TABLE
and used to hold persistent user data.

| temporary table A table described by the SQL statement CREATE
| GLOBAL TEMPORARY TABLE and used to hold data
| temporarily, such as the intermediate results of SQL
| transactions. Temporary tables persist as long as the
| application supports them. Table space and database
| operations, locking, logging, and recovery do not apply.

result table A set of rows that DB2 selects or generates from one or
more base tables.

empty table A table with zero rows.

22 SQL Reference  



  DB2 Concepts
 

sample table One of several tables sent with the DB2 licensed
program that contains sample data. Many examples in
this book are based on sample tables. See Appendix A
of Application Programming and SQL Guide for a
description of the sample tables.

 Indexes
An index is an ordered set of pointers to rows of a base table. Each index is based
on the values of data in one or more columns. An index is an object that is
separate from the data in the table. When you define an index using the CREATE
INDEX statement, DB2 builds this structure and maintains it automatically.

Indexes can be used by DB2 to improve performance and ensure uniqueness. In
most cases, access to data is faster with an index. A table with a unique index
cannot have rows with identical keys. For more details on designing indexes and on
their uses, see Section 2 (Volume 1) of Administration Guide.

 Keys
A key is one or more columns that are identified as such in the description of a
table, an index, or a referential constraint. Referential constraints are described in
“Referential Integrity” on page 24. The same column can be part of more than one
key. A key composed of more than one column is called a composite key.

A composite key is an ordered set of columns of the same table. The ordering of
the columns is not constrained by their ordering within the table. The term value,
when used with respect to a composite key, denotes a composite value. Thus, a
rule, such as “the value of the foreign key must be equal to the value of the parent
key,” means that each component of the value of the foreign key must be equal to
the corresponding component of the value of the parent key.

 Unique Keys
A unique key is a key that is constrained so that no two of its values are equal.
DB2 enforces the constraint during the execution of the LOAD utility and the SQL
INSERT and UPDATE statements. The mechanism used to enforce the constraint
is a unique index. Thus, every unique key is a key of a unique index. Such an
index is also said to have the UNIQUE attribute. A unique key can be defined using
the UNIQUE clause of the CREATE TABLE statement. A table can have an
arbitrary number of unique keys.

 Primary Keys
A primary key is a unique key that is a part of the definition of a table. A table can
have only one primary key, and the columns of a primary key cannot contain null
values. Primary keys are optional and can be defined in CREATE TABLE or
ALTER TABLE statements.

The unique index on a primary key is called a primary index. When a primary key
is defined in a CREATE TABLE statement, the table is marked unavailable until the

| primary index is created by the user unless the CREATE TABLE statement is
| processed by the schema processor. In that case, DB2 automatically creates the
| primary index.

  Chapter 2. DB2 Concepts 23



 DB2 Concepts  
 

When a primary key is defined in an ALTER TABLE statement, a unique index
must already exist on the columns of that primary key. This unique index is
designated as the primary index.

|  Parent Keys
| A parent key is either a primary key or a unique key in the parent table of a
| referential constraint. The values of a parent key determine the valid values of the
| foreign key in the constraint.

 Foreign Keys
| A foreign key is a key that is specified in the definition of a referential constraint
| using the CREATE or ALTER statement. A foreign key refers to or is related to a
| specific parent key. A table can have zero or more foreign keys. The value of a

composite foreign key is null if any component of the value is null.

 Referential Integrity
Referential integrity is the state in which all values of all foreign keys at a given
DB2 are valid. A referential constraint is the rule that the nonnull values of a foreign

| key are valid only if they also appear as values of a parent key. The table
| containing the parent key is called the parent table of the referential constraint, and

the table containing the foreign key is a dependent of that table.

Referential constraints are optional and can be defined using SQL CREATE TABLE
and ALTER TABLE statements. Refer to Section 2 (Volume 1) of Administration
Guide for examples.

DB2 enforces referential constraints when:

� An INSERT statement is applied to a dependent table.

� An UPDATE statement is applied to a foreign key of a dependent table.

| � An UPDATE statement is applied to the parent key of a parent table.

� A DELETE statement is applied to a parent table. All affected referential
constraints and all delete rules of all affected relationships must be satisfied in
order for the delete operation to succeed.

� The LOAD utility with the ENFORCE CONSTRAINTS option is run on a
dependent table.

The order in which referential constraints are enforced is undefined. To ensure that
the order does not affect the result of the operation, there are restrictions on the
definition of delete rules and on the use of certain statements. The restrictions are
specified in the descriptions of the SQL statements CREATE TABLE, ALTER
TABLE, INSERT, UPDATE, and DELETE.

The rules of referential integrity involve the following concepts and terminology:

| parent key A primary key or a unique key of a referential constraint.

parent table A table that is a parent in at least one referential
constraint. A table can be defined as a parent in an
arbitrary number of referential constraints.

24 SQL Reference  



  DB2 Concepts
 

dependent table A table that is a dependent in at least one referential
constraint. A table can be defined as a dependent in an
arbitrary number of referential constraints. A dependent
table can also be a parent table.

descendent table A table that is a dependent of another table or a table
that is a dependent of a descendent table.

referential cycle A set of referential constraints in which each associated
table is a descendent of itself.

parent row A row that has at least one dependent row.

dependent row A row that has at least one parent row.

descendent row A row that is dependent on another row or a row that is
a dependent of a descendent row.

self-referencing row A row that is a parent of itself.

self-referencing table A table that is both parent and dependent in the same
referential constraint. The constraint is called a
self-referencing constraint.

The rules of referential integrity are:

insert rule A nonnull insert value of the foreign key must match some value of
| the parent key of the parent table.

update rule A nonnull update value of the foreign key must match some value
| of the parent key of the parent table.

| delete rule The choices when the referential constraint is defined are
| RESTRICT, NO ACTION, CASCADE, or SET NULL. SET NULL
| can be specified only if some column of the foreign key allows null
| values.

The delete rule of a referential constraint applies when a row of the parent table is
deleted. More precisely, the rule applies when a row of the parent table is the
object of a delete or propagated delete operation and that row has dependents in
the dependent table of the referential constraint. Let P denote the parent table, let
D denote the dependent table, and let p denote a parent row that is the object of a
delete or propagated delete operation. If the delete rule is:

| � RESTRICT or NO ACTION, an error occurs and no rows are deleted.

� CASCADE, the delete operation is propagated to the dependents of P in D.

� SET NULL, each nullable column of the foreign key of each dependent of P in
D is set to null.

Each referential constraint in which a table is a parent has its own delete rule, and
all applicable delete rules are used to determine the result of a delete operation.
Thus, a row cannot be deleted if it has dependents in a referential constraint with a

| delete rule of RESTRICT or NO ACTION or the deletion cascades to any of its
descendents that are dependents in a referential constraint with the delete rule of

| RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and can affect rows
of these tables:

  Chapter 2. DB2 Concepts 25



 DB2 Concepts  
 

| � If D is a dependent of P and the delete rule is RESTRICT or NO ACTION, D is
| involved in the operation but is not affected by the operation.

� If D is a dependent of P and the delete rule is SET NULL, D is involved in the
operation and rows of D might be updated during the operation.

� If D is a dependent of P and the delete rule is CASCADE, D is involved in the
operation and rows of D might be deleted during the operation. If rows of D are
deleted, the delete operation on P is said to be propagated to D. If D is also a
parent table, the actions described in this list apply, in turn, to the dependents
of D.

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a
dependent of P or a dependent of a table to which delete operations from P
cascade.

 Check Constraints
A check constraint is a rule that specifies the values allowed in one or more
columns of every row of a table. Check constraints are optional and can be defined
using the SQL statements CREATE TABLE and ALTER TABLE. The definition of a
check constraint is a restricted form of a search condition. One of the restrictions is
that a column name in a check constraint on table T must identify a column of T.
See Section 2 (Volume 1) of Administration Guide for examples.

A table can have an arbitrary number of check constraints. DB2 enforces the
constraints when:

� A row is inserted into the table.

� A row of the table is updated.

� The LOAD utility with the ENFORCE CONSTRAINTS option is used to populate
the table.

A check constraint is enforced by applying its search condition to each row that is
inserted, updated, or loaded. An error occurs if the result of the search condition is
false for any row.

 Storage Structures
In DB2, a storage structure is a set of one or more VSAM data sets that hold DB2
tables or indexes. A storage structure is also called a page set. A storage structure
can be one of the following:

table space A table space can hold one or more base tables. All tables are
kept in table spaces. A table space can be defined using the
CREATE TABLESPACE statement.

index space An index space contains a single index. An index space is defined
when the index is defined using the CREATE INDEX statement.

26 SQL Reference  



  DB2 Concepts
 

 Storage Groups
Defining and deleting the data sets of a storage structure can be left to DB2. If it is
left to DB2, the storage structure has an associated storage group. The storage
group is a list of DASD volumes on which DB2 can allocate data sets for
associated storage structures. The association between a storage structure and its
storage group is explicitly or implicitly defined by the statement that created the
storage structure.

Alternatively, Storage Management Subsystem (SMS) can be used to manage DB2
data sets. Refer to Section 2 (Volume 1) of Administration Guide for more
information.

 Databases
In DB2, a database is a set of table spaces and index spaces. These index spaces
contain indexes on the tables in the table spaces of the same database. Databases
are defined using the CREATE DATABASE statement and are primarily used for
administration. Whenever a table space is created, it is explicitly or implicitly
assigned to an existing database.

 Catalog
Each DB2 maintains a set of tables containing information about the data under its
control. These tables are collectively known as the catalog. The catalog tables
contain information about DB2 objects such as tables, views, and indexes. In this
book, “catalog” refers to a DB2 catalog unless otherwise indicated. In contrast, the
catalogs maintained by access method services are known as “integrated catalog
facility catalogs.”

Tables in the catalog are like any other database tables with respect to retrieval. If
you have authorization, you can use SQL statements to look at data in the catalog
tables in the same way that you retrieve data from any other table in the system.
Each DB2 ensures that the catalog contains accurate descriptions of the objects
that the DB2 controls.

 Views
A view provides an alternative way of looking at the data in one or more tables. A
view is a named specification of a result table. The specification is an SQL
SELECT statement that is effectively executed whenever the view is referenced in
an SQL statement. At any time, the view consists of the rows that would result if
the subselect were executed. Thus, a view can be thought of as having columns
and rows just like a base table. However, columns added to the base tables after
the view is defined do not appear in the view. For retrieval, all views can be used
like base tables. Whether a view can be used in an insert, update, or delete
operation depends on its definition, as described in “CREATE VIEW” on page 341.

Views can be used to control access to a table and make data easier to use.
Access to a view can be granted without granting access to the table. The view can
be defined to show only portions of data in the table. A view can show summary
data for a given table, combine two or more tables in meaningful ways, or show
only the selected rows that are pertinent to the process using the view.

  Chapter 2. DB2 Concepts 27



 DB2 Concepts  
 

Example: The following SQL statement defines a view named XYZ. The view
represents a table whose columns are named EMPLOYEE and WHEN_HIRED.
The data in the table comes from the columns EMPNO and HIREDATE of the
sample table DSN8510.EMP. The rows from which the data is taken are for
employees in departments A00 and D11.

CREATE VIEW XYZ (EMPLOYEE, WHEN_HIRED)

AS SELECT EMPNO, HIREDATE

 FROM DSN851,.EMP

WHERE WORKDEPT IN ('A,,', 'D11');

An index cannot be created for a view. However, an index created for a table on
which a view is based might improve the performance of operations on the view.
The column of a view inherits its attributes (such as data type, precision, and scale)
from the table or view column, constant, function, or expression from which it is
derived. In addition, a view column that maps back to a base table column inherits
any default values or constraints specified for that column of the base table. For
example, if a view includes a foreign key of its base table, insert and update
operations using that view are subject to the same referential constraint as the
base table. Likewise, if the base table of a view is a parent table, delete operations
using that view are subject to the same rules as delete operations on the base
table. See the description of “INSERT” on page 419 and “UPDATE” on page 477
for restrictions that apply to views with derived columns. For information on
referential constraints, see “Referential Integrity” on page 24.

Read-only views cannot be used for insert, update, and delete operations. For a
discussion of read-only views, see “CREATE VIEW” on page 341.

The definition of a view is stored in the DB2 catalog. An SQL DROP VIEW
statement can drop a view, and the definition of the view is removed from the
catalog. The definition of a view is also removed from the catalog when any view or
base table on which the view depends is dropped.

Application Processes, Concurrency, and Recovery
All SQL programs execute as part of an application process. An application process
involves the execution of one or more programs, and is the unit to which DB2
allocates resources and locks. Different application processes might involve the
execution of different programs, or different executions of the same program. The
means of initiating and terminating an application process are dependent on the
environment.

Locking, Commit, and Rollback
More than one application process might request access to the same data at the
same time. Furthermore, under certain circumstances, an SQL statement can
execute concurrently with a utility on the same table space1. Locking is used to
maintain data integrity under such conditions, preventing, for example, two
application processes from updating the same row of data simultaneously. See
Section 5 (Volume 2) of Administration Guide for more information about DB2
locks.

1 See the description of a table space under “Storage Structures” on page 26. Concurrent execution of SQL statements and utilities
is discussed in Section 5 (Volume 2) of Administration Guide .

28 SQL Reference  



  DB2 Concepts
 

DB2 implicitly acquires locks to prevent uncommitted changes made by one
application process from being perceived by any other. DB2 will implicitly release all
locks it has acquired on behalf of an application process when that process ends,
but an application process can also explicitly request that locks be released sooner.
A commit operation releases locks acquired by the application process and
commits database changes made by the same process.

DB2 provides a way to back out uncommitted changes made by an application
process. This might be necessary in the event of a failure on the part of an
application process, or in a deadlock situation. An application process, however,
can explicitly request that its database changes be backed out. This operation is
called rollback.

The interface used by an SQL program to explicitly specify these commit and
rollback operations depends on the environment. If the environment can include
recoverable resources other than DB2 databases, the SQL COMMIT and
ROLLBACK statements cannot be used. Thus, these statements cannot be used in
an IMS or CICS environment. Refer to Section 4 of Application Programming and
SQL Guide for more details.

Unit of Work
A unit of work is a recoverable sequence of operations within an application
process. A unit of work is sometimes called a logical unit of work. At any time, an
application process has a single unit of work, but the life of an application process
can involve many units of work as a result of commit or rollback operations.

A unit of work is initiated when an application process is initiated. A unit of work is
also initiated when the previous unit of work is ended by something other than the
end of the application process. A unit of work is ended by a commit operation, a
rollback operation, or the end of an application process. A commit or rollback
operation affects only the database changes made within the unit of work it ends.
While these changes remain uncommitted, other application processes are unable
to perceive them and the changes can be backed out. Once committed, these
database changes are accessible by other application processes and can no longer
be backed out by a rollback. Locks acquired by DB2 on behalf of an application
process are held at least until the end of a unit of work.

The initiation and termination of a unit of work define points of consistency within
an application process. A point of consistency is a claim by the application that the
data is consistent. For example, a banking transaction might involve the transfer of
funds from one account to another. Such a transaction would require that these
funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds have been added to
the second account is consistency reestablished. When both steps are complete,
the commit operation can be used to end the unit of work, thereby making the
changes available to other application processes.

  Chapter 2. DB2 Concepts 29



 DB2 Concepts  
 

Point of New point of

 consistency consistency

 │ │

│�──────────One unit of work──────────�│

 

 ───────────────────────────────────────────────────────────────� Time

 � Database updates �

 │ │

 │ │

 Begin Commit;

unit of work end

unit of work

Figure 1. Unit of Work with a Commit Operation

Unit of Recovery
A DB2 unit of recovery is a recoverable sequence of operations executed by DB2
for an application process. If a unit of work involves changes to other recoverable
resources, the unit of work will be supported by other units of recovery. If relational
databases are the only recoverable resources used by the application process, then
the scope of the unit of work and the unit of recovery are the same and either term
can be used.

Rolling Back Work
If the rollback operation is successfully executed, DB2 backs out uncommitted
changes to restore the data consistency that it assumes existed when the unit of
work was initiated. That is, DB2 undoes the work, as shown in the diagram below:

Point of New point of

 consistency consistency

 │ │

│�────────────Unit of work────────────�│

 

 ───────────────────────────────────────────────────────────────� Time

� Database updates � Back out updates �

 │ │ │

 │ │ │

Begin Rollback, Data is returned to

unit of work failure, or its initial state;

deadlock; end unit of work

 begin rollback

Figure 2. Rolling Back Changes from a Unit of Work

Packages and Application Plans
A package contains control structures used to execute SQL statements. Packages
are produced during program preparation. The control structures can be thought of
as the bound or operational form of SQL statements taken from a database request
module (DBRM). The DBRM contains SQL statements extracted from the source
program during program preparation. All control structures in a package are derived
from the SQL statements embedded in a single source program.

An application plan relates an application process to a local instance of DB2,
specifies processing options, and contains one or both of the following elements:

30 SQL Reference  



  DB2 Concepts
 

� A list of package names
� The bound form of SQL statements taken from one or more DBRMs

Every DB2 application requires an application plan. Plans and packages are
created using the DB2 subcommands BIND PLAN and BIND PACKAGE,
respectively, as described in Command Reference. See Section 5 of Application
Programming and SQL Guide for a description of program preparation and
identifying packages at run time. Refer to “SET CURRENT PACKAGESET” on
page 470 for rules regarding the selection of a plan element.

 Distributed Data
A DB2 application program can use SQL to access data at other database
management systems (DBMSs) other than the DB2 at which the application's plan
is bound. This DB2 is known as the local DB2. The local DB2 and the other
DBMSs are called application servers. Any application server other than the local
DB2 is considered a remote server, and access to its data is a distributed
operation. DB2 provides two methods of accessing data at remote application
servers:

� “DRDA Access” on page 32
� “DB2 Private Protocol Access” on page 32

For application servers that support the two-phase commit process, both methods
allow for updating data at several remote locations within the same unit of work. To
obtain the more restrictive level of function available at DB2 Version 2 Release 3,
refer to “Remote Unit of Work” on page 33. Table 1 summarizes the main
differences between DRDA access and DB2 private protocol access.

Common restrictions: IMS and CICS applications are restricted to read-only
operations at a remote site if:

� Its application server does not support two-phase commit.

Table 1. Differences Between DRDA Access and DB2 Private Protocol Access

Item DRDA Access DB2 Private Protocol Access

Program preparation Requires a remote BIND of
packages

A remote BIND is not applicable

Plan members Can use in packages only Can use in packages or DBRMs
bound directly to the plan

Processing of
embedded
statements

Processed as static SQL Processed as deferred
embedded SQL. For a definition,
see “Deferred Embedded SQL”
on page 21.

Servers Can use any server that uses
the DRDA protocols

Can use DB2 servers only

SQL statements Can use any SQL statement
supported by the system
which executes the statement

Limited to SQL INSERT,
UPDATE, and DELETE
statements, and to statements
supporting SELECT

Connection
management

The CONNECT statement is
used to connect an application
process to a server.

Three-part names and aliases
are used to refer to objects at
another server.

  Chapter 2. DB2 Concepts 31



 DB2 Concepts  
 

� It uses DB2 private protocol access to a DB2 Version 2 Release 3. (DB2
private protocol access from a DB2 Version 3 or subsequent release
application requester to a DB2 Version 2 Release 2 application server is not
supported).

See Section 4 of Application Programming and SQL Guide for more details about
common restrictions.

DB2 Private Protocol Access
DB2 private protocol access allows one DB2 to execute a range of statements at
another DB2.

A statement is executed using DB2 private protocol access if it refers to objects
that are not at the current server. The current server is the DBMS to which an
application is actively connected. DB2 private protocol access uses DB2 private
connections. The statements that can be executed are SQL INSERT, UPDATE,
and DELETE, and SELECT statements with their associated SQL OPEN, FETCH,
and CLOSE statements. “When an Application Process Has a Current Server” on
page 260 describes what happens when an application process has a current
server.

In a program running under DB2, a three-part name or an alias can refer to a table
or view at another DB2. The location name identifies the other DB2 to the DB2
application server. A three-part name has the form:

 location-name.aaaaaa.ssssss

where aaaaaa.ssssss uniquely identifies the object at the server named
location-name. For example, the name USIBMSTODB21.DSN8510.EMP refers to a
table named DSN8510.EMP at the server whose location name is
USIBMSTODB21. Location naming conventions are described in “Location
Identifiers” on page 48. Preparing DB2 for incoming SQL requests is discussed in
Section 3 of Installation Guide .

Alias names have the same allowable forms as table or view names. The name
can refer to a table or view at the current server or to a table or view elsewhere.
For more on aliases, see “Aliases and Synonyms” on page 51. For more on
three-part names, and on SQL naming conventions in general, see “Naming
Conventions” on page 48.

 DRDA Access
DRDA access supports the execution of dynamic SQL statements and SQL
statements that satisfy all the following conditions:

� The static statements appear in a package bound to an accessible server.

� The statements are executed using that package.

� The objects involved in the execution of the statements are at the server where
the package is bound. If the server is a DB2 subsystem, three-part names and
aliases can be used to refer to another DB2 server.

DRDA access is based on a set of protocols known as Distributed Relational
Database Architecture (DRDA), as documented in Distributed Relational Database
Architecture Reference DRDA communication conventions are invisible to DB2
applications, and allow a DB2 to bind and rebind packages at other servers and to

32 SQL Reference  



  DB2 Concepts
 

execute the statements in those packages. See Section 5 of Application
Programming and SQL Guide for the steps involved in binding packages and plans.
If the application server supports the two-phase commit process, use the
CONNECT (Type 2) statement and other connection management statements such
as RELEASE.

A system that uses DRDA can request the execution of SQL statements at any
DB2. Preparing DB2 for incoming SQL requests is discussed in Section 3 of
Installation Guide.

When preparing a program for use at a server other than DB2, observe the
following rules:

� For SQL statements processed by the server, use the SQL syntax and
semantic rules of that server. For other statements, use the DB2 rules. For a
list of where statements are processed, see Appendix B, “Characteristics of
SQL Statements in DB2 for OS/390” on page 509.

� Use the precompiler option SQL(ALL) when precompiling the program.
Statements that violate DB2 rules are flagged, but their detection does not
prevent the creation of a DBRM.

For more information, refer to the Distributed Relational Database Library.

Remote Unit of Work
Remote unit of work is a restricted level of function that is available by DRDA
access when the CONNECT(1) precompiler option is specified. An application
process can have only one connection at a time and cannot connect to a new
application server until it executes a commit or rollback operation. This restricts the
situations in which the CONNECT statement can be executed. See “CONNECT”
on page 259 for more information about these restrictions. For more details about
CONNECT (Type 1) and a description of the connection states, refer to “CONNECT
(Type 1)” on page 262.

Connection Management for DB2 Private Protocol and DRDA Access
An SQL connection is an association between an application process and a local or
remote application server. SQL connections can be managed by the application or
by using bind options. At any time:

� An application process is in the connected or unconnected state and has a set
of zero or more SQL connections. Each SQL connection of an application
process is uniquely identified by the name of the application server of the SQL
connection.

� An SQL connection is in one of the following states:

– Current and held
– Current and release pending
– Dormant and held
– Dormant and release pending

Initial state of an application process: An application process is initially in the
connected state and has exactly one SQL connection. The application server of
that connection is the local DB2 subsystem. The initial state of an SQL connection
is current and held.

  Chapter 2. DB2 Concepts 33



 DB2 Concepts  
 

The following diagram shows the state transitions:

Begin process

 │

│ ┌──────────────────────── SQL Connection States ────────────────────────┐
 │ │ │

 │ │ Successful CONNECT │

│ │ or SET CONNECTION specifying │

│ │ ┌─────────────┐ another SQL connection ┌─────────────┐ │

│ │ │ ├───────────────────────────�│ │ │

├─────────────�│ Current │ │ Dormant │ │

│ │ │ │�───────────────────────────┤ │ │

│ │ └─────────────┘ Successful CONNECT or └─────────────┘ │

│ │ SET CONNECTION specifying │

│ │ the existing dormant SQL connection │

 │ │ │

 │ │ │

 │ │ ┌─────────────┐ ┌─────────────┐ │

 │ │ │ │ RELEASE │ │ │

 ├─────────────�│ Held ├───────────────────────────�│ Release │ │

 │ │ │ │ │ pending │ │

 │ │ └─────────────┘ └─────────────┘ │

 │ │ │

 │ └───────────────────────────────────────────────────────────────────────┘

 │

 │

│ ┌───────────────── Application Process Connection States ───────────────┐
 │ │ │

│ │ The current SQL connection │

│ │ is intentionally ended, or │

│ │ a failure occurs causing the │

│ │ ┌─────────────┐ loss of the connection ┌─────────────┐ │

│ │ │ ├───────────────────────────�│ │ │

└─────────────�│ Connected │ │ Unconnected │ │

│ │ │�───────────────────────────┤ │ │

│ └─────────────┘ Successful CONNECT or └─────────────┘ │

 │ SET CONNECTION │

 │ │

 └───────────────────────────────────────────────────────────────────────┘

Figure 3. SQL Connection and Application Process Connection State Transitions

SQL Connection States
If an application process executes a CONNECT TO statement and the specified
location is known to the local DB2 and is not in the set of existing connections of
the application process, the location is added to the set of connections and the
connection is placed in the current and held state. If the specified location is the
current SQL connection of the application process, and if the SQLRULES(DB2)
bind option is in effect, the states of all existing connections remain the same.

An SQL connection in the dormant state is placed in the current state using:

� The SET CONNECTION statement, or
� The CONNECT statement, if the SQLRULES(DB2) bind option is in effect.

When an SQL connection is placed in the current state, the previous current SQL
connection, if any, is placed in the dormant state. No more than one SQL
connection in the set of existing connections of an application process can be

34 SQL Reference  



  DB2 Concepts
 

current at any time. Changing the state of an SQL connection from current to
dormant or from dormant to current has no effect on its held or release pending
state.

An SQL connection is placed in the release pending state by the RELEASE
statement. When an application process executes a commit operation, every
release pending connection of the process is ended. Changing the state of an SQL
connection from held to release pending has no effect on its current or dormant
state. Thus, an SQL connection in the release pending state can still be used until
the next commit operation. Likewise, DB2 private connections in the release
pending state can be used until the next commit operation. There is no way to
change the state of a connection from release pending to held.

Application Process Connection States
A different server can be established by the explicit or implicit execution of a
CONNECT statement. The following rules apply:

� An application process cannot have more than one SQL connection to the
same application server at the same time.

� When an application process executes a SET CONNECTION statement, the
specified location name must be an existing SQL connection in the set of
connections of the application process.

� When an application process executes a CONNECT TO statement and the
SQLRULES(STD) bind option is in effect, the specified location must not be an
existing SQL connection in the set of connections of the application process.

If an application process has a current SQL connection, the application process
is in the connected state. The CURRENT SERVER special register contains the
name of the application server of the current SQL connection. The application
process can execute SQL statements that refer to objects managed by that
application server. If the application server is a DB2 subsystem, the application
process can also execute certain SQL statements that refer to objects managed by
a DB2 subsystem with which that application server can establish a connection.

An application process in the unconnected state enters the connected state when it
successfully executes a CONNECT or SET CONNECTION statement.

If an application process does not have a current SQL connection, the
application process is in the unconnected state. The CURRENT SERVER special
register contains blanks. The only SQL statements that can be executed
successfully at the application requester are CONNECT, SET CONNECTION,
RELEASE, COMMIT, ROLLBACK, and local SET statements. COMMIT and
ROLLBACK are also processed by an application server. If the application process
is in the unconnected state, the application server that processes a COMMIT or
ROLLBACK is the local DB2.

An application process in the connected state enters the unconnected state when
its current SQL connection is intentionally ended or the execution of an SQL
statement is unsuccessful because of a failure that causes a rollback operation at
the application server and loss of the SQL connection. SQL connections are
intentionally ended when an application process successfully executes a commit
operation and any of the following apply:

� The connection is in the release pending state

  Chapter 2. DB2 Concepts 35



 DB2 Concepts  
 

� The connection is not in the release pending state but it is a remote connection
and:
– The DISCONNECT(AUTOMATIC) bind option is in effect, or
– The DISCONNECT(CONDITIONAL) bind option is in effect and an open

WITH HOLD cursor is not associated with the connection.

A CONNECT (Type 1) statement is implicitly executed when an application
process executes an SQL statement other than COMMIT, CONNECT TO,
CONNECT RESET, SET CONNECTION, RELEASE, or ROLLBACK and if both of
the following conditions apply:

� The CURRENTSERVER bind option was specified when creating the
application plan of the application process and the identified server is not the
local DB2.

� An implicit or explicit CONNECT statement has not already been successfully
or unsuccessfully executed by the application process.

If the implicit CONNECT fails, the application process is in the unconnected state.

DB2 Private Connections
When the application server is a DB2 subsystem, DB2 private connections are
allocated as necessary to support references to objects at other DB2 subsystems.
Like SQL connections, DB2 private connections are initially in the held state and
can be placed in the release pending state.

An application process cannot have an SQL connection and a DB2 private
connection to the same DB2 subsystem at the same time. Accordingly:

� CONNECT TO x fails if the application process has a DB2 private connection to
x, and

� An attempt to allocate a DB2 private connection to x fails if the application
process has an SQL connection to x.

When a Connection is Ended
When a connection is ended, all resources that were acquired by the application
process through the connection and all resources that were used to create and
maintain the connection are deallocated. In the case of an SQL connection to a
DB2 subsystem, the resources acquired can include DB2 private connections.
When the SQL connection is ended, such DB2 private connections are also ended.
This is true even if the DB2 subsystem is the local DB2. For example, assume that
an application process implicitly connected to the local DB2 used DB2 private
protocol access to open a cursor at another DB2. If the application process
executes a RELEASE CURRENT statement, that cursor will be closed when the
connection is ended during the next commit operation.

A connection can also be ended as a result of a communications failure in which
case the application process is placed in the unconnected state. All connections of
an application process are ended when the process terminates.

36 SQL Reference  



  DB2 Concepts
 

 Character Conversion
| A string is a sequence of bytes that can represent characters. Within a string, all
| the characters are represented by a common encoding representation. In some

cases, it might be necessary to convert these characters to a different encoding
representation. The process of conversion is known as character conversion.

| In client/server environments, character conversion can occur when an SQL
| statement is executed remotely. Consider, for example, these two cases:

| � The values of host variables sent from the application requester to the current
| server.

| � The values of result columns sent from the current server to the application
| requester.

| In either case, the string could have a different representation at the sending and
| receiving systems. Conversion can also occur during string operations on the same
| system.

| In a local environment, character conversion can occur when:

| � An overriding CCSID is specified in the SQLDA (see “SQL Descriptor Area
| (SQLDA)” on page 519).

# For languages other than REXX, the CCSID is in the SQLNAME field. For
# REXX, the CCSID is in the SQLCCSID field.

| � A mixed character string is assigned to an SBCS column or host variable.

| Most users do not need a knowledge of character conversion. When character
| conversion does occur, it does so automatically, and the conversion, if successful,
| is invisible to the application.

| The following list defines some of the terms used when discussing character
| conversion.

| character set A defined set of characters. For example, the following
| character set appears in several code pages:

| � 26 nonaccented letters A through Z

| � 26 nonaccented letters a through z

| � digits 0 through 9

| � . , : ; ? ( ) ' " / − _ & + % * = < >

| code page A set of assignments of characters to code points. In
| EBCDIC, for example, 'A' is assigned code point X'C1'
| and 'B' is assigned code point X'C2'. Within a code
| page, each code point has only one specific meaning.

| code point A unique bit pattern that represents a character.

| coded character set A set of unambiguous rules that establishes a character
| set and the one-to-one relationships between the
| characters of the set and their coded representations.

  Chapter 2. DB2 Concepts 37



 DB2 Concepts  
 

| coded character set identifier (CCSID)
| A two-byte, unsigned binary integer that uniquely
| identifies an encoding scheme and one or more pairs of
| character sets and code pages.

| encoding scheme A set of rules used to represent character data. For
| example:

|  � Single-byte EBCDIC
|  � Single-byte ASCII2

|  � Double-byte EBCDIC
| � Mixed single-byte and double-byte ASCII

| substitution byte A unique character that is substituted during character
| conversion for any characters in the source encoding
| representation that do not have a match in the target
| encoding representation.

| Character conversion can affect the results of several SQL operations. In this book,
| the effects are described in:

| “Conversion Rules for String Assignment” on page  70 
| “Conversion Rules for String Comparison” on page  73 
| “Character Conversion in Unions and Concatenations” on page 185

| Character Sets and Code Pages
| The following example shows how a typical character set might map to different
| code points in two different code pages.

| 2 The term ASCII is used throughout this book to refer to IBM-PC Data or ISO 8 data.

38 SQL Reference  



  DB2 Concepts
 

| Even with the same encoding scheme, there are many different coded character
| sets, and the same code point can represent a different character in different coded
| character sets. Furthermore, a byte in a character string does not necessarily
| represent a character from a single-byte character set (SBCS). Character strings
| are also used for mixed data (that is a mixture of single-byte characters and
| double-byte characters) and for data that is not associated with any character set
| (called bit data). Note that this is not the case with graphic strings; every pair of
| bytes in every graphic string is assumed to represent a character from a
| double-byte character set (DBCS).

| Character encoding for IBM systems is described in Character Data Representation
| Architecture Reference.

|  System CCSIDs
| Every string used in an SQL operation has a CCSID, and the CCSID identifies the
| manner in which the characters in the string are encoded. Strings can be encoded
| in EBCDIC or ASCII. A string representing characters can be one of three types:

� An SBCS string (single-byte character set). In an SBCS string, each character
is represented by a single byte. SBCS is a subtype of the character data type.

� A graphic string composed of DBCS (double-byte character set) characters. In
a graphic string, each character is represented by a pair of bytes.

� A mixed string, in which both single-byte and double-byte characters can occur.
| In an EBCDIC mixed string, certain shift characters serve as left- and

  Chapter 2. DB2 Concepts 39



 DB2 Concepts  
 

right-delimiters for sequences of double-byte characters. MIXED is a subtype of
the character data type.

At a given DB2, all columns containing SBCS strings are assumed to have a
| common CCSID known as the corresponding ASCII or EBCDIC system CCSID for

SBCS data. Likewise, all columns containing graphic strings have a common
| CCSID, known as the corresponding ASCII or EBCDIC system CCSID for graphic
| data, and all columns containing mixed strings have a common CCSID known as
| the corresponding ASCII or EBCDIC system CCSID for mixed data. For example,

DB2 can use a system CCSID when character data is fetched from a table at
another DBMS. The system CCSID is used to convert the incoming data to the
appropriate CCSID. If the character string has a subtype of BIT, its bytes do not
represent characters and are not converted.

| The values specified in fields ASCII CODED CHAR SET and EBCDIC CODED
| CHAR SET on installation panel DSNTIPF when DB2 was installed determine the
| ASCII and EBCDIC system CCSIDs. Those fields should contain valid SBCS
| CCSIDs if field MIXED DATA on that same installation panel is NO, or valid MIXED
| CCSIDs if field MIXED DATA is YES.

| Field DEF ENCODING SCHEME on the same installation panel determines
| whether the default encoding scheme for the DB2 system is ASCII or EBCDIC. For
| example, one CCSID whose value is 37 identifies a widely used form of EBCDIC
| encoding. That particular CCSID could be the system CCSID for EBCDIC SBCS
| strings.

For more information about character string subtypes and SBCS and DBCS DB2
sites, see “Data Types” on page 57. For information on the subsystem parameters
that determine the default encoding scheme and the system CCSIDs, see
Installation Guide.

Restrictions on BIT Data
If the CCSID of an input host variable or a host variable substituted for a parameter
marker is different from the CCSID determined at bind time, and if either CCSID is
X'FFFF' (BIT data), an error occurs. Otherwise, the host variable is converted to
the coded character set determined by the CCSID at bind time.

 Expanding Conversions
An expanding conversion occurs when the length of the converted string is greater
than that of the source string. An expanding conversion occurs when an ASCII
mixed data string containing DBCS characters is converted to EBCDIC mixed data.

| Because of the addition of shift codes, an error occurs when an expanding
| conversion is performed on a fixed-length input host variable that requires
| conversion from ASCII mixed to EBCDIC mixed. The remedy is to use a

varying-length string variable with a maximum length that is sufficient to contain the
expansion. There is no remedy in FORTRAN.

40 SQL Reference  



  
 

|  Contracting Conversions
| A contracting conversion occurs when the length of the converted string is smaller
| than that of the source string. A contracting conversion occurs when an EBCDIC
| mixed data string containing DBCS characters is converted to ASCII mixed data
| due to the removal of shift codes.

  Chapter 2. DB2 Concepts 41



  
 

42 SQL Reference  



  Language Elements
 

 Chapter 3. Language Elements

Characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Tokens  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Spaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Uppercase and Lowercase . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SQL Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Location Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Host Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Naming Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Aliases and Synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
Authorization IDs and Authorization-names . . . . . . . . . . . . . . . . . . . . .  52

Authorization IDs and Statement Preparation . . . . . . . . . . . . . . . . . .  53
Authorization IDs and Dynamic SQL . . . . . . . . . . . . . . . . . . . . . . .  54
Authorization IDs and Remote Execution . . . . . . . . . . . . . . . . . . . . .  55

Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Character Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Graphic Strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Datetime Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Assignment and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Numeric Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
String Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Datetime Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Numeric Comparisons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
String Comparisons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Datetime Comparisons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Integer Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Floating-Point Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Decimal Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Character String Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
Datetime Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Graphic String Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

Special Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
General Rules for Special Registers . . . . . . . . . . . . . . . . . . . . . . . .  78
CURRENT DATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
CURRENT DEGREE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
CURRENT PACKAGESET  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

# CURRENT PRECISION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
CURRENT RULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
CURRENT SERVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
CURRENT SQLID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
CURRENT TIME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
CURRENT TIMESTAMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CURRENT TIMEZONE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
USER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Column Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Qualified Column Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84
Correlation Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Column Name Qualifiers to Avoid Ambiguity . . . . . . . . . . . . . . . . . . .  85

 Copyright IBM Corp. 1982, 1997  43



 Language Elements  
 

Column Name Qualifiers in Correlated References . . . . . . . . . . . . . . .  86
Resolution of Column Name Qualifiers . . . . . . . . . . . . . . . . . . . . . .  87

Referencing Host Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Host Structures in PL/I, C, and COBOL . . . . . . . . . . . . . . . . . . . . . . .  90
Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Without Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
With the Concatenation Operator . . . . . . . . . . . . . . . . . . . . . . . . .  92
With Arithmetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
Arithmetic with Two Integer Operands . . . . . . . . . . . . . . . . . . . . . .  94
Arithmetic with an Integer and a Decimal Operand . . . . . . . . . . . . . . .  94
Arithmetic with Two Decimal Operands . . . . . . . . . . . . . . . . . . . . . .  94
Arithmetic with Floating-Point Operands . . . . . . . . . . . . . . . . . . . . .  97
Datetime Operands and Durations . . . . . . . . . . . . . . . . . . . . . . . . .  97
Datetime Arithmetic in SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98
Precedence of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

| CASE Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Predicates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Basic Predicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Quantified Predicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
BETWEEN Predicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
EXISTS Predicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
IN Predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
LIKE Predicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
NULL Predicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Search Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Options Affecting SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

# Precompiler Options for Dynamic Statements . . . . . . . . . . . . . . . . . .  121
Decimal Point Representation . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Apostrophes and Quotation Marks in String Delimiters . . . . . . . . . . . . .  122

| Katakana Characters for EBCDIC . . . . . . . . . . . . . . . . . . . . . . . . .  123
Mixed Data in Character Strings . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Formatting of Datetime Strings . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
SQL Standard Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
Positioned Updates of Columns . . . . . . . . . . . . . . . . . . . . . . . . . .  126

44 SQL Reference  



  Characters
 

This chapter defines the basic syntax of SQL and language elements that are
common to many SQL statements.

 Characters
The basic symbols of SQL are characters from the EBCDIC syntactic character set.
These characters are classified as letters, digits, or special characters:

� A letter is any one of the uppercase alphabetic characters A through Z plus the
three EBCDIC code points reserved as alphabetic extenders for national
languages (the code points X'5B', X'7B', and X'7C', which display as $, #,
and @ using code pages 37 and 500).

� A digit is any one of the characters 0 through 9.

� A special character is any character other than a letter or a digit.

SQL statements can also contain double-byte character set (DBCS) characters.
Regardless of the value of the field MIXED DATA on installation panel DSNTIPF,
double-byte characters can be used in SQL ordinary identifiers and graphic string
constants. If the value of MIXED DATA is YES, double-byte characters can also be
used in string constants and delimited identifiers. In SQL application programs, any
use of double-byte characters must be contained within a single line. Thus, a
graphic string constant cannot be continued from one line to the next and, if MIXED
DATA is YES, a character string constant and delimited identifier can be continued
from one line to the next only if the break occurs between single-byte characters.
This restriction also applies to the use of double-byte characters within tokens of
the host language.

 Tokens
The basic syntactical units of the language are called tokens. A token consists of
one or more characters, excluding the blank character, and excluding characters
within a string constant or delimited identifier.

Tokens are classified as ordinary or delimiter tokens:

� An ordinary token is a numeric constant, an ordinary identifier, a host identifier,
or a keyword.

Examples:

1 .1 +2 SELECT E 3

� A delimiter token is a string constant, a delimited identifier, an operator symbol,
or any of the special characters shown in the syntax diagrams. A question mark
(?) is also a delimiter token when it serves as a parameter marker, as
explained in “PREPARE” on page 433.

Examples:

, 'string' "fld1" = .

  Chapter 3. Language Elements 45



 Identifiers  
 

 Spaces
A space is a sequence of one or more blank characters. Tokens, other than string
constants and delimited identifiers, must not include a space. Any token can be
followed by a space. Every ordinary token must be followed by a delimiter token or
a space. If the syntax does not allow an ordinary token to be followed by a delimiter
token, a space must follow that ordinary token.

Uppercase and Lowercase
Any token can include lowercase letters, but a lowercase letter in an ordinary token
is folded to uppercase unless the SQL statement is embedded in a C program.
Delimiter tokens are never folded to uppercase.

Example: The statement:

select O from DSN851,.EMP where lastname = 'Smith';

is equivalent, after folding, to:

SELECT O FROM DSN851,.EMP WHERE LASTNAME = 'Smith';

 Identifiers
An identifier is a token used to form a name. An identifier in an SQL statement is
an SQL identifier, a location identifier, or a host identifier. See Appendix A, “Limits
in DB2 for OS/390” on page 505 for the identifier length limits that DB2 imposes.

 SQL Identifiers
SQL identifiers can be ordinary identifiers or delimited identifiers. They can also be
short identifiers or long identifiers. Thus, an SQL identifier can be in one of four
categories: short ordinary, long ordinary, short delimited, or long delimited.

 Ordinary Identifiers
An ordinary identifier is a letter followed by zero or more characters, each of which

| is a letter, a digit, or the underscore character. An ordinary identifier with an
| EBCDIC encoding scheme can include Katakana characters if the value of field
| EBCDIC CODED CHAR SET on installation panel DSNTIPF is set to 930 or 5026
| when the statement is parsed.

DBCS characters are allowed in SQL ordinary identifiers. An SQL ordinary
identifier, when used as a table, column, alias, synonym, view, statement, cursor, or
correlation name can be specified using either DBCS characters or single-byte
character set (SBCS) characters. However, an SQL ordinary identifier cannot
contain a mixture of SBCS and DBCS characters.

| The rules for forming EBCDIC DBCS SQL ordinary identifiers are as follows:

� The identifier must start with a shift-out (X'0E'), end with a shift-in (X'0F'),
and an odd-numbered byte between those shifts must not be a shift-out.

� The maximum length is 18 bytes including the shift-out and the shift-in. In
other words, there is a maximum of 16 bytes (8 double-byte characters)
between the shift-out and the shift-in.

� There must be an even number of bytes between the shift-out and the shift-in.

46 SQL Reference  



  Identifiers
 

� DBCS blanks (X'4040') are not acceptable between the shift-out and the
shift-in.

� The identifiers are not folded to uppercase or changed in any other way.

� Continuation to the next line is not allowed.

| The rules for forming ASCII DBCS SQL ordinary identifiers are as follows:

| � The maximum length is 18 bytes.

| � DBCS blanks are not acceptable.

| � The identifiers are not folded to uppercase or changed in any other way.

| � Continuation to the next line is not allowed.

An ordinary identifier must not be identical to a keyword that is a reserved word in
any context in which the identifier is used. For a list of reserved words, see
Appendix E, “SQL Reserved Words” on page 621.

Example: The following example is an ordinary identifier:

 SALARY

 Delimited Identifiers
A delimited identifier is a sequence of one or more characters enclosed within
escape characters. The escape character is the quotation mark (") except for:

� Dynamic SQL when the bind option DYNAMICRULES(RUN) applies and the
field SQL STRING DELIMITER on installation panel DSNTIPF is set to the
quotation mark ("). Here the escape character is the apostrophe (').

However, if the dynamic SQL statements are processed in a COBOL program
and the bind option DYNAMICRULES(BIND) applies, a COBOL compiler option
specifies whether the escape character is the quotation mark or apostrophe.

� COBOL application programs. A COBOL compiler option specifies whether the
escape character is the quotation mark (") or the apostrophe (').

A delimited identifier can be used when the sequence of characters does not
qualify as an ordinary identifier. Such a sequence, for example, could be an SQL
reserved word, or it could begin with a digit. Two consecutive escape characters
are used to represent one escape character within the delimited identifier.

Example: If the escape character is the quotation mark, the following example is a
delimited identifier:

“SYNONYM”

Short and Long Identifiers
SQL identifiers are also classified according to their maximum length. A long
identifier has a maximum length of 18 bytes. A short identifier has a maximum
length of 8 bytes. These limits do not include the escape characters of a delimited
identifier.

Whether an identifier is long or short depends on what it represents. For example,
the name of a storage group is a short identifier, whereas an unqualified table
name is a long identifier. “Naming Conventions” on page 48 describes what

  Chapter 3. Language Elements 47



 Naming Conventions  
 

identifiers can represent and whether those representing a given type of entity are
long or short.

Database names and table space names are examples of short identifiers that will
be used as part of data set names. Such identifiers, whether ordinary or delimited,
must conform to the MVS rules for forming data set names. For example, a short
ordinary identifier used to name a database must not contain an underscore
character.

 Location Identifiers
A location identifier is like an SQL identifier, except as follows:

� The maximum length is 16 bytes.

� The ordinary form must not include alphabetic extenders, lowercase letters, or
Katakana characters.

� The characters allowed in the delimited form are the same as those allowed in
the ordinary form.

 Host Identifiers
A host identifier is a name declared in the host program. The rules for forming a
host identifier are the rules of the host language.

 Naming Conventions
The rules for forming a name depend on the type of the object designated by the
name. The syntax diagrams use different terms for different types of names. The
following list defines these terms.

alias-name A qualified or unqualified name that designates an alias,
table, or view. An alias name designates an alias when it
is preceded by the keyword ALIAS, as in CREATE ALIAS,
DROP ALIAS, COMMENT ON ALIAS, and LABEL ON
ALIAS. In all other contexts, an alias name designates a
table or view. For example, COMMENT ON ALIAS A
specifies a comment about the alias A, whereas
COMMENT ON TABLE A specifies a comment about the
table or view designated by A.

The table or view designated by an alias need not be at
the current server and the alias name can be used
wherever the table name or view name can be used to
refer to the table or view in an SQL statement. The rules
for forming an alias name are the same as those for
forming a table name or view name, as explained below. A
fully qualified alias name can refer to an alias defined at a
server that is not the current server. But the table or view
identified by such an alias must exist at the DB2 identified
by the first part of the three-part alias name.

authorization-name A short identifier that designates a set of privileges. It can
also designate a user or group of users, but DB2 does not
control this property. See “Authorization IDs and
Authorization-names” on page 52 for the distinction
between an authorization name and an authorization ID.

48 SQL Reference  



  Naming Conventions
 

bpname A name that identifies a buffer pool. The 4KB buffer pools
are named BP0, BP1, BP2, ..., BP49. The 32KB buffer
pools are named BP32K, BP32K1, BP32K2, ..., BP32K9.

catalog-name A short identifier that designates an integrated catalog
facility catalog.

collection-id A long identifier that identifies a collection of packages;
therefore, a collection ID is a qualifier for a package ID.
Refer to Chapter 1 of Command Reference for naming
conventions.

column-name A qualified or unqualified name that designates a column
of a table or view. The unqualified form of a column name
is a long identifier. The qualified form is a qualifier followed
by a period and a long identifier. The qualifier is a table
name, a view name, a synonym, an alias, or a correlation
name.

constraint-name A short identifier that designates a referential constraint on
a table, or a long identifier that designates a check
constraint on a table.

correlation-name A long identifier that designates a table, a view, or
individual rows of a table or view.

cursor-name A long identifier that designates an SQL cursor.

database-name A short identifier that designates a database. The identifier
must start with a letter and must not include special
characters.

descriptor-name A host identifier that designates an SQL descriptor area
(SQLDA). See “Referencing Host Variables” on page 89
for a description of a host identifier. A descriptor name
never includes an indicator variable.

host-variable A sequence of tokens that designates a host variable. A
host variable includes at least one host identifier, as
explained in “Referencing Host Variables” on page 89.

index-name A qualified or unqualified name that designates an index. A
qualified index name is a short identifier followed by a
period and a long identifier. The short identifier is the
authorization ID that owns the index. An unqualified index
name is a long identifier. The unqualified name is implicitly
qualified by an authorization ID determined by the rules set
forth in “Unqualified object names” on page 51.

location-name A location identifier that identifies an instance of a
database management system.

package-id A short identifier that identifies a package. For packages
created using DB2, a package ID is the name of the
program whose precompilation produced the package's
DBRM. Refer to Chapter 1 of Command Reference for
naming conventions.

plan-name A short identifier that identifies an application plan. Refer to
Chapter 1 of Command Reference for naming conventions.

  Chapter 3. Language Elements 49



 Naming Conventions  
 

procedure-name A qualified or unqualified name that designates a stored
procedure. Each part of the name must be a long identifier
that must be composed of SBCS characters.

program-name A short identifier that designates an exit routine.

statement-name A long identifier that designates a prepared SQL
statement.

stogroup-name A short identifier that designates a storage group. The
identifier must start with a letter and must not include
special characters.

synonym A long identifier that designates a synonym, a table, or a
view. The table or view must exist at the current server. A
synonym designates a synonym when it is preceded by the
keyword SYNONYM, as in CREATE SYNONYM and
DROP SYNONYM. In all other contexts, a synonym
designates a local table or view and can be used wherever
the name of a table or view can be used in an SQL
statement. A qualified name is never interpreted as a
synonym.

table-name A qualified or unqualified name that designates a table.

A fully qualified table name is a three-part name. The first
part is a location name that designates the DBMS at which
the table is stored. The second part is the authorization ID
that designates the owner of the table. The third part is a
long identifier. A period must separate each of the parts.

A two-part table name is implicitly qualified by the location
name of the current server. The first part is the
authorization ID that designates the owner of the table.
The second part is a long identifier. A period must
separate the two parts.

A one-part or unqualified table name is a long identifier
with two implicit qualifiers. The first implicit qualifier is the
location name of the current server. The second is an
authorization ID, which is determined by the rules set forth
in “Unqualified object names” on page 51.

table-space-name A short identifier that designates a table space of an
identified database. The identifier must start with a letter
and must not include special characters. If a database is
not identified, DSNDB04 is implicit.

version-id An identifier3 of 1 to 64 characters that is assigned to a
package when the package is created. The version ID that
is assigned is taken from the version ID associated with
the program being bound. Version IDs are specified for
programs as a parameter of the DB2 precompiler. Refer to
Chapter 1 of Command Reference for naming conventions.

3 The version-id can begin with a digit, for example, when it is a timestamp.

50 SQL Reference  



  Aliases and Synonyms
 

view-name A qualified or unqualified name that designates a view.

A fully qualified view name is a three-part name. The first
part is a location name that designates the DBMS where
the view is defined. The second part is the authorization ID
that designates the owner of the view. The third part is a
long identifier. A period must separate each of the parts.

A two-part view name is implicitly qualified by the location
name of the current server. The first part is the
authorization ID that designates the owner of the view. The
second part is a long identifier. A period must separate the
two parts.

A one-part or unqualified view name is a long identifier with
two implicit qualifiers. The first implicit qualifier is the
location name of the current server. The second is an
authorization ID, which is determined by the rules set forth
in “Unqualified object names” on page 51.

Unqualified object names: Unqualified table, view, index, and alias names are
implicitly qualified as follows:

� For static SQL statements, the implicit qualifier is the identifier specified in the
QUALIFIER option of the BIND subcommand used to bind the SQL statements.
If this option is not used on BIND PLAN, the implicit qualifier is the
authorization ID of the owner of the plan. If this option is not used on BIND
PACKAGE, the implicit qualifier is the authorization ID of the owner of the
package.

� For dynamic SQL statements:

– If the bind option DYNAMICRULES(RUN) applies, the implicit qualifier is
the identifier contained in the CURRENT SQLID special register.
DYNAMICRULES(RUN) is the default.

– If the bind option DYNAMICRULES(BIND) applies, the qualifier is the
identifier implicitly or explicitly specified in the QUALIFIER option of the
BIND subcommand, as explained above for static SQL statements. One
exception to this rule is that the qualifier of PLAN_TABLE (output from the
EXPLAIN statement) is always the value in special register CURRENT
SQLID.

Aliases and Synonyms
A table or view can be referred to in an SQL statement by its name, by an alias
that has been defined for its name, or by a synonym that has been defined for its
name. Thus, aliases and synonyms can be thought of as alternate names for tables
and views.

The option of referencing a table or view by an alias or a synonym is not explicitly
shown in the syntax diagrams or mentioned in the description of SQL statements.
Nevertheless, an alias or a synonym can be used wherever a table or view can be
referred to in an SQL statement, with two exceptions: a local alias cannot be used
in CREATE ALIAS, and a synonym cannot be used in CREATE SYNONYM. If an
alias is used in CREATE SYNONYM, it must identify a table or view at the current
server. The synonym is defined on the name of that table or view. If a synonym is

  Chapter 3. Language Elements 51



 Authorization IDs and Authorization-names  
 

used in CREATE ALIAS, the alias is defined on the name of the table or view
identified by the synonym.

The effect of using an alias or a synonym in an SQL statement is that of text
substitution. For example, if A is an alias for table Q.T, one of the steps involved in
the preparation of SELECT * FROM A is the replacement of 'A' by 'Q.T'.
Likewise, if S is a synonym for Q.T, one of the steps involved in the preparation of
SELECT * FROM S is the replacement of 'S' by 'Q.T'.

The differences between aliases and synonyms are as follows:

� SYSADM or SYSCTRL authority or the CREATE ALIAS privilege is required to
define an alias. No authorization is required to define a synonym.

� An alias can be defined on the name of a table or view, including tables and
views that are not at the current server. A synonym can only be defined on the
name of a table or view at the current server.

� An alias can be defined on an undefined name. A synonym can only be defined
on the name of an existing table or view.

� Dropping a table or view has no effect on its aliases. But dropping a table or
view does drop its synonyms.

� An alias is a qualified name that can be used by any authorization ID. A
synonym is an unqualified name that can only be used by the authorization ID
that created it.

� An alias defined at one DB2 subsystem can be used at another DB2
subsystem. A synonym can only be used at the DB2 subsystem where it is
defined.

� When an alias is used, an error occurs if the name that it designates is
undefined or is the name of an alias at the current server. (The alias can
designate an alias defined at another server if that alias represents a table or
view at the other server.) When a synonym is used, this error cannot occur.

Authorization IDs and Authorization-names
An authorization ID is a character string that designates a defined set of privileges.
Processes can successfully execute SQL statements only if they have the authority
to perform the specified functions. A process derives this authority from its
authorization IDs. An authorization ID can also designate a user or a group of
users, but DB2 does not control this property.

DB2 uses authorization IDs to provide:

� Authorization checking of SQL statements
� Implicit qualifiers for the names of tables, views, aliases, and indexes

Whenever a connection is established between DB2 and a process, DB2 obtains
an authorization ID and passes it to the authorization exit. The list of one or more
authorization IDs returned by the exit are used as the authorization IDs of the
process.

Every process has exactly one primary authorization ID. Any other authorization IDs
of a process are secondary authorization IDs. As explained below, the use of these

52 SQL Reference  



  Authorization IDs and Authorization-names
 

authorization IDs depends on whether the process is a bind process or an
application process.

An authorization-name specified in an SQL statement should not be confused with
an authorization ID of a process. For example, assume that SMITH is your TSO
logon and you execute the following statements interactively:

CREATE TABLE TDEPT LIKE DSN851,.DEPT;

GRANT SELECT ON TDEPT TO KEENE;

Also assume that your site has not replaced the default exit routine for connection
authorization and that you have not executed SET CURRENT SQLID. Thus, when
the GRANT statement is prepared and executed by SPUFI, the SQL authorization
ID is SMITH. KEENE is an authorization name specified in the GRANT statement.

Authorization to execute the GRANT statement is checked against SMITH, and
SMITH is the implicit qualifier of TDEPT. The authorization rule is that the privilege
set designated by SMITH must include the SELECT privilege with the GRANT
option on SMITH.TDEPT. There is no check involving KEENE.

If SMITH is the implicit qualifier for a statement that contains NAME1, NAME1
identifies the same object as SMITH.NAME1. If the implicit qualifier is other than
SMITH, NAME1 and SMITH.NAME1 identify different objects.

Authorization IDs and Statement Preparation
A process that creates a plan or package is called a bind process. The connection
with DB2 is the result of the execution of a BIND or REBIND subcommand. Both
subcommands allow for the specification of the authorization ID of the owner of the
plan or package. The authorization ID specified as owner must be one of the
authorization IDs of the process, unless one of these has SYSADM or SYSCTRL
authority. In this case, the owner can be set to any value. BINDAGENT can specify
an owner other than himself (or one of his secondaries), but it has to be someone
that granted him BINDAGENT. The default owner for BIND is the primary
authorization ID. The default owner for REBIND is the previous owner of the plan or
package (ownership is unchanged if an owner is not explicitly specified). BIND and
REBIND are discussed in Chapter 2 of Command Reference.

The authorization ID used for the authorization checking of embedded SQL
statements is that of the owner of the plan or package. If an embedded SQL
statement refers to tables or views at a DB2 subsystem other than the one at which
the plan or package is bound, the authorization checking is deferred until run time.
For more information on this, see “Authorization IDs and Remote Execution” on
page 55.

If VALIDATE(BIND) is specified, the privileges required to manipulate tables and
views at the DB2 subsystem at which the plan or package is bound must exist at
bind time. If the privileges or the referenced objects do not exist and
SQLERROR(NOPACKAGE) is in effect, the bind operation is unsuccessful. If
SQLERROR(CONTINUE) is specified, then the bind is successful and any
statements in error are flagged. If any statements in error are flagged, an error will
occur when you attempt to execute them at run time.

If a plan or package is bound with VALIDATE(RUN), authorization checking is still
performed at bind time, but the referenced tables and views and the privileges

  Chapter 3. Language Elements 53



 Authorization IDs and Authorization-names  
 

required to use these tables and views need not exist at this time. If any privilege
required for a statement does not exist at bind time, an authorization check is
performed whenever the statement is first executed within a unit of work, and all
privileges required for the statement must exist at that time. If any privilege does
not exist, execution of the statement is unsuccessful. When the authorization check
is performed at run time, it is performed against the plan or package owner, not the
SQL authorization ID. For the effect of this option on cursors, see “DECLARE
CURSOR” on page 347.

Authorization IDs and Dynamic SQL
This discussion applies to dynamic SQL statements that refer to objects at the
current server. For those that refer to objects elsewhere, see “Authorization IDs and
Remote Execution” on page 55.

The bind option DYNAMICRULES determines, for authorization and qualification
purposes, whether dynamic SQL statements are processed at run time with
run-time rules, DYNAMICRULES(RUN), or with bind-time rules,
DYNAMICRULES(BIND). DYNAMICRULES(RUN) is the default.

DYNAMICRULES(RUN) and run-time rules: DB2 uses the authorization ID of the
application process and the SQL authorization ID (the value of special register
CURRENT SQLID) for authorization checking of dynamic SQL statements.

A process that uses a plan and its associated packages is called an application
process. At any time, the SQL authorization ID is the value of CURRENT SQLID.
This SQL special register can be initialized by the connection or sign-on exit
routine. If the exit does not set a value, the initial value of CURRENT SQLID is the
primary authorization ID of the process. You can use the SQL statement SET
CURRENT SQLID to change the value of CURRENT SQLID. Unless some
authorization ID of the process has SYSADM authority, the new value must be one
of the authorization IDs of the process. Thus, CURRENT SQLID usually contains
either the primary authorization ID of the process or one of its secondary
authorization IDs.

When an SQL statement is dynamically prepared, the SQL authorization ID is used
| as the implicit qualifier for all tables, views, and indexes. If the prepared statement
| is other than an ALTER, CREATE, DROP, GRANT, RENAME, or REVOKE

statement, each privilege required for the statement can be a privilege designated
by any authorization ID of the process. Therefore, the privilege set that applies to
these statements is the union of the privileges designated by each authorization ID
of the process.

If the dynamic SQL statement is a CREATE, GRANT, or REVOKE statement, the
only authorization ID that is used for authorization checking is the SQL
authorization ID. Therefore, each privilege required for the statement must be a
privilege designated by that single authorization ID.

DYNAMICRULES(BIND) and bind-time rules: The rules are the same as the rules
used for authorization checking and object qualification of embedded or static SQL
statements, as explained in “Authorization IDs and Statement Preparation” on
page 53 and “Unqualified object names” on page 51.

DB2 uses the primary authorization ID of the owner of the package or plan for
authorization checking of dynamic SQL statements.

54 SQL Reference  



  Authorization IDs and Authorization-names
 

When DYNAMICRULES(BIND) is in effect, you cannot use the following SQL
statements:

� The static or dynamic statement SET CURRENT SQLID
| � The dynamic statements ALTER, CREATE, DROP, GRANT, RENAME, and
| REVOKE

Authorization IDs and Remote Execution
The authorization rules for remote execution depend on whether the distributed
operation is:

� DRDA access with a DB2 for OS/390 server and requester
� DRDA access with a server and requester other than DB2
� DB2 private protocol access

DRDA Access with DB2 for OS/390 Only
Any static statement executed using DRDA access is in a package bound at a
server other than the local DB2. Before the package can be bound, its owner must
have the BINDADD privilege and the CREATE IN privilege for the package's
collection. Also required are enough privileges to execute the package's static SQL
statements. All these privileges are recorded in the DB2 catalog of the server, not
that of the local DB2. Such privileges must be granted by GRANT statements
executed at the server. This allows the server to control the creation and use of
packages that are run from other DBMSs.

# Before an application that has a plan can use the package, the owner of the
# application's plan must have the EXECUTE privilege on the package. Again, this

privilege must be recorded in the server's DB2 catalog. The plan needs no other
privilege to execute the package.

# A user who invokes an application that has a plan must have the EXECUTE
# privilege on the plan. This allows the execution of the static SQL statements in the

package, and the execution of dynamic SQL statements if the bind option
DYNAMICRULES(BIND) is in effect. If DYNAMICRULES(RUN) is in effect, the
authorization rules for dynamic SQL statements is different. Authorization for the
execution of dynamic SQL statements must come from the set of authorization IDs
derived during connection processing. An application goes through connection
processing when it first connects to a server or when it reuses a CICS or IMS
thread that has a different primary authorization ID. For details on connection
processing, see Section 3 (Volume 1) of Administration Guide.

# If an application uses Recoverable Resources Manager Services attachment facility
# (RRSAF) and has no plan, authority to execute the package is determined in the
# same way as when the requester is not DB2 for OS/390, which is described next
# under “DRDA Access with a Server or Requester Other Than DB2 for OS/390.”

DRDA Access with a Server or Requester Other Than DB2 for
OS/390
DB2 as the server: If the application requester is not a DB2 for OS/390
subsystem, there is no DB2 application plan involved. In this case, the EXECUTE
privilege is on the package and is derived from the user's primary authorization ID
or secondary authorization ID. These authorization IDs are also used, as
applicable, for dynamic SQL statements if the bind option DYNAMICRULES(RUN)

  Chapter 3. Language Elements 55



 Authorization IDs and Authorization-names  
 

applies. If DYNAMICRULES(BIND) applies, the package owner's authorization ID is
used for dynamic SQL statements.

DB2 as the requester: The authorization rules for remote execution are those of
the server.

DB2 Private Protocol Access
Any statement referring to a table or view at a DB2 subsystem other than the
current server is executed using DB2 private protocol access. Such statements are
processed as deferred embedded SQL statements. The additional cost of the
dynamic bind occurs once for every unit of work where the statement is executed.
Authorization to execute such statements is checked against the owner of a plan or
package. Authorization IDs for executing dynamic statements are handled just as
they are for DRDA access. In either case, the pertinent privileges must be recorded
in the catalog of the DBMS that executes the statement.

Authorization ID Translations
Three authorization IDs played roles in the foregoing discussion. These are the
user's primary authorization ID and those for the owner of the application plan and
the owner of a package. Each of these is sent to the remote DBMS. And each may
undergo translations before it is used.

For example, a user known as SMITH at the local DBMS could be known, after
translation, as JONES at the server. Likewise, a package owner known as GRAY
could be known as WINTERS at the server. If so, JONES or WINTERS would be
used, instead of SMITH or GRAY, to determine the authorization ID for dynamic
SQL statements in the package. If the option DYNAMICRULES(RUN) applies,
JONES, who is executing the dynamic statement at the server, is used. If the
option DYNAMICRULES(BIND) applies, WINTERS, the package owner at the
server, is used.

| Two sets of communications database (CDB) catalog tables control the translations.
One set is at the local DB2, and the other set is at the remote DB2. Translation can
take place at either or both sites. For how to use and maintain these tables, see
Section 3 (Volume 1) of Administration Guide .

Other Security Measures
The fact that DB2 authority requirements are satisfied does not guarantee that a
user has access to a given server. Other security measures may also come into
play. For example, requests to execute remote SQL statements could be denied
based on RACF considerations. Developing such security measures is discussed in
Section 3 (Volume 1) of Administration Guide.

56 SQL Reference  



  Data Types
 

 Data Types
The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the data type of their source. The sources of
values are:

 Constants
 Columns
 Host variables
 Functions
 Expressions
 Special registers

Figure 4 illustrates the data types supported by DB2.

data
types

string datetime numeric

floating
point decimal

binary
integertime

time
stamp dategraphiccharacter

small large single double
fixed

length
varying
length

fixed
length

varying
length

Figure 4. Data Types Supported by DB2

Nulls: All data types include the null value. The null value is a special value that is
distinct from all nonnull values and thereby denotes the absence of a (nonnull)
value. Although all data types allow for the null value, some sources of values
cannot contain null values. For example, all constants, columns defined as NOT
NULL, special registers, and the COUNT function cannot contain null values.

 Character Strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string.
The empty string should not be confused with the null value.

Except for C NUL-terminated strings, the length of a varying-length string is
specified by the value of its length control field, which is a small integer that
precedes that string. For varying-length character strings, the length control field
specifies the number of bytes. For varying-length graphic strings, the length control
field specifies the number of DBCS characters.

All character strings have the subtype SBCS, MIXED, or BIT:

� If the subtype of a character string is SBCS, its bytes are assumed to represent
characters from a single-byte character set. Such strings are called SBCS data.

  Chapter 3. Language Elements 57



 Data Types  
 

| � If the subtype of a character string is MIXED, it may contain both SBCS and
| DBCS characters. EBCDIC mixed data may contain shift bytes, which represent
| neither SBCS nor DBCS data. Strings that may contain both SBCS and DBCS
| characters are called mixed data.

� If the subtype of a character string is BIT, its bytes do not represent characters
and therefore should never be converted. Such strings are called BIT data.

Character subtypes provide a simple and portable way of specifying the CCSID of a
character string column. The subtype is implicitly or explicitly specified when the
column is defined in a CREATE or ALTER TABLE statement. The default is SBCS
or MIXED depending on the value of the field MIXED DATA on installation panel
DSNTIPF.

� If the subtype is BIT, the CCSID is X'FFFF' (65535).

� If the subtype is SBCS, the CCSID is the system CCSID for SBCS data.

� If the subtype is MIXED, the CCSID is the system CCSID for mixed data.

The subtype of a character string column is recorded in the FOREIGNKEY column
of the SYSCOLUMNS catalog table. An administrator can update this column to
change the subtype of existing columns. DB2 does not ensure that the bytes of a
character string are consistent with its CCSID and does not use CCSIDs for
purposes other than character conversion.

| DBCS Characters and ASCII and EBCDIC
| The method of representing DBCS characters within a mixed string differs between
| ASCII and EBCDIC.

| � ASCII reserves a set of code points for SBCS characters and another set as
| the first half of DBCS characters. Upon encountering the first half of a DBCS
| character, the system knows that it is to read the next byte in order to obtain
| the complete character.

| � EBCDIC makes use of two special code points:

| – A shift-out character (X'0E') to introduce a string of DBCS characters.
| – A shift-in character (X'0F') to end a string of DBCS characters.

| DBCS sequences within mixed data strings are recognized as the string is read
| from left to right. At any time, the recognizer is in SBCS mode or DBCS mode.
| In SBCS mode, which is the initial mode, any byte other than a shift-out is
| interpreted as an SBCS character. When a shift-out is read, the recognizer
| enters DBCS mode. In DBCS mode, the next byte and every second byte after
| that byte is interpreted as the first byte of a DBCS character unless it is a shift
| character. If the byte is a shift-out, an error occurs. If the byte is a shift-in, the
| recognizer returns to SBCS mode. An error occurs if the recognizer is in DBCS
| mode after processing the last byte of the string.

| Because of the shift characters, EBCDIC mixed data requires more storage than
| ASCII mixed data.

58 SQL Reference  



  Data Types
 

|  Examples
|  CHAR(9) in ASCII.

|  CHAR(13) in EBCDIC.

| Because of these differences, mixed data is not transparently portable. To minimize
| the effects of these differences, use varying-length strings in applications that
| require mixed data and operate on both ASCII and EBCDIC systems.

 SBCS Sites
An SBCS site is a DB2 in which the subtype of character strings is SBCS or BIT.

| The value of field MIXED DATA on installation panel DSNTIPF is NO. The values
| of fields ASCII CODED CHAR SET and EBCDIC CODED CHAR SET determine
| the system CCSID that identifies the SBCS coded character set used at that site.

The default subtype is SBCS data.

 DBCS Sites
A DBCS site is a DB2 in which the subtype of character strings can be SBCS, BIT,
or MIXED. The value of field MIXED DATA on installation panel DSNTIPF is YES.

| The values of fields ASCII CODED CHAR SET and EBCDIC CODED CHAR SET
| determine the system CCSIDs used for SBCS data, mixed data, and graphic data.

The default subtype is mixed data.

A mixed data string can have zero or more sequences of SBCS characters and
| zero or more sequences of DBCS characters. Each EBCDIC DBCS sequence must

be preceded by the shift-out control character (X'0E') and followed by the shift-in
control character (X'0F'). There must be an even number of bytes between the
shift characters and each pair of bytes is assumed to represent a DBCS character.

DB2 recognizes DBCS sequences within mixed data strings when performing
character-sensitive operations at DBCS sites (the field MIXED DATA is YES).
These operations include parsing, character conversion, and the pattern matching
specified by the LIKE predicate. DB2 also recognizes DBCS sequences:

� In source language statements, static SQL statements, and deferred embedded
SQL statements if the GRAPHIC precompiler option is implicitly or explicitly
specified

� In dynamic SQL statements if the bind option DYNAMICRULES(BIND) applies
and the GRAPHIC precompiler option is implicitly or explicitly specified

Fixed-Length Character Strings
All values of a fixed-length string column have the same length, which is

# determined by the length attribute of the column. The length attribute must be
# between 1 and 255 inclusive. Every fixed-length string column is a short string

column.

Varying-Length Character Strings
The values of a varying-length string column can have different lengths. The
maximum length is determined by the length attribute of the column. The length
attribute must be between 1 and m inclusive, where m is determined by the
maximum record size as described in “Maximum record size” on page 324 in the
description of the CREATE TABLE statement.

  Chapter 3. Language Elements 59



 Data Types  
 

# A varying-length character string column with a length attribute greater than 255 is
a long string column. Long string columns cannot be referenced in:

� A function other than SUBSTR, LENGTH, or VALUE
� A GROUP BY clause
� An ORDER BY clause
� A CREATE INDEX statement
� A SELECT DISTINCT statement
� A subselect of a UNION without the ALL keyword
� A predicate other than EXISTS or LIKE (for LIKE, you can use a long string

column for the first operand but not for the second operand)
| � A result-expression in a CASE expression

� Primary, unique, and foreign keys

Character String Host Variables
Fixed-length string variables can be defined in all host languages. (In C,
fixed-length string variables are limited to a length of 1.) Varying-length string
variables can be defined in all host languages except FORTRAN. In Assembler, C,
and COBOL, varying-length string variables are simulated as described in Section 3
of Application Programming and SQL Guide. In C, varying-length string variables
can also be represented by NUL-terminated strings.

# Character string variables with a maximum length greater than 255 are long string
variables. Long string variables are subject to the same restrictions as long string
columns. In addition, long string variables and long string columns (as opposed to
short strings variables and short string columns) cannot be used to represent
datetime values.

 Graphic Strings
A graphic string is a sequence of DBCS characters. The length of the string is the
number of characters in the sequence. Like character strings, graphic strings can
be empty. Every graphic string has a CCSID that identifies a double-byte coded
character set. At a DBCS site, the CCSID of every graphic string column is the
system CCSID for GRAPHIC data.

Fixed-Length Graphic Strings
All values of a fixed-length graphic column have the same length, given by the
length attribute of the column. The length attribute must be between 1 and 127
inclusive. Every fixed-length graphic string column is a short string column.

Varying-Length Graphic Strings
The values of a varying-length string column can have different lengths. The
maximum length is determined by the length attribute of the column. The length
attribute must be between 1 and m inclusive, where m is determined by the
maximum record size as described in “Maximum record size” on page 324 in the
description of the CREATE TABLE statement. A varying-length graphic string
column with a length attribute greater than 127 is a long string column. Long
graphic string columns are subject to the same restrictions as long character string
columns. In all cases, the length control field of a varying-length graphic string
indicates the number of characters, not bytes.

60 SQL Reference  



  Data Types
 

Graphic String Host Variables
Graphic string variables with a maximum length greater than 127 are long string
variables. Long string variables are subject to the same restrictions as long string
columns.

Graphic variables can be defined in all host languages except FORTRAN.

 Numbers
The numeric data types are binary integer, floating-point, and decimal. Binary
integer includes small integer and large integer. Floating-point includes single
precision and double precision. Binary numbers are exact representations of
integers, decimal numbers are exact representations of real numbers, and
floating-point numbers are approximations of real numbers.

All numbers have a sign and a precision. When the value of a column or the result
of an expression is a decimal or floating-point zero, its sign is positive. The
precision of binary integers and decimal numbers is the total number of binary or
decimal digits excluding the sign. The precision of floating-point numbers is either
single or double, referring to the number of hexadecimal digits in the fraction.

 Small Integer
A small integer is a System/370 binary integer with a precision of 15 bits. The
range of small integers is -32768 to +32767.

 Large Integer
A large integer is a System/370 binary integer with a precision of 31 bits. The range
of large integers is -2147483648 to +2147483647.

Single Precision Floating-Point
A single precision floating-point number is a System/370 short (32 bits)
floating-point number. The range of magnitude is about 5.4E-79 to 7.2E+75.

Double Precision Floating-Point
A double precision floating-point number is a System/370 long (64 bits)
floating-point number. The range of magnitude is about 5.4E-79 to 7.2E+75.

 Decimal
A decimal number is a System/370 packed decimal number with an implicit decimal
point. The position of the decimal point is determined by the precision and the scale
of the number. The scale, which is the number of digits in the fractional part of the
number, cannot be negative or greater than the precision. The maximum precision
is 31 digits.

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is -n to +n, where n is the
largest positive number that can be represented with the applicable precision and
scale. The maximum range is 1 − 10QR to 10QR − 1.

  Chapter 3. Language Elements 61



 Data Types  
 

Numeric Host Variables
Binary integer and floating-point variables can be defined in all host languages.
Decimal variables can be defined in all host languages except FORTRAN. In
COBOL, decimal numbers can be represented in the packed decimal format used
for columns or in the format denoted by DISPLAY SIGN LEADING SEPARATE.

 Datetime Values
The datetime data types are described in the following sections. Such values are
neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings. Moreover,
strings can represent datetime values, as discussed in “String Representations of
Datetime Values” on page 63.

 Date
A date is a three-part value (year, month, and day) designating a point in time
using the Gregorian calendar, which is assumed to have been in effect from the
year 1 A.D.4 The range of the year part is 0001 to 9999. The range of the month
part is 1 to 12. The range of the day part is 1 to 28, 29, 30, or 31, depending on
the month.

The internal representation of a date is a string of 4 bytes. Each byte consists of
two packed decimal digits. The first 2 bytes represent the year, the third byte the
month, and the last byte the day.

The length of a DATE column as described in the catalog is the internal length
which is 4 bytes. The length of a DATE column as described in the SQLDA is the
external length which is 10 bytes unless a date exit routine was specified when
your DB2 subsystem was installed. (Writing a date exit routine is described in
Appendix B (Volume 2) of Administration Guide.) In that case, the string format of a

# date can be up to 255 bytes in length.  Accordingly, DCLGEN5 defines fixed-length
string variables for DATE columns with a length equal to the value of the field

| LOCAL DATE LENGTH on installation panel DSNTIP4, or a length of 10 bytes if a
value for the field was not specified.

 Time
A time is a three-part value (hour, minute, and second) designating a time of day
using a 24-hour clock. The range of the hour part is 0 to 24. The range of the
minute and second parts is 0 to 59. If the hour is 24, the minute and second parts
are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of
two packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column as described in the catalog is the internal length
which is 3 bytes. The length of a TIME column as described in the SQLDA is the
external length which is 8 bytes unless a time exit routine was specified when your

4 Historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15 are accepted as valid
dates although they never existed in the Gregorian calendar.

5 DCLGEN is a DB2 DSN subcommand for generating table declarations for designated tables or views. The declarations are stored
in MVS data sets, for later inclusion in DB2 source programs.

62 SQL Reference  



  Data Types
 

DB2 subsystem was installed. (Writing a date exit routine is described in Appendix
B (Volume 2) of Administration Guide.) In that case, the string format of a time can

# be up to 255 bytes in length. Accordingly, DCLGEN5 defines fixed-length string
variables for TIME columns with a length equal to the value of the field LOCAL

| TIME LENGTH on installation panel DSNTIP4, or a length of 8 bytes if a value for
the field was not specified.

 Timestamp
A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) that represents a date and time as defined previously, except that the
time includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes, each of which
consists of two packed decimal digits. The first 4 bytes represent the date, the next
3 bytes the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column as described in the catalog is the internal
length which is 10 bytes. The length of a TIMESTAMP column as described in the
SQLDA is the external length which is 26 bytes. DCLGEN5 therefore defines
26-byte, fixed-length string variables for TIMESTAMP columns.

String Representations of Datetime Values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in an
internal form that is transparent to the user of SQL. But dates, times, and
timestamps can also be represented by character strings. These representations
directly concern the SQL user because there are no special SQL constants for
datetime values and no host variables with a data type of date, time, or timestamp.

For retrieval, datetime values must be assigned to character string variables. When
a date or time is assigned to a variable, the string format is determined by a
precompiler option or subsystem parameter. When a string representation of a
datetime value is used in other operations, it is converted to a datetime value.
However, this can be done only if the string representation is recognized by DB2 or
an exit provided by the installation and the other operand is a compatible datetime
value. An input string representation of a date or time value with LOCAL specified
can be any short character string. The following sections describe the string formats
that are recognized by DB2.

Datetime values that are represented by character strings can appear in contexts
requiring values whose data types are DATE, TIME, or TIMESTAMP by using the
DATE, TIME, or TIMESTAMP functions.

Date strings: A string representation of a date is a character string that starts with
a digit and has a length of at least 8 characters. Trailing blanks can be included,
leading blanks are not allowed, and leading zeros can be omitted in the month and
day portions.

Valid string formats for dates are listed in Table 2 on page 64. Each format is
identified by name and includes an associated abbreviation (for use by the CHAR
function) and an example of its use. For an installation-defined date string format,
the format and length must have been specified when DB2 was installed. They
cannot be listed here.

  Chapter 3. Language Elements 63



 Data Types  
 

Time strings: A string representation of a time is a character string that starts with
a digit, and has a length of at least 4 characters. Trailing blanks can be included,
leading blanks are not allowed, and leading zeros can be omitted in the hour part of
the time; seconds can be omitted entirely. If you choose to omit seconds, an
implicit specification of 0 seconds is assumed. Thus 13.30 is equivalent to
13.30.00.

Valid string formats for times are listed in Table 3. Each format is identified by
name and includes an associated abbreviation (for use by the CHAR function) and
an example of its use. In the case of an installation-defined time string format, the
format and length must have been specified when your DB2 subsystem was
installed. They cannot be listed here.

In the USA format:

� The minutes can be omitted, thereby specifying 00 minutes. For example, 1 PM
is equivalent to 1:00 PM.

� The letters A, M, and P can be lowercase.

� A single blank must precede the AM or PM.

Table 2. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards Organization ISO yyyy-mm-dd 1987-10-12

IBM USA standard USA mm/dd/yyyy 10/12/1987

IBM European standard EUR dd.mm.yyyy 12.10.1987

Japanese industrial standard
Christian era

JIS yyyy-mm-dd 1987-10-12

Installation-defined LOCAL Any
installation-
defined form

—

| Note:  For LOCAL, the date exit for ASCII data is different (DSNXVDTA versus
| DSNXVDTX) than the exit for EBCDIC data.

Table 3. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards Organization6 ISO hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or
PM

1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese industrial standard
Christian era

JIS hh:mm:ss 13:30:05

Installation-defined LOCAL Any
installation-
defined form

—

| Note:  For LOCAL, the time exit for ASCII data is different (DSNXVTMA versus
| DSNXVTMX) than the exit for EBCDIC data.

6 This is an earlier version of the ISO format. JIS can be used to get the current ISO format.

64 SQL Reference  



  Assignment and Comparison
 

� The hour must not be greater than 12 and cannot be 0 except for the special
case of 00:00 AM.

Using the ISO format of the 24-hour clock, the correspondence between the USA
format and the 24-hour clock is as follows:

� 12:01 AM through 12:59 AM correspond to 00.01.00 through 00.59.00
� 01:00 AM through 11:59 AM correspond to 01.00.00 through 11.59.00
� 12:00 PM (noon) through 11:59 PM correspond to 12.00.00 through 23.59.00
� 12:00 AM (midnight) corresponds to 24.00.00
� 00:00 AM (midnight) corresponds to 00.00.00

Timestamp strings: A string representation of a timestamp is a character string
that starts with a digit and has a length of at least 16 characters. The complete
string representation of a timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn.
Trailing blanks can be included, leading blanks are not allowed, and leading zeros
can be omitted in the month, day, and hour part of the timestamp; trailing zeros can
be truncated or omitted entirely from microseconds. If you choose to omit any digit
of the microseconds portion, an implicit specification of 0 is assumed. Thus,
1990-3-2-8.30.00.10 is equivalent to 1990-03-02-08.30.00.100000.

Restrictions on the Use of LOCAL Datetime Formats
# The following rules apply to the character string representation of dates and times:

# For input: In distributed operations, DB2 as a server uses its local date or time
# routine to evaluate host variables and literals. This means that character string
# representation of dates and times can be:

# � One of the standard formats
# � A format recognized by the server's local date/time exit

# For output: With DRDA access, DB2 as a server returns date and time host
# variables in the format defined at the server. With DB2 private protocol access,
# DB2 as a server returns date and time host variables in the format defined at the
# requesting system. To have date and time host variables returned in another
# format, use CHAR(date-expression, XXXX) where XXXX is JIS, EUR, USA, ISO, or
# LOCAL to explicitly specify the specific format.

# For BIND PACKAGE COPY: When binding a package using the COPY option,
# DB2 uses the ISO format for output values unless the SQL statement explicitly
# specifies a different format. Input values can be specified in the format described
# above under “For input:” on page 65.

Assignment and Comparison
The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of CALL, INSERT, UPDATE,
FETCH, and SELECT INTO statements. Comparison operations are performed
during the execution of statements that include predicates and other language
elements such as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that data types of the operands must be
compatible. The compatibility rule also applies to other operations such as UNION
and concatenation. The compatibility matrix for data types is shown in the following
table.

  Chapter 3. Language Elements 65



 Assignment and Comparison  
 

Table 4. Compatibility of Data Types

 
Operands

Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

 
Date

 
Time

Time-
stamp

Binary
Integer

Yes Yes Yes No No No No No

Decimal
Number

Yes Yes Yes No No No No No

Floating
Point

Yes Yes Yes No No No No No

Character
String

No No No Yes No * * *

Graphic
String

No No No No Yes No No No

Date No No No * No Yes No No

Time No No No * No No Yes No

Time-
stamp

No No No * No No No Yes

Note:  * The compatibility of datetime values is limited to assignment and comparison:

� Datetime values can be assigned to character string columns and to character string variables, as explained in
“Datetime Assignments” on page 71.

� A valid string representation of a date can be assigned to a date column or compared to a date.

� A valid string representation of a time can be assigned to a time column or compared to a time.

� A valid string representation of a timestamp can be assigned to a timestamp column or compared to a timestamp.

Compatibility with a column that has a field procedure is determined by the data
type of the column, which applies to the decoded form of its values.

A basic rule for assignment operations is that a null value cannot be assigned to a
column that cannot contain null values, nor to a host variable that does not have an
associated indicator variable. For a host variable that does have an associated
indicator variable, a null value is assigned by setting the indicator variable to a
negative value. See “Referencing Host Variables” on page 89 for a discussion of
indicator variables.

 Numeric Assignments
The basic rule for numeric assignments is that the whole part of a decimal or
integer number cannot be truncated. If necessary, the fractional part of a decimal
number is truncated.

Decimal or Integer to Floating-Point
Because floating-point numbers are only approximations of real numbers, the result
of assigning a decimal or integer number to a floating-point column or variable
might not be identical to the original number.

66 SQL Reference  



  Assignment and Comparison
 

Floating-Point or Decimal to Integer
When a single precision floating-point number is converted to integer, rounding
occurs on the seventh significant digit, zeros are added to the end of the number, if
necessary, starting from the seventh significant digit, and the fractional part of the
number is eliminated.

When a double precision floating-point or decimal number is converted to integer,
the fractional part of the number is eliminated.

The following examples show a single precision floating-point number converted to
an integer:

Example 1:

The floating-point number 2.,,,,,45E6

assigned to an integer
column or host variable is: 2,,,,,,

Example 2:

The floating-point number 2.,,,,,555E8

assigned to an integer
column or host variable is: 2,,,,1,,,

The following examples show a double precision floating-point number converted to
an integer:

Example 1:

The floating-point number 2.,,,,,45E6

assigned to an integer
column or host variable is: 2,,,,,4

Example 2:

The floating-point number 2.,,,,,555E8

assigned to an integer
column or host variable is: 2,,,,,555

The following examples show a decimal number converted to an integer:

Example 1:

The decimal number 2,,,,,4.5

assigned to an integer
column or host variable is: 2,,,,,4

Example 2:

The decimal number 2,,,,,555.,

assigned to an integer
column or host variable is: 2,,,,,555

  Chapter 3. Language Elements 67



 Assignment and Comparison  
 

Decimal to Decimal
When a decimal number is assigned to a decimal column or variable, the number is
converted, if necessary, to the precision and the scale of the target. The necessary
number of leading zeros is added or eliminated, and, in the fractional part of the
number, the necessary number of trailing zeros is added, or the necessary number
of trailing digits is eliminated.

Integer to Decimal
When an integer is assigned to a decimal column or variable, the number is
converted first to a temporary decimal number and then, if necessary, to the
precision and scale of the target. The precision and scale of the temporary decimal
number is 5,0 for a small integer or 11,0 for a large integer.

Floating-Point to Floating-Point
When a single precision floating-point number is assigned to a double precision
floating-point column or variable, the single precision data is padded with eight hex
zeros.

When a double precision floating-point number is assigned to a single precision
floating-point column or variable, the double precision data is converted and
rounded up on the seventh hex digit.

Floating-Point to Decimal
When a single precision floating-point number is assigned to a decimal column or
variable, the number is first converted to a temporary decimal number of precision
6 by rounding on the seventh decimal digit. Twenty five zeros are then appended to
the number to bring the precision to 31. Because of rounding, a number less than
0.5×10-6 is reduced to 0.

When a double precision floating-point number is assigned to a decimal column or
variable, the number is first converted to a temporary decimal number of precision
15, and then, if necessary, truncated to the precision and scale of the target. In this
conversion, zeros are added to the end of the number, if necessary, to bring the
precision to 16. The number is then rounded (using floating-point arithmetic) on the
sixteenth decimal digit to produce at 15-digit number. Because of rounding, a
number less in magnitude than 0.5×10-15 is reduced to 0. If the decimal number
requires more than 15 digits to the left of the decimal point, an error is reported.
Otherwise, the scale is given the largest possible value that allows the whole part
of the number to be represented without loss of significance.

68 SQL Reference  



  Assignment and Comparison
 

The following examples show the effect of converting a double precision
floating-point number to decimal:

Example 1:

The floating-point number .123456789,98765E-,5

  
in decimal notation is: .,,,,,123456789,98765

 +5

Rounding adds 5
in the 16th position .,,,,,123456789148765

  
and truncates the result to .,,,,,1234567891

  
Zeros are then added to the
end of a 31-digit result: .,,,,,1234567891,,,,,,,,,,,,,,,,

Example 2:

The floating-point number 1.2339999999999E+,1

  
in decimal notation is: 12.339999999999,,

 +5

Rounding adds 5
in the 16th position 12.339999999999,5

  
and truncates the result to 12.339999999999,

  
Zeros are then added to the
end of a 31-digit result: 12.339999999999,,,,,,,,,,,,,,,,,

To COBOL Integers
Assignment to COBOL integer variables uses the full size of the integer. Thus, the
value placed in the COBOL data item might be out of the range of values.

Example 1: If COL1 contains a value of 12345, the following statements cause the
value 12345 to be placed in A, even though A has been defined with only 4 digits:

,1 A PIC S9999 BINARY.

EXEC SQL SELECT COL1

 INTO :A

 FROM TABLEX

 END-EXEC.

Example 2: The following COBOL statement results in 2345 being placed in A:

MOVE 12345 TO A.

 String Assignments
The following rules apply when both the source and the target are strings. When a
datetime data type is involved, see “Datetime Assignments” on page 71.

The basic rule for string assignments is that the length of a string assigned to a
column must not be greater than the length attribute of the column. (Trailing blanks
are included in the length of the string.)

  Chapter 3. Language Elements 69



 Assignment and Comparison  
 

When a string is assigned to a fixed-length string column or host variable and the
length of the string is less than the length attribute of the target, the string is
padded on the right with the necessary number of SBCS or DBCS blanks, even
when the source or target is BIT data.

When a string of length n is assigned to a varying-length string variable with a
maximum length greater than n, the characters after the nth character of the
variable are undefined and might or might not be set to blanks.

When a string is assigned to a variable and the string is longer than the length
attribute of the variable, the string is truncated on the right by the necessary
number of characters. When this occurs, the value W is assigned to the
SQLWARN1 field of the SQLCA. Furthermore, if an indicator variable is provided, it
is set to the original length of the string.

Assigning a mixed data string: A mixed data string containing DBCS characters
cannot be assigned to an SBCS column or an SBCS variable. The following rules
apply when a mixed data string is assigned to a host variable and the string is
longer than the length attribute of the variable:

� If the string is not well-formed mixed data, it is truncated as if it were BIT or
graphic data.

� If the string is well-formed mixed data, it is modified on the right such that it is
well-formed mixed data with a length that is the same as the length attribute of
the variable and the number of characters lost is minimal.

C NUL-terminated strings: A C NUL-terminated string variable referenced in a
CONNECT statement need not contain a NUL (X'00'). Otherwise, DB2 enforces
the convention that the value of a NUL-terminated string variable, either character
or graphic, is NUL-terminated. An input host variable that does not contain a NUL
will cause an error. A value assigned to an output variable will always be
NUL-terminated even if a character must be truncated to make room for the NUL.

When a string of length n is assigned to a C NUL-terminated string variable with a
length greater than n+1, the rules depend on whether the source string is a value
of a fixed-length string column or a varying-length string column:

� If the source is a fixed-length string column, the string is padded on the right
with x-n-1 blanks, where x is the length of the variable. The padded string is
then assigned to the variable and a NUL is placed in the last byte of the
variable.

� If the source is a varying-length string column, the string is assigned to the first
n bytes of the variable and a NUL is placed in the next byte.

Conversion Rules for String Assignment
A string assigned to a column or host variable is first converted, if necessary, to the
coded character set of the target. Conversion is necessary only if all the following
are true:

� The CCSIDs of string and target are different.
� Neither CCSID is X'FFFF' (neither the string nor the target is defined as BIT

data).
� The string is neither null nor empty.
� The SYSSTRINGS catalog table indicates that conversion is required.

70 SQL Reference  



  Assignment and Comparison
 

An error occurs if:

� The SYSSTRINGS table is used but contains no information about the pair of
CCSIDs.

� A character of the string cannot be converted and the operation is assignment
to a column or to a host variable that has no indicator variable.

� A mixed data string containing DBCS characters is assigned to an SBCS
column.

A warning occurs if:

� A character of the string is converted to a substitution character. A substitution
character is the character that is used when a character of the source character
set is not part of the target character set. For example, if the source character
set includes Katakana characters and the target character set does not, a
Katakana character is converted to the EBCDIC SUB X'3F'.

� A character of the string cannot be converted and the operation is assignment
to a host variable that has an indicator variable. For example, a DBCS
character cannot be converted if the host variable has an SBCS CCSID. In this
case, the string is not assigned to the host variable and the indicator variable is
set to -2.

 Datetime Assignments
A value assigned to a DATE column must be a date or a valid string representation
of a date. A date can only be assigned to a DATE column, a character string
column, or a character string variable. A value assigned to a TIME column must be
a time or a valid string representation of a time. A time can only be assigned to a
TIME column, a character string column, or a character string variable. A value
assigned to a TIMESTAMP column must be a timestamp or a valid string
representation of a timestamp. A timestamp can only be assigned to a
TIMESTAMP column, a character string column, or a character string variable. A
datetime value cannot be assigned to a column that has a field procedure.

When a datetime value is assigned to a character string variable or column, it is
converted to its string representation. Leading zeros are not omitted from any part
of the date, time, or timestamp. The required length of the target varies depending
on the format of the string representation. If the length of the target is greater than
required, it is padded on the right with blanks. If the length of the target is less than
required, the result depends on the type of datetime value involved, and on the
type of target.

� If the target is a character column, truncation is not allowed. The length of the
column must be at least 10 for a date, 8 for a time, and 19 for a timestamp.

� When the target is a host variable, the following rules apply:

For a DATE: The length of the variable must not be less than 10.
For a TIME: If the USA format is used, the length of the variable must not
be less than 8. This format does not include seconds.

If the ISO, EUR, or JIS format is used, the length of the variable must not
be less than 5. If the length is 5, 6, or 7, the seconds part of the time is
omitted from the result and SQLWARN1 is set to 'W'. In this case, the
seconds part of the time is assigned to the indicator variable if one is

  Chapter 3. Language Elements 71



 Assignment and Comparison  
 

provided, and, if the length is 6 or 7, the value is padded with blanks so
that it is a valid string representation of a time.
For a TIMESTAMP: The length of the variable must not be less than 19. If
the length is between 19 and 25, the timestamp is truncated like a string,
causing the omission of one or more digits of the microsecond part. If the
length is 20, the trailing decimal point is replaced by a blank so that the
value is a valid string representation of a timestamp.

 Numeric Comparisons
Numbers are compared algebraically, that is, with regard to sign. For example, −2
is less than +1.

If one number is an integer and the other is decimal, the comparison is made with
a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is
made with a temporary copy of one of the numbers that has been extended with
trailing zeros so that its fractional part has the same number of digits as the other
number.

If one number is double precision floating-point and the other is integer, decimal, or
single precision floating-point, the comparison is made with a temporary copy of the
other number which has been converted to double precision floating-point.
However, if a single precision floating-point number is compared with a floating
point constant, the comparison is made with a single-precision form of the constant.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

 String Comparisons
Two strings are compared by comparing the corresponding bytes of each string. If
the strings do not have the same length, the comparison is made with a temporary
copy of the shorter string that has been padded on the right with blanks so that it
has the same length as the other string.

Two strings are equal if they are both empty or if all corresponding bytes are equal.
An empty string is equal to a blank string. If two strings are not equal, their
relationship (that is, which has the greater value) is determined by the comparison
of the first pair of unequal bytes from the left end of the strings. This comparison is

| made according to the collating sequence associated with the encoding scheme of
| the data. For ASCII data, characters A through Z (both upper and lowercase) have
# a greater value than characters 0 through 9. For EBCDIC data, characters A
# through Z (both upper and lowercase) have a lesser value than characters 0
| through 9.

Varying-length strings with different lengths are equal if they differ only in the
number of trailing blanks. In operations that select one value from a collection of
such values, the value selected is arbitrary. The operations that can involve such
an arbitrary selection are DISTINCT, MAX, MIN, and references to a grouping
column. See the description of GROUP BY for further information about the
arbitrary selection involved in references to a grouping column.

72 SQL Reference  



  Assignment and Comparison
 

String Comparisons With Field Procedures
If a column with a field procedure is compared with the value of a variable or a
constant, the variable or constant is encoded by the field procedure before the
comparison is made. If the comparison operator is LIKE, the variable or constant is
not encoded and the column value is decoded.

If a column with a field procedure is compared with another column, that column
must have the same field procedure. The comparison is performed on the encoded
form of the values in the columns. If the encoded values are numeric, their data
types must be identical; if they are strings, their data types must be compatible.

If two encoded strings of different lengths are compared, the shorter is temporarily
padded with blanks so that it has the same length as the other string.

| In a CASE expression, if a column with a field procedure is used as the
| result-expression in a THEN or ELSE clause, all other columns that are used as
| result-expressions must have the same field procedure. Otherwise, no column
| used in a result-expression may name a field procedure.

Conversion Rules for String Comparison
When two strings are compared, one of the strings is first converted, if necessary,
to the coded character set of the other string. When it occurs, conversion takes
place after any application of a field procedure. Conversion is necessary only if all
of the following are true:

� The CCSIDs of the two strings are different.
� Neither CCSID is X'FFFF' (neither string is defined as BIT data).
� The string selected for conversion is neither null nor empty.
� The SYSSTRINGS catalog table indicates that conversion is required.

The conversion that occurs when SBCS data is compared with mixed data depends
on the value of the field MIXED DATA on installation panel DSNTIPF at the DB2
that does the comparison:

� If this value is YES, the SBCS operand is converted to MIXED.
� If this value is NO, the MIXED operand is converted to SBCS.

Otherwise, the string selected for conversion depends on the type of the operands.
The following table shows which operand supplies the target CCSID, given the
operand types.

Table 5. Operand that Supplies the CCSID for Character Conversion

First Operand

Second Operand

Column
Value

String
Constant

Special
Register

Derived
Value

Host
Variable

Column Value first first first first first

String Constant second first first first first

Special Register second first first first first

Derived Value second second second first first

Host Variable second second second second first/second1

Note:  1. Both operands are converted, if necessary, to the system CCSID of the server.

  Chapter 3. Language Elements 73



 Constants  
 

For example, assume a comparison of the form:

string-constant = derived-value

Here, the relevant table entry is in the second row and fourth column. The value for
this entry shows that the first operand (string-constant) supplies the target CCSID.
Thus, the derived value is converted, if necessary, to the coded character set of the
string constant.

An error occurs if a character of the string cannot be converted or the
SYSSTRINGS table is used but contains no information about the pair of CCSIDs
of the operands being compared. A warning occurs if a character of the string is
converted to a substitution character.

 Datetime Comparisons
A DATE, TIME, or TIMESTAMP value can be compared either with another value
of the same data type or with a string representation of that data type. All
comparisons are chronological, which means the further a point in time is from
January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero seconds
are implied.

Comparisons involving TIMESTAMP values are chronological without regard to
representations that might be considered equivalent. Thus, the following predicate
is true:

TIMESTAMP('199,-,2-23-,,.,,.,,') > '199,-,2-22-24.,,.,,'

 Constants
A constant (also called a literal) specifies a value. Constants are classified as
string constants or numeric constants. Numeric constants are further classified as
integer, floating-point, or decimal. String constants are classified as character or
graphic.

All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored.

 Integer Constants
An integer constant specifies a binary integer as a signed or unsigned number that
has a maximum of 10 significant digits and no decimal point. If the value is not
within the range of a large integer, the constant is interpreted as a decimal
constant. The data type of an integer constant is large integer.

Examples:

64 -15 +1,, 32767 72,176

In syntax diagrams, the term integer is used for an integer constant that must not
include a sign.

74 SQL Reference  



  Constants
 

 Floating-Point Constants
A floating-point constant specifies a floating-point number as two numbers
separated by an E. The first number can include a sign and a decimal point. The
second number can include a sign but not a decimal point. The value of the
constant is the product of the first number and the power of 10 specified by the
second number. It must be within the range of floating-point numbers. The number
of characters in the constant must not exceed 30. Excluding leading zeros, the
number of digits in the first number must not exceed 17 and the number of digits in
the second must not exceed 2. The data type of a floating-point constant is double
precision floating-point.

Examples: The following floating-point constants represent the numbers 150,
200000, -0.22, and 500:

 15E1 2.E5 -2.2E-1 +5.E+2

 Decimal Constants
A decimal constant specifies a decimal number as a signed or unsigned number of
no more than 31 digits and either includes a decimal point or is not within the range
of binary integers. The precision is the total number of digits, including those, if any,
to the right of the decimal point. The total includes all leading and trailing zeros.
The scale is the number of digits to the right of the decimal point, including trailing
zeros.

Examples: The following decimal constants have, respectively, precisions and
scales of 5 and 2; 4 and 0; 2 and 0; 23 and 2:

,25.5, 1,,,. -15. +375893333333333333333.33

Character String Constants
A character string constant specifies a varying-length character string. There are
two forms of character string constant:

� A sequence of characters that starts and ends with a string delimiter, which is
either an apostrophe (') or a quotation mark ("). For the factors that determine
which is applicable, see “Apostrophes and Quotation Marks in String Delimiters”
on page 122. This form of string constant specifies the character string
contained between the string delimiters. The number of bytes between the

# delimiters must not be greater than 255. Two consecutive string delimiters are
used to represent one string delimiter within the character string.

� An X followed by a sequence of characters that starts and ends with a string
delimiter. The characters between the string delimiters must be an even
number of hexadecimal digits. The number of hexadecimal digits must not
exceed 254. A hexadecimal digit is a digit or any of the letters A through F
(uppercase or lowercase). Under the conventions of hexadecimal notation,
each pair of hexadecimal digits represents a character. This form of string
constant allows you to specify characters that do not have a keyboard
representation.

Examples:

'12/14/1985' '32' 'DON'T CHANGE' X'FFFF' ''

The rightmost string in the example ('') represents an empty character string
constant, which is a string of zero length.

  Chapter 3. Language Elements 75



 Constants  
 

At DBCS sites, a character string constant is classified as mixed data if it includes
a DBCS substring. In all other cases, a character string constant is classified as
SBCS data. The CCSID assigned to the constant is the appropriate system CCSID
of the application server. A mixed string constant can be continued from one line to
the next only if the break occurs between single byte characters.

 Datetime Constants
A datetime constant is a character string constant of a particular format. Character
string constants are described under the previous heading, “Character String
Constants” on page 75. For information about the valid string formats, see “String
Representations of Datetime Values” on page 63.

76 SQL Reference  



  Constants
 

Graphic String Constants
A graphic string constant specifies a varying-length graphic string. (Shift-in and
shift-out characters for EBCDIC data are discussed in “Character Strings” on
page 57.)

| In EBCDIC environments, the forms of graphic string constants are7:

dbcs-string

dbcs-stringG GG’ ’

G ’’

g ’ ’

g ’’

dbcs-string ’ ’

’’

’ ’

’’

N

N

n

n

’ ’

’’

’ ’

N

PL/I

All other
contexts

dbcs-string G G

Context Graphic String Constant Empty String Example

In SQL statements and in host language statements in a source program, graphic
string constants cannot be continued from one line to the next. The maximum
number of DBCS characters in a graphic string constant is 124.

7 The PL/I form of graphic string constants is supported only in static SQL statements.

  Chapter 3. Language Elements 77



 Special Registers  
 

 Special Registers
A special register is a storage area defined for a process by DB2. Wherever its
name appears in an SQL statement, the name is replaced by the register's value
when the statement is executed. Thus, the name acts like a function that has no
arguments. The form of a special register is as follows:

special registers 

�─ ──┬ ┬──┬ ┬─CURRENT DATE─── ───── ────────────────────────────────────────────────────────────�
 │ │└ ┘─CURRENT_DATE───(1)

 ├ ┤ ─CURRENT DEGREE──────────
 ├ ┤ ─CURRENT PACKAGESET──────

#  ├ ┤#  ─CURRENT PRECISION───────
 ├ ┤ ─CURRENT RULES───────────
 ├ ┤ ─CURRENT SERVER──────────
 ├ ┤ ─CURRENT SQLID───────────
 ├ ┤──┬ ┬─CURRENT TIME─── ─────
 │ │└ ┘─CURRENT_TIME───(1)

 ├ ┤──┬ ┬─CURRENT TIMESTAMP───
 │ │└ ┘─CURRENT_TIMESTAMP───(1)

 ├ ┤─── ──CURRENT TIMEZONE─ ───
 └ ┘─── ──USER─ ───────────────

Note:
1 The SQL standard uses the form with the underline.

General Rules for Special Registers
Following these general rules for special registers, each special register is
described individually.

Changing register values: A commit or rollback operation has no effect on the
values of special registers. Nor does any SQL statement, with the following
exceptions:

� SQL SET statements can change the values of CURRENT DEGREE,
# CURRENT PACKAGESET, CURRENT PRECISION, CURRENT RULES, and

CURRENT SQLID.

� SQL CONNECT statements can change the value of CURRENT SERVER.

| CCSIDs for register values: The values of certain special registers are character
| strings. The registers with string values are CURRENT DEGREE, CURRENT
# PACKAGESET, CURRENT PRECISION, CURRENT RULES, CURRENT SERVER,
| CURRENT SQLID, and USER. The CCSID that is associated with these registers is
| either the one named in the ASCII CODED CHAR SET or EBCDIC CODED CHAR
| SET field on installation panel DSNTIPF at the server executing the statement. The
| CCSID that is used depends on whether the SQL statement in which the special
| register is referenced involves data in ASCII or EBCDIC tables; if no table is
| involved, the CCSID for the default encoding scheme for your system is used. Field
| DEF ENCODING SCHEME on installation panel specifies whether the default
| encoding scheme is EBCDIC or ASCII.

Datetime special registers: The datetime registers are named CURRENT DATE,
| CURRENT TIME, and CURRENT TIMESTAMP. Datetime special registers are

78 SQL Reference  



  Special Registers
 

| stored in an internal format. When two or more of these registers are implicitly or
explicitly specified in a single SQL statement, they represent the same point in
time. A datetime special register is implicitly specified when it is used to provide the
default value of a datetime column.

The values of these special registers are based on:

� The time-of-day clock of the processor for the server executing the SQL
statement

� The MVS TIMEZONE parameter for this processor. The TIMEZONE parameter
is in SYS1.PARMLIB(CLOCKXX).

To evaluate the references when the statement is being executed, a single reading
from the time-of-day clock is incremented by the number of hours, minutes, and
seconds specified by the TIMEZONE parameter. The values derived from this are
assumed to be the local date, time, or timestamp, where local means local to the
DB2 that executes the statement. This assumption is correct if the clock is set to
local time and the MVS TIMEZONE parameter is zero or the clock is set to GMT
and the MVS TIMEZONE parameter gives the difference from GMT. Universal time,
coordinated (UTC) is another name for Greenwich Mean Time (GMT).

Since the datetime special registers and the CURRENT TIMEZONE special register
depend on the MVS parameter PARMTZ(SYS1.PARMLIB(CLOCKXX)), their values
are affected if the MVS local time at the server is changed by the MVS system
command SET CLOCK. The values of the CURRENT DATE and CURRENT
TIMESTAMP special registers might be affected if the MVS local date at the server
is changed by the MVS system command SET DATE8.

 CURRENT DATE
CURRENT DATE, or equivalently CURRENT_DATE, specifies the current date.
The data type is DATE. The date is derived by the DB2 that executes the SQL
statement that refers to the special register. For a description of how the date is
derived, see “Datetime special registers” on page 78.

Example: Display the average age of employees.

SELECT AVG(YEAR(CURRENT DATE - BIRTHDATE))

 FROM DSN851,.EMP;

 CURRENT DEGREE
CURRENT DEGREE specifies the degree of parallelism for the execution of
queries that are dynamically prepared by the application process. The data type of
the register is CHAR(3) and the only valid values are 1 (padded on the right with
two blanks) and ANY.

If the value of CURRENT DEGREE is 1 when a query is dynamically prepared, the
execution of that query will not use parallelism. If the value of CURRENT DEGREE
is ANY when a query is dynamically prepared, the execution of that query can
involve parallelism. See Section 5 (Volume 2) of Administration Guide for a
description of query parallelism.

8 Whether the SET DATE command affects these special registers depends on the MVS system level and the program temporary
fix (PTF) level of the system.

  Chapter 3. Language Elements 79



 Special Registers  
 

The initial value of CURRENT DEGREE is determined by the value of field
CURRENT DEGREE on installation panel DSNTIP4. The default for the initial value
is 1 unless your installation has changed it to be ANY by modifying the value in that
field. You can change the value of the register by executing the statement SET
CURRENT DEGREE.

CURRENT DEGREE is a register at the application server. Its value applies to
queries that are dynamically prepared at that application server and to queries that
are dynamically prepared at another DB2 subsystem as a result of the use of a
DB2 private connection between that application server and that DB2 subsystem.

Example: The following statement inhibits parallelism:

SET CURRENT DEGREE = '1';

 CURRENT PACKAGESET
CURRENT PACKAGESET specifies a string of blanks or the collection ID of the
package or packages that will be used to execute SQL statements. The data type
is CHAR(18). If necessary, the collection ID is padded on the right with blanks so
that its length is 18 bytes.

The initial value of CURRENT PACKAGESET is blanks. The value is a collection ID
only if the application process has explicitly specified a collection ID by means of
the SET CURRENT PACKAGESET statement. See “SET CURRENT
PACKAGESET” on page 470 for details about this statement.

Example: Before passing control to another program, identify the collection ID for its
package as ALPHA.

EXEC SQL SET CURRENT PACKAGESET = 'ALPHA';

#  CURRENT PRECISION
# CURRENT PRECISION specifies the rules to be used when both operands in a
# decimal operation have precisions of 15 or less. The data type of the register is
# CHAR(5), and the only valid values are 'DEC15' and 'DEC31'. DEC15 specifies
# the rules that do not allow a precision greater than 15 digits, and DEC31 specifies
# the rules that allow a precision of up to 31 digits. The rules for DEC31 are always
# used if either operand has a precision greater than 15.

# The initial value of CURRENT PRECISION is determined by the value of field
# DECIMAL ARITHMETIC on installation panel DSNTIP4. The default for the initial
# value is DEC15 unless your installation has changed it to be DEC31 by modifying
# the value in that field. You can change the value of the register by executing the
# statement SET CURRENT PRECISION.

# CURRENT PRECISION only affects dynamic SQL. If the value of CURRENT
# PRECISION is DEC15 when an SQL statement is dynamically prepared, DEC15
# rules will apply. If the value of CURRENT PRECISION is DEC31 when an SQL
# statement is dynamically prepared, DEC31 rules will apply. Preparation of a
# statement with DEC31 instead of DEC15 is more likely to result in an error,
# especially for division operations. For more information, see “Arithmetic with Two
# Decimal Operands” on page 94.

# Example: Set CURRENT PRECISION so that subsequent statements that are
# prepared use DEC31 rules for decimal arithmetic:

80 SQL Reference  



  Special Registers
 

# SET CURRENT PRECISION = 'DEC31';

 CURRENT RULES
CURRENT RULES specifies whether certain SQL statements are executed in
accordance with DB2 rules or the rules of the SQL standard. The data type of the
register is CHAR(3), and the only valid values are 'DB2' and 'STD'.

CURRENT RULES is a register at the application server. If the server is not the
local DB2, the initial value of the register is 'DB2'. Otherwise, the initial value is
the same as the value of the SQLRULES bind option. You can change the value of
the register by executing the statement SET CURRENT RULES.

| CURRENT RULES affects the statements listed in Table 6. The table summarizes
| when the statements are affected and shows where to find detailed information.
| CURRENT RULES also affects whether DB2 issues an existence error (SQLCODE
| -204) or an authorization error (SQLCODE -551) when an object does not exist.

Example: Set CURRENT RULES so that a later ALTER TABLE statement is
executed in accordance with the rules of the SQL standard:

SET CURRENT RULES = 'STD';

Table 6. Summary of Statements Affected by CURRENT RULES

Statement What is Affected
Details on
Page

ALTER TABLE Enforcement of check constraints added.

| Default value of the delete rule for referential
| constraints.

217 

| CREATE TABLE| Default value of the delete rule for referential
| constraints.
| 308 

DELETE Authorization requirements for searched
DELETE.

357 

GRANT Granting privileges to yourself. 400 

REVOKE Granting privileges to yourself. 443 

| UPDATE| Authorization requirements for searched
| UPDATE.
| 477 

  Chapter 3. Language Elements 81



 Special Registers  
 

 CURRENT SERVER
CURRENT SERVER specifies the location name of the current server. The data
type is CHAR(16). If necessary, the location name is padded on the right with
blanks so that its length is 16 bytes.

The initial value of CURRENT SERVER depends on the CURRENTSERVER BIND
option. If CURRENTSERVER X is specified on the BIND subcommand, the initial
value is X. If the option is not specified, the initial value is the location name of the
local DB2. The value of CURRENT SERVER is changed by the successful
execution of a CONNECT statement.

The value of CURRENT SERVER is a string of blanks when:

� The application process is in the unconnected state, or
� The application process is connected to a local DB2 subsystem that does not

have a location name.

Example: Set the host variable CS to the location name of the current server.

EXEC SQL SET :CS = CURRENT SERVER;

 CURRENT SQLID
CURRENT SQLID specifies the SQL authorization ID of the process. The data type
is CHAR(8). If necessary, the authorization ID is padded on the right with blanks so
that its length is 8 bytes.

The initial value of CURRENT SQLID can be provided by the connection or sign-on
exit routine. If not, the initial value is the primary authorization ID of the process.
CURRENT SQLID can only be referred to in an SQL statement that is executed by
the current server.

Example: Set the SQL authorization ID to 'GROUP34' (one of the authorization IDs
of the process).

SET CURRENT SQLID = 'GROUP34';

 CURRENT TIME
CURRENT TIME, or equivalently CURRENT_TIME, specifies the current time. The
data type is TIME.

The time is derived by the DB2 that executes the SQL statement that refers to the
special register. For a description of how the time is derived, see “Datetime special
registers” on page 78.

Example: Display information about all project activities and include the current date
and time in each row of the result.

SELECT DSN851,.PROJACT.O, CURRENT DATE, CURRENT TIME

 FROM DSN851,.PROJACT;

82 SQL Reference  



  Special Registers
 

 CURRENT TIMESTAMP
CURRENT TIMESTAMP, or equivalently CURRENT_TIMESTAMP, specifies the
current timestamp. The data type is TIMESTAMP.

The timestamp is derived by the DB2 that executes the SQL statement that refers
to the special register. For a description of how the timestamp is derived, see
“Datetime special registers” on page 78.

Example: Display information about the full image copies that were taken in the last
week.

SELECT O FROM SYSIBM.SYSCOPY

WHERE TIMESTAMP > CURRENT TIMESTAMP - 7 DAYS;

 CURRENT TIMEZONE
CURRENT TIMEZONE specifies the MVS TIMEZONE parameter in the form of a
time duration. The data type is DECIMAL(6,0).

The time duration is derived by the DB2 that executes the SQL statement that
refers to the special register. The seconds part of the time duration is always zero.
An error occurs if the hours portion of the MVS TIMEZONE parameter is not
between -24 and 24.

Example: Display information from SYSCOPY, but with the TIMESTAMP converted
to GMT. This example is based on the assumption that the installation sets the
clock to GMT and the MVS TIMEZONE parameter to the difference from GMT.

SELECT DBNAME, TSNAME, DSNUM, ICTYPE, TIMESTAMP - CURRENT TIMEZONE

 FROM SYSIBM.SYSCOPY;

 USER
USER specifies the primary authorization ID of the process. The data type is
CHAR(8). If necessary, the authorization ID is padded on the right with blanks so
that its length is 8 bytes.

If USER is referred to in an SQL statement that is executed at a remote DB2 and
the primary authorization ID has been translated to a different authorization ID,
USER specifies the translated authorization ID. For an explanation of authorization
ID translation, see Section 3 (Volume 1) of Administration Guide.

Example: Display information about tables, views, and aliases that are owned by
the primary authorization ID of the process.

SELECT O FROM SYSIBM.SYSTABLES WHERE CREATOR = USER;

  Chapter 3. Language Elements 83



 Column Names  
 

 Column Names
The meaning of a column name depends on its context. A column name can be
used to:

� Declare the name of a column, as in a CREATE TABLE statement

� Identify a column, as in a CREATE INDEX statement

� Specify values of the column, as in the following contexts:

– In a column function, a column name specifies all values of the column in
the group or intermediate result table to which the function is applied.
(Groups and intermediate result tables are explained in Chapter 5.
Queries, which begins on page 167.) For example, MAX(SALARY) applies
the function MAX to all values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values
in the intermediate result table to which the clause is applied. For example,
ORDER BY DEPT orders an intermediate result table by the values of the
column DEPT.

– In an expression, a search condition, or a scalar function, a column name
specifies a value for each row or group to which the construct is applied.
For example, when the search condition CODE = 20 is applied to some
row, the value specified by the column name CODE is the value of the
column CODE in that row.

Qualified Column Names
A qualifier for a column name can be a table name, a view name, an alias name, a
synonym, or a correlation name.

Whether a column name can be qualified depends, like its meaning, on its context:

� In some forms of the COMMENT ON and LABEL ON statements, a column
name must be qualified. This is shown in the syntax diagrams.

� Where the column name specifies values of the column, a column name can
be qualified at the user's option.

� In all other contexts, a column name must not be qualified. This rule will be
mentioned in the discussion of each statement to which it applies.

Where a qualifier is optional it can serve two purposes. See “Column Name
Qualifiers to Avoid Ambiguity” on page 85 and “Column Name Qualifiers in
Correlated References” on page 86 for details.

 Correlation Names
A correlation name can be defined in the FROM clause of a query and in the first
clause of an UPDATE or DELETE statement. For example, the clause FROM
X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

With Z defined as a correlation name for X.MYTABLE, only Z should be used to
qualify a reference to a column of X.MYTABLE in that SELECT statement.

A correlation name is associated with a table or view only within the context in
which it is defined. Hence, the same correlation name can be defined for different
purposes in different statements, or in different clauses of the same statement.

84 SQL Reference  



  Column Names
 

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a
correlated reference. It can also be used merely as a shorter name for a table or
view. In the example, Z might have been used merely to avoid having to enter
X.MYTABLE more than once.

Column Name Qualifiers to Avoid Ambiguity
In the context of a function, a GROUP BY clause, ORDER BY clause, an
expression, or a search condition, a column name refers to values of a column in
some table or view. The tables and views that might contain the column are called
the object tables of the context. Two or more object tables might contain columns
with the same name. One reason for qualifying a column name is to name the table
from which the column comes.

Table designators: A qualifier that names a specific object table is called a table
designator. The clause that identifies the object tables also establishes the table
designators for them. For example, the object tables of an expression in a SELECT
clause are named in the FROM clause that follows it, as in this statement:

SELECT DISTINCT Z.EMPNO, EMPTIME, PHONENO

FROM DSN851,.EMP Z, DSN851,.EMPPROJACT

WHERE WORKDEPT = 'D11'

AND EMPTIME > ,.5

AND Z.EMPNO = DSN851,.EMPPROJACT.EMPNO;

This example illustrates how to establish table designators in the FROM clause:

� A name that follows a table name, view name, alias, or synonym is both a
correlation name and a table designator. Thus, Z is a table designator and
qualifies the first column name after SELECT.

� A table name, view name, alias, or synonym that is not followed by a
correlation name is a table designator. Thus, the qualified table name,
DSN8510.EMPPROJACT is a table designator and qualifies the EMPNO
column.

Avoiding undefined or ambiguous references in DB2 SQL: When a column
name refers to values of a column, exactly one object table must include a column
with that name. The following situations are considered errors:

� No object table contains a column with the specified name. The reference is
undefined.

� The column name is qualified by a table designator, but the table named does
not include a column with the specified name. Again, the reference is
undefined.

� The name is unqualified and more than one object table includes a column with
that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely defined
table designator. If the column is contained in several object tables with different
names, the table names can be used as designators.

Two or more object tables can be instances of the same table. A FROM clause that
includes n references to the same table should include at least n-1 unique
correlation names.

  Chapter 3. Language Elements 85



 Column Names  
 

For example, in the following FROM clause X and Y are defined to refer,
respectively, to the first and second instances of the table EMP.

SELECT X.LASTNAME, Y.LASTNAME

FROM DSN851,.EMP X, DSN851,.EMP Y

WHERE Y.JOB = 'MANAGER'

AND X.WORKDEPT = Y.WORKDEPT

AND X.JOB <> 'MANAGER';

Column Name Qualifiers in Correlated References
A subselect is a form of a query that can be used as a component of various SQL
statements. Refer to “Chapter 5. Queries” on page 167 for more information on
subselects. A subselect used within a search condition of any statement is called a
subquery.

A subquery can include search conditions of its own, and these search conditions
can, in turn, include subqueries. Thus, an SQL statement can contain a hierarchy of
subqueries. Those elements of the hierarchy that contain subqueries are said to be
at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table
designators. This is the FROM clause, except in the highest level of an UPDATE or
DELETE statement. A search condition of a subquery can reference not only
columns of the tables identified by the FROM clause of its own element of the
hierarchy, but also columns of tables identified at any level along the path from its
own element to the highest level of the hierarchy. A reference to a column of a
table identified at a higher level is called a correlated reference.

A correlated reference to column C of table T can be of the form C, T.C, or Q.C, if
Q is a correlation name defined for T. However, a correlated reference in the
form of an unqualified column name is not good practice. The following
explanation is based on the assumption that a correlated reference is always in the
form of a qualified column name and that the qualifier is a correlation name.

A qualified column name, Q.C, is a correlated reference only if these three
conditions are met:

� Q.C is used in a search condition of a subquery.
� Q does not name a table used in the FROM clause of that subquery.
� Q does name a table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the
table designator of that table or view. Because the same table or view can be
identified at many levels, unique correlation names are recommended as table
designators. If Q is used to name a table at more than one level, Q.C refers to the
lowest level that contains the subquery that includes Q.C.

For example, in the following statement, the correlated reference X.WORKDEPT (in
the last line) refers to the value of WORKDEPT in table DSN8510.EMP at the level
of the first FROM clause (which establishes X as a correlation name for
DSN8510.EMP.). The statement lists employees who make less than the average
salary for their department.

86 SQL Reference  



  Column Names
 

SELECT EMPNO, LASTNAME, WORKDEPT

FROM DSN851,.EMP X

WHERE SALARY < (SELECT AVG(SALARY)

 FROM DSN851,.EMP

WHERE WORKDEPT = X.WORKDEPT);

Resolution of Column Name Qualifiers
A name in a FROM clause can be an alias, a synonym, a table name, a view
name, or a correlation name. If it is a correlation name, or a name that is not
followed by a correlation name, it is called an exposed name.

In IBM SQL and ANSI/ISO SQL, the exposed names in a FROM clause must be
unique, and the qualifier of a column name must be an exposed name. In DB2
SQL, those two rules are only guidelines; they are not enforced. Hence, in DB2, the
qualifier of a column name is not required to be a unique exposed name, even
though good SQL coding practice would always make it so.

The rules for finding the referent of a column name qualifier are as follows:

1. Let Q be a one-, two-, or three-part name, and let Q.C denote a column name
in subselect S. Q must designate a table or view identified in the statement that
includes S and that table or view must have a column named C. An additional
requirement differs for two cases:

� If Q.C is not in a search-condition or S is not a subquery, Q must designate
a table or view identified in the FROM clause of S. For example, if Q.C is
in a SELECT clause, Q refers to a table or view in the following FROM
clause.

� If Q.C is in a search-condition and S is a subquery, Q must designate a
table or view identified either in the FROM clause of S or in a FROM
clause of a subselect that directly or indirectly includes S. For example, if
Q.C is in a WHERE clause and S is the only subquery in the statement, the
table or view that Q refers to is either in the FROM clause of S or the
FROM clause of the subselect that includes S.

2. The same table or view can be identified more than once in the same
statement. The particular occurrence of the table or view that Q refers to is
determined by a procedure equivalent to the following steps:

a. The one- and two-part names in every FROM clause and the one- and
two-part qualifiers of column names are expanded into a fully-qualified
form.

For example, if a dynamic SQL statement uses FROM Q and the bind
option DYNAMICRULES(RUN) applies, Q is expanded to S.A.Q, where S is
the value of CURRENT SERVER and A is the value of CURRENT SQLID.
(If DYNAMICRULES(BIND) applies instead, A is the plan or package
qualifier as determined during the bind process.) We refer to this step later
as “name completion.” An error occurs if the first part of every name (the
location) is not the same.

b. Q, now a three-part name, is compared with every name in the FROM
clause of S. If Q.C is in a search-condition and S is a subquery, Q is next
compared with every name in the FROM clause of the subselect that
contains S. If that subselect is a subquery, Q is then compared with every
name in the FROM clause of the subselect containing that subquery, and

  Chapter 3. Language Elements 87



 Column Names  
 

so on. If a FROM clause includes multiple names, the comparisons in that
clause are made in order from left to right.

c. The referent of Q is selected by these rules:

� If Q matches exactly one name, that name is selected.

� If Q matches more than one name, but only one exposed name, that
exposed name is selected.

� If Q matches more than one exposed name, the first of those names is
selected.

� If Q matches more than one name, none of which are exposed names,
the first of those names is selected.

If Q does not match any name, or if the table or view designated by Q does
not include a column named C, an error occurs.

d. Otherwise, Q.C is resolved to column C of the occurrence of the table or
view identified by the selected name.

3. A warning occurs for any of these cases:

� The selected name is not an exposed name.

� The selected name is an exposed name that has an unexposed duplicate
that appears before the selected name in the ordered list of names to
which Q is compared.

� The selected name is an exposed name that has an exposed duplicate in
the same FROM clause.

� Another name would have been selected had the matching been performed
before name completion.

The warnings indicate cases of ambiguous references in which the referent
selected might not be the same one that would have been selected in releases
of DB2 before Version 2 Release 3.

The rules for resolving column name qualifiers apply to every SQL statement
that includes a subselect and are applied before synonyms and aliases are
resolved. In the case of a searched UPDATE or DELETE statement, the first
clause of the statement identifies the table or view to be updated or deleted.
That clause can include a correlation name and, with regard to name
resolution, is equivalent to the first FROM clause of a SELECT statement. For
example, a subquery in the search condition of an UPDATE statement can
include a correlated reference to a column of the updated rows.

The rules for column names in the ORDER BY clause are the same as other
clauses except that a column name in ORDER BY can only identify a column
of the result table. Thus, qualification is necessary only if the result table has
duplicate column names. For example, if the FROM clause refers to two tables,
both of which have a column named C, and if the SELECT clause includes a
single reference to C, then a reference to C in the ORDER BY clause need not
be qualified.

88 SQL Reference  



  Referencing Host Variables
 

Referencing Host Variables
A host variable is a PL/I variable, C variable, FORTRAN variable, COBOL data
item, or Assembler language storage area that is referred to in an SQL statement.
Host variables are defined by statements of the host language as described in
Section 3 of Application Programming and SQL Guide. Host variables cannot be
referenced in dynamic SQL statements.

In PL/I, C, and COBOL, host variables can be referred to in ways that do not apply
to FORTRAN and Assembler language. This is explained in “Host Structures in
PL/I, C, and COBOL” on page 90. The following applies to all host languages.

The term host-variable, as used in the syntax diagrams, shows a reference to a
host variable. In a SET host-variable statement and the INTO clause of a FETCH
or SELECT INTO statement, a host variable is an output variable to which a value
is assigned by DB2. In all other contexts, a host variable is an input variable which
provides a value to DB2.

The general form of a host variable reference is:

 

�─ ──:host-identifier ──┬ ┬───────────────────────────────── ─────────────────────────────────────────────�
 │ │┌ ┐─INDICATOR─
 └ ┘── ──┴ ┴─────────── :host-identifier

Each host identifier must be declared in the source program. The first host identifier
designates the main variable; the second host identifier designates its indicator
variable. The variable designated by the second host identifier must be a small
integer. The purposes of the indicator variable are to:

� Specify the null value. A negative value of the indicator variable specifies the
null value. A -2 null indicates a numeric conversion or arithmetic expression
error occurred in the SELECT list of an outer SELECT statement.

� Record the original length of a truncated string.

� Indicate that a character could not be converted.

� Record the seconds portion of a time if the time is truncated on assignment to
a host variable.

For example, if :V1:V2 is used to specify an insert or update value, and if V2 is
negative, the value specified is the null value. If V2 is not negative, the value
specified is the value of V1.

Similarly, if :V1:V2 is specified in a FETCH or SELECT INTO statement, and if the
value returned is null, V1 is not changed and V2 is set to -1 or -2. It is set to -1 if
the value selected was actually null. It is set to -2 if the null value was returned
because of numeric conversion errors or arithmetic expression errors in the
SELECT list of an outer SELECT statement. It is also set to -2 as the result of a
character conversion error. If the value returned is not null, that value is assigned
to V1, and V2 is set to zero (unless the assignment to V1 requires string truncation,
in which case V2 is set to the original length of the string). If an assignment
requires truncation of the seconds part of a time, V2 is set to the number of
seconds.

  Chapter 3. Language Elements 89



 Host Structures in PL/I, C, and COBOL  
 

If the second host identifier is omitted, the host variable does not have an indicator
variable: the value specified by the host variable :V1 is always the value of V1 and
null values cannot be assigned to the variable. Thus, this form should not be used
in an INTO clause unless the corresponding result column cannot contain null
values. If this form is used and the column contains nulls, DB2 will generate an
error at run time.

An SQL statement that refers to host variables must be within the scope of the
declaration of those host variables. For host variables referred to in the SELECT
statement of a cursor, that rule applies to the OPEN statement rather than to the
DECLARE CURSOR statement.

All references to host variables should be preceded by a colon. The colon:

� Makes it clear that the name identifies a host variable rather than a column.

� Increases the portability of the program because IBM SQL, ANSI/ISO SQL, and
the SQL of other IBM relational database products require the colon.

� Is required when using a precompiler other than the DB2 precompiler.

� Is required by CALL and CONNECT statements.

In some contexts, it is possible to specify a host variable in an SQL statement
without a preceding colon. These contexts are not documented. When such a
statement is precompiled, a warning message is issued, and the statement is
processed as if the missing colon were present. Moreover, to allow for extensions
to SQL, it is possible that future versions of DB2 will not allow the omission of the
colon.

In a context in which either a host variable or column can be referenced, the use of
an unqualified name without a colon is interpreted by the precompiler as a column
name. However, if a qualified name such as S.V is used and S is a host structure
that contains V, S.V is interpreted by the precompiler as a reference to a host
variable. Thus, you must avoid declaring host structures with a name that is the
same as any possible qualifiers of a column name specified in your program.

A COBOL host variable beginning with a digit is treated as a number if it can be so
interpreted. For example, in the following WHERE clause, the value of column XYZ
is compared to the current value of the host variable 123E1. Without the identifying
colon, the value of XYZ would be compared to the floating-point representation of
1230.

WHERE XYZ > :123E1

Host Structures in PL/I, C, and COBOL
A host structure is a PL/I structure, C structure, or COBOL group that is referred to
in an SQL statement. Host structures are defined by statements of the host
language, as explained in Section 3 of Application Programming and SQL Guide.
As used here, the term “host structure” does not include an SQLCA or SQLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :S1:S2 is a host structure reference if S1 names a host

# structure. If S1 designates a host structure, S2 must be a small integer variable or
# an array of small integer variables. S1 is the host structure and S2 is its indicator
# array.

90 SQL Reference  



  Host Structures in PL/I, C, and COBOL
 

A host structure can be referred to in any context where a list of host variables can
be referenced. A host structure reference is equivalent to a reference to each of the
host variables contained within the structure in the order which they are defined in

# the host language structure declaration. The nth variable of the indicator array is
# the indicator variable for the nth variable of the host structure.

In PL/I, for example, if V1, V2, and V3 are declared as the variables within the
structure S1, the statement:

EXEC SQL FETCH CURSOR1 INTO :S1;

is equivalent to:

EXEC SQL FETCH CURSOR1 INTO :V1, :V2, :V3;

# If the host structure has m more variables than the indicator array, the last m
# variables of the host structure do not have indicator variables. If the host structure
# has m fewer variables than the indicator array, the last m variables of the indicator
# array are ignored. These rules also apply if a reference to a host structure includes
# an indicator variable or a reference to a host variable includes an indicator array. If
# an indicator array or variable is not specified, no variable of the host structure has
# an indicator variable.

In addition to structure references, individual host variables or indicator variables in
PL/I, C, and COBOL can be referred to by qualified names. The qualified form is a
host identifier followed by a period and another host identifier. The first host
identifier must name a structure, and the second host identifier must name a host
variable within that structure.

In PL/I, C, and COBOL, the syntax of host-variable is:

 

�─ ──: ──┬ ┬────────────────── host-identifier ────────────────────────────────────────────────────────────�
└ ┘──host-identifier.

�─ ──┬ ┬─────────────────────────────────────────────────────── ─────────────────────────────────────────�
 │ │┌ ┐─INDICATOR─
 └ ┘── ──┴ ┴─────────── : ──┬ ┬────────────────── host-identifier

└ ┘──host-identifier.

A host-variable in an expression must identify a host variable (not a structure)
described in the program according to the rules for declaring host variables.

The following examples show references to host variables and host structures:

:V1 :S1.V1 :S1.V1:V2 :S1.V2:S2.V4

  Chapter 3. Language Elements 91



 Expressions  
 

 Expressions
An expression specifies a value. The form of an expression is as follows:

 

 ┌ ┐─,────────────────────────────
�─ ───

�
┴ ──┬ ┬─── ──┬ ┬─function────────── ──────────────────────────────────────────────────────────────────�

├ ┤─+─ ├ ┤──(expression) ─────
 └ ┘─-─ ├ ┤─constant──────────
 ├ ┤─column-name───────
 ├ ┤─host-variable─────
 ├ ┤─special-register──
 ├ ┤─labeled-duration──

|  └ ┘─case-expression───(1)

Note:
1 See “CASE Expressions” on page 103 for more information.

operator: 

�─ ──┬ ┬─CONCAT─ ────────────────────────────────────────────────────────────────────────────────────────�
 ├ ┤─||─────
 ├ ┤─/──────
 ├ ┤─O──────
 ├ ┤─+──────
 └ ┘─-──────

labeled-duration: 

�─ ──┬ ┬─function────── ──┬ ┬─YEAR───────── ───────────────────────────────────────────────────────────────�
├ ┤──(expression) ─ ├ ┤─YEARS────────

 ├ ┤─constant────── ├ ┤─MONTH────────
 ├ ┤─column-name─── ├ ┤─MONTHS───────
 └ ┘─host-variable─ ├ ┤─DAY──────────
 ├ ┤─DAYS─────────
 ├ ┤─HOUR─────────
 ├ ┤─HOURS────────
 ├ ┤─MINUTE───────
 ├ ┤─MINUTES──────
 ├ ┤─SECOND───────
 ├ ┤─SECONDS──────
 ├ ┤─MICROSECOND──
 └ ┘─MICROSECONDS─

 Without Operators
If no operators are used, the result of the expression is the specified value.

Examples:

SALARY :SALARY 'SALARY' MAX(SALARY)

With the Concatenation Operator
Both CONCAT and the vertical bars (||) represent the concatenation operator.
Vertical bars (or the characters that must be used in place of vertical bars in some
countries9) can cause parsing errors in statements passed from one DBMS to
another. The problem occurs if the statement undergoes character conversion with

9 DB2 supports code point combinations X'4F4F', X'BBBB', and X'5A5A' to mean concatenation. X'BBBB' and X'5A5A' are
interpreted to mean concatenation only on single byte character set DB2 subsystems.

92 SQL Reference  



  Expressions
 

certain combinations of source and target CCSIDs9. Thus, CONCAT is the
preferable operator.

When concatenation is used, the result of the expression is a string. The operands
of concatenation must be compatible strings. If either operand can be null, the
result can be null, and if either is null, the result is the null value. Otherwise, the
result consists of the first operand string followed by the second.

The length of the result is the sum of the lengths of the operands, unless both
operands are mixed EBCDIC data, in which case two bytes are eliminated from the
length of the result.

If both operands are character strings, the sum of their lengths must not exceed
32764. The result is a fixed-length character string if both operands are

# fixed-length, neither operand is mixed data, and the length of the result is not
# greater than 255. Otherwise, the result is a varying-length character string whose

maximum length is the sum of the maximum lengths of the operands, or 32764,
# whichever is less.10 If the maximum length is greater than 255, the result is subject

to the restrictions that apply to long strings.

If both operands are graphic strings, the sum of their lengths must not exceed
16382. The result is a fixed-length graphic string if both operands are fixed-length
graphics strings and the length of the result is less than 128. Otherwise, the result
is a varying-length graphic string whose maximum length is the sum of the
maximum lengths of the operands, or 16382, whichever is less. If the maximum
length is greater than 127, the result is subject to the restrictions that apply to long
strings.

The CCSID of the result is determined by the rules set forth in “Character
Conversion in Unions and Concatenations” on page 185. Some consequences of
those rules are the following:

� If either operand is BIT data, the result is BIT data.

� If one operand is mixed data and the other is SBCS data, the result is:

– Mixed data if the MIXED DATA option at the server is YES11

– SBCS data if the MIXED DATA option at the server is NO.

If an operand is a string from a column with a field procedure, the operation applies
to the decoded form of the value. The result does not inherit the field procedure.

With Arithmetic Operators
If arithmetic operators are used, the result of the expression is a number derived
from the application of the operators to the values of the operands. If any operand
can be null, or the expression is used in an outer SELECT list, the result can be
null. If any operand has the null value, the result of the expression is the null value.
Arithmetic operators (except unary plus, which is meaningless) must not be applied

| 10 If both character strings are EBCDIC mixed data , the result will not have the redundant “shift-in” character (X'0F') ending the
first operand and the “shift-out” character (X'0E') beginning the second operand at “the seam.” Thus, the length of the result is
two less the sum of the lengths of the operands.

11 The result is not necessarily well-formed mixed data.

  Chapter 3. Language Elements 93



 Expressions  
 

to strings. For example, USER+2 is invalid. Multiplication and division operators
must not be applied to datetime values, which can only be added and subtracted.

The prefix operator + (unary plus) does not change its operand. The prefix
operator - (unary minus) reverses the sign of a nonzero operand. If the data type of
A is small integer, the data type of -A is large integer. The first character of the
token following a prefix operator must not be a plus or minus sign.

The infix operators +, -, *, and / specify addition, subtraction, multiplication, and
division, respectively. The value of the second operand of division must not be
zero.

Arithmetic with Two Integer Operands
If both operands of an arithmetic operator are integers, the operation is performed
in binary and the result is a large integer. Any remainder of division is lost. The
result of an integer arithmetic operation (including unary minus) must be within the
range of large integers.

Arithmetic with an Integer and a Decimal Operand
If one operand is an integer and the other is decimal, the operation is performed in
decimal using a temporary copy of the integer that has been converted to a decimal
number with zero scale and precision as defined in the following table:

Operand Precision of Decimal Copy

Column or variable: large integer 11

Column or variable: small integer 5

Constant: more than five digits (including
leading zeros)

Same as the number of digits in the
constant

Constant: five digits or fewer 5

Arithmetic with Two Decimal Operands
If both operands are decimal, the operation is performed in decimal. The result of
any decimal arithmetic operation is a decimal number with a precision and scale
that depend on two factors:

The precision and scale of the operands
In the discussion of operations with two decimal operands, the precision
and scale of the first operand are denoted by p and s, that of the
second operand by p' and s'. Thus, for a division, the dividend has
precision p and scale s, and the divisor has precision p' and scale s'.

Whether DEC31 or DEC15 is in effect for the operation
DEC31 and DEC15 specify the rules to be used when both operands in
a decimal operation have precisions of 15 or less. DEC15 specifies the
rules which do not allow a precision greater than 15 digits, and DEC31
specifies the rules which allow a precision of up to 31 digits. The rules
for DEC31 are always used if either operand has a precision greater
than 15.

# For static SQL statements, the value of the field DECIMAL ARITHMETIC on
# installation panel DSNTIP4 or the precompiler option DEC determines whether
# DEC15 or DEC31 is used.

94 SQL Reference  



  Expressions
 

# For dynamic SQL statements, the value of the field DECIMAL ARITHMETIC on
# installation panel DSNTIP4, the precompiler option DEC, or the special register
# CURRENT PRECISION determines whether DEC15 or DEC31 is used according to
# these rules:

# � The field DECIMAL ARITHMETIC applies if bind option DYNAMICRULES(RUN)
# is in effect and the application has not set CURRENT PRECISION. The value
# of the field also applies if bind option DYNAMICRULES(BIND) is in effect,
# installation parameter DYNRULS is YES, and the application has not set
# CURRENT PRECISION.

# � The precompiler option applies if bind option DYNAMICRULES(BIND) is in
# effect, installation parameter DYNRULS is NO, and the application has not set
# CURRENT PRECISION.

# � The special register applies if the application sets the register.

The value of DECIMAL ARITHMETIC is the default value for both the precompiler
# option and the special register . SQL statements executed using SPUFI use the

value in DECIMAL ARITHMETIC.

Decimal Addition and Subtraction
If the operation is addition or subtraction and the operands do not have the same
scale, the operation is performed with a temporary copy of one of the operands that
has been extended with trailing zeros so that its fractional part has the same
number of digits as the other operand.

The precision of the result is the minimum of n and the quantity
MAX(p-s,p'-s')+MAX(s,s')+1. The scale is MAX(s,s'). n is 31 if DEC31 is in effect
or if the precision of at least one operand is greater than 15. Otherwise, n is 15.

 Decimal Multiplication
For multiplication, the precision of the result is MIN(n,p+p'), and the scale is
MIN(n,s+s'). n is 31 if DEC31 is in effect or if the precision of at least one operand
is greater than 15. Otherwise, n is 15.

If both operands have a precision greater than 15, the operation is performed using
a temporary copy of the operand with the smaller precision. If the operands have
the same precision, the second operand is selected. If more than 15 significant
digits are needed for the integral part of the copy, the statement's execution is
ended and an error occurs. Otherwise, the copy is converted to a number with
precision 15, by truncating the copy on the right. The truncated copy has a scale of
MAX(0,S-(P-15)), where P and S are the original precision and scale. If, in the
process of truncation, one or more nonzero digits are removed, SQLWARN7 in
SQLCA is set to W, indicating loss of precision.

When both operands have a precision greater than 15, the foregoing formulas for
the precision and scale of the result still apply, with one change: for the operand
selected as the copy, use the precision and scale of the truncated copy; that is, use
15 as the precision and MAX(0,S-(P-15)) for the scale.

Let n denote the value of the operand with the greater precision or the first operand
in the case of operands with the same precision. The number of leading zeros in a
31-digit representation of n must be greater than the precision of the other operand.
This is always the case if the precision of the operand is 15 or less. With greater

  Chapter 3. Language Elements 95



 Expressions  
 

precisions, overflow can occur even if the precision of the result is less than 31. For
example, the expression:

1,,,,,,,,,,,,,,,,,,,,,,,,,. O 1

will cause overflow because the number of leading zeros in the 31-digit
representation of the large number and the precision of the small number are both
5 (see “Arithmetic with an Integer and a Decimal Operand” on page 94).

 Decimal Division
The rules for a specific decimal division depend on three factors:

� Whether the DEC31 option is in effect for the operation
� Whether p is greater than 15
� Whether p' is greater than 15

The following table shows how the precision and scale of the result depend on
these factors. In that table, the occurrence of “N/A” in a row implies that the
indicated factor is not relevant to the case represented by the row.

Notes on Decimal Division:

1. If the calculated value of S is negative, an error occurs.

2. If p' is greater than 15, the division is performed using a temporary copy of the
divisor. If more than 15 significant digits are needed for the integral part of the
divisor, the statement's execution is ended, and an error occurs. Otherwise, the
copy is converted to a number with precision 15, by truncating the copy on the
right. The truncated copy has a scale of MAX(0,s'-(p'-15)), which is the
formula for x that appears in row 4 of Table 7. If, in the process of truncation,
one or more nonzero digits are removed, SQLWARN7 in SQLCA is set to W,
indicating loss of precision.

3. A value of YES for field MINIMUM DIVIDE SCALE on installation panel
DSNTIPF specifies that the scale of the result of a decimal division is never
less than 3. To this end, the precision and scale of the result are first calculated
using the rules shown in Table 7. The actual scale is then the calculated scale
or 3, whichever is greater. The actual precision is the calculated precision.

Table 7. Precision (P) and Scale (S) of the Result of a Decimal Division

DEC31 p p' P S

Not in effect ≤15 ≤15 15 15-(p-s+s')

In effect ≤15 ≤15 31 N-(p-s+s'), where

N is 30-p' if p' is odd.
N is 29-p' if p' is even.

N/A >15 ≤15 31 N-(p-s+s'), where

N is 30-p' if p' is odd.
N is 29-p' if p' is even.

N/A N/A >15 31 15-(p-s+x), where
x is MAX(0,s'-(p'-15))
(See Note 2 below)

96 SQL Reference  



  Expressions
 

Arithmetic with Floating-Point Operands
If either operand of an arithmetic operator is floating-point, the operation is
performed in floating-point. If necessary, the operands are first converted to double
precision floating-point numbers. Thus, if any element of an expression is a
floating-point number, the result of the expression is a double precision
floating-point number.

An operation involving a floating-point number and an integer is performed with a
temporary copy of the integer that has been converted to double precision
floating-point. An operation involving a floating-point number and a decimal number
is performed with a temporary copy of the decimal number that has been converted
to double precision floating-point. The result of a floating-point operation must be
within the range of floating-point numbers.

Datetime Operands and Durations
Datetime values can be incremented, decremented, and subtracted. These
operations may involve decimal numbers called durations. A duration is a number
representing an interval of time. There are four types of durations:

Labeled Durations (see the diagram on page92 )
A labeled duration represents a specific unit of time as expressed by a
number (which can be the result of an expression) followed by one of the
seven duration keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES,
SECONDS, or MICROSECONDS12. The number specified is converted as if it
were assigned to a DECIMAL(15,0) number. A labeled duration can only be
used as an operand of an arithmetic operator. In this case, the other operand
must have a data type of DATE, TIME, or TIMESTAMP. Thus the expression
HIREDATE + 2 MONTHS + 14 DAYS is valid whereas the expression
HIREDATE + (2 MONTHS + 14 DAYS) is not. In both of these expressions,
the labeled durations are 2 MONTHS and 14 DAYS.

Date Duration
A date duration represents a number of years, months, and days expressed
as a DECIMAL(8,0) number. To be properly interpreted, the number must
have the format yyyymmdd, where yyyy represents the number of years, mm
the number of months, and dd the number of days. The result of subtracting
one DATE value from another, as in the expression HIREDATE -
BIRTHDATE, is a date duration.

Time Duration
A time duration represents a number of hours, minutes, and seconds
expressed as a DECIMAL(6,0) number. To be properly interpreted, the
number must have the format hhmmss where hh represents the number of
hours, mm the number of minutes, and ss the number of seconds. The result
of subtracting one TIME value from another is a time duration.

Timestamp Duration
A timestamp duration represents a number of years, months, days, hours,
minutes, seconds, and microseconds expressed as a DECIMAL(20,6)
number. To be properly interpreted, the number must have the format
yyyyxxddhhmmsszzzzzz, where yyyy, xx, dd, hh, mm, and ss represent,
respectively, the number of years, months, days, hours, minutes, and

12 The singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and MICROSECOND.

  Chapter 3. Language Elements 97



 Expressions  
 

seconds, and zzzzzz represents the number of microseconds. The result of
subtracting one TIMESTAMP value from another is a timestamp duration.

Datetime Arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are
addition and subtraction. If a datetime value is the operand of addition, the other
operand must be a duration. The specific rules governing the use of the addition
operator with datetime values follow.

� If one operand is a date, the other operand must be a date duration or labeled
duration of years, months, or days.

� If one operand is a time, the other operand must be a time duration or a
labeled duration of hours, minutes, or seconds.

� If one operand is a timestamp, the other operand must be a duration. Any type
of duration is valid.

� Neither operand of the addition operator can be a parameter marker. For a
discussion of parameter markers, see ““Parameter markers”” in “PREPARE” on
page 433.

The rules for the use of the subtraction operator on datetime values are not the
same as those for addition because a datetime value cannot be subtracted from a
duration, and because the operation of subtracting two datetime values is not the
same as the operation of subtracting a duration from a datetime value. The specific
rules governing the use of the subtraction operator with datetime values follow.

� If the first operand is a date, the second operand must be a date, a date
duration, a string representation of a date, or a labeled duration of years,
months, or days.

� If the second operand is a date, the first operand must be a date, or a string
representation of a date.

� If the first operand is a time, the second operand must be a time, a time
duration, a string representation of a time, or a labeled duration of hours,
minutes, or seconds.

� If the second operand is a time, the first operand must be a time, or string
representation of a time.

� If the first operand is a timestamp, the second operand must be a timestamp, a
string representation of a timestamp, or a duration.

� If the second operand is a timestamp, the first operand must be a timestamp or
a string representation of a timestamp.

� Neither operand of the subtraction operator can be a parameter marker.

When an operand in a datetime expression is a string, it may undergo character
conversion before it is interpreted and converted to a datetime value. When its
CCSID is not that of the default for mixed strings, a mixed string is converted to the
default mixed data representation. When its CCSID is not that of the default for
SBCS strings, an SBCS string is converted to the default SBCS representation.

98 SQL Reference  



  Expressions
 

 Date Arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting dates: The result of subtracting one date (DATE2) from another
(DATE1) is a date duration that specifies the number of years, months, and days
between the two dates. The data type of the result is DECIMAL(8,0). If DATE1 is
greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is
less than DATE2, however, DATE1 is subtracted from DATE2, and the sign of the
result is made negative. The following procedural description clarifies the steps
involved in the operation RESULT = DATE1 - DATE2.

Date Subtraction: RESULT = DATE1 - DATE2

� If DAY(DATE2) <= DAY(DATE1)

then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

� If DAY(DATE2) > DAY(DATE1)

then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)

where N = the last day of MONTH(DATE2).
MONTH(DATE2) is then incremented by 1.

� If MONTH(DATE2) <= MONTH(DATE1)

then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

� If MONTH(DATE2) > MONTH(DATE1)

then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2)

and YEAR(DATE2) is incremented by 1.

� YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

For example, the result of DATE('3/15/2000') - '12/31/1999' is 215 (or, a duration
of 0 years, 2 months, and 15 days).

Incrementing and decrementing dates: The result of adding a duration to a date,
or of subtracting a duration from a date, is itself a date. (For the purposes of this
operation, a month denotes the equivalent of a calendar page. Adding months to a
date, then, is like turning the pages of a calendar, starting with the page on which
the date appears.) The result must fall between the dates January 1, 0001 and
December 31, 9999 inclusive. If a duration of years is added or subtracted, only the
year portion of the date is affected. The month is unchanged, as is the day unless
the result would be February 29 of a non-leap-year. Here the day portion of the
result is set to 28, and the SQLWARN6 field of the SQLCA is set to W, indicating
that an end-of-month adjustment was made to correct an invalid date. Section 3 of
Application Programming and SQL Guide also describes how SQLWARN6 is set.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless the
result would be invalid (September 31, for example). In this case the day is set to
the last day of the month, and the SQLWARN6 field of the SQLCA is set to W to
indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of the
date, and potentially the month and year.

  Chapter 3. Language Elements 99



 Expressions  
 

Date durations, whether positive or negative, can also be added to and subtracted
from dates. As with labeled durations, the result is a valid date, and SQLWARN6 is
set to W to indicate any necessary end-of-month adjustment.

When a positive date duration is added to a date, or a negative date duration is
subtracted from a date, the date is incremented by the specified number of years,
months, and days, in that order. Thus, DATE1+X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS

When a positive date duration is subtracted from a date, or a negative date
duration is added to a date, the date is decremented by the specified number of
days, months, and years, in that order. Thus, DATE1-X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATE1 - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS

Adding a month to a date gives the same day one month later, unless that day
does not exist in the later month. In that case, the day in the result is set to the last
day of the later month. For example, January 28 plus one month gives February
28; one month added to January 29, 30, or 31 results in either February 28 or, for a
leap year, February 29. If one or more months is added to a given date and then
the same number of months is subtracted from the result, the final date is not
necessarily the same as the original date.

The order in which labeled date durations are added to and subtracted from dates
can affect the results. When you add labeled date durations to a date, specify them
in the order of YEARS + MONTHS + DAYS. When you subtract labeled date
durations from a date, specify them in the order of DAYS - MONTHS - YEARS. For
example, to add one year and one day to a date, specify:

DATE1 + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify:

DATE1 - 1 DAY - 1 MONTH - 1 YEAR

 Time Arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting times: The result of subtracting one time (TIME2) from another
(TIME1) is a time duration that specifies the number of hours, minutes, and
seconds between the two times. The data type of the result is DECIMAL(6,0). If
TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If
TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign
of the result is made negative. The following procedural description clarifies the
steps involved in the operation RESULT = TIME1 - TIME2.

100 SQL Reference  



  Expressions
 

Time Subtraction: RESULT = TIME1 - TIME2

� If SECOND(TIME2) <= SECOND(TIME1)

then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

� If SECOND(TIME2) > SECOND(TIME1)

then SECOND(RESULT) = 6, + SECOND(TIME1) - SECOND(TIME2)

and MINUTE(TIME2) is incremented by 1.

� If MINUTE(TIME2) <= MINUTE(TIME1)

then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

� If MINUTE(TIME2) > MINUTE(TIME1)

then MINUTE(RESULT) = 6, + MINUTE(TIME1) - MINUTE(TIME2)

and HOUR(TIME2) is incremented by 1.

� HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26') - '00:32:56' is 102930 (a duration of
10 hours, 29 minutes, and 30 seconds).

Incrementing and decrementing times: The result of adding a duration to a time,
or of subtracting a duration from a time, is itself a time. Any overflow or underflow
of hours is discarded, thereby ensuring that the result is always a time. If a duration
of hours is added or subtracted, only the hours portion of the time is affected.
Adding 24 hours to the time '00:00:00' results in the time '24:00:00'. However,
adding 24 hours to any other time results in the same time; for example, adding 24
hours to the time '00:00:59' results in the time '00:00:59'. The minutes and
seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds affects the seconds portion of the time
and may affect the minutes and hours.

Time durations, whether positive or negative, can also be added to and subtracted
from times. The result is a time that has been incremented or decremented by the
specified number of hours, minutes, and seconds, in that order. Thus, TIME1 + X,
where X is a positive DECIMAL(6,0) number, is equivalent to the expression

TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

 Timestamp Arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years, months,
days, hours, minutes, seconds, and microseconds between the two timestamps.
The data type of the result is DECIMAL(20,6). If TS1 is greater than or equal to
TS2, TS2 is subtracted from TS1. If TS1 is less than TS2, however, TS1 is
subtracted from TS2 and the sign of the result is made negative. The following

  Chapter 3. Language Elements 101



 Expressions  
 

procedural description clarifies the steps involved in the operation RESULT = TS1 -
TS2.

Timestamp Subtraction: RESULT = TS1 - TS2

� If MICROSECOND(TS2) <=
MICROSECOND(TS1)

then MICROSECOND(RESULT) = MICROSECOND(TS1) - MICROSECOND(TS2).

� If MICROSECOND(TS2) > MICROSECOND(TS1)

then MICROSECOND(RESULT) = 1,,,,,, + MICROSECOND(TS1)

 - MICROSECOND(TS2)

and SECOND(TS2) is incremented by 1.

� The seconds and minutes part of the timestamps are subtracted as
specified in the rules for subtracting times.

� If HOUR(TS2) <= HOUR(TS1)

then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

� If HOUR(TS2) > HOUR(TS1)

then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)

and DAY(TS2) is incremented by 1.

� The date part of the timestamps is subtracted as specified in the
rules for subtracting dates.

Incrementing and decrementing timestamps: The result of adding a duration to
a timestamp, or of subtracting a duration from a timestamp, is itself a timestamp.
Date and time arithmetic is performed as previously defined, except that an
overflow or underflow of hours is carried into the date part of the result, which must
be within the range of valid dates. When the result of an operation is midnight, the
time portion of the result can be '24.00.00' or '00.00.00'; a comparison of those
two values does not result in 'equal'.

Precedence of Operations
Expressions within parentheses are evaluated first. When the order of evaluation is
not specified by parentheses, prefix operators are applied before multiplication and
division, and multiplication, division, and concatenation are applied before addition
and subtraction. Operators at the same precedence level are applied from left to
right.

Example 1:

1.1, O (SALARY + BONUS) + SALARY / :VAR3

 │ │ │ │

 ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐

 │2│ │1│ │4│ │3│

 └─┘ └─┘ └─┘ └─┘

102 SQL Reference  



  Expressions
 

Example 2: In this example, the first operation (CONCAT) combines the character
strings in the variables YYYYMM and DD into a string representing a date. The
second operation (-) then subtracts that date from the date being processed in
DATECOL. The result is a date duration that indicates the time elapsed between
the two dates.

DATECOL - :YYYYMM CONCAT :DD

 │ │

 ┌┴┐ ┌┴┐

 │2│ │1│

 └─┘ └─┘

|  CASE Expressions

|  

|  ┌ ┐─ELSE NULL───────────────
| �─|  ─CASE─ ──┬ ┬─searched-when-clause─ ──┼ ┼─────────────────────────| ─END───────────────────────────────────�
|  └ ┘─simple-when-clause─── └ ┘|  ─ELSE──result-expression─

| searched-when-clause:|  

|  ┌ ┐───────────────────────────────────────────────────────
| �─ ───

�
┴─WHEN──search-condition──THEN─ ──┬ ┬─result-expression─ ───────────────────────────────────────────�

|  └ ┘─NULL──────────────

| simple-when-clause:|  

|  ┌ ┐─────────────────────────────────────────────────
| �─| ─expression─ ───

�
┴─WHEN──expression──THEN─ ──┬ ┬─result-expression─ ─────────────────────────────────────�

|  └ ┘─NULL──────────────

| A CASE expression allows an expression to be selected based on the evaluation of
| one or more conditions. In general, the value of the case-expression is the value of
| the result-expression following the first (leftmost) case that evaluates to true. If no
| case evaluates to true and the ELSE keyword is present, the result is the value of
| the result-expression or NULL. If no case evaluates to true and the ELSE keyword
| is not present, the result is NULL. When a case evaluates to unknown (because of
| NULLs), the case is NOT true and hence is treated the same way as a case that
| evaluates to false.

| CASE
| Begins a case-expression.

| searched-when-clause
| Specifies a search-condition that is applied to each row or group of table data
| presented for evaluation, and the result when that condition is true.

| simple-when-clause
| Specifies that the value of the expression prior to the first WHEN keyword is
| tested for equality with the value of each expression that follows the WHEN
| keyword. Specifies the result for each WHEN keyword when the expressions
| are equal.

| result-expression
| Specifies the result of a case-expression if no case is true. Specifies the result
| of a searched-when-clause or a simple-when-clause that is true.

  Chapter 3. Language Elements 103



 Expressions  
 

| search-condition
| Specifies a condition that is true, false, or unknown about a row or group of
| table data.

| END
| Ends a case-expression.

| When using CASE expressions, consider the following usage information:

# � If the CASE expression is in a select list, an IN predicate, or a SET clause of
# an UPDATE statement, then the search-condition in a searched-when-clause
| cannot be a quantified predicate, an IN predicate, or an EXISTS predicate.

| � The search-condition in a searched-when-clause cannot contain a subselect
| and is diagnosed as a syntax violation.

| � When using the simple-when-clause, the value of the expression prior to the
| first WHEN keyword is tested for equality with the value of the expression that
| follows the WHEN keyword. The data type of the expression prior to the first
| WHEN keyword must be comparable to the data types of each expression that
| follows the WHEN keywords.

| � A result-expression is an expression that follows the THEN or ELSE keywords.
| There must be at least one result-expression in the CASE expression, and
| NULL cannot be specified for every case.

| � All result-expressions must be compatible. The attributes of the result are
| determined according to the rules for UNION and the VALUE function as
| described in “Data Type Rules for UNION and the VALUE Function” on
| page 183. When the result is a string, its attributes include a CCSID. For the
| rules on how the CCSID is determined, see “System CCSIDs” on page 39.

| Example 1 (simple-when-clause): Assume that in the EMPLOYEE table the first
| character of a department number represents the division in the organization. Use a
| CASE expression to list the full name of the division to which each employee
| belongs.

| SELECT EMPNO, LASTNAME,

|  CASE SUBSTR(WORKDEPT,1,1)

| WHEN 'A' THEN 'Administration'

| WHEN 'B' THEN 'Human Resources'

| WHEN 'C' THEN 'Design'

| WHEN 'D' THEN 'Operations'

|  END

|  FROM EMPLOYEE;

| Example 2 (searched-when-clause): You can also use a CASE expression to avoid
| “division by zero” errors. From the EMPLOYEE table, find all employees who earn
| more than 25 percent of their income from commission, but who are not fully paid
| on commission:

| SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE

| WHERE (CASE WHEN SALARY=, THEN ,

|  ELSE COMM/(SALARY+COMM)

| END) > ,.25;

# Example 3: This example shows how to group the results of a query by a CASE
# expression without having to retype the expression. Using the sample employee
# table, find the maximum, minimum, and average salary. Find these values by

104 SQL Reference  



  Expressions
 

# department, but assume that you want to combine some departments into the same
# group.

#  SELECT CASE_DEPT,MAX(SALARY),MIN(SALARY),AVG(SALARY)

# FROM (SELECT SALARY,CASE WHEN WORKDEPT = 'A,,' OR WORKDEPT = 'E21'

#  THEN 'A,,_E21'

# WHEN WORKDEPT = 'D11' OR WORKDEPT = 'E11'

#  THEN 'D11_E11'

#  ELSE WORKDEPT

# END AS CASE_DEPT

# FROM DSN851,.EMP) X

# GROUP BY CASE_DEPT;

| There are two scalar functions, NULLIF and COALESCE, that are specialized to
| handle a subset of the functionality provided by CASE. Table 8 shows the
| equivalent expressions using CASE or these functions.

| Table 8. Equivalent CASE Expressions

| CASE Expression| Equivalent Expression

| CASE WHEN e1=e2
| THEN NULL ELSE e1 END
| NULLIF(e1,e2)

| CASE WHEN e1 IS NOT NULL
| THEN e1 ELSE e2 END
| COALESCE(e1,e2)

| CASE WHEN e1 IS NOT NULL
| THEN e1 ELSE COALESCE(e2,...,eN) END
| COALESCE(e1,e2,...,eN)

  Chapter 3. Language Elements 105



 Predicates  
 

 Predicates
A predicate specifies a condition that is true, false, or unknown about a given row
or group. The types of predicates are:

 

�─ ──┬ ┬─basic predicate────── ──────────────────────────────────────────────────────────────────────────�
 ├ ┤─quantified predicate─
 ├ ┤─BETWEEN predicate────
 ├ ┤─EXISTS predicate─────
 ├ ┤─IN predicate─────────
 ├ ┤─LIKE predicate───────
 └ ┘─NULL predicate───────

The following rules apply to predicates of any type:

� All values specified in a predicate must be compatible.

� Except for the first operand of LIKE, the operand of a predicate must not be a
# character string with a maximum length greater than 255 or a graphic string

with a maximum length greater than 127.

� Except for EXISTS, a subselect in a predicate must specify a single column.

 Basic Predicate

 

�─ ──expression ──┬ ┬─=── ──┬ ┬─expression── ───────────────────────────────────────────────────────────────�
├ ┤─<>─ └ ┘──(subselect)

 ├ ┤─>──
 ├ ┤─<──
 ├ ┤─>=─
 ├ ┤─<=─
 ├ ┤─¬=─
 ├ ┤─¬>─
 └ ┘─¬<─

A basic predicate compares two values. If the value of either operand is null or the
result of the subselect is empty, the result of the predicate is unknown. Otherwise,
the result is either true or false.

A subselect in a basic predicate must not return more than one value, whether null
or not null.

106 SQL Reference  



  Predicates
 

For values x and y:

Predicate Is true if and only if...
 x = y x is equal to y

x <> y x is not equal to y
 x < y x is less than y
 x > y x is greater than y
x >= y x is greater than or equal to y
x <= y x is less than or equal to y
x ¬= y x is not equal to y
x ¬< y x is not less than y
x ¬> y x is not greater than y

A not sign (¬), or the character that must be used in its place in certain countries13,
can cause parsing errors in statements passed from one DBMS to another. The
problem occurs if the statement undergoes character conversion with certain
combinations of source and target CCSIDs13. To avoid this problem, substitute an
equivalent operator for any operator that includes a not sign. For example,
substitute '<>' for '¬=', '<=' for '¬>', and '>=' for '¬<'.

Examples:

EMPNO = '528671'

SALARY < 2,,,,

PRSTAFF <> :VAR1

SALARY > (SELECT AVG(SALARY) FROM DSN851,.EMP)

 Quantified Predicate

 

�─ ──expression ──┬ ┬─=── ──┬ ┬─SOME─ (subselect) ───────────────────────────────────────────────────────────�
 ├ ┤─<>─ ├ ┤─ANY──
 ├ ┤─>── └ ┘─ALL──
 ├ ┤─<──
 ├ ┤─>=─
 ├ ┤─<=─
 ├ ┤─¬=─
 ├ ┤─¬>─
 └ ┘─¬<─

A quantified predicate compares a value with the set of values produced by the
subselect. The subselect must specify a single result column and can return any
number of values, whether null or not null.

When ALL is specified, the result of the predicate is:

� True if the result of the subselect is empty or if the specified relationship is true
for every value returned by the subselect.

� False if the specified relationship is false for at least one value returned by the
subselect.

13 DB2 supports code point combinations X'5F7E', X'BA7E', X'B07E', and X'EC7E' to mean not equal to. X'BA7E', X'B07E',
and X'EC7E' are interpreted to mean not equal to only on single byte character set DB2 subsystems.

  Chapter 3. Language Elements 107



 Predicates  
 

� Unknown if the specified relationship is not false for any values returned by the
subselect and at least one comparison is unknown because of a null value.

When SOME or ANY is specified, the result of the predicate is:

� True if the specified relationship is true for at least one value returned by the
subselect.

� False if the result of the subselect is empty or if the specified relationship is
false for every value returned by the subselect.

� Unknown if the specified relationship is not true for any of the values returned
by the subselect and at least one comparison is unknown because of a null
value.

Examples: Use the tables below when referring to the following examples. In all
examples, “row n of TBLA” refers to the row in TBLA for which COLA has the value
n.

 ┌────┐ ┌────┬────┐

 TBLA: │COLA│ TBLB: │COLB│COLC│

 ├────┤ ├────┼────┤

 │ 1 │ │ 2 │ 2 │

 │ 2 │ │ 3 │ - │

 │ 3 │ └────┴────┘

 │ 4 │

 └────┘

Example 1: In the following predicate, the subselect returns the values 2 and 3. The
predicate is false for rows 1, 2, and 3 of TBLA, and is true for row 4.

COLA > ALL(SELECT COLB FROM TBLB)

Example 2: In the following predicate, the subselect returns the values 2 and 3. The
predicate is false for rows 1 and 2 of TBLA, and is true for rows 3 and 4.

COLA > ANY(SELECT COLB FROM TBLB)

Example 3: In the following predicate, the subselect returns the values 2 and null.
The predicate is false for rows 1 and 2 of TBLA, and is unknown for rows 3 and 4.
The result is an empty table.

COLA > ALL(SELECT COLC FROM TBLB)

Example 4: In the following predicate, the subselect returns the values 2 and null.
The predicate is unknown for rows 1 and 2 of TBLA, and is true for rows 3 and 4.

COLA > SOME(SELECT COLC FROM TBLB)

Example 5: In the following predicate, the subselect returns an empty result
column. Hence, the predicate is true for all rows of TBLA.

COLA < ALL(SELECT COLB FROM TBLB WHERE COLB>3)

Example 6: In the following predicate, the subselect returns an empty result
column. Hence, the predicate is false for all rows of TBLA.

COLA < ANY(SELECT COLB FROM TBLB WHERE COLB>3)

If COLA were null in one or more rows of TBLA, the predicate would still be false
for all rows of TBLA.

108 SQL Reference  



  Predicates
 

 BETWEEN Predicate

 

�──expression─ ──┬ ┬───── ─BETWEEN──expression──AND──expression──────────────────────────────────────────�
 └ ┘─NOT─

The BETWEEN predicate determines whether a given value lies between two other
given values specified in ascending order. Each of the predicate's two forms has an
equivalent search condition, as shown below:

The predicate: value1 BETWEEN value2 AND value3

is equivalent to: value1 >= value2 AND value1 <= value3.
  

The predicate: value1 NOT BETWEEN value2 AND value3

is equivalent to: NOT(value1 BETWEEN value2 AND value3)

and therefore also to: value1 < value2 OR value1 > value3.

Search conditions are discussed in “Search Conditions” on page 118.

Example: The predicate:

A BETWEEN B AND C

� Is true when B is 1, C is 3, and A is 1, 2, or 3
� Is false when B is 1, C is 3, and A is 0 or 4
� Is false when A is 0, B is 1, and C is null
� Is false when A is 4, C is 3, and B is null
� Is unknown when any one of the following is true:

– A is null
– A is 2, B is 1, and C is null
– A is 3, C is 4, and B is null.

 EXISTS Predicate

 

�─ ──EXISTS(subselect) ─────────────────────────────────────────────────────────────────────────────────�

The EXISTS predicate tests for the existence of certain rows.

The result of the predicate is true if the result table returned by the subselect
contains at least one row. Otherwise, the result is false.

The SELECT clause in the subselect can specify any number of columns because
the values returned by the subselect are ignored. For convenience, use:

 SELECT O

Unlike the NULL, LIKE, and IN predicates, the EXISTS predicate has no form
containing the word NOT. To negate an EXISTS predicate, precede it with the
logical operator NOT, as follows:

NOT EXISTS (subselect)

  Chapter 3. Language Elements 109



 Predicates  
 

The result is then false if the EXISTS predicate is true, and true if the predicate is
false. Here, NOT is a logical operator and not a part of the predicate. Logical
operators are discussed in “Search Conditions” on page 118.

Example: The following query lists the employee number of everyone represented
in DSN8510.EMP who works in a department where at least one employee has a
salary less than 20000. Like many EXISTS predicates, the one in this query
involves a correlated variable.

 SELECT EMPNO

FROM DSN851,.EMP X

WHERE EXISTS (SELECT O FROM DSN851,.EMP

WHERE X.WORKDEPT=WORKDEPT AND SALARY<2,,,,);

110 SQL Reference  



  Predicates
 

 IN Predicate

 

�─ ─expression─ ──┬ ┬───── ─IN─ ──┬ ┬──(subselect) ─────────────── ───────────────────────────────────────────�
 └ ┘─NOT─ │ │┌ ┐─,──────────────────
 └ ┘──( ───

�
┴┬ ┬─host-variable──── )

 ├ ┤─constant─────────
 ├ ┤─special-register─

|  └ ┘─case-expression──

The IN predicate compares a value with a set of values.

In the subselect form, the subselect must specify a single result column and can
return any number of values, whether null or not null. The IN predicate is equivalent
to the quantified predicate as follows:

 IN predicate Quantified Equivalent
  
expression IN (subselect) expression = ANY (subselect)

  
expression NOT IN (subselect) expression <> ALL (subselect)

In the non-subselect form of the IN predicate, the second operand is a set of one or
more values specified by any combination of host variables, constants, or special
registers. An IN predicate of the form:

expression IN (value1, value2,..., valuen)

is logically equivalent to:

expression IN (SELECT O FROM R)

| when T is a table with a single row and R is a result table formed by the following
fullselect:

SELECT value1 FROM T

 UNION

SELECT value2 FROM T

 UNION

 .

 .

 .

 UNION

SELECT valuen FROM T

Each host variable must identify a structure or variable that is described in
accordance with the rules for declaring host structures or variables.

Example 1: The following predicate is true for any row whose employee is in
department D11, B01, or C01.

WORKDEPT IN ('D11', 'B,1', 'C,1')

Example 2: The following predicate is true for any row whose employee works in
department E11.

EMPNO IN (SELECT EMPNO FROM DSN851,.EMP

WHERE WORKDEPT = 'E11')

  Chapter 3. Language Elements 111



 Predicates  
 

Example 3: The following example obtains the phone number of an employee in
DSN8510.EMP where the employee number (EMPNO) is a value specified within
the COBOL structure defined below.

 77 PHNUM PIC X(6).

 ,1 EMPNO-STRUCTURE.

,5 CHAR-ELEMENT-1 PIC X(6) VALUE ',,,14,'.

,5 CHAR-ELEMENT-2 PIC X(6) VALUE ',,,34,'.

,5 CHAR-ELEMENT-3 PIC X(6) VALUE ',,,22,'.

 .

 .

 .

EXEC SQL DECLARE PHCURS CURSOR FOR

SELECT PHONENO FROM DSN851,.EMP

WHERE EMPNO IN

#  (:EMPNO-STRUCTURE.CHAR-ELEMENT-1,

#  :EMPNO-STRUCTURE.CHAR-ELEMENT-2,

#  :EMPNO-STRUCTURE.CHAR-ELEMENT-3)

 END-EXEC.

(:EMPNO-STRUCTURE)

 END-EXEC.

EXEC SQL OPEN PHCURS

 END-EXEC.

EXEC SQL FETCH PHCURS INTO :PHNUM

 END-EXEC.

 LIKE Predicate

 

�─ ─expression─ ──┬ ┬───── ─LIKE─ ──┬ ┬─special-register─────────── ─────────────────────────────────────────�
 └ ┘─NOT─ ├ ┤─host-variable──────────────
 ├ ┤─string-constant────────────

#  └ ┘#  ─(─ ──┬ ┬─special-register─ ─)─
#  ├ ┤─host-variable────
#  └ ┘─string-constant──

�─ ──┬ ┬─────────────────────────────────────── ─────────────────────────────────────────────────────────�
 └ ┘ ─ESCAPE─ ──┬ ┬─host-variable─────────────
 ├ ┤─string-constant───────────

#  └ ┘#  ─(─ ──┬ ┬─host-variable─── ─)─
#  └ ┘─string-constant─

The LIKE predicate searches for strings that have a certain pattern. The pattern is
specified by a string in which the underscore and percent sign characters have
special meanings, as discussed under “The Pattern” on page 114.

Evaluating the Predicate
The first operand specifies the string to be tested. A parameter marker must not be
specified for or within the expression and the result of the expression must be a
string. The second operand specifies the pattern. Let x denote the string to be
tested and let y denote the pattern.

The following rules apply to predicates of the form "x LIKE y...". Predicates of the
form "x NOT LIKE y..." are equivalent to "NOT(x LIKE y...)":

� When x and y are both neither empty nor null, the result of the predicate is true
if x matches the pattern in y and false if x does not match the pattern in y.
Matching the pattern is described beginning with “The Pattern” on page 114.

112 SQL Reference  



  Predicates
 

� When x or y is null, the result of the predicate is unknown.

� When y is empty and x is not, the result of the predicate is false.

� When x is empty and y is not, the result of the predicate is false unless y
consists only of one or more percent signs.

� When x and y are both empty, the result of the predicate is true.

The Pattern String
The pattern string and the string to be tested must be of the same type, that is,
both x and y must be character strings or both x and y must be graphic strings.
When x and y are graphic strings, a character is a DBCS character. When x and y
are character strings and x is not mixed data, a character is an SBCS character
and y is interpreted as SBCS data regardless of its subtype. The rules for mixed
data patterns are described later.

The pattern string can be specified as follows:

� “LIKE special-register” indicates that the string is in the named special register.

� “LIKE host-variable” indicates that the string is in the indicated host variable.
The host variable must be defined in accordance with the rules for declaring
string host variables and must not be a structure or a long string variable.

If the pattern is specified in a fixed-length string variable, any trailing blanks are
interpreted as part of the pattern. Therefore, it is better to use a varying-length
string variable with an actual length that is the same as the length of the
pattern. If the host language does not allow varying-length string variables,
place the pattern in a fixed-length string variable whose length is the length of
the pattern.

For more on the use of host variables with specific programming languages,
see Section 3 of Application Programming and SQL Guide.

� “LIKE string-constant” includes the pattern as a string constant within the
predicate.

# Although not required, parentheses can be used to enclose the string specified in
# special-register, host-variable, or string-constant, for example, LIKE ('ABC').

The Optional ESCAPE Clause
Within the pattern, a percent sign or underscore can have a special meaning, or it
can represent the literal occurrence of a percent sign or underscore. To have its
literal meaning, it must be preceded by an escape character. If it is not preceded by
an escape character, it has its special meaning.

The ESCAPE clause designates a single character. That character—and only that
character—can be used multiple times within the pattern as an escape character.
When the ESCAPE clause is omitted, no character serves as an escape character,
so that percent signs and underscores in the pattern always have their special
meanings.

The following rules apply to the use of the ESCAPE clause:

� The ESCAPE clause cannot be used if x is mixed data.

� The escape character can be specified by a string constant or a host variable.
If a host variable is used, it must be defined in accordance with the rules for

  Chapter 3. Language Elements 113



 Predicates  
 

declaring fixed-length string host variables.14  If the host variable has a negative
indicator variable, the result of the predicate is unknown.

� If x is a character string, the data type of the string constant or host variable
must be character string. If x is a graphic string, the data type of the string
constant or host variable must be graphic string. In both cases, the length of
the string constant or host variable must be 1.14

� The pattern must not contain the escape character except when followed by the
escape character, '%' or '_'. For example, if '+' is the escape character, any
occurrences of '+' other than '++', '+_', or '+%' in the pattern is an error.

# Although not required, parentheses can be used to enclose the character specified
# in host-variable or string-constant, for example, LIKE ('+').

 The Pattern
When the pattern does not include escape characters, a simple description of its
meaning is:

� The underscore sign (_) represents a single arbitrary character.

� The percent sign (%) represents a string of zero or more arbitrary characters.

� Any other character represents a single occurrence of itself.

A more rigorous description follows:

The string y is interpreted as a sequence of the minimum number of substring
specifiers such that each character of y is part of exactly one substring
specifier. A substring specifier is an underscore, a percent sign, or any
non-empty sequence of characters other than an underscore or percent sign.

The string x matches the pattern y if there exists a partitioning of x into
substrings such that:

� A substring of x is a sequence of zero or more contiguous characters and
each character of x is part of exactly one substring.

� If the nth substring specifier is an underscore, the nth substring of x is any
single character.

� If the nth substring specifier is a percent sign, the nth substring of x is any
sequence of zero or more characters.

� If the nth substring specifier is neither an underscore nor a percent sign, the
nth substring of x is equal to that substring specifier and has the same
length as that substring specifier.

� The number of substrings of x is the same as the number of substring
specifiers.

When escape characters are present in the pattern string, an underscore,
percent sign, or escape character represents a single occurrence of itself if and
only if it is preceded by an odd number of successive escape characters.

14 If it is NUL-terminated, a C character string variable of length 2 can be specified.

114 SQL Reference  



  Predicates
 

Mixed data patterns: If x is mixed data, the pattern is assumed to be mixed data
and its special characters are interpreted as follows:

� A single-byte underscore refers to one single-byte character; a double-byte
underscore refers to one double-byte character.

� A percent sign, either single-byte or double-byte, refers to any number of
characters of any type, either single-byte or double-byte.

� Redundant shift bytes in x or y are ignored.

 Examples
Example 1: The following predicate is true when the string to be tested in NAME
has the value SMITH, NESMITH, SMITHSON, or NESMITHY. It is not true when
the string has the value SMYTHE:

NAME LIKE '%SMITH%'

Example 2: In the predicate below, a host variable named PATTERN holds the
string for the pattern:

NAME LIKE :PATTERN ESCAPE '+'

Assume that the string in PATTERN has the value:

 AB+_C_%

Observe that in this string, the plus sign preceding the first underscore is an escape
character. The predicate is true when the string being tested in NAME has the
value AB_CD or AB_CDE. It is false when this string has the value AB, AB_, or
AB_C.

Example 3: The following two predicates are equivalent: three of the four percent
signs in the first predicate are redundant.

NAME LIKE 'AB%%%%CD'

NAME LIKE 'AB%CD'

Example 4: This example illustrates the effect of successive occurrences of the
escape character, which in this case is the plus sign (+).

When the pattern string is... The pattern itself is...
  
+% A percent sign

  
++% A plus sign followed by zero or more

 arbitrary characters
  
+++% A plus sign followed by a percent sign

  Chapter 3. Language Elements 115



 Predicates  
 

| Example 5: In the following table, assume COL1 is a column containing mixed
| EBCDIC data. The table shows the results when the predicate in the first column is

evaluated using the COL1 value in the second column:

WHERE COL1 LIKE ’aaa ’
’aaa ’

’aaa dzx ’
WHERE COL1 LIKE ’aaa % ’

WHERE COL1 LIKE ’a% ’ ’a ’

’ax ’

’ab fg ’

WHERE COL1 LIKE ’a ’ ’’a%

’a ’

WHERE COL1 LIKE ’a ’ ’a ’

’ax ’

WHERE COL1 LIKE ’ ’ Empty string

WHERE COL1 LIKE ’ab ’ ’ab ’d

’ab ’d

Predicates ResultCOL1 Values

True

True

True

True

True

True

True

True

True

True

False

False

| Example 6: In the following table, assume COL1 is a column containing mixed
| ASCII data. The table shows the results when the predicate in the first column is
| evaluated using the COL1 value in the second column:

 NULL Predicate

 

�──expression──IS─ ──┬ ┬───── ─NULL──────────────────────────────────────────────────────────────────────�
 └ ┘─NOT─

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the expression
is null, the result is true. If the value is not null, the result is false. If NOT is
specified, the result is reversed.

A parameter marker must not be specified for or within the expression.

116 SQL Reference  



  Predicates
 

Example: The following predicate is true whenever PHONENO has the null value,
and is false otherwise.

PHONENO IS NULL

  Chapter 3. Language Elements 117



 Search Conditions  
 

 Search Conditions
A search condition specifies a condition that is true, false, or unknown about a
given row or group. When the condition is true, the row or group qualifies for the
results. When the condition is false or unknown, the row or group does not qualify.

 

 ┌ ┐────────────────────────────────────────────────
�─ ──┬ ┬───── ──┬ ┬─predicate────────── ───

�
┴──┬ ┬────────────────────────────────────────── ─────────────────�

└ ┘─NOT─ └ ┘──(search-condition) └ ┘ ──┬ ┬─AND─ ──┬ ┬───── ──┬ ┬─predicate──────────
└ ┘─OR── └ ┘─NOT─ └ ┘──(search-condition)

The result of a search condition is derived by application of the specified logical
operators (AND, OR, NOT) to the result of each specified predicate. If logical
operators are not specified, the result of the search condition is the result of the
specified predicate.

AND and OR are defined in the following table, in which P and Q are any
predicates:

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation
is not specified by parentheses, NOT is applied before AND, and AND is applied
before OR. The order in which operators at the same precedence level are
evaluated is undefined to allow for optimization of search conditions.

Example 1: In the first of the search conditions below, AND is applied before OR. In
the second, OR is applied before AND.

SALARY>:SS AND COMM>:CC OR BONUS>:BB
SALARY>:SS AND (COMM>:CC OR BONUS>:BB)

Example 2: In the first of the search conditions below, NOT is applied before AND.
In the second, AND is applied before NOT.

 NOT SALARY>:SS AND COMM>:CC
NOT (SALARY>:SS AND COMM>:CC)

Table 9. Truth Table for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

118 SQL Reference  



  Options Affecting SQL
 

Example 3: For the following search condition, AND is applied first. After the
application of AND, the ORs could be applied in either order without changing the
result. DB2 can therefore select the order of applying the ORs.

SALARY>:SS AND COMM>:CC OR BONUS>:BB OR SEX=:GG

Options Affecting SQL
Certain DB2 precompiler options, DB2 subsystem parameters (set through the
installation panels), bind options, and special registers affect how SQL statements
can be composed or determine how SQL statements are processed.

Table 10 summarizes the effect of these options and shows where to find more
information. (Some of the items are described in detail following the table, while
other items are described elsewhere.)

Table 10 (Page 1 of 2). Summary of Items Affecting Composition and Processing of SQL Statements

Precompiler
Option Field on Install Panel Bind Option or Other Affects

#  #  # DYNRULS installation
# parameter
# Use of precompiler options for
# dynamic statements when
# DYNAMICRULES(BIND)
# applies. For details, see
# “Precompiler Options for
# Dynamic Statements” on
# page 121.

COMMA
PERIOD

DECIMAL POINT IS  Representation of decimal points
in SQL statements.

For details, see page 121.

APOSTSQL
QUOTESQL

SQL STRING DELIMITER  Representation of string
delimiters in SQL statements.

For details, see page 122.

 | EBCDIC CODED CHAR SET  | Use of a numeric value
| indicating the EBCDIC CCSID.
| Use of Katakana characters in
| ordinary identifiers.

| For details, see page 123.

|  | ASCII CODED CHAR SET|  | Use of a value in ASCII format.

| For details, see page 123.

GRAPHIC
NOGRAPHIC

MIXED DATA  Use of character strings with a
mixture of SBCS and DBCS
characters.

For details, see page 123.

DATE
TIME

DATE FORMAT
TIME FORMAT
LOCAL DATE LENGTH
LOCAL TIME LENGTH

 Formatting of datetime strings.

For details, see page 124.

STDSQL   | Conformance with SQL
| standard.

| For details, see page 124.

  Chapter 3. Language Elements 119



 Options Affecting SQL  
 

Table 10 (Page 2 of 2). Summary of Items Affecting Composition and Processing of SQL Statements

Precompiler
Option Field on Install Panel Bind Option or Other Affects

NOFOR   Whether the FOR UPDATE OF
clause must be specified (in the
SELECT statement of the
DECLARE CURSOR statement).

For details, see page 126.

CONNECT   Whether the rules for a type 1 or
a type 2 CONNECT statement
apply. See “CONNECT” on
page 259 for a description of
the rules.

  CURRENTSERVER
bind option

Establishing a server other than
the local DB2 subsystem.

For details, see “Establishing a
Different Server” on page 261.

  DYNAMICRULES bind
option

Whether dynamic SQL
statements are processed with
bind-time rules or run-time rules.
For details, see “Authorization
IDs and Dynamic SQL” on
page 54.

DYNAMICRULES also
determines whether DB2 applies
precompiler options or
application programming
defaults to dynamic SQL
statements, as in the case for
decimal point representation,
string delimiters, and mixed
data. For details, see page 121,
122, and 123..

  SQLRULES bind option Whether a type 2 CONNECT
statement is processed with
DB2 rules or SQL standard
rules.

| In a searched DELETE or
| UPDATE, the SELECT privilege
| is required. For details, see
| “DELETE” on page 357 or
| “UPDATE” on page 477.

  CURRENT RULES
special register

Whether the statements ALTER
TABLE, GRANT and REVOKE
are processed with DB2 rules or
SQL standard rules.

For details, see “CURRENT
RULES” on page 81.

| In a searched DELETE or
| UPDATE, the SELECT privilege
| is required. For details, see
| “DELETE” on page 357 or
| “UPDATE” on page 477.

120 SQL Reference  



  Options Affecting SQL
 

For further details on precompiler options, see Section 5 of Application
Programming and SQL Guide . For more details on bind options, see Chapter 2 of
Command Reference.

# Precompiler Options for Dynamic Statements
# Generally, dynamic statements use the application programming defaults specified
# on installation panel DSNTIPF. However, if installation parameter DYNRULS is NO
# and DYNAMICRULES(BIND) applies, the following precompiler options are used
# instead of the application programming defaults:

# � COMMA or PERIOD
# � APOST or QUOTE
# � APOSTSQL or QUOTESQL
# � GRAPHIC or NOGRAPHIC
# � DEC(15) or DEC(31)

# For some languages, the precompiler option defaults to a value and no alternative
# is allowed. If installation parameter DYNRULS is YES, dynamic statements use the
# application programming defaults regardless of the value of bind option
# DYNAMICRULES.

# For additional information on the effect of precompiler options and application
# programming defaults on decimal point representation, string delimiters, and mixed
# data, see page 121, 122, and 123.

Decimal Point Representation
Decimal points in SQL statements are represented with either periods or commas.
Two values control the representation:

� The value of field DECIMAL POINT IS on installation panel DSNTIPF, which
can be a comma (,) or period (.)

� COMMA or PERIOD, which are mutually exclusive DB2 precompiler options for
COBOL

These values apply to SQL statements as follows:

� For a distributed operation, the decimal point is the first of the following values
that applies:

– The decimal point value specified by the application requester

– The value of field DECIMAL POINT IS on panel DSNTIPF at the DB2
where the package is bound

 � Otherwise:

For static SQL statements:

– In a COBOL program, the DB2 precompiler option COMMA or PERIOD
determines the decimal point representation for every static SQL
statement. If neither precompiler option is specified, the value of
DECIMAL POINT IS at precompilation time determines the
representation.

– In non-COBOL programs, the decimal representation for static SQL
statements is always the period.

For dynamic SQL statements:

  Chapter 3. Language Elements 121



 Options Affecting SQL  
 

# – If DYNAMICRULES(RUN) applies, the decimal point is the value of field
# DECIMAL POINT IS on installation panel DSNTIPF at the local DB2
# when the statement is prepared.

# – If DYNAMICRULES(BIND) applies and installation parameter
# DYNRULS is YES, the decimal point is the value of field DECIMAL
# POINT IS on installation panel DSNTIPF.

# If DYNAMICRULES(BIND) applies and installation parameter
# DYNRULS is NO, the precompiler option determines the decimal point
# representation. For COBOL programs, which supports precompiler
# option COMMA or PERIOD, the decimal point representation is
# determined as described above for static SQL statements in COBOL
# programs. For programs written in other host languages, the default
# precompiler option, which can only be PERIOD, is used.

If the comma is the decimal point, these rules apply:

� In any constant, a comma intended as a separator must be followed by space.
Such commas could appear, for example, in a VALUES clause, an IN
predicate, or an ORDER BY clause in which numbers are used to identify
columns.

� In any context, a comma intended as a decimal point must not be followed by a
space.

Apostrophes and Quotation Marks in String Delimiters
The following precompiler options control the representation of string delimiters:

� APOST and QUOTE are mutually exclusive DB2 precompiler options for
COBOL. Their meanings are exactly what they are for the COBOL compilers:

– APOST names the apostrophe (') as the string delimiter in COBOL
statements.

– QUOTE names the quotation mark (") as the string delimiter.

Neither option applies to SQL syntax. Do not confuse them with the
APOSTSQL and QUOTESQL options.

� APOSTSQL and QUOTESQL are mutually exclusive DB2 precompiler options
for COBOL. Their meanings are:

– APOSTSQL names the apostrophe (') as the string delimiter and the
quotation mark (") as the escape character in SQL statements.

– QUOTESQL names the quotation mark (") as the string delimiter and the
apostrophe (') as the escape character in SQL statements.

These values apply to SQL statements as follows:

� For a distributed operation, the string delimiter is the first of the following values
that applies:

– The SQL string delimiter value specified by the application requester

– The value of the field SQL STRING DELIMITER on installation panel
DSNTIPF at the DB2 where the package is bound

 � Otherwise:

122 SQL Reference  



  Options Affecting SQL
 

– In a COBOL program, the DB2 precompiler option APOSTSQL or
QUOTESQL determines the string delimiter and escape character. If neither
precompiler option is specified, the value of field SQL STRING DELIMTER
on installation panel DSNTIPF determines the string delimiter and escape
character.

– In a non-COBOL program, the string delimiter is the apostrophe, and the
escape character is the quotation mark.

� For dynamic SQL statements:

# – If DYNAMICRULES(RUN) applies, the string delimiter and escape
# character is the value of field SQL STRING DELIMITER on installation
# panel DSNTIPF at the local DB2 when the statement is prepared.

# – If DYNAMICRULES(BIND) applies and installation parameter DYNRULS is
# YES, the decimal point is the value of field SQL STRING DELIMITER.

# If DYNAMICRULES(BIND) applies and installation parameter DYNRULS is
# NO, the precompiler option determines the string delimiter and escape
# character. For COBOL programs, precompiler option APOSTSQL or
# QUOTESQL determines the string delimiter and escape character. If neither
# precompiler option is specified, the value of field SQL STRING DELIMITER
# determines them. For programs written in other host languages, the default
# precompiler option, which can only be APOSTSQL, determines the string
# delimiter and escape character.

| Katakana Characters for EBCDIC
| The field EBCDIC CODED CHAR SET on installation panel determines the system
| CCSIDs for EBCDIC-encoded data. Ordinary identifiers with an EBCDIC encoding
| scheme can contain Katakana characters if the field contains the value 5026 or
| 930. There are no corresponding precompiler options. EBCDIC CODED CHAR SET

applies equally to static and dynamic statements. For dynamically prepared
statements, the applicable value is always the one at the local DB2.

Mixed Data in Character Strings
The field MIXED DATA on installation panel DSNTIPF can have the value YES or
NO. The value YES indicates that character strings can contain a mixture of SBCS
and DBCS characters. The value NO indicates that they cannot. A corresponding
precompiler option (GRAPHIC or NOGRAPHIC) exists for every host language
supported.

For static SQL statements, the value of the precompiler option determines whether
character strings can contain mixed data. For dynamic SQL statements, either the
value of field MIXED DATA or the precompiler option is used, depending on the
value of bind option DYNAMICRULES in effect:

# � If DYNAMICRULES(RUN) applies, field MIXED DATA is used.

# � If DYNAMICRULES(BIND) applies and installation parameter DYNRULS is NO,
# the precompiler option is used. If DYNRULS is YES, field MIXED DATA is used
# instead.

The value of MIXED DATA and the precompiler option affects the parsing of SQL
character string constants, the execution of the LIKE predicate, and the assignment
of character strings to host variables when truncation is needed. It can also affect
concatenation, as explained in “With the Concatenation Operator” on page 92. A

  Chapter 3. Language Elements 123



 Options Affecting SQL  
 

value that applies to a statement executed at the local DB2 also applies to any
statement executed at another server. An exception is the LIKE predicate, for which
the applicable value of MIXED DATA is always the one at the statement's server.

The value of MIXED DATA also affects the choice of system CCSIDs for the local
| DB2 and the choice of data subtypes for character columns. When this value is
| YES, multiple CCSIDs are available: EBCDIC and ASCII ones for SBCS data,
| EBCDIC and ASCII ones for MIXED data, and EBCDIC and ASCII ones for
| GRAPHIC (DBCS) data. The CCSIDs for SBCS and DBCS data are derived from
| the value of the ASCII CODED CHAR SET or EBCDIC CODED CHAR SET field,
| whose value is a CCSID for MIXED data. Moreover, a character column can have

any one of the allowable data subtypes—BIT, SBCS, or MIXED.

| On the other hand, when MIXED DATA is NO, the only system CCSIDs are the
| EBCDIC and ASCII ones for SBCS data. Therefore, only BIT and SBCS can be

data subtypes for character columns.

Formatting of Datetime Strings
| Fields on installation panel DSNTIPF (DATE FORMAT, TIME FORMAT, LOCAL

DATE LENGTH, and LOCAL TIME LENGTH) and DB2 precompiler options affect
the formatting of datetime strings.

The formatting of datetime strings is described in “String Representations of
Datetime Values” on page 63. Unlike the subsystem parameters and options
previously described, a value in effect for a statement executed at the local DB2 is
not necessarily in effect for a statement executed at a different server. See
“Restrictions on the Use of LOCAL Datetime Formats” on page 65 for more
information.

SQL Standard Language
DB2 SQL and the SQL standard are not identical. The STDSQL precompiler option
addresses some of the differences:

� STDSQL(NO) indicates that conformance with the SQL standard is not
intended. The default is the value of field STD SQL LANGUAGE on installation

| panel DSNTIP4 (which has a default of NO).

� STDSQL(YES) 15 indicates that conformance with the SQL standard is
intended.

When a program is precompiled with the STDSQL(YES) option, the following rules
apply:

Declaring host variables: All host variable declarations must lie between pairs of
BEGIN DECLARE SECTION and END DECLARE SECTION statements:

BEGIN DECLARE SECTION

(one or more host variable declarations)

END DECLARE SECTION

15 STDSQL(86) is a synomym, but STDSQL(YES) should be used.

124 SQL Reference  



  Options Affecting SQL
 

Separate pairs of these statements can bracket separate sets of host variable
declarations.

Declarations for SQLCODE and SQLSTATE: The programmer must declare host
variables for either SQLCODE or SQLSTATE, or both. SQLCODE should be
defined as a fullword integer and SQLSTATE should be defined as a 5-byte
character string. SQLCODE and SQLSTATE cannot be part of any structure. The
variables must be declared in the DECLARE SECTION of a program; however,
SQLCODE can be declared outside of the DECLARE SECTION when no host
variable is defined for SQLSTATE. For PL/I, an acceptable declaration can look like
this:

DECLARE SQLCODE BIN FIXED(31);

DECLARE SQLSTATE CHAR(5);

In FORTRAN programs, the variable SQLCOD should be used for SQLCODE, and
either SQLSTATE or SQLSTA can be used for SQLSTATE.

Definitions for SQLCA: An SQLCA must not be defined in your program, either by
coding its definition manually or by using the INCLUDE SQLCA statement. When
STDSQL(YES) is specified, the DB2 precompiler automatically generates an
SQLCA that includes the variable name SQLCADE instead of SQLCODE and
SQLSTAT instead of SQLSTATE. After each SQL statement executes, DB2
assigns status information to SQLCODE and SQLSTATE, whose declarations are
described above, as follows:

� SQLCODE: DB2 assigns the value in SQLCADE to SQLCODE. In FORTRAN,
SQLCAD and SQLCOD are used for SQLCADE and SQLCODE, respectively.

� SQLSTATE: DB2 assigns the value in SQLSTAT to SQLSTATE. (In FORTRAN,
SQLSTT and SQLSTA are used for SQLSTAT and SQLSTATE, respectively.)

� No declaration for either SQLSTATE or SQLCODE: DB2 assigns the value in
SQLCADE to SQLCODE.

If the precompiler encounters an INCLUDE SQLCA statement, it ignores the
statement and issues a warning message. The precompiler also does not recognize
hand-coded definitions, and a hand-coded definition creates a compile-time conflict
with the precompiler-generated definition. A similar conflict arises if definitions of
SQLCADE or SQLSTAT, other than the ones generated by the DB2 precompiler,
appear in the program.

Comments in static SQL statements: Static SQL statements can include SQL
comments. Two consecutive hyphens (--) indicate that the characters after the
hyphens are a comment.

SQL comments are recognized only in a program that has been precompiled with
the STDSQL(YES) option. If STDSQL(YES) is not specified, the use of an SQL
comment might cause a syntax error. Host language comments can be used
instead.

When allowed, SQL comments are subject to the following rules:

� The two hyphens must be on the same line, not separated by a space.

� Comments can be started wherever a space is valid (except within a delimiter
token or between EXEC and SQL).

� Comments are terminated by the end of the line.

  Chapter 3. Language Elements 125



  
 

� Comments are not allowed within statements that are dynamically prepared
(using PREPARE or EXECUTE IMMEDIATE).

� Within a statement embedded in a COBOL program, the two hyphens must be
preceded by a blank, unless they begin a line.

This example shows how to include comments in a statement:

EXEC SQL CREATE VIEW PRJ_MAXPER -- projects with most support personnel

AS SELECT PROJNO, PROJNAME -- number and name of project

 FROM DSN851,.PROJ

WHERE DEPTNO = 'E21' -- systems support dept code

AND PRSTAFF > 1

 END-EXEC.

Positioned Updates of Columns
The NOFOR precompiler option affects the use of the FOR UPDATE OF clause.
The NOFOR option is in effect when either of the following are true:

� The NOFOR option is specified.
� The STDSQL(YES) option is in effect.

Otherwise, the NOFOR option is not in effect. The following table summarizes the
differences when the option is in effect and when the option is not in effect:

Table 11. The NOFOR Precompiler Option

When NOFOR is in effect When NOFOR is not in effect

The use of the FOR UPDATE OF clause in
the SELECT statement of the DECLARE
CURSOR statement is optional. This clause
restricts updates to the specified columns
and causes the acquisition of update locks
when the cursor is used to fetch a row. If
the FOR UPDATE OF clause is not
specified, positioned updates can be made
to any columns that the program has DB2
authority to update.

The FOR UPDATE OF clause must be
specified and must identify every column
specified in a positioned update.

DBRMs must be built entirely in virtual
storage, which might possibly increase the
virtual storage requirements of the DB2
precompiler. However, creating DBRMs
entirely in virtual storage might ease
concurrency problems with DBRM libraries.

DBRMs can be built incrementally using the
DB2 precompiler.

126 SQL Reference  



  Functions
 

 Chapter 4. Functions

Column Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
AVG  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
COUNT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
MAX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
MIN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
SUM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Scalar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
CHAR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
COALESCE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
DATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
DAY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
DAYS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
DECIMAL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
DIGITS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
FLOAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
HEX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
HOUR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
INTEGER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
MICROSECOND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
MINUTE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
MONTH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

| NULLIF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
SECOND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

| STRIP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
SUBSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
TIME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
TIMESTAMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
VARGRAPHIC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
YEAR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

 Copyright IBM Corp. 1982, 1997  127



 Functions  
 

128 SQL Reference  



  Functions
 

A function is an operation denoted by a function name followed by one or more
operands which are enclosed in parentheses. The operands of functions are called
arguments. Most functions have a single argument that is specified by an
expression. The result of a function is a single value derived by applying the
function to the result of the expression.

function: 

�─ ──┬ ┬─AVG function───────── ──────────────────────────────────────────────────────────────────────────�
 ├ ┤─COUNT function───────
 ├ ┤─MAX function─────────
 ├ ┤─MIN function─────────
 ├ ┤─SUM function─────────
 ├ ┤─CHAR function────────
 ├ ┤─COALESCE function────
 ├ ┤─DATE function────────
 ├ ┤─DAY function─────────
 ├ ┤─DAYS function────────
 ├ ┤─DECIMAL function─────
 ├ ┤─DIGITS function──────
 ├ ┤─FLOAT function───────
 ├ ┤─HEX function─────────
 ├ ┤─HOUR function────────
 ├ ┤─INTEGER function─────
 ├ ┤─LENGTH function──────
 ├ ┤─MICROSECOND function─
 ├ ┤─MINUTE function──────
 ├ ┤─MONTH function───────

|  ├ ┤─NULLIF function──────
 ├ ┤─SECOND function──────

|  ├ ┤─STRIP function───────
 ├ ┤─SUBSTR function──────
 ├ ┤─TIME function────────
 ├ ┤─TIMESTAMP function───
 ├ ┤─VALUE function───────
 ├ ┤─VARGRAPHIC function──
 └ ┘─YEAR function────────

Functions are classified as scalar functions or column functions. The argument of a
column function is a set of values. An argument of a scalar function is a single
value.

In the syntax of SQL, the term function is used only in the definition of an
expression. Thus, a function can be used only where an expression can be used.
Additional restrictions apply to the use of column functions as specified in the
following section and in “Chapter 5. Queries” on page 167.

  Chapter 4. Functions 129



 Column Functions  
 

 Column Functions
The following information applies to all column functions, except for the COUNT(*)
variation of the COUNT function.

The argument of a column function is a set of values derived from one or more
columns. The scope of the set is a group or an intermediate result table as
explained in “Chapter 5. Queries” on page 167. For example, the result of the
following SELECT statement is the number of distinct values of JOB for employees
in department D11:

SELECT COUNT(DISTINCT JOB)

 FROM DSN851,.EMP

WHERE WORKDEPT = 'D11';

The keyword DISTINCT is not considered an argument of the function but rather a
specification of an operation that is performed before the function is applied. If
DISTINCT is specified, duplicate values are eliminated. If ALL is implicitly or
explicitly specified, duplicate values are not eliminated.

An expression in a column function must include a column name and must not
include a column function. A column function can be used in a WHERE clause only
if that clause is part of a subquery of a HAVING clause and the column name
specified in the expression is a correlated reference to a group. If the expression
includes more than one column name, each column name must be a correlated
reference to the same group.

The result of the COUNT function cannot be the null value. As specified in the
description of AVG, MAX, MIN, and SUM, the result is the null value when the
function is applied to an empty set. However, the result is also the null value when
the function is specified in an outer select list, the argument is given by an
arithmetic expression, and any evaluation of the expression causes an arithmetic
exception (such as division by zero).

If the argument values of a column function are strings from a column with a field
procedure, the function is applied to the encoded form of the values and the result
of MAX and MIN inherits the field procedure.

Following in alphabetic order is a definition of each of the column functions.

130 SQL Reference  



  AVG
 

 AVG

 

 ┌ ┐─ALL──────
�─ ──AVG( ──┼ ┼────────── expression) ─────────────────────────────────────────────────────────────────────�
 └ ┘─DISTINCT─

The AVG function returns the average of a set of numbers.

The argument values must be numbers and their sum must be within the range of
the data type of the result.

The data type of the result is the same as the data type of the argument values,
except that the result is a large integer if the argument values are small integers,
and the result is double precision floating-point if the argument values are single
precision floating-point. The result can be null.

If the data type of the argument values is decimal with precision p and scale s, the
precision (P) and scale (S) of the result depend on p and the decimal precision
option:

� If p is greater than 15 or the DEC31 option is in effect, P is 31 and S is
max(0,28-p+s).

� Otherwise, P is 15 and S is 15-p+s.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are also
eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the average value of the set. If the type of the result is INTEGER, the
fractional part of the average is lost. The order in which the summation part of the
operation is performed is undefined but every intermediate result must be within the
range of the result data type.

Example: Assuming DEC15, set the DECIMAL(15,2) variable AVERAGE to the
average salary in department D11 of the employees in the sample table
DSN8510.EMP.

EXEC SQL SELECT AVG(SALARY)

 INTO :AVERAGE

 FROM DSN851,.EMP

WHERE WORKDEPT = 'D11';

  Chapter 4. Functions 131



 COUNT  
 

 COUNT

 

�─ ──COUNT( ──┬ ┬ ─DISTINCT──expression─ ) ─────────────────────────────────────────────────────────────────�
 └ ┘─O────────────────────

The COUNT function returns the number of rows or values in a set of rows or
values.

The argument values can be any values other than character strings with a
# maximum length greater than 255 or graphic strings with a maximum length greater

than 127. The result of the function must be within the range of large integers and
cannot be null.

The data type of the result is INTEGER.

The argument of COUNT(*) is a set of rows. The result is the number of rows in the
set. Any row that includes only null values is included in the count.

The argument of COUNT(DISTINCT expression) is a set of values. The function is
applied to the set of values derived from the argument values by the elimination of
null values and duplicate values. The result is the number of values in the set.

Example 1: Set the integer host variable FEMALE to the number of females
represented in the sample table DSN8510.EMP.

EXEC SQL SELECT COUNT(O)

 INTO :FEMALE

 FROM DSN851,.EMP

WHERE SEX = 'F';

Example 2: Set the integer host variable FEMALE_IN_DEPT to the number of
departments that have at least one female as a member.

EXEC SQL SELECT COUNT(DISTINCT WORKDEPT)

 INTO :FEMALE_IN_DEPT

 FROM DSN851,.EMP

WHERE SEX = 'F';

132 SQL Reference  



  MAX
 

 MAX

 

 ┌ ┐─ALL──────
�─ ──MAX( ──┼ ┼────────── expression) ─────────────────────────────────────────────────────────────────────�
 └ ┘─DISTINCT─

The MAX function returns the maximum value in a set of values.

The argument values can be any values other than character strings with a
# maximum length greater than 255 or graphic strings with a maximum length greater

than 127.

The data type of the result and its other attributes (for example, the length and
CCSID of a string) are the same as the data type and attributes of the argument
values. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Example 1: Set the DECIMAL(8,2) variable MAX_SALARY to the maximum monthly
salary of the employees represented in the sample table DSN8510.EMP.

EXEC SQL SELECT MAX(SALARY) / 12

 INTO :MAX_SALARY

 FROM DSN851,.EMP;

Example 2: Find the surname that comes last in the collating sequence for the
employees represented in the sample table DSN8510.EMP. Set the VARCHAR(15)
variable LAST_NAME to that surname.

EXEC SQL SELECT MAX(LASTNAME)

 INTO :LAST_NAME

 FROM DSN851,.EMP;

  Chapter 4. Functions 133



 MIN  
 

 MIN

 

 ┌ ┐─ALL──────
�─ ──MIN( ──┼ ┼────────── expression) ─────────────────────────────────────────────────────────────────────�
 └ ┘─DISTINCT─

The MIN function returns the minimum value in a set of values.

The argument values can be any values other than character strings with a
# maximum length greater than 255 or graphic strings with a maximum length greater

than 127.

The data type of the result and its other attributes (for example, the length and
CCSID of a string) are the same as the data type and attributes of the argument
values. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Example 1: Set the DECIMAL(15,2) variable MIN_SALARY to the minimum monthly
salary of the employees represented in the sample table DSN8510.EMP.

EXEC SQL SELECT MIN(SALARY) / 12

 INTO :MIN_SALARY

 FROM DSN851,.EMP;

Example 2: Find the surname that comes first in the collating sequence for the
employees represented in the sample table DSN8510.EMP. Set the VARCHAR(15)
variable FIRST_NAME to that surname.

EXEC SQL SELECT MIN(LASTNAME)

 INTO :FIRST_NAME

 FROM DSN851,.EMP;

134 SQL Reference  



  SUM
 

 SUM

 

 ┌ ┐─ALL──────
�─ ──SUM( ──┼ ┼────────── expression) ─────────────────────────────────────────────────────────────────────�
 └ ┘─DISTINCT─

The SUM function returns the sum of a set of numbers.

The argument values must be numbers and their sum must be within the range of
the data type of the result.

The data type of the result is the same as the data type of the argument values,
except that the result is a large integer if the argument values are small integers,
and the result is double precision floating-point if the argument values are single
precision floating-point. The result can be null.

If the data type of the argument values is decimal, the scale of the result is the
same as the scale of the argument values and the precision of the result depends
on the precision of the argument values and the decimal precision option:

� If the precision of the argument values is greater than 15 or the DEC31 option
is in effect, the precision of the result is min(31,P+10), where P is the precision
of the argument values.

� Otherwise, the precision of the result is 15.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are also
eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the sum of the values in the set. The order in which the summation is
performed is undefined but every intermediate result must be within the range of
the result data type.

Example: Set the INTEGER variable INCOME to the total income from all sources
(salaries, commissions, and bonuses) of the employees represented in sample
table DSN8510.EMP. If DEC31 is not in effect, then, because all three columns are
DECIMAL(9,2), the resultant sum is DECIMAL(15,2).

EXEC SQL SELECT SUM(SALARY+COMM+BONUS)

 INTO :INCOME

 FROM DSN851,.EMP;

  Chapter 4. Functions 135



 Scalar Functions  
 

 Scalar Functions
A scalar function can be used wherever an expression can be used. The
restrictions on the use of column functions do not apply to scalar functions because
a scalar function is applied to a single value rather than a set of values. The
argument of a scalar function can be a function. However, the restrictions that apply
to the use of expressions and column functions also apply when an expression or
column function is used within a scalar function. For example, the argument of a
scalar function can be a column function only if a column function is allowed in the
context in which the scalar function is used.

If the argument of a scalar function is a string from a column with a field procedure,
the function applies to the decoded form of the value and the result of the function
does not inherit the field procedure.

Example: The following SELECT statement calls for the employee number, last
name, and age of each employee in department D11 in the sample table
DSN8510.EMP. To obtain the ages, the scalar function YEAR is applied to the
expression:

CURRENT DATE - BIRTHDATE

in each row of DSN8510.EMP for which the employee represented is in department
D11:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BIRTHDATE)

 FROM DSN851,.EMP

WHERE WORKDEPT = 'D11';

Following in alphabetic order is the definition of each of the scalar functions.

136 SQL Reference  



  CHAR
 

 CHAR

 

�─ ──CHAR(expression ──┬ ┬──────── ) ──────────────────────────────────────────────────────────────────────�
 ├ ┤─,ISO───
 ├ ┤─,USA───
 ├ ┤─,EUR───
 ├ ┤─,JIS───
 └ ┘─,LOCAL─

The CHAR function returns a string representation of a datetime value or a decimal
number.

The first argument must be a date, time, timestamp, or decimal number. The
second argument, if applicable, is the name of a datetime format.

| The result of the function is a fixed-length character string. The CCSID of the result
| is the system EBCDIC or ASCII CCSID for SBCS data, depending on the encoding
| of other data in the SQL statement. The encoding scheme of the first argument,

EBCDIC or ASCII, determines which CCSID is used. If the first argument can be
null, the result can be null; if the first argument is null, the result is the null value.

The other rules depend on the data type of the first argument:

If the first argument is a date, the result is the character string representation
of that date in the format specified by the second argument. If the second
argument is omitted, the format is specified by the DATE precompiler option, if
one is provided, or else by the field DATE FORMAT on installation panel

| DSNTIP4. If LOCAL is the format to be used, the length of the result is
| specified by the field LOCAL DATE LENGTH on installation panel DSNTIP4.

Otherwise, the length of the result is 10.

LOCAL denotes the local format at the DB2 that executes the SQL statement.
If LOCAL is used for the format, a date exit routine must be installed at that
DB2.

If the first argument is a time, the result is the character string representation
of that time in the format specified by the second argument. If the second
argument is omitted, the format is specified by the TIME precompiler option, if
one is provided, or else by the field TIME FORMAT on installation panel

| DSNTIP4. If LOCAL is the format to be used, the length of the result is
| specified by the field LOCAL TIME LENGTH on installation panel DSNTIP4.

Otherwise, the length of the result is 8.

LOCAL denotes the local format at the DB2 that executes the SQL statement.
If LOCAL is used for the format, a time exit routine must be installed at that
DB2.

If the first argument is a timestamp, the result is the character string
representation of the timestamp. The length of the result is 26. The second
argument is not applicable and must not be specified.

If the first argument is a decimal number, the result is a fixed-length
character string representation of that number. The second argument is not
applicable and must not be specified.

  Chapter 4. Functions 137



 CHAR  
 

The first character of the result is a minus sign if the argument is negative.
Otherwise, the first character is blank. The result includes a decimal point and p
digits, where p is the precision of the argument. The length of the result is 2+p.

The decimal point can be a period or a comma. For details on what governs
the choice, see the discussion of decimal point representation in “Options
Affecting SQL” on page 119.

Example 1: HIREDATE is a DATE column in the sample table DSN8510.EMP.
When it represents 15 December 1976 (as it does for employee 140):

EXEC SQL SELECT CHAR(HIREDATE, USA)

 INTO :DATESTRING

 FROM DSN851,.EMP

WHERE EMPNO = ',,,14,';

returns the string value '12/15/1976' in character-string variable DATESTRING.

Example 2: HOURS is a DECIMAL(6,0) variable with a value of 50000. Interpreted
as a time duration, this value is 5 hours. Assume that STARTING is a TIME column
in some table. Then, when STARTING represents 17 hours, 30 minutes, and 12
seconds after midnight:

 CHAR(STARTING+:HOURS, USA)

returns the value '10:30 PM'.

Example 3: The following SQL statement sets the CHAR(33) variable AVERAGE to
the character string representation of the average employee salary:

EXEC SQL SELECT CHAR(AVG(SALARY))

 INTO :AVERAGE

 FROM DSN851,.EMP;

With DEC31, the result of AVG applied to a decimal number is a decimal number
with a precision of 31 digits. The only host languages in which such a large decimal
variable can be defined are Assembler and C. For host languages that do not
support such large decimal numbers, use the method shown in this example.

138 SQL Reference  



  COALESCE
 

 COALESCE

 

 ┌ ┐─────────────
�─ ──COALESCE(expression ───

�
┴,expression ) ───────────────────────────────────────────────────────────────�

The COALESCE function is a synonym for the VALUE function. It returns the first
argument that is not null. Use COALESCE to conform to the SQL standard.

For a description and examples, see “VALUE” on page 162.

  Chapter 4. Functions 139



 DATE  
 

 DATE

 

�─ ──DATE(expression) ──────────────────────────────────────────────────────────────────────────────────�

The DATE function returns a date derived from its argument.

The argument must be a timestamp, a date, a positive number less than or equal to
3652059, a valid string representation of a date, or a character string of length 7.
(Valid formats for string representations for dates are listed in Table 2 on page 64.)

If the argument is a character string of length 7, it must represent a valid date in
the form yyyynnn, where yyyy are digits denoting a year, and nnn are digits
between 001 and 366 denoting a day of that year.

The result of the function is a date. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a timestamp, the result is the date part of the timestamp.

If the argument is a date, the result is that date.

If the argument is a number, the result is the date that is n-1 days after
January 1, 0001, where n is the integral part of the number.

If the argument is a character string, the result is the date represented by
the character string. If the CCSID of the string is not the same as the
corresponding default CCSID at the application server, the string is first
converted to that CCSID.

Example 1: Assume that RECEIVED is a TIMESTAMP column in some table, and
that one of its values is equivalent to the timestamp
'1988-12-25-17.12.30.000000'. Then, for this value:

 DATE(RECEIVED)

returns the internal representation of 25 December 1988.

Example 2: Assume that DATCOL is a CHAR(7) column in some table, and that
one of its values is the character string '1989061'. Then, for this value:

 DATE(DATCOL)

returns the internal representation of 2 March 1989.

Example 3: DB2 recognizes '1989-03-02' as the ISO representation of 2 March
1989. Therefore:

 DATE('1989-,3-,2')

returns the internal representation of 2 March 1989.

140 SQL Reference  



  DAY
 

 DAY

 

�─ ──DAY(expression) ───────────────────────────────────────────────────────────────────────────────────�

The DAY function returns the day part of its argument.

The argument must be a date, timestamp, date duration, or timestamp duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a date or a timestamp, the result is the day part of the
value, which is an integer between 1 and 31.

If the argument is a date duration or timestamp duration, the result is the
day part of the value, which is an integer between -99 and 99. A nonzero result
has the same sign as the argument.

Example 1: Set the INTEGER variable DAYVAR to the day of the month on which
employee 140 in the sample table DSN8510.EMP was hired.

EXEC SQL SELECT DAY(HIREDATE)

 INTO :DAYVAR

 FROM DSN851,.EMP

WHERE EMPNO = ',,,14,';

Example 2: Assume that DATE1 and DATE2 are DATE columns in the same table.
Assume also that for a given row in this table, DATE1 and DATE2 represent
respectively the dates 15 January 2000 and 31 December 1999. Then, for the
given row:

DAY(DATE1 - DATE2)

returns the value 15.

  Chapter 4. Functions 141



 DAYS  
 

 DAYS

 

�─ ──DAYS(expression) ──────────────────────────────────────────────────────────────────────────────────�

The DAYS function returns an integer representation of a date.

The argument must be a date, a timestamp, or a valid string representation of a
| date. (Valid formats for string representations for dates are listed in Table 2 on

page 64.)

The result of the function is a large integer. If the argument can be null, the result
can be null. If the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D
is the date that would occur if the DATE function were applied to the argument.

Example 1: Set the INTEGER variable DAYSVAR to the number of days employee
140 had been with the enterprise. Sample table DSN8510.EMP represents the
number of days up to and including 8 January 1990.

EXEC SQL SELECT DAYS('199,-,1-,8') - DAYS(HIREDATE) + 1

 INTO :DAYSVAR

 FROM DSN851,.EMP

WHERE EMPNO = ',,,14,';

Example 2: Set the INTEGER variable DAYOFWEEK to the numerical day of the
week that employee 140 was hired, where 1 represents Sunday, 2 represents
Monday, ... 7 represents Saturday. HIREDATE is a column of date type in sample
table DSN8510.EMP.

EXEC SQL SELECT (DAYS(HIREDATE) - DAYS(HIREDATE)/7 O 7) + 1

 INTO :DAYOFWEEK

 FROM DSN851,.EMP

WHERE EMPNO = ',,,14,';

142 SQL Reference  



  DECIMAL
 

 DECIMAL

 

�─ ──DECIMAL(expression ──┬ ┬──────────────────────── ) ───────────────────────────────────────────────────�
└ ┘──,integer ──┬ ┬──────────

└ ┘──,integer

The DECIMAL function returns a decimal representation of a value.

The first argument must be a character string or a number. The second argument,
if specified, must range in value from 1 to 31. The third argument, if specified, must
range in value from 1 to p, where p is the value of the second argument.

If the second argument is omitted, its value depends on the data type of the first
argument. The default is:

� 5 if the first argument is a small integer
� 11 if the first argument is a large integer
� 15 in all other cases

If the third argument is omitted, its value is zero.

# If the first argument is a string, its length attribute must not exceed 255. Leading
and trailing blanks are eliminated from the string. The resulting substring must
conform to the rules for forming an SQL integer or decimal constant.

The data type of the result is DECIMAL(p,s), where p and s are the second and
third arguments. If the first argument can be null, the result can be null; if the first
argument is null, the result is null.

Assume that N denotes the number or numeric constant specified as the first
argument. The result of the function is the number that would occur if N were
assigned to a decimal column with precision p and scale s. Accordingly, an error
occurs if the number of significant digits required to represent the whole part of the
number is greater than p-s.

Example: Represent the average salary of the employees in DSN8510.EMP as an
8-digit decimal number with two of these digits to the right of the decimal point.

 SELECT DECIMAL(AVG(SALARY),8,2)

 FROM DSN851,.EMP;

  Chapter 4. Functions 143



 DIGITS  
 

 DIGITS

 

�─ ──DIGITS(expression) ────────────────────────────────────────────────────────────────────────────────�

The DIGITS function returns a character string representation of its argument.

The argument must be an integer or a decimal number.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

The result of the function is a fixed-length character string representing the absolute
value of the argument without regard to its scale. The result does not include a sign
or a decimal point. Instead, it consists exclusively of digits, including, if necessary,
leading zeros to fill out the string. The length of the string is:

� 5 if the argument is a small integer
� 10 if the argument is a large integer
� p if the argument is a decimal number with a precision of p

| The CCSID of the result is the corresponding EBCDIC or ASCII CCSID for SBCS
| data defined at the server during system installation. The encoding scheme of the
| argument, EBCDIC or ASCII, determines which CCSID is used.

Example 1: Assume that an INTEGER column called INTCOL containing a 10-digit
number is in a table called TABLEX. INTCOL has the data type INTEGER instead
of CHAR(10) to save space. List all combinations of the first four digits in column
INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)

 FROM TABLEX;

Example 2: Assume that COLUMNX has the data type DECIMAL(6,2), and that one
of its values is -6.28. Then, for this value:

 DIGITS(COLUMNX)

the value '000628' is returned.

The result is a string of length six (the precision of the column) with leading zeros
padding the string out to this length. Neither sign nor decimal point appear in the
result.

144 SQL Reference  



  FLOAT
 

 FLOAT

 

�─ ──FLOAT(expression) ─────────────────────────────────────────────────────────────────────────────────�

The FLOAT function returns a floating-point representation of its argument.

The argument must be a number.

The result of the function is a double precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result is the
null value.

The result is the number that would occur if the argument were assigned to a
double precision floating-point column or variable.

Example: Using the sample table in DSN8510.EMP, find the ratio of salary to
commission for employees whose commission is not zero. The columns involved
(SALARY and COMM) have DECIMAL data types. To eliminate the possibility of
out-of-range results, FLOAT is applied to SALARY so that the division is carried out
in floating-point:

SELECT EMPNO, FLOAT(SALARY)/COMM

 FROM DSN851,.EMP

WHERE COMM > ,;

  Chapter 4. Functions 145



 HEX  
 

 HEX

 

�─ ──HEX(expression) ───────────────────────────────────────────────────────────────────────────────────�

The HEX function returns a hexadecimal representation of its argument.

The argument can be any value other than a character string with a maximum
# length greater than 255 or a graphic string with a maximum length greater than

127.

The result of the function is a character string. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is a string of hexadecimal digits. The first two represent the first byte of
the argument, the next two represent the second byte of the argument, and so
forth. If the argument is a datetime value, the result is the hexadecimal
representation of the internal form of the argument.

If the argument is a graphic string, the length of the result is four times the
maximum length of the argument. Otherwise, the length of the result is twice the
(maximum) length of the argument.

If the argument is not a varying-length string, and the length of the result is less
than 255, the result is a fixed-length string. Otherwise, the result is a varying-length
string whose maximum length depends on the following considerations:

If the argument is not a varying-length string, the maximum length of the
result string is the same as the length of the result.

If the argument is a varying-length character string, the maximum length of
the result string is twice the maximum length of the argument.

If the argument is a varying-length graphic string, the maximum length of
the result string is four times the maximum length of the argument.

If the maximum length of the result is greater than 254, the result is subject to the
restrictions that apply to long strings.

| The CCSID of the result is the corresponding EBCDIC or ASCII CCSID for SBCS
| data defined at the server during system installation. The encoding scheme of the
| argument, EBCDIC or ASCII, determines which CCSID is used.

Example: Return the hexadecimal representation of START_RBA in the
SYSIBM.SYSCOPY catalog table.

SELECT HEX(START_RBA) FROM SYSIBM.SYSCOPY;

146 SQL Reference  



  HOUR
 

 HOUR

 

�─ ──HOUR(expression) ──────────────────────────────────────────────────────────────────────────────────�

The HOUR function returns the hour part of its argument.

The argument must be a time, timestamp, time duration, or timestamp duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time or timestamp, the result is the hour part of the
value, which is an integer between 0 and 24.

If the argument is a time duration or timestamp duration, the result is the
hour part of the value, which is an integer between -99 and +99. A nonzero
result has the same sign as the argument.

Example: Assume that a table named CLASSES contains a row for each scheduled
class. Assume also that the class starting times are in the TIME column named
STARTTM. Using these assumptions, select those rows in CLASSES that represent
classes that start after the noon hour.

 SELECT O

 FROM CLASSES

WHERE HOUR(STARTTM) > 12;

  Chapter 4. Functions 147



 INTEGER  
 

 INTEGER

 

�─ ──INTEGER(expression) ───────────────────────────────────────────────────────────────────────────────�

The INTEGER function returns an integer representation of its argument.

The argument must be a number.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the number that would occur if the argument were assigned to a large
integer column or variable. If the whole part of the argument is not within the range
of integers, an error occurs.

Example: Find the average salary of the employees in department 'A00', rounding
the result to the nearest dollar.

 SELECT INTEGER(AVG(SALARY)+.5)

 FROM DSN851,.EMP

WHERE WORKDEPT = 'A,,';

148 SQL Reference  



  LENGTH
 

 LENGTH

 

�─ ──LENGTH(expression) ────────────────────────────────────────────────────────────────────────────────�

The LENGTH function returns the length of its argument.

The argument can be any value.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null
indicator byte of column arguments that allow null values. The length of strings
includes blanks but does not include the length control field of varying-length
strings. The length of a varying-length string is the actual length, not the maximum
length.

The length of a graphic string is the number of DBCS characters. The length of all
other values is the number of bytes used to represent the value:

� The length of the string for character strings
� 2 for small integer
� 4 for large integer
� 4 for single precision floating-point
� 8 for double precision floating-point
� INTEGER(p/2)+1 for decimal numbers with precision p
� 4 for date
� 3 for time
� 10 for timestamp

Example 1: Assume that FIRSTNME is a VARCHAR(12) column that contains
'ETHEL' for employee 280. The following query:

 SELECT LENGTH(FIRSTNME)

 FROM DSN851,.EMP

WHERE EMPNO = ',,,28,';

returns the value 5.

Example 2: Assume that HIREDATE is a column of data type DATE. Then,
regardless of value:

 LENGTH(HIREDATE)

returns the value 4, and

 LENGTH(CHAR(HIREDATE, EUR))

returns the value 10.

  Chapter 4. Functions 149



 MICROSECOND  
 

 MICROSECOND

 

�─ ──MICROSECOND(expression) ───────────────────────────────────────────────────────────────────────────�

The MICROSECOND function returns the microsecond part of its argument.

The argument must be a timestamp or timestamp duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a timestamp, the result is the microsecond part of the
value, which is an integer between 0 and 999999.

If the argument is a duration, the result is the microsecond part of the value,
which is an integer between -999999 and 999999. A nonzero result has the
same sign as the argument.

Example: Assume that table TABLEX contains a TIMESTAMP column named
TSTMPCOL and a SMALLINT column named INTCOL. Select the microseconds
part of the TSTMPCOL column of the rows where the INTCOL value is 1234:

SELECT MICROSECOND(TSTMPCOL) FROM TABLEX

WHERE INTCOL = 1234;

150 SQL Reference  



  MINUTE
 

 MINUTE

 

�─ ──MINUTE(expression) ────────────────────────────────────────────────────────────────────────────────�

The MINUTE function returns the minute part of its argument.

The argument must be a time, timestamp, time duration, or timestamp duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time or a timestamp, the result is the minute part of the
value, which is an integer between 0 and 59.

If the argument is a time duration or timestamp duration, the result is the
minute part of the value, which is an integer between -99 and 99. A nonzero
result has the same sign as the argument.

Example: Assume that a table named CLASSES contains one row for each
scheduled class. Assume also that the class starting times are in the TIME column
named STARTTM. Using these assumptions, select those rows in CLASSES that
represent classes that start on the hour.

SELECT O FROM CLASSES

WHERE MINUTE(STARTTM) = ,;

  Chapter 4. Functions 151



 MONTH  
 

 MONTH

 

�─ ──MONTH(expression) ─────────────────────────────────────────────────────────────────────────────────�

The MONTH function returns the month part of its argument.

The argument must be a date, timestamp, date duration, or timestamp duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a date or a timestamp, the result is the month part of the
value, which is an integer between 1 and 12.

If the argument is a date duration or timestamp duration, the result is the
month part of the value, which is an integer between -99 and 99. A nonzero
result has the same sign as the argument.

Example: Select all rows in the sample table DSN8510.EMP for employees who
were born in May:

SELECT O FROM DSN851,.EMP

WHERE MONTH(BIRTHDATE) = 5;

152 SQL Reference  



  NULLIF
 

|  NULLIF

|  

| �─| ─NULLIF──(──expression──,──expression──)────────────────────────────────────────────────────────────�

| The NULLIF function returns null if the two arguments are equal; otherwise, it
| returns the value of the first argument.

| The two arguments must be compatible (see “Assignment and Comparison” on
| page 65). The attributes of the result are the attributes of the first argument.

| For example, if the result of the first argument is a character string, the result of the
| other must also be a character string; if the result of the first argument is a number,
| the result of the other must also be a number.

| The result of using NULLIF(e1,e2) is the same as using the CASE expression:

| CASE WHEN e1=e2 THEN NULL ELSE e1 END

| When e1=e2 evaluates to unknown because one or both arguments is null, CASE
| expressions consider the evaluation not true. In this case, NULLIF returns the value
| of the first argument.

| Example: Assume that host variables PROFIT, CASH, and LOSSES have decimal
| data types with the values of 4500.00, 500.00, and 5000.00 respectively. The
| following function returns a null value:

| NULLIF (:PROFIT + :CASH , :LOSSES)

  Chapter 4. Functions 153



 SECOND  
 

 SECOND

 

�─ ──SECOND(expression) ────────────────────────────────────────────────────────────────────────────────�

The SECOND function returns the seconds part of its argument.

The argument must be a time, timestamp, time duration, or timestamp duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time or timestamp, the result is the seconds part of the
value, which is an integer between 0 and 59.

If the argument is a time duration or timestamp duration, the result is the
seconds part of the value, which is an integer between -99 and 99. A nonzero
result has the same sign as the argument.

Example 1: Assume that the variable TIME_DUR is declared in a PL/I program as
DECIMAL(6,0) and can therefore be interpreted as a time duration. Then, when
TIME_DUR has the value 153045:

 SECOND(:TIME_DUR)

returns the value 45.

Example 2: Assume that RECEIVED is a TIMESTAMP column and that one of its
values is the internal equivalent of '1988-12-25-17.12.30.000000'. Then, for this
value:

 SECOND(RECEIVED)

returns the value 30.

154 SQL Reference  



  STRIP
 

|  STRIP

|  

| �─| ─STRIP──(──expression─ ──┬ ┬───────────────────────────────────── ─)───────────────────────────────────�
|  └ ┘|  ──┬ ┬─,BOTH───── ──┬ ┬──────────────────
|  ├ ┤─,B──────── └ ┘|  ─,strip-character─
|  ├ ┤─,LEADING──
|  ├ ┤─,L────────
|  ├ ┤─,TRAILING─
|  └ ┘─,T────────

| The STRIP function removes blanks or another specified character from the end, at
| the beginning, or at both ends of a string expression.

| The first argument must be a string expression.

| If you specify a second argument, it indicates whether characters are removed from
| the end or beginning of the string. If you do not specify a second argument, blanks
| are removed from both the end and the beginning of the string.

| The third argument is a single-character constant that indicates the SBCS or DBCS
| character that is to be removed. If the first argument is a DBCS graphic or
| DBCS-only string, the third argument must be a graphic constant consisting of a
| single DBCS character. If the data type is not appropriate or the value contains
| more than one character, an error is returned.

| If you do not specify the third argument, the following occurs:

| � If the first argument is a DBCS graphic string, then the default strip character is
| a DBCS blank. The hex representation of a DBCS blank depends on the
| encoding scheme and CCSID of the data. For example, for data encoded in
| ASCII, a DBCS blank for Japan (CCSID 301) is X'8140', while for simplified
| Chinese it is X'A1A1'. For EBCDIC DBCS, X'4040' is interpreted as a DBCS
| blank.

| � The default strip character is an SBCS blank. If the data is encoded in ASCII,
| then X'20' represents a blank. Otherwise, X'40' represents an EBCDIC blank.

| The result of the function is a varying-length string with the same maximum length
| as the length attribute of the string. The actual length of the result is the length of
| the expression minus the number of bytes removed. If all characters are stripped,
| the result is an empty varying-length string.

| The CCSID of the result is the same as that of the string. If the first argument can
| be null, the result can be null; if the first argument is null, the result is the null
| value.

| Example 1: Assume the host variable HELLO of type CHAR(9) has a value of
| ' Hello':

|  STRIP(:HELLO)

| results in: 'Hello'.

|  STRIP(:HELLO,TRAILING)

| results in: ' Hello'.

  Chapter 4. Functions 155



 STRIP  
 

| Example 2: Assume the host variable BALANCE of type CHAR(9) has a value of
| ',,,345.5,':

|  STRIP(:BALANCE,L,',')

| results in: '345.5,'

156 SQL Reference  



  SUBSTR
 

 SUBSTR

 

�─ ──SUBSTR(string,start ──┬ ┬───────── ) ─────────────────────────────────────────────────────────────────�
└ ┘──,length

The SUBSTR function returns a substring of a string.

string
Denotes an expression that specifies the string from which the result is derived.
string must be a character string or a graphic string. If string is a character
string, the result of the function is a character string. If it is a graphic string, the
result of the function is a graphic string.

A substring of string is zero or more contiguous characters of string. If string is a
graphic string, a character is a DBCS character. If string is a character string, a
character is a byte. The SUBSTR function accepts mixed data strings. However,
because SUBSTR operates on a strict byte-count basis, the result will not
necessarily be a properly formed mixed data string.

start
Denotes an expression that specifies the position of the first character of the
result. It must be a positive binary integer that is not greater than the length
attribute of string. (The length attribute of a varying-length string is its maximum
length.) A value of 1 would indicate that the first character of the substring is the
first character of string.

length
Denotes an expression that specifies the length of the result. If specified, length
must be a binary integer in the range 0 to n, where n is equal to L-S+1, L is the
length attribute of string, and S is the value of start. length must not, however,
be the integer constant 0. If string is a varying-length string and if length is
explicitly specified, string is effectively padded on the right with the necessary
number of blank characters so that the specified substring of string always
exists. If string is a fixed-length string, omission of length is an implicit
specification of LENGTH(string) - start + 1, which is the number of characters
from the character specified by start to the last character of string. If string is a
varying-length string, omission of length is an implicit specification of zero or
LENGTH(string) - start + 1, whichever is greater.

# If length is explicitly specified by an integer constant that is 255 or less, the
result is a fixed-length string. If length is not explicitly specified, but string is a
fixed-length string and start is an integer constant, the result is a fixed-length
string. In all other cases, the result is a varying-length string with a maximum
length that is the same as the length attribute of string. The result is subject to

# the restrictions that apply to long strings if its maximum length exceeds 255.
These restrictions also apply if it is a graphic string whose maximum length
exceeds 127.

If any argument of SUBSTR can be null, the result can be null. If any argument is
null, the result is the null value. The CCSID of the result is the CCSID of string.

  Chapter 4. Functions 157



 SUBSTR  
 

Example 1: FIRSTNME is a VARCHAR(12) column in the sample table
DSN8510.EMP. One of its values is the 5-character string 'MAUDE'. When
FIRSTNME has this value:

 SUBSTR(FIRSTNME,2,3)

 returns 'AUD'.

 SUBSTR(FIRSTNME,2)

 returns 'AUDE'.

 SUBSTR(FIRSTNME,2,6)

returns 'AUDE' followed by two blanks.

 SUBSTR(FIRSTNME,6)

returns a string of length zero.

 SUBSTR(FIRSTNME,6,4)

returns four blanks.

Example 2: Sample table DSN8510.PROJ contains a character string column
named PROJNAME. Select all rows from that table for which the string in
PROJNAME begins with 'W L PROGRAM'.

SELECT O FROM DSN851,.PROJ

WHERE SUBSTR(PROJNAME,1,12) = 'W L PROGRAM ';

Assume that the table has only the rows that were supplied by DB2. Then the
predicate is true for just one row, for which PROJNAME has the value 'W L

PROGRAM DESIGN'. The predicate is not true for the row in which PROJNAME has
the value 'W L PROGRAMMING' because, in the predicate's string constant, 'PROGRAM'
is followed by a blank.

158 SQL Reference  



  TIME
 

 TIME

 

�─ ──TIME(expression) ──────────────────────────────────────────────────────────────────────────────────�

The TIME function returns a time derived from its argument.

The argument must be a timestamp, a time, or a valid string representation of a
time. (Valid formats for string representations for times are listed in Table 3 on
page 64.)

The result of the function is a time. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a timestamp, the result is the time part of the timestamp.

If the argument is a time, the result is that time.

If the argument is a character string, the result is the time represented by the
character string. If the CCSID of the string is not the same as the
corresponding default CCSID at the application server, the string is first
converted to that CCSID.

Example: Assume that a table named CLASSES contains one row for each
scheduled class. Assume also that the class starting times are in the TIME column
named STARTTM. Using these assumptions, select those rows in CLASSES that
represent classes that start at 1:30 P.M.

 SELECT O

 FROM CLASSES

WHERE TIME(STARTTM) = '13:3,:,,';

  Chapter 4. Functions 159



 TIMESTAMP  
 

 TIMESTAMP

 

�─ ──TIMESTAMP(expression ──┬ ┬───────────── ) ────────────────────────────────────────────────────────────�
└ ┘──,expression

The TIMESTAMP function returns a timestamp derived from its argument or
arguments.

The rules for the arguments depend on whether the second argument is specified.

If only one argument is specified, it must be a timestamp, a valid string
representation of a timestamp, a character string of length 8, or a character
string of length 14. (String representations for a timestamp are described in
“String Representations of Datetime Values” on page 63.)

A character string of length 8 is assumed to be a System/370 Store Clock
value.

A character string of length 14 must be a string of digits that represents a valid
date and time in the form yyyymmddhhmmss, where yyyy is the year, mm is
the month, dd is the day, hh is the hour, mm is the minute, and ss is the
seconds.

If both arguments are specified, the first argument must be a date or a valid
string representation of a date and the second argument must be a time or a
valid string representation of a time. (Valid formats for string representations for
dates and times are listed in Table 2 on page 64 and Table 3 on page 64.)

The result of the function is a timestamp. If either argument can be null, the result
can be null; if either argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:

If both arguments are specified, the result is a timestamp with the date
specified by the first argument and the time specified by the second argument.
The microsecond part of the timestamp is zero.

If only one argument is specified and it is a timestamp, the result is that
timestamp.

If only one argument is specified and it is a character string, the result is
the timestamp represented by that character string. The timestamp represented
by a string of length 14 has a microsecond part of zero. The interpretation of a
character string as a Store Clock value will yield a timestamp with a year
between 1900 to 2042 as described in IBM System/370 ESA Principles of
Operation.

If an argument is a character string with a CCSID that is not the same as the
corresponding default CCSID at the application server, the string is first converted
to that CCSID.

160 SQL Reference  



  TIMESTAMP
 

Example: Assume that table TABLEX contains a DATE column named DATECOL
and a TIME column named TIMECOL. Assume also that for some row in the table,
DATECOL represents 25 December 1988 and TIMECOL represents 17 hours, 12
minutes, and 30 seconds after midnight. Then, for this row:

 TIMESTAMP(DATECOL, TIMECOL)

returns the value '1988-12-25-17.12.3,.,,,,,,'.

  Chapter 4. Functions 161



 VALUE  
 

 VALUE

 

 ┌ ┐─────────────
�─ ──VALUE(expression ───

�
┴,expression ) ──────────────────────────────────────────────────────────────────�

The VALUE function returns the first argument that is not null. COALESCE can be
used as a synonym for VALUE.

The arguments must be compatible. Character string arguments are not compatible
with datetime values. Thus, if any argument is a character string, all arguments
must be character strings; if any argument is a date, all arguments must be dates;
if any argument is a number, all arguments must be numbers, and so forth.

The arguments are evaluated in the order in which they are specified, and the
result of the function is the first argument that is not null. The result can be null only
if all arguments can be null. The result is null only if all arguments are null.

The selected argument is converted, if necessary, to the attributes of the result.
The attributes of the result are determined using the “Data Type Rules for UNION
and the VALUE Function” on page 183. If the VALUE function has more than two
arguments, the rules are applied to the first two arguments to determine a
candidate result type. The rules are then applied to that candidate result type and
the third argument to determine another candidate result type. This process
continues until all arguments are analyzed and the final result type is determined.

| The VALUE function can also handle a subset of the functions provided by CASE
| expressions. The result of using VALUE(e1,e2) is the same as using the
| expression:

| CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2 END

Example 1: Assume that SCORE1 and SCORE2 are SMALLINT columns in table
GRADES, and that nulls are allowed in SCORE1 but not in SCORE2. Select all the
rows in GRADES for which SCORE1 + SCORE2 > 100, assuming a value of 0 for
SCORE1 when SCORE1 is null.

SELECT O FROM GRADES

WHERE VALUE(SCORE1,,) + SCORE2 > 1,,;

Example 2: Assume that a table named DSN8510.EMP contains a DATE column
named HIREDATE, and that nulls are allowed for this column. The following query
selects all rows in DSN8510.EMP for which the date in HIREDATE is either
unknown (null) or earlier than 1 January 1960.

SELECT O FROM DSN851,.EMP

WHERE VALUE(HIREDATE,DATE('1959-12-31')) < '196,-,1-,1';

In this case, the predicate VALUE(HIREDATE,'1959-12-31') would be invalid
because strings and datetime values are incompatible and strings in a VALUE
predicate are not converted to datetime values. Applying the DATE function to the
string does the needed conversion.

162 SQL Reference  



  VALUE
 

Example 3: Assume that for the years 1993 and 1994 there is a table that records
the sales results of each department. Each table, S1993 and S1994, consists of a
DEPTNO column and a SALES column, neither of which can be null. The following
query provides the sales information for both years.

SELECT COALESCE(S1993.DEPTNO,S1994.DEPTNO) AS DEPT, S1993.SALES, S1994.SALES

FROM S1993 FULL JOIN S1994 ON S1993.DEPTNO = S1994.DEPTNO

ORDER BY DEPT;

The full outer join ensures that the results include all departments, regardless of
whether they had sales or existed in both years. The COALESCE (or VALUE)
function allows the two join columns to be combined into a single column, which
enables the results to be ordered.

  Chapter 4. Functions 163



 VARGRAPHIC  
 

 VARGRAPHIC

 

�─ ──VARGRAPHIC(expression) ────────────────────────────────────────────────────────────────────────────�

The VARGRAPHIC function returns a graphic string representation of a character
string.

| The argument must be an EBCDIC-encoded character string with a maximum
# length no greater than 255. The argument need not be mixed data, but any

occurrences of X'0E' and X'0F' in the string must conform to the rules for mixed
data. (See “Character Strings” on page 57 for these rules.)

The result of the function is a varying-length graphic string. If the argument can be
null, the result can be null; if the argument is null, the result is the null value. If the
argument is an empty string or has the value X'0E0F', the result is an empty
string.

The length attribute of the result is equal to the length attribute of the argument.
The actual length of the result is the number of characters in the argument,
excluding shift characters. Because the result is a graphic string, its length and
length attribute are measured in double-bytes, not single-bytes. If the length
attribute is greater than 127, the result is a long string and is therefore subject to
the restrictions that apply to long strings.

| The CCSID of the result is the system EBCDIC CCSID for GRAPHIC data. If there
| is no system EBCDIC CCSID for GRAPHIC data, the CCSID of the result is

X'FFFE'.

Before deriving the result, the argument might be converted to the native form of
| mixed data. Let M denote the system EBCDIC CCSID for mixed data. The

argument is not converted if any of the following are true:

� The argument is mixed data and its CCSID is M.

| � The argument is SBCS data and its CCSID is the same as the system EBCDIC
CCSID for SBCS data. In this case, the operation proceeds as if the CCSID of
the argument is M.

� The argument is BIT data. In this case, the operation proceeds as if the CCSID
of the argument is M.

Otherwise, the argument is converted to a new string, S, by converting its
| characters to the coded character set identified by M. If there is no system EBCDIC

CCSID for mixed data, conversion is to the coded character set identified by the
| system EBCDIC CCSID for SBCS data.

The result is derived from S as follows:

� Each shift character (X'0E' or X'0F') is removed
� Each double-byte character remains as it is
� Each single-byte character is replaced by a double-byte character.

The replacement for a single-byte character is the equivalent DBCS character if an
equivalent exists. Otherwise, the replacement is X'FEFE'. Whether an equivalent

164 SQL Reference  



  VARGRAPHIC
 

| character exists depends on M. If there is no system EBCDIC CCSID for mixed
data, the DBCS equivalent of X'xx' is X'42xx', except for X'40', whose DBCS
equivalent is X'4040'.

Example: Assume that GRPHCOL is a GRAPHIC column in the table TABLEX, and
that MIXEDSTRING is a character-string variable containing mixed data. For
various rows in TABLEX, the value of GRPHCOL is being replaced with the value
of MIXEDSTRING through the use of a positioned UPDATE statement. Before an
update can be made, the current value of MIXEDSTRING must be converted to a
GRAPHIC string. Within the UPDATE statement, this can be done using the
VARGRAPHIC function:

EXEC SQL UPDATE TABLEX

SET GRPHCOL = VARGRAPHIC(:MIXEDSTRING)

WHERE CURRENT OF CRSNAME;

  Chapter 4. Functions 165



 YEAR  
 

 YEAR

 

�─ ──YEAR(expression) ──────────────────────────────────────────────────────────────────────────────────�

The YEAR function returns the year part of its argument.

The argument must be a date, timestamp, date duration, or timestamp duration.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:

If the argument is a date or a timestamp, the result is the year part of the
value, which is an integer between 1 and 9999.

If the argument is a date duration or timestamp duration, the result is the
year part of the value, which is an integer between -9999 and 9999. A nonzero
result has the same sign as the argument.

Example: From the table DSN8510.EMP select all rows for employees who were
born in 1941.

 SELECT O

 FROM DSN851,.EMP

WHERE YEAR(BIRTHDATE) = 1941;

166 SQL Reference  



  Queries
 

 Chapter 5. Queries

Authorization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
subselect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

select-clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
from-clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
where-clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
group-by-clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
having-clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Examples of subselects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178

fullselect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Data Type Rules for UNION and the VALUE Function . . . . . . . . . . . . .  183
Character Conversion in Unions and Concatenations . . . . . . . . . . . . . .  185
Selecting the Result CCSID . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Examples of fullselects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187

select-statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
order-by-clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
update-clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
read-only-clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
optimize-for-clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
with-clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Examples of select statements . . . . . . . . . . . . . . . . . . . . . . . . . . .  191

 Copyright IBM Corp. 1982, 1997  167



 Queries  
 

168 SQL Reference  



  Queries
 

A query specifies a result table. A query is a component of certain SQL statements.
There are three forms of a query:

 A subselect
 A fullselect
 A select-statement

A subselect is a subset of a fullselect, and a fullselect is a subset of a
select-statement.

There is another SQL statement called SELECT INTO, which is described in
“SELECT INTO” on page 462. SELECT INTO is not a subselect, fullselect, or a
select-statement.

 Authorization
The privilege set defined below must include one of the following:

� Ownership of the table or view
� The SELECT privilege on the table or view
� DBADM authority for the database (tables only)

 � SYSADM authority
� SYSCTRL authority (catalog tables only)

If the select-statement is part of a DECLARE CURSOR statement, the privilege set
is the privileges held by the authorization ID of the owner of the plan or package.

For dynamically prepared statements, the privilege set depends on the value of
bind option DYNAMICRULES:

DYNAMICRULES(RUN) The privilege set is the union of the privilege sets held by
each authorization ID of the process.

DYNAMICRULES(BIND) The privilege set is the privileges held by the authorization
ID of the owner of the plan or package.

When any form of a query is used as a component of another statement, the
authorization rules that apply to the query are specified in the description of that
statement. For example, see “CREATE VIEW” on page 341 for the authorization
rules that apply to the subselect component of CREATE VIEW.

| If your installation uses the access control authorization exit (DSNX@XAC), that
| exit may be controlling the authorization rules instead of the rules that are listed
| here.

  Chapter 5. Queries 169



 subselect  
 

 subselect

 

��─ ─select-clause──from-clause─ ──┬ ┬────────────── ──┬ ┬───────────────── ──┬ ┬─────────────── ────────────��
 └ ┘─where-clause─ └ ┘─group-by-clause─ └ ┘─having-clause─

The subselect is a component of the fullselect, the CREATE VIEW statement, and
the INSERT statement. It is also a component of certain predicates which, in turn,
are components of a subselect. A subselect that is a component of a predicate is
called a subquery.

A subselect specifies a result table derived from the result of its first FROM clause.
The derivation can be described as a sequence of operations in which the result of
each operation is input for the next. (This is only a way of describing the subselect.
The method used to perform the derivation may be quite different from this
description.)

The sequence of the (hypothetical) operations is:

 1. FROM clause
 2. WHERE clause
3. GROUP BY clause

 4. HAVING clause
 5. SELECT clause

170 SQL Reference  



  subselect
 

 select-clause

 

 ┌ ┐─ALL──────
��─ ─SELECT─ ──┼ ┼────────── ──┬ ┬─O─────────────────────────────────────────── ───────────────────────────��
 └ ┘─DISTINCT─ │ │┌ ┐─,───────────────────────────────────────
 └ ┘───

�
┴──┬ ┬──expression ──┬ ┬─────────────────────

 │ ││ │┌ ┐─AS─
 │ │└ ┘ ──┴ ┴──── ─column-name─
 └ ┘── ──┬ ┬─table-name─────── .O ───────────
 ├ ┤─view-name────────
 └ ┘─correlation-name─

The SELECT clause specifies the columns of the final result table. The column
values are produced by the application of the select list to R. The select list is a list
of names and expressions specified in the SELECT clause, and R is the result of
the previous operation of the subselect. For example, if the only clauses specified
are SELECT, FROM, and WHERE, then R is the result of that WHERE clause.

ALL
Retains all rows of the final result table and does not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.
DISTINCT must not be used more than once in a subselect, with the exception
of its use with a column function whose expression is a column. The same
DISTINCT column function with the same column expression can be referred to
more than once in a subselect. This restriction includes SELECT DISTINCT
and the use of DISTINCT in a column function of the select list or HAVING
clause. It does not include occurrences of DISTINCT in subqueries of the
subselect.

Two rows are duplicates of one another only if each value in the first row is
equal to the corresponding value in the second row. For determining duplicate
rows, two null values are considered equal.

Select list notation:

* Represents a list of names that identify the columns of table R. The first name
in the list identifies the first column of R, the second name identifies the second
column of R, and so on.

The list of names is established when the statement containing the SELECT
clause is prepared. Therefore, * does not identify any columns that have been
added to a table after the statement has been prepared.

expression
Can be any expression of the type described in Expressions, which begins on
page 92. Each column-name in the expression must unambiguously identify a
column of R.

AS column-name
Names or renames the result column. The name must not be qualified and
does not have to be unique.

  Chapter 5. Queries 171



 subselect  
 

name.*
Represents a list of names that identify the columns of name. name can be a
table name, view name, or correlation name, and must designate a table or
view named in the FROM clause. The first name in the list identifies the first
column of the table or view, the second name in the list identifies the second
column of the table or view, and so on.

The list of names is established when the statement containing the SELECT
clause is prepared. Therefore, * does not identify any columns that have been
added to a table after the statement has been prepared.

SQL statements can be implicitly or explicitly rebound (prepared again). The effect
of a rebind on statements that include * or name.* is that the list of names is
re-established. Therefore, the number of columns returned by the statement may
change.

The number of columns in the result of SELECT is the same as the number of
expressions in the operational form of the select list (that is, the list established at
the time the statement is prepared), and cannot exceed 750. The result of a
subquery must be a single column, unless the subquery is used in an EXISTS
predicate.

Limitation on long string columns: The result of an expression must not be a
# character string with a maximum length greater than 255 or a graphic string with a

maximum length greater than 127 if:

� SELECT DISTINCT is used.
� The subselect is a subquery.
� The subselect is an operand of UNION.

Applying the select list: Some of the results of applying the select list to R
depend on whether GROUP BY or HAVING is used:

If neither GROUP BY nor HAVING is used:

� The select list must not include column functions, or it must be entirely a list of
column functions.

� If the select list does not include column functions, it is applied to each row of
R and the result contains as many rows as there are rows in R.

� If the select list is a list of column functions, R is the source of the arguments
of the functions and the result of applying the select list is one row, even when
R consists of zero rows.

If GROUP BY or HAVING is used:

� Each column-name in the select list must either identify a grouping column or
be specified within a column function.

� The select list is applied to each group of R, and the result contains as many
rows as there are groups in R. When the select list is applied to a group of R,
that group is the source of the arguments of the column functions in the select
list.

� You cannot use GROUP BY with a name defined using the AS clause unless
the name is defined in a nested table expression. “Example 6” on page 179
demonstrates the valid use of AS and GROUP BY in a SELECT statement.

172 SQL Reference  



  subselect
 

In either case the nth column of the result contains the values specified by applying
the nth expression in the operational form of the select list.

Null attributes of result columns: Result columns allow null values if they are
derived from one of the following:

� Any column function but COUNT
� A column that allows null values
� A view column in an outer select list that is derived from an arithmetic

expression
� An arithmetic expression in an outer select list
� An arithmetic expression that allows nulls
� A scalar function or string expression that allows null values
� A host variable that has an indicator variable
� A result of a UNION if at least one of the corresponding items in the select list

is nullable

Names of result columns: The name of a result column of a subselect is
determined as follows:

� If the AS clause is specified, the name of the result column is the name
specified on the AS clause. The name need not be unique.

� If the AS clause is not specified and the result column is derived from a column
name, the result column name is the unqualified name of that column.

� All other result columns are unnamed.

Names of result columns are placed into the SQL descriptor area (SQLDA) when
the DESCRIBE statement is executed. This allows an interactive SQL processor
such as SPUFI or QMF to use the column names when displaying the results. The
names in the SQLDA include those specified by the AS clause.

Data types of result columns: Each column of the result of SELECT acquires a
data type from the expression from which it is derived.

Table 12 (Page 1 of 2). Data types of result columns

When the
expression is...

The data type
of the result column is...

The name of any numeric
column

The same as the data type of the column, with the same precision and scale for
decimal columns.

An integer constant INTEGER.

A decimal or floating-point
constant

The same as the data type of the constant, with the same precision and scale for
decimal constants. For floating-point constants, the data type is DOUBLE
PRECISION.

The name of any numeric
host variable

The same as the data type of the variable, with the same precision and scale for
decimal variables. The result is decimal if the data type of the host variable is not
an SQL data type; for example, DISPLAY SIGN LEADING SEPARATE in COBOL.

An arithmetic or string
expression

The same as the data type of the result, with the same precision and scale for
decimal results as described in “Expressions” on page 92.

Any function (See “Chapter 4. Functions” on page 127 to determine the data type of the result.)

The name of any string
column

The same as the data type of the column, with the same length attribute.

  Chapter 5. Queries 173



 subselect  
 

Table 12 (Page 2 of 2). Data types of result columns

When the
expression is...

The data type
of the result column is...

The name of any string host
variable

The same as the data type of the variable, with a length attribute equal to the
length of the variable. The result is a varying-length character string if the data type
of the host variable is not an SQL data type; for example, a NUL-terminated string
in C.

A character string constant of
length n

VARCHAR(n).

A graphic string constant of
length n

VARGRAPHIC(n).

The name of a datetime
column

The same as the data type of the column.

 from-clause

 

 ┌ ┐─,──────────
��─ ─FROM─ ───

�
┴─table-spec─ ────────────────────────────────────────────────────────────────────────────��

The FROM clause specifies an intermediate result table, R. If a single table-spec is
specified, R is the result of that table-spec. If more than one table-spec is
specified, R consists of all possible combinations of the rows of the result of each
table-spec. Each row of R is a row from the result of the first table-spec
concatenated with a row from the result of the second table-spec, concatenated
with a row from the result of the third table-spec, and so on. The number of rows in
R is the product of the number of rows in the result of each table-spec. Thus, if the
result of any table-spec is empty, R is empty.

 table-spec

 

��─ ──┬ ┬── ──┬ ┬─table-name─ ──┬ ┬────────────────────────── ──────────────────────────────────────────────��
 │ │└ ┘─view-name── │ │┌ ┐─AS─
 │ │└ ┘ ──┴ ┴──── ─correlation-name─
 │ │┌ ┐─AS─
 ├ ┤─(──subselect──)─ ──┴ ┴──── ─correlation-name──────
 └ ┘ ─joined-table───────────────────────────────────

A table-spec specifies an intermediate result table:

� If a single table or view is identified, the intermediate result table is simply that
table or view.

� A subselect in parentheses is called a nested table expression. If a nested
table expression is specified, the result table is the result of that nested table
expression. The columns of the result do not need unique names, but a column
with a non-unique name cannot be referenced.

� If a joined-table is specified, the intermediate result table is the result of one or
more join operations as explained below.

174 SQL Reference  



  subselect
 

# Each table-name or view-name specified in every FROM clause of the same SQL
# statement must identify a table or view that exists at the same DB2 subsystem.
# Each table or underlying table of each view that is identified must have the same
# encoding scheme—either all ASCII or all EBCDIC.. If a FROM clause is specified in

a subquery of a basic predicate, a view that includes GROUP BY or HAVING must
not be identified.

Each correlation-name is defined as a designator of the intermediate result table
specified by the immediately preceding table-spec. A correlation name must be
specified for a nested table expression.

An exposed name is a correlation name or a name that is not followed by a
correlation name. The exposed names in a FROM clause should be unique, and
only exposed names should be used as qualifiers of column names. Thus, if the
same table name is specified twice, at least one specification of the table name
should be followed by a unique correlation name. That correlation name should be
used to qualify references to columns of that instance of the table or view. For
more information, see “Column Name Qualifiers in Correlated References” on
page 86.

 joined-table

 

 ┌ ┐─INNER────────────────────
��─ ──┬ ┬──table-spec ──┴ ┴──┬ ┬────────────────────── ─JOIN──table-spec──join-condition─ ──────────────────��
 │ ││ │┌ ┐ ─OUTER─
 │ │└ ┘ ──┬ ┬─LEFT── ──┴ ┴───────
 │ │├ ┤─RIGHT─
 │ │└ ┘─FULL──
 └ ┘─(──joined-table──)─────────────────────────────────────────────────────────

A joined-table specifies an intermediate result table that is the result of either an
inner equi-join or an outer join. The table is derived by applying one of the
join-operators; INNER, RIGHT OUTER, LEFT OUTER, or FULL OUTER, to its
operands. If a join-operator is not specified, INNER is implicit. The order in which a
LEFT OUTER or RIGHT OUTER JOIN is performed can affect the result.

A joined-table can be used in any context in which any form of the SELECT
statement is used. Both a view and a cursor is read-only if its SELECT statement
includes a joined-table.

 join-condition

 

 ┌ ┐─AND──────────────────────────────────────
��──ON─ ───

�
┴─join-expression─ ──┬ ┬─=── ─join-expression─ ────────────────────────────────────────────────��

 ├ ┤─¬=─
 ├ ┤─<>─
 ├ ┤─>──
 ├ ┤─¬>─
 ├ ┤─<──
 ├ ┤─¬<─
 ├ ┤─>=─
 └ ┘─<=─

A join-condition is a search condition in which predicates can be combined only
with AND and each predicate has the form 'expression operator expression'. The

  Chapter 5. Queries 175



 subselect  
 

'=' operator is the only operator allowed for a FULL OUTER JOIN or a FULL
JOIN.

One expression of the predicate must reference only columns of one of the
operand tables of the associated join operator, and the other expression of the
predicate must reference only columns of the other operand table. Before this rule
is applied, column references are resolved using the rules for resolution of column
name qualifiers specified in “Resolution of Column Name Qualifiers” on page 87.
As in any predicate, the values of the expressions must be comparable.

 join-expression

 

��─ ──┬ ┬─column-name──────────────────────────────────── ──────────────────────────────────────────────��
 │ │┌ ┐─────────────────
 └ ┘──┬ ┬─VALUE──── ──(column name ───

�
┴─, column name─ )

 └ ┘─COALESCE─

A join-expression must include a column name. Only columns and the VALUE and
COALESCE functions are allowed in the expression. VALUE and COALESCE are
allowed only when the join operator is FULL JOIN or FULL OUTER JOIN.

 Join Operations
A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left and
right operand tables of its associated JOIN operator. For all possible combinations
of rows T1 and T2, a row of T1 is paired with a row of T2 if the join-condition is
true. When a row of T1 is joined with a row of T2, a row in the result consists of the
values of that row of T1 concatenated with the values of that row of T2. The
execution might involve the generation of a “null row.” The null row of a table
consists of a null value for each column of the table, regardless of whether the
columns allow null values.

The following summarizes the results of the join operations:

� The result of T1 INNER JOIN T2 consists of their paired rows.

� The result of T1 LEFT OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T1, the concatenation of that row with the null row of T2.
All columns derived from T2 allow null values.

� The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T2, the concatenation of that row with the null row of T1.
All columns derived from T1 allow null values.

� The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T1, the concatenation of that row with the null row of T2,
and for each unpaired row of T2, the concatenation of that row with the null row
in T1. All columns of the result table allow null values.

A join operation is part of a FROM clause; therefore, for the purpose of predicting
which rows will be returned from a SELECT statement containing a join operation,
assume that the join operation is performed before the other clauses in the
statement.

176 SQL Reference  



  subselect
 

 where-clause

 

��──WHERE──search-condition──────────────────────────────────────────────────────────────────────────��

The WHERE clause specifies an intermediate result table that consists of those
rows of R for which the search condition is true. R is the result of the FROM clause
of the subselect.

The search condition must conform to the following rules:

� Each column name must unambiguously identify a column of R or be a
correlated reference. A column name is a correlated reference if it identifies a
column of a table or view identified in an outer subselect.

� A column function must not be specified unless the WHERE clause is specified
in a subquery of a HAVING clause and the argument of the function is a
correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R and
the results are used in the application of the search-condition to the given row of R.
A subquery is actually executed for each row of R only if it includes a correlated
reference. In fact, a subquery with no correlated references is executed just once,
whereas a subquery with a correlated reference may have to be executed once for
each row.

 group-by-clause

 

 ┌ ┐─,───────────
��─ ─GROUP BY─ ───

�
┴─column-name─ ───────────────────────────────────────────────────────────────────────��

The GROUP BY clause specifies an intermediate result table that consists of a
grouping of the rows of R. R is the result of the previous clause.

Each column-name must unambiguously identify a column of R other than a long
string column. Each identified column is called a grouping column.

The result of GROUP BY is a set of groups of rows. In each group of more than
one row, all values of each grouping column are equal; and all rows with the same
set of values of the grouping columns are in the same group. For grouping, all null
values within a grouping column are considered equal.

Because every row of a group contains the same value of any grouping column,
the name of a grouping column can be used in a search condition in a HAVING
clause or an expression in a SELECT clause. In each case, the reference specifies
only one value for each group. However, if the grouping column contains
varying-length strings with trailing blanks, the values in the group can differ in the
number of trailing blanks and may not all have the same length. In that case, a
reference to the grouping column still specifies only one value for each group, but
the value for a group is chosen arbitrarily from the available set of values. Thus, the
actual length of the result value is unpredictable.

  Chapter 5. Queries 177



 subselect  
 

GROUP BY must not be used in a subquery of a basic predicate.

 having-clause

 

��──HAVING──search-condition─────────────────────────────────────────────────────────────────────────��

The HAVING clause specifies an intermediate result table that consists of those
groups of R for which the search-condition is true. R is the result of the previous
clause. If this clause is not GROUP BY, R is considered a single group with no
grouping columns.

Each column-name in search-condition must:

� Unambiguously identify a grouping column of R, or
� Be specified within a column function16, or
� Be a correlated reference. A column-name is a correlated reference if it

identifies a column of a table or view identified in an outer subselect.

A group of R to which the search condition is applied supplies the argument for
each function in the search condition, except for any function whose argument is a
correlated reference.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a group of R, and the
results used in applying the search condition. In actuality, the subquery is executed
for each group only if it contains a correlated reference. For an illustration of the
difference, see “Example 4” and “Example 5” in “Examples of subselects” below.

A correlated reference to a group of R must either identify a grouping column or be
contained within a column function.

The HAVING clause must not be used in a subquery of a basic predicate. When
HAVING is used without GROUP BY, any column name in the select list must
appear within a column function.

Examples of subselects
Example 1: Show all rows of the table DSN8510.EMP.

SELECT O FROM DSN851,.EMP;

Example 2: Show the job code, maximum salary, and minimum salary for each
group of rows of DSN8510.EMP with the same job code, but only for groups with
more than one row and with a maximum salary greater than 50000.

SELECT JOB, MAX(SALARY), MIN(SALARY)

 FROM DSN851,.EMP

GROUP BY JOB

HAVING COUNT(O) > 1 AND MAX(SALARY) > 5,,,,;

16 See “Chapter 4. Functions” on page 127 for restrictions that apply to the use of column functions.

178 SQL Reference  



  subselect
 

Example 3: For each employee in department E11, get the following information
from the table DSN8510.EMPPROJACT: employee number, activity number,
activity start date, and activity end date. Using the CHAR function, convert the start
and end dates to their USA formats. Get the needed department information from
the table DSN8510.EMP:

SELECT EMPNO, ACTNO, CHAR(EMSTDATE,USA), CHAR(EMENDATE,USA)

 FROM DSN851,.EMPPROJACT

WHERE EMPNO IN (SELECT EMPNO FROM DSN851,.EMP

WHERE WORKDEPT = 'E11');

Example 4: Show the department number and maximum departmental salary for all
departments whose maximum salary is less than the average salary for all
employees. (In this example, the subquery would be executed only once.)

SELECT WORKDEPT, MAX(SALARY)

 FROM DSN851,.EMP

GROUP BY WORKDEPT

HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM DSN851,.EMP);

Example 5: Show the department number and maximum departmental salary for all
departments whose maximum salary is less than the average salary for employees
in all other departments. (In contrast to Example 4, the subquery in this statement,
containing a correlated reference, would need to be executed for each group.)

SELECT WORKDEPT, MAX(SALARY)

FROM DSN851,.EMP Q

GROUP BY WORKDEPT

HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM DSN851,.EMP

WHERE NOT WORKDEPT = Q.WORKDEPT);

Example 6: For each group of employees hired during the same year, show the
year-of-hire and current average salary. (This example demonstrates how to use
the AS clause in a FROM clause to name a derived column that you want to refer
to in a GROUP BY clause.)

SELECT HIREYEAR, AVG(SALARY)

FROM (SELECT (YEAR(HIREDATE) AS HIREYEAR, SALARY

FROM DSN851,.EMP) AS NEWEMP

GROUP BY HIREYEAR;

# Example 7: For an example of how to group the results of a query by an
# expression in the SELECT clause without have to retype the expression, see
# “Example 3:” on page 104 for CASE expressions.

# Example 8: Get the employee number and employee name for all employees in
# table DSN8510.EMP, Order the results by the date of hire.

# SELECT EMPNO, FIRSTNME, LASTNAME

#  FROM DSN851,.EMP

# ORDER BY HIREDATE;

  Chapter 5. Queries 179



 subselect  
 

To distinguish the different types of joins, to show nested table expressions, and to
demonstrate how to combine join columns, the remaining examples use these two
tables:

The PARTS table The PRODUCTS table
PART PROD# SUPPLIER PROD# PRODUCT PRICE

======= ===== ============ ===== =========== =====

WIRE 1, ACWF 5,5 SCREWDRIVER 3.7,

OIL 16, WESTERN_CHEM 3, RELAY 7.55

MAGNETS 1, BATEMAN 2,5 SAW 18.9,

PLASTIC 3, PLASTIK_CORP 1, GENERATOR 45.75

BLADES 2,5 ACE_STEEL

Example 9: Join the tables on the PROD# column to get a table of parts with their
suppliers and the products that use the parts:

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS, PRODUCTS

WHERE PARTS.PROD# = PRODUCTS.PROD#;

or

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

Either one of these two statements give this result:

PART SUPPLIER PROD# PRODUCT

======= ============ ===== ==========

WIRE ACWF 1, GENERATOR

MAGNETS BATEMAN 1, GENERATOR

PLASTIC PLASTIK_CORP 3, RELAY

BLADES ACE_STEEL 2,5 SAW

Notice two things about the example:

� There is a part in the parts table (OIL) whose product (#160) is not listed in the
products table. There is a product (SCREWDRIVER, #505) that has no parts
listed in the parts table. Neither OIL nor SCREWDRIVER appears in the result
of the join.

An outer join, however, includes rows where the values in the joined columns
do not match.

� There is explicit syntax to express that this familiar join is not an outer join but
an inner join. You can use INNER JOIN in the FROM clause instead of the
comma. Use ON when you explicitly join tables in the FROM clause.

Example 10: Join the tables on the PROD# column to get a table of all parts and
products, showing the supplier information, if any.

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:

180 SQL Reference  



  subselect
 

PART SUPPLIER PROD# PRODUCT

======= ============ ===== ==========

WIRE ACWF 1, GENERATOR

MAGNETS BATEMAN 1, GENERATOR

PLASTIC PLASTIK_CORP 3, RELAY

BLADES ACE_STEEL 2,5 SAW

OIL WESTERN_CHEM 16, (null)

(null) (null) (null) SCREWDRIVER

The clause FULL OUTER JOIN includes unmatched rows from both tables.
Missing values in a row of the result table are filled with nulls.

Example 11: Join the tables on the PROD# column to get a table of all parts,
showing what products, if any, the parts are used in:

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS LEFT OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:

PART SUPPLIER PROD# PRODUCT

======= ============ ===== ==========

WIRE ACWF 1, GENERATOR

MAGNETS BATEMAN 1, GENERATOR

PLASTIC PLASTIK_CORP 3, RELAY

BLADES ACE_STEEL 2,5 SAW

OIL WESTERN_CHEM 16, (null)

The clause LEFT OUTER JOIN includes rows from the table identified before it
where the values in the joined columns are not matched by values in the joined
columns of the table identified after it.

Example 12: Join the tables on the PROD# column to get a table of all products,
showing the parts used in that product, if any, and the supplier.

SELECT PART, SUPPLIER, PRODUCTS.PROD#, PRODUCT

FROM PARTS RIGHT OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:

PART SUPPLIER PROD# PRODUCT

======= ============ ===== ===========

WIRE ACWF 1, GENERATOR

MAGNETS BATEMAN 1, GENERATOR

PLASTIC PLASTIK_CORP 3, RELAY

BLADES ACE_STEEL 2,5 SAW

(null) (null) 5,5 SCREWDRIVER

The clause RIGHT OUTER JOIN includes rows from the table identified after it
where the values in the joined columns are not matched by values in the joined
columns of the table identified before it.

  Chapter 5. Queries 181



 subselect  
 

Example 13: The result of “Example 10” (a full outer join) shows the product
number for SCREWDRIVER as null, even though the PRODUCTS table contains a
product number for it. This is because PRODUCTS.PROD# was not listed in the
SELECT list of the query. Revise the query using COALESCE, a synonym for the
VALUE function, so that all part numbers from both tables are shown.

SELECT PART, SUPPLIER,

COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#;

In the result, notice that the AS clause (AS PRODNUM), provides a name for the
result of the COALESCE function:

PART SUPPLIER PRODNUM PRODUCT

======= ============ ======= ===========

WIRE ACWF 1, GENERATOR

MAGNETS BATEMAN 1, GENERATOR

PLASTIC PLASTIK_CORP 3, RELAY

BLADES ACE_STEEL 2,5 SAW

OIL WESTERN_CHEM 16, (null)

(null) (null) 5,5 SCREWDRIVER

Example 14: For all parts that are used in product numbers less than 200, show the
part, the part supplier, the product number, and the product name. Use a nested
table expression.

SELECT PART, SUPPLIER, PRODNUM, PRODUCT

FROM (SELECT PART, PROD# AS PRODNUM, SUPPLIER
 FROM PARTS

WHERE PROD# < 2++) AS PARTX
LEFT OUTER JOIN PRODUCTS

ON PRODNUM = PROD#;

The result is:

PART SUPPLIER PRODNUM PRODUCT

======= ============ ======= ==========

WIRE ACWF 1, GENERATOR

MAGNETS BATEMAN 1, GENERATOR

PLASTIC PLASTIK_CORP 3, RELAY

OIL WESTERN_CHEM 16, (null)

182 SQL Reference  



  fullselect
 

 fullselect

 

 ┌ ┐───────────────────────────────────────
��─ ──┬ ┬─subselect──── ───

�
┴──┬ ┬───────────────────────────────── ───────────────────────────────────────��

└ ┘──(fullselect) └ ┘ ──┬ ┬─UNION───── ──┬ ┬─subselect────
└ ┘─UNION ALL─ └ ┘──(fullselect)

fullselect specifies a result table. If UNION is not used, the result of the fullselect is
the result of the specified subselect.17

UNION or UNION ALL
Derives a result table by combining two other result tables, R1 and R2. If
UNION ALL is specified, the result consists of all rows in R1 and R2. If UNION
is specified without the ALL option, the result is the set of all rows in either R1
or R2, with duplicate rows eliminated.

If the nth column of R1 and the nth column of R2 have the same result column
name, the nth column of R has the same result column name. If the nth column
of R1 and the nth column of R2 do not have the same name, the result column
in R is unnamed.

Qualified column names cannot be used in the ORDER BY clause when
UNION or UNION ALL is also specified.

Two rows are duplicates if each value in the first is equal to the corresponding
value of the second. For determining duplicates, two null values are considered
equal.

UNION and UNION ALL are associative operations. However, when UNION and
UNION ALL are used in the same statement, the result depends on the order in
which the operations are performed. Operations within parentheses are performed
first. When the order is not specified by parentheses, operations are performed in
order from left to right.

Rules for columns: R1 and R2 must have the same number of columns and the
data type of the nth column of R1 must be compatible with the data type of the nth
column of R2. If UNION is specified without the ALL option, R1 and R2 must not
include a long string column.

The nth column of the result of UNION and UNION ALL is derived from the nth
columns of R1 and R2. Table 13 on page 184 shows all valid combinations of
operand columns and, for each combination, the description of the result column.

Data Type Rules for UNION and the VALUE Function
The following table shows the data type of the results for UNION and the VALUE
function.

17 DB2 allows SELECT INTO as the operand of UNION. This is a deprecated feature with undefined results.

  Chapter 5. Queries 183



 fullselect  
 

Table 13. Result data types

When one
operand is...

And the other
operand is...

The result
has the data type...

CHAR(x) CHAR(y) CHAR(z) where z=MAX(x,y)

VARCHAR(x) CHAR(y) or VARCHAR(y) VARCHAR(z) where z=MAX(x,y)

BIT data Any subtype BIT data

MIXED data MIXED or SBCS MIXED data

SBCS data SBCS data SBCS data

GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z = MAX(x,y)

VARGRAPHIC(x) VARGRAPHIC(y) or
GRAPHIC(y)

VARGRAPHIC(z) where z = MAX(x,y)

DATE DATE DATE

TIME TIME TIME

TIMESTAMP TIMESTAMP TIMESTAMP

FLOAT(double) Any numeric type FLOAT(double)

FLOAT(single) FLOAT(single) FLOAT(single)

FLOAT(single) DECIMAL, INTEGER, or
SMALLINT

FLOAT(double)

DECIMAL(p,s) DECIMAL(p',s') DECIMAL(P,S) where
P = MIN(31,MAX(s,s') + MAX(p-s,p'-s'))
S = MAX(s,s')

DECIMAL(p,s) INTEGER DECIMAL(P,S) where
P = MIN(31,s + MAX(p-s,11))
S = s

DECIMAL(p,s) SMALLINT DECIMAL(P,S) where
P = MIN(31,s + MAX(p-s,5))
S = s

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

SMALLINT SMALLINT SMALLINT

If neither operand column allows nulls, the result column does not allow nulls.
Otherwise, the result column allows nulls. If the description of any operand column
is not the same as the description of the result column, its values are converted to
conform to the description of the result column.

The conversion operation is exactly the same as if the values were assigned to the
result column. For example, if one operand column is CHAR(10) and the other
operand column is CHAR(5), the result column is CHAR(10) and the values derived
from the CHAR(5) column are padded on the right with five blanks. As another
example, an error occurs if the whole part of a decimal number cannot be
preserved.

184 SQL Reference  



  fullselect
 

Character Conversion in Unions and Concatenations
The SQL operations that combine strings are concatenation, UNION, and UNION
ALL. Within an SQL statement, concatenation combines two or more strings into a
new string. Within a fullselect, UNION and UNION ALL can combine two or more
string columns resulting from the subselects into a results column. All such
operations have the following in common:

� The choice of a result CCSID for the string or column
� The possible conversion of one or more of the component strings or columns to

the result CCSID

For all such operations, the rules for those two actions are the same, as described
in “Selecting the Result CCSID.” These rules also apply to the VALUE scalar
function.

Selecting the Result CCSID
The result CCSID is selected at bind time. The result CCSID is the CCSID of one
of the operands.

Two operands: When two operands are used, the result CCSID is determined by
the operand types, their CCSIDs, and their relative positions in the operation. The
rules shown here apply when neither CCSID is X'FFFF'. When a CCSID is
X'FFFF', the result CCSID is always X'FFFF', and no character conversions take
place.

If one CCSID is for SBCS data and the other is for mixed data, the operand
selected depends on the value of the MIXED DATA field on installation panel
DSNTIPF at the DB2 where the operation takes place:

� If this value is YES, the operand MIXED furnishes the result CCSID.
� If this value is NO, the operand SBCS furnishes the result CCSID.

If both CCSIDs are the same type (both SBCS, both MIXED, or both GRAPHIC
CCSIDs), then the operand that furnishes the result CCSID is as shown in
Table 14.

For example, assume a concatenation of the form:

string-constant CONCAT derived-value

The value in the second row and fourth column shows that the first operand
(string-constant) supplies the result CCSID.

Table 14. Operand that Supplies the CCSID for Character Conversion

First Operand

Second Operand

Column
Value

String
Constant

Special
Register

Derived
Value

Host
Variable

Column Value first first first first first

String Constant second first first first first

Special Register second first first first first

Derived Value second second second first first

Host Variable second second second second first/second1

Note:  1. Both operands are converted, if necessary, to the system CCSID of the server.

  Chapter 5. Queries 185



 fullselect  
 

Three or more operands:

If all the operands have the same CCSID, the result CCSID is the common
CCSID.

If at least one of the CCSIDs has the value X'FFFF', the result CCSID also has
the value X'FFFF'.

Otherwise, selection proceeds as follows:

1. The rules for a pair of operands are applied to the first two operands. This
picks a “candidate” for the second step. The candidate is the operand that
would furnish the result CCSID if just the first two operands were involved in
the operation.

2. The rules are applied to the Step 1 candidate and the third operand, thereby
selecting a second candidate.

3. If a fourth operand is involved, the rules are applied to the second candidate
and fourth operand, to select a third candidate, and so on.

The process continues until all operands have been used. The remaining candidate
is the one that furnishes the result CCSID. Whenever the rules for a pair are
applied to a candidate and an operand, the candidate is considered to be the first
operand.

Consider, for example, the following concatenation:

A CONCAT B CONCAT C

Here, the rules are first applied to the strings A and B. Suppose that the string
selected as candidate is A. Then the rules are applied to A and C. If the string
selected is again A, then A furnishes the result CCSID. Otherwise, C furnishes the
result CCSID.

Character conversion of components: An operand of concatenation or the
selected argument of the VALUE scalar function is converted, if necessary, to the
coded character set of the result string. Each string of an operand of UNION or
UNION ALL is converted, if necessary, to the coded character set of the result
column. In either case, the coded character set is the one identified by the result
CCSID. Character conversion is necessary only if all of the following are true:

� The result and operand CCSIDs are different.
� Neither CCSID is X'FFFF' (neither string is defined as BIT data).
� The string is neither null nor empty.
� The SYSSTRINGS catalog table indicates that conversion is necessary.

An error occurs if a character of a string cannot be converted or SYSSTRINGS is
used but contains no information about the CCSID pair. A warning occurs if a
character of a string is converted to the substitution character.

186 SQL Reference  



  fullselect
 

Examples of fullselects
Example 1: A query specifies the union of result tables R1 and R2. A column in R1
has the data type CHAR(10) and the subtype BIT. The corresponding column in R2
has the data type CHAR(15) and the subtype SBCS. Hence, the column in the
union has the data type CHAR(15) and the subtype BIT. Values from the first
column are converted to CHAR(15) by adding five trailing blanks.

Example 2: Show all the rows from DSN8510.EMP.

SELECT O FROM DSN851,.EMP;

Example 3: Using sample tables DSN8510.EMP and DSN8510.EMPROJACT, list
the employee numbers of all employees for which either of the following statements
are true:

� Their department numbers begin with 'D'.
� They are assigned to projects whose project numbers begin with 'AD'.

SELECT EMPNO FROM DSN851,.EMP

WHERE WORKDEPT LIKE 'D%'

 UNION

SELECT EMPNO FROM DSN851,.EMPPROJACT

WHERE PROJNO LIKE 'AD%';

The result is the union of two result tables, one formed from the sample table
DSN8510.EMP, the other formed from the sample table DSN8510.EMPPROJACT.
The result—a one-column table—is a list of employee numbers. Because UNION,
rather than UNION ALL, was used, the entries in the list are distinct. If instead
UNION ALL were used, certain employee numbers would appear in the list more
than once. These would be the numbers for employees in departments that begin
with 'D' while their projects begin with 'AD'.

  Chapter 5. Queries 187



 select-statement  
 

 select-statement

 

 ┌ ┐───────────────────────────
��─ ─fullselect─ ──┬ ┬───────────────── ───(1) ───

�
┴──┬ ┬───────────────────── ─────────────────────────────────��

 ├ ┤─order-by-clause─ ├ ┤─read-only-clause───(2) ─
 └ ┘─update-clause─── ├ ┤─optimize-for-clause─
 └ ┘─with-clause─────────

Notes:
1 The same clause must not be specified more than once.
2 Must not be specified if update-clause is specified.

The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement, or prepared and then referenced in a DECLARE
CURSOR statement. It can also be issued interactively using SPUFI causing a
result table to be displayed at your terminal. In any case, the table specified by
select-statement is the result of the fullselect.

The tables and view identified in a select statement can be at the current server or
any DB2 subsystem with which the current server can establish a connection.

# For local queries on DB2 for OS/390 or remote queries in which the server and
# requester are DB2 for OS/390, if a table is encoded as ASCII, the retrieved data is
# encoded in EBCDIC. For information on retrieiving such data encoded in ASCII,
# see Section 6 of Application Programming and SQL Guide.

 order-by-clause

 

 ┌ ┐─,─────────────────────────
 │ │┌ ┐─ASC──
��─ ─ORDER BY─ ───

�
┴──┬ ┬─column-name─ ──┼ ┼────── ─────────────────────────────────────────────────────────��

 └ ┘─integer───── └ ┘─DESC─

The ORDER BY clause specifies an ordering of the rows of the result table. If a
single column is identified, the rows are ordered by the values of that column. If
more than one column is identified, the rows are ordered by the values of the first
identified column, then by the values of the second identified column, and so on. A
long string column must not be identified.

A named column can be identified by an integer or a column name. An unnamed
column must be identified by an integer. A column is unnamed if the AS clause is
not specified and it is derived from a constant, an expression with operators, or a
function. If the fullselect includes a UNION operator, the fullselect rules on named
columns apply.

column-name
# Must unambiguously identify a column of the result table, with an exception. If
# the query is a subselect, column-name can identify the column name of a table,
# view, or nested table expression identified in the FROM clause and not in the
# result table when the subselect does not use:

188 SQL Reference  



  select-statement
 

# � DISTINCT in the select list
# � Column functions in the select list
#  � GROUP BY

integer
Must be greater than 0 and not greater than the number of columns in the
result table. The integer n identifies the nth column of the result table.

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

Ordering is performed in accordance with the comparison rules described in
Chapter 3. Language Elements, beginning on page72 . The null value is higher
than all other values. If your ordering specification does not determine a complete
ordering, rows with duplicate values of the last identified column have an arbitrary
order. If the ORDER BY clause is not specified, the rows of the result table have an
arbitrary order.

 update-clause

 

 ┌ ┐─,───────────
��──FOR UPDATE OF─ ───

�
┴─column-name─ ──────────────────────────────────────────────────────────────────��

The UPDATE clause identifies the columns that can be updated in a later
positioned UPDATE statement. Each column name must be unqualified and must
identify a column of the table or view identified in the first FROM clause of the
fullselect. The clause must not be specified if the result table of the fullselect is
read-only. For a discussion of read-only result tables, see “DECLARE CURSOR” on

| page 347. The clause must also not be specified if a temporary table is referenced
| in the first FROM clause of the select-statement.

The declaration of a cursor referred to in a positioned UPDATE statement need not
include an UPDATE clause if the STDSQL(YES) or NOFOR option is specified
when the program is precompiled. For more on the subject, see “Positioned
Updates of Columns” on page 126.

| When FOR UPDATE OF is used, FETCH operations referencing the cursor acquire
| U or X locks rather than S locks when:

� The isolation level of the statement is cursor stability.

� The isolation level of the statement is repeatable read or read stability and field
U LOCK FOR RR/RS on installation panel DSNTIPI is set to get U locks.

| � The isolation level of the statement is repeatable read or read stability and
| KEEP UPDATE LOCKS is specified in the SQL statement, an X lock, instead of
| a U lock, is acquired at FETCH time.

For a discussion of U locks and S locks, see Section 5 (Volume 2) of
Administration Guide .

  Chapter 5. Queries 189



 select-statement  
 

 read-only-clause

 

��──FOR─ ──┬ ┬─FETCH─ ─ONLY─────────────────────────────────────────────────────────────────────────────��
 └ ┘─READ──

The clause FOR FETCH ONLY18 declares that the result table is read-only and
therefore the cursor cannot be referred to in positioned UPDATE and DELETE
statements.

Some result tables are read-only by nature. (For example, a table based on a
read-only view.) FOR FETCH ONLY can still be specified for such tables, but the
specification has no effect. For result tables for which updates and deletes are
possible, specifying FOR FETCH ONLY can possibly improve the performance of
FETCH operations and distributed operations.

A read-only result table must not be referred to in an UPDATE or DELETE
statement, whether it is read-only by nature or specified as FOR FETCH ONLY.

 optimize-for-clause

 

��─ ─OPTIMIZE FOR──integer─ ──┬ ┬─ROWS─ ─────────────────────────────────────────────────────────────────��
 └ ┘─ROW──

The OPTIMIZE FOR clause requests special optimization of the select-statement. If
the clause is omitted, optimization is based on the assumption that all rows of the
result table will be retrieved. If the clause is specified, optimization is based on the
assumption that the number of rows retrieved will not exceed n, where n is the
value of the integer.

| The OPTIMIZE FOR clause does not limit the number of rows that can be fetched
| or affect the result in any way other than performance. In general, if you are
| retrieving only a few rows, use OPTIMIZE FOR 1 ROW to influence the access
| path that DB2 selects. For more information about using this clause, see
# Application Programming and SQL Guide.

 with-clause

 

��─ ─WITH─ ──┬ ┬─CS──────────────────────── ─────────────────────────────────────────────────────────────��
 ├ ┤─UR────────────────────────
 ├ ┤ ─RR─ ──┬ ┬───────────────────

| │ │└ ┘─KEEP UPDATE LOCKS─
 └ ┘ ─RS─ ──┬ ┬───────────────────

| └ ┘─KEEP UPDATE LOCKS─

18 Or, FOR READ ONLY is equivalent.

190 SQL Reference  



  select-statement
 

The WITH clause specifies the isolation level at which the statement is executed.

CS Cursor stability
UR Uncommitted read
RR Repeatable read

| RR KEEP UPDATE LOCKS Repeatable read update locks
RS Read stability

| RS KEEP UPDATE LOCKS Read stability keep update locks

You can specify WITH UR only if the result table is read-only.

# To specify WITH RR KEEP UPDATE LOCKS or WITH RS KEEP UPDATE LOCKS,
# you must also specify the FOR UPDATE OF clause.

The default isolation level of the statement depends on:

� The isolation of the package or plan that the statement is bound in
� Whether the result table is read-only

See “Notes” on page 349 for a list of the characteristics that make a result table
read-only. A simple way to ensure that a result table is read-only is to specify FOR
FETCH ONLY or FOR READ ONLY in the SQL statement.

If package isolation
is:

And plan
isolation is:

And the result
table is:

Then the default
isolation is:

RR Any Any RR

RS Any Any RS

CS Any Any CS

UR Any Read-only UR

Not read-only CS

Not specified Not specified Any RR

RR Any RR

RS Any RS

CS Any CS

UR Read-only UR

Not read-only CS

Examples of select statements
Example 1: Select all the rows from DSN8510.EMP.

SELECT O FROM DSN851,.EMP;

Example 2: Select all the rows from DSN8510.EMP, arranging the result table in
chronological order by date of hiring.

SELECT O FROM DSN851,.EMP ORDER BY HIREDATE;

Example 3: Select the department number (WORKDEPT) and average
departmental salary (SALARY) for all departments in the table DSN8510.EMP.
Arrange the result table in ascending order by average departmental salary.

  Chapter 5. Queries 191



 select-statement  
 

SELECT WORKDEPT, AVG(SALARY)

 FROM DSN851,.EMP

GROUP BY WORKDEPT

ORDER BY 2;

Example 4: Change various salaries, bonuses, and commissions in the table
DSN8510.EMP. Confine the changes to employees in departments D11 and D21.
Use positioned updates to do this with a cursor named UP_CUR. Indicate the
columns to be updated in a FOR UPDATE of clause in the cursor declaration.
Below is the declaration for a PL/I program.

EXEC SQL DECLARE UP_CUR CURSOR FOR

SELECT WORKDEPT, EMPNO, SALARY, BONUS, COMM

 FROM DSN851,.EMP

WHERE WORKDEPT IN ('D11','D21')

FOR UPDATE OF SALARY, BONUS, COMM;

Example 5: Find the maximum, minimum, and average bonus in the table
DSN8510.EMP. Execute the statement with uncommitted read isolation, regardless
of the value of ISOLATION with which the plan or package containing the
statement is bound.

 EXEC SQL

SELECT MAX(BONUS), MIN(BONUS), AVG(BONUS)

INTO :MAX, :MIN, :AVG

 FROM DSN851,.EMP

 WITH UR;

Example 6: The cursor declaration shown below is in a PL/I program. In the query
within the declaration, X.RMT_TAB is an alias for a table at some other DB2.
Hence, when the query is used, it is processed using DB2 private protocol access.

The declaration indicates that no positioned updates or deletes will be done with
the query's cursor. It also specifies that the access path for the query be optimized
for the retrieval of at most 50 rows. Even so, the program can retrieve more than
50 rows from the result table, which consists of the entire table identified by the
alias. However, when more than 50 rows are retrieved, performance could possibly
degrade.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT O FROM X.RMT_TAB

OPTIMIZE FOR 5, ROWS

FOR FETCH ONLY;

192 SQL Reference  



  Statements
 

 Chapter 6. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the SQL statements listed in the following table.

Table 15 (Page 1 of 3). SQL Statements

SQL Statement Function Page

| ALLOCATE CURSOR| Defines and associates a cursor with a result set locator variable| 200 

ALTER DATABASE Changes the description of a database 202 

ALTER INDEX Changes the description of an index 205 

ALTER STOGROUP Changes the description of a storage group 214 

ALTER TABLE Changes the description of a table 217 

ALTER TABLESPACE Changes the description of a table space 233 

| ASSOCIATE LOCATORS Gets the result set locator value for each result set returned by a
stored procedure

243 

BEGIN DECLARE SECTION Marks the beginning of a host variable declaration section 246 

CALL Calls a stored procedure 248 

CLOSE Closes a cursor 253 

COMMENT ON Replaces or adds a comment to the description of a table, view, alias,
or column

255 

COMMIT Ends a unit of recovery and commits the database changes made by
that unit of recovery

257 

CONNECT (Type 1) Connects the process to a server 262 

CONNECT (Type 2) Connects the process to a server 267 

CREATE ALIAS Defines an alias 270 

CREATE DATABASE Defines a database 272 

| CREATE GLOBAL
| TEMPORARY TABLE
| Creates a description of a temporary table at the current server| 275 

CREATE INDEX Defines an index on a table 280 

CREATE STOGROUP Defines a storage group 303 

CREATE SYNONYM Defines an alternate name for a table or view 306 

CREATE TABLE Defines a table 308 

CREATE TABLESPACE Allocates and formats a table space 327 

CREATE VIEW Defines a view of one or more tables or views 341 

DECLARE CURSOR Defines an SQL cursor 347 

DECLARE STATEMENT Declares names used to identify prepared SQL statements 352 

DECLARE TABLE Provides the programmer and the precompiler with a description of a
table or view

354 

DELETE Deletes one or more rows from a table 357 

DESCRIBE Describes the result columns of a prepared statement or the columns
of a table or view

362 

| DESCRIBE CURSOR Puts information about the result set associated with a cursor into a
descriptor

368 

 Copyright IBM Corp. 1982, 1997  193



 Statements  
 

Table 15 (Page 2 of 3). SQL Statements

SQL Statement Function Page

# DESCRIBE INPUT# Puts information about the input parameters (markers) of a prepared
# statement into a descriptor
# 370 

| DESCRIBE PROCEDURE| Puts information about the result sets returned by a stored procedure
| into a descriptor
| 372 

DROP Deletes an alias, database, index, package, storage group, synonym,
table, table space, or view

375 

END DECLARE SECTION Marks the end of a host variable declaration section 380 

EXECUTE Executes a prepared SQL statement 382 

EXECUTE IMMEDIATE Prepares and executes an SQL statement 386 

EXPLAIN Obtains information about how an SQL statement would be executed 388 

FETCH Assigns values of a row to host variables 397 

GRANT (Collection
Privileges)

Grants authority to create a package in a collection 403 

GRANT (Database
Privileges)

Grants privileges on a database 404 

GRANT (Package Privileges) Grants authority to bind, execute, or copy a package 406 

GRANT (Plan Privileges) Grants authority to bind or execute an application plan 408 

GRANT (System Privileges) Grants system privileges 409 

GRANT (Table or View
Privileges)

Grants privileges on a table or view 412 

GRANT (Use Privileges) Grants authority to use specified buffer pools, storage groups, or table
spaces

415 

INCLUDE Inserts declarations into a source program 417 

INSERT Inserts one or more rows into a table 419 

LABEL ON Replaces or adds a label on the description of a table, view, alias, or
column

424 

LOCK TABLE Locks a table in shared or exclusive mode 426 

OPEN Opens a cursor 428 

PREPARE Prepares an SQL statement (with optional parameters) for execution 433 

RELEASE Places one or more connections in the release pending state 437 

| RENAME| Renames an existing table| 440 

REVOKE (Collection
Privileges)

Revokes authority to create a package in a collection 447 

REVOKE (Database
Privileges)

Revokes privileges on a database 448 

REVOKE (Package
Privileges)

Revokes authority to bind, execute, or copy a package 450 

REVOKE (Plan Privileges) Revokes authority to bind or execute an application plan 452 

REVOKE (System Privileges) Revokes system privileges 453 

REVOKE (Table or View
Privileges)

Revokes privileges on a table or view 456 

REVOKE (Use Privileges) Revokes authority to use specified buffer pools, storage groups, or
table spaces

458 

194 SQL Reference  



  Statements
 

Table 15 (Page 3 of 3). SQL Statements

SQL Statement Function Page

ROLLBACK Ends a unit of recovery and backs out the changes to the database
made by that unit of recovery

460 

SELECT INTO Specifies a result table of no more than one row and assigns the
values to host variables

462 

SET CONNECTION Establishes the application server of the process by identifying one of
its existing connections

465 

SET CURRENT DEGREE Assigns a value to the CURRENT DEGREE special register 468 

SET CURRENT RULES Assigns a value to the CURRENT RULES special register 473 

SET CURRENT
PACKAGESET

Assigns a value to the CURRENT PACKAGESET special register 470 

# SET CURRENT PRECISION# Assigns a value to the CURRENT PRECISION special register# 472 

SET CURRENT SQLID Assigns a value to the CURRENT SQLID special register 474 

SET host-variable Assigns the current value of a named special register to a host
variable

476 

UPDATE Updates the values of one or more columns in one or more rows of a
table

477 

WHENEVER Defines actions to be taken on the basis of SQL return codes 483 

How SQL Statements Are Invoked
The SQL statements described in this chapter are classified as executable or
nonexecutable. The section on invocation in the description of each statement
indicates whether or not the statement is executable.

| Executable statements can be invoked in the following ways:

� Embedded in an application program
� Dynamically prepared and executed

| � Dynamically prepared and executed using CLI function calls
 � Issued interactively

Depending on the statement, you can use some or all of these methods. The
section on invocation in the description of each statement tells you which methods
can be used. See Appendix B, “Characteristics of SQL Statements in DB2 for
OS/390” on page 509 for a list of executable statements.

A nonexecutable statement can only be embedded in an application program.

In addition to the statements described in this chapter, there is one more SQL
statement construct: the select-statement. (See “select-statement” on page 188.) It
is not included in this chapter because it is used in a different way from other
statements.

| A select-statement can be invoked in the following ways:

� Included in DECLARE CURSOR and implicitly executed by OPEN
� Dynamically prepared, referred to in DECLARE CURSOR, and implicitly

executed by OPEN

  Chapter 6. Statements 195



 Statements  
 

| � Dynamically executed (no PREPARE required) using a CLI function call
 � Issued interactively

The first two methods are called, respectively, the static and the dynamic invocation
of select-statement.

Embedding a Statement in an Application Program
You can include SQL statements in a source program that will be submitted to the
precompiler. Such statements are said to be embedded in the application program.
An embedded statement can be placed anywhere in the application program where
a host language statement is allowed. You must precede each embedded
statement with EXEC SQL.

Executable statements: An executable statement embedded in an application
program is executed every time a statement of the host language would be
executed if specified in the same place. (Thus, for example, a statement within a
loop is executed every time the loop is executed, and a statement within a
conditional construct is executed only when the condition is satisfied.)

An embedded statement can contain references to host variables. A host variable
referred to in this way can be used in one of two ways:

As input The current value of the host variable is used in the execution of
the statement.

As output The variable is assigned a new value as a result of executing the
statement.

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input. The treatment of other references is described individually for each
statement.

The successful or unsuccessful execution of the statement is indicated by setting
the SQLCODE and SQLSTATE fields in SQLCA.19 You must therefore follow all
executable statements by a test of SQLCODE or SQLSTATE. Alternatively, you can
use the WHENEVER statement (which is itself nonexecutable) to change the flow
of control immediately after the execution of an embedded statement.

Nonexecutable statements: An embedded nonexecutable statement is processed
only by the precompiler. The statement is never executed, and acts as a
“no-operation” if placed among executable statements of the application program.
Therefore, you must not follow such statements by a test of the SQLCODE or
SQLSTATE field in SQLCA.

19 SQLCODE and SQLSTATE cannot be in the SQLCA when the precompiler option STDSQL(YES) is in effect. See “SQL Standard
Language” on page 124.

196 SQL Reference  



  Statements
 

Dynamic Preparation and Execution
Your application program can dynamically build an SQL statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the application program (for example, input from a terminal).
The statement so constructed can be prepared for execution by means of the
(embedded) statement PREPARE and executed by means of the (embedded)
statement EXECUTE, as described in Section 6 of Application Programming and
SQL Guide Alternatively, you can use the (embedded) statement EXECUTE
IMMEDIATE to prepare and execute a statement in one step.

| The statement may also be prepared by calling the CLI SQLPrepare function and
| then executed by calling the CLI SQLExecute function. In both cases, the
| application does not contain an embedded PREPARE or EXECUTE statement. You
| can execute the statement, without preparation, by passing the statement to the
| CLI SQLExecDirect function.

| Call Level Interface Guide and Reference describes the APIs supported with this
| interface.

A statement that is going to be prepared must not contain references to host
variables. It can instead contain parameter markers. (See “Parameter markers” on
page 435 in the description of the PREPARE statement for rules concerning
parameter markers.) When the prepared statement is executed, the parameter
markers are effectively replaced by current values of the host variables specified in
the EXECUTE statement. (See “EXECUTE” on page 382 for rules concerning this
replacement.) Once prepared, a statement can be executed several times with
different values of host variables.

Parameter markers are not allowed in EXECUTE IMMEDIATE.

The successful or unsuccessful execution of the statement is indicated by setting
the SQLCODE and SQLSTATE fields in SQLCA after the EXECUTE (or EXECUTE
IMMEDIATE) statement. You should check the fields as described above for
embedded statements.

Static Invocation of a SELECT Statement
You can include a SELECT statement as a part of the (nonexecutable) statement
DECLARE CURSOR. Such a statement is executed every time you open the cursor
by means of the (embedded) statement OPEN. After the cursor is open, you can
retrieve the result table a row at a time by successive executions of the SQL
FETCH statement.

| If the application is using CLI, the SELECT statement is first prepared with the
| SQLPrepare function call. It is then executed with the SQLExecute function call.
| Data is then fetched with the SQLFetch function call. The application does not
| explicitly open the cursor.

The SELECT statement used in this way can contain references to host variables.
These references are effectively replaced by the values that the variables have at
the moment of executing OPEN.

  Chapter 6. Statements 197



 Statements  
 

The successful or unsuccessful execution of the SELECT statement is indicated by
setting the SQLCODE and SQLSTATE fields in SQLCA after the OPEN. You
should check the fields as described above for embedded statements.

| If the application is using CLI, the successful execution of the SELECT statement is
| indicated by the return code from the SQLExecute function call. If necessary, the
| application may retrieve the SQLCA by calling the SQLGetSQLCA function.

Dynamic Invocation of a SELECT Statement
Your application program can dynamically build a SELECT statement in the form of
a character string placed in a host variable. In general, the statement is built from
some data available to the application program (for example, a query obtained from
a terminal). The statement so constructed can be prepared for execution by means
of the (embedded) statement PREPARE, and referred to by a (nonexecutable)
statement DECLARE CURSOR. The statement is then executed every time you
open the cursor by means of the (embedded) statement OPEN. After the cursor is
open, you can retrieve the result table a row at a time by successive executions of
the SQL FETCH statement.

The SELECT statement used in that way must not contain references to host
variables. It can instead contain parameter markers. (See “Notes” in “PREPARE”
on page 433 for rules concerning parameter markers.) The parameter markers are
effectively replaced by the values of the host variables specified in the OPEN
statement. (See “OPEN” on page 428 for rules concerning this replacement.)

The successful or unsuccessful execution of the SELECT statement is indicated by
the setting of the SQLCODE and SQLSTATE fields in SQLCA after the OPEN. You
should check the fields as described above for embedded statements.

 Interactive Invocation
IBM relational database management systems allow you to enter SQL statements
from a terminal. DB2 for OS/390 provides SPUFI to prepare and execute these
statements. Other products are also available. A statement entered in this way is
said to be issued interactively.

A statement issued interactively must not contain parameter markers or references
to host variables, because these make sense only in the context of an application
program. For the same reason, there is no SQLCA involved.

Checking the Execution of SQL Statements
An application program that contains executable SQL statements must include one
or both of the following stand-alone host variables:

� SQLCODE (SQLCOD in FORTRAN)
� SQLSTATE (SQLSTT in FORTRAN)

Or,

� An SQLCA, which can be provided by using the INCLUDE SQLCA statement

Whether you define stand-alone SQLCODE and SQLSTATE host variables or an
SQLCA in your program depends on the DB2 precompiler option you choose.

198 SQL Reference  



  Statements
 

| If the application is using CLI and it calls the SQLGetSQLCA function, it need only
| include an SQLCA. Otherwise, all notification of success or errors is specified with
| return codes for the function call.

When you specify STDSQL(YES), which indicates conformance to the SQL
standard, you should not define an SQLCA. The stand-alone variable for
SQLCODE must be a valid host variable in the DECLARE SECTION of a program.
It can also be declared outside of the DECLARE SECTION when no variable is
defined for SQLSTATE. The stand-alone variable for SQLSTATE must be declared
in the DECLARE SECTION; it must not be declared as an element of a structure.

When you specify STDSQL(NO), which indicates conformance to DB2 rules, you
must include an SQLCA explicitly.

 SQLCODE
Regardless of whether the application program provides an SQLCA or a
stand-alone variable for SQLCODE, DB2 sets SQLCODE after each SQL statement
is executed. DB2 conforms to the SQL standard as follows:

� If SQLCODE = 0, execution was successful.
� If SQLCODE > 0, execution was successful with a warning.
� If SQLCODE < 0, execution was not successful.

SQLCODE +100 indicates "no data". For example, a FETCH statement returned
no data because the cursor was positioned after the last row of the result table.
The SQL standard does not define the meaning of any other specific positive or
negative values of SQLCODE and the meaning of these values is not the same in
all implementations of SQL.

| If the application is using CLI, an SQLCODE is only returned if the application
| issues the SQLGetSQLCA function.

 SQLSTATE
Regardless of whether the application program provides an SQLCA or a
stand-alone variable for SQLSTATE, DB2 sets SQLSTATE after each SQL
statement is executed. DB2 returns values that conform to the error specification in
the SQL standard.

| If the application is using CLI, the SQLSTATE returned conforms to the ODBC
| Version 2.0 specification.

SQLSTATE provides application programs with common codes for common error
conditions (the values of SQLSTATE are product-specific if the error or warning is
product-specific). Furthermore, SQLSTATE is designed so that application
programs can test for specific errors or classes of errors. The coding scheme is the
same for all IBM implementations of SQL. The SQLSTATE values are based on the
SQLSTATE specifications contained in the SQL standard.

Error messages and the tokens that are substituted for variables in error messages
are associated with SQLCODE values, not SQLSTATE values.

  Chapter 6. Statements 199



 ALLOCATE CURSOR  
 

|  ALLOCATE CURSOR
| The ALLOCATE CURSOR statement defines a cursor and associates it with a
| result set locator variable.

|  Invocation
| This statement can be embedded in an application program. It is an executable
| statement that can be dynamically prepared. It cannot be issued interactively.

|  Authorization
| None required.

|  Syntax

|  

| ��─|  ─ALLOCATE──cursor-name─| ─CURSOR FOR RESULT SET──rs-locator-variable────────────────────────────────��

|  Description
| cursor-name
| Names the cursor using the specified cursor-name. The name must not identify
| a cursor that has already been declared in the source program.

| A cursor name is a long identifier.

| CURSOR FOR RESULT SET rs-locator-variable
| Names a result set locator variable that has been declared in the application
| program according to the rules for declaring result set locator variables.

| The result set locator variable must contain a valid result set locator value, as
| returned by the ASSOCIATE LOCATORS or DESCRIBE PROCEDURE SQL
| statement.

|  Notes
| Dynamically prepared ALLOCATE CURSOR statements: When an ALLOCATE
| CURSOR statement is dynamically prepared, the EXECUTE statement with the
| USING clause must be used to execute the prepared statement. As with all
| dynamically prepared statements, parameter markers (question marks) must appear
| where the host variables would appear in the prepared statement. In the
| ALLOCATE CURSOR statement, rs-locator-variable is always a host variable. The
| USING clause of the EXECUTE statement should specify the host variables for
| which the values are to be substituted for the parameter markers in the dynamically
| prepared ALLOCATE CURSOR statement.

| A restriction for dynamically prepared ALLOCATE CURSOR statements is that you
| cannot use a statement identifier for an ALLOCATE CURSOR statement if the
| same statement identifier has been used for a DECLARE CURSOR statement. For
| example, the following SQL statements are invalid because the PREPARE
| statement uses STMT1 as an identifier for the ALLOCATE CURSOR statement
| when it has already been used for a DECLARE CURSOR statement:

200 SQL Reference  



  ALLOCATE CURSOR
 

| DECLARE CURSOR C1 FOR STMT1;

| PREPARE STMT1 FROM INVALID
| 'ALLOCATE C2 CURSOR FOR RESULT SET ?';

| Rules for using an allocated cursor: The following rules apply when you use an
| allocated cursor.

| � For this statement to be successful, an application must be currently connected
| to the site where the stored procedure was executed.

| � You cannot open an allocated cursor by using the SQL OPEN cursor
| statement.

| � You can close an allocated cursor by using the SQL CLOSE cursor statement.
| This closes the cursor in the stored procedure as well.

| � You can allocate only one cursor to each result set.

| The life of an allocated cursor: Rollback, and an implicit and explicit close
| destroy allocated cursors. A commit destroys allocated cursors that are not defined
| WITH HOLD by the stored procedure. Destroying an allocated cursor closes the
| associated cursor in the stored procedure.

|  Example
| The statement in the following example is assumed to be in a PL/I program.

| Define and associate cursor C1 with the result set locator variable :loc1 and the
| related result set returned by the stored procedure:

| EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;

  Chapter 6. Statements 201



 ALTER DATABASE  
 

 ALTER DATABASE
The ALTER DATABASE statement changes the description of a database at the
current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� The DROP privilege on the database
� Ownership of the database
� DBADM or DBCTRL authority for the database
� SYSADM or SYSCTRL authority

If ROSHARE is specified, the privilege set must include SYSADM or SYSCTRL
authority.

| Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the union of
the privilege sets held by each authorization ID of the process.

 Syntax

 

 ┌ ┐───────────────────────────────
��─ ─ALTER DATABASE──database-name─ ───(1) ───

�
┴──┬ ┬─BUFFERPOOL──bpname────── ───────────────────────────────��

 ├ ┤ ─ROSHARE─ ──┬ ┬─OWNER─ ─────
 │ │└ ┘─NONE──
 ├ ┤ ─STOGROUP──stogroup-name─

#  └ ┘# ─CCSID──ccsid-value──────

Note:
1 The same clause must not be specified more than once.

 Description
DATABASE database-name

Identifies the database to be altered. The name must identify database that
exists at the current server. If a work file database is identified, only the
BUFFERPOOL clause can be specified.

BUFFERPOOL bpname
Identifies the default buffer pool for the table spaces and indexes within the
database. It does not apply to table spaces and indexes already existing within
the database.

32KB buffer pools apply only to table spaces. If a 32KB buffer pool name is
specified, the default buffer pool for indexes in the database is BP0.

202 SQL Reference  



  ALTER DATABASE
 

See “Naming Conventions” on page 48 for more details about bpname.

ROSHARE
Indicates whether or not the database is to be shared with other DB2
subsystems using shared read-only data. Cannot be used if the database was
defined with ROSHARE READ. For an explanation of shared read-only data,
see Appendix F (Volume 2) of Administration Guide. Also, ROSHARE cannot
be specified for any system database.

OWNER The database will be shared, and the current server will be the DB2
that can update the database.

NONE The database will not be shared.

STOGROUP stogroup-name
Is the name of the storage group to be used, as required, as a default storage
group to support DASD space requirements for table spaces and indexes within
the database. It does not apply to table spaces and indexes already existing
within the database. STOGROUP cannot be specified for a work file database.

# CCSID ccsid-value
# Identifies the default CCSID for tablespaces within the database. It does not
# apply to existing tablespaces in the database. ccsid-value must identify a
# CCSID value that is compatible with the current value of the CCSID for the
# database. “Notes” contains a list that shows the CCSID to which a given
# CCSID can be altered.

 Notes
# Altering the CCSID:

The ability to alter the default CCSID enables you to change to a CCSID that
supports the Euro symbol. You can only convert between specific CCSIDs that do
and not define the Euro symbol. In most cases, the codepoint that supports the
Euro symbol replaces an existing codepoint, such as the International Currency
Symbol (ICS).

Changing a CCSID can be disruptive to the system and requires several steps. For
each encoding scheme of a system (ASCII or EBCDIC), DB2 supports only one
CCSID. Therefore, the CCSID for all databases and all table spaces within an
encoding scheme should be altered at the same time. Otherwise, unpredictable
results might occur.

The recommended method for changing the CCSID requires that the data be
unloaded and reloaded. See Appendix B of Installation Guide for the steps needed
to change the CCSID, such as running an installation CLIST to modify the CCSID
data in DSNHDECP, when to drop and recreate views, and when to rebind
invalidated plans and packages.

The following lists show the CCSIDs that can be converted. The second CCSID in
each pair is the CCSID with the Euro symbol. The CCSID can be changed from the
CCSID that does not support the Euro symbol to the CCSID that does, and vice
versa. For example, if the current CCSID is 500, it can be changed to 1148.

  Chapter 6. Statements 203



 ALTER DATABASE  
 

EBCDIC CCSIDs

---------------

37 114,

273 1141

277 1142

278 1143

28, 1144

284 1145

285 1146

297 1147

5,, 1148

871 1149

ASCII CCSIDs

---------------

85, 858

874 497,

125, 5346

1251 5347

1252 5348

1253 5349

1254 535,

1255 5351

1256 5352

1257 5353

 Example
Change the default buffer pool for database ABCDE to BP2. Also, change the
ROSHARE option for this database to NONE.

ALTER DATABASE ABCDE

 BUFFERPOOL BP2

 ROSHARE NONE;

204 SQL Reference  



  ALTER INDEX
 

 ALTER INDEX
The ALTER INDEX statement changes the description of an index at the current
server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include one of the following:

� Ownership of the index
� Ownership of the table on which the index is defined
� DBADM authority for the database containing the table
� SYSADM or SYSCTRL authority

If BUFFERPOOL or USING STOGROUP is specified, additional privileges could be
needed, as explained in the description of those clauses.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets held by each authorization ID of the process.

  Chapter 6. Statements 205



 ALTER INDEX  
 

 Syntax

 

 ┌ ┐───────────────────────────────────────────────────────
��─ ─ALTER INDEX──index-name─ ───(1) ───

�
┴──┬ ┬─BUFFERPOOL──bpname────────────────────────────── ─────────────��

 ├ ┤ ─CLOSE─ ──┬ ┬─YES─ ─────────────────────────────────
 │ │└ ┘─NO──
 ├ ┤─DSETPASS──password──────────────────────────────
 ├ ┤─PART──integer───────────────────────────────────
 ├ ┤─FREEPAGE──integer───────────────────────────────
 ├ ┤─PCTFREE──integer────────────────────────────────
 ├ ┤ ─USING─ ──┬ ┬─VCAT──catalog-name────── ─────────────
 │ │└ ┘ ─STOGROUP──stogroup-name─
 ├ ┤─PRIQTY──integer─────────────────────────────────
 ├ ┤─SECQTY──integer─────────────────────────────────
 ├ ┤ ─ERASE─ ──┬ ┬─YES─ ─────────────────────────────────
 │ │└ ┘─NO──
 ├ ┤ ─GBPCACHE─ ──┬ ┬─CHANGED─ ──────────────────────────
 │ │└ ┘─ALL─────
 ├ ┤ ─CONVERT TO─ ──┬ ┬ ─TYPE 1─ ──┬ ┬─────────────────────
 │ ││ ││ │┌ ┐─4──
 │ ││ │└ ┘ ─SUBPAGES─ ───(2) ──┼ ┼─1──
 │ ││ │├ ┤─2──
 │ ││ │├ ┤─8──
 │ ││ │└ ┘─16─
 │ │└ ┘ ─TYPE 2──────────────────────────

|  └ ┘|  ─PIECESIZE──integer─ ──┬ ┬─K─ ──────────────────────
|  ├ ┤─M─
|  └ ┘─G─

Notes:
1 The same clause must not be specified more than once.
2 In a data sharing environment, the default is 1.

 Description
index-name

Identifies the index to be altered. The name must identify a user-created index
that exists at the current server.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the index. The bpname must identify an
activated 4KB buffer pool, and the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for the buffer pool. See
“Naming Conventions” on page 48 for more details about bpname.

The change to the description of the index takes effect the next time the data
sets of the index space are opened. The data sets can be closed and reopened
by a STOP DATABASE command to stop the index followed by a START
DATABASE command to start the index.

In a data sharing environment, if you specify BUFFERPOOL, the index space
must be in the stopped state when the ALTER INDEX statement is executed.

CLOSE
Specifies whether the data set is eligible to be closed when the index is not
being used and the limit on the number of open data sets is reached. The
change to the close rule takes effect the next time the data sets of the index
space are opened.

206 SQL Reference  



  ALTER INDEX
 

YES
Eligible for closing.

NO
Not eligible for closing.

| If DSMAX is reached and there are no CLOSE YES page sets to close,
| CLOSE NO page sets will be closed.

DSETPASS password
Specifies a master level password sent to access method services when the
data sets of the index are used by DB2. password is a short identifier. If
delimited, password can contain any characters acceptable to access method
services. The change to the description of the index takes effect the next time
the data sets of the index space are opened.

To remove the password, use a delimited string of blanks for password. For
example, you can use the following if the double quote is your escape
character:

 DSETPASS " "

If the index uses a storage group, password is the password that protects the
data sets as well as the password that is passed to access method services
when the data sets are used by DB2. If the index does not use a storage
group, the password that protects the data sets must be defined using access
method services.

Changing the password for the index does not change the password that
protects its data sets. To change the data set password, use access method
services. See Section 2 (Volume 1) of Administration Guide for more on
changing data set passwords.

The password does not apply to the data sets managed by Storage
Management Subsystem (SMS). To protect data sets defined to SMS, use
RACF or a similar external security system.

PART integer
Identifies a partition of the index. Thus, for an index that has n partitions, you
must specify an integer in the range 1 to n. You must not use this clause if the
index is not partitioned, or if you use the BUFFERPOOL, CLOSE, DSETPASS,
or CONVERT TO clause. You must use this clause if the index is partitioned
and you use the FREEPAGE, PCTFREE, USING, PRIQTY, SECQTY, ERASE,
or GBPCACHE clause. In this case, the alterations specified by these clauses
apply only to the identified partition of the index.

FREEPAGE integer
Specifies how often to leave a page of free space when index entries are
created as the result of executing a DB2 utility. One free page is left for every
integer pages. The value of integer can range from 0 to 255. The change to the
description of the index or partition has no effect until it is loaded or
reorganized using a DB2 utility.

PCTFREE integer
Determines the percentage of free space to leave in each nonleaf page and
subpage when entries are added to the index or partition as the result of
executing a DB2 utility. The first entry in a page or subpage is loaded without
restriction. When additional entries are placed in a nonleaf page, the
percentage of free space is at least as great as integer. When additional entries

  Chapter 6. Statements 207



 ALTER INDEX  
 

are placed in a leaf page, the percentage of free space is at least as great as
integer/m, where m is the number of subpages.

The value of integer can range from 0 to 99, however, if a value greater than
10 is specified, only 10 percent of free space will be left in nonleaf pages. The
change to the description of the index or partition has no effect until it is loaded
or reorganized using a DB2 utility.

USING
Specifies whether a data set for the index or partition is managed by the user
or managed by DB2. If the index is partitioned, USING applies to the data set
for the partition identified in the PART clause. If the index is nonpartitioned,
USING applies to every data set that can be used for the index. (A
nonpartitioned index can have more than one data set if PRIQTY+118 ×
SECQTY is at least 2 gigabytes.)

If you specify USING, the index or partition must be in the stopped state when
the ALTER INDEX statement is executed. See “Altering storage attributes” on
page 212 to determine how and when changes take effect.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the
specified catalog name. You must specify the catalog name in the form of a
short identifier. Thus, you must specify an alias if the name of the
integrated catalog facility catalog is longer than eight characters. When the
new description of the index is applied, the integrated catalog facility
catalog must contain an entry for the data set conforming to the DB2
naming conventions set forth in Section 2 (Volume 1) of Administration
Guide.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems. However, the same catalog-name must be used by the
subsystems when shared read-only data is used.

STOGROUP stogroup-name
Specifies using a DB2-managed data set that resides on a volume of the
specified storage group. The stogroup name must identify a storage group
that exists at the current server and the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for the storage group.
When the new description of the index is applied, the description of the
storage group must include at least one volume serial number, each
volume serial number must identify a volume that is accessible to MVS for
dynamic allocation of the data set, and all identified volumes must be of the
same device type. Furthermore, the integrated catalog facility catalog used
for the storage group must not contain an entry for the data set and, if the
integrated catalog facility catalog is password protected, the description of
the storage group must include a valid password.

If you specify USING STOGROUP and the current data set for the index or
partition is managed by DB2:

� Omission of the PRIQTY clause is an implicit specification of the
current PRIQTY value

208 SQL Reference  



  ALTER INDEX
 

� Omission of the SECQTY clause is an implicit specification of the
current SECQTY value

� Omission of the ERASE clause is an implicit specification of the current
ERASE rule

If you specify USING STOGROUP and the current data set for the index or
partition is managed by the user:

� Omission of the PRIQTY clause is an implicit specification of PRIQTY
12

� Omission of the SECQTY and the PRIQTY clauses is an implicit
specification of SECQTY 12

� Omission of the ERASE clause is an implicit specification of ERASE
NO

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed data set of
the index or partition. This clause can be specified only if the data set is
managed by DB2, and if one of the following is true:

� USING STOGROUP is specified, or
� A USING clause is not specified.

If USING STOGROUP is specified, PRIQTY has the default specified in the
description of USING STOGROUP. If PRIQTY is specified, the primary space
allocation is at least n kilobytes, where n is:

12 If integer is less than 12
integer If integer is between 12 and 4194304
4194304 If integer is greater than 4194304

DB2 specifies the primary space allocation to access method services using the
smallest multiple of 4KB not less than n. The allocated space can be greater
than the amount of space requested by DB2. For example, it could be the
smallest number of tracks that will accommodate the space requested. To more
closely estimate the actual amount of storage, see the description of the
DEFINE CLUSTER command in DFSMS/MVS: Access Method Services for the
Integrated Catalog.

When determining a suitable value for PRIQTY, be aware that two of the pages
of the primary space are used by DB2 for purposes other than storing index
entries.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed data set
of the index or partition. This clause can be specified only if the data set is
managed by DB2, and if one of the following is true:

� USING STOGROUP is specified, or
� A USING clause is not specified.

If USING STOGROUP is specified, SECQTY has the default specified in the
description of USING STOGROUP.

However, if ALTER INDEX is being used to convert from user-defined data sets
to storage groups and PRIQTY is specified, the default for SECQTY is either

# 10% of PRIQTY or 3 times the index page size (4K), whichever is larger (if this

  Chapter 6. Statements 209



 ALTER INDEX  
 

# value exceeds 131068, the default is 131068.) If SECQTY is specified, the
secondary space allocation is at least n kilobytes, where n is:

integer If integer is not greater than 131068
131068 If integer is greater than 131068

If integer is 0, no data set for the index can be extended.

DB2 specifies the secondary space allocation to access method services using
the smallest multiple of 4KB not less than n. The allocated space can be
greater than the amount of space requested by DB2. For example, it could be
the smallest number of tracks that will accommodate the space requested. To
more closely estimate the actual amount of storage, see the description of the
DEFINE CLUSTER command in DFSMS/MVS: Access Method Services for the
Integrated Catalog.

ERASE
Indicates whether the DB2-managed data sets for the index or partition are to
be erased when they are deleted during the execution of a utility or an SQL
statement that drops the index. Refer to DFSMS/MVS: Access Method Services
for the Integrated Catalog for more information.

NO
Does not erase the data sets. Operations involving data set deletion will
perform better than ERASE YES. However, the data is still accessible,
though not through DB2.

YES
Erases the data sets. As a security measure, DB2 overwrites all data in the
data sets with zeros before they are deleted.

This clause can be specified only if the data set is managed by DB2, and if one
of the following is true:

� USING STOGROUP is specified, or
� A USING clause is not specified.

If you specify ERASE, the index or partition must be in the stopped state when
the ALTER INDEX statement is executed. See “Altering storage attributes” on
page 212 to determine how and when changes take effect.

GBPCACHE
Specifies what index pages are written to the group buffer pool in a data
sharing environment. In a non-data-sharing environment, you can specify
this option, but it is ignored.

CHANGED
When there is inter-DB2 R/W interest on the index or partition, updated
pages are written to the group buffer pool. When there is no inter-DB2
R/W interest, the group buffer pool is not used. Inter-DB2 R/W interest
exists when more than one member in the data sharing group has the
index or partition open, and at least one member has it open for
update.

ALL
Indicates that pages are to be cached in the group buffer pool as they
are read in from DASD, with one exception. When the page set is not
GBP-dependent and one DB2 data sharing member has exclusive R/W

210 SQL Reference  



  ALTER INDEX
 

interest in that page set (no other group members have any interest in
the page set), no pages are cached in the group buffer pool.

Hiperpools are not used for indexes or partitions that are defined with
GBPCACHE ALL.

CONVERT TO
Specifies changing the type of index. The index is left in recover pending
state, and the index change does not take place until the index is rebuilt by
a LOAD REPLACE or REORG of the entire table space, or a RECOVER or
RELOAD of the whole index.

TYPE 1
Specifies that the index is type 1. CONVERT TO TYPE 1 is not allowed
if:

� The table space associated with the index has a LOCKSIZE value
of ROW.

� The index was defined with UNIQUE WHERE NOT NULL.

SUBPAGES n
Gives the number of subpages for each physical page. Use 1,2,4,8,
or 16. The default is 4, except in a data sharing environment when
it is 1. In a data sharing environment, you must specify 1 for type 1
indexes to be shared; when there is more than one subpage, an
index cannot be accessed when there is inter-DB2 R/W interest in
the index.

The number of subpages for some type 1 catalog indexes is 1,
regardless of what is implicitly or explicitly specified. For a list of
these catalog indexes, see “SQL Statements Allowed on the
Catalog” on page 532. In addition, in a data sharing environment,
type 1 catalog indexes cannot have more than one subpage;
therefore, the only value you can specify for SUBPAGES is 1.

TYPE 2
Specifies that the index is type 2.

| PIECESIZE integer
# Specifies the maximum addressibility of each piece (data set) for a
# nonpartitioned index. The subsequent keyword K, M, or G, indicates the
| units of the value specified in integer.

| K Indicates that the integer value is to be multiplied by 1 024 to
| specify the maximum piece size in bytes. The integer must be a
| power of two between 256 and 4 194 304.

| M Indicates that the integer value is to be multiplied by 1 048 576
| to specify the maximum piece size in bytes. The integer must be
| a power of two between 1 and 4 096.

| G Indicates that the integer value is to be multiplied by
| 1 073 741 824 to specify the maximum piece size in bytes. The
| integer must be a power of two between 1 and 4.

| In the above specification for piece size, spaces are permitted between the
| integer and K, M, or G. They are not required.

| Valid values for piece size are as follows:

  Chapter 6. Statements 211



 ALTER INDEX  
 

|  256 K
|  512 K
| 1024 K (or 1 M)
# 2048 K (or 2 M)
| 4096 K (or 4 M)
| 8192 K (or 8 M)
| 16384 K (or 16 M)
| 32768 K (or 32 M)
| 65536 K (or 64 M)
| 131072 K (or 128 M)
| 262144 K (or 256 M)
| 524288 K (or 512 M)
| 1048576 K (or 1024 M or 1 G)
| 2097152 K (or 2048 M or 2 G)
| 4194304 K (or 4096 M or 4 G)20

| When you alter the piece size value, the index is placed into page set
| recovery pending (PSRCP). You must run the RECOVER INDEX or the
| REORG TABLESPACE utility to remove that status.

 Notes
The ALTER INDEX statement cannot be executed while a DB2 utility has control of
the index or its associated table space.

To change FREEPAGE, PCTFREE, USING, PRIQTY, SECQTY, ERASE, or
GBPCACHE for more than one partition, you must use separate ALTER INDEX
statements.

# Altering the type of index: When you change the type of index, the ALTER
# INDEX statement cannot be executed during the same commit scope as other
# changes to the index. Do not execute an ALTER INDEX statement with the
# CONVERT TO clause until other changes to the index are commited or rolled back.

When you change a type 2 index to a type 1 index, the plans and packages
associated with that index are invalidated. You must rebind those plans and
packages.

# Altering storage attributes: The USING, PRIQTY, SECQTY, and ERASE clauses
# define the storage attributes of the index or partition. If you specify the USING or
# ERASE clause when altering storage attributes, the index or partition must be in the

stopped state when the ALTER INDEX statement is executed. A STOP
DATABASE...SPACENAM... command can be used to stop the index or partition.

If the catalog name changes, the changes take effect after you move the data and
start the index or partition using the START DATABASE...SPACENAM... command.
The catalog name can be implicitly or explicitly changed by the ALTER INDEX
statement. The catalog name also changes when you move the data to a different
device. See the procedures for moving data in Section 2 (Volume 1) of
Administration Guide .

| 20 Only valid for LARGE table spaces.

212 SQL Reference  



  ALTER INDEX
 

# Changes to the secondary space allocation (SECQTY) take effect the next time
# DB2 extends the data set; however, the new value is not reflected in the integrated
# catalog until you use the REORG, RECOVER, or LOAD REPLACE utlility on the
# index or partition. Changes to the other storage attributes take effect the next time

you use the REORG, RECOVER, or LOAD REPLACE utility on the index or
partition. If you change the primary space allocation parameters or erase rule, you
can have the changes take effect earlier if you move the data before you start the
index or partition.

Altering indexes on DB2 catalog tables: For details on altering options on
catalog tables, see “SQL Statements Allowed on the Catalog” on page 532.

 Examples
Example 1: Alter the index DSN8510.XEMP1. CLOSE NO indicates that DB2 is not
to close the data sets supporting the index when there are no current users of the
index.

ALTER INDEX DSN851,.XEMP1

 CLOSE NO;

Example 2: Alter the index DSN8510.XPROJ1. BP1 is the buffer pool to be
associated with the index. OSESAME is the password that is passed to VSAM
when the data sets are used by DB2.

ALTER INDEX DSN851,.XPROJ1

 BUFFERPOOL BP1

 DSETPASS OSESAME;

  Chapter 6. Statements 213



 ALTER STOGROUP  
 

 ALTER STOGROUP
The ALTER STOGROUP statement changes the description of a storage group at
the current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include one of the following:

� Ownership of the storage group
� SYSADM or SYSCTRL authority

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets held by each authorization ID of the process.

 Syntax

 

 ┌ ┐────────────────────────────────────────────
��─ ─ALTER STOGROUP──stogroup-name─ ───(2) ───

�
┴──┬ ┬─PASSWORD──password─────────────────── ──────────────────��

 │ │┌ ┐─,───────
 ├ ┤──ADD VOLUMES ( ──┬ ┬───(1) ───

�
┴volume-id ) ───

 │ ││ │┌ ┐─,───
│ │└ ┘ ─ ──

�
┴─'O'─ ───────

 │ │┌ ┐─,───────
 └ ┘──REMOVE VOLUMES ( ──┬ ┬───(1) ───

�
┴volume-id )

 │ │┌ ┐─,───
└ ┘ ─ ──
�

┴─'O'─ ───────

Notes:
1 The same volume-id must not be specified more than once in the same clause.
2 The same clause must not be specified more than once.

 Description
stogroup-name

Identifies the storage group to be altered. The name must identify a storage
group that exists at the current server.

PASSWORD password
Gives a VSAM control or master level password in the form of a short identifier.
If the password is a delimited identifier, it can contain any special characters
acceptable to access method services. The password is used to access the
integrated catalog facility catalog. The password that protects the catalog must
be established by the installation of access method services.

214 SQL Reference  



  ALTER STOGROUP
 

To remove the password, use a delimited string of blanks for password. For
example, you can use the following if the double quote is your escape
character:

 PASSWORD " "

ADD VOLUMES(volume-id,...) or ADD VOLUMES('*',...)
Adds volumes to the storage group. Each volume-id is the volume serial
number of a storage volume to be added. It can have a maximum of six
characters and is specified as an identifier or a string constant.

A volume-id must not be specified if any volume of the storage group is
designated by an asterisk (*). An asterisk must not be specified if any volume
of the storage group is designated by a volume-id.

You cannot add a volume that is already in the storage group unless you first
remove it with REMOVE VOLUMES.

If the storage group is defined with one or more asterisks (*) listed after
VOLUMES, listing one or more asterisks after ADD VOLUMES extends the first
list. SMS uses as many volumes as there are asterisks in the concatenation of
the two lists to manage extension of data sets for shared read-only data.

See “SMS dataset management” on page 216 for a description of ADD
VOLUMES('*').

REMOVE VOLUMES(volume-id,...) or REMOVE VOLUMES('*',...)
Removes volumes from the storage group. Each volume-id is the volume serial
number of a storage volume to be removed. Each volume-id must identify a
volume that is in the storage group. To remove volumes from a storage group
that is defined with a list of asterisks, specify one asterisk for each volume you
want to remove.

The REMOVE VOLUMES clause is applied to the current list of volumes before
the ADD VOLUMES clause is applied. Removing a volume from a storage
group does not affect existing data, but a volume that has been removed is not
used again when the storage group is used to allocate storage for table spaces
or index spaces.

 Notes
Work file databases: If the storage group altered contains data sets in database
DSNDB07 or in any other work file database, the database must be stopped and
restarted for the effects of the ALTER to be recognized. To stop and restart a
database, issue the following commands:

 -STOP DATABASE(database-name)
 -START DATABASE(database-name)

Device types: When the storage group is used at run time, an error can occur if
the volumes in the storage group are of different device types, or if a volume is not
available to MVS for dynamic allocation of data sets.

When a storage group is used to extend a data set, all volumes in the storage
group must be of the same device type as the volumes used when the data set
was defined. Otherwise, an extend failure occurs if an attempt is made to extend
the data set.

  Chapter 6. Statements 215



 ALTER STOGROUP  
 

Number of volumes: There is no specific limit on the number of volumes that can
# be defined for a storage group. However, the maximum number of volumes that
# can be managed for a storage group is 133. Thus, there is no point in creating a
# storage group with more than 133 volumes.

MVS imposes a limit on the number of volumes that can be allocated per data set:
59 at this writing. For the latest information on that restriction, see DFSMS/MVS:
Access Method Services for the Integrated Catalog.

Verifying volume IDs: When processing the ADD VOLUMES or REMOVE
VOLUMES clause, DB2 does not check the existence of the volumes or determine
the types of devices that they identify. Later, when the storage group is used to
allocate or deallocate data sets, the list of volumes is passed in the specified order
to Data Facilities (DFSMSdfp), which does the actual work. See Section 2 (Volume
1) of Administration Guide for more information about creating DB2 storage groups.

SMS dataset management: You can allow Storage Management Subsystem
(SMS) to manage the storage needed for the objects that the storage group
supports. To do so, specify ADD VOLUMES('*') and REMOVE
VOLUMES(current-vols) in the ALTER statement, where current-vols is the list of
the volumes currently assigned to the storage group. SMS manages every data set
created later for the storage group. SMS does not manage data sets created
before the execution of the statement.

You can also specify ADD VOLUMES(volume-id) and REMOVE VOLUMES('*') to
make the opposite change.

See Section 2 (Volume 1) of Administration Guide for considerations for using SMS
to manage data sets.

 Examples
Example 1: Alter storage group DSN8G510. OSESAME is the password that is
used to access the integrated catalog facility catalog. DSNV04 and DSNV05 are
the volumes to be added.

ALTER STOGROUP DSN8G51,

 PASSWORD OSESAME

ADD VOLUMES (DSNV,4,DSNV,5);

Example 2: Alter storage group DSN8G510. DSNV04 and DSNV05 are the
volumes to be removed.

ALTER STOGROUP DSN8G51,

REMOVE VOLUMES (DSNV,4,DSNV,5);

216 SQL Reference  



  ALTER TABLE
 

 ALTER TABLE
The ALTER TABLE statement changes the description of a table at the current
server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� The ALTER privilege on the table
� Ownership of the table
� DBADM authority for the database
� SYSADM or SYSCTRL authority

If FOREIGN KEY, DROP PRIMARY KEY, DROP FOREIGN KEY, or DROP
CONSTRAINT is specified, an additional privilege could be required. More detail
about this can be found in the description of the appropriate clauses.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets held by each authorization ID of the process.

 Syntax

 

 ┌ ┐───────────────────────────────────────────────
# ��─#  ─ALTER TABLE──table-name─ ───(1) ───

�
┴──┬ ┬──ALTER ──┬ ┬──────── column-alteration ───── ─────────────────────��

#  │ │└ ┘─COLUMN─
 ├ ┤─ADD──column-definition──────────────────
 ├ ┤ ─VALIDPROC─ ──┬ ┬─program-name─ ────────────
 │ │└ ┘─NULL─────────
 ├ ┤ ─AUDIT─ ──┬ ┬─NONE──── ─────────────────────
 │ │├ ┤─CHANGES─
 │ │└ ┘─ALL─────
 │ │┌ ┐─ADD─ ┌ ┐─,───────────
 ├ ┤── ──┴ ┴───── PRIMARY KEY ( ───

�
┴─column-name─ )

 ├ ┤─ADD──check-constraint───────────────────
 │ │┌ ┐─ADD─
 ├ ┤ ──┴ ┴───── ─referential-constraint─────────
 ├ ┤ ─DATA CAPTURE─ ──┬ ┬─NONE──── ──────────────
 │ │└ ┘─CHANGES─

├ ┤─DROP PRIMARY KEY────────────────────────
 ├ ┤─DROP FOREIGN KEY──constraint-name───────
 ├ ┤─DROP CONSTRAINT──constraint-name────────
 ├ ┤─DROP CHECK──constraint-name─────────────
 └ ┘──┬ ┬─ADD── ─RESTRICT ON DROP──────────────
 └ ┘─DROP─

Note:
1 The same clause must not be specified more than once, except for the ALTER COLUMN clause,

which can be specified more than once.

  Chapter 6. Statements 217



 ALTER TABLE  
 

# column-alteration:#  

# ��─# ─column-name──SET DATA TYPE─ ──┬ ┬─VARCHAR─────────── ──(integer) ────────────────────────────────────��
#  ├ ┤─CHARACTER VARYING─
#  └ ┘─CHAR VARYING──────

column-definition: 

 ┌ ┐───────────────────────────────────────────────────
��─ ─column-name──data-type─ ───(1) ───

�
┴┬ ┬─────────────────────────────────────────────── ──────────────────��

 ├ ┤─NOT NULL──────────────────────────────────────
 ├ ┤──FOR ──┬ ┬─SBCS── DATA ───────────────────────────
 │ │├ ┤─MIXED─
 │ │└ ┘─BIT───
 │ │┌ ┐─WITH─
 ├ ┤ ──┴ ┴────── ─DEFAULT─ ──┬ ┬─────────────── ─────────
 │ │├ ┤─constant──────
 │ │├ ┤─USER──────────
 │ │├ ┤─CURRENT SQLID─
 │ │└ ┘─NULL──────────
 ├ ┤─references-clause─────────────────────────────
 ├ ┤─check-constraint──────────────────────────────
 └ ┘ ─FIELDPROC──program-name─ ──┬ ┬──────────────────
 │ │┌ ┐─,────────
 └ ┘──( ───

�
┴─constant─ )

Note:
1 The same clause must not be specified more than once.

check-constraint: 

��─ ──┬ ┬───────────────────────────── ─CHECK──(check-condition)────────────────────────────────────────��
 └ ┘ ─CONSTRAINT──constraint-name─

referential-constraint: 

 ┌ ┐─,───────────
��─ ─FOREIGN KEY─ ──┬ ┬───────────────── ──( ───

�
┴─column-name─ ) ─references-clause─────────────────────────��

 └ ┘─constraint-name─

references-clause: 

��─ ─REFERENCES──table-name─ ──┬ ┬───────────────────── ── ──┬ ┬────────────────────────── ─────────────────��
|  │ │┌ ┐─,─────────── └ ┘|  ─ON DELETE─ ──┬ ┬─RESTRICT──
|  └ ┘──( ───

�
┴─column-name─ ) ├ ┤─NO ACTION─

 ├ ┤─CASCADE───
 └ ┘─SET NULL──

218 SQL Reference  



  ALTER TABLE
 

 Description
table-name

Identifies the table to be altered. The name must identify a table that exists at
# the current server. The name must not identify a view. If the name identifies a
# catalog table, DATA CAPTURE CHANGES is the only clause that can be
# specified.

 column-alteration 

# ALTER COLUMN column-alteration
# Alters the definition of a column. Only the length attribute of an existing column
# with a VARCHAR data type can be changed. See “Notes” on page 228 for a
# list of the restrictions of when a column cannot be altered and other information
# about altering columns.

# column-name
# Identifies the column to be altered. The name must not be qualified and
# must identify an existing column in the table that has a VARCHAR data
# type. The name must not identify a column that is being added in the
# same ALTER TABLE statement.

# SET DATA TYPE VARCHAR (integer)
# Specifies the new length for the column. The value of integer must must be
# equal to or greater than the current maximum length of the column.

# The new length must not make the total byte count of all columns in a row
# exceed the maximum row size. (For information on byte counts of columns,
# see “Byte counts” on page 324. If the column is used in an index, the new
# length must not make the sum of the length attributes of the specified index
# columns greater than 255.

# The length of more than one column can be changed in a single ALTER
# TABLE statement if each ALTER COLUMN clause identifies a unique column
# of the table. The ALTER COLUMN clause and ADD CHECK CONSTRAINT
# clause can identify the same column.

End of column-alteration

 column-definition 

ADD column-definition
Adds a column to the table. All values of the column in existing rows are its
default value. If the table has n columns, the ordinality of the new column is
n+1. The value of n cannot be greater than 749. For a dependent table, n
cannot be greater than 748.

The column cannot be added if the increase in the total byte count of the
columns exceeds the maximum row size. The maximum row size for the table
is eight less than the maximum record size as described in “Maximum record
size” on page 324.

column-name
Is the name of the column you want to add to the table. Do not use the
name of an existing column of the table. Do not qualify column-name.

  Chapter 6. Statements 219



 ALTER TABLE  
 

data-type
Specifies the data type of the column. See “data-type” on page 311 for the
rules.

NOT NULL
Prevents the column from containing null values. If NOT NULL is specified,
the DEFAULT clause must be used to specify a nonnull default value for
the column.

FOR subtype DATA
Specifies the subtype of a character string column; that is, for a column
with a data type of CHAR, VARCHAR, or LONG VARCHAR. The FOR
DATA clause must not be used with columns of any other data type.

The next page shows what subtype can be.

subtype can be one of the following:

SBCS
Column holds single-byte data.

MIXED
Column holds mixed data.

BIT
Column holds BIT data.

MIXED cannot be specified when the value of field MIXED DATA on
installation panel DSNTIPF is NO.

A default subtype applies if the FOR clause is not used in defining a new
character string column. The default is SBCS when the value of field
MIXED DATA on installation panel DSNTIPF is NO. The default is MIXED
when the value is YES.

DEFAULT
The default value assigned to the column in the absence of a value
specified on INSERT or LOAD. If a value is not specified after DEFAULT,
the default value depends on the data type of the column, as follows:

 Data Type Default Value

 Numeric 0

 Fixed-length string Blanks

Varying-length string A string of length 0

Date For existing rows, a date corresponding to 1
January 0001. For added rows, CURRENT
DATE.

Time For existing rows, a time corresponding to 0
hours, 0 minutes, and 0 seconds. For added
rows, CURRENT TIME.

Timestamp For existing rows, a date corresponding to 1
January 0001, and a time corresponding to 0
hours, 0 minutes, 0 seconds, and 0
microseconds. For added rows, CURRENT
TIMESTAMP.

220 SQL Reference  



  ALTER TABLE
 

A value other than the one above can be specified in one of the following
forms:

constant
Specifies a constant as the default value for the column. The value of
the constant must conform to the rules for assigning that value to the
column.

USER
Specifies the value of the USER special register at the time of INSERT
or LOAD as the default for the column. If USER is specified, the data
type of the column must be a character string with a length greater than
or equal to the length attribute of the USER special register. For
existing rows, the value is that of the USER special register at the time
the ALTER TABLE statement is processed.

CURRENT SQLID
Specifies the value of the SQL authorization ID (SQLID) of the process
at the time of INSERT or LOAD as the default for the column. If
CURRENT SQLID is specified, the data type of the column must be a
character string with a length greater than or equal to the length
attribute of the CURRENT SQLID special register. For existing rows,
the value is the SQL authorization ID of the process at the time the
ALTER TABLE statement is processed.

NULL
The null value.

In a given column definition:

� NOT NULL and DEFAULT NULL cannot both be specified.

� Omission of NOT NULL and DEFAULT is an implicit specification of
DEFAULT NULL.

� DEFAULT and FIELDPROC cannot both be specified.

references-clause
The references-clause of a column-definition provides a shorthand method
of defining a foreign key composed of a single column. Thus, if a
references-clause is specified in the definition of column C, the effect is the
same as if that references-clause were specified as part of a FOREIGN
KEY clause in which C is the only identified column.

check-constraint
The check-constraint of a column-definition has the same affect as
specifying a table check constraint in a separate ADD check-constraint
clause. For conformance with the SQL standard, a table check constraint
specified in the definition of column C should not reference any columns
other than C.

FIELDPROC program-name
Designates program-name as the field procedure exit routine for the
column. Writing a field procedure exit routine is described in Appendix B
(Volume 2) of Administration Guide. Field procedures can only be specified
for short string columns that do not have a nonnull default value.

The field procedure encodes and decodes column values: before a value is
inserted in the column, it is passed to the field procedure for encoding.

  Chapter 6. Statements 221



 ALTER TABLE  
 

Before a value from the column is used by a program, it is passed to the
field procedure for decoding. A field procedure could be used, for example,
to alter the sorting sequence of values entered in the column.

The field procedure is also invoked during the processing of the ALTER
TABLE statement. When so invoked, the procedure provides DB2 with the
column's field description. The field description defines the data
characteristics of the encoded values. By contrast, the information you
supply for the column in the ALTER TABLE statement defines the data
characteristics of the decoded values.

constant
Is a parameter that is passed to the field procedure when it is invoked.
A parameter list is optional. The nth parameter specified in the
FIELDPROC clause on ALTER TABLE corresponds to the nth
parameter of the specified field procedure. The maximum length of the
parameter list is 254 bytes, including commas but excluding
insignificant blanks and the delimiting parentheses.

If you omit FIELDPROC, the column has no field procedure.

End of column-definition

VALIDPROC
Names a validation procedure for the table or inhibits the execution of any
existing validation procedure.

program-name
Is the name of the new validation exit routine for the table. Validation exit
routines are described in Appendix B (Volume 2) of Administration Guide.

The validation routine can inhibit a load, insert, update, or delete operation
on any row of the table: before the operation takes place, the procedure is
passed the row. After examining the row, the procedure returns a value that
indicates whether the operation should proceed. A typical use is to impose
restrictions on the values that can appear in various columns.

A table can have only one validation procedure at a time. When you name
a new procedure, any existing procedure is no longer used. The new
procedure is not used to validate existing table rows. It is used only to
validate rows that are loaded, inserted, updated, or deleted after execution
of the ALTER TABLE statement.

NULL
Discontinues the use of any validation routine for the table.

AUDIT
Alters the auditing attribute of the table. The ALTER TABLE statement used to
alter the table is audited only if the auditing attribute of the table is changed
and the appropriate audit trace class is active. For information about audit trace
classes, see Section 3 (Volume 1) of Administration Guide.

NONE
Specifies that no auditing is to be done when the table is accessed.

CHANGES
Specifies that auditing is to be done when the table is accessed during the
first insert, update, or delete operation performed by each unit of recovery.

222 SQL Reference  



  ALTER TABLE
 

However, the auditing is done only if the appropriate audit trace class is
active.

ALL
Specifies that auditing is to be done when the table is accessed during the
first operation of any kind performed by each unit of work of a utility or
application process. However, the auditing is done only if the appropriate
audit trace class is active and the access is not performed with COPY,
RECOVER, REPAIR, or any stand-alone utility.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. Each column-name
must be an unqualified name that identifies a column of the table and the same
column must not be identified more than once. The number of identified
columns must not exceed 64 and the sum of their length attributes must not

# exceed 255. The table must not have a primary key and the identified columns
must be defined as NOT NULL.

The table must have a unique index with a key that is identical to the primary
key. The keys are identical only if they have the same number of columns and
the nth column name of one is the same as the nth column name of the other.

The identified columns are defined as the primary key of the table. The
description of the index is changed to indicate that it is a primary index. If the
table has more than one unique index with a key that is identical to the primary
key, the selection of the primary index is arbitrary.

 check-constraint 

ADD check-constraint
Designates the values that specific columns of the table can contain.

CONSTRAINT constraint-name
Names the table check constraint. The constraint name must be different
from the names of any existing referential or check constraints on the table.

If constraint-name is not specified, a unique constraint name is derived
from the name of the first column in the check-condition specified in the
definition of the table check constraint.

CHECK (check-condition)
Defines a table check constraint. A check-condition is a search condition,
with the following restrictions:

� It can refer only to columns of table table-name.

� It can be up to 3800 bytes long, not including redundant blanks.

� It must not contain any of the following:

 – Subselects
 – Functions
 – Host variables
 – Parameter markers
 – Special registers
– Columns that include a field procedure

|  – CASE Expressions
 – Quantified predicates

  Chapter 6. Statements 223



 ALTER TABLE  
 

 – EXISTS predicates

� If a check-condition refers to a long string column, the reference must
occur within a LIKE predicate.

� The AND and OR logical operators can be used between predicates.
The NOT logical operator cannot be used.

� The first operand of every predicate must be the column name of a
column in the table.

� The second operand in the check-condition must be either a constant
or a column name of a column in the table.

– If the second operand of a predicate is a constant, and if the
constant is:

- a floating point number, then the column data type must be
floating point.

- a decimal number, then the column data type must be either
floating point or decimal.

- an integer number, then the column data type must not be a
small integer.

- a small integer number, then the column data type must be
small integer.

- a decimal constant, then its precision must not be larger than
the precision of the column.

– If the second operand of a predicate is a column, then both
columns of the predicate must have:

- the same data type
- identical descriptions with the exception that the specification of

the NOT NULL and DEFAULT clauses for the columns can be
different, and that string columns with the same data type can
have different length attributes

� A check-condition can evaluate to unknown if a column that is an
operand of the predicate is null. A check-condition that evaluates to
unknown does not violate the check constraint.

Effects of defining a check constraint on a populated table: When a check
constraint is defined on a populated table and the value of the special register
CURRENT RULES is 'DB2', the check constraint is not immediately enforced
on the table. The check constraint is added to the description of the table, and
the table space containing the table is placed in a check pending status. For a
description of the check pending status and the implications for utility
operations, see Section 2 (Volume 1) of Administration Guide .

When a check constraint is defined on a populated table and the value of the
special register CURRENT RULES is 'STD', the check constraint is checked
against all rows of the table. If no violations occur, the check constraint is
added to the table. If any rows violate the new check constraint, an error
occurs and the description of the table is unchanged.

End of check-constraint

224 SQL Reference  



  ALTER TABLE
 

 referential-constraint 

FOREIGN KEY constraint-name (column-name,...) references-clause
Specifies a referential constraint with the specified constraint-name. A name is
generated if a constraint-name is not specified. The generated name is derived
from the name of the first column of the foreign key in the same way that the
name of an implicitly created table space is derived from the name of a table
except that the scope of uniqueness of a constraint-name is the table. If
specified, constraint-name must be different from the names of any existing
referential or check constraints on the table.

Let T1 denote the object table of the ALTER TABLE statement.

The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T1 and the same column must not be identified more than once. The
number of identified columns must not exceed 64 and the sum of their length

# attributes must not exceed 255 minus the number of columns that allow null
values. The referential constraint is a duplicate if the FOREIGN KEY and the
parent table are the same as the FOREIGN KEY and parent table of an
existing referential constraint on T1. The specification of a duplicate referential
constraint is ignored with a warning.

End of referential-constraint

 references-clause 

| REFERENCES table-name (column-name,...)
| The table name specified after REFERENCES must identify a table that exists
| at the current server, but it must not identify a catalog table. Let T2 denote the
| identified parent table and let T1 denote the table being altered (T1 and T2 can
| be the same table).

| T2 must have a unique index and the privilege set on T2 must include the
| ALTER or REFERENCES privilege on the parent table, or the REFERENCES
| privilege on the columns of the nominated parent key.

| The parent key of the referential constraint is composed of the identified
| columns. Each column-name must be an unqualified name that identifies a
| column of T2. The same column must not be identified more than once.

| The list of column names must be identical to the list of column names in a
| unique index (UNIQUERULE in SYSINDEXES will be R, P, C, or U). The
| column names must be specified in the same order as in the unique index on
| T2.

| If a list of column names is not specified, then T2 must have a primary key.
| Omission of a list of column names is an implicit specification of the columns of
| the primary key for T2.

| The specified foreign key must have the same number of columns as the
| parent key of T2 and, except for their names, default values, null attributes and
| check constraints, the description of the nth column of the foreign key must be
| identical to the description of the nth column of the nominated parent key. If a
| column of the foreign key has a field procedure, the corresponding column of
| the nominated parent key must have the same field procedure and an identical

  Chapter 6. Statements 225



 ALTER TABLE  
 

| field description. A field description is a description of the encoded value as it is
| stored in the database for a column that has been defined to have an
| associated field procedure.

| The table space that contains T1 must be available to DB2. If T1 is populated,
| its table space is placed in a check pending status.21 A table in a segmented
| table space is populated if the table is not empty. A table in an nonsegmented
| table space is considered populated if the table space has ever contained any
| records.

| The referential constraint specified by the FOREIGN KEY clause defines a
| relationship in which T2 is the parent and T1 is the dependent. A description of
| the referential constraint is recorded in the catalog.

ON DELETE
The delete rule of the relationship is determined by the ON DELETE clause.
For more on the concepts used here, see “Referential Integrity” on page 24.

# If T1 and T2 are the same table, CASCADE or NO ACTION must be specified.
SET NULL must not be specified unless some column of the foreign key allows
null values. Also, SET NULL must not be specified if any nullable column of the

| foreign key is a column of the key of a partitioned index. The default value for
| the rule depends on the value of the CURRENT RULES special register when
| the CREATE TABLE statement is processed. If the value of the register is
| 'DB2', the delete rule defaults to RESTRICT; if the value is 'SQL', the delete
| rule defaults to NO ACTION.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p denote
such a row of T2.

| � If RESTRICT or NO ACTION is specified, an error occurs and no rows are
| deleted.

� If CASCADE is specified, the delete operation is propagated to the
dependents of p in T1.

� If SET NULL is specified, each nullable column of the foreign key of each
dependent of p in T1 is set to null.

A cycle involving two or more tables must not cause a table to be
delete-connected to itself. Thus, if the relationship would form a cycle:

� The referential constraint cannot be defined if each of the existing
relationships that would be part of the cycle have a delete rule of
CASCADE.

� CASCADE must not be specified if T2 is delete-connected to T1.

If T1 is delete-connected to T2 through multiple paths, those relationships in
which T1 is a dependent and which form all or part of those paths must have
the same delete rule and it must not be SET NULL. For example, assume that
T1 is a dependent of T3 in a relationship with a delete rule of r and that one of
the following is true:

� T2 and T3 are the same table.

| 21 The check pending status prevents further updating or reading by other SQL applications. It does not affect the application process
| that issues ALTER TABLE. However, we do not recommend that a process create or alter a permanent table and then access it.

226 SQL Reference  



  ALTER TABLE
 

� T2 is a descendent of T3 and the deletion of rows from T3 cascades to T2.

� T2 and T3 are both descendents of the same table and the deletion of rows
from that table cascades to both T2 and T3.

In this case, the referential constraint cannot be defined when r is SET NULL.
When r is other than SET NULL, the referential constraint can be defined, but
the delete rule that is implicitly or explicitly specified in the FOREIGN KEY
clause must be the same as r.

End of references-clause

DATA CAPTURE
Specifies whether the logging of SQL INSERT, UPDATE, and DELETE
operations on the table is augmented by additional information. For guidance
on intended uses of the expanded log records, see:

� The description of data propagation to IMS in DataPropagator
NonRelational MVS/ESA Administration Guide

� The instructions for using Remote Recovery Data Facility (RRDF) in
Remote Recovery Data Facility Program Description and Operations

� The instructions for reading log records in Appendix C (Volume 2) of
Administration Guide

NONE
Do not record additional information to the log.

CHANGES
Write additional data about SQL updates to the log.

# For details about the recording of additional data for logged updates to
# catalog tables, see “Notes” on page 228.

DROP PRIMARY KEY
| Drops the definition of the primary key and all referential constraints in which
| the primary key is a parent key. The table must have a primary key and the

privilege set must include the ALTER or REFERENCES privilege on every
dependent table of the table.

If the table has a primary index, its description is changed to indicate that it is
not a primary index.

DROP FOREIGN KEY constraint-name
Drops the referential constraint, constraint-name. The constraint-name must
identify a referential constraint in which the table is the dependent table, and
the privilege set must include the ALTER or REFERENCES privilege on the

| parent table of that relationship, or the REFERENCES privilege on the columns
| of the parent table of that relationship.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint or referential constraint defined on the table. If the
constraint-name identifies a referential constraint in which the table is the
dependent table, then the privilege set must include the ALTER or
REFERENCES privilege on the parent table of that relationship.

  Chapter 6. Statements 227



 ALTER TABLE  
 

DROP CONSTRAINT must not be used on the same ALTER TABLE statement
as DROP FOREIGN KEY or DROP CHECK.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify
an existing check constraint defined on the table.

ADD RESTRICT ON DROP
Restricts dropping the table and the database and table space that contain the
table.

DROP RESTRICT ON DROP
Removes the restriction on dropping the table and the database and table
space that contain the table.

 Notes
# Altering the length of a VARCHAR column: If you change the length of a
# VARCHAR column, be aware of the following information about restrictions,
# indexes, limit keys, check constraints, and invalidation.

# � Restrictions. The length of a VARCHAR column cannot be changed if any of
# the following conditions are true:

# – The column is referenced in a referential constraint, view, or stored
# procedure.
# – The column has a field procedure routine.
# – The table has an edit or validation routine.
# – The table is defined with DATA CAPTURE CHANGES.
# – The table is a global temporary table.

# � Indexes. After the ALTER TABLE statement is executed, each index on the
# table with a key that includes a column whose length was increased remains
# available. However, SQL operations against such an index are not allowed until
# the changes from the ALTER TABLE statement are committed.

# The maximum number of distinct alters that increase the index key length is
# sixteen or less. If the maximum number of alters is exceeded, SQLCODE -148
# is returned, and the index must be reorganized or rebuilt. An alter is considered
# distinct when it occurs in a different unit of work than the previous alter. For
# example, changing an index column length, committing database changes, and
# changing the column length of that index column or another index column
# counts as two distinct alters. Whereas, changing an index column length twice
# before committing any changes counts as one distinct alter; the second
# changes replace the first because it was in the same commit scope. Changing
# the length of two different index columns before committing the changes also
# counts as one distinct alter.

# � Length of partitioned index keys. When a partitioned index is created, the
# highest value of the index key for each partition (also called the limit key) is
# defined. DB2 generates the limit key for each partition from the constants that
# are explicitly or implicitly specified for each column in the index such that the
# limit key is a maximum of 40 bytes in length. For details on how the limit key is
# created, see the description of the VALUES clause for “CREATE INDEX” on
# page 280.

# When a table is altered and the length of a column in the index is changed,
# DB2 might change the length of a limit key for a partition. If the new column
# length changes the value of the limit key for a partition such that data would

228 SQL Reference  



  ALTER TABLE
 

# have to be moved from one partition to another, DB2 changes the length of the
# limit key to prevent data relocation. When DB2 needs to change the limit key
# length, it is increased by the same amount that the column is increased; the
# limit key can be no longer than 255 bytes.

# As the following examples help illustrate, the limit key length changes if the
# column being altered is not the last column in the partitioned index, and the
# sum of the lengths of the preceding columns in the index and the existing
# length of the columns being altered is less than 40 bytes. The length of the limit
# key is increased by the same amount that the length of column is increased.
# When the length of a limit key changes, the table becomes release dependent.

# Example of when the length of the limit key changes: Assume that the table
# space, table, and partitioned index are created with these statements:

# CREATE TABLESPACE TSP1 NUMPARTS 4;

# CREATE TABLE TB1

#  (COL1 CHAR(1,) NOT NULL,

#  VCOL2 VARCHAR(2,) NOT NULL,

#  COL3 CHAR(15) NOT NULL,

#  COL4 CHAR(2,) NOT NULL)

# IN TSP1;

# CREATE INDEX IX1 ON TB1 (COL1, VCOL2, COL3) CLUSTER

# (PART 1 VALUES ('DDDDDDDDDD','EEEEEEEEEEEEEEEEEEEE','YYYYYYYYYYYYYYY'),

# PART 2 VALUES ('HHHH', 'HHHH', 'HHHH'),

# PART 3 VALUES ('LLLL', 'LLLL', 'LLLL'),

# PART 4 VALUES ('PPPP', 'PPPP', 'PPPP'));

# The limit key for Partition 1 is:

# 'DDDDDDDDDD' || 'EEEEEEEEEEEEEEEEEEEE' || 'YYYYYYYYYY'

# Assume that there is a row (RX) in the table with the following values

# COL1 = 'DDDDDDDDDD'

# VCOL2 = 'EEEEEEEEEEEEEEEEEEEE'

# COL3 = 'ZZZZZZZZZZZZZZZ'

# Row RX is in Partition 2 because the key value for the row is greater than the
# limit key for Partition 1. However, if the length of column VCOL2 is changed
# from 20 bytes to 30 bytes and the length of the limit key for Partition 1 remains
# 40 bytes, the new limit key for Partition 1 is:

# 'DDDDDDDDDD' || 'EEEEEEEEEEEEEEEEEEEE' || 'FFFFFFFFFFFFFFFFFFFF'X

# This value for the limit key of Partition 1 would require that row RX be moved
# from Partition 2 to Partition 1. Thus, to avoid moving data, DB2 increases the
# length of the limit key to 50 bytes (40 bytes plus the length that column VCOL2
# was increased, which was 10 bytes), which makes the value of the limit key:

# 'DDDDDDDDDD' || 'EEEEEEEEEEEEEEEEEEEE' || 'FFFFFFFFFFFFFFFFFFFF'X

#  || 'YYYYYYYYYY'

# The increase in length and change in value of the limit key allows row RX to
# remain in Partition 2.

# Example of when the length of the limit key does not change: Assume that
# the table space, table, and partitioned index are created with these statements:

  Chapter 6. Statements 229



 ALTER TABLE  
 

# CREATE TABLESPACE TSP1 NUMPARTS 4;

# CREATE TABLE TB1

#  (COL1 CHAR(1,) NOT NULL,

#  COL2 CHAR(4,) NOT NULL,

#  VCOL2 VARCHAR(2,) NOT NULL,

#  COL3 CHAR(15) NOT NULL,

#  COL4 CHAR(2,) NOT NULL)

# IN TSP1;

# CREATE INDEX IX1 ON TB1 (COL1, COL2, VCOL2, COL3) CLUSTER

# (PART 1 VALUES ('DDDDDDDDDD','EEEEEEEEEEEEEEEEEEEE','YYYYYYYYYYYYYYY'),

# PART 2 VALUES ('HHHH', 'HHHH', 'HHHH'),

# PART 3 VALUES ('LLLL', 'LLLL', 'LLLL'),

# PART 4 VALUES ('PPPP', 'PPPP', 'PPPP'));

# The limit key for Partition 1 is:

#  'DDDDDDDDDD' || 'EEEEEEEEEEEEEEEEEEEE' || 'FFFFFFFFFFFFFFFFFFFF'X

# Because the limit key for each partition is 40 bytes in length when the index is
# created, notice that VCOL2 does not contribute to the limit key. Thus,
# increasing the length of VCOL2 has no effect on the limit key; DB2 would never
# have to change the length of the limit key to prevent data relocation when the
# length of VCOL2 is increased.

# � Check contraints. If a table check constraint refers to the the column being
# altered, the length of the column is also changed in the check constraint.

# � Invalidation. When a table is altered to change the length of a VARCHAR
# column, all plans, packages, and dynamic cached statements that reference the
# table are invalidated.

Dropping constraints and check pending status: If a table space or partition is
in check pending status because it contains a table with rows that violate
constraints, dropping the constraints removes the check pending status.

Invalidation of plans and packages: When a table is altered, all plans and
packages that refer to the table are invalidated if one or more of the following is
true:

� The AUDIT attribute of the table is changed.

� A DATE, TIME, or TIMESTAMP column is added and its default value for
added rows is CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP,
respectively.

| � The table is a temporary table.

When a referential constraint is defined with a delete rule of CASCADE or SET
NULL, all plans and packages that refer to the parent table of the constraint are
invalidated. Furthermore, all plans and packages that refer to tables from which
deletes cascade to this parent table are also invalidated.

Order of processing of clauses: With the exception that the ADD
check-constraint clause is processed last, the other clauses of an ALTER TABLE
statement are processed in the order in which they are specified.

Views: Adding a column to a table has no effect on existing views.

Restrictions: When using ALTER TABLE, you cannot:

230 SQL Reference  



  ALTER TABLE
 

� Use NOT NULL without specifying a nonnull default value for the column;

� Add a column if an edit procedure exists for the table.

� Specify DROP CONSTRAINT on the same statement as DROP FOREIGN KEY
or DROP CHECK.

| � Change a temporary table except to add a column. The added column must be
| defined with a default value of NULL.

Adding a column to table T only changes the description of T. If the catalog
description of T is used to create a table T' and a facility such as DSN1COPY is
used to effectively copy T into T', queries that refer to the added column in T' will
fail because the data does not match its description. To avoid this problem, run the
REORG utility against the table space of T before making the copy.

Running utilities: You cannot execute ALTER TABLE while a utility has control of
the table space that contains the table.

# Capturing changes to the DB2 catalog: To have logged changes to a DB2
# catalog table augmented with information for data capture, specify ALTER TABLE
# xxx DATA CAPTURE CHANGES where xxx is the name of a catalog table
# (SYSIBM.xxx). Data capture of catalog table changes provides the possibility of
# creating and managing a shadow of the catalog.

# Activity to the catalog that is caused by DB2 utilities is not captured. For example,
# log records from executing a utility on a catalog table, to record the event of
# executing a utility, or for catalog changes that result from executing the RUNSTATS
# utility on a user table will not have data capture information.

 Examples
# Example 1: Column DEPTNAME in table DSN8510.DEPT was created as a
# VARCHAR(36). Increase its length to 50 bytes. Also, add a column named BLDG

to the table. Describe the new column as a character string column that holds
SBCS data.

ALTER TABLE DSN851,.DEPT

ALTER COLUMN DEPTNAME SET DATA TYPE VARCHAR(5,)

ADD BLDG CHAR(3) FOR SBCS DATA;

Example 2: Assign a validation procedure named DSN8EAEM to the table
DSN8510.EMP.

ALTER TABLE DSN851,.EMP

 VALIDPROC DSN8EAEM;

Example 3: Disassociate the current validation procedure from the table
DSN8510.EMP. After the statement is executed, the table no longer has a
validation procedure.

ALTER TABLE DSN851,.EMP

 VALIDPROC NULL;

Example 4: Define ADMRDEPT as the foreign key of a self-referencing constraint
on DSN8510.DEPT.

ALTER TABLE DSN851,.DEPT

FOREIGN KEY(ADMRDEPT) REFERENCES DSN851,.DEPT ON DELETE CASCADE;

  Chapter 6. Statements 231



 ALTER TABLE  
 

Example 5: Add a check constraint to the table DSN8510.EMP which checks that
the minimum salary an employee can have is $10,00.

ALTER TABLE DSN851,.EMP

ADD CHECK (SALARY >= 1,,,,);

| Example 6: Alter the PRODINFO table to define a foreign key that references a
| non-primary unique key in the product version table (PRODVER_1). The columns
| of the unique key are VERNAME, RELNO.

| ALTER TABLE PRODINFO

| FOREIGN KEY (PRODNAME,PRODVERNO)

| REFERENCES PRODVER_1 (VERNAME,RELNO) ON DELETE RESTRICT;

232 SQL Reference  



  ALTER TABLESPACE
 

 ALTER TABLESPACE
The ALTER TABLESPACE statement changes the description of a table space at
the current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� Ownership of the table space
� DBADM authority for its database
� SYSADM or SYSCTRL authority.

If BUFFERPOOL or USING STOGROUP is specified, additional privileges could be
needed, as explained in the description of those clauses.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets held by each authorization ID of the process.

  Chapter 6. Statements 233



 ALTER TABLESPACE  
 

 Syntax

 

��─ ─ALTER TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ───────────────────────────────────────────�
└ ┘──database-name.

 ┌ ┐──────────────────────────────────────────
�─ ───(1) ───

�
┴──┬ ┬─BUFFERPOOL──bpname───────────────── ────────────────────────────────────────────────────��

 ├ ┤ ─LOCKSIZE─ ──┬ ┬─ANY──────── ──────────
 │ │├ ┤─TABLESPACE─
 │ │├ ┤─TABLE──────
 │ │├ ┤─PAGE───────
 │ │└ ┘─ROW────────
 ├ ┤ ─LOCKMAX─ ──┬ ┬─SYSTEM── ──────────────
 │ │└ ┘─integer─
 ├ ┤ ─CLOSE─ ──┬ ┬─YES─ ────────────────────
 │ │└ ┘─NO──
 ├ ┤─DSETPASS──password─────────────────
 ├ ┤─PART──integer──────────────────────
 ├ ┤─FREEPAGE──integer──────────────────
 ├ ┤─PCTFREE──integer───────────────────
 ├ ┤ ─USING─ ──┬ ┬─VCAT──catalog-name──────
 │ │└ ┘ ─STOGROUP──stogroup-name─
 ├ ┤─PRIQTY──integer────────────────────
 ├ ┤─SECQTY──integer────────────────────
 ├ ┤ ─ERASE─ ──┬ ┬─YES─ ────────────────────
 │ │└ ┘─NO──
 ├ ┤ ─COMPRESS─ ──┬ ┬─NO── ─────────────────
 │ │└ ┘─YES─
 ├ ┤ ─GBPCACHE─ ──┬ ┬─CHANGED─ ─────────────
 │ │└ ┘─ALL─────

|  │ │┌ ┐─NO──
|  ├ ┤|  ─LOCKPART─ ──┴ ┴─YES─ ─────────────────

 ├ ┤─MAXROWS──integer───────────────────
#  └ ┘# ─CCSID──ccsid-value─────────────────

Note:
1 The same clause must not be specified more than once.

 Description
database-name.table-space-name

Identifies the table space to be altered. The name must identify a table space
that exists at the current server. Omission of database-name is an implicit
specification of DSNDB04.

If you identify a table space of DSNDB07 or of any work file database, the
database must be in the stopped state. If you identify a partitioned table space,
you can use the PART clause as explained below.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the table space. The bpname must
identify an activated buffer pool with the same page size as the table space.
See “Naming Conventions” on page 48 for more details about bpname.

The privilege set must include SYSADM or SYSCTRL authority or the USE
privilege for the buffer pool.

The change to the description of the table space takes effect the next time the
data sets of the table space are opened. The data sets can be closed and
reopened by a STOP DATABASE command to stop the table space followed
by a START DATABASE command to start the table space.

234 SQL Reference  



  ALTER TABLESPACE
 

In a data sharing environment, if you specify BUFFERPOOL, the table space
must be in the stopped state when the ALTER TABLESPACE statement is
executed.

LOCKSIZE
Specifies the size of locks used within the table space and, in some cases also
the threshold at which lock escalation occurs. You must not use this clause for
a table space in DSNDB07 or in any work file database.

ANY
# Specifies that DB2 can use any lock size. Currently, DB2 never chooses
# row locks, but reserves the right to do so. In most cases, DB2 uses

LOCKSIZE PAGE LOCKMAX SYSTEM. However, when the number of
page locks acquired for the table space exceeds the maximum number of
locks allowed for a table space (an installation parameter), the page locks
are released and locking is set at the next higher level. If the table space is
segmented, the next higher level is the table. If the table space is
nonsegmented, the next higher level is the table space.

TABLESPACE
Specifies table space locks.

TABLE
Specifies table locks. TABLE can be specified only for a segmented table
space.

PAGE
Specifies page locks.

ROW
Specifies row locks.

If you specify ROW, all indexes defined on tables in the table space must
be type 2 indexes. If you specify LOCKSIZE ROW for a table space, you
cannot create a type 1 index on any of its tables. If you attempt to alter a
table space to LOCKSIZE ROW, the statement fails if a type 1 index exists
on any of its tables.

Let S denote an SQL statement that refers to a table in the table space:

� The LOCKSIZE change affects S if S is prepared and executed after the
change. This includes dynamic statements and static statements that are
not bound because of VALIDATE(RUN).

� If the size specified by the new LOCKSIZE is greater than the size of the
old LOCKSIZE, the change affects S if S is a static statement that is
executed after the change.

The hierarchy of lock sizes, starting with the largest, is as follows:

– table space lock
| – table lock (only for segmented table spaces)

– page lock and row lock (which are at the same level)

� In all other cases, LOCKSIZE has no affect on S until S is rebound.

LOCKMAX
Specifies the maximum number of page or row locks an application process
can hold simultaneously in the table space. If a program requests more than

  Chapter 6. Statements 235



 ALTER TABLESPACE  
 

that number, locks are escalated. The page or row locks are released and the
intent lock on the table space or segmented table is promoted to S or X mode.

| For an application that uses Sysplex query parallelism, a lock count is
| maintained on each member.

integer
Specifies the number of locks allowed before escalating, in the range 0 to
2 147 483 647.

# Zero (0) indicates that the number of locks on the table or table space are
# not counted and escalation does not occur.

SYSTEM
Indicates that the value of field LOCKS PER TABLE(SPACE), on
installation panel DSNTIPJ, specifies the maximum number of page or row
locks a program can hold simultaneously in the table or table space.

If you change LOCKSIZE and omit LOCKMAX, the following results occur.

If the lock size is TABLESPACE or TABLE, LOCKMAX must be omitted, or its
operand must be 0.

CLOSE
# When the limit on the number of open data sets is reached, specifies the
# priority in which data sets are closed.

# YES
# Eligible for closing before CLOSE NO data sets. This is the default.

# NO
# Eligible for closing after all eligible CLOSE YES data sets are closed.

DSETPASS password
Specifies a master level password sent to access method services when the
data sets of the table space are used by DB2. password is a short identifier. If
delimited, password can contain any characters acceptable to access method
services. The change to the description of the table space takes effect the next
time the data sets of the table space are opened.

To remove the password, use a delimited string of blanks for password. For
example, you can use the following if the double quote is your escape
character:

 DSETPASS " "

Changing the password for the table space does not change the password that
protects its data sets. To change the data set password, use access method
services. See Section 2 (Volume 1) of Administration Guide for more on
changing data set passwords.

The password does not apply to data sets managed by Storage Management
Subsystem. To protect data sets defined to SMS, use RACF or a similar
external security system.

LOCKSIZE Resultant LOCKMAX

TABLESPACE or TABLE 0

ROW or PAGE Unchanged

ANY SYSTEM

236 SQL Reference  



  ALTER TABLESPACE
 

PART integer
Identifies a partition of the table space. Thus, for a table space that has n
partitions, you must specify an integer in the range 1 to n. You must not use
this clause if the table space is not partitioned. You must use this clause if the
table space is partitioned and you use the FREEPAGE, PCTFREE, USING,
PRIQTY, SECQTY, COMPRESS, ERASE, or GBPCACHE clause. In this case,
the alterations specified by these clauses apply only to the identified partition of
the table space.

FREEPAGE integer
Specifies how often to leave a page of free space when the table space is
loaded or reorganized. One free page is left after every integer pages; integer
can range from 0 to 255. FREEPAGE 0 leaves no free pages.

Do not use this keyword with database DSNDB07 or with any work file
database.

If the table space is segmented, the number of pages left free must be less
than the SEGSIZE value. If the number of pages to be left free is greater than
or equal to the SEGSIZE value, then the number of pages is adjusted
downward to one less than the SEGSIZE value.

The change to the description of the table space or partition has no effect until
it is loaded or reorganized.

PCTFREE integer
Specifies what percentage of each page to leave as free space when the table
space is loaded or reorganized. The first record on each page is loaded without
restriction. When additional records are loaded, at least integer percent of free
space is left on each page. integer can range from 0 to 99. Do not use this
keyword with database DSNDB07 or with any work file database.

This change to the description of the table space or partition has no effect until
it is loaded or reorganized.

USING
Specifies whether a data set for the table space or partition is managed by the
user or managed by DB2. If the table space is partitioned, USING applies to
the data set for the partition identified in the PART clause. If the table space is
not partitioned, USING applies to every data set that is eligible for the table
space. (A nonpartitioned table space can have more than one data set if
PRIQTY+118 × SECQTY is at least 2 gigabytes.)

If the USING clause is specified, the table space or partition must be in the
stopped state when the ALTER TABLESPACE statement is executed. See
“Altering storage attributes” on page 241 to determine how and when changes
take effect.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with
catalog-name. You must specify the catalog name in the form of a short
identifier. Thus, you must specify an alias if the name of the integrated
catalog facility catalog is longer than eight characters. When the new
description of the table space is applied, the integrated catalog facility
catalog must contain an entry for the data set conforming to the DB2
naming conventions set forth in Section 2 (Volume 1) of Administration
Guide.

  Chapter 6. Statements 237



 ALTER TABLESPACE  
 

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems. However, the same catalog-name must be used by the
subsystems when shared read-only data is used.

STOGROUP stogroup-name
Specifies a DB2-managed data set that resides on a volume of the
identified storage group. The stogroup name must identify a storage group
that exists at the current server and the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for the storage group.
When the new description of the table space is applied, the description of
the storage group must include at least one volume serial number, each
volume serial number must identify a volume that is accessible to MVS for
dynamic allocation of the data set, and all identified volumes must be of the
same device type. Furthermore, the integrated catalog facility catalog used
for the storage group must not contain an entry for the data set and, if the
integrated catalog facility catalog is password protected, the description of
the storage group must include a valid password.

If you specify USING STOGROUP and the current data set for the table
space or partition is managed by DB2:

� Omission of the PRIQTY clause is an implicit specification of the
current PRIQTY value.

� Omission of the SECQTY clause is an implicit specification of the
current SECQTY value.

� Omission of the ERASE clause is an implicit specification of the current
ERASE rule.

If you specify USING STOGROUP and the current data set for the table
space or partition is managed by the user:

� Omission of the PRIQTY clause is an implicit specification of PRIQTY
12 for a table space with 4KB pages and PRIQTY 96 for a table space
with 32KB pages.

� Omission of the SECQTY and PRIQTY clauses is an implicit
specification of SECQTY 12 for a table space with 4KB pages and
SECQTY 96 for a table space with 32KB pages.

� Omission of the ERASE clause is an implicit specification of ERASE
NO.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed data set of
the table space or partition. This clause can be specified only if the data set is
managed by DB2, and if one of the following is true:

� USING STOGROUP is specified, or
� A USING clause is not specified.

If USING STOGROUP is specified, PRIQTY has the default specified in the
description of USING STOGROUP. If PRIQTY is specified, the primary space
allocation is at least n kilobytes, where n is the value of integer, except in these
cases:

238 SQL Reference  



  ALTER TABLESPACE
 

� If the page size is 4KB, and if integer is less than 12 or PRIQTY is omitted,
then n is 12.

� If the page size is 32KB, and if integer is less than 96 or PRIQTY is
omitted, then n is 96.

� If integer is greater than 4194304, then n is 4194304.

DB2 specifies the primary space allocation to access method services using the
smallest multiple of pKB not less than n, where p is the page size of the table
space. The allocated space can be greater than the amount of space requested
by DB2. For example, it could be the smallest number of tracks that will
accommodate the request. To more closely estimate the actual amount of
storage, see the description of the DEFINE CLUSTER command in
DFSMS/MVS: Access Method Services for the Integrated Catalog.

At least one of the volumes of the identified storage group must have enough
available space for the primary quantity. Otherwise, the primary space
allocation will fail.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed data set
of the table space or partition. This clause can be specified only if the data set
is managed by DB2, and if one of the following is true:

� USING STOGROUP is specified, or
� A USING clause is not specified.

If USING STOGROUP is specified, SECQTY has the default specified in the
description of USING STOGROUP. However, if ALTER TABLESPACE is being
used to convert from user-defined data sets to storage groups and PRIQTY is
specified, the default for SECQTY is either 10% of PRIQTY or 3 times the page

# size of the table space, whichever is larger (if this value exceeds 131068, the
# default is 131068.) If SECQTY is specified, the secondary space allocation is at

least n kilobytes, where n is the value of integer except in these cases:

� If the page size is 4KB and integer is greater than 131068, then n is
131068.

� If the page size is 32KB and integer is greater than 131040, then n is
131040.

If integer is 0, no data set can be extended.

DB2 specifies the secondary space allocation to access method services using
the smallest multiple of pKB not less than n, where p is the page size of the
table space. The allocated space can be greater than the amount of space
requested by DB2. For example, it could be the smallest number of tracks that
will accommodate the request. To more closely estimate the actual amount of
storage, see the description of the DEFINE CLUSTER command in
DFSMS/MVS: Access Method Services for the Integrated Catalog.

ERASE
Indicates whether the DB2-managed data sets for the table space or partition
are to be erased before they are deleted during the execution of a utility or an
SQL statement that drops the table space.

  Chapter 6. Statements 239



 ALTER TABLESPACE  
 

NO
Does not erase the data sets. Operations involving data set deletion will
perform better than ERASE YES. However, the data is still accessible,
though not through DB2.

YES
Erases the data sets. As a security measure, DB2 overwrites all data in the
data sets with zeros before they are deleted.

This clause can be specified only if the data set is managed by DB2, and if one
of the following is true:

� USING STOGROUP is specified
� A USING clause is not specified.

If you specify ERASE, the table space or partition must be in the stopped state
when the ALTER TABLESPACE statement is executed. See “Altering storage
attributes” on page 241 to determine how and when changes take effect.

COMPRESS
Specifies whether data compression applies to the rows of the table space or
partition.

YES
Specifies data compression. The rows are not compressed until the LOAD
or REORG utility is run on the table in the table space or partition.

NO
Specifies no data compression. Inserted rows will not be compressed.
Updated rows will be decompressed. The dictionary used for compression
will be erased when the LOAD REPLACE, LOAD RESUME NO, or REORG
utility is run. See Section 2 (Volume 1) of Administration Guide for more
information about the dictionary and data compression.

GBPCACHE
Specifies what pages of the table space or partition are written to the group
buffer pool in a data sharing environment. In a non-data-sharing environment,
you can specify this option, but it is ignored. Do not use this clause for a table
space in a work file database.

CHANGED
When there is inter-DB2 R/W interest on the table space or partition,
updated pages are written to the group buffer pool. When there is no
inter-DB2 R/W interest, the group buffer pool is not used. Inter-DB2 R/W
interest exists when more than one member in the data sharing group has
the table space or partition open, and at least one member has it open for
update.

ALL
Indicates that pages are to be cached in the group buffer pool as they are
read in from DASD.

Exception: In the case of a single updating DB2 when no other DB2s have
any interest in the page set, no pages are cached in the group buffer pool.

In a data sharing environment, hiperpools are not used for table spaces or
partitions that are defined with GBPCACHE ALL.

240 SQL Reference  



  ALTER TABLESPACE
 

| LOCKPART
| Indicates whether selective partition locking (SPL) is to be used when locking a
| partitioned table space. If LOCKPART YES is specified and all conditions
| required for SPL are met, only the partitions accessed will be locked. If
| LOCKPART YES is specified and all conditions required for SPL are not met,
| every partition of the table space is locked.

| If you specify LOCKPART NO, selective partition locking is not used. The table
| space is locked with a single lock on the last partition. This has the effect of
| locking all partitions in the table space.

| To alter the LOCKPART option, you must stop the entire table space with the
| STOP DATABASE command.

| LOCKPART is only valid for partitioned table spaces.

| MAXROWS integer
| Specifies the maximum number of rows that DB2 will consider placing on each
| data page. The integer can range from 1 through 255.

| The change takes effect immediately for new rows added. However, the space
| class settings for some pages may be incorrect and could cause unproductive
| page visits. It is highly recommended to reorganize the table space after
| altering MAXROWS.

| You cannot alter the MAXROWS value of a table space in a work file database
| or for the following table spaces:

|  � DSNDB06.SYSDBASE
|  � DSNDB06.SYSDBAUT
|  � DSNDB06.SYSGROUP
|  � DSNDB06.SYSPLAN
|  � DSNDB06.SYSVIEWS

# CCSID ccsid-value
# Identifies the CCSID value to be used for the table space. ccsid-value must
# identify a CCSID value that is compatible with the current value of the CCSID
# for the table space. The “Notes” on page 203 for ALTER DATABASE contains
# a list that shows the CCSID to which a given CCSID can be changed and
# details about changing it.

 Notes
The ALTER TABLESPACE statement cannot be executed while a DB2 utility has
control of the table space.

To change FREEPAGE, PCTFREE, USING, PRIQTY, SECQTY, COMPRESS,
ERASE, or GBPCACHE for more than one partition, you must use separate ALTER
TABLESPACE statements.

# Altering storage attributes: The USING, PRIQTY, SECQTY, and ERASE clauses
# define the storage attributes of the table space or partition. If you specify the
# USING or ERASE clause when altering storage attributes, the table space or

partition must be in the stopped state when the ALTER TABLESPACE statement is
executed. You can use a STOP DATABASE...SPACENAM... command to stop the
table space or partition.

  Chapter 6. Statements 241



 ALTER TABLESPACE  
 

If the catalog name changes, the changes take effect after you move the data and
start the table space or partition using the START DATABASE...SPACENAM...
command. The catalog name can be implicitly or explicitly changed by the ALTER
TABLESPACE statement. The catalog name also changes when you move the
data to a different device. See the procedures for moving data in Section 2 (Volume
1) of Administration Guide.

# Changes to the secondary space allocation (SECQTY) take effect the next time
# DB2 extends the data set; however, the new value is not reflected in the integrated
# catalog until you use the REORG, RECOVER, or LOAD REPLACE utlility on the
# table space or partition. Changes to the other storage attributes take effect the next

time you use the REORG, RECOVER, or LOAD REPLACE utility on the table
space or partition. If there is not enough storage to satisfy the primary space
allocation, a REORG might fail. If you change the primary space allocation
parameters or erase rule, you can have the changes take effect earlier if you move
the data before you start the table space or partition.

Altering table spaces for DB2 catalog tables: For details on altering options on
catalog tables, see “SQL Statements Allowed on the Catalog” on page 532.

 Examples
Example 1: Alter table space DSN8S51E in database DSN8D51A. CLOSE NO
means that the data sets of the table space are not to be closed when there are no
current users of the table space. OSESAME is the password that is passed to
VSAM when the data sets are used by DB2.

ALTER TABLESPACE DSN8D51A.DSN8S51E

 CLOSE NO

 DSETPASS OSESAME;

Example 2: Alter table space DSN8S51D in database DSN8D51A. BP2 is the buffer
pool associated with the table space. PAGE is the level at which locking is to take
place.

ALTER TABLESPACE DSN8D51A.DSN8S51D

 BUFFERPOOL BP2

 LOCKSIZE PAGE;

242 SQL Reference  



  ASSOCIATE LOCATORS
 

|  ASSOCIATE LOCATORS
| The ASSOCIATE LOCATORS statement gets the result set locator value for each
| result set returned by a stored procedure.

|  Invocation
| This statement can be embedded in an application program. It is an executable
| statement that can be dynamically prepared. It cannot be issued interactively.

|  Authorization
| None required.

|  Syntax

|  

|  ┌ ┐|  ─RESULT SET─ ┌ ┐─,───────────────────
| ��─|  ─ASSOCIATE─ ──┴ ┴──────────── ──┬ ┬─LOCATOR──| ─(─ ───

�
┴─rs-locator-variable─ ─)────────────────────────────�

|  └ ┘─LOCATORS─

| �─|  ─WITH PROCEDURE─ ──┬ ┬─procedure-name─ ───────────────────────────────────────────────────────────────��
|  └ ┘─host-variable──

|  Description
| rs-locator-variable
| Identifies a result set locator variable that has been declared according to the
| rules for declaring result set locator variables.

| One result set locator variable is required for each result set that is returned by
| the stored procedure. If the stored procedure returns fewer result sets than the
| number of result set locator variables specified, the extra variables are
| assigned a value of 0.

| WITH PROCEDURE procedure-name or host-variable
| Identifies the stored procedure that returned result set locators by the specified
| procedure name or the procedure name contained in the host variable.

| A procedure name is a qualified or unqualified name. Each part of the name is
| a long SQL identifier that must be composed of SBCS characters:

| � A fully qualified procedure name is a three-part name. The first part is a
| location name that identifies the DBMS at which the procedure is stored.
| The next two parts identify the stored procedure. A period must separate
| each of the parts.

| � A two-part procedure name is implicitly qualified by the location name of
| the current server. The name with its implicit qualifier identifies a stored
| procedure. A period must separate the two parts. The first part identifies
| the stored procedure at the server. The location name of the first part
| depends on the application server.

| � An unqualified procedure name is a one-part name with two implicit
| qualifiers. The first implicit qualifier is the location name of the current
| server. The second implicit qualifier identifies the stored procedure at the

  Chapter 6. Statements 243



 ASSOCIATE LOCATORS  
 

| server. The meaning of the second implicit qualifier depends on the
| application server (for MVS, it is SYSPROC). The name and its implicit
| qualifiers identifies a stored procedure.

| If a host variable is used:

| � It must be a character string variable with a length attribute that is not
# greater than 255.

| � It must be preceded by a colon and must not be followed by an indicator
| variable.

| � The value of the host variable is a specification that depends on the
| application server. Regardless of the application server, the specification
| must:

| – Be left justified within the host variable
| – Not contain embedded blanks
| – Be padded on the right with blanks if its length is less than that of the
| host variable

| When the ASSOCIATE LOCATORS statement is executed, the procedure
| name or specification must identify a stored procedure that the requestor has
| already invoked using the CALL statement.

|  Notes
| More than one locator can be assigned to a result set. You can issue the same
| ASSOCIATE LOCATORS statement more than once with different result set locator
| variables.

| If the number of result set locator variables are listed in the ASSOCIATE
| LOCATORS statement is less than the number of locators returned by the stored
| procedure, all variables in the statement are assigned a value, and a warning is
| issued.

| If the number of result set locator variables are listed in the ASSOCIATE
| LOCATORS statement is greater than the number of locators returned by the
| stored procedure, the extra variables are assigned a value of 0.

| The ASSOCIATE LOCATORS statement assigns result set locator values from the
| SQLVAR sections of the SQLDA to result set locator variables. For languages other
# than REXX, the first SQLDATA field is assigned to the first locator variable, the
# second SQLDATA field to the second locator variable, and so on. For REXX, the
# first SQLLOCATOR field is assigned to the first locator variables, the second
# SQLLOCATOR field to the second locator variable, and so on.

| For this statement to be successful, the application must be currently connected to
| the site at which the stored procedure was executed.

|  Examples
| The statements in the following examples are assumed to be in PL/I programs.

| Example 1: Use :loc1 and :loc2 to get the result set locator values for the two result
| sets returned by stored procedure P1:

| EXEC SQL ASSOCIATE RESULT SET LOCATORS (:loc1, :loc2)

| WITH PROCEDURE P1;

244 SQL Reference  



  ASSOCIATE LOCATORS
 

| Example 2: Use :loc1 and :loc2 to get the result set locator values for the two result
| sets that are returned by the stored procedure named by host variable :hv1:

| EXEC SQL ASSOCIATE LOCATORS (:loc1, :loc2)

| WITH PROCEDURE :hv1;

  Chapter 6. Statements 245



 BEGIN DECLARE SECTION  
 

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of a host variable
declare section.

 Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

# This statement cannot be included in a REXX application program.

 Authorization
None required.

 Syntax

 

��──BEGIN DECLARE SECTION────────────────────────────────────────────────────────────────────────────��

 Description
The BEGIN DECLARE SECTION statement can be coded in the application
program wherever variable declarations can appear in accordance with the rules of
the host language. It is used to indicate the beginning of a host variable declaration
section. A host variable section ends with an END DECLARE SECTION statement,
described in “END DECLARE SECTION” on page 380.

The following rules are enforced by the precompiler only if the host language is C
or the STDSQL(YES) precompiler option is specified:

� A variable referred to in an SQL statement must be declared within a host
variable declaration section of the source program

� BEGIN DECLARE SECTION and END DECLARE SECTION statements must
be paired and must not be nested.

� Host variable declaration sections must not contain statements other than host
variable declarations or SQL INCLUDE statements that include host variable
declarations.

 Notes
Host variable declaration sections are only required if the STDSQL(YES) option is
specified or the host language is C. However, declare sections can be specified for
any host language so that the source program can conform to IBM SQL. If declare
sections are used, but not required, variables declared outside a declare section
must not have the same name as variables declared within a declare section.

246 SQL Reference  



  BEGIN DECLARE SECTION
 

 Example
EXEC SQL BEGIN DECLARE SECTION;

(host variable declarations)

EXEC SQL END DECLARE SECTION;

  Chapter 6. Statements 247



 CALL  
 

 CALL
The CALL statement invokes a stored procedure.

 Invocation
| This statement can be embedded in an application program. This statement can
| also be dynamically prepared, but only from an ODBC or CLI driver that supports
| dynamic CALL statements. IBM's ODBC and CLI drivers provide this capability.

CALL cannot be used if the program is executing as a stored procedure.

 Authorization
| The application server determines the privileges that are required and the
| authorization ID that must have those privileges. If the server is DB2 for OS/390,
| the privileges and authorization ID depend on the syntax of the CALL statement
| and the value of bind option DYNAMICRULES:

| � If either of the following items is true:

| – The statement is of the form CALL procedure-name
| – The statement was bound with option DYNAMICRULES(BIND)

| then the owner of the package or plan that contains the CALL statement must
| have one or more of the following privileges on each package that the stored
| procedure uses:

| – The EXECUTE privilege on the package
| – Ownership of the package
| – PACKADM authority for the package collection
|  – SYSADM authority

| � If both of the following items are true:

| – The statement is of the form CALL host-variable
| – The statement was bound with option DYNAMICRULES(RUN)

| then the privilege set is the union of the privileges held by:

| – The owner of the package or plan that contains the CALL statement

| For ODBC or CLI applications, this is the owner of the package or plan
| associated with the ODBC or CLI driver.

| – The primary SQL authorization ID of the application process

| – The secondary SQL authorization IDs associated with the application
| process

| The privilege set must include one or more of the following privileges on each
| package that the stored procedure uses:

| – The EXECUTE privilege on the package
| – Ownership of the package
| – PACKADM authority for the package collection
|  – SYSADM authority

248 SQL Reference  



  CALL
 

 Syntax

 

��─ ─CALL─ ──┬ ┬ ─procedure-name─ ──┬ ┬─────────────────────────────────── ─────────────────────────────────��
 └ ┘ ─host-variable── ├ ┤ ─(─ ──┬ ┬─────────────────────── ─)───
 │ ││ │┌ ┐─,─────────────────
 │ │└ ┘───

�
┴──┬ ┬─host-variable─

 │ │├ ┤─constant──────
 │ │└ ┘─NULL──────────
 └ ┘ ─USING DESCRIPTOR──descriptor-name─

 Description
procedure-name or host-variable

Identifies the stored procedure to call by the specified procedure name or the
procedure name contained in the host variable.

A procedure name is a qualified or unqualified name. Each part of the name is
a long SQL identifier that must be composed of SBCS characters:

� A fully qualified procedure name is a three-part name. The first part is a
location name that identifies the DBMS at which the procedure is stored.
The next two parts identify the stored procedure. A period must separate
each of the parts.

� A two-part procedure name is implicitly qualified by the location name of
the current server. The name with its implicit qualifier identifies a stored
procedure. A period must separate the two parts. The meaning of the first
part depends on the application server. If the server is DB2 for OS/390, the
first part must be SYSPROC.

� An unqualified procedure name is a one-part name with two implicit
qualifiers. The first implicit qualifier is the location name of the current
server. The second implicit qualifier depends on the application server. If
the server is DB2 for OS/390, the implicit qualifier is SYSPROC. The name
with its implicit qualifiers identifies a stored procedure.

If a host variable is used:

� It must be a character string variable with a length attribute that is not
# greater than 255.

� It must be preceded by a colon and must not be followed by an indicator
variable.

� The value of the host variable is a specification that depends on the
application server. Regardless of the application server, the specification
must:

– Be left justified within the host variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the

host variable

If the server is DB2 for OS/390, the specification must be a procedure
name as defined above.

  Chapter 6. Statements 249



 CALL  
 

When the CALL statement is executed, the procedure name or specification
must identify a stored procedure that exists at the application server. If the
server is DB2 for OS/390, the last part or the only part of the name must be
equal to some value of the PROCEDURE column of the catalog table
SYSIBM.SYSPROCEDURES.

Parameters (host-variable, constant, or NULL)
Identifies a list of values to be passed as parameters to the procedure. If
USING DESCRIPTOR is specified, each host variable described by the
identified SQLDA is a parameter of the CALL. The nth parameter of the CALL
corresponds to the nth parameter in the procedure, and the number of
parameters in each must be the same.

Each parameter of a procedure is described at the server. In the case of a DB2
for OS/390 server, the information is in the SYSIBM.SYSPROCEDURES
catalog table. In addition to attributes such as data type and length, the
description of each parameter indicates how the procedure uses it:

� IN means only as an input value
� OUT means only as an output value
� INOUT means both as an input and an output value

When the CALL statement is executed, the value of each parameter of the
CALL is assigned to the corresponding parameter of the procedure. Control is
passed to the procedure according to the calling conventions of the host
language. When execution of the procedure is complete, the value of each
parameter of the procedure is assigned to the corresponding parameter of the
CALL defined as OUT or INOUT. For details on the rules used to assign
parameters, see “Rules for assigning parameters” on page 251.

host-variable
A parameter of the CALL is the identified host-variable. host-variable must
identify a host variable (not a structure) described in the program according
to the rules for declaring host variables, and the data type of the variable
must be compatible with the data type of the corresponding parameter in
the procedure. If an indicator variable is specified, its value must not be
negative unless the description of the procedure allows for null parameters
or the corresponding parameter of the procedure is defined as OUT.

constant
A parameter of the CALL is the specified value. The data type of the
constant must be compatible with the corresponding parameter of the
procedure and that parameter must be defined as IN.

NULL
A parameter of the CALL is the NULL value. The corresponding parameter
of the procedure must be defined as IN and the description of the
procedure must allow for null parameters.

USING DESCRIPTOR descriptor-name
| Identifies an SQLDA that contains a valid description of host variables that
| are to be passed as parameters to the procedure. If the procedure has no
| parameters, an SQLDA is not used.

Before the CALL statement is processed, the user must set the following
fields in the SQLDA:

250 SQL Reference  



  CALL
 

� SQLN to indicate the number of SQLVAR occurrences provided in the
# SQLDA. This number must not be less than SQLD. This field is not
# part of the REXX SQLDA and therefore does not need to be set for
# REXX programs.

� SQLDABC to indicate the number of bytes of storage allocated for the
# SQLDA. This number must be not be less than SQLN*44+16. This field
# is not part of the REXX SQLDA and therefore does not need to be set
# for REXX programs.

� SQLD to indicate the number of variables used in the SQLDA when
processing the statement. This number must be the same as the
number of parameters of the procedure.

� SQLVAR occurrences to indicate the attributes of the variables.

See “Identifying an SQLDA in C” on page 526 for how to represent
descriptor-name in C.

 Notes
Rules for assigning parameters: The rules for assigning the value of input and
output parameters are similar.

Let S denote an input parameter of a CALL statement, let T denote the
corresponding parameter of the stored procedure, and let C denote a column of a
hypothetical single-row table such that the description of C is identical to the
SYSIBM.SYSPROCEDURES description of T. S is assigned to T as follows:

1. The value of S is assigned to C in accordance with the “store assignment” rules
of the SQL standard. These are the same rules as the DB2 rules for assigning
values to columns with one exception. When the value is a string that is longer
than the column, the SQL standard rules specify that an error occurs only if the
excess characters are not blanks. If the excess characters are all blanks, they
are discarded and the truncated string is assigned to the column without a
warning.

2. The value of C is assigned to T in accordance with the DB2 rules for assigning
values to host variables.

Let T denote an output parameter of a CALL statement, let S denote the
corresponding parameter of the stored procedure, and let C denote a column of a
hypothetical single-row table such that the description of C is identical to the
SYSIBM.SYSPROCEDURES description of S. S is assigned to T as follows:

1. The value of S is assigned to C in accordance with the “store assignment” rules
of the SQL standard described above for input parameters.

2. The value of C is assigned to T in accordance with the DB2 rules for assigning
values to host variables.

Improving performance: The capability of calling stored procedures is provided to
improve the performance of DRDA distributed access (DB2 private protocol access
is not supported). The capability is also useful for local operations. The application
server can be the local DB2. In which case, packages are still required.

All values of all parameters are passed from the application requester to the
application server. To improve the performance of this operation, host variables that

  Chapter 6. Statements 251



 CALL  
 

correspond to OUT parameters and have lengths of more than a few bytes should
be set to null before the CALL statement is executed.

 Example
A PL/I application has been precompiled on DB2 ALPHA and a package was
created at DB2 BETA with the BIND subcommand. The
SYSIBM.SYSPROCEDURES catalog table at BETA describes the procedure
SUMARIZE, which allows nulls and has two parameters. The first parameter is
defined as IN and the second parameter is defined as OUT. Some of the
statements in the application that runs at DB2 ALPHA are:

EXEC SQL CONNECT TO BETA;

V1 = 528671;

IV = -1;

EXEC SQL CALL SUMARIZE(:V1,:V2 INDICATOR :IV);

252 SQL Reference  



  CLOSE
 

 CLOSE
| The CLOSE statement closes a cursor. If a temporary copy of a result table was
| created when the cursor was opened, that table is destroyed.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

 Authorization
See “DECLARE CURSOR” on page 347 for the authorization required to use a
cursor.

 Syntax

 

��──CLOSE──cursor-name───────────────────────────────────────────────────────────────────────────────��

 Description
cursor-name

Identifies the cursor to be closed. The cursor name must identify a declared
cursor as explained in the DECLARE CURSOR statement. When the CLOSE
statement is executed, the cursor must be in the open state.

 Notes
Any open cursors of an application process not declared with the WITH HOLD
option are implicitly closed at the termination of a unit of work. However, explicitly
closing cursors as soon as possible can improve performance. CLOSE does not
cause a commit or rollback operation.

| The cursor could have been allocated. See “ALLOCATE CURSOR” on page 200.

  Chapter 6. Statements 253



 CLOSE  
 

 Example
A cursor is used to fetch one row at a time into the application program variables
DNUM, DNAME, and MNUM. Finally, the cursor is closed. If the cursor is
reopened, it is again located at the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DSN851,.DEPT

WHERE ADMRDEPT = 'A,,'

 END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

IF SQLCODE = 1,,

 PERFORM DATA-NOT-FOUND

 ELSE

 PERFORM GET-REST-OF-DEPT

UNTIL SQLCODE IS NOT EQUAL TO ZERO.

EXEC SQL CLOSE C1 END-EXEC.

 GET-REST-OF-DEPT.

EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

254 SQL Reference  



  COMMENT ON
 

 COMMENT ON
The COMMENT ON statement adds or replaces comments in the descriptions of
tables, views, aliases, or columns in the DB2 catalog at the current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� Ownership of the table, view, or alias
� DBADM authority for its database (tables only)
� SYSADM or SYSCTRL authority

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared and the bind option DYNAMICRULES(RUN)
applies, the privilege set is the union of the privilege sets held by each
authorization ID of the process. If the statement is dynamically prepared and the
bind option DYNAMICRULES(BIND) applies, the privilege set is the privileges held
by the authorization ID of the owner of the plan or package.

 Syntax

 

��─ ─COMMENT ON─ ──┬ ┬ ──┬ ┬─TABLE─ ──┬ ┬─table-name─ ─────────────── ─IS──string-constant─ ───────────────────��
 │ ││ │└ ┘─view-name──
 │ │├ ┤─ALIAS──alias-name────────────────────
 │ │└ ┘ ─COLUMN─ ── ──┬ ┬─table-name─ .column-name
 │ │└ ┘─view-name──
 │ │┌ ┐─,────────────────────────────────
 └ ┘ ──┬ ┬─table-name─ ─(─ ───

�
┴─column-name──IS──string-constant─ ─)────

 └ ┘─view-name──

 Description
TABLE table-name or view-name

Identifies the table or view to which the comment applies. table-name or
view-name must identify a table or view that exists at the current server. The
comment is placed in the REMARKS column of the SYSIBM.SYSTABLES
catalog table for the row that describes the table or view.

ALIAS alias-name
Identifies the alias to which the comment applies. alias-name must identify an
alias that exists at the current server. The comment is placed in the REMARKS
column of the SYSIBM.SYSTABLES catalog table for the row that describes
the alias.

COLUMN table-name.column-name or view-name.column-name
Identifies the column to which the comment applies. The name must identify a
column of a table or view that exists at the current server. The comment is

  Chapter 6. Statements 255



 COMMENT ON  
 

placed into the REMARKS column of the SYSIBM.SYSCOLUMNS catalog
table, for the row that describes the column.

Do not use TABLE or COLUMN to comment on more than one column in
a table or view. Give the table or view name and then, in parentheses, a list in
the form:

column-name IS string-constant,

column-name IS string-constant,...

The column names must not be qualified, each name must identify a column of
the specified table or view, and that table or view must exist at the current
server.

IS string-constant
Introduces the comment that you want to make. string-constant can be any
SQL character string constant of up to 254 characters.

 Examples
Example 1: Enter a comment on table DSN8510.EMP.

COMMENT ON TABLE DSN851,.EMP

IS 'REFLECTS 1ST QTR 81 REORG';

Example 2: Enter a comment on view DSN8510.VDEPT.

COMMENT ON TABLE DSN851,.VDEPT

IS 'VIEW OF TABLE DSN851,.DEPT';

Example 3: Enter a comment on the DEPTNO column of table DSN8510.DEPT.

COMMENT ON COLUMN DSN851,.DEPT.DEPTNO

IS 'DEPARTMENT ID - UNIQUE';

Example 4: Enter comments on two columns in table DSN8510.DEPT.

COMMENT ON DSN851,.DEPT

(MGRNO IS 'EMPLOYEE NUMBER OF DEPARTMENT MANAGER',

ADMRDEPT IS 'DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT');

256 SQL Reference  



  COMMIT
 

 COMMIT
The COMMIT statement ends a unit of recovery and commits the relational
database changes that were made in that unit of recovery. If relational databases
are the only recoverable resources used by the application process, COMMIT also
ends the unit of work.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. It cannot be used
in the IMS or CICS environment, or if the program is executing as a stored
procedure.

 Authorization
None required.

 Syntax

 

 ┌ ┐─WORK─
��─ ─COMMIT─ ──┴ ┴────── ────────────────────────────────────────────────────────────────────────────────��

 Description
The unit of recovery in which the statement is executed is ended and a new unit of
recovery is effectively started for the process. All changes made by ALTER,

| COMMENT ON, CREATE, DELETE, DROP, EXPLAIN, GRANT, INSERT, LABEL
| ON, RENAME, REVOKE, and UPDATE statements executed during the unit of

recovery are committed. SQL connections are ended when any of the following
apply:

� The connection is in the release pending state

� The connection is not in the release pending state but it is a remote connection
and:

– The DISCONNECT(AUTOMATIC) bind option is in effect, or

– The DISCONNECT(CONDITIONAL) bind option is in effect and an open
WITH HOLD cursor is not associated with the connection.

For existing connections, all open cursors that were declared without the WITH
HOLD option are closed. All open cursors that were declared with the WITH HOLD
option are preserved, along with any SELECT statements that were prepared for

| those cursors. All other prepared statements are destroyed unless dynamic caching
| is enabled for your system. In that case, all prepared SELECT, INSERT, UPDATE,
| and DELETE statements that are bound with DYNAMICKEEP(YES) are kept past
| the commit.

| Prepared statements cannot be kept past a commit if:

| � SQL RELEASE has been issued for that site, or
| � Bind option DISCONNECT(AUTOMATIC) was used, or

  Chapter 6. Statements 257



 COMMIT  
 

| � Bind option DISCONNECT(CONDITIONAL) was used and there are no hold
| cursors for that site.

All implicitly acquired locks are released, except for those required for the cursors
that were not closed. See “LOCK TABLE” on page 426 for an explanation of the
duration of explicitly acquired locks.

| All rows of every temporary table of the application process are deleted with the
| exception that the rows of a temporary table are not deleted if any program in the
| application process has an open WITH HOLD cursor that is dependent on that
| temporary table. In addition, if RELEASE(COMMIT) is in effect, the logical work
| files for those temporary tables whose rows are deleted are also deleted.

 Notes
The SQL COMMIT statement cannot be used in the IMS or CICS environment. To
effect a commit operation in these environments, SQL programs must use the call
prescribed by their transaction manager. The effect of these commit operations on
DB2 data is the same as that of the SQL COMMIT statement.

In all DB2 environments, the normal termination of a process is an implicit commit
operation.

 Example
Commit all DB2 database changes made since the unit of recovery was started.

 COMMIT WORK;

258 SQL Reference  



  CONNECT
 

 CONNECT
The CONNECT statement connects the application process to a designated server.
This server is then the current server for the process. “When an Application
Process Has a Current Server” on page 260 describes what happens when the
process has a current server.

CONNECT (Type 1) and CONNECT (Type 2) Differences
There are two types of CONNECT statements with the same syntax but different
semantics, as summarized below. Both types of the CONNECT statement are used
for DRDA access, however the level of function available for each type is different.
For a description of an individual type of CONNECT, see:

“CONNECT (Type 1)” on page  262 
“CONNECT (Type 2)” on page 267

The following table summarizes the differences between CONNECT (Type 1) and
CONNECT (Type 2) rules:

Table 16 (Page 1 of 2). CONNECT (Type 1) and CONNECT (Type 2) Differences

Type 1 Rules Type 2 Rules

CONNECT statements can be executed
only when the application process is in the
connectable state. Only one CONNECT
statement can be executed within the same
unit of work.

More than one CONNECT statement can be
executed within the same unit of work.
There are no rules about the connectable
state.

If a CONNECT statement fails because the
application process is not in the connectable
state, the SQL connection status of the
application process is unchanged.

If a CONNECT statement fails for any other
reason, the application process is placed in
the unconnected state.

If a CONNECT statement fails, the current
SQL connection is unchanged and any
subsequent SQL statements are executed
by that server, unless the failure prevents
the execution of SQL statements by that
server.

CONNECT ends any existing connections of
the application process. Accordingly,
CONNECT also closes any open cursors of
the application process. (The only cursors
that can possibly be open when CONNECT
is successfully executed are those defined
with the WITH HOLD option.)

CONNECT does not end connections and
does not close cursors.

  Chapter 6. Statements 259



 CONNECT  
 

Determining the CONNECT rules that apply: The following table explains how to
determine the CONNECT rules that apply:

The CONNECT rules that apply to an application process are determined by the
first CONNECT statement that is executed (successfully or unsuccessfully) by that
application process:

� If it is a CONNECT (Type 1), then CONNECT (Type 1) rules apply and
CONNECT (Type 2) statements are invalid.

� If it is a CONNECT (Type 2), then CONNECT (Type 2) rules apply and
CONNECT (Type 1) statements are invalid.

Programs containing CONNECT statements that are precompiled with different
CONNECT precompiler options cannot execute as part of the same application
process. An error will occur when an attempt is made to execute the invalid
CONNECT statement.

Table 16 (Page 2 of 2). CONNECT (Type 1) and CONNECT (Type 2) Differences

Type 1 Rules Type 2 Rules

A CONNECT to the current application
server is executed like any other CONNECT
(Type 1) statement.

If the SQLRULES(STD) bind option is in
effect, a CONNECT to an existing SQL
connection of the application process is an
error. Thus, a CONNECT to the current
application server is an error. For example,
an error occurs if the first CONNECT is a
CONNECT TO x where x is the local DB2.

If the SQLRULES(DB2) bind option is in
effect, a CONNECT to an existing SQL
connection is not an error. Thus, if x is an
existing SQL connection of the application
process, CONNECT TO x makes x its
current connection. If x is already the
current connection, CONNECT TO x has no
effect on the state of any connections.

Table 17. Determining the CONNECT Rules that Apply

If the precompiler option... is... then the rules for...

CONNECT(1) specified CONNECT (Type 1) apply

CONNECT(2) specified CONNECT (Type 2) apply

CONNECT omitted CONNECT (Type 2) implicitly
apply.

When an Application Process Has a Current Server
The current server is the DBMS to which an application is actively connected. The
following rules apply when an application process has a current server:

� Static SQL statements executed by the application process are taken from a
package which was bound at that server. However, this does not apply to SQL
statements such as CONNECT and RELEASE which are not represented in
packages. Furthermore, if the current server is the local DB2 subsystem, SQL
statements can also be taken from a DBRM that has been bound with the
application plan. This is the case if the CURRENT PACKAGESET special

260 SQL Reference  



  CONNECT
 

register is blank and the name of the application program executing the SQL
statement is the same as the name of a DBRM.

� The package from which SQL statements are taken is determined by the name
of the application program executing the SQL statement, the package list of the
application plan, and CURRENT PACKAGESET.

The last part of the package name is the same as the name of the application
program, unless a member name is specified during the bind process along
with the DBRMLIB DD statement. The qualifier of the package name (the
collection ID) can be determined by the package list or by the CURRENT
PACKAGESET special register. For more information, see “SET CURRENT
PACKAGESET” on page 470.

� Dynamic and static SQL statements that refer to objects at the server are
executed at the server. Statements that refer to objects at yet another DB2
(which is possible only if the server is a DB2 subsystem) are executed at that
DB2 rather than at the server.

Establishing a Different Server
The initial server of an application process is the local DB2 subsystem. A different
server can be established by the explicit or implicit execution of a CONNECT
statement.

The CURRENTSERVER bind option can affect which CONNECT rule is in effect.
When an application process executes an SQL statement other than COMMIT,
CONNECT TO, CONNECT RESET, SET CONNECTION, or ROLLBACK, a
CONNECT (Type 1) statement is implicitly executed if both of the following apply:

� The CURRENTSERVER bind option was specified when the application plan
was bound or rebound and the identified server is not the local DB2.

� An implicit or explicit CONNECT statement has not been executed by the
application process.

For example, if CURRENTSERVER x was specified and the first SQL statement
executed by the application process is an OPEN statement, a CONNECT TO x
(Type 1) is executed before the OPEN statement is executed. If the implicit
CONNECT fails, the application process is in the unconnected state. Regardless of
whether the implied CONNECT is successful, the application process cannot
execute a CONNECT (Type 2) statement because CONNECT (Type 1) rules are in
effect.

In new distributed applications, use CONNECT (Type 2) and do not use the
CURRENTSERVER bind option.

  Chapter 6. Statements 261



 CONNECT (Type 1)  
 

CONNECT (Type 1)
The CONNECT (Type 1) statement connects the application process to a
designated server. This server is then the current server for the process. The
CONNECT (Type 1) statement is used for DRDA access using the restricted level
of function available in DB2 Version 2 Release 3. Differences between the two
types of statements are described in “CONNECT (Type 1) and CONNECT (Type 2)
Differences” on page 259.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. CONNECT cannot be
used in a program executing as a stored procedure.

 Authorization
The primary authorization ID of the process must be authorized to connect to the
identified server. That server performs the authorization check and determines the
specific authorization required. See Section 3 (Volume 1) of Administration Guide
for further information.

 Syntax

 

��─ ─CONNECT─ ──┬ ┬─────────────────────── ──────────────────────────────────────────────────────────────��
 ├ ┤ ─TO─ ──┬ ┬─location-name─
 │ │└ ┘─host-variable─
 └ ┘─RESET─────────────────

 Description
TO location-name or host-variable

Identifies the server by the specified location name or the location name
contained in the host variable. If a host variable is specified:

� It must be a character string variable with a length attribute that is not
greater than 16. (A C NUL-terminated character string may be up to 17
bytes long.)

� It must be preceded by a colon and must not be followed by an indicator
variable.

� The location name must be left-justified within the host variable and must
conform to the rules for forming an ordinary location identifier.

� If the length of the location name is less than the length of the host
variable, it must be padded on the right with blanks.

When the CONNECT statement is executed:

� The location name must identify a server known to the local DB2
subsystem. Hence, it must either be the location name of the local DB2

| subsystem or it must appear in the LOCATION column of the
| SYSIBM.LOCATIONS table.

262 SQL Reference  



  CONNECT (Type 1)
 

� The application process must be in a connectable state. (Connection
states are explained in “Connection states” on page 264.)

If execution of the CONNECT statement is successful:

� The application process is connected to the identified server.

� The existing connections of the application process are ended. (The
existing connections include the previous SQL connection, if any, and all
DB2 private connections, if any.) When a connection is ended, all
resources acquired by the application process through the connection and
all resources used to create and maintain the connection are deallocated.
Thus, all cursors are closed, all prepared statements are destroyed, and so
on.

� The location name is placed in the CURRENT SERVER special register.

� Information about the server is placed in the SQLERRP field of the SQLCA.
If the application server is an IBM relational database product, the
information has the form pppvvrrm, where:

 – ppp is:

ARI for SQL/DS
DSN for DB2 for MVS
QSQ for OS/400
SQL for all other DB2 products

– vv is a two-digit version identifier such as '05'.

– rr is a two-digit release identifier such as '01'.

– m is a one-digit modification level such as '0'.

For example, if the server is Version 5 of DB2 for OS/390, the value of
SQLERRP is 'DSN05010'.

If execution of the CONNECT statement is unsuccessful, the SQLERRP field of
the SQLCA is set to the name of the DB2 application requester module that
detected the error.

If execution of the CONNECT statement is unsuccessful because the
application process is not in the connectable state, the connection state of the
application process is unchanged. If execution of the CONNECT statement is
unsuccessful for any other reason, CURRENT SERVER is set to blanks and
the application process is placed in the connectable and unconnected state.

CONNECT RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the location
name of the local DB2 subsystem.

CONNECT with no operand
This form of the CONNECT statement returns information about the current
server. The information is returned in the SQLERRP field of the SQLCA as
described above. This form of CONNECT:

� Does not require the application process to be in the connectable state
� Does not change the connection state
� Does not close cursors
� Returns blanks if the application process is in the unconnected state

  Chapter 6. Statements 263



 CONNECT (Type 1)  
 

 Notes
Connection states: In the following description of the connection states,
CONNECT means CONNECT TO or CONNECT RESET, not the form of
CONNECT with no operand. At any time, an application process is in one of four
states:

� Connectable and connected
� Unconnectable and connected
� Unconnectable and unconnected
� Connectable and unconnected

The following diagram shows the state transitions:

Connectable
and
Connected

CONNECT with system failure
Connectable
and
UnconnectedSuccessful CONNECT

ROLLBACK
only

Begin process

SQL other than
CONNECT, COMMIT
ROLLBACK, and
local SETs

System failure except
during COMMIT or ROLLBACK

System failure
during COMMIT
or ROLLBACK

ROLLBACK or

COMMIT
successful

Unconnectable
and
Connected

Unconnectable
and
Unconnected

Figure 5. Connect state transitions

In the connectable and connected state, an application process is connected to a
server and can execute CONNECT statements. This is the initial state. The process
also enters this state when:

� It executes a rollback operation or successful commit from the unconnectable
and connected state.

� It executes a successful CONNECT from the connectable and unconnected
state.

In the unconnectable and connected state, an application process is connected
to a server but cannot execute a CONNECT statement (SQLCODE -752). The
process enters this state from the connectable and connected state when it
executes any SQL statement other than CONNECT, COMMIT, ROLLBACK, or local
SET (SET CURRENT PACKAGESET or SET host-variable = CURRENT
PACKAGESET or CURRENT SERVER). A process cannot enter this state from the
connectable and unconnected nor the unconnectable and unconnected states.

264 SQL Reference  



  CONNECT (Type 1)
 

In the unconnectable and unconnected state, an application process is not
connected to a server and cannot execute a CONNECT statement. The process
enters this state from the unconnectable and connected state when the execution
of an SQL statement other than COMMIT or ROLLBACK is unsuccessful because
of a system failure that results in a rollback and deallocation of the conversation.
The only SQL statement that can be successfully executed in this state is
ROLLBACK. Any attempt to execute other SQL statements will result in an error
(SQLCODE -918).

In the connectable and unconnected state, an application process is not
connected to a server. The process enters this state when:

� The execution of CONNECT is unsuccessful for any reason other than the
application process not being in the connectable state.

� A system failure occurs during the execution of a COMMIT or ROLLBACK
statement from the unconnectable and connected state.

� A ROLLBACK statement is executed from the unconnectable and unconnected
state.

The only SQL statements that can be successfully executed in this state are
CONNECT, COMMIT, ROLLBACK, and local SET statements. Any attempt to
execute other SQL statements will result in an error (SQLCODE -900). SET
host-variable = CURRENT SERVER will set the host variable to blanks.

Additional rules: It is not an error to execute consecutive CONNECT statements
because CONNECT itself does not remove the application process from the
connectable state. It is an error to execute any SQL statement other than
CONNECT, COMMIT, ROLLBACK, or local SET, and then execute CONNECT. To
avoid the error, execute a commit or rollback operation before executing the
CONNECT.

A CONNECT to the current server is treated like any other CONNECT. Such a
CONNECT can cause the closing of cursors and the redundant deallocation and
allocation of a conversation.

It may be the case that the SQL CONNECT statement returns, and indicates a
successful execution when no physical connection yet exists. DB2 will delay the
physical connection process, when possible, to economize on the number of
messages sent. Therefore, errors in CONNECT statement processing may be
reported following the next executable SQL statement, not immediately following
the CONNECT statement.

When CONNECT is used to connect back to the local DB2, the CURRENT SQLID
special register is not reinitialized.

SET CONNECTION and RELEASE do not change the state of the application
process from connectable to unconnectable.

The SQLRULES bind option has no effect on CONNECT (Type 1) statements.

  Chapter 6. Statements 265



 CONNECT (Type 1)  
 

 Examples
Example 1: Connect the application to a DBMS whose location identifier is in the
character-string variable LOCNAME.

EXEC SQL CONNECT TO :LOCNAME;

Example 2: Use the CONNECT statement to obtain information about the current
server. The information is then stored in the SQLERRP field of the SQLCA.

EXEC SQL CONNECT;

Example 3: An application has connected to a DB2 server that is not the local
DBMS. During the connection, the application has opened a cursor and fetched
rows from the cursor's result table. To connect to the local DBMS, the application
executes the following statements:

EXEC SQL COMMIT WORK;

EXEC SQL CONNECT RESET;

The commit operation is required because the OPEN statement for the cursor has
caused the application to enter the unconnectable and connected state. If the
cursor had been declared with WITH HOLD and had not been closed with a
CLOSE statement, it would still be open after the execution of the COMMIT, but
would be closed with the execution of the CONNECT.

266 SQL Reference  



  CONNECT (Type 2)
 

CONNECT (Type 2)
The CONNECT (Type 2) statement connects the application process to a
designated server. This server is then the current server for the process.
Differences between the two types of statements are described in “CONNECT
(Type 1) and CONNECT (Type 2) Differences” on page 259. Refer to “Connection
Management for DB2 Private Protocol and DRDA Access” on page 33 for more
information about connection states.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. CONNECT cannot be
used if the program is executing as a stored procedure.

 Authorization
The primary authorization ID of the process must be authorized to connect to the
identified server. The authorization check is performed by the application server
when the statement is executed, and the specific authorization required is
determined by that server. See Section 3 (Volume 1) of Administration Guide for
further information.

 Syntax

 

��─ ─CONNECT─ ──┬ ┬─────────────────────── ──────────────────────────────────────────────────────────────��
 ├ ┤ ─TO─ ──┬ ┬─location-name─
 │ │└ ┘─host-variable─
 └ ┘─RESET─────────────────

 Description
TO location-name or host-variable

Identifies the application server by the specified location name or the location
name contained in the host variable. If a host variable is specified:

� It must be a character string variable with a length attribute that is not
greater than 16. (A C NUL-terminated character string may be up to 17
bytes long.)

� It must be preceded by a colon and must not be followed by an indicator
variable.

� The location name must be left-justified within the host variable and must
conform to the rules for forming an ordinary location identifier.

� If the length of the location name is less than the length of the host
variable, it must be padded on the right with blanks.

Let S denote the specified location name or the location name contained in the
host variable.

S must not identify a DB2 private connection of the application process. If the
SQLRULES(STD) bind option is in effect, S must not identify an existing SQL
connection of the application process.

  Chapter 6. Statements 267



 CONNECT (Type 2)  
 

S must identify an application server known to the local DB2 subsystem.
Hence, S must be the location name of the local DB2 subsystem or it must

| appear in the LOCATION column of the SYSIBM.LOCATIONS table.

If the CONNECT statement is successful:

� S becomes the current connection of the application process in one of the
following ways:

– If S is not an existing SQL connection of the application process, an SQL
connection to application server S is created and placed in the current and
held states. The previously current SQL connection, if any, is placed in the
dormant state.

– If S is a dormant SQL connection of the application process and the
SQLRULES(DB2) option is in effect, S is placed in the current state. The
previously current SQL connection, if any, is placed in the dormant state.

– If S is the current SQL connection of the application process and the
SQLRULES(DB2) option is in effect, the states of S and all other
connections of the application process are unchanged.

� S is placed in the CURRENT SERVER special register.

� Information about application server S is placed in the SQLERRP field of the
SQLCA. If the application server is an IBM relational database product, the
information has the form pppvvrrm, where:

 – ppp is:

ARI for SQL/DS
DSN for DB2 for MVS
QSQ for OS/400
SQL for all other DB2 products

– vv is a two-digit version identifier such as '05'.

– rr is a two-digit release identifier such as '01'.

– m is a one-digit modification level such as '0'.

For example, if the server is Version 5 of DB2 for OS/390, the value of
SQLERRP is 'DSN05010'.

If the CONNECT statement is unsuccessful, the connection state of the application
process and the states of its SQL connections are unchanged.

CONNECT RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the location
name of the local DB2 subsystem.

� If the SQLRULES(DB2) bind option is in effect, CONNECT RESET
establishes the local DB2 subsystem as the current SQL connection

� If the SQLRULES(STD) bind option is in effect, CONNECT RESET
establishes the local DB2 subsystem as the current SQL connection only if
the connection does not exist.

CONNECT with no operand
This form of the CONNECT statement returns information about the current
server and has no effect on connection states. The information is returned in

268 SQL Reference  



  CONNECT (Type 2)
 

the SQLERRP field of the SQLCA as described above. SQLERRP is set to
blanks if the application process is in the unconnected state.

 Notes
When CONNECT is used to connect back to the local DB2, the CURRENT SQLID
special register is not reinitialized.

 Example
Execute SQL statements at TOROLAB1 and TOROLAB2. The first CONNECT
statement creates the TOROLAB1 connection. The second CONNECT statement
creates the TOROLAB2 connection and places the TOROLAB1 connection in the
dormant state.

EXEC SQL CONNECT TO TOROLAB1;

(execute statements referencing objects at TOROLAB1)

EXEC SQL CONNECT TO TOROLAB2;

(execute statements referencing objects at TOROLAB2)

  Chapter 6. Statements 269



 CREATE ALIAS  
 

 CREATE ALIAS
The CREATE ALIAS statement defines an alias for a table or view. The definition is
recorded in the DB2 catalog at the current server. The table or view does not have
to be described in that catalog.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� The CREATEALIAS privilege
� SYSADM or SYSCTRL authority

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
specified alias name includes a qualifier that is not the same as this authorization
ID, the privilege set must include SYSADM or SYSCTRL authority.

If the statement is dynamically prepared, the privilege set is the privileges held by
the SQL authorization ID of the process. If the specified alias name includes a
qualifier that is not the same as this authorization ID:

� The privilege set must include SYSADM or SYSCTRL authority, or

� The qualifier must be the same as one of the authorization IDs of the process
and the privileges held by that authorization ID must include the
CREATEALIAS privilege. This is an exception to the rule that the privilege set
is the privileges held by the SQL authorization ID of the process.

 Syntax

 

��──CREATE ALIAS──alias-name──FOR─ ──┬ ┬─table-name─ ───────────────────────────────────────────────────��
 └ ┘─view-name──

 Description
alias-name

Names the alias. The name must not identify a table, view, alias, or synonym
that exists at the current server.

If qualified, the name can be a two-part or three-part name. If a three-part
name is used, the first part must match the value of the field DB2 LOCATION
NAME on installation panel DSNTIPR at the current server. (If the current
server is not the local DB2, this name is not necessarily the name in the
CURRENT SERVER special register.) Whether the name is two-part or
three-part, the authorization ID that qualifies the name is the owner of the alias.

270 SQL Reference  



  CREATE ALIAS
 

If the alias name is unqualified and the statement is embedded in an
application program, the owner of the alias is the authorization ID that serves
as the implicit qualifier for unqualified object names. This is the authorization ID
in the QUALIFIER operand when the plan or package was created or last
re-bound. If QUALIFIER was not used, the owner of the alias is the owner of
the package or plan.

If the alias name is unqualified and the statement is dynamically prepared, the
SQL authorization ID is the owner of the alias.

The owner has the privilege to drop the alias.

FOR table-name or view-name
Identifies the table or view for which the alias is defined. The table or view
need not exist at the time the alias is defined. If it does exist, it can be at the
current server or at another server. The name must not be the same as the
alias name and must not identify an alias that exists at the current server.

 Notes
An alias can be defined for a table, view, or alias that is not at the current server.
When so defined, the existence of the referenced object is not verified at the time
the alias is created. But the object must exist when a statement containing the alias
is executed. And if that object is also an alias, it must refer to a table or view at the
server where that alias is defined.

A warning occurs if an alias is defined for a table or view that is local to the current
server but does not exist.

 Example
Create an alias for a catalog table at a DB2 with location name
DB2USCALABOA5281.

CREATE ALIAS LATABLES FOR DB2USCALABOA5281.SYSIBM.SYSTABLES;

  Chapter 6. Statements 271



 CREATE DATABASE  
 

 CREATE DATABASE
The CREATE DATABASE statement defines a DB2 database at the current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� The CREATEDBA privilege
� The CREATEDBC privilege
� SYSADM or SYSCTRL authority

If ROSHARE is specified, the privilege set must include SYSADM or SYSCTRL
authority.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the privileges held by the
SQL authorization ID of the process.

See “Notes” on page 274 for the authorization effect of a successful CREATE
DATABASE statement.

 Syntax

 

 ┌ ┐─────────────────────────────────────────
��─ ─CREATE DATABASE──database-name─ ───(1) ───

�
┴──┬ ┬─────────────────────────────────── ────────────────────��

 │ │┌ ┐─BP,────
 ├ ┤ ─BUFFERPOOL─ ──┴ ┴─bpname─ ───────────
 ├ ┤ ─ROSHARE─ ──┬ ┬─OWNER─ ───────────────
 │ │└ ┘─READ──
 ├ ┤ ─AS WORKFILE─ ──┬ ┬──────────────────
 │ │└ ┘ ─FOR──member-name─
 │ │┌ ┐─SYSDEFLT──────
 ├ ┤ ─STOGROUP─ ──┴ ┴─stogroup-name─ ──────

|  └ ┘|  ─CCSID─ ──┬ ┬─ASCII── ────────────────
|  └ ┘─EBCDIC─

Note:
1 The same clause must not be specified more than once.

 Description
database-name

Names the database. The name must not start with DSNDB and must not
identify a database that exists at the current server. If the database is to be a
work file database in a data sharing environment, DSNDB07 is an acceptable
work file database name. However, only one member of a data sharing group
can use DSNDB07 as the name of its work file database.

272 SQL Reference  



  CREATE DATABASE
 

BUFFERPOOL bpname
Specifies the default buffer pool for table spaces and indexes within the
database. The default is BP0.

32KB buffer pools apply only to table spaces. If a 32KB buffer pool name is
specified, the default buffer pool for indexes in the database is BP0.

See “Naming Conventions” on page 48 for more details about bpname.

ROSHARE
Indicates how the database will be shared using shared read-only data. If
ROSHARE is omitted, the database will not be shared. For an explanation of
shared read-only data, see Appendix F (Volume 2) of Administration Guide.

OWNER The database will be shared, and the current server will be the DB2
that can update the database.

READ The current server is to have read-only access to the database
through shared read-only data.

AS WORKFILE
Indicates that this is a work file database. In a non-data-sharing environment,
the clause is ignored.

FOR member-name
Specifies the member for which this database is to be a work file. Only one
work file database can be created for each DB2 subsystem.

If FOR member-name is not specified, the member is the DB2 subsystem
on which the CREATE DATABASE statement is executed.

| The CCSID clause is not supported for work file databases. If you specify AS
| WORKFILE, do not use the CCSID clause.

STOGROUP stogroup-name
Names the storage group to be used, as required, as a default storage group to
support DASD space requirements for table spaces and indexes within the
database. The default is SYSDEFLT.

| CCSID encoding-scheme
| Specifies the default encoding scheme for data stored in the database. The
| default applies to table spaces created in the database. All tables stored within
| a table space must use the same encoding scheme.

| ASCII Specifies that the data must be encoded using the ASCII CCSIDs
| specified during installation.

| EBCDIC Specifies that the data must be encoded using the EBCDIC CCSIDs
| specified during installation.

| Usually, each encoding scheme requires only a single CCSID. Additional
| CCSIDs are needed when mixed or graphic data is used.

| The option defaults to the value of field DEF ENCODING SCHEME on
| installation panel DSNTIPF.

| Do not use the CCSID clause if you specify the AS WORKFILE clause.

  Chapter 6. Statements 273



 CREATE DATABASE  
 

 Notes
If the statement is embedded in an application program, the owner of the plan or
package is the owner of the database. If the statement is dynamically prepared, the
SQL authorization ID of the process is the owner of the database.

If the owner of the database has the CREATEDBA, SYSADM, or SYSCTRL
authority, the owner acquires DBADM authority for the database. DBADM authority
for a database includes table privileges on all tables in that database. Thus, if a
user with SYSCTRL authority creates a database, that user has table privileges on
all tables in that database. This is an exception to the rule that SYSCTRL authority
does not include table privileges.

If the owner of the database has the CREATEDBC privilege, but not the
CREATEDBA privilege, the owner acquires DBCTRL authority for the database. In
this case, no authorization ID has DBADM authority for the database until it is
granted by an authorization ID with SYSADM authority.

 Examples
Example 1: Create database DSN8D51P. DSN8G510 is the default storage group
to be used for table spaces and indexes in the database. BP2 is the default buffer
pool to be used for table spaces and indexes in the database.

CREATE DATABASE DSN8D51P

 STOGROUP DSN8G51,

 BUFFERPOOL BP2;

Example 2: Create database DSN8TEMP. Use the default DB2 storage group and
buffer pool and no shared read-only data.

CREATE DATABASE DSN8TEMP;

274 SQL Reference  



  CREATE GLOBAL TEMPORARY TABLE
 

| CREATE GLOBAL TEMPORARY TABLE
| The CREATE GLOBAL TEMPORARY TABLE statement creates a description of a
| temporary table at the current server.

|  Invocation
| This statement can be embedded in an application program or issued interactively.
| It is an executable statement that can be dynamically prepared.

|  Authorization
| The privilege set defined below must include at least one of the following:

| � The CREATETMTAB system privilege
| � The CREATETAB database privilege for any database
| � DBADM, DBCTRL, or DBMAINT authority for any database
| � SYSADM or SYSCTRL authority

| If the LIKE keyword is used, additional authorization might be required, as
| explained in the description of that clause.

# Privilege Set: The privilege set is the same as the privilege set for the CREATE
# TABLE statement. See “Authorization” on page 308 for details.

|  Syntax

|  

|  ┌ ┐─,───────────
| ��─| ─CREATE GLOBAL TEMPORARY TABLE──table-name─ ──┬ ┬|  ─(─ ───

�
┴─column-spec─ ─)─ ──┬ ┬─────────────────── ─────��

|  └ ┘|  ─LIKE─ ──┬ ┬─table-name─ ─ └ ┘|  ─CCSID─ ──┬ ┬─ASCII──
|  └ ┘─view-name── └ ┘─EBCDIC─

| column-spec:|  

| ��─|  ─column-name──data-type─|  ───(1) ──┬ ┬──────────────────────|  ──┬ ┬────────── ───────────────────────────────��
|  └ ┘|  ─FOR─ ──┬ ┬─BIT─── ─DATA─ └ ┘─NOT NULL─
|  ├ ┤─MIXED─
|  └ ┘─SBCS──

| Note:
| 1 FOR subtype DATA and NOT NULL can be specified in any order.

  Chapter 6. Statements 275



 CREATE GLOBAL TEMPORARY TABLE  
 

| data-type:|  

| ��─ ──┬ ┬──┬ ┬─INTEGER─ ────────────────────────────────────── ───────────────────────────────────────────��
|  │ │└ ┘─INT─────
|  ├ ┤─── ──SMALLINT─ ─────────────────────────────────────
|  ├ ┤|  ──┬ ┬─DECIMAL─ ──┬ ┬────────────────────────────── ────
|  │ │├ ┤─DEC───── └ ┘|  ─(──integer─ ──┬ ┬─────────── ─)─
|  │ │└ ┘─NUMERIC─ └ ┘─, integer─
|  ├ ┤──┬ ┬|  ─FLOAT─ ──┬ ┬─────────────── ─────────────────────
|  │ ││ │└ ┘| ─(──integer──)─
|  │ │├ ┤─REAL─────────────────────
|  │ ││ │┌ ┐─PRECISION─
|  │ │└ ┘|  ─DOUBLE─ ──┴ ┴─────────── ───
|  ├ ┤|  ──┬ ┬|  ──┬ ┬─CHARACTER─ ──┬ ┬─────────────── ─────────────
|  │ ││ │└ ┘─CHAR────── └ ┘| ─(──integer──)─
|  │ │├ ┤─── ─|  ──┬ ┬| ─VARCHAR──────────────── ─(──integer──)─
|  │ ││ │└ ┘|  ──┬ ┬─CHARACTER─ ─VARYING─
|  │ ││ │└ ┘─CHAR──────
|  │ │└ ┘|  ─LONG VARCHAR──────────────────────────────────
|  ├ ┤|  ──┬ ┬| ─── ──GRAPHIC─ ──┬ ┬─────────────── ─── ────────────
|  │ ││ │└ ┘| ─(──integer──)─
|  │ │├ ┤|  ─── ─| ─── ──VARGRAPHIC─ ─(──integer──)─
|  │ │└ ┘|  ─LONG VARGRAPHIC───────────────────
|  ├ ┤─── ──DATE─ ─────────────────────────────────────────
|  ├ ┤─── ──TIME─ ─────────────────────────────────────────
|  └ ┘─── ──TIMESTAMP─ ────────────────────────────────────

|  Description
| table-name
| Names the temporary table. The name, including the implicit or explicit qualifier,
| must not identify a table, view, alias, synonym, or temporary table that exists at
| the application server.

| The qualification rules for table-name are the same as for table-name in the
| CREATE TABLE statement. (See “table-name” on page 311.)

| The owner acquires ALL PRIVILEGES on the table WITH GRANT OPTION and
| the authority to drop the table.

| column-spec
| Defines the attributes of a column for each instance of the table. The number of
| columns defined must not exceed 750. The maximum record size must not
| exceed 32714 bytes. The maximum row size must not exceed 32706 bytes (8
| bytes less than the maximum record size).

| column-name
| Names the column. The name must not be qualified and must not be the same
| as the name of another column in the table.

| data-type
| Specifies the data type of the column. The types allowed and the rules are the
| same as those for the CREATE TABLE statement. See “data-type” on page
| 311.

| FOR subtype DATA
| Specifies a subtype for a character string column. The subtypes allowed and
| the rules followed are the same as those for the CREATE TABLE statement.
| See “FOR subtype DATA” on page 313.

276 SQL Reference  



  CREATE GLOBAL TEMPORARY TABLE
 

| NOT NULL
| Specifies that the column cannot contain nulls. Omission of NOT NULL
| indicates that the column can contain nulls.

| LIKE table-name or view-name
| Specifies that the columns of the table have exactly the same name and
| description as the columns of the identified table or view. The name specified
| after LIKE must identify a table, view, or temporary table that exists at the
| current server. The privilege set must implicitly or explicitly include the SELECT
| privilege on the identified table or view.

| This clause is similar to the LIKE clause on CREATE TABLE, but it has the
| following differences:

| � If any column of the identified table or view has an attribute value that is
| not allowed for a column in a temporary table, that attribute value is
| ignored. The corresponding column in the new temporary table has the
| default value for that attribute unless otherwise indicated.

| � If any column of the identified table or view allows a default value other
| than null, then that default value is ignored and the corresponding column
| in the new temporary table has no default value. A default value other than
| null is not allowed for any column in a temporary table.

| CCSID encoding-scheme
| Specifies the encoding scheme for data stored in the table.

| ASCII Specifies that the data must be encoded by using the ASCII
| CCSIDs that are specified during installation.

| EBCDIC Specifies that the data must be encoded by using the EBCDIC
| CCSIDs that are specified during installation.

| Usually, each encoding scheme requires only a single CCSID. Additional
| CCSIDs are needed when mixed or graphic data is used.

| The option defaults to the value of field DEF ENCODING SCHEME on
| installation panel DSNTIPF.22

| An error is issued if a valid ASCII CCSID has not been specified for the
| installation.

|  Notes
| Instantiation and termination: Let T be a temporary table defined at the current
| server and let P denote an application process:

| � An empty instance of T is created as a result of the first implicit or explicit
| reference to T in an OPEN, SELECT INTO, INSERT, or DELETE operation that
| is executed by any program in P.

| � Any program in P can reference T and any reference to T by a program in P is
| a reference to that instance of T.

| 22 When you use the LIKE clause with the CREATE GLOBAL TEMP TABLE statement, the encoding scheme of the table that you
| are copying is not used to create the new table.

  Chapter 6. Statements 277



 CREATE GLOBAL TEMPORARY TABLE  
 

| When a commit operation terminates a unit of work in P and no program in P
| has an open WITH HOLD cursor that is dependent on T, the commit includes
| the operation DELETE FROM T.

| � When a rollback operation terminates a unit of work in P, the rollback includes
| the operation DELETE FROM T.

| � When the connection to the application server at which an instance of T was
# created terminates, the instance of T is destroyed. However, the definition of T
# remains. A DROP TABLE statement must be executed to drop the definition of
# T.

| Restrictions and extensions: Let T denote a temporary table:

| � Columns of T cannot have default values other than null.

| � T cannot have unique constraints, referential constraints, or check constraints.

| � T cannot be defined as the parent in a referential constraint.

| � T cannot be referenced in:

| – A CREATE INDEX statement.

| – A LOCK TABLE statement.

| – As the object of an UPDATE statement in which the object is T or a view of
| T. However, you can reference T in the WHERE clause of an UPDATE
| statement.

| – DB2 utility commands.

| � As with all tables stored in a work file, query parallelism cannot be considered
| for any query that references T.

| � If T is referenced in the subselect of a CREATE VIEW statement, you cannot
| specify a WITH CHECK OPTION clause in the CREATE VIEW statement.

| � ALTER TABLE T is valid only if the statement is used to add a column to T.
| Any column that you add to T must have a default value of null.

| When you alter T, any plans and packages that refer to the table are
| invalidated, and DB2 automatically rebinds the plans and packages the next
| time they are run.

| � DELETE FROM T or a view of T is valid only if the statement does not include
| a WHERE or WHERE CURRENT OF clause. In addition, DELETE FROM view
| of T is valid only if the view was created (CREATE VIEW) without the WHERE
| clause. A DELETE FROM statement deletes all the rows from the table or view.

| � You can refer to T in the FROM clause of any subselect. If you refer to T in the
| first FROM clause of a select-statement, you cannot specify a FOR UPDATE
| OF clause.

| � You cannot use a DROP DATABASE statement to implicitly drop T. To drop T,
| reference T in a DROP TABLE statement.

| � A temporary table instantiated by an SQL statement using a three-part table
| name (that is, through a DB2 private protocol) can be accessed by another
| SQL statement using the same three-part name in the same application
| process for as long as the DB2 connection which established the instantiation
| is not terminated.

278 SQL Reference  



  CREATE GLOBAL TEMPORARY TABLE
 

| � GRANT ALL PRIVILEGES ON T is valid, but you cannot grant specific
| privileges on T.

| Of the ALL privileges, only the ALTER, INSERT, DELETE, and SELECT
| privileges can actually be used on T.

| � REVOKE ALL PRIVILEGES ON T is valid, but you cannot revoke specific
| privileges from T.

| � A COMMIT operation deletes all rows of every temporary table of the
| application process, but the rows of T are not deleted if any program in the
| application process has an open WITH HOLD cursor that is dependent on T. In
| addition, if RELEASE(COMMIT) is in effect and no open WITH HOLD cursors
| are dependent on T, all logical work files for T are also deleted.

| � A ROLLBACK operation deletes all rows and all logical work files of every
| temporary table of the application process.

| � You can reuse threads when using a temporary table, and a logical work file for
| a temporary table name remains available until deallocation. A new logical work
| file is not allocated for that temporary table name when the thread is reused.

| � You can refer to T in the following statements:

| DROP TABLE
| CREATE VIEW
| COMMENT ON
| INSERT

| SELECT INTO
| LABEL ON
| CREATE ALIAS
| CREATE SYNONYM

| CREATE TABLE LIKE
| DESCRIBE TABLE
| DECLARE TABLE

|  Examples
| Example 1: Create a temporary table, CURRENTMAP. Name two columns, CODE
| and MEANING, both of which cannot contain nulls. CODE contains numeric data
| and MEANING has character data. Assuming a value of NO for the field MIXED
| DATA on installation panel DSNTIPF, column MEANING has a subtype of SBCS:

| CREATE GLOBAL TEMPORARY TABLE CURRENTMAP

| (CODE INTEGER NOT NULL, MEANING VARCHAR(254) NOT NULL);

| Example 2: Create a temporary table, EMP:

| CREATE GLOBAL TEMPORARY TABLE EMP

|  (TMPDEPTNO CHAR(3) NOT NULL,

| TMPDEPTNAME VARCHAR(36) NOT NULL,

|  TMPMGRNO CHAR(6) ,

|  TMPLOCATION CHAR(16) )

  Chapter 6. Statements 279



 CREATE INDEX  
 

 CREATE INDEX
The CREATE INDEX statement creates a partitioned or nonpartitioned index and
an index space at the current server. The columns included in the key of the index
are columns of a table at the current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� The INDEX privilege on the table
� Ownership of the table
� DBADM authority for the database containing the table
� SYSADM or SYSCTRL authority

Additional privileges may be needed, as explained in the description of the
BUFFERPOOL and USING STOGROUP clauses.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
specified index name includes a qualifier that is not the same as this authorization
ID, the privilege set must include SYSADM or SYSCTRL authority, or DBADM or
DBCTRL authority for the database.

If the statement is dynamically prepared, the privilege set is the privileges held by
the SQL authorization ID of the process. However, if the specified index name
includes a qualifier that is not the same as this authorization ID, the following rules
apply:

� If the privilege set includes SYSADM or SYSCTRL authority, or DBADM or
DBCTRL authority for the database, any qualifier is valid.

� If the privilege set includes none of these authorities, the qualifier is valid only if
it is the same as one of the authorization IDs of the process and the privilege
set held by that authorization ID includes all privileges needed to create the
index. This is an exception to the rule that the privilege set is the privileges
held by the SQL authorization ID of the process.

280 SQL Reference  



  CREATE INDEX
 

 Syntax

 

��──CREATE─ ─── ───┬ ┬───────────── ──┬ ┬──────────────────────────── ─INDEX──index-name──ON──table-name────�
 └ ┘ ─TYPE─ ──┬ ┬─1─ └ ┘ ─UNIQUE─ ──┬ ┬────────────────

└ ┘─2─ └ ┘─WHERE NOT NULL─

 ┌ ┐─,─────────────────────
 │ │┌ ┐─ASC── ┌ ┐──────────────────────
�─ ──( ───

�
┴─column-name─ ──┼ ┼────── ) ───(1) ───

�
┴──┬ ┬──────────────── ──────────────────────────────────────────�

 └ ┘─DESC─ ├ ┤─using-block────
 ├ ┤─free-block─────
 └ ┘─gbpcache-block─

�─ ──┬ ┬─────────────────────────────────────────────────────────────────────────────────────────── ─────�
 └ ┘ ─CLUSTER─ ──┬ ┬──────────────────────────────────────────────────────────────────────────────
 │ │┌ ┐─,──────────────────────────────────────────────────────────────────
 │ ││ │┌ ┐─,──────── ┌ ┐──────────────────────
 └ ┘ ─(─ ───

�
┴─PART───(2) ─integer─ ──VALUES ( ───

�
┴─constant─ ) ───(1) ───

�
┴──┬ ┬──────────────── ─)─

 ├ ┤─using-block────
 ├ ┤─free-block─────
 └ ┘─gbpcache-block─

 ┌ ┐─────────────────────────────────
�─ ───(1) ───

�
┴──┬ ┬─────────────────────────── ─────────────────────────────────────────────────────────────��

 │ │┌ ┐─4──
 ├ ┤──SUBPAGES ───(3) ──┼ ┼─1── ──────
 │ │├ ┤─2──
 │ │├ ┤─8──
 │ │└ ┘─16─
 ├ ┤─BUFFERPOOL──bpname────────
 │ │┌ ┐─YES─
 ├ ┤ ─CLOSE─ ──┴ ┴─NO── ───────────
 ├ ┤─DSETPASS──password────────
 │ │┌ ┐─NO──
 ├ ┤ ─DEFER─ ──┴ ┴─YES─ ───────────

|  └ ┘|  ─PIECESIZE──integer─ ──┬ ┬─K─
|  ├ ┤─M─
|  └ ┘─G─

Notes:
1 The same clause must not be specified more than once.
2 The presence of one or more PART clauses indicates that the index is a partitioned index; otherwise

it is a nonpartitioned index.
3 In a data sharing environment, the default is 1.

using-block: 

�─ ─USING─ ──┬ ┬─VCAT──catalog-name────────────────────────────────────── ────────────────────────────────�
 │ │┌ ┐───────────────────────────
 └ ┘ ─STOGROUP──stogroup-name─ ───(1) ───

�
┴──┬ ┬─────────────────────

 │ │┌ ┐─12──────
 ├ ┤ ─PRIQTY─ ──┴ ┴─integer─
 ├ ┤ ─SECQTY─ ─integer─────
 │ │┌ ┐─NO──
 └ ┘ ─ERASE─ ──┴ ┴─YES─ ─────

Note:
1 The same clause must not be specified more than once.

  Chapter 6. Statements 281



 CREATE INDEX  
 

free-block: 

 ┌ ┐─────────────────────────────
��─ ───(1) ───

�
┴──┬ ┬─────────────────────── ────────────────────────────────────────────────────────────────��

 │ │┌ ┐─,───────
 ├ ┤ ─FREEPAGE─ ──┴ ┴─integer─
 │ │┌ ┐─1,──────
 └ ┘ ─PCTFREE─ ──┴ ┴─integer─ ─

Note:
1 The same clause must not be specified more than once.

gbpcache-block: 

�─ ──┬ ┬─────────────────────── ─────────────────────────────────────────────────────────────────────────�
 │ │┌ ┐─CHANGED─
 └ ┘ ─GBPCACHE─ ──┴ ┴─ALL─────

 Description
TYPE n

Specifies the type of index, 1 or 2.

| Do not specify TYPE 1 if the table space containing the identified table:

| � Has a LOCKSIZE of ROW
| � Is a large partitioned table space
| � Has an ASCII encoding scheme

If you specify TYPE 2, any specification of SUBPAGES is ignored, and a
warning message is issued. If you specify TYPE 1 in a data sharing
environment, a warning message is issued if you specify a value greater than 1
for SUBPAGES. A type 1 index with more than one subpage cannot be
accessed when there is inter-DB2 R/W interest in the index.

If you do not specify TYPE, its default value is TYPE 2 if the table space
containing the table:

� Has a LOCKSIZE of ROW
� Is a large partitioned table space
� Has an ASCII encoding scheme

In all other cases, its default value is the type specified in field DEFAULT
INDEX TYPE on installation panel DSNTIPE. The default for the field on that
panel is TYPE 2.

UNIQUE
Prevents the table from containing two or more rows with the same value of the
index key. If any column of the key can contain null values, the meaning of “the
same value” is determined by the use or omission of the option WHERE NOT
NULL:

� If WHERE NOT NULL is omitted, any two null values are taken to be equal.
For example, if the key is a single column, that column can contain no
more than one null value.

282 SQL Reference  



  CREATE INDEX
 

� If WHERE NOT NULL is used, any two null values are taken to be unequal.
If the key is a single column, that column can contain any number of null
values, though its other values must be unique. You can specify WHERE
NOT NULL only if TYPE is 2, either explicitly or by default.

Unless DEFER YES is specified, the uniqueness constraint is also checked
during the execution of the CREATE INDEX statement. If the table already
contains rows with duplicate key values, the index is not created. Refer to
Section 2 (Volume 1) of Administration Guide for more information about using
the RECOVER INDEX utility when duplicate keys exist for an index defined with
UNIQUE and DEFER YES.

| A table requires a unique index if you use the UNIQUE or PRIMARY KEY
| clause in the CREATE TABLE statement. DB2 implicitly creates those unique
| indexes if the CREATE TABLE statement is processed by the schema
| processor; otherwise, you must explicitly create them. If any of the unique
| indexes that must be explicitly defined do not exist, the definition of the table is
| incomplete, and the following rules apply:

| � Let K denote a key for which a required unique index does not exist and let
| n denote the number of unique indexes that remain to be created before
| the definition of the table is complete. (For a new table that has no indexes,
| K is its primary key or any of the keys defined in the CREATE TABLE
| statement as UNIQUE and n is the number of such keys. After the
| definition of a table is complete, its status can return to incomplete only by
| the dropping of its primary index; in that case K is the primary key of the
| table and n is one.)

| � The creation of the unique index reduces n by one if the index key is
| identical to K. The keys are identical only if they have the same columns in
| the same order.

| � If n is now zero, the creation of the index completes the definition of the
| table.

| � If K is a primary key, the description of the index indicates that it is a
| primary index. If K is not a primary key, the description of the index
| indicates that it enforces the uniqueness of a key defined as UNIQUE in
| the CREATE TABLE statement.

INDEX index-name
Names the index. The name must not identify an index that exists at the
current server.

The associated index space also has a name. That name appears as a
qualifier in the names of data sets defined for the index. If the data sets are
managed by the user, the name is the same as the second (or only) part of
index-name. If this identifier consists of more than eight characters, only the
first eight are used. The name of the index space must be unique among the
names of the index spaces and table spaces of the database for the identified
table. If the data sets are defined by DB2, then DB2 derives a unique name.

If the index name is unqualified and the statement is embedded in an
application program, the owner of the index is the authorization ID that serves
as the implicit qualifier for unqualified object names. This is the authorization ID
in the QUALIFIER operand when the plan or package was created or last
re-bound. If QUALIFIER was not used, the owner of the index is the owner of
the package or plan.

  Chapter 6. Statements 283



 CREATE INDEX  
 

If the index name is unqualified and the statement is dynamically prepared, the
SQL authorization ID is the owner of the index.

ON table-name
Identifies the table on which the index is created. The name must identify a

| table that exists at the current server. The name must not identify a temporary
| table.

If qualified, table-name can be a two-part or three-part name. If a three-part
name is used, the first part must match the value of the field DB2 LOCATION
NAME of installation panel DSNTIPR at the current server. (If the current server
is not the local DB2, this name is not necessarily the name in the CURRENT
SERVER special register.) Whether the name is two-part or three-part, the
authorization ID that qualifies the name is the owner of the index.

The table space that contains the named table must be available to DB2 so
that its data sets can be opened.

column-name,...
Specifies the columns of the index key.

Each column-name must identify a column of the table. Do not specify more
than 64 columns or the same column more than once. Do not qualify
column-name.

The sum of the length attributes of the columns must not be greater than m-n,
where:

� n is the number of columns that can contain null values
� m depends on the number of subpages and whether the index has the

attribute UNIQUE:

ASC
Puts the index entries in ascending order by the column. This is the default.

DESC
Puts the index entries in descending order by the column.

 using-block 

The components of the USING clause are discussed below, first for nonpartitioned
indexes and then for partitioned indexes.

Table 18. Values of m

SUBPAGES UNIQUE# m1

<8 - 254

8 Yes 241

8 No 238

16 Yes 114

16 No 111

# Notes:

# 1. The values of m shown are for type 1
# indexes. For type 2 indexes, the values of
# m are the values shown plus 1.

284 SQL Reference  



  CREATE INDEX
 

Using Clause for Nonpartitioned Indexes
For nonpartitioned indexes, the USING clause indicates whether the data sets
for the index are to be managed by the user or managed by DB2. If DB2
definition is specified, the clause also gives space allocation parameters
(PRIQTY and SECQTY) and an erase rule (ERASE).

If you omit USING, the data sets will be managed by DB2 on volumes listed in
the default storage group of the table's database. That default storage group
must exist. With no USING clause, PRIQTY, SECQTY, and ERASE assume
their default values.

VCAT catalog-name
Specifies that the first data set for the index is managed by the user, and
that following data sets, if needed, are also managed by the user.

The data sets defined for the index are linear VSAM data sets cataloged in
an integrated catalog facility catalog identified by catalog-name. Because
catalog-name is a short identifier, an alias must be used if the catalog
name is longer than eight characters.

Conventions for index data set names are given in Section 2 (Volume 1) of
Administration Guide. catalog-name is the first qualifier for each data set
name.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems. However, the same catalog-name must be used by the
subsystems when shared read-only data is used.

STOGROUP stogroup-name
Specifies that DB2 will define and manage the data sets for the index.
Each data set will be defined on a volume listed in the identified storage
group. The values specified (or the defaults) for PRIQTY and SECQTY
determine the primary and secondary allocations for the data set. If
PRIQTY+118×SECQTY is 2 gigabytes or greater, more than one data set
could eventually be used, but only the first is defined during execution of
this statement.

To use USING STOGROUP, the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for that storage group.
Moreover, stogroup-name must identify a storage group that exists at the
current server and includes in its description at least one volume serial
number. The description can indicate that the choice of volumes will be left
to Storage Management Subsystem (SMS). Each volume specified in the
storage group must be accessible to MVS for dynamic allocation of the
data set, and all these volumes must be of the same device type.

The integrated catalog facility catalog used for the storage group must not
contain an entry for the first data set of the index. If the catalog is password
protected, the description of the storage group must include a valid
password.

The storage group supplies the data set name. The first level qualifier is
also the name of, or an alias for, the integrated catalog facility catalog on
which the data set is to be cataloged. The naming convention for the data
set is the same as if the data set is managed by the user.

  Chapter 6. Statements 285



 CREATE INDEX  
 

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed
data set. The primary space allocation is at least n kilobytes, where n
is:

12 If integer is less than 12 or PRIQTY is omitted
integer If integer is between 12 and 4194304
4194304 If integer is greater than 4194304

DB2 specifies the primary space allocation to access method services
using the smallest multiple of 4KB not less than n. The allocated space
can be greater than the amount of space requested by DB2. For
example, it could be the smallest number of tracks that will
accommodate the space requested. To more closely estimate the
actual amount of storage, see the description of the DEFINE CLUSTER
command in DFSMS/MVS: Access Method Services for the Integrated
Catalog.

When determining a suitable value for PRIQTY, be aware that two of
the pages of the primary space are used by DB2 for purposes other
than storing index entries.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed
data set. The secondary space allocation is at least n kilobytes, where
n is:

12 If SECQTY and PRIQTY are omitted
131068 If integer is greater than 131068
integer If integer is not greater than 131068

If integer is 0, no data set for the index can be extended. If you specify
PRIQTY and do not specify SECQTY, the default for SECQTY is either
10% of PRIQTY or 3 times the index page size (4K), whichever is

# larger. However, if this value exceeds 131068, the default is 131068.

DB2 specifies the secondary space allocation to access method
services using the smallest multiple of 4KB not less than n. The
allocated space can be greater than the amount of space requested by
DB2. For example, it could be the smallest number of tracks that will
accommodate the space requested. To more closely estimate the
actual amount of storage, see the description of the DEFINE CLUSTER
command in DFSMS/MVS: Access Method Services for the Integrated
Catalog.

ERASE
Indicates whether the DB2-managed data sets are to be erased when
they are deleted during the execution of a utility or an SQL statement
that drops the index. Refer to DFSMS/MVS: Access Method Services
for the Integrated Catalog for more information.

NO
Does not erase the data sets. Operations involving data set
deletion will perform better than ERASE YES. However, the data is
still accessible, though not through DB2. This is the default.

286 SQL Reference  



  CREATE INDEX
 

YES
Erases the data sets. As a security measure, DB2 overwrites all
data in the data sets with zeros before they are deleted.

USING Clause for Partitioned Indexes:
If the index is partitioned, there is a PART clause for each partition. Within a
PART clause, a USING clause is optional. If a USING clause is present, it
applies to that partition in the same way that a USING clause for an
nonpartitioned index applies to the entire index.

When a USING block is absent from a PART clause, the USING clause
parameters for the partition depend on whether a USING clause is specified
before the PART clauses.

� If the USING clause is specified, it applies to every PART clause that does
not include a USING clause.

� If the USING clause is not specified, the following defaults apply to the
partition:

– Data sets are managed by DB2
– The default storage group for the database is used
– A value of 12 is used for PRIQTY and SECQTY
– A value of NO is used for ERASE

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the
specified catalog name. You must specify the catalog name in the form of a
short identifier. Thus, you must specify an alias if the name of the
integrated catalog facility catalog is longer than eight characters.

If n is the number of the partition, the identified integrated catalog facility
catalog must already contain an entry for the nth data set of the index,
conforming to the DB2 naming convention for data sets set forth in Section
2 (Volume 1) of Administration Guide.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems. However, the same catalog-name must be used by the
subsystems when shared read-only data is used.

DB2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
If USING STOGROUP is used, explicitly or by default, for a partition n, DB2
defines the data set for the partition during the execution of the CREATE
INDEX statement, using space from the named storage group. The
privilege set must include SYSADM authority, SYSCTRL authority, or the
USE privilege for that storage group. The integrated catalog facility catalog
used for the storage group must NOT contain an entry for the nth data set
of the index.

stogroup-name must identify a storage group that exists at the current
server and the privilege set must include SYSADM authority, SYSCTRL
authority, or the USE privilege for the storage group.

  Chapter 6. Statements 287



 CREATE INDEX  
 

If you omit PRIQTY, SECQTY, or ERASE from a USING STOGROUP
clause for some partition, their values are given by the next USING
STOGROUP clause that governs that partition: either a USING clause that
is not in any PART clause, or a default USING clause. DB2 assumes one
and only one data set for each partition.

End of using-block

 free-block 

FREEPAGE integer
Specifies how often to leave a page of free space when index entries are
created as the result of executing a DB2 utility or when creating an index for a
table with existing rows. One free page is left for every integer pages. The
value of integer can range from 0 to 255. The default is 0, leaving no free
pages.

PCTFREE integer
Determines the percentage of free space to leave in each nonleaf page and
subpage when entries are added to the index or index partition as the result of
executing a DB2 utility or when creating an index for a table with existing rows.
The first entry in a page or subpage is loaded without restriction. When
additional entries are placed in a nonleaf page, the percentage of free space is
at least as great as integer. When additional entries are placed in a leaf page,
the percentage of free space is at least a great as integer/m, where m is the
number of subpages.

The value of integer can range from 0 to 99, however, if a value greater than
10 is specified, only 10 percent of free space will be left in nonleaf pages. The
default is 10.

If the index is partitioned, the values of FREEPAGE and PCTFREE for a
particular partition are given by the first of these choices that applies:

� The values of FREEPAGE and PCTFREE given in the PART clause for that
partition. Do not use more than one free-block in any PART clause.

� The values given in a free-block that is not in any PART clause.

� The default values FREEPAGE 0 and PCTFREE 10.

End of free-block

 gpbcache-block 

GBPCACHE
Specifies what index pages are written to the group buffer pool in a data
sharing environment. In a non-data-sharing environment, you can specify this
option, but it is ignored.

CHANGED
When there is inter-DB2 R/W interest on the index or partition, updated
pages are written to the group buffer pool. When there is no inter-DB2 R/W
interest, the group buffer pool is not used. Inter-DB2 R/W interest exists
when more than one member in the data sharing group has the index or

288 SQL Reference  



  CREATE INDEX
 

partition open, and at least one member has it open for update.
GBPCACHE CHANGED is the default.

ALL
Indicates that pages are to be cached in the group buffer pool as they are
read in from DASD.

Exception: In the case of a single updating DB2 when no other DB2s have
any interest in the page set, no pages are cached in the group buffer pool.

In a data sharing environment, hiperpools are not used for indexes or
partitions that are defined with GBPCACHE ALL.

If the index is partitioned, the value of GBPCACHE for a particular partition is
given by the first of these choices that applies:

1. The value of GBPCACHE given in the PART clause for that partition. Do
not use more than one gbpcache-block in any PART clause.

2. The value given in a gbpcache-block that is not in any PART clause.

3. The default value is CHANGED.

End of gpbcache-block

CLUSTER
Specifies that the index is the clustering index of the table. Do not use
CLUSTER if CLUSTER was used in the definition of an existing index on the
table. If you do not use CLUSTER, the index is not a clustering index unless it
is the first index defined on the table in a nonpartitioned table space. In this
case, the first index implicitly serves as the clustering index until CLUSTER is
used in the definition of another index on the table.

# The implicit or explict clustering index is ignored when data is inserted into a
# table space that is defined with MEMBER CLUSTER. Instead of using cluster
# order, DB2 chooses where to locate the data based on available space. The
# MEMBER CLUSTER attribute only affects data that is inserted with the INSERT
# statement; data is always loaded and reorgnized in cluster order.

PART integer
A PART clause specifies the highest value of the index key in one partition
of a partitioned index. In this context, highest means highest in the sorting
sequences of the index columns. In a column defined as ascending (ASC),
highest and lowest have their usual meanings. In a column defined as
descending (DESC), the lowest actual value is highest in the sorting
sequence.

If you use CLUSTER, and the table is contained in a partitioned table
space, you must use exactly one PART clause for each partition (defined
with NUMPARTS on CREATE TABLESPACE). If there are p partitions, the
value of integer must range from 1 through p.

If the key of a partitioned index is longer than 40 bytes, only the first 40
bytes are used to determine the high value for each partition.

VALUES(constant,...)
You must use at least one constant after VALUES in each PART clause.
You can use as many as there are columns in the key. The concatenation

  Chapter 6. Statements 289



 CREATE INDEX  
 

of all the constants is the highest value of the key in the corresponding
partition of the index.

The use of the constants to define key values is subject to these rules:

� The first constant corresponds to the first column of the key, the
second constant to the second column, and so on. Each constant must

# have the same data type as its corresponding column. For example, if
# a column has a decimal data type, the constant must include a decimal
# point (.).

� The precision and scale of a decimal constant must not be greater than
the precision and scale of its corresponding column.

� If a string constant is longer or shorter than required by the length
attribute of its column, the constant is either truncated or padded on the
right to the required length. If the column is ascending, the padding
character is X'FF'; if the column is descending, the padding character
is X'00'.

� Using fewer constants than there are columns in the key has the same
effect as using the highest possible values for all omitted columns.

� The highest value of the key in any partition must be lower than the
highest value of the key in the next partition. If the key is longer than
40 bytes, this rule applies only to the first 40 bytes.

| � The highest value of the key in the last partition depends on the type of
| table space. For table spaces that are not large partitioned table
| spaces, the constants you specify after VALUES are not enforced. The
| highest value of the key that can be placed in the table is the highest
| possible value of the key.

| For large partitioned table spaces, the constants you specify are
| enforced. The value specified for the last partition is the highest value
| of the key that can be placed in the table. Any key values greater than
| the value specified for the last partition are out of range.

SUBPAGES integer
Gives the number of subpages for each physical page. (The subpage is the
unit of index locking.)

SUBPAGES is valid for TYPE 1 indexes. If you specify TYPE 2, SUBPAGES is
ignored and a warning message is issued.

Use 1, 2, 4, 8, or 16. The default is 4, except in a data sharing environment
when it is 1. In a data sharing environment, you must specify 1 for type 1
indexes to be shared; when there is more than one subpage, an index cannot
be accessed when there is inter-DB2 R/W interest in the index.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the index. The bpname must identify an
activated 4KB buffer pool and the privilege set must include SYSADM or
SYSCTRL authority or the USE privilege for the buffer pool.

The default is the default buffer pool of the database. If the default buffer pool
of the database is a 32KB page buffer pool, the default is BP0.

290 SQL Reference  



  CREATE INDEX
 

See “Naming Conventions” on page 48 for more details about bpname. See
Chapter 2 of Command Reference for a description of active and inactive buffer
pools.

CLOSE
Specifies whether or not the data set is eligible to be closed when the index is
not being used and the limit on the number of open data sets is reached.

YES
Eligible for closing. This is the default.

NO
Not eligible for closing

| If DSMAX is reached and there are no CLOSE YES page sets to close,
| CLOSE NO page sets will be closed.

DSETPASS password
Specifies a master level password sent to access method services when the
data sets of the index are used by DB2. password is a short identifier. If
delimited, password can contain any characters acceptable to access method
services.

If you use a storage group, password is the password that protects the data
sets as well as the password that is passed to access method services when
the data sets are used by DB2. If you do not use a storage group, you define
the password that protects the data sets through access method services.

If the index occupies more than one data set, all of its data sets that are
password-protected must have the same password.

The password does not apply to the data sets managed by Storage
Management Subsystem. To protect data sets defined to SMS, use RACF or a
similar external security system.

DEFER
Indicates whether the index is built during the execution of the CREATE INDEX
statement. Regardless of the option specified, the description of the index and
its index space is added to the catalog. If the table is empty and DEFER YES
is specified, the index is neither built nor placed in a recover pending state.
Refer to Section 2 (Volume 1) of Administration Guide for more information
about using DEFER.

NO
The index is built. This is the default.

YES
The index is not built. If the table is populated, the index is placed in a
recover pending state to indicate that the index must be recovered by the
RECOVER INDEX utility. A warning message is issued to inform the user
that the index has been placed in a recover pending state.

| PIECESIZE integer
# Specifies the maximum addressibility of each piece (data set) for a
# nonpartitioned index. The subsequent keyword K, M, or G, indicates the units
| of the value specified in integer.

  Chapter 6. Statements 291



 CREATE INDEX  
 

| K Indicates that the integer value is to be multiplied by 1 024 to specify
| the maximum piece size in bytes. The integer must be a power of
| two between 256 and 4 194 304.

| M Indicates that the integer value is to be multiplied by 1 048 576 to
| specify the maximum piece size in bytes. The integer must be a
| power of two between 1 and 4 096.

| G Indicates that the integer value is to be multiplied by 1 073 741 824
| to specify the maximum piece size in bytes. The integer must be a
| power of two between 1 and 4.

| In the above specification for piece size, spaces are permitted between the
| integer and the K, M, or G. They are not required.

| Valid values for piece size are as follows:

|   256 K
|   512 K
| 1024 K (or 1 M)
# 2048 K (or 2 M)
| 4096 K (or 4 M)
| 8192 K (or 8 M)
| 16384 K (or 16 M)
| 32768 K (or 32 M)
| 65536 K (or 64 M)
| 131072 K (or 128 M)
| 262144 K (or 256 M)
| 524288 K (or 512 M)
| 1048576 K (or 1024 M or 1 G)
| 2097152 K (or 2048 M or 2 G)
| 4194304 K (or 4096 M or 4 G)23

# As only a specification of the maximum amount of data that a piece can hold
# and not the actual allocation of storage, PIECESIZE has no effect on primary
# and secondary space allocation

| The default for piece size is 2 G (2 GB) for indexes backed by non-LARGE
| table spaces and 4 G (4 GB) for indexes backed by LARGE table spaces.

 Notes
If DEFER NO is implicitly or explicitly specified, the CREATE INDEX statement
cannot be executed while a DB2 utility has control of the table space that contains
the identified table.

If the identified table already contains data and if the index build is not deferred,
CREATE INDEX creates the index entries for it. If the table does not yet contain
data, CREATE INDEX creates a description of the index; the index entries are
created when data is inserted into the table.

| There are no restrictions on the use of ASC or DESC for the columns of a parent
| key or foreign key. An index on a foreign key does not have to have the same
| ascending and descending attributes as the index of the corresponding parent key.

| 23 Only valid for LARGE table spaces.

292 SQL Reference  



  CREATE INDEX
 

| EBCDIC and ASCII encoding schemes for an index: An index has the same
| encoding scheme as its associated table. For an ASCII table, all the indexes must
| be defined as type 2; the indexes are stored in ASCII order.

# Choosing a value for PIECESIZE: To choose a value for PIECESIZE, divide the
# size of the nonpartitioning index by the number of data sets that you want. For
# example, to ensure that you have 5 data sets for the nonpartitioned index, and your
# nonpartitioning index is 10 MB (and not likely to grow much), specify PIECESIZE 2
# M. If your nonpartitioned index is likely to grow, choose a larger value. Remember
# that 32 pieces is the limit if the underlying tablespace is not defined as LARGE and
# that 128 is the limit if the underlying tablespace is defined as LARGE.

Keep the PIECESIZE value in mind when you are choosing values for primary and
# secondary quantities. Ideally, the value of your primary quantity plus the secondary
# quantities should be evenly divisible into PIECESIZE.

Dropping an index: Partitioned indexes can only be dropped with a DROP of the
associated table space, whereas nonpartitioned indexes can be dropped with the
DROP INDEX statement.

Creating indexes on DB2 catalog tables: For details on creating indexes on
catalog tables, see “SQL Statements Allowed on the Catalog” on page 532.

 Examples
Example 1: Create a unique index, named DSN8510.XDEPT1, on table
DSN8510.DEPT. Index entries are to be in ascending order by the single column
DEPTNO. DB2 is to define the data sets for the index, using storage group

# DSN8G510. Each data set (piece) should hold 1megabyte of data at most. Use 512
# kilobgytes as the primary space allocation for each data set and 64 kilobytes as the
# secondary space allocation. These specifications enable each data set to be
# extended up to 8 times before a new data set is used—512KB + (8*64KB)=
# 1024KB.

Use 8 subpages for each physical page and associate the index with buffer pool
BP1. The data sets can be closed when no one is using the index and do not need
to be erased if the index is dropped. The VSAM password for the data sets is

# OSESAME. The maximum for each data set is 1 megabyte .

CREATE UNIQUE INDEX DSN851,.XDEPT1

 ON DSN851,.DEPT

 (DEPTNO ASC)

USING STOGROUP DSN8G51,

#  PRIQTY 512

#  SECQTY 64

 ERASE NO

 SUBPAGES 8

 BUFFERPOOL BP1

 CLOSE YES

 DSETPASS OSESAME;

# PIECESIZE 1 M;

Example 2: Create a cluster index, named XEMP2, on table EMP in database
DSN8510. Put the entries in ascending order by column EMPNO. Let DB2 define
the data sets for each partition using storage group DSN8G510. Make the primary

# space allocation be 36 kilobytes, and allow DB2 to use the default value for

  Chapter 6. Statements 293



 CREATE INDEX  
 

# SECQTY, which for this example is 3 times 4KB (12 kilobytes). If the index is
dropped, the data sets need not be erased.

There are to be 4 partitions, with index entries divided among them as follows:

Partition 1: entries up to H99
Partition 2: entries above H99 up to P99
Partition 3: entries above P99 up to Z99
Partition 4: entries above Z99.

Use 8 subpages for each physical page, and associate the index with buffer pool
BP1. The data sets can be closed when no one is using the index. The VSAM
password for the data sets is OSESAME.

CREATE INDEX DSN851,.XEMP2

 ON DSN851,.EMP

 (EMPNO ASC)

USING STOGROUP DSN8G51,

 PRIQTY 36

 ERASE NO

 SUBPAGES 8

 CLUSTER

(PART 1 VALUES('H99'),

PART 2 VALUES('P99'),

PART 3 VALUES('Z99'),

PART 4 VALUES('999'))

 BUFFERPOOL BP1

 CLOSE YES

 DSETPASS OSESAME;

| Example 3: Create a nonpartitioned index, named DSN8510.XDEPT1, on table
# DSN8510.DEPT. Put the entries in ascending order by column DEPTNO. Assume
# that the data sets are managed by the user with catalog name DSNCAT and each
# data set (piece) is to hold 1 gigabyte of data at most before the next data set is
# used. Specify the value in terms of kilobytes.

| CREATE TYPE 2 UNIQUE INDEX DSN851,.XDEPT1

|  ON DSN851,.DEPT

|  (DEPTNO ASC)

# USING VCAT DSNCAT

| PIECESIZE 1,48576 K;

294 SQL Reference  



  CREATE PROCEDURE (SQL procedure)
 

# CREATE PROCEDURE (SQL procedure)
# The CREATE PROCEDURE statement specifies the source statements for an SQL
# procedure.

#  Invocation
# This statement cannot be embedded in an application program or dynamically
# prepared. This statement can appear in the following places:

# � As the only statement in a partitioned data set member that is input to the DB2
# precompiler or the SQL procedure processor

# � As the only statement in a character string that is an input parameter for the
# SQL procedure processor

#  Authorization
# None required.

#  Syntax

#  

#  ┌ ┐─,───────────────────────
# ��─#  ─CREATE PROCEDURE──procedure-name─#  ─(─ ───

�
┴┬ ┬─────────────────────── ─)─# ─option-list─────────────────��

#  └ ┘#  ─parameter-declaration─

# option-list:#  

# ┌ ┐─RESULT SET ,────────────── ┌ ┐#  ─NO COLLID─────────────
# ��─ ──┼ ┼───────────────────────────#  ─LANGUAGE SQL─ ──┼ ┼─────────────────────── ───────────────────────────�
#  └ ┘#  ─RESULT─ ──┬ ┬─SET── ─integer─ └ ┘#  ─COLLID──collection-id─
#  └ ┘─SETS─

# ┌ ┐─ASUTIME NO LIMIT─────── ┌ ┐─STAY RESIDENT NO──
# �─ ──┬ ┬───────────────────────────────────── ──┼ ┼──────────────────────── ──┼ ┼─────────────────── ────────�
#  ├ ┤#  ─WLM ENVIRONMENT─ ──┬ ┬#  ─name─────────── └ ┘# ─ASUTIME LIMIT──integer─ └ ┘─STAY RESIDENT YES─
#  │ │└ ┘# ─(──name──,;──)─
#  └ ┘# ─NO WLM ENVIRONMENT──────────────────

#  ┌ ┐# ─PROGRAM TYPE MAIN─ ┌ ┐─SECURITY DB2──
# �─ ──┴ ┴─────────────────── ──┼ ┼─────────────── ──┬ ┬─────────────────────────────── ───────────────────────�
#  └ ┘─SECURITY USER─ └ ┘#  ─RUN OPTIONS──run-time-options─

# ┌ ┐─COMMIT ON RETURN NO──
# �─ ──┼ ┼──────────────────────# ─procedure-body──────────────────────────────────────────────────────────��
# └ ┘─COMMIT ON RETURN YES─

# parameter-declaration:#  

#  ┌ ┐─IN────
# �─#  ──┼ ┼───────#  ─parameter-name─# ─parameter-type──────────────────────────────────────────────────────────�
#  ├ ┤─OUT───
#  └ ┘─INOUT─

  Chapter 6. Statements 295



 CREATE PROCEDURE (SQL procedure)  
 

# parameter-type:#  

# ��─# ─built-in-data-type───────────────────────────────────────────────────────────────────────────────��

# data-type:#  

# ��─# ─built-in-data-type───────────────────────────────────────────────────────────────────────────────��

# built-in-data-type:#  

# ��─ ──┬ ┬──┬ ┬─SMALLINT────────────────────────────────────── ────────────────────────── ──────��
#  │ │├ ┤──┬ ┬─INTEGER─ ──────────────────────────────────
#  │ ││ │└ ┘─INT─────
#  │ │├ ┤#  ──┬ ┬─DECIMAL─ ──┬ ┬──────────────────────────────
#  │ ││ │├ ┤─DEC───── └ ┘#  ─(──integer─ ──┬ ┬─────────── ─)─
#  │ ││ │└ ┘─NUMERIC─ └ ┘─, integer─
#  │ │└ ┘#  ──┬ ┬#  ─FLOAT─ ──┬ ┬─────────────── ─────────────────
#  │ ││ │└ ┘# ─(──integer──)─
#  │ │├ ┤─REAL─────────────────────
#  │ ││ │┌ ┐─PRECISION─
#  │ │└ ┘#  ─DOUBLE─ ──┴ ┴─────────── ───
#  ├ ┤#  ─── ─#  ──┬ ┬#  ──┬ ┬─CHARACTER─ ──┬ ┬─────────────── ───────── ──┬ ┬──────────────────────
#  │ ││ │└ ┘─CHAR────── └ ┘# ─(──integer──)─ └ ┘#  ─FOR─ ──┬ ┬─SBCS── ─DATA─
#  │ │└ ┘#  ──┬ ┬# ──┬ ┬─CHARACTER─ ─VARYING─ ─(──integer──)─ ├ ┤─MIXED─
#  │ ││ │└ ┘─CHAR────── └ ┘─BIT───
#  │ │└ ┘─VARCHAR────────────────
#  ├ ┤#  ──┬ ┬#  ─GRAPHIC─ ──┬ ┬─────────────── ─────────────────────────────────────────────
#  │ ││ │└ ┘# ─(──integer──)─
#  │ │└ ┘# ─VARGRAPHIC──(──integer──)──
#  └ ┘#  ──┬ ┬─DATE────── ──────────────────────────────────────────────────────────────
#  ├ ┤─TIME──────
#  └ ┘─TIMESTAMP─

#  Description
# procedure-name
# Names the stored procedure. The name is an unqualified long SQL identifer
# that must not identify an existing stored procedure at the current server.

# The default load module name for the stored procedure is one of the following
# strings:

# � If the stored procedure name is eight or fewer bytes, the load module name
# is the stored procedure name.

# � If the stored procedure name is more than eight bytes, DB2 generates a
# load module name. You can determine that name by looking in the
# EXTERNAL_NAME column of SYSIBM.SYSROUTINES.

# If you use the default load module name, the SQL procedure name must
# conform to MVS naming conventions for partitioned data set members.

296 SQL Reference  



  CREATE PROCEDURE (SQL procedure)
 

# (parameter-declaration,...)
# Specifies the number of parameters of the stored procedure and the data type
# of each parameter. A parameter for a stored procedure can be used only for
# input, only for output, or for both input and output. You must give each
# parameter a name.

# IN Identifies the parameter as an input parameter to the stored procedure.
# The parameter does not contain a value when the stored procedure returns
# control to the calling SQL application.

# IN is the default.

# OUT
# Identifies the parameter as an output parameter that is returned by the
# stored procedure.

# INOUT
# Identifies the parameter as both an input and output parameter for the
# stored procedure.

# parameter-name
# Names the parameter. parameter-name is a short SQL identifier, which can
# include only the characters A through Z, 0 through 9, or characters that
# correspond to the EBCDIC code points X'5B', X'7B', and X'7C', which
# correspond to $, #, and @ in code page 37 or 500. A parameter name
# cannot be an SQL reserved word. For a list of SQL reserved words, see
# Appendix E, “SQL Reserved Words” on page 621.

# data-type
# Specifies the data type of the parameter.

# built-in-data-type
# The data type of the parameter is a built-in data type. You can use the
# same built-in data types as for the CREATE TABLE statement except
# LONG VARCHAR or LONG VARGRAPHIC. Use VARCHAR or
# VARGRAPHIC with an explicit length instead.

# The NUMERIC, DATE, TIME, and TIMESTAMP data types are valid in
# a CREATE PROCEDURE statement, but they are not valid data types
# for the PARMLIST column of SYSIBM.SYSPROCEDURES. When you
# define your SQL procedure to DB2 by inserting a row into
# SYSIBM.SYSPROCEDURES, you need to make the following
# substitutions:

  Chapter 6. Statements 297



 CREATE PROCEDURE (SQL procedure)  
 

# For more information on the data types, including the subtype of
# character data types (the FOR subtype DATA clause), see
# “built-in-data-type” on page 311.

# If you do not specify a specific value for the data types that have
# length, precision, or scale attributes (CHAR, GRAPHIC, DECIMAL,
# NUMERIC, FLOAT), the defaults are as follows:

# CHAR CHAR(1)
# GRAPHIC GRAPHIC(1)
# DECIMAL DECIMAL(5,0)
# FLOAT DOUBLE (length of 8)

# Although an input parameter with a character data type has an implicitly or
# explicitly specified subtype (BIT, SBCS, or MIXED), the value that is
# actually passed in the input parameter can have any subtype. Therefore,
# conversion of the input data to the subtype of the parameter might occur
# when the procedure is called. An error occurs if mixed data that actually
# contains DBCS characters is used as the value for an input parameter that
# is declared with an SBCS subtype.

# RESULT SET integer or RESULT SETS integer
# Specifies the maximum number of query result sets that the stored procedure
# can return. The default is RESULT SETS 0, which indicates that there are no
# result sets.

# LANGUAGE
# Specifies the application programming language in which the stored procedure
# is written.

# SQL
# The stored procedure is written in DB2 SQL procedure language.

# NO COLLID or COLLID collection-id
# Identifies the package collection that is used when the stored procedure is
# executed. This is the package collection into which the DBRM that is
# associated with the stored procedure is bound.

# Table 19. Substitutions for NUMERIC, DATE, TIME, and TIMESTAMP in
# SYSIBM.SYSPROCEDURES

# For this data type in CREATE
# PROCEDURE
# Substitute this data type in
# SYSPROCEDURES

# NUMERIC# DECIMAL

# DATE# VARCHAR(10)1

# TIME# VARCHAR(8)2

# TIMESTAMP# VARCHAR(26)

# Notes:

# 1. If a date exit is installed on the DB2 subsystem, specify VARCHAR(n), where n is the
# length value from field LOCAL DATE LENGTH on installation panel DSNTIP4.

# 2. If a time exit is installed on the DB2 subsystem, specify VARCHAR(n), where n is the
# length value from field LOCAL TIME LENGTH on installation panel DSNTIP4.

298 SQL Reference  



  CREATE PROCEDURE (SQL procedure)
 

# NO COLLID
# The package collection for the stored procedure is the same as the
# package collection of the calling program. If the calling program does not
# use a package, the package collection is set to the value of special register
# CURRENT PACKAGESET.

# NO COLLID is the default.

# COLLID collection-id
# The package collection for the stored procedure is the one specified.

# WLM ENVIRONMENT
# Identifies the MVS workload manager (WLM) environment in which the stored
# procedure is to run when the DB2 stored procedure address space is
# WLM-established. The name of the WLM environment is a long identifier that
# must not contain an underscore.

# If you do not specify WLM ENVIRONMENT, the stored procedure runs in the
# default WLM-established stored procedure address space specified at
# installation time.

# name
# The WLM environment in which the stored procedure must run. If another
# stored procedure or a user-defined function calls the stored procedure and
# that calling routine is running in an address space that is not associated
# with the specified WLM environment, DB2 routes the stored procedure
# request to a different MVS address space.

# (name,*)
# When an SQL application program directly calls a stored procedure, the
# WLM environment in which the stored procedure runs.

# If another stored procedure or a user-defined function calls the stored
# procedure, the stored procedure runs in the same WLM environment that
# the calling routine uses.

# To define a stored procedure that is to run in a specified WLM environment,
# you must have appropriate authority for the WLM environment.

# NO WLM ENVIRONMENT
# Indicates that the stored procedure is to run in the DB2-established stored
# procedure address space.

# Do not specify NO WLM ENVIRONMENT if you implicitly or explicitly define the
# stored procedure with the SECURITY USER clause.

# To define a stored procedure that is to run in the DB2-established stored
# procedure address space, you must have appropriate authority for the address
# space.

# ASUTIME
# Specifies the total amount of processor time, in CPU service units, that a single
# invocation of a stored procedure can run. The value is unrelated to the
# ASUTIME column of the resource limit specification table.

# When you are debugging a stored procedure, setting a limit can be helpful in
# case the stored procedure gets caught in a loop. For information on service
# units, see OS/390 MVS Initialization and Tuning Guide.

  Chapter 6. Statements 299



 CREATE PROCEDURE (SQL procedure)  
 

# NO LIMIT
# There is no limit on the service units. NO LIMIT is the default.

# LIMIT integer
# The limit on the service units is a positive integer in the range of 1 to 2 GB.
# If the stored procedure uses more service units than the specified value,
# DB2 cancels the stored procedure.

# STAY RESIDENT
# Specifies whether the stored procedure load module remains resident in
# memory when the stored procedure ends.

# NO
# The load module is deleted from memory after the stored procedure ends.
# NO is the default.

# YES
# The load module remains resident in memory after the stored procedure
# ends.

# PROGRAM TYPE
# Specifies whether the stored procedure runs as a main routine or a subroutine.

# MAIN
# The stored procedure runs as a main routine. Only PROGRAM TYPE MAIN
# is allowed for an SQL procedure.

# SECURITY
# Specifies how the stored procedure interacts with an external security product,
# such as RACF, to control access to non-SQL resources.

# DB2
# The stored procedure does not require a special external security
# environment. If the stored procedure accesses resources that an external
# security product protects, the access is performed using the authorization
# ID associated with the stored procedure address space. DB2 is the default.

# USER
# An external security environment should be established for the stored
# procedure. If the stored procedure accesses resources that the external
# security product protects, the access is performed using the authorization
# ID of the user who invoked the stored procedure.

# RUN OPTIONS run-time-options
# Specifies the Language Environment run-time options to be used for the stored
# procedure. You must specify run-time-options as a character string that is no
# longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty
# string, DB2 does not pass any run-time options to Language Environment, and
# Language Environment uses its installation defaults.

# For a description of the Language Environment run-time options, see OS/390
# Language Environment for OS/390 & VM Programming Reference.

# COMMIT ON RETURN
# Indicates whether DB2 commits the transaction immediately on return from the
# stored procedure.

300 SQL Reference  



  CREATE PROCEDURE (SQL procedure)
 

# NO
# DB2 does not issue a commit when the stored procedure returns. NO is the
# default.

# YES
# DB2 issues a commit when the stored procedure returns if the following
# statements are true:

# � The SQLCODE that is returned by the CALL statement is not negative.
# � The stored procedure is not in a must abort state.

# The commit operation includes the work that is performed by the calling
# application process and the stored procedure.

# If the stored procedure returns result sets, the cursors that are associated
# with the result sets must have been defined as WITH HOLD to be usable
# after the commit.

# procedure-body
# Specifies the source code for an SQL procedure. See “Chapter 7. SQL
# procedure statements” on page 485 for information on how to write a
# procedure body.

#  Notes
# The following restrictions apply to the use of parameters in SQL procedures:

# � If IN is specified for a parameter in an SQL procedure, the parameter cannot
# be modified within the SQL procedure body.

# � If OUT is specified for a parameter in an SQL procedure, the parameter can be
# used only as the target of an assignment in the SQL procedure body. The
# parameter cannot be checked or used to set other variables. If the parameter is
# not set, DB2 returns the null value to the caller.

#  Examples
# Example 1: Create the definition for an SQL procedure. The procedure accepts an
# employee number and a multiplier for a pay raise as input. The following tasks are
# performed in the procedure body:

# � Calculate the employee's new salary.
# � Update the employee table with the new salary value.

# CREATE PROCEDURE UPDATE_SALARY_1

#  (IN EMPLOYEE_NUMBER CHAR(1,),

#  IN RATE DECIMAL(6,2))

#  LANGUAGE SQL

#  UPDATE EMP

# SET SALARY = SALARY O RATE

# WHERE EMPNO = EMPLOYEE_NUMBER

# Example 2: Create the definition for the SQL procedure described in example 1, but
# specify that the procedure has these characteristics:

# � The procedure runs in a WLM environment called PARTSA.
# � The same input always produces the same output.
# � SQL work is committed on return to the caller.
# � The Language Environment run-time options to be used when the SQL
# procedure executes are 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'.

  Chapter 6. Statements 301



 CREATE PROCEDURE (SQL procedure)  
 

# CREATE PROCEDURE UPDATE_SALARY_1

#  (IN EMPLOYEE_NUMBER CHAR(1,),

#  IN RATE DECIMAL(6,2))

#  LANGUAGE SQL

#  WLM ENVIRONMENT PARTSA

#  COMMIT ON RETURN YES

#  RUN OPTIONS 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'

#  UPDATE EMP

# SET SALARY = SALARY O RATE

# WHERE EMPNO = EMPLOYEE_NUMBER

# For more examples of SQL procedures, see “Chapter 7. SQL procedure
# statements” on page 485.

302 SQL Reference  



  CREATE STOGROUP
 

 CREATE STOGROUP
The CREATE STOGROUP statement creates a storage group at the current server.
Storage from the identified volumes can later be allocated for table spaces and
index spaces.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� The CREATESG privilege
� SYSADM or SYSCTRL authority

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the privileges held by the
SQL authorization ID of the process.

 Syntax

 

 ┌ ┐─,───────
��─ ─CREATE STOGROUP──stogroup-name─ ──VOLUMES ( ──┬ ┬───(1) ───

�
┴volume-id ) ────────────────────────────────────�

 │ │┌ ┐─,───
└ ┘ ─ ──
�

┴─'O'─ ───────

�─ ─VCAT──catalog-name─ ──┬ ┬──────────────────── ───────────────────────────────────────────────────────��
 └ ┘ ─PASSWORD──password─

Note:
1 The same volume-id must not be specified more than once.

 Description
stogroup-name

Names the storage group. The name must not identify a storage group that
exists at the current server.

VOLUMES(volume-id,...) or VOLUMES('*',...)
Defines the volumes of the storage group. Each volume-id is a volume serial
number of a storage volume. It can have a maximum of six characters and is
specified as an identifier or a string constant.

# Asterisks are recognized only by Storage Management Subsystem (SMS).
# Contact your site's storage administrator to determine if the SMS Guaranteed
# Space attribute applies. If SMS Guaranteed Space does not apply for
# SMS-managed data sets, it is recommended that the VOLUMES clause be
# specified with one asterisk, VOLUMES('*' ). If SMS Guaranteed Space does
# apply, contact your site storage manager and refer to DFSMS/MVS: Access
# Method Services for the Integrated Catalog and DFSMS/MVS: Storage

  Chapter 6. Statements 303



 CREATE STOGROUP  
 

# Administration Reference for DFSMSdfp for information on how to specify the
# VOLUMES clause.

To have Storage Management Subsystem (SMS) manage the extension of data
sets for shared read-only data, list more than one asterisk (*) after VOLUMES,
as in VOLUMES('*','*','*'). SMS uses one volume for each asterisk in the
list. See Section 2 (Volume 1) of Administration Guide for considerations for
using SMS to manage data sets.

VCAT catalog-name
Identifies the integrated catalog facility catalog for the storage group. You must
specify the catalog name in the form of a short identifier. Thus, you must
specify an alias if the name of the integrated catalog facility catalog is longer
than 8 characters.

The designated catalog is the one in which entries are placed for the data sets
created by DB2 with the aid of the storage group. These are linear VSAM data
sets for associated table or index spaces or for their partitions. For each such
space or partition, association is made through a USING clause in a CREATE
TABLESPACE, CREATE INDEX, ALTER TABLESPACE, or ALTER INDEX
statement. For more on the association, see the descriptions of those
statements in this chapter.

Conventions for data set names are given in Section 2 (Volume 1) of
Administration Guide. catalog-name is the first qualifier for each data set name.

One or more DB2 subsystems could share integrated catalog facility catalogs
with the current server. To avoid the chance of having one of those subsystems
attempt to assign the same name to different data sets, select a value for
catalog-name that is not used by the other DB2 subsystems. However, the
same catalog-name must be used by the subsystems when shared read-only
data is used.

PASSWORD password
Gives a VSAM control or master level password in the form of a short identifier.
If the password is a delimited identifier, it can contain any special characters
acceptable to access method services. The password is used to access the
integrated catalog facility catalog. The password that protects the catalog must
be established by the installation of access method services. If this clause is
not specified, no password is used by DB2 to access the integrated catalog
facility catalog.

 Notes
Device types: When the storage group is used at run time, an error can occur if
the volumes in the storage group are of different device types, or if a volume is not
available to MVS for dynamic allocation of data sets.

When a storage group is used to extend a data set, all volumes in the storage
group must be of the same device type as the volumes used when the data set
was defined. Otherwise, an extend failure occurs if an attempt is made to extend
the data set.

Number of volumes: There is no specific limit on the number of volumes that can
# be defined for a storage group. However, the maximum number of volumes that
# can be managed for a storage group is 133. Thus, there is no point in creating a
# storage group with more than 133 volumes.

304 SQL Reference  



  CREATE STOGROUP
 

MVS imposes a limit on the number of volumes that can be allocated per data set:
59 at this writing. For the latest information on that restriction, see DFSMS/MVS:
Access Method Services for the Integrated Catalog.

Storage group owner: If the statement is embedded in an application program, the
owner of the plan or package is the owner of the storage group. If the statement is
dynamically prepared, the SQL authorization ID of the process is the owner of the
storage group. The owner has the privilege of altering and dropping the storage
group.

Specifying volume IDs: A new storage group must have either specific volume
IDs or non-specific volume IDs. You cannot create a storage group that contains a
mixture of specific and non-specific volume IDs.

Verifying volume IDs: When processing the VOLUMES clause, DB2 does not
check the existence of the volumes or determine the types of devices that they
identify. Later, whenever the storage group is used to allocate data sets, the list of
volumes is passed in the specified order to Data Facilities (DFSMSdfp), which does
the actual work. See Section 2 (Volume 1) of Administration Guide for more
information about creating DB2 storage groups.

 Example
Create storage group, DSN8G510, of volumes ABC005 and DEF008. DSNCAT is
the integrated catalog facility catalog name, and OSESAME is the VSAM password.

CREATE STOGROUP DSN8G51,

 VOLUMES (ABC,,5,DEF,,8)

 VCAT DSNCAT

 PASSWORD OSESAME;

  Chapter 6. Statements 305



 CREATE SYNONYM  
 

 CREATE SYNONYM
The CREATE SYNONYM statement defines a synonym for a table or view at the
current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
None required.

 Syntax

 

��─ ─CREATE SYNONYM──synonym──FOR─ ──authorization-name. ──┬ ┬─table-name─ ───────────────────────────────��
 └ ┘─view-name──

 Description
synonym

Names the synonym. The name must not identify a synonym, table, view, or
alias owned by authorization ID x. If the statement is embedded in an
application program, x is the owner of the plan or package. If the statement is
dynamically prepared, x is the value of CURRENT SQLID. In either case, x
becomes the owner of the synonym.

FOR authorization-name.table-name or authorization-name.view-name
Identifies the object to which the synonym applies. The name must consist of
two parts and must identify a table, view, or alias that exists at the current
server. If an alias is identified, it must be an alias for a table or view at the
current server and the synonym is defined for that table or view.

 Notes
In cases where the statement is dynamically prepared, users with SYSADM
authority can create synonyms for other users. This is done by changing the value
of the CURRENT SQLID special register before issuing the CREATE SYNONYM
statement. See “SET CURRENT SQLID” on page 474 for details on changing the
value of the CURRENT SQLID special register.

The authorization ID recorded as the owner of a synonym is the only authorization
ID for which the synonym is defined and the only authorization ID that can be used
to drop it.

If an alias is used to denote the table or view, the name of that table or view, not
the alias, is recorded in the catalog as the definition of the synonym. That severs
the connection between synonym and alias: even if the alias were dropped and
redefined, the synonym would still be in effect and would name the original table or
view.

306 SQL Reference  



  CREATE SYNONYM
 

 Example
Define DEPT as a synonym for the table DSN8510.DEPT.

CREATE SYNONYM DEPT

 FOR DSN851,.DEPT;

This example will not work if the current SQLID is DSN8510.

  Chapter 6. Statements 307



 CREATE TABLE  
 

 CREATE TABLE
The CREATE TABLE statement defines a table at the current server. The definition
must include its name and the names and attributes of its columns. The definition
can include other attributes of the table, such as its primary key and its table space.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� The CREATETAB privilege for the database implicitly or explicitly specified by
the IN clause

� DBADM, DBCTRL, or DBMAINT authority for the database

� SYSADM or SYSCTRL authority

If IN, LIKE or FOREIGN KEY is specified, additional privileges may be required, as
explained in the description of those clauses.

Additional authorization may be required when implicitly creating a table space. See
the description of the IN parameter for details.

Privilege Set: If the statement is embedded in an application program, the privilege
set is the privileges held by the authorization ID of the owner of the plan or
package. If the specified table name includes a qualifier that is not the same as this
authorization ID, the privilege set must include SYSADM or SYSCTRL authority,
DBADM authority for the database, or DBCTRL authority for the database.

If the statement is dynamically prepared, the privilege set is the privileges held by
the SQL authorization ID of the process. However, if the specified table name
includes a qualifier that is not the same as this authorization ID, the following rules
apply:

1. If the privilege set includes SYSADM or SYSCTRL authority, DBADM authority
for the database, or DBCTRL authority for the database, any qualifier is valid.

2. If the privilege set does not include any of the authorities listed in item 1 above,
the qualifier is valid only if it is the same as one of the authorization IDs of the
process and the privilege set held by that authorization ID includes all24

privileges needed to create the table.

24 Exception: The CREATAB privilege is checked on the SQL authorization ID of the process.

308 SQL Reference  



  CREATE TABLE
 

 Syntax

 

 ┌ ┐─,──────────────────────────
��─ ─CREATE TABLE──table-name─ ──┬ ┬──( ───

�
┴──┬ ┬─column-definition────── ) ─────────────────────────────────�

 │ │├ ┤─unique-constraint──────
 │ │├ ┤─referential-constraint─
 │ │└ ┘─check-constraint───────
 └ ┘ ─LIKE─ ──┬ ┬─table-name─ ──────────────
 └ ┘─view-name──

 ┌ ┐────────────────────────────────────────────────────
�─ ───(1) ───

�
┴──┬ ┬────────────────────────────────────────────── ──────────────────────────────────────────��

 ├ ┤──┬ ┬ ─IN─ ── ──┬ ┬──────────────── table-space-name
│ ││ │└ ┘──database-name.

 │ │└ ┘─IN DATABASE──database-name───────────────
 ├ ┤─EDITPROC──program-name───────────────────────
 ├ ┤─VALIDPROC──program-name──────────────────────
 │ │┌ ┐─NONE────
 ├ ┤ ─AUDIT─ ──┼ ┼─CHANGES─ ──────────────────────────
 │ │└ ┘─ALL─────
 ├ ┤─OBID──integer────────────────────────────────
 │ │┌ ┐─NONE────
 ├ ┤ ─DATA CAPTURE─ ──┴ ┴─CHANGES─ ───────────────────

├ ┤─WITH RESTRICT ON DROP────────────────────────
|  └ ┘|  ─CCSID─ ──┬ ┬─ASCII── ───────────────────────────
|  └ ┘─EBCDIC─

Note:
1 The same clause must not be specified more than once.

column-definition: 

 ┌ ┐───────────────────────────────────────────────────
��─ ─column-name──data-type─ ───(1) ───

�
┴┬ ┬─────────────────────────────────────────────── ──────────────────��

 ├ ┤─NOT NULL──────────────────────────────────────
 ├ ┤──┬ ┬─UNIQUE────── ──────────────────────────────
 │ │└ ┘─PRIMARY KEY─
 ├ ┤──FOR ──┬ ┬─SBCS── DATA ───────────────────────────
 │ │├ ┤─MIXED─
 │ │└ ┘─BIT───
 │ │┌ ┐─WITH─
 ├ ┤ ──┴ ┴────── ─DEFAULT─ ──┬ ┬─────────────── ─────────
 │ │├ ┤─constant──────
 │ │├ ┤─USER──────────
 │ │├ ┤─CURRENT SQLID─
 │ │└ ┘─NULL──────────
 ├ ┤─references-clause─────────────────────────────
 ├ ┤─check-constraint──────────────────────────────
 └ ┘ ─FIELDPROC──program-name─ ──┬ ┬──────────────────
 │ │┌ ┐─,────────
 └ ┘──( ───

�
┴─constant─ )

Note:
1 The same clause must not be specified more than once.

  Chapter 6. Statements 309



 CREATE TABLE  
 

data-type: 

��─ ──┬ ┬──┬ ┬─INTEGER─ ────────────────────────────────────── ───────────────────────────────────────────��
 │ │└ ┘─INT─────
 ├ ┤─── ──SMALLINT─ ─────────────────────────────────────
 ├ ┤ ──┬ ┬─DECIMAL─ ──┬ ┬────────────────────────────── ────
 │ │├ ┤─DEC───── └ ┘ ─(──integer─ ──┬ ┬─────────── ─)─
 │ │└ ┘─NUMERIC─ └ ┘─, integer─
 ├ ┤──┬ ┬ ─FLOAT─ ──┬ ┬─────────────── ─────────────────────
 │ ││ │└ ┘─(──integer──)─
 │ │├ ┤─REAL─────────────────────
 │ ││ │┌ ┐─PRECISION─
 │ │└ ┘ ─DOUBLE─ ──┴ ┴─────────── ───
 ├ ┤ ──┬ ┬ ──┬ ┬─CHARACTER─ ──┬ ┬─────────────── ─────────────
 │ ││ │└ ┘─CHAR────── └ ┘─(──integer──)─
 │ │├ ┤─── ─ ──┬ ┬─VARCHAR──────────────── ─(──integer──)─
 │ ││ │└ ┘ ──┬ ┬─CHARACTER─ ─VARYING─
 │ ││ │└ ┘─CHAR──────
 │ │└ ┘ ─LONG VARCHAR──────────────────────────────────
 ├ ┤ ──┬ ┬─── ──GRAPHIC─ ──┬ ┬─────────────── ─── ────────────
 │ ││ │└ ┘─(──integer──)─
 │ │├ ┤ ─── ──── ──VARGRAPHIC─ ─(──integer──)─
 │ │└ ┘ ─LONG VARGRAPHIC───────────────────
 ├ ┤─── ──DATE─ ─────────────────────────────────────────
 ├ ┤─── ──TIME─ ─────────────────────────────────────────
 └ ┘─── ──TIMESTAMP─ ────────────────────────────────────

unique-constraint: 

 ┌ ┐─,───────────
��─ ──┬ ┬─PRIMARY KEY─ ──( ───

�
┴─column-name─ ) ────────────────────────────────────────────────────────────��

 └ ┘─UNIQUE──────

referential-constraint: 

 ┌ ┐─,───────────
��─ ─FOREIGN KEY─ ──┬ ┬───────────────── ──( ───

�
┴─column-name─ ) ─references-clause─────────────────────────��

 └ ┘─constraint-name─

references-clause: 

��─ ─REFERENCES──table-name─ ──┬ ┬───────────────────── ── ──┬ ┬────────────────────────── ─────────────────��
|  │ │┌ ┐─,─────────── └ ┘|  ─ON DELETE─ ──┬ ┬─RESTRICT──
|  └ ┘──( ───

�
┴─column-name─ ) ├ ┤─NO ACTION─

 ├ ┤─CASCADE───
 └ ┘─SET NULL──

310 SQL Reference  



  CREATE TABLE
 

check-constraint: 

��─ ──┬ ┬───────────────────────────── ─CHECK──(check-condition)────────────────────────────────────────��
 └ ┘ ─CONSTRAINT──constraint-name─

 Description
table-name

Names the table. The name must not identify a table, view, alias, or synonym
that exists at the current server.

If qualified, the name can be a two-part or three-part name. If a three-part
name is used, the first part must match the value of field DB2 LOCATION
NAME on installation panel DSNTIPR at the current server. (If the current
server is not the local DB2, this name is not necessarily the name in the
CURRENT SERVER special register.) Whether the name is two-part or
three-part, the authorization ID that qualifies the name is the table's owner.

If the table name is unqualified and the statement is embedded in a program,
the owner of the table is the authorization ID that serves as the implicit qualifier
for unqualified object names. This is the authorization ID in the QUALIFIER
operand when the plan or package was created or last re-bound. If QUALIFIER
was not used, the owner of the table is the owner of the package or plan.

If the table name is unqualified and the statement is dynamically prepared, the
SQL authorization ID is the owner of the table.

The owner has all table privileges on the table (SELECT, UPDATE, and so on),
and the authority to drop the table. All the owner's table privileges are
grantable.

 column-definition 

Defines the attributes of a column.

column-name
Names a column of the table. Do not qualify column-name and do not use
the same name for more than one column of the table. For a dependent
table, up to 749 columns can be named. For a table that is not a
dependent, this number is 750.

data-type
Specifies one of the types in the following list.

INTEGER or INT
For a large integer.

SMALLINT
For a small integer.

FLOAT(integer)
For a floating-point number. If integer is between 1 and 21 inclusive,
the format is single precision floating-point. If the integer is between 22
and 53 inclusive, the format is double precision floating-point.

  Chapter 6. Statements 311



 CREATE TABLE  
 

You can also specify:

REAL For single precision floating-point.
DOUBLE For double precision floating-point.
DOUBLE PRECISION For double precision floating-point.
FLOAT For double precision floating-point.

DECIMAL(integer,integer) or DEC(integer,integer)
For a decimal number. The first integer is the precision of the number.
That is, the total number of digits, which can range from 1 to 31. The
second integer is the scale of the number. That is, the number of digits
to the right of the decimal point, which can range from 0 to the
precision of the number. You can also specify:

DECIMAL(integer) For DECIMAL(integer,0)
DECIMAL For DECIMAL(5,0)

The word NUMERIC can be used in place of DECIMAL. For example,
NUMERIC(8) is equivalent to DECIMAL(8). Unlike DECIMAL,
NUMERIC has no allowable abbreviation.

CHARACTER(integer) or CHAR(integer)
For a fixed-length character string of length integer, which can range

# from 1 to 255. If the length specification is omitted, a length of 1
character is assumed.

VARCHAR(integer), CHAR VARYING(integer), or CHARACTER
VARYING(integer)
For a varying-length character string of maximum length integer, which
can range from 1 to the maximum record size minus 8 bytes. See
Table 21 on page 324 to determine the maximum record size. An

# integer greater than 255 defines a long string column.

LONG VARCHAR
For a varying-length character string whose maximum length is
determined by the amount of space available in a page. For information
on how DB2 calculates the maximum length, see “Length of a LONG

# column” on page 325. If the maximum length is greater than 255, the
column is a long string column.

GRAPHIC(integer)
For a fixed-length graphic string of length integer, which can range from
1 to 127. If the length specification is omitted, a length of 1 character is
assumed.

VARGRAPHIC(integer)
For a varying-length graphic string of maximum length integer, which
must range from 1 to n/2, where n is the maximum row size minus 2
bytes. An integer longer than 127 defines a long string column.

LONG VARGRAPHIC
For a varying-length graphic string whose maximum length is
determined by the amount of space available in a page. For information
on how DB2 calculates the maximum length, see “Length of a LONG
column” on page 325.

If the maximum length is greater than 127, the column is a long string
column.

312 SQL Reference  



  CREATE TABLE
 

DATE
For a date.

TIME
For a time.

TIMESTAMP
For a timestamp.

NOT NULL
Prevents the column from containing null values.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a
single column. Thus, if PRIMARY KEY is specified in the definition of
column C, the effect is the same as if the PRIMARY KEY(C) clause is
specified as a separate clause.

The NOT NULL clause must be specified with this clause. PRIMARY KEY
cannot be specified more than once in a column definition and must not be
specified at all if the UNIQUE clause is specified in the column definition.

| The table is marked as unavailable until its primary index is explicitly
| created, unless the CREATE TABLE statement is processed by the
| schema processor. In that case, DB2 implicitly creates an index to enforce
| the uniqueness of the primary key and the table definition is considered
| complete. (For more information about implicitly created indexes, see
| “Implicitly created indexes” on page 325.)

UNIQUE
Provides a shorthand method of defining a unique key composed of a
single column. Thus, if UNIQUE is specified in the definition of column C,
the effect is the same as if the UNIQUE(C) clause is specified as a
separate clause.

The NOT NULL clause must be specified with this clause. UNIQUE cannot
be specified more than once in a column definition and must not be
specified if the PRIMARY KEY clause is specified in the column definition.

| The table is marked as unavailable until all the required indexes are
| explicitly created, unless the CREATE TABLE statement is processed by
| the schema processor. In that case, DB2 implicitly creates the indexes that
| are required for the unique keys and the table definition is considered
| complete. (For more information about implicitly created indexes, see
| “Implicitly created indexes” on page 325.)

FOR subtype DATA
Specifies a subtype for a character string column; that is, for a column with
a data type of CHAR, VARCHAR, or LONG VARCHAR. The FOR DATA
clause must not be used with columns of any other data type. subtype can
be one of the following:

SBCS
Column holds single-byte data.

MIXED
Column holds mixed data.

  Chapter 6. Statements 313



 CREATE TABLE  
 

BIT
Column holds BIT data.

MIXED cannot be specified when the value of field MIXED DATA on
installation panel DSNTIPF is NO.

A default subtype applies if the FOR clause is not used in defining a new
character string column. The default is SBCS when the value of field
MIXED DATA on installation panel DSNTIPF is NO. The default is MIXED
when the value is YES.

DEFAULT
The default value assigned to the column in the absence of a value
specified on INSERT or LOAD. If a value is not specified after DEFAULT,
the default value depends on the data type of the column, as follows:

 Data Type Default Value
 Numeric 0
 Fixed-length string Blanks

Varying-length string A string of length 0
|  Date CURRENT DATE
|  Time CURRENT TIME
|  Timestamp CURRENT TIMESTAMP

A value other than the one above can be specified in one of the following
forms:

constant
Specifies a constant as the default value for the column. The value of
the constant must conform to the rules for assigning that value to the
column.

USER
Specifies the value of the USER special register at the time of INSERT
or LOAD as the default value for the column. If USER is specified, the
data type of the column must be a character string with a length
attribute greater than or equal to the length attribute of the USER
special register, which is 8 bytes.

CURRENT SQLID
Specifies the value of the SQL authorization ID (SQLID) of the process
at the time of INSERT or LOAD as the default value for the column. If
CURRENT SQLID is specified, the data type of the column must be a
character string with a length attribute greater than or equal to the
length attribute of the CURRENT SQLID special register, which is 8
bytes.

NULL
Specifies null as the default value for the column.

In a given column definition:

� NOT NULL and DEFAULT NULL cannot both be specified.

� Omission of NOT NULL and DEFAULT is an implicit specification of
DEFAULT NULL. If NOT NULL is specified and DEFAULT is omitted,
the column does not have a default value.

� DEFAULT and FIELDPROC cannot both be specified.

314 SQL Reference  



  CREATE TABLE
 

Table 20 on page 315 summarizes the effect of specifying the various
combations of the NOT NULL and DEFAULT clauses on the CREATE
TABLE statement column-description clause.

references-clause
The references-clause of a column-definition provides a shorthand method
of defining a foreign key composed of a single column. Thus, if a
references-clause is specified in the definition of column C, the effect is the
same as if that references-clause were specified as part of a FOREIGN
KEY clause in which C is the only identified column.

check-constraint
The check-constraint of a column-definition has the same effect as
specifying a table check constraint in a separate ADD check-constraint
clause. For conformance with the SQL standard, a table check constraint
specified in the definition of column C should not reference any columns
other than C.

FIELDPROC program-name
Designates program-name as the field procedure exit routine for the
column. Writing a field procedure exit routine is described in Appendix B
(Volume 2) of Administration Guide. Field procedures can only be specified

Table 20. Effect of Specifying Combinations of NOT NULL and DEFAULT Clauses

If NOT NULL is: And DEFAULT is: The effect is:

Specified Omitted An error occurs if a value is not
provided for the column on INSERT
or LOAD.

Specified without an
operand

The system-defined nonnull default
value is used.

constant The specified constant is used as
the default value.

USER The value of the USER special
register at the time of INSERT or
LOAD is used as the default value.

CURRENT SQLID The SQL authorization ID of the
process at the time of INSERT or
LOAD is used as the default value.

NULL An error occurs during the execution
of CREATE TABLE.

Omitted Omitted Equivalent to an implicit specification
of DEFAULT NULL.

Specified without an
operand

The system defined nonnull default
value is used.

constant The specified constant is used as
the default value.

USER The value of the USER special
register at execution time is used as
the default value.

CURRENT SQLID The SQL authorization ID of the
process is used as the default value.

NULL Null is used as the default value.

  Chapter 6. Statements 315



 CREATE TABLE  
 

for short string columns that do not have a nonnull default value. For more
information about string comparisons with field procedures, see “String
Comparisons” on page 72.

The field procedure encodes and decodes column values: before a value is
inserted in the column, it is passed to the field procedure for encoding.
Before a value from the column is used by a program, it is passed to the
field procedure for decoding. A field procedure could be used, for example,
to alter the sorting sequence of values entered in the column.

The field procedure is also invoked during the processing of the CREATE
TABLE statement. When so invoked, the procedure provides DB2 with the
column's field description. The field description defines the data
characteristics of the encoded values. By contrast, the information you
supply for the column in the CREATE TABLE statement defines the data
characteristics of the decoded values.

constant
Is a parameter that is passed to the field procedure when it is invoked.
A parameter list is optional. The nth parameter specified in the
FIELDPROC clause on CREATE TABLE corresponds to the nth
parameter of the specified field procedure. The maximum length of the
parameter list is 254 bytes, including commas but excluding
insignificant blanks and the delimiting parentheses.

If you omit FIELDPROC, the column has no field procedure.

End of column-definition

 unique-constraint 

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. The clause must not
be specified more than once and the identified columns must be defined as
NOT NULL. Each column-name must be an unqualified name that identifies a
column of the table and the same column must not be identified more than
once. The number of identified columns must not exceed 64, and the sum of

# their length attributes must not exceed 255.

| The table is marked as unavailable until its primary index is explicitly created,
| unless the CREATE TABLE statement is processed by the schema processor.
| In that case, DB2 implicitly creates an index to enforce the uniqueness of the
| primary key and the table definition is considered complete. (For more
| information about implicitly created indexes, see “Implicitly created indexes” on
| page 325.)

UNIQUE(column-name,...)
Defines a unique key composed of the identified columns. Each column name
must be an unqualified name that identifies a column of the table and the same
column must not be identified more than once. Each identified column must be
defined as NOT NULL. The number of identified columns must not exceed 64

# and the sum of their length attributes must not exceed 255.

A unique key is a duplicate if it is the same as the primary key or a previously
defined unique key. The specification of a duplicate unique key is ignored with
a warning.

316 SQL Reference  



  CREATE TABLE
 

| The table is marked as unavailable until all the required indexes are explicitly
| created, unless the CREATE TABLE statement is processed by the schema
| processor. In that case, DB2 implicitly creates the indexes that are required for
| the unique keys and the table definition is considered complete. (For more
| information about implicitly created indexes, see “Implicitly created indexes” on
| page 325.)

The total number of columns in all UNIQUE clauses in the CREATE TABLE
statement is limited. If the limit is reached, you can still get the effect of the
UNIQUE clause by using a unique index.

End of unique-constraint

 referential-constraint 

| FOREIGN KEY constraint-name (column-name,...) references-clause
Each specification of the FOREIGN KEY clause defines a referential constraint
with the specified name. A name is generated if constraint-name is not
specified. The generated name is derived from the name of the first column of
the foreign key in the same way that the name of an implicitly created table
space is derived from the name of a table, except that the scope of uniqueness
of constraint-name is the table. If specified, constraint-name must be different
from the names of any referential or check constraints previously specified on
the table.

The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of the table and the same column must not be identified more than
once. The number of identified columns must not exceed 64, and the sum of

# their length attributes must not exceed 255 minus the number of columns that
allow null values. The referential constraint is a duplicate if the FOREIGN KEY
and parent table are the same as the FOREIGN KEY and parent table of a
previously defined referential constraint. The specification of a duplicate
referential constraint is ignored with a warning.

End of referential-constraint

 references-clause 

REFERENCES table-name (column-name,...)
| The table name specified after REFERENCES must identify a table that exists

at the current server25, but it must not identify a catalog table. In the following
discussion, let T2 denote an identified table and let T1 denote the table that

| you are creating (T1 and T2 cannot be the same table25 ).

| T2 must have a unique index and the privilege set must include the ALTER or
| REFERENCES privilege on the parent table, or the REFERENCES privilege on
| the columns of the nominated parent key.

| 25 This restriction is relaxed when the statement is processed by the schema processor and the other table is created within the
| same CREATE SCHEMA.

  Chapter 6. Statements 317



 CREATE TABLE  
 

| The parent key of the referential constraint is composed of the identified
| columns. Each column-name must be an unqualified name that identifies a
| column of T2. The same column must not be identified more than once.

| The list of column names must be identical to the list of column names in a
| unique index (UNIQUERULE in SYSINDEXES will be R, P, C, or U). The
| column names must be specified in the same order as in the unique index on
| T2.

| If a list of column names is not specified, then T2 must have a primary key.
| Omission of a list of column names is an implicit specification of the columns of
| the primary key for T2.

| The specified foreign key must have the same number of columns as the
| parent key of T2 and, except for their names, default values, null attributes and
| check constraints, the description of the nth column of the foreign key must be
| identical to the description of the nth column of the nominated parent key. If a
| column of the foreign key has a field procedure, the corresponding column of
| the nominated parent key must have the same field procedure and an identical
| field description. A field description is a description of the encoded value as it is
| stored in the database for a column that has been defined to have an
| associated field procedure.

The referential constraint specified by a FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent. A description of
the referential constraint is recorded in the catalog.

ON DELETE
The delete rule of the relationship is determined by the ON DELETE
clause. For more on the concepts used here, see “Referential Integrity” on
page 24.

SET NULL must not be specified unless some column of the foreign key
| allows null values. The default value for the rule depends on the value of
| the CURRENT RULES special register when the CREATE TABLE
| statement is processed. If the value of the register is 'DB2', the delete rule
| defaults to RESTRICT; if the value is 'STD', the delete rule defaults to NO
| ACTION.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p
denote such a row of T2. Then:

| � If RESTRICT or NO ACTION is specified, an error occurs and no rows
| are deleted.

� If CASCADE is specified, the delete operation is propagated to the
dependents of p in T1.

� If SET NULL is specified, each nullable column of the foreign key of
each dependent of p in T1 is set to null.

Let T3 denote a table identified in another FOREIGN KEY clause (if any) of
the CREATE TABLE statement. The delete rules of the relationships
involving T2 and T3 must be the same and must not be SET NULL if:

� T2 and T3 are the same table.

� T2 is a descendent of T3 and the deletion of rows from T3 cascades to
T2.

318 SQL Reference  



  CREATE TABLE
 

� T2 and T3 are both descendents of the same table and the deletion of
rows from that table cascades to both T2 and T3.

End of references-clause

 check-constraint 

CONSTRAINT constraint-name
Names the table check constraint. The constraint name must be different from
the names of any referential or check constraints previously specified on the
table.

If constraint-name is not specified, a unique constraint name is derived from the
name of the first column in the check-condition specified in the definition of the
table check constraint.

CHECK (check-condition)
Defines a table check constraint. A check-condition is a search condition, with
the following restrictions:

� It can refer only to columns of table table-name.

� It can be up to 3800 bytes long, not including redundant blanks.

� It must not contain any of the following:

 – Subselects
 – Functions
 – Host variables
 – Parameter markers
 – Special registers
– Columns that include a field procedure

|  – CASE Expressions
 – Quantified predicates
 – EXISTS predicates

� If a check-condition refers to a long string column, the reference must occur
within a LIKE predicate.

� The AND and OR logical operators can be used between predicates. The
NOT logical operator cannot be used.

� The first operand of every predicate must be the column name of a column
in the table.

� The second operand in the check-condition must be either a constant or a
column name of a column in the table.

– If the second operand of a predicate is a constant, and if the constant
is:

- A floating point number, then the column data type must be floating
point.

- A decimal number, then the column data type must be either
floating point or decimal.

- An integer number, then the column data type must not be a small
integer.

  Chapter 6. Statements 319



 CREATE TABLE  
 

- A small integer number, then the column data type must be small
integer.

- A decimal constant, then its precision must not be larger than the
precision of the column.

– If the second operand of a predicate is a column, then both columns of
the predicate must have:

- The same data type

- Identical descriptions with the exception that the specification of the
NOT NULL and DEFAULT clauses for the columns can be
different, and that string columns with the same data type can have
different length attributes

� A check-condition can evaluate to unknown if a column that is an operand
of the predicate is null. A check-condition that evaluates to unknown does
not violate the check constraint.

End of check-constraint

LIKE table-name or view-name
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table or view. The name specified
after LIKE must identify a table or view that exists at the current server, and the
privilege set must implicitly or explicitly include the SELECT privilege on the
identified table or view.

The use of LIKE is an implicit definition of n columns, where n is the number of
columns in the identified table or view. The implicit definition includes all
attributes of the n columns as they are described in SYSCOLUMNS. If the
identified table was created in a table space with 4KB pages and the new table
is created in a table space with 32KB pages, LONG VARCHAR columns of the
identified table will be VARCHAR columns in the new table and LONG
VARGRAPHIC columns of the identified table will be VARGRAPHIC columns in
the new table. If a column of the identified table has a field procedure, the
corresponding column of the new table has the same field procedure and the
field description, but the field procedure is not invoked during the execution of
the CREATE TABLE statement. If a view is identified, no column has a field
procedure because catalog descriptions of view columns do not include field
procedures.

The implicit definition does not include any other attributes of the identified
table or view. For example, the new table does not have a primary key or
foreign key. The table is created in the table space implicitly or explicitly
specified by the IN clause, and the table has any other optional clause only if
the optional clause is specified.

WITH RESTRICT ON DROP
Indicates that the table cannot be dropped. Also, the database and table space
that contain the table cannot be dropped.

IN database-name.table-space-name or IN DATABASE database-name
Names the database and table space in which the table is created. Both forms
are optional; the default is IN DATABASE DSNDB04.

320 SQL Reference  



  CREATE TABLE
 

You can name a database (with database-name), a table space (with
table-space-name), or both. If you name a database, it must be described in
the current server's catalog, and must not be DSNDB06 or DSNDB07 (or any
other work file database).

If you use IN DATABASE, either explicitly or by default, a table space is
implicitly created in database-name. The name of the table space is derived
from the table name. Its other attributes are those it would have if it were
created by a CREATE TABLESPACE statement with all optional clauses
omitted.

If you name a table space, it must not be one that was created implicitly, nor
be a partitioned table space that already contains a table. If you name a
partitioned table space, you cannot load or use the table until its partitioned
index is created.

If you name both a database and a table space, the table space must belong to
the database you name. If you name only a table space, it must belong to
database DSNDB04.

To create a table space implicitly, the privilege set must have: SYSADM or
SYSCTRL authority; DBADM, DBCTRL, or DBMAINT authority for the
database; or the CREATETS privilege for the database. You must also have
the USE privilege for the database's default buffer pool and default storage
group.

If you name a table space, you must have SYSADM or SYSCTRL authority,
DBADM authority for the database, or the USE privilege for the table space.

EDITPROC program-name
Designates program-name as the edit routine for the table. The edit routine,
which must be provided by the current server's site, is invoked during the
execution of LOAD, INSERT, UPDATE, and all row retrieval operations on the
table.

An edit routine receives an entire table row, and can transform that row in any
way. Also, it receives a transformed row and must change the row back to its
original form. For information on writing an EDITPROC exit routine, see
Appendix B (Volume 2) of Administration Guide.

If you omit EDITPROC, the table has no edit procedure.

VALIDPROC program-name
Designates program-name as the validation exit routine for the table. Writing a
validation exit routine is described in Appendix B (Volume 2) of Administration
Guide.

The validation routine can inhibit a load, insert, update, or delete operation on
any row of the table: before the operation takes place, the procedure is passed
the row. After examining the row, the procedure returns a value that indicates
whether the operation should proceed. A typical use is to impose restrictions on
the values that can appear in various columns.

A table can have only one validation procedure at a time. In an ALTER TABLE
statement, you can designate a replacement procedure or discontinue the use
of a validation procedure.

If you omit VALIDPROC, the table has no validation routine.

  Chapter 6. Statements 321



 CREATE TABLE  
 

AUDIT
Identifies the types of access to this table that causes auditing to be performed.
The CREATE TABLE statement used to alter the table is audited only if AUDIT
CHANGES or AUDIT ALL is specified and the appropriate audit trace class is
active. For information about audit trace classes, see Section 3 (Volume 1) of
Administration Guide.

NONE
Specifies that no auditing is to be done when this table is accessed. This is
the default.

CHANGES
Specifies that auditing is to be done when the table is accessed during the
first insert, update, or delete operation performed by each unit of work.
However, the auditing is done only if the appropriate audit trace class is
active.

ALL
Specifies that auditing is to be done when the table is accessed during the
first operation of any kind performed by each unit of work of a utility or
application process. However, the auditing is done only if the appropriate
audit trace class is active and the access is not performed with COPY,
RECOVER, REPAIR, or any stand-alone utility.

OBID integer
Identifies the OBID to be used for this table. An OBID is the identifier for an
object's internal descriptor. The OBID keyword is required if the database for
the table was defined as ROSHARE READ. When so defined, the current
server is using shared read-only data to share the database as a reader. If the
table was not defined as ROSHARE READ, the integer must not identify an
existing or previously used OBID of the database. For details on shared
read-only data, see Appendix F (Volume 2) of Administration Guide .

# If you omit OBID, DB2 generates a value.

The following statement, executed at the DB2 that owns the table's database,
would retrieve the value of OBID:

 SELECT OBID

 FROM SYSIBM.SYSTABLES

WHERE CREATOR = 'ccc' AND NAME = 'nnn';

Here, nnn is the table name and ccc is the table's creator.

DATA CAPTURE
Specifies whether the logging of SQL INSERT, UPDATE, and DELETE
operations on the table is augmented by additional information. For guidance
on intended uses of the expanded log records, see:

� The description of data propagation to IMS in DataPropagator
NonRelational MVS/ESA Administration Guide

� The instructions for using Remote Recovery Data Facility (RRDF) in
Remote Recovery Data Facility Program Description and Operations

� The instructions for reading log records in Appendix C (Volume 2) of
Administration Guide

322 SQL Reference  



  CREATE TABLE
 

NONE
Do not record additional information to the log. This is the default.

CHANGES
Write additional data about SQL updates to the log.

| CCSID encoding-scheme
| Specifies the encoding scheme for data stored in the table. If an IN clause is
| specified with a table space name, the value must agree with the encoding
| scheme already in use for that table space. All data stored within a table space
| must use the same encoding scheme.

| If an IN clause is not specified with a table space name, the CREATE TABLE
| statement creates a table space, and the encoding scheme of that table space
| is the same as the table that you are creating.

| If you do not specify a CCSID on a table, the CCSID of the table space is
| taken. If you do not specify a CCSID on the table space, the CCSID of the
| table is taken from the database. If you do not specify a CCSID on the
| database, the CCSID relies on the default encoding scheme at installation time.

| ASCII Specifies that the data must be encoded by using the ASCII
| CCSIDs specified during installation.

| EBCDIC Specifies that the data must be encoded by using the EBCDIC
| CCSIDs specified during installation.

| Usually, each encoding scheme requires only a single CCSID. Additional
| CCSIDs are needed when mixed or graphic data is used.

| The option defaults to the encoding scheme of the table space that contains
| the table, or the encoding scheme of the database if the table space is not
| explicitly specified.26

| If the table space is not explicitly specified and the database is DSNDB04, the
| option defaults to the value of field DEF ENCODING SCHEME on installation
| panel DSNTIPF. 

| The actual coded character set (CCSID) that is used to create the table is
| obtained from the table space or database. If the CCSID is zero, the CCSID is
| obtained from the appropriate CODED CHAR SET field on installation panel
| DSNTIPF.

 Notes
Table design: Designing tables is part of the process of database design. For
information on design, see Section 2 (Volume 1) of Administration Guide.

Creating a table in a segmented table space: A table cannot be created in a
segmented table space if:

� The available space in the data set is less than the segment size specified for
the table space, and

� The data set cannot be extended.

| 26 When you use the LIKE clause with the CREATE TABLE statement, the encoding scheme of the table being copied is not used.

  Chapter 6. Statements 323



 CREATE TABLE  
 

While a utility is running: You cannot use CREATE TABLE while a DB2 utility
has control of the table space implicitly or explicitly specified by the IN clause.

Maximum record size: The maximum record size of a table depends on the page
size of the table space and whether the EDITPROC clause is specified, as shown
in the following table. The page size of the table space is the size of its buffer. This
in turn is determined by the BUFFERPOOL clause that was explicitly or implicitly
specified when the table space was created.

The maximum record size corresponds to the maximum length of a VARCHAR
column if that column is the only column in the table.

Byte counts: The sum of the byte counts of the columns must not exceed the
maximum row size of the table. The maximum row size is eight less than the
maximum record size.

The following table gives the byte counts of columns by data type, for columns that
do not allow null values. For a column that allows null values the byte count is one
more than shown in the table.

Byte count of a LONG column: To calculate the byte count, let:

m be the maximum row size (8 less than the maximum record size)

i be the sum of the byte counts of all columns in the table that are not LONG
VARCHAR or LONG VARGRAPHIC

Table 21. Maximum Record Size, in Bytes

 
EDITPROC

Page Size
= 4KB

Page Size
= 32KB

NO 4056 32714

YES 4046 32704

Data Type Byte Count

INTEGER 4

SMALLINT 2

FLOAT(n) If n is between 1 and 21, the byte count is 4. If n is between
22 and 53, the byte count is 8.

DECIMAL INTEGER(p/2)+1, where p is the precision

CHAR(n) n

VARCHAR(n) n+2

LONG VARCHAR See “Byte count of a LONG column” on page 324.

GRAPHIC(n) 2n

VARGRAPHIC(n) 2n+2

LONG VARGRAPHIC See “Byte count of a LONG column” on page 324.

DATE 4

TIME 3

TIMESTAMP 10

324 SQL Reference  



  CREATE TABLE
 

j be the number of LONG VARCHAR and LONG VARGRAPHIC columns in the
table

k be the number of LONG VARCHAR and LONG VARGRAPHIC columns that
allow nulls.

The count is 2*(INTEGER((INTEGER((m-i-k)/j))/2)).

Length of a LONG column: To find the character count:

1. Find the byte count from “Byte count of a LONG column” on page 324.
 2. Subtract 2.
3. If the data type is LONG VARGRAPHIC, divide the result by 2. If the result is

not an integer, drop the fractional part.

| Implicitly created indexes: When the PRIMARY KEY or UNIQUE clause is used
| in the CREATE TABLE statement and the CREATE TABLE statement is processed
| by the schema processor, DB2 implicitly creates the unique indexes used to
| enforce the uniqueness of the primary or unique keys. Each index is created as if
| the following CREATE INDEX statement were issued:

| CREATE UNIQUE INDEX xxx ON table-name (column1,...)

| Where:

| � xxx is the name of the index that DB2 generates.

| � table-name is the name of the table specified in the CREATE TABLE
| statement.

| � (column1,...) is the list of column names that were specified in the UNIQUE or
| PRIMARY KEY clause of the CREATE TABLE statement.

| For more information about the schema processor, see Section 2 (Volume 1) of
| Administration Guide.

# Using tables with different encoding schemes: The CCSID clause determines
# whether the data for a table is encoded in ASCII or EBCDIC. All tables that are
# referenced in a SQL statement must have the same encoding scheme—the tables
# must be either all ASCII or all EBCDIC.

Dropping a table in a partitioned table space: You can only drop a table in a
partitioned table space by using the DROP TABLESPACE statement.

 Examples
Example 1: Create a table named DSN8510.DEPT in the table space DSN8S51D

| of the database DSN8D51A. Name the table's five columns DEPTNO, DEPTNAME,
| MGRNO, ADMRDEPT, and LOCATION, allowing only MGRNO to contain nulls,
| and designating DEPTNO as the only column in the table's primary key. All five
| columns hold character string data. Assuming a value of NO for the field MIXED
| DATA on installation panel DSNTIPF, all five columns have the subtype SBCS.

  Chapter 6. Statements 325



 CREATE TABLE  
 

CREATE TABLE DSN851,.DEPT

 (DEPTNO CHAR(3) NOT NULL,

DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6) ,

 ADMRDEPT CHAR(3) NOT NULL,

 LOCATION CHAR(16) ,

 PRIMARY KEY(DEPTNO) )

 IN DSN8D51A.DSN8S51D;

Example 2: Create a table named DSN8510.PROJ in an implicitly created table
space of the database DSN8D51A. Assign the table a validation procedure named
DSN8EAPR.

CREATE TABLE DSN851,.PROJ

 (PROJNO CHAR(6) NOT NULL,

 PROJNAME VARCHAR(24) NOT NULL,

 DEPTNO CHAR(3) NOT NULL,

 RESPEMP CHAR(6) NOT NULL,

 PRSTAFF DECIMAL(5,2) ,

 PRSTDATE DATE ,

 PRENDATE DATE ,

 MAJPROJ CHAR(6) NOT NULL)

IN DATABASE DSN8D51A

 VALIDPROC DSN8EAPR;

| Example 3: Assume that table PROJECT has a non-primary unique key that
| consists of columns DEPTNO and RESPEMP (the department number and
| employee responsible for a project). Create a project activity table named
| ACTIVITY with a foreign key on that on that unique key.

| CREATE TABLE ACTIVITY

|  (PROJNO CHAR(6) NOT NULL,

|  ACTNO SMALLINT NOT NULL,

|  ACTDEPT CHAR(3) NOT NULL,

|  ACTOWNER CHAR(6) NOT NULL,

|  ACSTAFF DECIMAL(5,2) ,

|  ACSTDATE DATE NOT NULL,

|  ACENDATE DATE ,

| FOREIGN KEY (ACTDEPT,ACTOWNER)

| REFERENCES PROJECT (DEPTNO,RESPEMP) ON DELETE RESTRICT)

|  IN DSN8D51A.DSN8S51D;

326 SQL Reference  



  CREATE TABLESPACE
 

 CREATE TABLESPACE
The CREATE TABLESPACE statement defines a simple, segmented, or partitioned
table space at the current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� The CREATETS privilege for the database
� DBADM, DBCTRL, or DBMAINT authority for the database
� SYSADM or SYSCTRL authority

Additional privileges may be required, as explained in the description of the
BUFFERPOOL and USING STOGROUP clauses.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the privileges held by the
SQL authorization ID of the process.

  Chapter 6. Statements 327



 CREATE TABLESPACE  
 

 Syntax

 

 ┌ ┐──────────────────────
��─ ─CREATE─ ──┬ ┬─────── ─TABLESPACE──table-space-name─ ──┬ ┬─────────────────────── ───(1) ───

�
┴──┬ ┬──────────────── ─────────�

|  └ ┘─LARGE─ │ │┌ ┐─DSNDB,4─────── ├ ┤─using-block────
 └ ┘ ─IN─ ──┴ ┴─database-name─ ├ ┤─free-block─────
 └ ┘─gbpcache-block─

�─ ──┬ ┬────────────────────────────────────────────────────────────────────────────────────────────────── ───────────�
#  ├ ┤─MEMBER CLUSTER───────────────────────────────────────────────────────────────────────────────────

 ├ ┤ ─NUMPARTS──integer─ ──┬ ┬─────────────────────────────────────────────────────── ──┬ ┬────────────────
#  │ ││ │┌ ┐─,─────────────────────────────────────────── └ ┘#  ─MEMBER CLUSTER─

 │ ││ ││ │┌ ┐─────────────────────────
 │ │└ ┘ ─(─ ───

�
┴─PART──integer─ ───(1) ───

�
┴──┬ ┬─using-block─────── ─)─

 │ │├ ┤─free-block────────
 │ │├ ┤─gbpcache-block────
 │ ││ │┌ ┐─NO──
 │ │└ ┘ ─COMPRESS─ ──┴ ┴─YES─
 └ ┘─SEGSIZE──integer─────────────────────────────────────────────────────────────────────────────────

 ┌ ┐────────────────────────────────
�─ ───(1) ───

�
┴──┬ ┬────────────────────────── ───────────────────────────────────────────────────────────────────────────��

 ├ ┤─BUFFERPOOL──bpname───────
 │ │┌ ┐─ANY────────
 ├ ┤ ─LOCKSIZE─ ──┼ ┼─TABLESPACE─
 │ │├ ┤─TABLE──────
 │ │├ ┤─PAGE───────
 │ │└ ┘─ROW────────
 ├ ┤ ─LOCKMAX─ ──┬ ┬─SYSTEM── ────
 │ │└ ┘─integer─
 │ │┌ ┐─YES─
 ├ ┤ ─CLOSE─ ──┴ ┴─NO── ──────────
 ├ ┤─DSETPASS──password───────
 │ │┌ ┐─NO──
 ├ ┤ ─COMPRESS─ ──┴ ┴─YES─ ───────

|  ├ ┤|  ─CCSID─ ──┬ ┬─ASCII── ───────
|  │ │└ ┘─EBCDIC─
|  │ │┌ ┐─NO──
|  ├ ┤|  ─LOCKPART─ ──┴ ┴─YES─ ───────

 └ ┘─MAXROWS──integer─────────

Note:
1 The same clause must not be specified more than once.

using-block: 

�─ ─USING─ ──┬ ┬─VCAT──catalog-name────────────────────────────────── ────────────────────────────────────�
 │ │┌ ┐───────────────────────
 └ ┘ ─STOGROUP──stogroup-name─ ───(1) ───

�
┴──┬ ┬─────────────────

 ├ ┤ ─PRIQTY──integer─
 ├ ┤ ─SECQTY──integer─
 │ │┌ ┐─NO──
 └ ┘ ─ERASE─ ──┴ ┴─YES─ ─

Note:
1 The same clause must not be specified more than once.

328 SQL Reference  



  CREATE TABLESPACE
 

free-block: 

 ┌ ┐─────────────────────────────
�─ ───(1) ───

�
┴──┬ ┬─────────────────────── ──────────────────────────────────────────────────────────────────�

 │ │┌ ┐─,───────
 ├ ┤ ─FREEPAGE─ ──┴ ┴─integer─
 │ │┌ ┐─5───────
 └ ┘ ─PCTFREE─ ──┴ ┴─integer─ ─

Note:
1 The same clause must not be specified more than once.

gbpcache-block: 

�─ ──┬ ┬─────────────────────── ─────────────────────────────────────────────────────────────────────────�
 │ │┌ ┐─CHANGED─
 └ ┘ ─GBPCACHE─ ──┴ ┴─ALL─────

 Description
| LARGE
| Identifies a table space as large. A large table space is a partitioned table
| space that can hold more than 64GB of data, either compressed or
| uncompressed. A large table space can have a maximum of 254 partitions with
| a maximum size of 4GB per partition. If LARGE is specified, NUMPARTS must
| be specified. If LARGE is omitted and the value for NUMPARTS is greater than
| 64, or LARGE is specified and the value for NUMPARTS is less than 65, then
| the table space will have the attributes of a large table space.

table-space-name
Names the table space. The name, qualified with the database-name implicitly
or explicitly specified by the IN clause, must not identify a table space or index
space that exists at the current server.

IN database-name
Identifies the database in which the table space is created. The name must
identify a database that exists at the current server. DSNDB06 must not be
specified. If DSNDB07 or any work file database is specified, it must be in the
stopped state. The default is DSNDB04.

 using-block 

The components of the USING clause are discussed below, first for nonpartitioned
table spaces and then for partitioned table spaces. If you omit USING, the default
storage group of the database must exist.

USING Clause for Nonpartitioned Table Spaces:
For nonpartitioned table spaces, the USING clause indicates whether the data
set for the table space is defined by you or by DB2. If DB2 is to define the data
set, the clause also gives space allocation parameters and an erase rule.

  Chapter 6. Statements 329



 CREATE TABLESPACE  
 

If you omit USING, DB2 defines the data sets using the default storage group
of the database and the defaults for PRIQTY, SECQTY, and ERASE.

VCAT catalog-name
Specifies that the first data set for the table space is managed by the user,
and following data sets, if needed, are also managed by the user.

The data sets defined for the table space are linear VSAM data sets
cataloged in an integrated catalog facility catalog identified by
catalog-name. Because catalog-name is a short identifier, an alias must be
used if the catalog name is longer than eight characters.

Conventions for table space data set names are given in Section 2 (Volume
1) of Administration Guide. catalog-name is the first qualifier for each data
set name.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems. However, the same catalog-name must be used by the
subsystems when shared read-only data is used.

STOGROUP stogroup-name
Specifies that DB2 will define and manage the data sets for the table
space. Each data set will be defined on a volume of the identified storage
group. The values specified (or the defaults) for PRIQTY and SECQTY
determine the primary and secondary allocations for the data set. The
storage group supplies the name of a volume for the data set and the
first-level qualifier for the data set name. The first-level qualifier is also the
name of, or an alias for, the integrated catalog facility catalog on which the
data set is to be cataloged. The naming conventions for the data set are
the same as if the data set is managed by the user. As was mentioned
above for VCAT, the first-level qualifier could cause naming conflicts if the
local DB2 can share integrated catalog facility catalogs with other DB2
subsystems.

stogroup-name must identify a storage group that exists at the current
server. SYSADM or SYSCTRL authority, or the USE privilege on the
storage group, is required.

The description of the storage group must include at least one volume
serial number, or it must indicate that the choice of volumes is left to
Storage Management Subsystem (SMS). If volume serial numbers appear
in the description, each must identify a volume that is accessible to MVS
for dynamic allocation of the data set, and all identified volumes must be of
the same device type.

The integrated catalog facility catalog used for the storage group must not
contain an entry for the first data set of the table space. If the integrated
catalog facility catalog is password protected, the description of the storage
group must include a valid password.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed
data set. The primary space allocation is at least n kilobytes, where n
is the value of integer, except in these cases:

330 SQL Reference  



  CREATE TABLESPACE
 

� If the page size is 4KB, and if integer is less than 12 or PRIQTY is
omitted, then n is 12.

� If the page size is 32KB, and if integer is less than 96 or PRIQTY
is omitted, then n is 96.

� If integer is greater than 4194304, then n is 4194304.

DB2 specifies the primary space allocation to access method services
using the smallest multiple of pKB not less than n, where p is the page
size of the table space. The allocated space can be greater than the
amount of space requested by DB2. For example, it could be the
smallest number of tracks that will accommodate the request. The
amount of storage space requested must be available on some volume
in the storage group based on VSAM space allocation restrictions.
Otherwise, the primary space allocation will fail. To more closely
estimate the actual amount of storage, see the description of the
DEFINE CLUSTER command in DFSMS/MVS: Access Method
Services for the Integrated Catalog.

Executing this statement causes only one data set to be created.
However, you might have more data than this one data set can hold. If
the value of PRIQTY+118 x SECQTY is 2 gigabtyes or greater, DB2
automatically defines more data sets when they are needed. DB2 uses
a maximum size of 2 gigabytes for a data set. Regardless of the value
in PRIQTY, when a data set reaches 2 gigabytes, DB2 creates a new
one. This leaves space unused if PRIQTY is greater than 2 gigabytes.
Therefore, specify PRIQTY to be less than or equal to 2 gigabytes to
minimize unused space.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed
data set. The secondary space allocation is at least n kilobytes, where
n is the value of integer except in these cases:

� If the page size is 4KB and SECQTY and PRIQTY are omitted,
then n is 12

� If the page size is 32KB and SECQTY and PRIQTY are omitted,
then n is 96

� If the page size is 4KB and integer is greater than 131068, then n
is 131068

� If the page size is 32KB and integer is greater than 131040, then n
is 131040

If integer is 0, no data set can be extended. If you specify PRIQTY and
do not also specify SECQTY, the default for SECQTY is either 10% of
PRIQTY or 3 times the page size of the table space, whichever is

# larger. However, if this value exceeds 131068, the default is 131068.

DB2 specifies the secondary space allocation to access method
services using the smallest multiple of pKB not less than n, where p is
the page size of the table space. The allocated space can be greater
than the amount of space requested by DB2. For example, it could be
the smallest number of tracks that will accommodate the request. To
more closely estimate the actual amount of storage, see the description

  Chapter 6. Statements 331



 CREATE TABLESPACE  
 

of the DEFINE CLUSTER command in DFSMS/MVS: Access Method
Services for the Integrated Catalog.

ERASE
Indicates whether the DB2-managed data sets for the table space or
partition are to be erased when they are deleted during the execution of
a utility or an SQL statement that drops the table space.

NO
Does not erase the data sets. Operations involving data set
deletion will perform better than ERASE YES. However, the data is
still accessible, though not through DB2. This is the default.

YES
Erases the data sets. As a security measure, DB2 overwrites all
data in the data sets with zeros before they are deleted.

USING Clause for Partitioned Table Spaces:
If the table space is partitioned, there is a USING clause for each partition;
either one you give explicitly or one provided by default. Except as explained
below, the meaning of the clause and the rules that apply to it are the same as
for a nonpartitioned table space.

The USING clause for a particular partition is the first of these choices that can
be found:

� A USING clause in the PART clause for the partition
� A USING clause that is not in any PART clause
� An implicit USING STOGROUP clause that identifies the default storage

group of the database and accepts the defaults for PRIQTY, SECQTY, and
ERASE

VCAT catalog-name
Indicates that the data set for the partition is managed by the user using
the naming conventions set forth in Section 2 (Volume 1) of Administration
Guide. As was true for the nonpartitioned case, catalog-name identifies the
catalog for the data set and supplies the first-level qualifier for the data set
name.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems. However, the same catalog-name must be used by the
subsystems when shared read-only data is used.

DB2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
Indicates that DB2 will create a data set for the partition with the aid of a
storage group named stogroup-name. The data set is defined during the
execution of this statement. DB2 assumes one and only one data set for
each partition.

The stogroup-name must identify a storage group that exists at the current
server and the privilege set must include SYSADM authority, SYSCTRL
authority, or the USE privilege for the storage group. The integrated catalog
facility catalog used for the storage group must not contain an entry for that
data set.

332 SQL Reference  



  CREATE TABLESPACE
 

When USING STOGROUP is specified for a partition, the defaults for
PRIQTY, SECQTY, and ERASE are the values specified in the USING
STOGROUP clause that is not in any PART clause. If that USING
STOGROUP clause is not specified, the defaults are those specified in the
description of PRIQTY, SECQTY, and ERASE.

End of using-block

 free-block 

FREEPAGE integer
Specifies how often to leave a page of free space when the table space or
partition is loaded or reorganized. You must specify an integer in the range 0 to
255. If you specify 0, no pages are left as free space. Otherwise, one free page
is left after every n pages, where n is the specified integer. However, if the
table space is segmented and the integer you specify is not less than the
segment size, n is one less than the segment size.

If the table space is segmented, the number of pages left free must be less
than the SEGSIZE value. If the number of pages to be left free is greater than
or equal to the SEGSIZE value, then the number of pages is adjusted
downward to one less than the SEGSIZE value.

The default is FREEPAGE 0, leaving no free pages. Do not use this keyword
for a table space in DSNDB07 or in any work file database.

PCTFREE integer
Indicates what percentage of each page to leave as free space when the table
is loaded or reorganized. integer can range from 0 to 99. The first record on
each page is loaded without restriction. When additional records are loaded, at
least integer percent of free space is left on each page.

The default is PCTFREE 5. Do not use this keyword for a table space in
DSNDB07 or in any work file database.

If the table space is partitioned, the values of FREEPAGE and PCTFREE for a
particular partition are given by the first of these choices that apply:

� The values of FREEPAGE and PCTFREE given in the PART clause for that
partition

� The values given in a free-block that is not in any PART clause

� The default values are FREEPAGE 0 and PCTFREE 5.

End of free-block

 gpbcache-block 

GBPCACHE
Specifies what pages of the table space or partition are written to the group
buffer pool in a data sharing environment. In a non-data-sharing environment,
you can specify this option, but it is ignored.

  Chapter 6. Statements 333



 CREATE TABLESPACE  
 

CHANGED
When there is inter-DB2 R/W interest on the table space or partition,
updated pages are written to the group buffer pool. When there is no
inter-DB2 R/W interest, the group buffer pool is not used. Inter-DB2 R/W
interest exists when more than one member in the data sharing group has
the table space or partition open, and at least one member has it open for
update. GBPCACHE CHANGED is the default.

ALL
Indicates that pages are to be cached in the group buffer pool as they are
read in from DASD.

Exception: In the case of a single updating DB2 when no other DB2s have
any interest in the page set, no pages are cached in the group buffer pool.

In a data sharing environment, hiperpools are not used for indexes or
partitions that are defined with GBPCACHE ALL.

If the table space is partitioned, the value of GBPCACHE for a particular
partition is given by the first of these choices that applies:

1. The value of GBPCACHE given in the PART clause for that partition. Do
not use more than one gbpcache-block in any PART clause.

2. The value given in a gbpcache-block that is not in any PART clause.

3. The default value CHANGED.

End of gpbcache-block

# MEMBER CLUSTER
# Specifies that data inserted by the INSERT statement is not clustered by the
# implict clustering index (the first index) or the explicit clustering index. Instead,
# DB2 chooses where to locate the data in the table space based on available
# space.

# Do not use this keyword for a table space in DSNDB07 or in any work file
# database.

NUMPARTS integer
Indicates that the table space will be partitioned. Do not use this keyword with
database DSNDB07 or any work file database.

| integer is the number of partitions, and can range from 1 to 254 inclusive. If
| you specify a value greater than 64, a large table space is created, even if you
| did not specify the LARGE keyword. If you specified the LARGE keyword, you
| must specify NUMPARTS.

The maximum partition size for a large table space is 4 gigabytes; otherwise,
the maximum partition size depends on the number of partitions specified. The
following table summarizes the values for the maximum partition size: 

27 1 gigabyte is 1 073 741 824 bytes.

334 SQL Reference  



  CREATE TABLESPACE
 

The partition size shown is not necessarily the actual number of bytes used or
allocated for any one partition; it is the largest number that can be logically
addressed. Each partition occupies one data set.

If you omit NUMPARTS, the table space is not partitioned and initially occupies
one data set.

PART integer
Specifies to which partition the following using-block or free-block applies.
integer can range from 1 to the number of partitions given by NUMPARTS.

You can code the PART clause (and any using-block or free-block that follows
it) as many times as needed. If you use the same partition number more than
once, only the last specification for that partition is used.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the table space and determines the
page size of the table space. For 4KB page buffer pools, the page size is 4KB.
Otherwise, the page size is 32 kilobytes. The bpname must identify an
activated buffer pool, and the privilege set must include SYSADM or SYSCTRL
authority, or the USE privilege on the buffer pool.

If the BUFFERPOOL clause is not specified, the default buffer pool of the
database is used.

See “Naming Conventions” on page 48 for more details about bpname. See
Chapter 2 of Command Reference for a description of active and inactive buffer
pools.

LOCKSIZE
Specifies the size of locks used within the table space and, in some cases, also
the threshold at which lock escalation occurs. You must not use this clause for
a table space in DSNDB07 or in any work file database.

ANY
# Specifies that DB2 can use any lock size. Currently, DB2 never chooses
# row locks, but reserves the right to do so. In most cases, DB2 uses

LOCKSIZE PAGE LOCKMAX SYSTEM. However, when the number of
page locks acquired for the table space exceeds the maximum number of
locks allowed for a table space (an installation parameter), the page locks
are released and locking is set at the next higher level. If the table space is
segmented, the next higher level is the table. If the table space is not
segmented, the next higher level is the table space. ANY is the default.

TABLESPACE
Specifies table space locks.

If LARGE is: And NUMPARTS is: The maximum size in gigabytes is:27

Omitted 1 to 16 4

17 to 32 2

33 to 64 1

65 to 254 4

Specified 1 to 254 4

  Chapter 6. Statements 335



 CREATE TABLESPACE  
 

TABLE
Specifies table locks. TABLE can be specified only for a segmented table
space.

PAGE
Specifies page locks.

ROW
Specifies row locks.

If you specify ROW, all indexes defined on tables in the table space must
be type 2 indexes. If you specify LOCKSIZE ROW for a table space, you
cannot create a type 1 index on any of its tables. If you attempt to alter a
table space to LOCKSIZE ROW, the statement fails if a type 1 index exists
on any of its tables.

LOCKMAX
Specifies the maximum number of page or row locks an application process
can hold simultaneously in the table space. If a program requests more than
that number, locks are escalated. The page or row locks are released and the
intent lock on the table space or segmented table is promoted to S or X mode.

integer
Specifies the number of locks allowed before escalating, in the range 0 to
2 147 483 647.

# Zero (0) indicates that the number of locks on the table or table space are
# not counted and escalation does not occur.

SYSTEM
Indicates that the value of LOCKS PER TABLE(SPACE), on installation
panel DSNTIPJ, specifies the maximum number of page or row locks a
program can hold simultaneously in the table or table space.

The following table summarizes the results of specifying a LOCKSIZE value
while omitting LOCKMAX.

If the lock size is TABLESPACE or TABLE, LOCKMAX must be omitted, or its
operand must be 0.

| For an application that uses Sysplex query parallelism, a lock count is
| maintained on each member.

CLOSE
# When the limit on the number of open data sets is reached, specifies the
# priority in which data sets are closed.

# YES
# Eligible for closing before CLOSE NO data sets. This is the default.

# NO
# Eligible for closing after all eligible CLOSE YES data sets are closed.

LOCKSIZE Resultant LOCKMAX

ANY SYSTEM

PAGE, TABLESPACE,
TABLE, or ROW

0

336 SQL Reference  



  CREATE TABLESPACE
 

DSETPASS password
Specifies a master level password sent to access method services when the
data sets of the table space are used by DB2. password is a short identifier. If
delimited, password can contain any characters acceptable to access method
services. If DSETPASS is omitted, a password is not passed.

If you use a storage group, password is the password that protects the data
sets as well as the password that is passed to VSAM when the data sets are
used by DB2. If you do not use a storage group, you define the password that
protects the data sets through access method services.

If the table space occupies more than one data set, all its data sets that are
password protected must have the same password.

The password does not apply to the data sets managed by Storage
Management Subsystem. To protect data sets defined to SMS, use RACF or a
similar external security system.

COMPRESS
Specifies whether data compression applies to the rows of the table space or
partition.

For partitioned table spaces, the COMPRESS attribute for each partition is the
value from the first of the following conditions that apply:

� The value specified in the COMPRESS clause in the PART clause for the
partition

� The value specified in the COMPRESS clause that is not in any PART
clause

� An implicit COMPRESS NO by default.

See Section 2 (Volume 1) of Administration Guide for more information about
data compression.

YES
Specifies data compression. The rows are not compressed until the LOAD
or REORG utility is run on the table in the table space or partition.

NO
Specifies no data compression for the table space or partition.

SEGSIZE integer
Indicates that the table space will be segmented. integer specifies how many
pages are to be assigned to each segment. If the SEGSIZE clause is not
provided, the table space is not segmented. integer must be a multiple of 4
such that 4 ≤ integer ≤ 64.

A segmented table space cannot be partitioned and cannot be created in
database DSNDB07 or in any work file database.

| CCSID encoding-scheme
| Specifies the encoding scheme for tables stored in the table space.

# ASCII Specifies that the data is to be encoded using ASCII CCSIDs. If the
# database in which the table space is to reside is already defined as
# ASCII, the ASCII CCSIDs associated with that database are used.
# Otherwise, the ASCII CCSIDs specified during installation are used.

  Chapter 6. Statements 337



 CREATE TABLESPACE  
 

# EBCDIC Specifies that the data is to be encoded using EBCDIC CCSIDs. If
# the database in which the table space is to reside is already defined
# as EBCDIC, the EBCDIC CCSIDs associated with that database are
# used. Otherwise, the EBCDIC CCSIDs specified during installation
# are used.

| Usually, each encoding scheme requires only a single CCSID. Additional
| CCSIDs are needed when mixed or graphic data is used.

| If you do not specify CCSID, the default is the encoding scheme of the
| database in which the table space resides, except for table spaces in database
| DSNDB04; for table spaces in DSNDB04, the default is the value of field DEF
| ENCODING SCHEME on installation panel DSNTIPF.

| All data stored within a table space must use the same encoding scheme.

| LOCKPART
| Indicates whether selective partition locking (SPL) is to be used when locking a
| partitioned table space. If you specify LOCKPART YES and all conditions
| required for SPL are met, only the partitions accessed will be locked. If you
| specify LOCKPART YES and all conditions required for SPL are not met, every
| partition of the table space is locked. LOCKPART YES is not allowed with
| LOCKSIZE TABLESPACE.

| If you specify LOCKPART NO, selective partition locking is not used. The table
| space is locked with a single lock on the last partition. This has the effect of
| locking all partitions in the table space.

| MAXROWS integer
| Specifies the maximum number of rows that DB2 will consider placing on each
| data page. The integer can range from 1 through 255. This value is considered
| for INSERT, LOAD, and REORG. For LOAD and REORG, the PCTFREE
| specification is considered before MAXROWS; therefore, fewer rows might be
| stored than the value you specify for MAXROWS.

| If you do not specify MAXROWS, the default number of rows is 255.

| You cannot specify the MAXROWS value for a table space in a work file
| database.

 Notes
If neither NUMPARTS nor SEGSIZE are specified, the table space that is created is
a simple table space. See Section 2 (Volume 1) of Administration Guide for a
discussion of types of table spaces.

Table spaces in a work file database: The following restrictions apply to table
spaces created in a work file database (a database defined with the WORKFILE
clause in a data-sharing environment):

� They can be created only when the database is explicitly stopped by the STOP
DATABASE command without the SPACENAM option.

� They can be created for another member only if both the executing DB2
subsystem and the other member can access the work file data sets. That is
required whether the data sets are user-managed or in a DB2 storage group.

� The following clauses are not allowed:

  NUMPARTS

338 SQL Reference  



  CREATE TABLESPACE
 

 SEGSIZE
  LOCKSIZE
  FREEPAGE
  PCTFREE
  GBPCACHE

| Converting a table space to a large table space: You can redefine an existing
| partitioned table space as a large table space by taking the following steps:

| 1. Unload the data rows from the table space, if necessary.

| 2. Drop the table space. The table and any indexes, views, or synonyms
| dependent on the table are dropped, and authorizations for the table and views
| are revoked.

| 3. Create a large table space. Also redefine the partitioned index (with different
| key range values), the table, and the nonclustering indexes.

| 4. Recreate views and synonyms. Reestablish appropriate authorizations.

| 5. Load data into the new table.

| 6. Rebind the plans and packages that changed.

 Examples
Example 1: Create table space DSN8S51D in database DSN8D51A. Let DB2
define the data sets, using storage group DSN8G510. The primary space allocation
is 52 kilobytes; the secondary, 20 kilobytes. The data sets need not be erased
before they are deleted.

Locking on tables in the space is to take place at the page level. Associate the
table space with buffer pool BP1. The data sets can be closed when no one is
using the table space. The VSAM password for the data sets is OSESAME.

CREATE TABLESPACE DSN8S51D

 IN DSN8D51A

USING STOGROUP DSN8G51,

 PRIQTY 52

 SECQTY 2,

 ERASE NO

 LOCKSIZE PAGE

 BUFFERPOOL BP1

 CLOSE YES

 DSETPASS OSESAME;

| Example 2: Assume that a large query database application uses a table space to
| record historical sales data for marketing statistics. Create large table space
| SALESHX in database &DAPP for the application. Create it with 82 partitions,
| specifying that the data in partitions 80 through 82 is to be compressed.

| Let DB2 define the data sets for all the partitions in the table space, using storage
| group DSN8G510. For each data set, the primary space allocation is 4000
| kilobytes, and the secondary space allocation is 130 kilobytes. Except for the data
| set for partition 82, the data sets do not need to be erased before they are deleted.

| Locking on the table is to take place at the page level. There can only be one table
| in a partitioned table space. Associate the table space with buffer pool BP1. The
| data sets cannot be closed when no one is using the table space. If there are no

  Chapter 6. Statements 339



 CREATE TABLESPACE  
 

| CLOSE YES data sets to close, the buffer manager may close the CLOSE NO data
| sets when the DSMAX is reached.

| CREATE TABLESPACE SALESHX

|  IN DSN8D51A

| USING STOGROUP DSN8G51,

|  PRIQTY 4,,,

|  SECQTY 13,

|  ERASE NO

|  NUMPARTS 82

|  (PART 8,

|  COMPRESS YES,

|  PART 81

|  COMPRESS YES,

|  PART 82

|  ERASE YES

|  COMPRESS YES)

|  LOCKSIZE PAGE

|  BUFFERPOOL BP1

|  CLOSE NO;

340 SQL Reference  



  CREATE VIEW
 

 CREATE VIEW
The CREATE VIEW statement creates a view on tables or views at the current
server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
For every table or view identified in the subselect, the privilege set defined below
must include at least one of the following:

� The SELECT privilege on the table or view
� Ownership of the table or view
� DBADM authority for the database (tables only)

 � SYSADM authority
� SYSCTRL authority (catalog tables only)

Authority requirements depend in part on the choice of the view's owner. For
information on how to choose the owner, see the description of view-name in
“Description” on page 342.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package:

� If this privilege set includes SYSADM authority, the owner of the view can be
any authorization ID. If that set includes SYSCTRL but not SYSADM authority,
the following is true: the owner of the view can be any authorization ID,
provided the view does not refer to user tables or views in the first FROM
clause of its defining subselect. (It could refer instead, for example, to catalog
tables or views thereof.) Otherwise, the owner of the view must be the owner of
the plan or package.

If the view satisfies the rules in the preceding paragraph, and if no errors are
present in the CREATE statement, the view is created, even if the owner has
no privileges at all on the tables and views identified in the view's subselect.

� If the privilege set lacks SYSADM or SYSCTRL authority, the owner of the view
must be the owner of the application plan or package.

If the statement is dynamically prepared, the following rules apply:

� If the SQL authorization ID of the process has SYSADM authority, the owner of
the view can be any authorization ID. If that authorization ID has SYSCTRL but
not SYSADM authority, the following is true: the owner of the view can be any
authorization ID, provided the view does not refer to user tables or views in the
first FROM clause of its defining subselect. (It could refer instead, for example,
to catalog tables or views thereof.) Otherwise, the owner of the view must be
one of the authorization IDs of the process.

If the view satisfies the rules in the preceding paragraph, and if no errors are
present in the CREATE statement, the view is created, even if the owner has
no privileges at all on the tables and views identified in the view's subselect.

  Chapter 6. Statements 341



 CREATE VIEW  
 

� If the SQL authorization ID of the process lacks SYSADM or SYSCTRL
authority, only the authorization IDs of the process can own the view. In this
case, the privilege set is the privileges held by the authorization ID selected for
ownership.

 Syntax

 

��─ ─CREATE VIEW──view-name─ ──┬ ┬───────────────────── ─AS──subselect────────────────────────────────────�
 │ │┌ ┐─,───────────
 └ ┘──( ───

�
┴─column-name─ )

�─ ──┬ ┬────────────────────────────────── ─────────────────────────────────────────────────────────────��
|  │ │┌ ┐─CASCADED─
|  └ ┘|  ─WITH─ ──┼ ┼────────── ─CHECK OPTION─
|  └ ┘─LOCAL────

 Description
view-name

Names the view. The name must not identify a table, view, alias, or synonym
that exists at the current server.

If qualified, the name can be a two-part or three-part name. If a three-part
name is used, the first part must match the value of the field DB2 LOCATION
NAME of installation panel DSNTIPR at the current server. (If the current server
is not the local DB2, this name is not necessarily the name in the CURRENT
SERVER special register.) In either case, the authorization ID that qualifies the
name is the view's owner.

If the view name is unqualified and the statement is embedded in an
application program, the owner of the view is the authorization ID that serves
as the implicit qualifier for unqualified object names. This is the authorization ID
of the QUALIFIER operand when the plan or package was created or last
re-bound. If QUALIFIER was not used, the owner of the view is the owner of
the package or plan.

If the view name is unqualified and the statement is dynamically prepared, the
owner of the view is the SQL authorization ID of the process.

The owner always acquires the SELECT privilege on the view and the authority
to drop the view. The SELECT privilege is grantable only if the owner has the
grantable SELECT privilege on every table or view identified in the first FROM
clause of the SELECT statement of the view. The owner must acquire these
grantable privileges before the creation of the view.

The owner can also acquire the INSERT, UPDATE, and DELETE privileges on
a view. For this to be possible, the view must not be “read only,” in which case
a single table or view is identified in the first FROM clause of the subselect. If
the owner has one of the above three privileges on this table or view, the
owner acquires that privilege on the new view. The privilege is grantable only if
the privilege from which it is derived is also grantable. The owner must acquire
this privilege before the creation of the view.

With appropriate DB2 authority, a process can create views for those who have
no authority to create the views themselves. The owner of such a view has the

342 SQL Reference  



  CREATE VIEW
 

SELECT privilege on the view, without the GRANT option, and can drop the
view.

column-name,...
Names the columns in the view. If you specify a list of column names, it must
consist of as many names as there are columns in the result table of the
subselect. Each name must be unique and unqualified. If you do not specify a
list of column names, the columns of the view inherit the names of the columns
of the result table of the subselect.

You must specify a list of column names if the result table of the subselect has
duplicate column names or an unnamed column (a column derived from a
constant, function, or expression that was not given a name by the AS clause).

AS subselect
Defines the view. At any time, the view consists of the rows that would result if
the subselect were executed.

subselect must not refer to host variables or include parameter markers
(question marks). For an explanation of subselect, see “subselect” on
page 170.

| WITH ... CHECK OPTION
| Specifies the constraint that every row that is inserted or updated through the
| view must conform to the definition of the view. DB2 enforces this constraint
| whenever rows of the view are inserted or updated. If the search condition is
| not true for an inserted or updated row, an error occurs and no rows are
| inserted or updated.

| The search condition of a view is the search condition that is specified in the
| first WHERE clause of the subselect that defines the view. If the view is defined
| without a search condition (a WHERE clause was not specified) then the view
| behaves as if it were defined with a search condition that is always true.

| A check option must not be specified if the view is read-only, its search
| condition includes a subquery, or the search condition of an underlying view
| includes a subquery. A check option must not be specified if the subselect
| refers to a temporary table. A check option is ignored if the view is updatable
| but does not have a search condition. If a check option is specified for an
| updatable view that does not allow inserts, the constraint applies only to
| updates.

| If a check option is not specified, the search condition of the view is not used to
| check any insert or update operations that use the view. Rows that do not
| conform to the definition of the view can be inserted or updated, but then the
| rows are not accessible through the view (SELECT * FROM V).

| The difference between the two forms of the check option, CASCADED and
| LOCAL, is meaningful only when views are defined on each other. The view
| upon which another view is directly or indirectly defined is an underlying view.

| CASCADED
| Update and insert operations on view V must satisfy the search conditions
| of view V and all underlying views, regardless of whether the underlying
| views were defined with a check option. Furthermore, every updatable view
| that is directly or indirectly defined on view V inherits those search
| conditions (the search conditions of view V and all underlying views of V)
| as a constraint on insert or update operations.

  Chapter 6. Statements 343



 CREATE VIEW  
 

| LOCAL
| Update and insert operations on view V must satisfy the search conditions
| of view V and underlying views that are defined with a check option (either
| WITH CASCADED CHECK OPTION or WITH LOCAL CHECK OPTION).
| Furthermore, every updatable view that is directly or indirectly defined on
| view V inherits those search conditions (the search conditions of view V
| and all underlying views of V that are defined with a check option) as a
| constraint on insert or update operations.

| The LOCAL form of the CHECK option lets you update or insert rows that
| do not conform to the search condition of view V. You can perform these
| operations if the view is directly or indirectly defined on a view that was
| defined without a check option. See “Example 2” on page 346 for an
| example of this situation.

| Table 22 illustrates the effect of using the default check option, CASCADED.
| The information in Table 22 is based on the following views:

| � CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10
| � CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CASCADED
| CHECK OPTION
| � CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

| The difference between CASCADED and LOCAL is shown best by example.
| Consider the following updatable views, where x and y represent either LOCAL
| or CASCADED:

| V1 is defined on Table T0.
| V2 is defined on V1 WITH x CHECK OPTION.
| V3 is defined on V2.
| V4 is defined on V3 WITH y CHECK OPTION.
| V5 is defined on V4.

| Table 23 on page 345 shows the views in which search conditions are
| checked during an INSERT or UPDATE operation:

| Table 22. Examples Using Default Check Option, CASCADED

| SQL Statement| Description of Result

| INSERT INTO V1 VALUES(5)| Succeeds because V1 does not have a
| check option and it is not dependent on any
| other view that has a check option.

| INSERT INTO V2 VALUES(5)| Results in an error because the inserted
| row does not conform to the search
| condition of V1 which is implicitly is part of
| the definition of V2.

| INSERT INTO V3 VALUES(5)| Results in an error because the inserted
| row does not conform to the search
| condition of V1.

| INSERT INTO V3 VALUES(200)| Succeeds even though it does not conform
| to the definition of V3 (V3 does not have the
| view check option specified); it does
| conform to the definition of V2 (which does
| have the view check option specified).

344 SQL Reference  



  CREATE VIEW
 

| Table 23. Views in Which Search Conditions are Checked during INSERT and UPDATE Operations

| View used in INSERT
| or UPDATE Operation
| x = LOCAL
| y = LOCAL
| x = CASCADED
| y = CASCADED
| x = LOCAL
| y = CASCADED
| x = CASCADED
| y = LOCAL

| V1| None| None| None| None

| V2| V2| V2, V1| V2| V2, V1

| V3| V2| V2, V1| V2| V2, V1

| V4| V4, V2| V4, V3, V2, V1| V4, V3, V2, V1| V4, V2, V1

| V5| V4, V2| V4, V3, V2, V1| V4, V3, V2, V1| V4, V2, V1

 Notes
When a process with appropriate authority creates a view for another user that
does not have authorization for the underlying table or view, select authorization for
the created view is implicitly granted to the user.

Read-only views: A view is read-only if one or more of the following statements is
true of its definition:

� The first FROM clause identifies more than one table or view
� The first SELECT clause specifies the keyword DISTINCT
� The outer subselect contains a GROUP BY clause
� The outer subselect contains a HAVING clause
� The first SELECT clause contains a column function
� It contains a subquery such that the base object of the outer subselect, and of

the subquery, is the same table
� The first FROM clause identifies a read-only view

A read-only view cannot be the object of an INSERT, UPDATE, or DELETE
statement. A view that includes GROUP BY or HAVING cannot be referred to in a
subquery of a basic predicate.

A view cannot map to more than 15 base table instances.

Testing a view definition: You can test the semantics of your view definition by
executing SELECT * FROM view-name.

The two forms of a view definition: Both the source and the operational form of a
view definition are stored in the DB2 catalog. Those two forms are not necessarily
equivalent because the operational form reflects the state that exists when the view
is created. For example, consider the following statement:

CREATE VIEW V AS SELECT O FROM S;

In this example, S is a synonym or alias for A.T, which is a table with columns C1,
C2, and C3. The operational form of the view definition is equivalent to:

SELECT C1, C2, C3 FROM A.T;

Adding columns to A.T using ALTER TABLE and dropping S does not affect the
operational form of the view definition. Thus, if columns are added to A.T or if S is
redefined, the source form of the view definition can be misleading.

View restrictions: A view definition cannot contain unions or references to remote
objects.

  Chapter 6. Statements 345



 CREATE VIEW  
 

 Examples
Example 1: Create the view DSN8510.VPROJRE1. PROJNO, PROJNAME,
PROJDEP, RESPEMP, FIRSTNME, MIDINIT, and LASTNAME are column names.
The view is a join of tables and is therefore read-only.

CREATE VIEW DSN851,.VPROJRE1

 (PROJNO,PROJNAME,PROJDEP,RESPEMP,

 FIRSTNME,MIDINIT,LASTNAME)

AS SELECT ALL

 PROJNO,PROJNAME,DEPTNO,EMPNO,

 FIRSTNME,MIDINIT,LASTNAME

FROM DSN851,.PROJ, DSN851,.EMP

WHERE RESPEMP = EMPNO;

In the example, the WHERE clause refers to the column EMPNO, which is
contained in one of the base tables but is not part of the view. In general, a column
named in the WHERE, GROUP BY, or HAVING clause need not be part of the
view.

| Example 2: When a view that is defined WITH LOCAL CHECK OPTION is defined
| on a view that was defined without a check option. You can update or insert rows
| that do not conform to the definition of the view. Consider the following views:

| CREATE VIEW UNDER AS SELECT O FROM DSN851,.EMP

| WHERE SALARY < 35,,,;

| CREATE VIEW OVER AS SELECT O FROM UNDER

| WHERE SALARY > 3,,,, WITH LOCAL CHECK OPTION;

| The following UPDATE statement that uses OVER is successful because the
| updated rows only need to conform to the definition of OVER (SALARY > 30000):

| UPDATE OVER SET SALARY = SALARY + 5,,,;

| However, not all of the rows that you can retrieve through view OVER (over 35,000
| rows) are accessible using view UNDER. For example, issuing:

| SELECT O FROM UNDER

| returns no rows because no rows conform to the definition of UNDER (SALARY <
| 35000).

| With the CASCADED CHECK OPTION, this situation cannot occur. If OVER had
| been defined with the WITH CASCADED CHECK OPTION, the UPDATE statement
| would have failed because the updated rows would not conform to the conjunction
| of the search conditions OVER and UNDER (SALARY > 3000 and SALARY <
| 35000).

346 SQL Reference  



  DECLARE CURSOR
 

 DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

 Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

 Authorization
For each table or view identified in the SELECT statement of the cursor, the
privilege set must include at least one of the following:

� The SELECT privilege
� Ownership of the object
� DBADM authority for the corresponding database (tables only)

 � SYSADM authority
� SYSCTRL authority (catalog tables only)

The SELECT statement of the cursor is one of the following:

� The prepared select statement identified by statement-name
� The specified select-statement

If statement-name is specified:

� If the bind option DYNAMICRULES(RUN) applies, the privilege set is the union
of the privilege sets held by each authorization ID of the process. If the bind
option DYNAMICRULES(BIND) applies, the privilege set is the privileges held
by the authorization ID of the owner of the plan or package.

� The authorization check is performed when the SELECT statement is prepared.

� The cursor cannot be opened unless the SELECT statement is successfully
prepared.

If select-statement is specified:

� The privilege set consists of the privileges held by the authorization ID of the
owner of the plan or package.

� If the plan or package is bound with VALIDATE(BIND), the authorization check
is performed at bind time, and the bind is unsuccessful if any required privilege
does not exist.

� If the plan or package is bound with VALIDATE(RUN), an authorization check
is performed at bind time, but all required privileges need not exist at that time.
If all privileges exist at bind time, no authorization checking is performed when
the cursor is opened. If any privilege does not exist at bind time, an
authorization check is performed the first time the cursor is opened within a unit
of work. The OPEN is unsuccessful if any required privilege does not exist.

  Chapter 6. Statements 347



 DECLARE CURSOR  
 

 Syntax

 

 ┌ ┐─────────────────
| ��─|  ─DECLARE──cursor-name─|  ─CURSOR─ ───(1) ───

�
┴┬ ┬─────────────|  ─FOR─ ──┬ ┬─select-statement─ ───────────────────��

 ├ ┤─WITH HOLD─── └ ┘─statement-name───
|  └ ┘─WITH RETURN─

Note:
1 The same clause must not be specified more than once.

 Description
cursor-name

Names the cursor. The name must not identify a cursor that has already been
declared in the source program.

WITH HOLD
Prevents the cursor from being closed as a consequence of a commit
operation. A cursor declared with WITH HOLD is closed at commit time if one
of the following is true:

� The connection associated with the cursor is in the release pending state.

� The bind option DISCONNECT(AUTOMATIC) is in effect.

� The environment is one in which the option WITH HOLD is ignored.

When WITH HOLD is specified, a commit operation commits all the changes in
the current unit of work, but releases only locks that are not required to
maintain the cursor. Afterwards, an initial FETCH statement is required before a
positioned update or delete statement can be executed. After the initial FETCH,
the cursor is positioned on the row following the one it was positioned on
before the commit operation.

All cursors are implicitly closed by a connect (Type 1) or rollback operation. A
cursor is also implicitly closed by a commit operation if WITH HOLD is ignored
or not specified.

Cursors that are declared with WITH HOLD in CICS or in IMS
non-message-driven programs will not be closed by a rollback operation if the
cursor was opened in a previous unit of work and no changes have been made
to the database in the current unit of work. The cursor cannot be closed
because CICS and IMS do not broadcast the rollback request to DB2 for a null
unit of work.

If a cursor is closed before the commit operation, the effect is the same as if
the cursor was declared without the option WITH HOLD.

WITH HOLD is ignored in IMS message driven programs (MPP, IFP, and
message-driven BMP). WITH HOLD maintains the cursor position in a CICS
pseudo-conversational program until the end-of-task (EOT).

For details on restrictions that apply to declaring cursors with WITH HOLD, see
Section 3 of Application Programming and SQL Guide.

348 SQL Reference  



  DECLARE CURSOR
 

| WITH RETURN
| Specifies that the cursor, if it is declared in a stored procedure, can return a
| result set to the caller.

select-statement
Specifies the result table of the cursor. The select-statement must not include
parameter markers, but can include references to host variables. The
declarations of the host variables must precede the DECLARE CURSOR
statement in the source program. See “select-statement” on page 188 for an
explanation of select-statement.

statement-name
Identifies the prepared select-statement that specifies the result table of the
cursor whenever the cursor is opened. The statement-name must not be
identical to a statement name specified in another DECLARE CURSOR
statement of the source program. For an explanation of prepared SELECT
statements, see “PREPARE” on page 433.

 Notes
A cursor in the open state designates a result table and a position relative to the
rows of that table. The table is the result table specified by the SELECT statement
of the cursor.

The result table is read-only if one or more of the following statements is true about
the SELECT statement of the cursor:

� The first FROM clause identifies more than one table or view
� The first SELECT clause specifies the keyword DISTINCT
� The outer subselect contains a GROUP BY clause
� The outer subselect contains a HAVING clause
� The first SELECT clause contains a column function
� It contains a subquery such that the base object of the outer subselect, and of

the subquery, is the same table
� The first FROM clause identifies a read-only view
� The first FROM clause identifies a catalog table with no updateable columns
� The first FROM clause contains a nested table expression
� A UNION or UNION ALL operator is present
� An ORDER BY clause is present
� A FOR FETCH ONLY or a FOR READ ONLY clause is present
� A FOR UPDATE OF clause is not specified and the isolation level at which the

statement is executed is UR

Cursors in COBOL and FORTRAN programs: In COBOL and FORTRAN source
programs, the DECLARE CURSOR statement must precede all statements that
explicitly refer to the cursor by name. This rule does not necessarily apply to the
other host languages because the precompiler provides a two-pass option for these
languages. This rule applies to other host languages if the two-pass option is not
used.

Scope of a cursor: The scope of cursor-name is the source program in which it is
defined; that is, the application program submitted to the precompiler. Thus, you
can only refer to a cursor by statements that are precompiled with the cursor
declaration. For example, a COBOL program called from another program cannot
use a cursor that was opened by the calling program. Furthermore, a cursor
defined in a FORTRAN subprogram can only be referred to in that subprogram.

  Chapter 6. Statements 349



 DECLARE CURSOR  
 

Although the scope of a cursor is the program in which it is declared, each package
(or DBRM of a plan) created from the program includes a separate instance of the
cursor, and more than one instance of the cursor can be used in the same
execution of the program. For example, assume a program is precompiled with the
CONNECT(2) option and its DBRM is used to create a package at location X and a
package at location Y. The program contains the following SQL statements:

DECLARE C CURSOR FOR ...

CONNECT TO X

 OPEN C

FETCH C INTO ...

CONNECT TO Y

 OPEN C

FETCH C INTO ...

The second OPEN C statement does not cause an error because it refers to a
different instance of cursor C. The same notion applies to a single location if the
packages are in different collections and the SET CURRENT PACKAGESET
statement is used to select the packages.

Positioned deletes and isolation level UR: Specify FOR UPDATE OF if you want
to use the cursor for a positioned DELETE and the isolation level is UR because of
a BIND option. In this case, the isolation level is CS.

| Returning a result set from a stored procedure: A cursor that is declared in a
| stored procedure returns a result set when all of the following conditions are true:

| � The cursor is declared with the WITH RETURN option. In a distributed
| environment, blocks of each result set of the cursor's data are returned with the
| CALL statement reply.
| � The cursor is left open after exiting from the stored procedure.
| � The cursor is declared with the WITH HOLD option if the stored procedure
| performs a COMMIT_ON_RETURN.

| The result set is the set of all rows after the current position of the cursor after
| exiting the stored procedure. The result set is assumed to be read-only. If that
| same procedure is reinvoked, open result set cursors for a stored procedure at a
| given site are automatically closed by the database management system.

 Examples
The statements in the following examples are assumed to be in PL/I programs.

Example 1: Declare C1 as the cursor of a query to retrieve data from the table
DSN8510.DEPT. The query itself appears in the DECLARE CURSOR statement.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DSN851,.DEPT

WHERE ADMRDEPT = 'A,,';

Example 2: Declare C2 as the cursor for a statement named STMT2.

EXEC SQL DECLARE C2 CURSOR FOR STMT2;

350 SQL Reference  



  DECLARE CURSOR
 

Example 3: Declare C3 as the cursor for a query to be used in positioned updates
of the table DSN8510.EMP. Allow the completed updates to be committed from
time to time without closing the cursor.

EXEC SQL DECLARE C3 CURSOR WITH HOLD FOR

SELECT O FROM DSN851,.EMP

FOR UPDATE OF WORKDEPT, PHONENO, JOB, EDLEVEL, SALARY;

| Example 4: In stored procedure SP1, declare C4 as the cursor for a query of the
| table DSN8510.PROJ. Enable the cursor to return a result set to the caller of SP1,
| which performs a commit on return.

| EXEC SQL DECLARE C4 CURSOR WITH HOLD WITH RETURN FOR

| SELECT PROJNO, PROJNAME

|  FROM DSN851,.PROJ

| WHERE DEPTNO = 'A,1';

  Chapter 6. Statements 351



 DECLARE STATEMENT  
 

 DECLARE STATEMENT
The DECLARE STATEMENT statement is used for application program
documentation. It declares names that are used to identify prepared SQL
statements.

 Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

# This statement cannot be included in a REXX application program.

 Authorization
None required.

 Syntax

 

 ┌ ┐─,──────────────
��──DECLARE─ ───

�
┴─statement-name─ ─STATEMENT───────────────────────────────────────────────────────────��

 Description
statement-name STATEMENT

Lists one or more names that are used in your application program to identify
prepared SQL statements.

 Example
This example shows the use of the DECLARE STATEMENT statement in a PL/I
program.

352 SQL Reference  



  DECLARE STATEMENT
 

EXEC SQL DECLARE OBJECT_STATEMENT STATEMENT;

EXEC SQL INCLUDE SQLDA;

EXEC SQL DECLARE C1 CURSOR FOR OBJECT_STATEMENT;

( SOURCE_STATEMENT IS "SELECT DEPTNO, DEPTNAME,

MGRNO FROM DSN851,.DEPT WHERE ADMRDEPT = 'A,,'" )

EXEC SQL PREPARE OBJECT_STATEMENT FROM SOURCE_STATEMENT;

EXEC SQL DESCRIBE OBJECT_STATEMENT INTO SQLDA;

 (Examine SQLDA)

EXEC SQL OPEN C1;

DO WHILE (SQLCODE = ,);

EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA;

 (Print results)

 END;

EXEC SQL CLOSE C1;

  Chapter 6. Statements 353



 DECLARE TABLE  
 

 DECLARE TABLE
The DECLARE TABLE statement is used for application program documentation. It
also provides the precompiler with information used to check your embedded SQL
statements. (The DCLGEN subcommand can be used to generate declarations for
tables and views described in any accessible DB2 catalog. For more on DCLGEN,
see Section 3 of Application Programming and SQL Guide and Chapter 2 of
Command Reference .)

 Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

 Authorization
None required.

 Syntax

 

 ┌ ┐─,─────────────────────────────────────────────────
��──DECLARE─ ──┬ ┬─table-name─ ──TABLE( ───

�
┴ ─column-name──data-type─ ──┬ ┬─────────────────────── ) ─────────��

 └ ┘─view-name── ├ ┤─NOT NULL──────────────
└ ┘─NOT NULL WITH DEFAULT─

 Description
table-name or view-name

Is the name of the table or view you want to document. If the same name is
used in a CREATE TABLE statement in your application program, the
description of the table in the CREATE TABLE statement and the DECLARE
TABLE statement must be identical.

column-name
Is the name of a column of the table or view.

The precompiler uses these names to check for consistency of names within
your SQL statements. It also uses the data type to check for consistency of
types within your SQL statements.

data-type
Is one of the types in the following list:

INTEGER or INT
For a large integer.

SMALLINT
For a small integer.

FLOAT(integer)
For a floating-point number. If integer is between 1 and 21 inclusive,
the format is single precision floating-point. If the integer is between
22 and 53 inclusive, the format is double precision floating-point.

354 SQL Reference  



  DECLARE TABLE
 

You can also specify:

REAL For single precision floating-point
DOUBLE For double precision floating-point
DOUBLE PRECISION For double precision floating-point
FLOAT For double precision floating-point

DECIMAL(integer,integer) or DEC(integer,integer)
For a decimal number. The first integer is the precision of the
number. That is, the total number of digits, which can range from 1
to 31. The second integer is the scale of the number. That is, the
number of digits to the right of the decimal point, which can range
from 0 to the precision of the number. You can also specify:

DECIMAL(integer) For DECIMAL(integer,0)
DECIMAL For DECIMAL(5,0)

The word NUMERIC can be used in place of DECIMAL. For
example, NUMERIC(8) is equivalent to DECIMAL(8). Unlike
DECIMAL, NUMERIC has no allowable abbreviation.

CHARACTER(integer) or CHAR(integer) For a fixed-length
character string of length integer, which can range from 1

# to 255. If the length specification is omitted, a length of 1
character is assumed.

VARCHAR(integer) or CHAR VARYING(integer) or CHARACTER
VARYING(integer) For a varying-length character string
of maximum length integer, which can range from 1 to
32704.

LONG VARCHAR For a varying-length character string whose
maximum length is determined by DB2.

GRAPHIC(integer) For a fixed-length graphic string of length integer,
which can range from 1 to 127. If the length specification
is omitted, a length of 1 character is assumed.

VARGRAPHIC(integer) For a varying-length string of double-byte
characters, of maximum length integer, which can range
from 1 to 16352.

LONG VARGRAPHIC For a varying-length string of double-byte
characters whose maximum length is determined by
DB2.

DATE For a date.

TIME For a time.

TIMESTAMP For a timestamp.

NOT NULL
Is used for a column that does not allow null values, and does not provide a
default value.

NOT NULL WITH DEFAULT
Is used for a column that does not allow null values, but provides a default
value.

  Chapter 6. Statements 355



 DECLARE TABLE  
 

 Notes
If an error occurs during the processing of the DECLARE TABLE statement, a
warning message is issued, and the precompiler continues processing your source
program.

 Example
Declare the sample employee table, DSN8510.EMP.

EXEC SQL DECLARE DSN851,.EMP TABLE

 (EMPNO CHAR(6) NOT NULL,

FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL,

LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3) ,

 PHONENO CHAR(4) ,

 HIREDATE DATE ,

 JOB CHAR(8) ,

 EDLEVEL SMALLINT ,

 SEX CHAR(1) ,

 BIRTHDATE DATE ,

 SALARY DECIMAL(9,2) ,

 BONUS DECIMAL(9,2) ,

 COMM DECIMAL(9,2) );

356 SQL Reference  



  DELETE
 

 DELETE
The DELETE statement deletes rows from a table or view. The table or view can
be at the current server or any DB2 subsystem with which the current server can
establish a connection. Deleting a row from a view deletes the row from the table
on which the view is based.

There are two forms of this statement:

� The searched DELETE form is used to delete one or more rows, optionally
determined by a search condition.

� The positioned DELETE form is used to delete exactly one row, as determined
by the current position of a cursor.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

 Authorization
Authority requirements depend on whether the object identified in the statement is a

| user-defined table, a catalog table, or a view, and whether the statement is a
| searched DELETE and SQL standard rules are in effect:

When a user-defined table is identified: The privilege set must include at least
one of the following:

� The DELETE privilege on the table
� Ownership of the table
� DBADM authority on the database containing the table

 � SYSADM authority

When a catalog table is identified: The privilege set must include at least one of
the following:

� DBADM authority on the catalog database
 � SYSCTRL authority
 � SYSADM authority

When a view is identified: The privilege set must include at least one of the
following:

� The DELETE privilege on the view
 � SYSADM authority

| Searched DELETE and SQL standard rules: In a searched delete, the SELECT
| privilege is required in addition to the DELETE privilege when the option for the
| SQL standard is set as follows:

| � For static SQL statements, if the SQLRULES(STD) bind option was specified

| � For dynamic SQL statements, if the CURRENT RULES special register is set to
| 'STD'

The owner of a view, unlike the owner of a table, might not have DELETE authority
on the view (or might have DELETE authority without being able to grant it to

  Chapter 6. Statements 357



 DELETE  
 

others). The nature of the view itself can preclude its use for DELETE. For more
information, see the description of authority in “CREATE VIEW” on page 341.

If a subselect is specified, the privilege set must include authority to execute the
subselect. For more information about the subselect authorization rules, see
“Authorization” on page 169.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared and the bind option DYNAMICRULES(RUN)
applies, the privilege set is the union of the privilege sets held by each
authorization ID of the process. If the statement is dynamically prepared and the
bind option DYNAMICRULES(BIND) applies, the privilege set is the privileges held
by the authorization ID of the owner of the plan or package.

 Syntax

searched delete: 

��─ ─DELETE FROM─ ──┬ ┬─table-name─ ──┬ ┬────────────────── ──┬ ┬───────────────────────── ───────────────────�
 └ ┘─view-name── └ ┘─correlation-name─ └ ┘ ─WHERE──search-condition─

�─ ──┬ ┬────────────── ─────────────────────────────────────────────────────────────────────────────────��
 └ ┘ ─WITH─ ──┬ ┬─RR─
 ├ ┤─RS─
 └ ┘─CS─

positioned delete: 

��─ ─DELETE FROM─ ──┬ ┬─table-name─ ─WHERE CURRENT OF──cursor-name───────────────────────────────────────��
 └ ┘─view-name──

 Description
FROM table-name or view-name

Identifies the object of the DELETE statement. The name must identify a table
or view that exists at the DB2 subsystem identified by the implicitly or explicitly
specified location name. The name must not identify:

� A catalog table for which deletes are not allowed
� A view of such a catalog table
� A read-only view (For a description of a read-only view, see “CREATE

VIEW” on page 341.)

In an IMS or CICS application, the DB2 subsystem containing the identified
table or view must not be a remote DB2 Version 2 Release 3 subsystem.

correlation-name
Can be used within the search-condition to qualify references to columns of the
table or view. (For an explanation of correlation names, see “Correlation
Names” on page 84.)

WHERE
| Specifies the rows to be deleted. You can omit the clause, give a search
| condition or name a cursor. For a temporary table or a view of a temporary

358 SQL Reference  



  DELETE
 

| table, you must omit the clause. When the clause is omitted, all the rows of the
| table or view are deleted.

search-condition
Is any search condition as described in “Chapter 3. Language Elements”
on page 43. Each column-name in the search condition, other than in a
subquery, must identify a column of the table or view.

The search condition is applied to each row of the table or view and the
deleted rows are those for which the result of the search condition is true.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, a subquery
with no correlated references is executed just once, whereas it is possible
that a subquery with a correlated reference must be executed once for
each row.

Let T2 denote the object table of a DELETE statement and let T1 denote a
table that is referred to in the FROM clause of a subquery of that
statement. T1 must not be a table that can be affected by the DELETE on
T2. Thus, the following rules apply:

� T1 and T2 must not be the same table.

� T1 must not be a dependent of T2 in a relationship with a delete rule of
CASCADE or SET NULL.

� T1 must not be a dependent of T3 in a relationship with a delete rule of
CASCADE or SET NULL if deletes of T2 cascade to T3.

CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. cursor-name must
identify a declared cursor as explained in the description of the DECLARE
CURSOR statement in “Notes” on page 349. If the DELETE statement is
embedded in a program, the DECLARE CURSOR statement must include
select-statement rather than statement-name.

The table or view named must also be named in the FROM clause of the
SELECT statement of the cursor, and the result table of the cursor must
not be read-only. (For an explanation of read-only result tables, see
“DECLARE CURSOR” on page 347.) If the cursor is ambiguous and the
plan or package was bound with CURRENTDATA(NO), it is possible that
DB2 will return an error (SQLCODE -510) to the application if DELETE
WHERE CURRENT OF is attempted for any of the following:

� a cursor that is using block fetching

� a cursor that is using query parallelism

� a cursor positioned on a row that has been modified by this or another
application process

When the DELETE statement is executed, the cursor must be positioned
on a row; that row is the one deleted. After the deletion, the cursor is
positioned before the next row of its result table. If there is no next row, the
cursor is positioned after the last row.

  Chapter 6. Statements 359



 DELETE  
 

WITH
Specifies the isolation level used when locating the rows to be deleted by the
statement.

RR Repeatable read
RS Read stability
CS Cursor stability

The default isolation level of the statement is the isolation level of the package
or plan in which the statement is bound, with the package isolation taking
precedence over the plan isolation. When a package isolation is not specified,
the plan isolation is the default.

 Notes
Delete rules: If the object table of the delete operation is a parent table:

� The rows selected for deletion must have no dependents in a relationship
| governed by a delete rule of RESTRICT or NO ACTION.

� The delete operation must not cascade to descendent rows that are
| dependents in a relationship governed by a delete rule of RESTRICT or NO
| ACTION.

| If the delete operation is not prevented by a RESTRICT or NO ACTION delete rule,
the selected rows are deleted and:

� The columns of foreign keys in any rows that are their dependents in a
relationship governed by a delete rule of SET NULL and which allow nulls are
set to the null value.

� Any rows that are their dependents in a relationship governed by a delete rule
of CASCADE are also deleted, and these rules apply, in turn, to those rows.

| The only difference between NO ACTION and RESTRICT is when the referential
| constraint is enforced. RESTRICT (IBM SQL rules) enforces the rule immediately,
| and NO ACTION (SQL standard rules) enforces the rule at the end of the
| statement. This difference matters only in the case of a searched DELETE involving
| a self-referencing constraint that deletes more than one row. NO ACTION might
| allow the DELETE to be successful where RESTRICT (if it were allowed) would
| prevent it.

A check constraint can prevent the deletion of a row in a parent table when there
are dependents in a relationship with a delete rule of SET NULL. If deleting a row
in the parent table would cause a column in a dependent table to be set to null and
there is a check constraint that specifies that the column must not be null, the row
is not deleted.

If an error occurs during the execution of any delete operation, no rows are deleted.
If an error occurs during the execution of a positioned delete, the position of the
cursor is unchanged. However, it is possible for an error to make the position of the
cursor invalid, in which case the cursor is closed. It is also possible for a delete
operation to cause a rollback, in which case the cursor is closed.

If an application process deletes a row on which any of its cursors are positioned,
those cursors are positioned before the next row of the result table. Let C be a
cursor that is positioned before row R (as a result of an OPEN, a DELETE through
C, a DELETE through some other cursor, or a searched DELETE). In the presence

360 SQL Reference  



  DELETE
 

of INSERT, UPDATE, and DELETE operations that affect the base table from
which R is derived, the next FETCH operation referencing C does not necessarily
position C on R. For example, the operation can position C on R', where R' is a
new row that is now the next row of the result table.

Unless appropriate locks already exist, one or more exclusive locks are acquired
during the execution of a successful delete operation. Until the locks are released
by a commit or rollback operation, the effect of the DELETE operation can only be
perceived by the application process that performed the deletion and the locks can
prevent other application processes from performing operations on the table.

DELETE FROM T without a WHERE clause deletes all rows of T. If T is
contained in a segmented table space and is not a parent table, this deletion will be
performed without accessing T. In this case, database procedures are not invoked
and SQLERRD(3) is set to -1.

Except as noted in the above paragraph, a DELETE operation sets SQLERRD(3) to
the number of deleted rows. This number does not include any rows that were
deleted as a result of a CASCADE delete rule.

If the object table is SYSIBM.SYSSTRINGS, the rows selected for delete must be
rows provided by the user (The value of the IBMREQD column is N).

 Examples
Assume that the statements in these examples are embedded in PL/I programs.

Example 1: From the table DSN8510.EMP delete the row on which the cursor C1 is
currently positioned.

EXEC SQL DELETE FROM DSN851,.EMP WHERE CURRENT OF C1;

Example 2: From the table DSN8510.EMP, delete all rows for departments E11 and
D21.

EXEC SQL DELETE FROM DSN851,.EMP

WHERE WORKDEPT = 'E11' OR WORKDEPT = 'D21';

  Chapter 6. Statements 361



 DESCRIBE  
 

 DESCRIBE
The DESCRIBE statement obtains information about a prepared statement or a
designated table or view. For an explanation of prepared statements, see

| “PREPARE” on page 433 and “DESCRIBE PROCEDURE” on page 372.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

 Authorization
None required if the statement is used for a prepared statement. When it is used
instead for a table or view, the privileges held by the authorization ID that owns the

# plan or package must include at least one of the following (for DESCRIBE TABLE,
# authorization checking is done only against the plan owner if there is a plan):

� Ownership of the table or view
� The SELECT, INSERT, UPDATE, DELETE, or REFERENCES privilege on the

object
� The ALTER or INDEX privilege on the object (tables only)
� DBADM authority over the database containing the object (tables only)
� SYSADM or SYSCTRL authority

# For an RRSAF application that does not have a plan and in which the requester
# and the server are DB2 for OS/390 systems, authorization to execute the package
# is performed against the primary or secondary authorization ID of the process.

See “PREPARE” on page 433 for the authorization required to create a prepared
statement.

 Syntax

 

��─ ─DESCRIBE─ ──┬ ┬─statement-name─────── ─INTO──descriptor-name─ ──┬ ┬─────────────────── ────────────────��
 └ ┘ ─TABLE──host-variable─ │ │┌ ┐─NAMES──
 └ ┘ ─USING─ ──┼ ┼─LABELS─
 ├ ┤─ANY────
 └ ┘─BOTH───

 Description
statement-name

Identifies the prepared statement. When the DESCRIBE statement is executed,
the name must identify a statement that has been prepared by the application
process at the current server.

TABLE host-variable
Identifies the table or view. When the DESCRIBE statement is executed, the
host variable must contain a name which identifies a table or view that exists at
the current server. This variable must be a fixed- or varying-length character

# string with a length attribute less than 256. The name must be followed by one
or more blanks if the length of the name is less than the length of the variable.

362 SQL Reference  



  DESCRIBE
 

It cannot contain a period as the first character and it cannot contain embedded
blanks. In addition, the quotation mark is the escape character regardless of
the value of the string delimiter option. The reference to the host variable must
be preceded by a colon and an indicator variable must not be specified.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix C,
“SQLCA and SQLDA” on page 513. See “Identifying an SQLDA in C” on
page 526 for how to represent descriptor-name in C.

If DESCRIBE is applied to:

� A table or view, the information returned in the SQLDA describes the
columns in the table or view

� A prepared statement and that statement is a query, the information
returned in the SQLDA describes the columns of the result table

� A prepared statement and that statement is not a query, the information
returned in the SQLDA is the fact that the statement is not a query.

# For languages other than REXX: Before the statement is executed, the SQLDA
must be allocated. An SQLDA consists of the fields SQLDAID, SQLDABC,
SQLN, and SQLD followed by zero or more occurrences of an SQLVAR
structure. For REXX, an SQLDA consists of the field SQLD followed by zero or
more occurrences of a set of SQLVAR variables. To obtain column
descriptions, the number of occurrences of SQLVAR must be at least as great
as the number of columns in the table being described. If the DESCRIBE
statement contains USING BOTH, the number of occurrences of SQLVAR must
be at least twice the number of columns in the table. For descriptions of
methods that determine the required number of occurrences, see “Allocating
the SQLDA” on page 365. Before the DESCRIBE statement is executed, the
following field in the SQLDA must be set:

Field Description

SQLN Indicates the number of SQLVAR occurrences in the SQLDA. The
value is not changed by DB2. For performance reasons, you
might want to reset this value after the DESCRIBE statement is
executed. For details, see “Preparing the SQLDA for data
retrieval” on page 366.

# For REXX: The SQLDA is not allocated before it is used. An SQLDA consists
# of a set of stem variables. There is one occurrence of variable stem.SQLD,
# followed by zero or more occurrences of a set of variables that is equivalent to
# an SQLVAR structure. Those variables begin with stem.n.

Except for SQLN, all the other SQLDA fields are either set by DB2 or ignored,
as indicated in the field descriptions below. These descriptions do not
necessarily apply to the uses of an SQLDA in other SQL statements
(EXECUTE, OPEN, FETCH). For more on the other uses, see Appendix C,
“SQLCA and SQLDA” on page 513.

Field Description

SQLDAID Set to 'SQLDA' by DB2.

# A REXX SQLDA does not contain this field.

  Chapter 6. Statements 363



 DESCRIBE  
 

SQLDABC Length of the SQLDA, in bytes. DB2 sets this value to
SQLN×44+16. For performance reasons, you might want to reset
this value after the DESCRIBE statement is executed. For details,
see “Preparing the SQLDA for data retrieval” on page 366.

# A REXX SQLDA does not contain this field.

SQLD Is set to one of the following values:

� Zero if DESCRIBE is applied to a statement that is not a
query

� The number of columns in the object being described if
USING BOTH is not specified

� Twice the number of columns in the object being described if
USING BOTH is specified

If the returned value of SQLD is greater than the value of SQLN,
the SQLDA was not large enough for the information requested,
and no information is returned in the occurrences of SQLVAR.

SQLVAR Assume that the SQLDA is large enough for the requested
information, and that N is the number of columns in the object
being described. Values are assigned to the first N occurrences of
SQLVAR, such that the first occurrence describes the first column
in the object, the second occurrence describes the second
column, and so on. If USING BOTH appears in the DESCRIBE
statement, the second N occurrences of SQLVAR are also
assigned values, such that the (N+1)st occurrence describes the
first column, the (N+2)nd occurrence describes the second
column, and so on.

When USING BOTH is used, the first N occurrences of SQLVAR
contain column names (where they exist) in the SQLNAME fields,
and the second N occurrences contain column labels (where they
exist) in the SQLNAME fields. In the second N occurrences, only
the SQLNAME fields receive a value. Whether or not USING
BOTH occurs, values are assigned as shown below in the first N
occurrences of SQLVAR.

# For REXX, the SQLVAR is a set of stem variables that begin with
# stem.n, instead of a structure, but the way in which DB2 assigns
# values to the SQLVAR variables is the same as for other
# languages. That is, the stem.1 variables describe the first column
# in the result table, the stem.2 variables describe the second
# column in the result table, and so on. If USING BOTH is specified,
# the stem.n+1 variables also describe the first column in the result
# table, the stem.n+2 variables also describe the second column in
# the result table, and so on.

SQLTYPE A code showing the data type of the column and whether or not it
can contain null values. For information about the SQLTYPE
codes returned following the execution of a DESCRIBE statement,
see Table 37 on page 523.

SQLLEN A length value depending on the data type of the result columns.
For the possible values of SQLLEN, see Table 37 on page 523.

# In a REXX SQLDA, for DECIMAL or NUMERIC columns, DB2

364 SQL Reference  



  DESCRIBE
 

# sets the SQLPRECISION and SQLSCALE fields instead of the
# SQLLEN field.

SQLDATA CCSID of a string column, as shown in Table 38 on page 524.

# In a REXX SQLDA, DB2 sets the SQLCCSID field instead of the
# SQLDATA field.

SQLIND Reserved.

SQLNAME The unqualified name or label of the column, depending on the
value of USING (NAMES, LABELS, ANY, or BOTH). A string of
length 0 if the column does not have a name or label. If the
prepared statement includes UNION or UNION ALL, SQLNAME
contains the name or label, if any, of the corresponding column of
the first operand of UNION. If the described column is the result
column of a union, the name in SQLNAME is not necessarily a
name that can be used in an ORDER BY clause of the prepared
statement.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA. If the
requested value does not exist, SQLNAME is set to a length of 0. If the
prepared statement includes UNION or UNION ALL, SQLNAME contains the
name or label, if any, of the corresponding column of the first operand of the
union.

NAMES
Assigns the name of the column. This is the default.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL
ON statement.)

ANY
Assigns the column label, and if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two
occurrences of SQLVAR per column are needed to accommodate the
additional information. To specify this expansion of the SQLVAR array, set
SQLN to 2×N, where N is the number of columns in the object being
described. The first N occurrences of SQLVAR for each of the columns
contain the column names. The second n occurrences contain the column
labels. If the SQLDA is used in a later FETCH statement, set SQLN to N
before executing that FETCH statement.

 Notes
Information about a prepared statement can also be obtained by using the INTO
clause of the PREPARE statement.

Allocating the SQLDA: Among the possible ways to allocate the SQLDA are the
three described below. Here, we assume only one SQLVAR for each column in a
select list; that is, we assume that USING BOTH does not appear in any
DESCRIBE statement:

  Chapter 6. Statements 365



 DESCRIBE  
 

First technique: Allocate an SQLDA with enough occurrences of SQLVAR to
accommodate any select list that the application will have to process. At the
extreme, the number of SQLVARs could equal the maximum number of columns
allowed in a result table. Having done the allocation, the application can use this
SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even
when most of this storage is not used for a particular select list.

Second technique: Repeat the following two steps for every processed select list:

1. Execute a DESCRIBE statement with an SQLDA that has no occurrences of
SQLVAR; that is, an SQLDA for which SQLN is zero. The value returned for
SQLD is equal to the required number of occurrences of SQLVAR.

2. Use the returned value of SQLD to allocate an SQLDA with enough
occurrences of SQLVAR. Then execute the DESCRIBE statement again, using
the new SQLDA.

This technique allows better storage management than the first technique, but it
doubles the number of DESCRIBE statements.

Third technique: Allocate an SQLDA that is large enough to handle most (hopefully,
all) select lists but is also reasonably small. If an execution of DESCRIBE fails
because SQLDA is too small, allocate a larger SQLDA and execute DESCRIBE
again. For the new SQLDA, use the value of SQLD returned from the first
execution of DESCRIBE for the number of occurrences of SQLVAR.

This technique is a compromise between the first two techniques. Its effectiveness
depends on a good choice of size for the original SQLDA.

Preparing the SQLDA for data retrieval: This note is relevant if you are applying
DESCRIBE to a prepared query and you intend to use the SQLDA in the FETCH
statements you employ to retrieve the result table rows. To prepare the SQLDA for
that task, you must set the SQLDATA field of SQLVAR. SQLIND must be set if
SQLTYPE is odd, and SQLNAME must be set when overriding the CCSID. For the
meanings of those fields in that context, see Appendix C, “SQLCA and SQLDA” on
page 513.

Also, SQLN and SQLDABC should be reset (if necessary) to N and N×44+16,
where N is the number of columns in the result table. Doing so can improve
performance when the rows of the result table are fetched. You can determine N
from the value of SQLD that DB2 returns when the DESCRIBE statement is
executed.

Supporting extended dynamic SQL in a distributed environment: In a
distributed environment, where DB2 for OS/390 is the server and the requestor
supports extended dynamic SQL, a DESCRIBE request that is executed against an
SQL statement in the extended dynamic package appears as a DESCRIBE against
a static SQL statement in the DB2 package. This request will generate an error
unless the DB2 administrator has set the DB2 subsystem parameter DESCSTAT to
YES and the package has been rebound. For more information, see Section 3 of
Installation Guide.

| Avoiding double preparation when using REOPTVAR: If bind option
| REOPT(VARS) is in effect, DESCRIBE causes the statement to be prepared if it is

366 SQL Reference  



  DESCRIBE
 

| not already prepared. If issued before an OPEN or an EXECUTE, the DESCRIBE
| causes the statement to be prepared without input variable values. If the statement
| has input variable values, it must then be prepared again when it is opened or
| executed. To avoid preparing statements twice, issue the DESCRIBE after the
| OPEN. For non-cursor statements, open and fetch processing are performed on the
| EXECUTE. So, if a DESCRIBE must be issued, the statement will be prepared
| twice.

| Errors occurring on DESCRIBE: In local and remote processing, the
| DEFER(PREPARE) and REOPT(VARS) bind options can cause some errors that
| are normally issued during PREPARE processing to be issued on DESCRIBE.

 Example
In a PL/I program, execute a DESCRIBE statement with an SQLDA that has no
occurrences of SQLVAR. If SQLD is greater than zero, use the value to allocate an
SQLDA with the necessary number of occurrences of SQLVAR and then execute a
DESCRIBE statement using that SQLDA. This is the second technique described in
“Allocating the SQLDA” on page 365.

EXEC SQL BEGIN DECLARE SECTION;

 DCL STMT1_STR CHAR(2,,) VARYING;

EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLDA;

EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

... /O code to prompt user for a query, then to generate O/

/O a select-statement in the STMT1_STR O/

EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;

... /O code to set SQLN to zero and to allocate the SQLDA O/

EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;

... /O code to check that SQLD is greater than zero, to set O/

/O SQLN to SQLD, then to re-allocate the SQLDA O/

EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;

... /O code to prepare for the use of the SQLDA O/

 EXEC SQL OPEN DYN_CURSOR;

... /O loop to fetch rows from result table O/

EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :SQLDA;

 .

 .

 .

  Chapter 6. Statements 367



 DESCRIBE CURSOR  
 

|  DESCRIBE CURSOR
| The DESCRIBE CURSOR statement gets information about the result set that is
| associated with the cursor. The information, such as column information, is put into
| a descriptor. Use DESCRIBE CURSOR for result set cursors from stored
| procedures. The cursor must be defined with the ALLOCATE CURSOR statement.

|  Invocation
| This statement can be embedded in an application program only. It is an
| executable statement that cannot be dynamically prepared.

|  Authorization
| None required.

|  Syntax

|  

| ��─| ─DESCRIBE CURSOR─ ──┬ ┬─cursor-name─── ─INTO──descriptor-name────────────────────────────────────────��
|  └ ┘─host-variable─

|  Description
| cursor-name or host-variable
| Identifies a cursor by the specified cursor-name or the cursor name contained
| in the host-variable. The name must identify a cursor that has already been
| allocated in the source program.

| A cursor name is a long identifier.

| If a host variable is used:

| � It must be a character string variable with a length attribute that is not
| greater than 18 bytes (A C NUL-terminated character string may be up to
| 19 bytes).

| � It must be preceded by a colon and must not be followed by an indicator
| variable.

| � The cursor name must be left justified within the host variable and must not
| contain embedded blanks.

| � If the length of the cursor name is less than the length of the host variable,
| it must be padded on the right with blanks.

| INTO descriptor-name
| Identifies an SQL descriptor area (SQLDA). The information returned in the
| SQLDA describes the columns in the result set associated with the named
| cursor.

| The considerations for allocating and initializing the SQLDA are similar to those
| of a varying-list SELECT statement. For more information, see Section 6 of
| Application Programming and SQL Guide.

368 SQL Reference  



  DESCRIBE CURSOR
 

| After the DESCRIBE CURSOR statement is executed, the contents of the
| SQLDA are the same as after a DESCRIBE for a SELECT statement, with the
| following exceptions:

| � The first 5 bytes of the SQLDAID field are set to 'SQLRS'.
| � Bytes 6 to 8 of the SQLDAID field are reserved. If the cursor is declared
| WITH HOLD in a stored procedure, the high-order bit of the 8th byte is set
| to 1.

# These exceptions do not apply to a REXX SQLDA, which does not include the
# SQLDAID field.

|  Notes
| The information that is retrieved by the DESCRIBE CURSOR statement includes
# columns names when the statement that generates the result set is dynamic, or the
# statement is static and the value of the DB2 subsystem parameter DESCSTAT was
# YES when the package or stored procedure was bound.

| For the statement to execute successfully, the application program must be
| connected to the site at which the stored procedure was executed.

|  Examples
| The statements in the following examples are assumed to be in PL/I programs.

| Example 1: Place information about the result set associated with cursor C1 into
| the descriptor named by :sqlda1.

| EXEC SQL DESCRIBE CURSOR C1 INTO :sqlda1

| Example 2: Place information about the result set associated with the cursor named
| by :hv1 into the descriptor named by :sqlda2.

| EXEC SQL DESCRIBE CURSOR :hv1 INTO :sqlda2

  Chapter 6. Statements 369



 DESCRIBE INPUT  
 

#  DESCRIBE INPUT
# The DESCRIBE INPUT statement obtains information about the input parameter
# markers of a prepared statement. For an explanation of prepared statements, see
# “PREPARE” on page 433 and “DESCRIBE PROCEDURE” on page 372.

#  Invocation
# This statement can only be embedded in an application program. It is an
# executable statement that cannot be dynamically prepared.

#  Authorization
# None required if the statement is used for a prepared statement.

#  Syntax

#  

# ��─#  ─DESCRIBE INPUT─ ─── ──statement-name─#  ─INTO─# ─descriptor-name────────────────────────────────────────��

#  Description
# statement-name
# Identifies the prepared statement. When the DESCRIBE INPUT statement is
# executed, the name must identify a statement that has been prepared by the
# application process at the current server.

# INTO descriptor-name
# Identifies an SQL descriptor area (SQLDA), which is described in Appendix C,
# “SQLCA and SQLDA” on page 513. See “Identifying an SQLDA in C” on
# page 526 for how to represent descriptor-name in C. The information returned
# in the SQLDA describes the parameter markers.

# Before the DESCRIBE INPUT statement is executed, the user must set the
# SQLN field in the SQLDA and the SQLDA must be allocated. Considerations
# for initializing and allocating the SQLDA are similar to those for the DESCRIBE
# statement (see “DESCRIBE” on page 362).

# After the DESCRIBE INPUT statement is executed, all the fields in the SQLDA
# except SQLN are either set by DB2 or ignored. The SQLDA contents are
# similar to the contents returned for the DESCRIBE statement with these
# exceptions:

# � The SQLD field is set to the number of parameter markers being described.
# The value is 0 if the statement being described does not have input
# parameter markers.

# � The SQLNAME field is not used.

# For complete information on the contents of the fields, see “SQL Descriptor
# Area (SQLDA)” on page 519.

370 SQL Reference  



  DESCRIBE INPUT
 

#  Notes
# Preparing the SQLDA for OPEN or EXECUTE: This note is relevant if you are
# applying DESCRIBE INPUT to a prepared statement and you intend to use the
# SQLDA in an OPEN or EXECUTE statement. To prepare the SQLDA for that
# purpose:

# � Set SQLDATA to a valid address.
# � If SQLTYPE is odd, set SQLIND to a valid address.

# For the meaning of those fields in that context, see “SQL Descriptor Area (SQLDA)”
# on page 519.

# Executing DESCRIBE INPUT in a distributed environment: If you use the
# CONNECT statement to connect to a designated server, check the value of
# SQLERRP in the SQLCA before executing a DESCRIBE INPUT statement. Ensure
# that the value is at least DSN05012. If the last byte is less than 2, DESCRIBE
# INPUT will not execute correctly.

# Support for extended dynamic SQL in a distributed environment: Unlike the
# DESCRIBE statement, which can be used in a distributed environment to describe
# static SQL statements generated by extended dynamic SQL, you cannot describe
# host variables in static SQL statements that are generated by extended dynamic
# SQL. A DESCRIBE INPUT statement issued against such static SQL statements
# always fails.

# For information on how the DESCRIBE statement supports extended dynamic SQL,
# see “Support for extended dynamic SQL in a distributed environment” on page 366.

#  Example
# Execute a DESCRIBE INPUT statement with an SQLDA that has enough SQLVAR
# occurrences to describe any number of input parameters a prepared statement
# might have. Assume that five parameter markers at most will need to be described.

# /O STMT1_STR contains INSERT statement with VALUES clause O/

# EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;

# ... /O code to set SQLN to 5 and to allocate the SQLDA O/

# EXEC SQL DESCRIBE INPUT STMT1_NAME INTO :SQLDA;

#  .

#  .

#  .

# This example uses the first technique described in “Allocating the SQLDA” on
# page 365 to allocate the SQLDA.

  Chapter 6. Statements 371



 DESCRIBE PROCEDURE  
 

|  DESCRIBE PROCEDURE
| The DESCRIBE PROCEDURE statement gets information about the result sets
| returned by a stored procedure. The information, such as the number of result sets,
| is put into a descriptor.

|  Invocation
| This statement can be embedded in an application program only. It is an
| executable statement that cannot be dynamically prepared.

|  Authorization
| None required.

|  Syntax

|  

| ��─| ─DESCRIBE PROCEDURE─ ──┬ ┬─procedure-name─ ─INTO──descriptor-name────────────────────────────────────��
|  └ ┘─host-variable──

|  Description
| procedure-name or host-variable
| Identifies the stored procedure to describe by the specified procedure name or
| the procedure name contained in the host variable.

| A procedure name is a qualified or unqualified name. Each part of the name is
| a long SQL identifier that must be composed of SBCS characters:

| � A fully qualified procedure name is a three-part name. The first part is a
| location name that identifies the DBMS at which the procedure is stored.
| The next two parts identify the stored procedure. A period must separate
| each of the parts.

| � A two-part procedure name is implicitly qualified by the location name of
| the current server. The name and its implicit qualifier identifies a stored
| procedure. A period must separate the two parts. The first part identifies
| the stored procedure at the server. The meaning of the first part depends
| on the application server.

| � An unqualified procedure name is a one-part name with two implicit
| qualifiers. The first implicit qualifier is the location name of the current
| server. The second implicit qualifier identifies the stored procedure at the
| server. The meaning of the second implicit qualifier depends on the
| application server (for MVS, the qualifier is SYSPROC). The name and its
| implicit qualifiers identifies a stored procedure.

| If a host variable is used:

| � It must be a character string variable with a length attribute that is not
| greater than 254.

| � It must be preceded by a colon and must not be followed by an indicator
| variable.

372 SQL Reference  



  DESCRIBE PROCEDURE
 

| � The value of the host variable is a specification that depends on the
| application server. Regardless of the application server, the specification
| must:

| – Be left justified within the host variable
| – Not contain embedded blanks
| – Be padded on the right with blanks if its length is less than that of the
| host variable

| When the DESCRIBE PROCEDURE statement is executed, the procedure
| name or specification must identify a stored procedure that the requestor
| has already invoked using the CALL statement. For the statement to be
| successful, the application must be connected to the site at which the
| stored procedure resides.

| INTO descriptor-name
| Identifies an SQL descriptor area (SQLDA). The information returned in the
| SQLDA describes the result sets returned by the stored procedure.

| Considerations for allocating and initializing the SQLDA are similar to those for
| DESCRIBE TABLE.

| The contents of the SQLDA after executing a DESCRIBE PROCEDURE
| statement are:

| � The first 5 bytes of the SQLDAID field are set to 'SQLPR'.

# A REXX SQLDA does not contain SQLDAID.

| � Bytes 6 to 8 of the SQLDAID field are reserved.

| � The SQLD field is set to the total number of result sets. A value of 0 in the
| field indicates there are no result sets.

| � There is one SQLVAR entry for each result set.

| � The SQLDATA field of each SQLVAR entry is set to the result set locator
| value associated with the result set.

# For a REXX SQLDA, SQLLOCATOR is set to the result set locator value.

| � The SQLIND field of each SQLVAR entry is set to the estimated number of
| rows in the result set

| � The SQLNAME field is set to the name of the cursor used by the stored
| procedure to return the result set.

|  Notes
| A value of -1 in the SQLIND field indicates that an estimated number of rows in the
| result set is not provided. DB2 for OS/390 always sets SQLIND to -1.

| DESCRIBE PROCEDURE does not return information about the parameters
| expected by the stored procedure.

|  Examples
| The statements in the following examples are assumed to be in PL/I programs.

| Example 1: Place information about the result sets returned by stored procedure P1
| into the descriptor named by :sqlda1.

| EXEC SQL DESCRIBE PROCEDURE P1 INTO :sqlda1

  Chapter 6. Statements 373



 DESCRIBE PROCEDURE  
 

| Example 2: Place information about the result sets returned by the stored
| procedure named by :hv1 into the descriptor named by :sqlda2.

| EXEC SQL DESCRIBE PROCEDURE :hv1 INTO :sqlda2

374 SQL Reference  



  DROP
 

 DROP
The DROP statement deletes an object at the current server. Except for storage
groups, any objects that are directly or indirectly dependent on that object are
deleted. Whenever an object is deleted, its description is deleted from the catalog
at the current server, and any plans or packages that refer to the object are
invalidated.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

 Authorization
To drop a table, table space, or index, the privilege set defined below must include
at least one of the following:

| � Ownership of the object (for an index, the owner is the owner of the table or
| index)

 � DBADM authority
# � SYSADM or SYSCTRL authority

To drop an alias, storage group, or view, the privilege set defined below must
include at least one of the following:

� Ownership of the object
� SYSADM or SYSCTRL authority

To drop a database, the privilege set defined below must include at least one of the
following:

� The DROP privilege on the database
� DBADM or DBCTRL authority for the database
� SYSADM or SYSCTRL authority

To drop a package, the privilege set defined below must include at least one of the
following:

� Ownership of the package
� The BINDAGENT privilege granted from the package owner

# � PACKADM authority for the collection or for all collections
� SYSADM or SYSCTRL authority

To drop a synonym, the privilege set defined must include ownership of the
synonym.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets held by each authorization ID of the process.

  Chapter 6. Statements 375



 DROP  
 

 Syntax

 

��─ ─DROP─ ──┬ ┬─ALIAS──alias-name────────────────────────────────────────────────── ────────────────────��
 ├ ┤─DATABASE──database-name────────────────────────────────────────────
 ├ ┤─INDEX──index-name──────────────────────────────────────────────────
 ├ ┤─STOGROUP──stogroup-name────────────────────────────────────────────
 ├ ┤─SYNONYM──synonym───────────────────────────────────────────────────
 ├ ┤─TABLE──table-name──────────────────────────────────────────────────
 ├ ┤ ─TABLESPACE─ ── ──┬ ┬──────────────── table-space-name ──────────────────

│ │└ ┘──database-name.
 ├ ┤─VIEW──view-name────────────────────────────────────────────────────
 └ ┘──┬ ┬─PACKAGE─ ──collection-id.package-id ──┬ ┬─────────────────────────
 └ ┘─PROGRAM─ │ │┌ ┐─VERSION─
 └ ┘ ──┴ ┴───────── ─version-id─

 Description
ALIAS alias-name

Identifies the alias to be dropped. The name must identify an alias that exists at
the current server. Dropping an alias has no effect on any view or synonym
that was defined using the alias.

DATABASE database-name
Identifies the database to be dropped. The name must identify a database that
exists at the current server. DSNDB04 or DSNDB06 must not be specified. If
DSNDB07 or any work file database is specified, it must be in the stopped
state and the privilege set must include SYSADM authority.

The database and all of its table spaces, tables, index spaces, and indexes are
dropped.

INDEX index-name
Identifies the index to be dropped. The name must identify a user-defined index
that exists at the current server but must not identify a partitioned index. (For
details on dropping user-defined indexes on catalog tables, see “SQL
Statements Allowed on the Catalog” on page 532.) A partitioned index on table
T can only be dropped by dropping the table space that contains T.

The index is dropped. Whenever an index is directly or indirectly dropped, its
index space is also dropped. The name of a dropped index space cannot be
reused until a commit operation is performed.

| If a unique index is dropped and that index was used to enforce the
| uniqueness of a parent key, the definition of the parent table is changed to
| incomplete. Otherwise, if the index was used to enforce a UNIQUE constraint,
| the definition of the table is not changed. The table can still be used, but the
| UNIQUE constraint implied by the index is no longer enforced.

STOGROUP stogroup-name
Identifies the storage group to be dropped. The name must identify a storage
group that exists at the current server but not a storage group that is used by
any table space or index space.

The storage group is dropped. See “Dropping a default storage group” on
page 378 for the effect of dropping the default storage group of a database.

376 SQL Reference  



  DROP
 

SYNONYM synonym
Identifies the synonym to be dropped. In a static DROP SYNONYM statement,
the name must identify a synonym that is owned by the owner of the plan or
package. In a dynamic DROP SYNONYM statement, the name must identify a
synonym that is owned by the SQL authorization ID. Thus, using interactive
SQL, a user with SYSADM authority can drop any synonym by first setting
CURRENT SQLID to the owner of the synonym.

The synonym is dropped. This has no effect on any view or alias that was
defined using the synonym, nor does it invalidate any plans or packages that
use such views or aliases.

TABLE table-name
Identifies the table to be dropped. The name must identify a table that exists at
the current server but not a catalog table or a table in a partitioned table space.
A table in a partitioned table space can only be dropped by dropping the table
space.

The table is dropped. Whenever a table is directly or indirectly dropped, all
privileges on the table, all referential constraints in which the table is a parent
or dependent, and all synonyms, views, and indexes defined on the table are
also dropped. If the table space for the table was implicitly created, it is also
dropped.

TABLESPACE database-name.table-space-name
Identifies the table space to be dropped. The name must identify a table space
that exists at the current server. The database name must not be DSNDB06.
Omission of the database name is an implicit specification of DSNDB04.

The table space is dropped. Whenever a table space is directly or indirectly
dropped, all tables in the table space are also dropped. The name of a dropped
table space cannot be reused until a commit operation is performed.

VIEW view-name
Identifies the view to be dropped. The name must identify a view that exists at
the current server.

The view is dropped. Whenever a view is directly or indirectly dropped, all
privileges on the view and all synonyms and views that are defined on the view
are also dropped.

PACKAGE collection-id.package-id
Identifies the package version to be dropped. The name plus the implicitly or
explicitly specified version-id must identify a package version that exists at the
current server. Omission of the version-id is an implicit specification of the null
version. The keyword PROGRAM can be used instead of PACKAGE.

The package version is dropped. Whenever the last or only version of a
package is dropped, all privileges on the package are dropped and all plans
that are dependent on the execute privilege of the package are invalidated.

version-id or VERSION version-id
version-id is the version identifier that was assigned to the package's
DBRM when the DBRM was created. If version-id is not specified, a null
string is used as the version identifier.

Delimit the version identifier when it:

� Is generated by the VERSION(AUTO) precompiler option

  Chapter 6. Statements 377



 DROP  
 

� Begins with a digit
� Contains lowercase or mixed-case letters

For more on version identifiers, see the section on preparing an application
program for execution in Section 5 of Application Programming and SQL
Guide.

 Notes
Restrictions on DROP: DROP is subject to these restrictions:

� DROP DATABASE cannot be performed while a DB2 utility has control of any
part of the database.

� DROP PACKAGE cannot be performed while the package is in use.

� DROP INDEX cannot be performed while a DB2 utility has control of the index
or its associated table space.

� DROP TABLE cannot be performed while a DB2 utility has control of the table
space that contains the table.

� DROP TABLESPACE cannot be performed while a DB2 utility has control of
the table space.

In a data sharing environment, the following restrictions also apply:

� If any member has an active resource limit specification table (RLST) you
cannot drop the database or table space that contains the table, the table itself,
or any index on the table.

� If the member executing the drop cannot access the DB2-managed data sets,
only the catalog and directory entries for those data sets are removed.

Dropping a parent table: DROP is not DELETE and therefore does not involve
delete rules.

Dropping a default storage group: If you drop the default storage group of a
database, the database no longer has a legitimate default. You must then specify
USING in any statement that creates a table space or index in the database. You
must do this until you either:

� Create another storage group with the same name using the CREATE
STOGROUP statement, or

� Designate another default storage group for the database using the ALTER
DATABASE statement.

Dropping a table space or index: To drop a table space or index, the size of the
buffer pool associated with the table space or index must not be zero.

Dropping a table space in a work file database: To drop a table space in
database DSNDB07 or in any work file database, you must first issue the command
STOP DATABASE(database-name). Following your DROP, issue -START
DATABASE(database-name). This process removes the table space you dropped
from the pool of table spaces available to DB2.

If one member of a data sharing group drops a table space in a work file database,
or an entire work file database, that belongs to another member, DB2-managed
data sets that the executing member cannot access are not dropped. However, the
catalog and directory entries for those data sets are removed.

378 SQL Reference  



  DROP
 

Dropping resource limit facility (governor) indexes, tables, and table spaces:
While the RLST is active, you cannot issue a DROP DATABASE, DROP INDEX,
DROP TABLE, or DROP TABLESPACE statement for an object associated with an
RLST that is active on any member of a data sharing group. See Section 5
(Volume 2) of Administration Guide for details.

| Dropping a temporary table: To drop a temporary table, use the DROP TABLE
| statement.

Dropping an alias: Dropping a table or view does not drop its aliases. To drop an
alias, use the DROP ALIAS statement.

Dropping a migrated index or table space: Here, “migration” means migrated by
the Hierarchical Storage Manager (DFSMShsm). DB2 does not wait for any recall
of the migrated data sets. Hence, recall is not a factor in the time it takes to
execute the statement.

# Deleting SYSLGRNX records for dropped table spaces: After dropping a table
space, you cannot delete the associated records. If you want to remove the
records, you must quiesce the table space, and then run the MODIFY RECOVERY

| utility before dropping the table space. If you delete the SYSLGRNX records and
| drop the table space, you cannot reclaim the table space.

 Examples
Example 1: Drop table DSN8510.DEPT.

DROP TABLE DSN851,.DEPT;

Example 2: Drop table space DSN8S51D in database DSN8D51A.

DROP TABLESPACE DSN8D51A.DSN8S51D;

Example 3: Drop the view DSN8510.VPROJRE1:

DROP VIEW DSN851,.VPROJRE1;

Example 4: Drop the package DSN8CC0 with the version identifier VERSZZZZ.
The package is in the collection DSN8CC51. Use the version identifier to
distinguish the package to be dropped from another package with the same name
in the same collection.

DROP PACKAGE DSN8CC51.DSN8CC, VERSION VERSZZZZ;

Example 5: Drop the package DSN8CC0 with the version identifier
“1994-07-14-09.56.30.196952.” When a version identifier is generated by the
VERSION(AUTO) precompiler option, delimit the version identifier.

DROP PACKAGE DSN8CC51.DSN8CC, VERSION "1994-,7-14-,9.56.3,.196952";

  Chapter 6. Statements 379



 END DECLARE SECTION  
 

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of a host variable declare
section.

 Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

# This statement cannot be included in a REXX application program.

 Authorization
None required.

 Syntax

 

��──END DECLARE SECTION──────────────────────────────────────────────────────────────────────────────��

 Description
The END DECLARE SECTION statement can be coded in the application program
wherever declarations can appear in accordance with the rules of the host
language. It is used to indicate the end of a host variable declaration section. A
host variable section starts with a BEGIN DECLARE SECTION statement described
in “BEGIN DECLARE SECTION” on page 246.

The following rules are enforced by the precompiler only if the host language is C
or the STDSQL(YES) precompiler option is specified:

� A variable referred to in an SQL statement must be declared within a host
variable declaration section of the source program.

� BEGIN DECLARE SECTION and END DECLARE SECTION statements must
be paired and must not be nested.

� Declare sections must not contain statements other than host variable
declarations or SQL INCLUDE statements that include host variable
declarations.

 Notes
Host variable declaration sections are only required if the STDSQL(YES) option is
specified or the host language is C. However, declare sections can be specified for
any host language so that the source program can conform to IBM SQL. If declare
sections are used, but not required, variables declared outside a declare section
should not have the same name as variables declared within a declare section.

380 SQL Reference  



  END DECLARE SECTION
 

 Example
EXEC SQL BEGIN DECLARE SECTION;

(host variable declarations)

EXEC SQL END DECLARE SECTION;

  Chapter 6. Statements 381



 EXECUTE  
 

 EXECUTE
The EXECUTE statement executes a prepared SQL statement.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

 Authorization
See “PREPARE” on page 433 for the authorization required to create a prepared
statement.

 Syntax

 

��─ ─EXECUTE──statement-name─ ──┬ ┬──────────────────────────────────────── ─────────────────────────────��
 │ │┌ ┐─,─────────────
 └ ┘ ─USING─ ──┬ ┬───

�
┴─host-variable─ ──────────

 └ ┘ ─DESCRIPTOR──descriptor-name─

 Description
statement-name

Identifies the prepared statement to be executed. statement-name must identify
a statement that was previously prepared within the unit of work and the
prepared statement must not be a SELECT statement.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) in the prepared statement. (For an
explanation of parameter markers, see “PREPARE” on page 433.) If the
prepared statement includes parameter markers, you must include USING in
the EXECUTE statement. USING is ignored if there are no parameter markers.

For more on the substitution of values for parameter markers, see “Parameter
marker replacement” on page 383.

host-variable,...
Identifies structures or variables that must be described in the application
program in accordance with the rules for declaring host structures and
variables. In the operational form of the clause, a reference to a structure is
replaced by a reference to each of its variables. After all the replacements,
the number of variables must be the same as the number of parameter
markers in the prepared statement. The nth variable supplies the value for
the nth parameter marker in the prepared statement.

DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the input host
variables.

| Before the EXECUTE statement is processed, the user must set the
following fields in the SQLDA:

382 SQL Reference  



  EXECUTE
 

� SQLN to indicate the number of SQLVAR occurrences provided in the
SQLDA

# A REXX SQLDA does not contain this field.

� SQLD to indicate the number of variables used in the SQLDA when
processing the statement

� SQLVAR occurrences to indicate the attributes of the variables

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers
in the prepared statement. The nth variable described by the SQLDA
corresponds to the nth parameter marker in the prepared statement. (For a
description of an SQLDA, see Appendix C, “SQLCA and SQLDA” on
page 513.)

See “Identifying an SQLDA in C” on page 526 for how to represent
descriptor-name in C.

 Notes
DB2 can stop the execution of a prepared SQL statement if the statement is taking
too much processor time to finish. When this happens, an error occurs. The
application that issued the statement is not terminated; it is allowed to issue
another SQL statement.

Parameter marker replacement: Before the prepared statement is executed, each
parameter marker in the statement is effectively replaced by its corresponding host
variable. The replacement is an assignment operation in which the source is the
value of the host variable and the target is a variable within DB2. The assignment
rules are those described for assignment to a column in “Assignment and
Comparison” on page 65. The attributes of the target variable depend on the role
that the parameter marker plays in its SQL statement. The rules for the various
roles are shown below. In those rules, P represents the parameter marker in
question.

Arithmetic operand: When P is an operand for an infix operator, the other operand
cannot also be a parameter marker. The data type, scale, and precision of the
target for P are the same as those of the other operand. When P is the operand of
a unary minus, the data type of the target is double precision floating-point.

The pattern in a LIKE predicate: With P in this role, the target is a varying-length
string. If the first operand in the predicate is a character string column, the target is
VARCHAR(n), where n is 10 more than the length attribute of the column, with this
exception: If that length attribute is greater than 246, n is 256. If the first operand is
a graphic string column, the target is VARGRAPHIC(n), where n is 5 more than the
length attribute of the column, with the following exception: If that length attribute is
greater than 123, n is 128.

Comparand: In this case, P could be a comparand in a basic predicate, in an IN
predicate, or in a BETWEEN predicate. At least one of the comparands in such a
predicate must not be a parameter marker. One such comparand determines the
attributes of the target for P. For a basic predicate, this is simply the other
comparand. For a BETWEEN predicate, this is the first (leftmost) comparand that
was specified solely as a column name, if one exists. For an IN predicate, and for a

  Chapter 6. Statements 383



 EXECUTE  
 

BETWEEN predicate with no comparand specified solely as a column, this is the
first comparand that is not a parameter marker.

If the comparand that determines the attributes has a data type of DATE, TIME, or
# TIMESTAMP, the target for P is effectively CHAR(255) . Otherwise, the attributes of

the target are those of the comparand.

Assignment operand: For this case, P must be the value for a column in an
INSERT or UPDATE. The attributes of the target are the same as those of the
column, with the following exceptions:

� If the column has the data type DATE, the target is CHAR(n), where n is the
| value of field LOCAL DATE LENGTH on installation panel DSNTIP4. If that

field is not specified, n is 10.

� If the column has the data type TIME, the target is CHAR(n), where n is the
| value of field LOCAL TIME LENGTH on installation panel DSNTIP4. If that field

is not specified, n is 8.

� If the column has the data type TIMESTAMP, the target is CHAR(26).

If the column has the data type DATE, TIME, or TIMESTAMP, trailing blanks are
removed from the resulting string before assignment to the target. This is the one
exception to the rule that the target is treated like a column.

General rules: Let V denote a host variable that corresponds to parameter marker
P. The value of V is assigned to the target variable for P in accordance with the
rules for assigning a value to a column:

� V must be compatible with the target.

� If V is a string, its length must not be greater than the length attribute of the
target.

� If V is a number, the absolute value of its integral part must not be greater than
the maximum absolute value of the integral part of the target.

� If the attributes of V are not identical to the attributes of the target, the value is
converted to conform to the attributes of the target.

� If the target cannot contain nulls, V must not be null.

When the prepared statement is executed, the value used in place of P is the value
of the target variable for P. For example, if V is CHAR(6) and the target is
CHAR(8), the value used in place of P is the value of V padded on the right with
two blanks.

| Errors occurring on EXECUTE: In local and remote processing, the
| DEFER(PREPARE) and REOPT(VARS) bind options can cause some errors that
| are normally issued during PREPARE processing to be issued on EXECUTE.

 Example
In this example, an INSERT statement with parameter markers is prepared and
executed. S1 is a structure that corresponds to the format of DSN8510.DEPT.

384 SQL Reference  



  EXECUTE
 

EXEC SQL PREPARE DEPT_INSERT FROM

'INSERT INTO DSN851,.DEPT VALUES(?,?,?,?)';

(Check for successful execution and read values into S1)

EXEC SQL EXECUTE DEPT_INSERT USING :S1;

  Chapter 6. Statements 385



 EXECUTE IMMEDIATE  
 

 EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement:

� Prepares an executable form of an SQL statement from a character string form
of the statement

� Executes the SQL statement

� Destroys the executable form

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

 Authorization
The authorization rules are those defined for the dynamic preparation of the SQL
statement specified by EXECUTE IMMEDIATE. For example, see “INSERT” on
page 419 for the authorization rules that apply when an INSERT statement is
executed using EXECUTE IMMEDIATE.

 Syntax

 

��─ ─EXECUTE IMMEDIATE─ ──┬ ┬─string-expression─ ────────────────────────────────────────────────────────��
 └ ┘─host-variable─────

 Description
string-expression

string-expression is any PL/I expression that yields a character string. An
optional colon can precede the string-expression. The colon introduces PL/I
syntax. Therefore, host variables within a string-expression that includes
operators or functions should not be preceded with a colon.

host-variable
For languages other than PL/I, host-variable must be specified. It must identify
a host variable that is described in the application program in accordance with

# the rules for declaring character string variables. An indicator variable must not
# be specified. In Assembler language, C, and COBOL, the host variable must be

a varying-length string variable. In C, it must not be a NUL-terminated string.

 Notes
The value of the identified host variable or the specified string-expression is called
the statement string.

The statement string must be one of the following SQL statements:

 ALTER LABEL ON
 COMMENT ON LOCK TABLE

|  COMMIT RENAME
 CREATE REVOKE
 DELETE ROLLBACK

386 SQL Reference  



  EXECUTE IMMEDIATE
 

DROP SET CURRENT DEGREE
EXPLAIN SET CURRENT SQLID

 GRANT UPDATE
 INSERT

The statement string must not include parameter markers or references to host
variables, must not begin with EXEC SQL, and must not terminate with END-EXEC
or a semicolon.

When an EXECUTE IMMEDIATE statement is executed, the specified statement
string is parsed and checked for errors. If the SQL statement is invalid, it is not
executed and the error condition that prevents its execution is reported in the
SQLCA. If the SQL statement is valid, but an error occurs during its execution, that
error condition is reported in the SQLCA.

DB2 can stop the execution of a prepared SQL statement if the statement is taking
too much CPU time to finish. When this happens an error occurs. The application
that issued the statement is not terminated; it is allowed to issue another SQL
statement.

If the same SQL statement is to be executed more than once, it is more efficient to
use the PREPARE and EXECUTE statements rather than the EXECUTE
IMMEDIATE statement.

 Example
In this PL/I example, the EXECUTE IMMEDIATE statement is used to execute a
DELETE statement in which the rows to be deleted are determined by a
search-condition specified by the value of PREDS.

EXEC SQL EXECUTE IMMEDIATE 'DELETE FROM DSN851,.DEPT

WHERE' || PREDS;

  Chapter 6. Statements 387



 EXPLAIN  
 

 EXPLAIN
The information about this statement is Product-sensitive Programming Interface
and Associated Guidance Information, as defined in “Notices” on page ix.

The EXPLAIN statement obtains information about access path selection for an
explainable statement. A statement is explainable if it is a SELECT or INSERT
statement, or the searched form of an UPDATE or DELETE statement. The
information obtained is placed in a user-supplied plan table.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

 Authorization
The authorization rules are those defined for the SQL statement specified in the
EXPLAIN statement. For example, see the description of the DELETE statement for
the authorization rules that apply when a DELETE statement is explained.

If the EXPLAIN statement is embedded in an application program, the authorization
rules that apply are those defined for embedding the specified SQL statement in an
application program. In addition, the authorization ID of the owner of the plan or
package must also be the owner of a plan table named PLAN_TABLE.

If the EXPLAIN statement is dynamically prepared, the authorization rules that
apply are those defined for dynamically preparing the specified SQL statement. In
addition, the SQL authorization ID of the process must also be the owner of a plan
table named PLAN_TABLE.

 Syntax

 

��─ ─EXPLAIN─ ──┬ ┬─PLAN─ ──┬ ┬───────────────────── ─FOR──explainable-sql-statement───────────────────────��
└ ┘─ALL── └ ┘──SET QUERYNO=integer

 Description
PLAN

Inserts one row into the plan table for each step used in executing
explainable-sql-statement. Not included are the steps for enforcing referential
constraints. The table is described in “Output” on page 389.

ALL
Has the same effect as PLAN.

SET QUERYNO = integer
Associates integer with explainable-sql-statement. The column QUERYNO is
given the value integer in every row inserted into the plan table by the
EXPLAIN statement. If QUERYNO is not specified, DB2 itself assigns a
number. For an embedded EXPLAIN statement, the number is the statement
number that was assigned by the precompiler and placed in the DBRM.

388 SQL Reference  



  EXPLAIN
 

FOR explainable-sql-statement
Specifies the SQL statement to be explained. explainable-sql-statement can be
any explainable SQL statement. If EXPLAIN is embedded in a program, the
statement can contain references to host variables. If EXPLAIN is dynamically
prepared, the statement can contain parameter markers. Host variables that
appear in the statement must be defined in the statement's program.

The statement must refer to objects at the current server.

explainable-sql-statement cannot be a statement-name or a host-variable. To
use EXPLAIN to get information about dynamic SQL statements, you must
prepare the entire EXPLAIN statement dynamically.

 Notes
Output: Output from EXPLAIN is one or more rows of data inserted into the plan
table. This table has the name userid.PLAN_TABLE, where:

� userid is the owner of the plan or package if the EXPLAIN statement is
embedded in a plan or package.

� userid is the SQL authorization ID of the process if the statement is dynamically
prepared.

The table must have been created before the EXPLAIN statement is executed. For
information on using the table, see Section 5 (Volume 2) of Administration Guide.

  Chapter 6. Statements 389



 EXPLAIN  
 

Creating PLAN_TABLE: To create a plan table, execute the following SQL
statement:

CREATE TABLE userid.PLAN_TABLE
 (QUERYNO INTEGER NOT NULL,

 QBLOCKNO SMALLINT NOT NULL,

 APPLNAME CHAR(8) NOT NULL,

 PROGNAME CHAR(8) NOT NULL,

 PLANNO SMALLINT NOT NULL,

 METHOD SMALLINT NOT NULL,

 CREATOR CHAR(8) NOT NULL,

 TNAME CHAR(18) NOT NULL,

 TABNO SMALLINT NOT NULL,

 ACCESSTYPE CHAR(2) NOT NULL,

 MATCHCOLS SMALLINT NOT NULL,

 ACCESSCREATOR CHAR(8) NOT NULL,

 ACCESSNAME CHAR(18) NOT NULL,

 INDEXONLY CHAR(1) NOT NULL,

 SORTN_UNIQ CHAR(1) NOT NULL,

 SORTN_JOIN CHAR(1) NOT NULL,

 SORTN_ORDERBY CHAR(1) NOT NULL,

 SORTN_GROUPBY CHAR(1) NOT NULL,

 SORTC_UNIQ CHAR(1) NOT NULL,

 SORTC_JOIN CHAR(1) NOT NULL,

 SORTC_ORDERBY CHAR(1) NOT NULL,

 SORTC_GROUPBY CHAR(1) NOT NULL,

 TSLOCKMODE CHAR(3) NOT NULL,

 TIMESTAMP CHAR(16) NOT NULL,

 REMARKS VARCHAR(254) NOT NULL,

 PREFETCH CHAR(1) NOT NULL,

| COLUMN_FN_EVAL CHAR(1) NOT NULL WITH DEFAULT,

| MIXOPSEQ SMALLINT NOT NULL WITH DEFAULT,

| VERSION VARCHAR(64) NOT NULL WITH DEFAULT,

| COLLID CHAR(18) NOT NULL WITH DEFAULT,

 ACCESS_DEGREE SMALLINT ,

 ACCESS_PGROUP_ID SMALLINT ,

JOIN_DEGREE SMALLINT ,

 JOIN_PGROUP_ID SMALLINT ,

 SORTC_PGROUP_ID SMALLINT ,

 SORTN_PGROUP_ID SMALLINT ,

 PARALLELISM_MODE CHAR(1) ,

 MERGE_JOIN_COLS SMALLINT ,

 CORRELATION_NAME CHAR(18) ,

 PAGE_RANGE CHAR(1) NOT NULL,

 JOIN_TYPE CHAR(1) NOT NULL,

 GROUP_MEMBER CHAR(8) NOT NULL,

 IBM_SERVICE_DATA VARCHAR(254) NOT NULL,

|  WHEN_OPTIMIZE CHAR(1) NOT NULL,

|  QBLOCK_TYPE CHAR(6) NOT NULL,

|  BIND_TIME TIMESTAMP NOT NULL)

 IN database-name.table-space-name;

where database-name.table-space-name identifies a database and table space you
have authorization to use.

Output from BIND or REBIND: DB2 can also add rows to a plan table when a
plan or package is bound or rebound. That occurs when the BIND or REBIND
subcommand is executed with the EXPLAIN(YES) option in effect. The option

390 SQL Reference  



  EXPLAIN
 

requires that rows be added for every explainable statement in the plan or package
being bound. For a plan, these do not include statements in the packages that can
be used with the plan. For either a package or plan, they do not include explainable
statements within EXPLAIN statements.

The plan table that receives the new rows has the name userid.PLAN_TABLE,
where userid is the owner of the plan or package.

Column descriptions: Table 24 explains the columns in PLAN_TABLE. The
explanations apply both to rows resulting from the execution of an EXPLAIN
statement and to rows resulting from a bind or rebind.

Each row in a plan table describes a step in the execution of a query or subquery
in an explainable statement. The column values for the row identify, among other
things, the query or subquery, the tables involved, and the method used to carry
out the step. 

Table 24 (Page 1 of 5). Columns in PLAN_TABLE. The results of the EXPLAIN statement are stored here.

Column Name Description

QUERYNO A number intended to identify the statement being explained. For a row produced by
an EXPLAIN statement, you can specify the number in the SET QUERYNO clause;
otherwise, DB2 assigns a number based on the line number of the SQL statement in
the source program. Values of QUERYNO greater than 32767 are reported as 0.
Hence, in a very long program, the value is not guaranteed to be unique. If
QUERYNO is not unique, the value of TIMESTAMP is unique.

QBLOCKNO The position of the query in the statement being explained (1 for the outermost
query, 2 for the next query, and so forth). For better performance, DB2 might merge
a query block into another query block. When that happens, the position number of
the merged query block will not be in QBLOCKNO.

APPLNAME The name of the application plan for the row. Applies only to embedded EXPLAIN
statements executed from a plan or to statements explained when binding a plan.
Blank if not applicable.

PROGNAME The name of the program or package containing the statement being explained.
Applies only to embedded EXPLAIN statements and to statements explained as the
result of binding a plan or package. Blank if not applicable.

PLANNO The number of the step in which the query indicated in QBLOCKNO was processed.
This column indicates the order in which the steps were executed.

28 On each step of a join, DB2 joins the current composite table to a new table. For the first step of a join, DB2 picks one of the join
tables to serve as composite table and another to serve as new table. On later steps, the composite table is the result of all the
previous join steps, and the new table is a table whose FROM-table reference has not yet been used. The order in which the
tables are used, and the method to be used for each step, are determined by DB2 when the statement containing the join is
prepared.

  Chapter 6. Statements 391



 EXPLAIN  
 

Table 24 (Page 2 of 5). Columns in PLAN_TABLE. The results of the EXPLAIN statement are stored here.

Column Name Description

METHOD A number (0, 1, 2, 3, or 4) that indicates the join method used for the step28:

0 First table accessed, continuation of previous table accessed, or not used

1 Nested loop join. For each row of the present composite table, matching
rows of a new table are found and joined.

2 Merge scan join. The present composite table and the new table are
scanned in the order of the join columns, and matching rows are joined.

3 Sorts needed by ORDER BY, GROUP BY, SELECT DISTINCT, UNION, a
quantified predicate, or an IN predicate. This step does not access a new
table.

4 Hybrid join. The current composite table is scanned in the order of the
join-column rows of the new table. The new table is accessed using list
prefetch.

CREATOR The creator of the new table accessed in this step; blank if METHOD is 3.

TNAME| The name of a table, temporary table, materialized view, table expression, or an
| intermediate result table for an outer join that is accessed in this step; blank if
| METHOD is 3. For an outer join, this column contains the temporary table name of
| the work file in the form DSNWFQB(qblockno). Merged views show the base table
| names and correlation names. A materialized view is another query block with its
| own materialized views, tables, and so on.

TABNO Values are for IBM use only.

ACCESSTYPE The method of accessing the new table:

I By an index (identified in ACCESSCREATOR and ACCESSNAME)
I1 By a one-fetch index scan
N By an index scan when matching predicate contains IN keyword
R By a table space scan
M By a multiple index scan; followed by MX, MI, or MU
MX By an index scan on the index named in ACCESSNAME
MI By an intersection of multiple indexes
MU By a union of multiple indexes
blank Not applicable to the current row.

MATCHCOLS For ACCESSTYPE I, I1, N, or MX, the number of index keys used in an index scan;
otherwise, 0.

ACCESSCREATOR For ACCESSTYPE I, I1, N, or MX, the creator of the index; otherwise, blank.

ACCESSNAME For ACCESSTYPE I, I1, N, or MX, the name of the index; otherwise, blank.

INDEXONLY Whether access to an index alone is enough to carry out the step, or whether data
too must be accessed. Y=Yes; N=No.

For exceptions, see Section 6 of Application Programming and SQL Guide.

SORTN_UNIQ Whether a sort is performed on the new table to remove duplicate rows. Y=Yes;
N=No.

SORTN_JOIN Whether a sort is performed on the new table if METHOD is 2 or 4. Y=Yes; N=No.

SORTN_ORDERBY Whether an ORDER BY clause results in a sort on the new table. Y=Yes; N=No.

SORTN_GROUPBY Whether a GROUP BY clause results in a sort on the new table. Y=Yes; N=No.

SORTC_UNIQ Whether a sort is performed on the composite table to remove duplicate rows.
Y=Yes; N=No.

SORTC_JOIN Whether a sort is performed on the composite table if METHOD is 1, 2 or 4. Y=Yes;
N=No.

392 SQL Reference  



  EXPLAIN
 

Table 24 (Page 3 of 5). Columns in PLAN_TABLE. The results of the EXPLAIN statement are stored here.

Column Name Description

SORTC_ORDERBY Whether an ORDER BY clause or a quantified predicate results in a sort on the
composite table. Y=Yes; N=No.

SORTC_GROUPBY Whether a GROUP BY clause results in a sort on the composite table. Y=Yes;
N=No.

TSLOCKMODE| An indication of the mode of lock to be acquired on either the new table, or its table
| space or table space partitions. If the isolation can be determined at bind time, the

values are:

IS Intent share lock
IX Intent exclusive lock
S Share lock
U Update lock
X Exclusive lock
SIX Share with intent exclusive lock
N UR isolation; no lock

 If the isolation cannot be determined at bind time, then the lock mode determined by
the isolation at run time is shown by the following values.0

NS For UR isolation, no lock; for CS, RS, or RR, an S lock.
NIS For UR isolation, no lock; for CS, RS, or RR, an IS lock.
NSS For UR isolation, no lock; for CS or RS, an IS lock; for RR, an S lock.
SS For UR, CS, or RS isolation, an IS lock; for RR, an S lock.

The data in this column is right justified. For example, IX appears as a blank followed
by I followed by X. If the column contains a blank, then no lock is acquired.

TIMESTAMP Usually, the time at which the row is processed, to the last .01 second. If necessary,
DB2 adds .01 second to the value to ensure that rows for two successive queries
have different values.

REMARKS A field into which you can insert any character string of 254 or fewer characters.

PREFETCH Whether data pages are to be read in advance by prefetch. S = pure sequential
prefetch; L = prefetch through a page list; blank = unknown or no prefetch.

COLUMN_FN_EVAL When an SQL column function is evaluated. R = when data is retrieved; S = when
data is sorted; blank = to be decided at execution.

MIXOPSEQ The sequence number of a step in a multiple index operation.

1, 2, ... n For the steps of the multiple index procedure (ACCESSTYPE is MX,
MI, or MU.)

0 For any other rows (ACCESSTYPE is I, I1, M, N, R, or blank.)

VERSION The version identifier for the package. Applies only to an embedded EXPLAIN
statement executed from a package or to a statement that is explained when binding
a package. Blank if not applicable.

COLLID The collection ID for the package. Applies only to an embedded EXPLAIN statement
executed from a package or to a statement that is explained when binding a
package. Blank if not applicable.

Note:  All of the following 9 columns, from ACCESS_DEGREE through CORRELATION_NAME, contain the null value
if the plan or package was bound using a plan table with fewer than 43 columns. Otherwise, each of them can
contain null if the method it refers to does not apply.

ACCESS_DEGREE The number of parallel tasks or operations activated by a query. This value is
determined at bind time, and can be 0 if there is a host variable. The actual number
of parallel operations used at execution time could be different. This column contains
0 if there is a host variable.

  Chapter 6. Statements 393



 EXPLAIN  
 

Table 24 (Page 4 of 5). Columns in PLAN_TABLE. The results of the EXPLAIN statement are stored here.

Column Name Description

ACCESS_PGROUP_ID The identifier of the parallel group for accessing the new table. A parallel group is a
set of consecutive operations, executed in parallel, that have the same number of
parallel tasks. This value is determined at bind time; it could change at execution
time.

JOIN_DEGREE The number of parallel operations or tasks used in joining the composite table with
the new table. This value is determined at bind time, and can be 0 if there is a host
variable. The actual number of parallel operations or tasks used at execution time
could be different.

JOIN_PGROUP_ID The identifier of the parallel group for joining the composite table with the new table.
This value is determined at bind time; it could change at execution time.

SORTC_PGROUP_ID The parallel group identifier for the parallel sort of the composite table.

SORTN_PGROUP_ID The parallel group identifier for the parallel sort of the new table.

PARALLELISM_MODE The kind of parallelism, if any, that is used at bind time;

I Query I/O parallelism
C Query CP parallelism

| X Sysplex query parallelism

MERGE_JOIN_COLS The number of columns that are joined during a merge scan join (Method=2).

CORRELATION_NAME The correlation name of a table or view that is specified in the statement. If there is
no correlation name then the column is blank.

PAGE_RANGE Whether the table qualifies for page range screening, so that plans scan only the
partitions that are needed. Y = Yes; blank = No.

JOIN_TYPE The type of an outer join.

F FULL OUTER JOIN
L LEFT OUTER JOIN
blank INNER JOIN or no join

 RIGHT OUTER JOIN converts to a LEFT OUTER JOIN when you use it, so that
JOIN_TYPE contains L.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN. The column is blank if the
DB2 subsystem was not in a data sharing environment when EXPLAIN was
executed.

IBM_SERVICE_DATA Values are for IBM use only.

| WHEN_OPTIMIZE| When the access path was determined:

| blank At bind time, using a default filter factor for any host variables, parameter
| markers, or special registers.
| B At bind time, using a default filter factor for any host variables, parameter
| markers, or special registers; however the statement will be reoptimized at
| run time using input variable values for input host variables, parameter
| markers, or special registers. The bind option REOPT(VARS) must be
| specified for reoptimization to occur.
| R At run time, using input variables for any host variables, parameter markers,
| or special registers. The bind option REOPT(VARS) must be specified for
| this to occur.

394 SQL Reference  



  EXPLAIN
 

Table 24 (Page 5 of 5). Columns in PLAN_TABLE. The results of the EXPLAIN statement are stored here.

Column Name Description

| QBLOCK_TYPE| For each query block, the type of SQL operation performed. For the outermost query,
| it identifies the statement type. Possible values:

| SELECT SELECT
| INSERT INSERT
| UPDATE UPDATE
| DELETE DELETE
| SELUPD SELECT with FOR UPDATE OF
| DELCUR DELETE WHERE CURRENT OF CURSOR
| UPDCUR UPDATE WHERE CURRENT OF CURSOR
| CORSUB Correlated subquery
| NCOSUB Non-correlated subquery

| BIND_TIME| The time at which the plan or package for this statement or query block was bound.
| For static SQL statements, this is a full-precision timestamp value. For dynamic SQL
| statements, this is the value contained in the TIMESTAMP column of PLAN_TABLE
| appended by 4 zeroes.

Table creation options: A plan table can function with fewer columns than those
shown in the foregoing CREATE statement. The options are:

� All the columns up to and including REMARKS
� All the columns up to and including MIXOPSEQ
� All the columns up to and including COLLID
� All the columns shown in the CREATE statement

Only these options can be used. Whichever option you choose, the columns
defined must appear in the indicated order. With an ALTER TABLE statement you
can add columns to an existing plan table, as long as the modified table satisfies
one of the options. For example, you could add the columns PREFETCH,
COLUMN_FN_EVAL, and MIXOPSEQ, but not just the column PREFETCH. When
adding NOT NULL columns, give them the NOT NULL WITH DEFAULT attribute.

Missing columns are ignored when rows are added to a plan table.

Table migration: You can migrate existing plan tables to later releases or fall back
to earlier releases. If you fall back to an earlier release, the extra columns are
simply ignored when EXPLAIN is executed. If you migrate to a later release, the
missing columns are likewise ignored.

 Examples
Example 1: Determine the steps required to execute the query 'SELECT
X.ACTNO...'. Assume that no set of rows in the PLAN_TABLE has the value 13 for
the QUERYNO column:

EXPLAIN PLAN SET QUERYNO = 13

FOR SELECT X.ACTNO, X.PROJNO, X.EMPNO, Y.JOB, Y.EDLEVEL

FROM DSN851,.EMPPROJACT X, DSN851,.EMP Y

WHERE X.EMPNO = Y.EMPNO

AND X.EMPTIME > ,.5

AND (Y.JOB = 'DESIGNER' OR Y.EDLEVEL >= 12)

ORDER BY X.ACTNO, X.PROJNO;

Example 2: Retrieve the information returned in Example 1 with the following query:

  Chapter 6. Statements 395



 EXPLAIN  
 

SELECT O FROM PLAN_TABLE WHERE QUERYNO = 13

ORDER BY QBLOCKNO, PLANNO, MIXOPSEQ;

396 SQL Reference  



  FETCH
 

 FETCH
The FETCH statement positions a cursor on the next row of its result table and
assigns the values of that row to host variables.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

 Authorization
See “DECLARE CURSOR” on page 347 for an explanation of the authorization
required to use a cursor.

 Syntax

 

 ┌ ┐─FROM─ ┌ ┐─,─────────────
��─ ─FETCH─ ──┴ ┴────── ─cursor-name─ ──┬ ┬─INTO─ ───

�
┴─host-variable─ ────────── ─────────────────────────────��

 └ ┘ ─USING DESCRIPTOR──descriptor-name─

 Description
cursor-name

Identifies the cursor to be used in the fetch operation. The cursor name must
identify a declared cursor, as explained in the description of the DECLARE

| CURSOR statement in “Notes” on page 349, or an allocated cursor, as
| explained in “ALLOCATE CURSOR” on page  200 . When the FETCH

statement is executed, the cursor must be in the open state.

If the cursor is currently positioned on or after the last row of its result table, the
SQLCODE field of the SQLCA is set to +100, SQLSTATE is set to '02000',
the cursor is positioned after the last row, and values are not assigned to host
variables.

If the cursor is currently positioned before a row, the cursor is positioned on
that row and values are assigned to host variables as specified by INTO or
USING.

If the cursor is currently positioned on a row other than the last row, the cursor
is positioned on the next row and values of that row are assigned to host
variables as specified by INTO or USING.

INTO host-variable,...
Specifies a list of host variables. Each host-variable must identify a structure or
variable that is described in the application program in accordance with the
rules for declaring host structures and variables. In the operational form of
INTO, a reference to a structure is replaced by a reference to each of its
variables. The first value in the result row is assigned to the first host variable,
the second value to the second host variable, and so on.

  Chapter 6. Statements 397



 FETCH  
 

USING DESCRIPTOR descriptor-name
| Identifies an SQLDA that contains a valid description of the host output
| variables. Result values from the associated SELECT statement are returned to
| the application program in the output host variables.

| Before the FETCH statement is processed, the user must set the following
fields in the SQLDA:

� SQLN to indicate the number of SQLVAR occurrences provided in the
SQLDA

# A REXX SQLDA does not contain this field.

� SQLD to indicate the number of variables used in the SQLDA when
processing the statement

� SQLVAR occurrences to indicate the attributes of the variables

SQLD must be set to a value greater than or equal to zero and less than or
| equal to SQLN. Each SQLVAR occurrence describes a host variable or buffer
| into which a value in the result set is to be assigned. The first value in the
| result row is assigned to the first host variable or buffer described in the
| SQLDA; the second value is assigned to the second host variable or buffer
| described in the SQLDA; and so on. (For a description of an SQLDA, see

Appendix C, “SQLCA and SQLDA” on page 513.)

See “Identifying an SQLDA in C” on page 526 for how to represent
descriptor-name in C.

 Notes
The data type of a host variable must be compatible with its corresponding value. If
the value is numeric, the variable must have the capacity to represent the whole
part of the value. For a datetime value, the variable must be a character string
variable of a minimum length as defined in “String Representations of Datetime
Values” on page 63. If the value is null, an indicator variable must be specified.

Assignments are made in sequence through the list. Each assignment to a variable
is made according to the rules described in “Chapter 3. Language Elements” on
page 43. If the number of variables is less than the number of values in the row,
the SQLWARN3 field of the SQLCA is set to W.

If an error occurs as the result of an arithmetic expression in the SELECT list of an
outer SELECT statement (division by zero, or overflow) or a numeric conversion
error occurs, the result is the null value. As in any other case of a null value, an
indicator variable must be provided and the main variable is unchanged. In this
case, however, the indicator variable is set to -2. Processing of the statement
continues as if the error had not occurred. (However, this error causes a positive
SQLCODE.) If you do not provide an indicator variable, a negative value is returned
in the SQLCODE field of the SQLCA. Processing of the statement terminates when
the error is encountered. No value is assigned to the host variable or to later
variables, though any values that have already been assigned to variables remain
assigned.

If an error occurs during the execution of a fetch operation, the position of the
cursor and the result of any later fetch is unpredictable. It is possible for an error to
occur that makes the position of the cursor invalid, in which case the cursor is
closed.

398 SQL Reference  



  FETCH
 

Cursor positioning: An open cursor has three possible positions:

� Before a row
� On a row
� After the last row

If a cursor is on a row, that row is called the current row of the cursor. A cursor
referred to in an UPDATE or DELETE statement must be positioned on a row. A
cursor can only be on a row as a result of a FETCH statement.

The current row of a cursor cannot be updated or deleted by another application
| process if it is locked or a temporary copy of a result table was created when the

cursor was opened. Unless it is already locked because it was inserted or updated
by the application process during the current unit of work, the current row of a
cursor is not locked if:

� The isolation level is UR, or

� The isolation level is CS, and

– The result table of the cursor is read-only
– The bind option CURRENTDATA(NO) is in effect

 Example
The FETCH statement fetches the results of the SELECT statement into the
application program variables DNUM, DNAME, and MNUM.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN851,.DEPT

WHERE ADMRDEPT = 'A,,';

EXEC SQL OPEN C1;

DO WHILE (SQLCODE = ,);

EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM;

 END;

EXEC SQL CLOSE C1;

  Chapter 6. Statements 399



 GRANT  
 

 GRANT
The GRANT statement grants privileges to authorization IDs. There is a separate
form of the statement for each of these classes of privilege:

 � Collection
 � Database
 � Package
 � Plan
 � System
� Table or view

 � Use

The applicable objects are always at the current server. The grants are recorded in
the current server's catalog.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

If the authorization mechanism was not activated when the DB2 subsystem was
installed, an error condition occurs.

 Authorization
To grant a privilege P, the privilege set must include one of the following:

� The privilege P WITH GRANT OPTION
� Ownership of the object on which P is a privilege

 � SYSADM authority

The presence of SYSCTRL authority in the privilege set allows the granting of all
authorities except:

� DBADM on databases
� DELETE, INSERT, SELECT, and UPDATE on user tables or views
� EXECUTE on plans or packages
� PACKADM on collections

 � SYSADM

Except for views, the GRANT option for privileges on a table is also inherent in
DBADM authority for its database, provided DBADM authority was acquired with
the GRANT option. See “CREATE VIEW” on page 341 for a description of rules
that apply to views.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the privileges held by the
SQL authorization ID of the process.

400 SQL Reference  



  GRANT
 

 Syntax

 

 ┌ ┐─,───────────────────────────
��─ ─GRANT──authorization-specification─ ─TO─ ───

�
┴──┬ ┬─authorization-name────── ──┬ ┬─────────────────── ──��

├ ┤─PUBLIC────────────────── └ ┘─WITH GRANT OPTION─
└ ┘─PUBLIC AT ALL LOCATIONS─

 Description
authorization-specification

Names one or more privileges in one of the formats described below. The
same privilege must not be specified more than once.

TO
Specifies to what authorization IDs the privileges are granted.

authorization-name,...
Lists one or more authorization IDs.

The value of CURRENT RULES determines whether you can use the ID of
the GRANT statement itself (to grant privileges to yourself). When
CURRENT RULES is:

DB2 You cannot use the ID of the GRANT statement.
 STD You can use the ID of the GRANT statement.

PUBLIC
Grants the privileges to all users at the current server, including application
requesters using DRDA access.

PUBLIC AT ALL LOCATIONS
| Grants the privileges to all users in the network. Applies to table privileges
| only, excluding ALTER, INDEX, and REFERENCES.

PUBLIC AT ALL LOCATIONS applies to DB2 private protocol access only.

WITH GRANT OPTION
Allows the named users to grant the privileges to others. Granting an
administrative authority with this option allows the user to specifically grant any
privilege belonging to that authority. If you omit WITH GRANT OPTION, the
named users cannot grant the privileges to others unless they have that
authority from some other source.

GRANT authority cannot be passed to PUBLIC or to PUBLIC AT ALL
LOCATIONS. When WITH GRANT OPTION is used with either of these, a
warning is issued, and the named privileges are granted, but without GRANT
authority.

 Notes
For more on DB2 privileges, read Section 3 (Volume 1) of Administration Guide.

A grant is the granting of a specific privilege by a specific grantor to a specific
grantee. The grantor for a given GRANT statement is the authorization ID for the
privilege set; that is, the SQL authorization ID of the process or the authorization ID
of the owner of the plan or package. The grantee, as recorded in the catalog, is an

  Chapter 6. Statements 401



 GRANT  
 

authorization ID, PUBLIC, or PUBLIC*, where PUBLIC* denotes PUBLIC AT ALL
LOCATIONS.

Duplicate grants from the same grantor are not recorded in the catalog. Otherwise,
the result of executing a GRANT statement is recorded as one or more grants in
the current server's catalog.

If more than one privilege or authorization-name is specified after the TO keyword
and one of the grants is in error, execution of the statement is stopped and no
grants are made. The status of the privilege or privileges granted is recorded in the
catalog for each authorization-name.

Different grantors can grant the same privilege to a single grantee. The grantee
retains that privilege as long as one or more of those grants are recorded in the
catalog. Privileges that imply other privileges are also termed authorities. Grants
are removed from the catalog by executing SQL REVOKE statements.

Whenever a grant is made for a database, package, plan, table or view, or USE
privilege for an object that does not exist, an SQL return code is issued and the
grant is not made.

402 SQL Reference  



  GRANT (Collection Privileges)
 

GRANT (Collection Privileges)
This form of the GRANT statement grants privileges on collections.

 Syntax

 

 ┌ ┐─,───────────── ┌ ┐─,──────────────────────
��─ ─GRANT─ ──┬ ┬─CREATE── ──┬ ┬─ON─ ─COLLECTION─ ──┬ ┬───

�
┴─collection-id─ ─TO─ ───

�
┴──┬ ┬─authorization-name─ ────�

 └ ┘─PACKADM─ └ ┘─IN─ └ ┘─O───────────────── └ ┘─PUBLIC─────────────

�─ ──┬ ┬─────────────────── ────────────────────────────────────────────────────────────────────────────��
└ ┘─WITH GRANT OPTION─

 Description
CREATE IN

Grants the privilege to use the BIND subcommand to create packages in the
designated collections.

The word ON can be used instead of IN.

PACKADM ON
Grants package administrator authority for the designated collections.

The word IN can be used instead of ON.

COLLECTION collection-id,...
Identifies the collections on which the specified privilege is granted. The
collections do not have to exist.

COLLECTION *
Indicates that the specified privilege is granted on all collections including those
that do not currently exist.

TO
Refer to “GRANT” on page 400 for a description of the TO clause.

 Example
Grant the privilege to create new packages in collections QAACLONE and
DSN8CC51 to CLARK.

GRANT CREATE IN COLLECTION QAACLONE, DSN8CC51 TO CLARK;

  Chapter 6. Statements 403



 GRANT (Database Privileges)  
 

GRANT (Database Privileges)
This form of the GRANT statement grants privileges on databases.

 Syntax

 

 ┌ ┐─,───────────── ┌ ┐─,───────────── ┌ ┐─,──────────────────────
��─ ─GRANT─ ───

�
┴──┬ ┬─DBADM───── ─ON DATABASE─ ───

�
┴─database-name─ ─TO─ ───

�
┴──┬ ┬─authorization-name─ ─────────�

 ├ ┤─DBCTRL──── └ ┘─PUBLIC─────────────
 ├ ┤─DBMAINT───
 ├ ┤─CREATETAB─
 ├ ┤─CREATETS──
 ├ ┤─DISPLAYDB─
 ├ ┤─DROP──────
 ├ ┤─IMAGCOPY──
 ├ ┤─LOAD──────
 ├ ┤─RECOVERDB─
 ├ ┤─REORG─────
 ├ ┤─REPAIR────
 ├ ┤─STARTDB───
 ├ ┤─STATS─────
 └ ┘─STOPDB────

�─ ──┬ ┬─────────────────── ────────────────────────────────────────────────────────────────────────────��
└ ┘─WITH GRANT OPTION─

 Description
Each keyword listed grants the privilege described, but only as it applies to or
within the databases named in the statement.

DBADM
Grants the database administrator authority.

DBCTRL
Grants the database control authority.

DBMAINT
Grants the database maintenance authority.

CREATETAB
Grants the privilege to create new tables.

CREATETS
Grants the privilege to create new table spaces.

DISPLAYDB
Grants the privilege to issue the DISPLAY DATABASE command.

DROP
Grants the privilege to issue the DROP or ALTER DATABASE statements for
the designated databases.

IMAGCOPY
Grants the privilege to run the COPY, MERGECOPY, and QUIESCE utilities
against table spaces of the specified databases, and to run the MODIFY utility.

404 SQL Reference  



  GRANT (Database Privileges)
 

LOAD
Grants the privilege to use the LOAD utility to load tables.

RECOVERDB
Grants the privilege to use the RECOVER and REPORT utilities to recover
table spaces and indexes.

REORG
Grants the privilege to use the REORG utility to reorganize table spaces and
indexes.

REPAIR
Grants the privilege to use the REPAIR and DIAGNOSE utilities.

STARTDB
Grants the privilege to issue the START DATABASE command.

STATS
Grants the privilege to use the RUNSTATS utility to update statistics, and the
CHECK utility to test whether indexes are consistent with the data they index.

STOPDB
Grants the privilege to issue the STOP DATABASE command.

ON DATABASE database-name,...
Identifies databases on which privileges are to be granted. For each named
database, the grantor must have all the specified privileges with the GRANT
option. Each name must identify a database that exists at the current server.
DSNDB01 must not be identified; however, a grant of a privilege on DSNDB06
implies the granting of the same privilege on DSNDB01 for utility operations
only.

TO
Refer to “GRANT” on page 400 for a description of the TO clause.

 Examples
Example 1: Grant drop privileges on database DSN8D51A to user PEREZ.

 GRANT DROP

ON DATABASE DSN8D51A

 TO PEREZ;

Example 2: Grant repair privileges on database DSN8D51A to all local users.

 GRANT REPAIR

ON DATABASE DSN8D51A

 TO PUBLIC;

Example 3: Grant authority to create new tables and load tables in database
DSN8D51A to users WALKER, PIANKA, and FUJIMOTO, and give them grant
privileges.

 GRANT CREATETAB,LOAD

ON DATABASE DSN8D51A

 TO WALKER,PIANKA,FUJIMOTO

WITH GRANT OPTION;

  Chapter 6. Statements 405



 GRANT (Package Privileges)  
 

GRANT (Package Privileges)
This form of the GRANT statement grants privileges on packages.

 Syntax

 

 ┌ ┐─,──────────────────────────────
��─ ─GRANT─ ──┬ ┬─ALL───────────────── ─ON─ ──┬ ┬─PACKAGE─ ───

�
┴──collection-id. ──┬ ┬─package-id─ ──────────────�

│ │┌ ┐─,─────────────── └ ┘─PROGRAM─ └ ┘─O──────────
 └ ┘───

�
┴──┬ ┬─BIND────────

 ├ ┤─COPY────────
 └ ┘──┬ ┬─EXECUTE─
 └ ┘─RUN─────

 ┌ ┐─,──────────────────────
�─ ─TO─ ───

�
┴──┬ ┬─authorization-name─ ──┬ ┬─────────────────── ────────────────────────────────────────────��

└ ┘─PUBLIC───────────── └ ┘─WITH GRANT OPTION─

 Description
BIND

Grants the privilege to use the BIND and REBIND subcommands for the
designated packages.

The BIND package privilege can also be used to allow a user to add a new
version of an existing package. For details on the authorization required to
create new packages and new versions of existing packages, see “Notes” on
page 407.

COPY
Grants the privilege to use the COPY option of the BIND subcommand for the
designated packages.

EXECUTE
Grants the privilege to run application programs that use the designated
packages and to specify the packages following PKLIST for the BIND PLAN
and REBIND PLAN commands. RUN is an alternate name for the same
privilege.

ALL
Grants all package privileges for which you have GRANT authority for the
packages named in the ON clause.

ON PACKAGE collection-id.package-id,...
Identifies packages for which you are granting privileges. The granting of a
package privilege applies to all versions of a package. The list can
simultaneously contain items of the following two forms:

� collection-id.package-id explicitly identifies a single package. The name
must identify a package that exists at the current server.

� collection-id.* applies to every package in the indicated collection. This
includes future packages as well as those that currently exist. The grant
applies to a collection at the current server, but the collection-id does not
have to identify a collection that exists when the grant is made.

406 SQL Reference  



  GRANT (Package Privileges)
 

To grant a privilege in this form requires PACKADM with the WITH GRANT
OPTION over the collection or all collections, SYSADM, or SYSCTRL
authority. Because of this fact, WITH GRANT OPTION, if included in the
statement, is ignored for grants of this form, but not for grants for specific
packages.

The word PROGRAM can be used in place of PACKAGE.

TO
Refer to “GRANT” on page 400 for a description of the TO clause.

 Notes
The authorization required to add a new package or a new version of an existing
package depends on the value of field BIND NEW PACKAGE on installation panel
DSNTIPP. The default value is BINDADD.

If the value of BIND NEW PACKAGE is BINDADD, the primary authorization ID
must have one of the following to add a new package or a new version of an
existing package to a collection:

� The BINDADD system privilege and either the CREATE IN privilege or
PACKADM authority for the collection or for all collections

� SYSADM or SYSCTRL authority

If the value of BIND NEW PACKAGE is BIND, the primary authorization ID must
have one of the following to add a new package or a new version of an existing
package to a collection:

� The BINDADD system privilege and either the CREATE IN privilege or
PACKADM authority for the collection or for all collections

� SYSADM or SYSCTRL authority

� PACKADM authority for the collection or for all collections

� Users with the BIND package privilege can also add a new version of an
existing package

 Examples
Example 1: Grant the privilege to copy all packages in collection DSN8CC51 to
LEWIS.

GRANT COPY ON PACKAGE DSN8CC51.O TO LEWIS;

Example 2: You have the BIND privilege with GRANT authority over the package
CLCT1.PKG1. You have the EXECUTE privilege with GRANT authority over the
package CLCT2.PKG2. You have no other privileges with GRANT authority over
any package in the collections CLCT1 AND CLCT2. Hence, the following
statement, when executed by you, grants LEWIS the BIND privilege on
CLCT1.PKG1 and the EXECUTE privilege on CLCT2.PKG2, and makes no other
grant. The privileges granted include no GRANT authority.

GRANT ALL ON PACKAGE CLCT1.PKG1, CLCT2.PKG2 TO JONES;

  Chapter 6. Statements 407



 GRANT (Plan Privileges)  
 

GRANT (Plan Privileges)
This form of the GRANT statement grants privileges on plans.

 Syntax

 

 ┌ ┐─,─────────── ┌ ┐─,───────── ┌ ┐─,──────────────────────
��─ ─GRANT─ ───

�
┴──┬ ┬─BIND──── ─ON PLAN─ ───

�
┴─plan-name─ ─TO─ ───

�
┴──┬ ┬─authorization-name─ ───────────────────�

 └ ┘─EXECUTE─ └ ┘─PUBLIC─────────────

�─ ──┬ ┬─────────────────── ────────────────────────────────────────────────────────────────────────────��
└ ┘─WITH GRANT OPTION─

 Description
BIND

Grants the privilege to use the BIND, REBIND, and FREE subcommands for
the identified plans. (The authority to create new plans using BIND ADD is a
system privilege.)

EXECUTE
Grants the privilege to run programs that use the identified plans.

ON PLAN plan-name,...
Identifies the application plans on which the privileges are granted. For each
identified plan, you must have all specified privileges with the GRANT option.

TO
Refer to “GRANT” on page 400 for a description of the TO clause.

 Examples
Example 1: Grant the privilege to bind plan DSN8IP51 to user JONES.

GRANT BIND ON PLAN DSN8IP51 TO JONES;

Example 2: Grant privileges to bind and execute plan DSN8CP51 to all users at the
current server.

GRANT BIND,EXECUTE ON PLAN DSN8CP51 TO PUBLIC;

Example 3: Grant the privilege to execute plan DSN8CP51 to users ADAMSON
and BROWN with grant option.

GRANT EXECUTE ON PLAN DSN8CP51 TO ADAMSON,BROWN WITH GRANT OPTION;

408 SQL Reference  



  GRANT (System Privileges)
 

GRANT (System Privileges)
This form of the GRANT statement grants system privileges.

 Syntax

 

 ┌ ┐─,─────────────── ┌ ┐─,──────────────────────
��─ ─GRANT─ ───

�
┴──┬ ┬─ARCHIVE───── ─TO─ ───

�
┴──┬ ┬─authorization-name─ ──┬ ┬─────────────────── ───────────────��

 ├ ┤─BINDADD───── └ ┘─PUBLIC───────────── └ ┘─WITH GRANT OPTION─
 ├ ┤─BINDAGENT───
 ├ ┤─BSDS────────
 ├ ┤─CREATEALIAS─
 ├ ┤─CREATEDBA───
 ├ ┤─CREATEDBC───
 ├ ┤─CREATESG────

|  ├ ┤─CREATETMTAB─
 ├ ┤─DISPLAY─────
 ├ ┤─MONITOR1────
 ├ ┤─MONITOR2────
 ├ ┤─RECOVER─────
 ├ ┤─STOPALL─────
 ├ ┤─STOSPACE────
 ├ ┤─SYSADM──────
 ├ ┤─SYSCTRL─────
 ├ ┤─SYSOPR──────
 └ ┘─TRACE───────

 Description
ARCHIVE

Grants the privilege to use the ARCHIVE LOG command.

BINDADD
Grants the privilege to create plans and packages by using the BIND
subcommand with the ADD option.

BINDAGENT
Grants the privilege to issue the BIND, FREE PACKAGE, or REBIND
subcommands for plans and packages and the DROP PACKAGE statement on
behalf of the grantor. The privilege also allows the holder to copy and replace
plans and packages on behalf of the grantor.

A warning is issued if WITH GRANT OPTION is specified when granting this
privilege.

BSDS
Grants the privilege to issue the RECOVER BSDS command.

CREATEALIAS
Grants the privilege to use the CREATE ALIAS statement.

CREATEDBA
Grants the privilege to issue the CREATE DATABASE statement and acquire
DBADM authority over those databases.

CREATEDBC
Grants the privilege to issue the CREATE DATABASE statement and acquire
DBCTRL authority over those databases.

  Chapter 6. Statements 409



 GRANT (System Privileges)  
 

CREATESG
Grants the privilege to create new storage groups.

| CREATETMTAB
| Grants the privilege to use the CREATE GLOBAL TEMPORARY TABLE
| statement.

DISPLAY
Grants the privilege to do the following:

� Use the DISPLAY ARCHIVE command for archive log information
� Use the DISPLAY BUFFERPOOL command for the status of buffer pools
� Use the DISPLAY DATABASE command for the status of all databases
� Use the DISPLAY LOCATION command for statistics about threads with a

distributed relationship
� Use the DISPLAY THREAD command for information on active threads

within DB2
� Use the DISPLAY TRACE command for a list of active traces

MONITOR1
Grants the privilege to obtain IFC data classified as serviceability data,
statistics, accounting, and other performance data that does not contain
potentially secure data.

MONITOR2
Grants the privilege to obtain IFC data classified as containing potentially
sensitive data such as SQL statement text and audit data. (Having MONITOR2
privilege also includes having MONITOR1 privileges.)

RECOVER
Grants the privilege to issue the RECOVER INDOUBT command.

STOPALL
Grants the privilege to issue the STOP DB2 command.

STOSPACE
Grants the privilege to use the STOSPACE utility.

SYSADM
Grants all DB2 privileges except for a few reserved for installation SYSADM
authority. The privileges the user possesses are all grantable, including the
SYSADM authority itself. The privileges the user lacks restrict what the user
can do with the directory and the catalog. Using WITH GRANT OPTION when
granting SYSADM is redundant but valid. For more on SYSADM and install
SYSADM authority, see Section 3 (Volume 1) of Administration Guide.

SYSCTRL
Grants the system control authority, allowing the holder most of the privileges
of a system administrator but excluding privileges to read or change user data.
Using WITH GRANT OPTION when granting SYSCTRL is redundant but valid.
For more on SYSCTRL authority, see Section 3 (Volume 1) of Administration
Guide.

SYSOPR
Grants the privilege to have system operator authority.

410 SQL Reference  



  GRANT (System Privileges)
 

TRACE
Grants the privilege to issue the MODIFY TRACE, START TRACE, and STOP
TRACE commands.

TO
Refer to “GRANT” on page 400 for a description of the TO clause.

WITH GRANT OPTION
If you grant the SYSADM or SYSCTRL system privilege, WITH GRANT
OPTION is valid but unnecessary. It is unnecessary because whoever is
granted SYSADM or SYSCTRL has that authority and all the privileges it
implies, with the GRANT option.

 Examples
Example 1: Grant DISPLAY privileges to user LUTZ.

 GRANT DISPLAY

 TO LUTZ;

Example 2: Grant BSDS and RECOVER privileges to users PARKER and
SETRIGHT, with the WITH GRANT OPTION.

 GRANT BSDS,RECOVER

 TO PARKER,SETRIGHT

WITH GRANT OPTION;

Example 3: Grant TRACE privileges to all local users.

 GRANT TRACE

 TO PUBLIC;

  Chapter 6. Statements 411



 GRANT (Table or View Privileges)  
 

GRANT (Table or View Privileges)
This form of the GRANT statement grants privileges on table and views.

 Syntax

 

 ┌ ┐─PRIVILEGES─ ┌ ┐─TABLE─ ┌ ┐─,──────────────
��─ ─GRANT─ ──┬ ┬ ─ALL─ ──┴ ┴──────────── ──────────────────────── ─ON─ ──┴ ┴─────── ───

�
┴──┬ ┬─table-name─ ────────�

 │ │┌ ┐─,─────────────────────────────────────── └ ┘─view-name──
 └ ┘───

�
┴──┬ ┬─ALTER───────────────────────────────

 ├ ┤─DELETE──────────────────────────────
 ├ ┤─INDEX───────────────────────────────
 ├ ┤─INSERT──────────────────────────────
 ├ ┤─SELECT──────────────────────────────

|  ├ ┤|  ─REFERENCES─ ──┬ ┬─────────────────────
|  │ ││ │┌ ┐─,───────────
|  │ │└ ┘──( ───

�
┴─column-name─ )

 └ ┘ ─UPDATE─ ──┬ ┬───────────────────── ────
 │ │┌ ┐─,───────────
 └ ┘──( ───

�
┴─column-name─ )

 ┌ ┐─,───────────────────────────
�─ ─TO─ ───

�
┴──┬ ┬─authorization-name────── ──┬ ┬─────────────────── ───────────────────────────────────────��

├ ┤─PUBLIC────────────────── └ ┘─WITH GRANT OPTION─
└ ┘─PUBLIC AT ALL LOCATIONS─

 Description
ALL or ALL PRIVILEGES

Grants all table or view privileges for which you have GRANT authority, for the
tables and views named in the ON clause. Does not include ALTER, INDEX, or
REFERENCES for a grant to PUBLIC AT ALL LOCATIONS.

If you do not use ALL, you must use one or more of the keywords in the
following list. For each keyword that you use, you must have GRANT authority
for that privilege on every table or view identified in the ON clause.

ALTER
Grants the privilege to use the ALTER TABLE statement. ALTER cannot be
granted to PUBLIC AT ALL LOCATIONS. Nor can it be used if the statement
identifies a view.

DELETE
Grants the privilege to use the DELETE statement.

INDEX
Grants the privilege to use the CREATE INDEX statement. INDEX cannot be
granted to PUBLIC AT ALL LOCATIONS. Nor can it be used if the statement
identifies a view.

INSERT
Grants the privilege to use the INSERT statement.

REFERENCES(column-name,...)
Grants the privilege to define and drop a referential constraint in which the

| table is a parent. Grantees can create referential constraints by using all the
| named columns in the parent key. If a list of columns is not specified,
| REFERENCES applies to all the columns of every table identified in the ON

412 SQL Reference  



  GRANT (Table or View Privileges)
 

| clause. REFERENCES cannot be granted to PUBLIC AT ALL LOCATIONS,
and it cannot be granted on a view.

| If you specify a list of columns, each column-name must be the unqualified
| name of a column in a table identified in the ON clause.

SELECT
Grants the privilege to use the SELECT statement.

UPDATE
Grants the privilege to use the UPDATE statement.

UPDATE(column-name,...)
Grants the privilege to use the UPDATE statement to update only the columns
named. Each column-name must be the unqualified name of a column of every
table or view identified in the ON clause.

ON or ON TABLE
Names the tables or views on which you are granting the privileges. The list
can be a list of table names or view names, or a combination of the two.

If you use GRANT ALL, then for each named table or view, the privilege set
(described in “Authorization” in “GRANT” on page 400) must include at least
one privilege with the GRANT option.

TO
Refer to “GRANT” on page 400 for a description of the TO clause.

 Notes
The REFERENCES privilege does not replace the ALTER privilege. It was added to
conform to the SQL standard. To define a foreign key that references a parent
table, you must have either the REFERENCES or the ALTER privilege, or both.

| For a temporary table or a view of a temporary table, only ALL or ALL
| PRIVILEGES can be granted. Specific table or view privileges cannot be granted.
| In addition, only the ALTER, DELETE, INSERT, and SELECT privileges apply to a
| temporary table.

 Examples
Example 1: Grant SELECT privileges on table DSN8510.EMP to user PULASKI.

GRANT SELECT ON DSN851,.EMP TO PULASKI;

Example 2: Grant UPDATE privileges on columns EMPNO and WORKDEPT in
table DSN8510.EMP to all users at the current server.

GRANT UPDATE (EMPNO,WORKDEPT) ON TABLE DSN851,.EMP TO PUBLIC;

Example 3: Grant all privileges on table DSN8510.EMP to users KWAN and
THOMPSON, with the WITH GRANT OPTION.

GRANT ALL ON TABLE DSN851,.EMP TO KWAN,THOMPSON WITH GRANT OPTION;

Example 4: Grant the SELECT and UPDATE privileges on the table
DSN8510.DEPT to every user in the network.

GRANT SELECT, UPDATE ON TABLE DSN851,.DEPT

TO PUBLIC AT ALL LOCATIONS;

  Chapter 6. Statements 413



 GRANT (Table or View Privileges)  
 

Even with this grant, it is possible that some network users do not have access to
the table at all, or to any other object at the table's subsystem. Controlling access
to the subsystem involves the communications databases at the subsystems in the
network. The tables for the communication databases are described in Appendix D,
“DB2 Catalog Tables” on page 529. Controlling access is described in Section 3
(Volume 1) of Administration Guide.

414 SQL Reference  



  GRANT (Use Privileges)
 

GRANT (Use Privileges)
This form of the GRANT statement grants authority to use particular buffer pools,
storage groups, or table spaces.

 Syntax

 

 ┌ ┐─,────
��──GRANT USE OF─ ──┬ ┬─BUFFERPOOL─ ───

�
┴bpname ──────────────────────────────── ───────────────────────────�

 ├ ┤─ALL BUFFERPOOLS──────────────────────────────────────
 │ │┌ ┐─,─────────────
 ├ ┤ ─STOGROUP─ ───

�
┴─stogroup-name─ ─────────────────────────

 │ │┌ ┐─,────────────────────────────────────
 └ ┘ ─TABLESPACE─ ───

�
┴── ──┬ ┬──────────────── table-space-name

└ ┘──database-name.

 ┌ ┐─,──────────────────────
�─ ─TO─ ───

�
┴──┬ ┬─authorization-name─ ──┬ ┬─────────────────── ────────────────────────────────────────────��

└ ┘─PUBLIC───────────── └ ┘─WITH GRANT OPTION─

 Description
BUFFERPOOL bpname,...

Grants the privilege to refer to any of the identified buffer pools in a CREATE
INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE
statement. See “Naming Conventions” on page 48 for more details about
bpname.

ALL BUFFERPOOLS
Grants the privilege to refer to any buffer pool in a CREATE INDEX, CREATE
TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

STOGROUP stogroup-name,...
Grants the privilege to refer to any of the identified storage groups in a
CREATE INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER
TABLESPACE statement.

TABLESPACE database-name.table-space-name,...
Grants the privilege to refer to any of the identified table spaces in a CREATE
TABLE statement. The default for database-name is DSNDB04.

TO
Refer to “GRANT” on page 400 for a description of the TO clause.

 Notes
You can grant privileges for only one type of object with each statement. Thus, you
can grant the use of several table spaces with one statement, but not the use of a
table space and a storage group. For each object you identify, you must have the
USE privilege with GRANT authority.

  Chapter 6. Statements 415



 GRANT (Use Privileges)  
 

 Examples
Example 1: Grant authority to use buffer pools BP1 and BP2 to user MARINO.

GRANT USE OF BUFFERPOOL BP1,BP2

 TO MARINO;

Example 2: Grant to all local users the authority to use table space DSN8S51D in
database DSN8D51A.

GRANT USE OF TABLESPACE

 DSN8D51A.DSN8S51D

 TO PUBLIC;

416 SQL Reference  



  INCLUDE
 

 INCLUDE
The INCLUDE statement inserts declarations or code into a source program.

 Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

# This statement cannot be included in a REXX application program.

 Authorization
None required.

 Syntax

 

��─ ─INCLUDE─ ──┬ ┬─SQLCA─────── ────────────────────────────────────────────────────────────────────────��
 ├ ┤─SQLDA───────
 └ ┘─member-name─

 Description
SQLCA

Indicates that the description of an SQL communication area (SQLCA) is to be
included. INCLUDE SQLCA must not be specified more than once in the same
application program. In COBOL, INCLUDE SQLCA must be specified in the
Working-Storage Section or the Linkage Section. INCLUDE SQLCA must not
be specified if the program is precompiled with the STDSQL(YES) option.

For a description of the SQLCA, see “SQL Communication Area (SQLCA)” on
page 513.

SQLDA
Indicates that the description of an SQL descriptor area (SQLDA) is to be
included. It must not be specified in a FORTRAN or COBOL program. For a
description of the SQLDA, see “SQL Descriptor Area (SQLDA)” on page 519.

member-name
Names a member of the partitioned data set to be the library input when your
application program is precompiled. It must be a short, ordinary identifier.

The member can contain any host language source statements and any SQL
statements other than an INCLUDE statement. In COBOL, INCLUDE
member-name must not be specified in other than the Data Division or the
Procedure Division.

 Notes
When your application program is precompiled, the INCLUDE statement is replaced
by source statements. Thus, the INCLUDE statement must be specified at a point
in your application program where the resulting source statements are acceptable
to the compiler.

  Chapter 6. Statements 417



 INCLUDE  
 

The INCLUDE statement cannot refer to source statements that themselves contain
INCLUDE statements.

The declarations that are generated by DCLGEN can be used in an application
program by specifying the same member in the INCLUDE statement as in the
DCLGEN LIBRARY parameter.

 Example
Include an SQL communications area in a PL/I program.

EXEC SQL INCLUDE SQLCA;

418 SQL Reference  



  INSERT
 

 INSERT
The INSERT statement inserts rows into a table or view. The table or view can be
at the current server or any DB2 subsystem with which the current server can
establish a connection. Inserting a row into a view also inserts the row into the
table on which the view is based.

There are two forms of this statement:

� The INSERT via VALUES is used to insert a single row into the table or view
using the values provided or referenced.

� The INSERT via SELECT is used to insert one or more rows into the table or
view using values from other tables and/or views.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

 Authorization
Authority requirements depend on whether the object identified in the statement is a
user-defined table, a catalog table for which inserts are allowed, or a view:

When a user-defined table is identified: The privilege set must include at least
one of the following:

� The INSERT privilege on the table
� Ownership of the table
� DBADM authority on the database containing the table

 � SYSADM authority

When a catalog table is identified: The privilege set must include at least one of
the following:

� DBADM authority on the catalog database
 � SYSCTRL authority
 � SYSADM authority

When a view is identified: The privilege set must include at least one of the
following:

� The INSERT privilege on the view
 � SYSADM authority

The owner of a view, unlike the owner of a table, might not have INSERT authority
on the view (or can have INSERT authority without being able to grant it to others).
The nature of the view itself can preclude its use for INSERT. For more information,
see the discussion of authority in “CREATE VIEW” on page 341.

If a subselect is specified, the privilege set must include authority to execute the
subselect. For more information about the subselect authorization rules, see
“Authorization” on page 169.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared and the bind option DYNAMICRULES(RUN)

  Chapter 6. Statements 419



 INSERT  
 

applies, the privilege set is the union of the privilege sets held by each
authorization ID of the process. If the statement is dynamically prepared and the
bind option DYNAMICRULES(BIND) applies, the privilege set is the privileges held
by the authorization ID of the owner of the plan or package.

 Syntax

 

 ┌ ┐─,────────────────────
��──INSERT INTO─ ──┬ ┬─table-name─ ──┬ ┬─────────────────────── ──┬ ┬──VALUES( ───

�
┴──┬ ┬─constant───────── ) ──��

 └ ┘─view-name── │ │┌ ┐─,─────────── │ │├ ┤─host-variable────
 └ ┘ ─(─ ───

�
┴─column-name─ ─)─ │ │├ ┤─NULL─────────────

 │ │└ ┘─special-register─
 └ ┘ ─subselect─ ──┬ ┬────────────── ───────
 └ ┘ ─WITH─ ──┬ ┬─RR─
 ├ ┤─RS─
 └ ┘─CS─

 Description
INTO table-name or view-name

Identifies the object of the INSERT statement. The name must identify a table
or view that exists at the DB2 subsystem identified by the implicitly or explicitly
specified location name. The name must not identify:

� A catalog table for which inserts are not allowed

� A view of such a catalog table

� A read-only view. (For a description of a read-only view, see “CREATE
VIEW” on page 341.)

A value cannot be inserted into a view column that is derived from:

� A constant, expression, or scalar function
� The same base table column as some other column of the view

If the object of the INSERT statement is a view with such columns, a list of
column names must be specified, and the list must not identify these columns.
In an IMS or CICS application, the DB2 subsystem containing the identified
table or view must not be a remote DB2 Version 2 Release 3 subsystem.

column-name,...
Specifies the columns for which insert values are provided. Each name must be
an unqualified name that identifies a column of the table or view. The columns
can be identified in any order, but the same column must not be identified more
than once. A view column that cannot accept insert values must not be
identified.

Omission of the column list is an implicit specification of a list in which every
column of the table or view is identified in left-to-right order. This list is
established when the statement is bound and therefore does not include
columns that were added to the table after the statement was bound.

The effect of a rebind on INSERT statements that do not include a column list
is that the implicit list of names is re-established. Therefore, the number of
columns into which data is inserted can change and cause an error.

420 SQL Reference  



  INSERT
 

VALUES
Specifies one new row in the form of a list of values. Each host variable in the
list must identify a structure or variable that is described in the application
program in accordance with the rules for declaring host structures and
variables. In the operational form of the statement, a reference to a host
structure is replaced by a reference to each of its variables.

The number of values in the VALUES clause must equal the number of names
in the column list. The first value is inserted in the first column in the list, the
second value in the second column, and so on.

For an explanation of constant and host-variable, see “Chapter 3. Language
Elements” on page 43. For a description of special-register, see “Special
Registers” on page 78. NULL specifies the null value.

subselect
Specifies a set of new rows in the form of the result table of a subselect. If the
result table is empty, SQLCODE is set to +100, and SQLSTATE is set to
'02000'.

(For an explanation of subselect, see “Chapter 5. Queries” on page 167.)

The base object of the INSERT, and the base object of the subselect, or any
subquery of the subselect, must not be the same table.

The number of columns in the result table must equal the number of names in
the column list. The value of the first column of the result is inserted in the first
column in the list, the second value in the second column, and so on.

If the object table is self-referencing, the subselect must not return more than
one row.

WITH
Specifies the isolation level at which the subselect is executed.

RR Repeatable read
RS Read stability
CS Cursor stability

The default isolation level of the statement is the isolation level of the
package or plan in which the statement is bound, with the package isolation
taking precedence over the plan isolation. When a package isolation is not
specified, the plan isolation is the default.

 Notes
Insert rules: Insert values must satisfy the following rules. If they do not, or if any
other errors occur during the execution of the INSERT statement, no rows are
inserted and the position of the cursors are not changed.

� Default values. The value inserted in any column that is not in the column list is
the default value of the column. Columns without a default value must be
included in the column list. Similarly, if you insert into a view, the default value
is inserted into any column of the base table that is not included in the view.
Hence, all columns of the base table that are not in the view must have a
default value.

� Assignment. Insert values are assigned to columns in accordance with the
assignment rules described in “Chapter 3. Language Elements” on page 43.

  Chapter 6. Statements 421



 INSERT  
 

� Uniqueness constraints. If the identified table or the base table of the identified
view has one or more unique indexes, each row inserted into the table must
conform to the constraints imposed by those indexes.

� Referential constraints. Each nonnull insert value of a foreign key must be
| equal to some value of the parent key of the parent table in the relationship.

� Check constraints. The identified table or the base table of the identified view
might have one or more check constraints. Each row inserted must conform to
the conditions imposed by those constraints. Thus, each check condition must
be true or unknown.

� Field and validation procedures. If the identified table or the base table of the
identified view has a field or validation procedure, each row inserted must
conform to the constraints imposed by that procedure.

� Views and the WITH CHECK OPTION. For views defined with WITH CHECK
OPTION, each row you insert into the view must conform to the definition of the
view. If the view you name is dependent on other views whose definitions
include WITH CHECK OPTION, the inserted rows must also conform to the
definitions of those views. For an explanation of the rules governing this
situation, see “CREATE VIEW” on page 341.

For views that are not defined with WITH CHECK OPTION, you can insert rows
that do not conform to the definition of the view. Those rows cannot appear in
the view but are inserted into the base table of the view.

� Omitting the column list. When you omit the column list, you must specify a
value for every column that was present in the table when the INSERT
statement was bound or (for dynamic execution) prepared.

Number of rows inserted: After an INSERT statement completes execution, the
value of SQLERRD(3) in SQLCA is the number of rows inserted. (For a description
of the SQLCA, see “SQL Communication Area (SQLCA)” on page 513.)

Locking: Unless appropriate locks already exist, one or more exclusive locks are
acquired at the execution of a successful INSERT statement. Until the locks are
released by a commit or rollback operation, an inserted row can only be accessed
by the application process that performed the insert and the locks can prevent other
application processes from performing operations on the table.

Inserting rows into catalog table SYSIBM.SYSSTRINGS: If the object table is
SYSIBM.SYSSTRINGS, only certain values can be specified, as described in
Appendix B (Volume 2) of Administration Guide.

| Datetime representation when using datetime registers: As explained under
“Datetime special registers” on page 78, when two or more datetime registers are
implicitly or explicitly specified in a single SQL statement, they represent the same
point in time. This is also true when multiple rows are inserted.

 Examples
Example 1: Insert values into table DSN8510.EMP.

INSERT INTO DSN851,.EMP

 VALUES (',,,2,5','MARY','T','SMITH','D11','2866',

 '1981-,8-1,','ANALYST',16,'F','1956-,5-22',

 16345,5,,,23,,);

422 SQL Reference  



  INSERT
 

Example 2: Populate the temporary table SMITH.TEMPEMPL with data from table
DSN8510.EMP.

INSERT INTO SMITH.TEMPEMPL

 SELECT O

 FROM DSN851,.EMP;

Example 3: Populate the temporary table SMITH.TEMPEMPL with data from
department D11 from DSN8510.EMP.

INSERT INTO SMITH.TEMPEMPL

 SELECT O

 FROM DSN851,.EMP

 WHERE WORKDEPT='D11';

  Chapter 6. Statements 423



 LABEL ON  
 

 LABEL ON
The LABEL ON statement adds or replaces labels in the descriptions of tables,
views, aliases, or columns in the catalog at the current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� Ownership of the table, view, or alias
� DBADM authority for its database (tables only)
� SYSADM or SYSCTRL authority

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared and the bind option DYNAMICRULES(RUN)
applies, the privilege set is the union of the privilege sets held by each
authorization ID of the process. If the statement is dynamically prepared and the
bind option DYNAMICRULES(BIND) applies, the privilege set is the privileges held
by the authorization ID of the owner of the plan or package.

 Syntax

 

��─ ─LABEL ON─ ──┬ ┬ ──┬ ┬─TABLE─ ──┬ ┬─table-name─ ───────────── ─IS──string-constant─ ───────────────────────��
 │ ││ │└ ┘─view-name──
 │ │├ ┤─ALIAS──alias-name──────────────────
 │ │└ ┘─COLUMN─ ──┬ ┬──table-name.column-name

│ │└ ┘──view-name.column-name ─
 │ │┌ ┐─,────────────────────────────────
 └ ┘ ──┬ ┬─table-name─ ─(─ ───

�
┴─column-name──IS──string-constant─ ─)──

 └ ┘─view-name──

 Description
TABLE

Indicates that the label is for a table or a view.

table-name or view-name
Identifies the table or view to which the label applies. The name must
identify a table or view that exists at the current server. The label is placed
into the LABEL column of the SYSIBM.SYSTABLES catalog table for the
row that describes the table or view.

ALIAS
Identifies the alias to which the comment applies.

alias-name
The name must identify an alias that exists at the current server. The label
is placed in the LABEL column of the SYSIBM.SYSTABLES catalog table
for the row that describes the alias.

424 SQL Reference  



  LABEL ON
 

COLUMN
Indicates that the label is for a column.

table-name.column-name or view-name.column-name
Identifies the column to which the label applies. The name must identify a
column of a table or view that exists at the current server. The label is
placed in the LABEL column of the SYSIBM.SYSCOLUMNS catalog table
in the row that describes the column.

Do not use TABLE or COLUMN to define a label for more than one
column in a table or view. Give the table or view name and then, in
parentheses, a list in the form:

column-name IS string-constant,
column-name IS string-constant,...

The column names must not be qualified, each name must identify a column of
the specified table or view, and that table or view must exist at the current
server.

IS Introduces the label you want to provide.

string-constant
Can be any SQL character string constant of up to 30 bytes in length.

 Examples
Example 1: Enter a label on the DEPTNO column of table DSN8510.DEPT.

LABEL ON COLUMN DSN851,.DEPT.DEPTNO

IS 'DEPARTMENT NUMBER';

Example 2: Enter labels on two columns in table DSN8510.DEPT.

LABEL ON DSN851,.DEPT

(MGRNO IS 'MANAGER'S EMPLOYEE NUMBER',

ADMRDEPT IS 'ADMINISTERING DEPARTMENT');

  Chapter 6. Statements 425



 LOCK TABLE  
 

 LOCK TABLE
The LOCK TABLE statement requests a lock on a table or table space at the
current server. The lock is not acquired if the process already holds an appropriate
lock.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

 Authorization
The privilege set defined below must include at least one of the following:

� The SELECT privilege on the identified table
� Ownership of the table
� DBADM authority for the database
� SYSADM or SYSCTRL authority

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared and the bind option DYNAMICRULES(RUN)
applies, the privilege set is the union of the privilege sets held by each
authorization ID of the process. If the statement is dynamically prepared and the
bind option DYNAMICRULES(BIND) applies, the privilege set is the privileges held
by the authorization ID of the owner of the plan or package.

 Syntax

 

��─ ─LOCK TABLE──table-name─ ──┬ ┬─────────────── ─IN─ ──┬ ┬─SHARE───── ─MODE───────────────────────────────��
|  └ ┘|  ─PART──integer─ └ ┘─EXCLUSIVE─

 Description
table-name

Identifies the table to be locked. The name must identify a table that exists at
| the current server. It must not identify a view, a temporary table, or a catalog

table. The lock might or might not apply exclusively to the table.

| PART integer
| Identifies the partition of a partitioned table space to lock. The table identified
| by table-name must belong to a partitioned table space that is defined with
| LOCKPART YES. The value specified for integer must be an integer that is no
| greater than the number of partitions in the table space.

IN SHARE MODE
Requests the acquisition of a lock that prevents other processes from executing
anything but read-only operations on the table. The type of lock that the
process holds after execution of the statement depends on what lock, if any,
the process already holds.

426 SQL Reference  



  LOCK TABLE
 

IN EXCLUSIVE MODE
Requests the acquisition of an exclusive lock for the application process. Until
the lock is released, it prevents concurrent processes from executing any
operations on the table.

 Notes
For more information on using LOCK TABLE (such as the size and duration of
locks), and on locking in general, see Section 4 of Application Programming and
SQL Guide or Section 5 (Volume 2) of Administration Guide.

 Example
Obtain a lock on the sample table named DSN8510.EMP, which resides in a
partitioned table space. The lock obtained applies to every partition and prevents
other application programs from either reading or updating the table.

LOCK TABLE DSN851,.EMP IN EXCLUSIVE MODE;

  Chapter 6. Statements 427



 OPEN  
 

 OPEN
The OPEN statement opens a cursor.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

 Authorization
See “DECLARE CURSOR” on page 347 for the authorization required to use a
cursor.

 Syntax

 

��─ ─OPEN──cursor-name─ ──┬ ┬──────────────────────────────────────── ───────────────────────────────────��
 │ │┌ ┐─,─────────────
 └ ┘ ─USING─ ──┬ ┬───

�
┴─host-variable─ ──────────

 └ ┘ ─DESCRIPTOR──descriptor-name─

 Description
cursor-name

Identifies the cursor to be opened. The cursor-name must identify a declared
cursor as explained in “Notes” on page 349 in the description of the DECLARE
CURSOR statement. When the OPEN statement is executed, the cursor must
be in the closed state.

The SELECT statement of the cursor is either:

� The select-statement specified in the DECLARE CURSOR statement, or

� The prepared select-statement identified by the statement-name specified
in the DECLARE CURSOR statement. If the statement has not been
successfully prepared, or is not a select-statement, the cursor cannot be
successfully opened.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any special registers specified in the
SELECT statement and the current values of any host variables specified in the
SELECT statement or the USING clause of the OPEN statement. The rows of

| the result table can be derived during the execution of the OPEN statement
| and a temporary copy of a result table can be created to hold them. They can

be derived during the execution of later FETCH statements. In either case, the
cursor is placed in the open state and positioned before the first row of its
result table. If the table is empty the position of the cursor is effectively “after
the last row.” DB2 does not indicate an empty table when the OPEN statement
is executed. But it does indicate that condition, on the first execution of FETCH,
by returning values of +100 for SQLCODE and '02000' for SQLSTATE.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) of a prepared statement. (For an

428 SQL Reference  



  OPEN
 

explanation of parameter markers, see “PREPARE” on page 433.) If the
DECLARE CURSOR statement names a prepared statement that includes
parameter markers, you must use USING. If the prepared statement does not
include parameter markers, USING is ignored.

host-variable,...
Identifies structures or variables that must be described in the application
program in accordance with the rules for declaring host structures and
variables. When the statement is executed, a reference to a structure is
replaced by a reference to each of its variables. The number of variables
must be the same as the number of parameter markers in the prepared
statement. The nth variable corresponds to the nth parameter marker in the
prepared statement.

DESCRIPTOR descriptor-name
| Identifies an SQLDA that contains a valid description of the input host
| variables.

Before the OPEN statement is processed, the user must set the following
fields in the SQLDA:

� SQLN to indicate the number of SQLVAR occurrences provided in the
SQLDA

# A REXX SQLDA does not contain this field.

� SQLD to indicate the number of variables used in the SQLDA when
processing the statement

� SQLVAR occurrences to indicate the attributes of the variables

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers
in the prepared statement. The nth variable described by the SQLDA
corresponds to the nth parameter marker in the prepared statement. (For a
description of an SQLDA, see Appendix C, “SQLCA and SQLDA” on
page 513.)

See “Identifying an SQLDA in C” on page 526 for how to represent
descriptor-name in C.

When the SELECT statement of the cursor is evaluated, each parameter marker in
the statement is effectively replaced by the value of its corresponding host variable.
For more on the process of replacement, see “Parameter marker replacement” on
page 430.

The USING clause is intended for a prepared SELECT statement that contains
parameter markers. However, it can also be used when the SELECT statement of
the cursor is part of the DECLARE CURSOR statement. In this case, the OPEN
statement is executed as if each host variable in the SELECT statement were a
parameter marker except that the attributes of the target variable are the same as
the attributes of the host variables in the SELECT statement. The effect is to
override the values of the host variables in the SELECT statement of the cursor
with the values of the host variables specified in the USING clause. If a predicate of
the SELECT refers to a host variable that does not have an indicator variable, the
overriding value is always the value of the main variable because the indicator
variable is ignored without a warning.

  Chapter 6. Statements 429



 OPEN  
 

 Notes
| Errors occurring on OPEN: In local and remote processing, the
| DEFER(PREPARE) and REOPT(VARS) bind options can cause some SQL
| statements to receive “delayed” errors. For example, an OPEN statement might
| receive an SQLCODE that normally occurs during PREPARE processing. Or a
| FETCH statement might receive an SQLCODE that normally occurs at OPEN time.

Closed state of cursors: All cursors in an application process are in the closed
state when:

� The application process is started.
� A new unit of work is started for the application process, unless the WITH

HOLD option has been used in the DECLARE CURSOR statement.
� A CONNECT has been performed. (CONNECT implicitly closes any open

cursors.)

A cursor can also be in the closed state because:

� A CLOSE statement was executed.
� An error was detected that made the position of the cursor unpredictable.

To retrieve rows from the result table of a cursor, you must execute a FETCH
statement when the cursor is open. The only way to change the state of a cursor
from closed to open is to execute an OPEN statement.

| Effect of a temporary copy of a result table: DB2 can process a cursor in two
different ways:

� It can create a temporary copy of the result table during the execution of the
OPEN statement.

� It can derive the result table rows as they are needed during the execution of
later FETCH statements.

If the result table is not read-only, DB2 uses the latter method. If the result table is
read-only, either method could be used. The results produced by these two
methods could differ in the following respects:

When a temporary copy of the result table is used: An error can occur during
OPEN that would otherwise not occur until some later FETCH statement. Moreover,
INSERT, UPDATE, and DELETE statements executed while the cursor is open
cannot affect the result table.

When a temporary copy of the result table is not used: INSERT, UPDATE, and
DELETE statements executed while the cursor is open can affect the result table if
they are issued from the same application process. The effect of such operations
is not always predictable. For example, if cursor C is positioned on a row of its
result table defined as SELECT * FROM T, and you insert a row into T, the effect
of that insert on the result table is not predictable because its rows are not ordered.
A later FETCH C might or might not retrieve the new row of T.

Parameter marker replacement: Before the OPEN statement is executed, each
parameter marker in the query is effectively replaced by its corresponding host
variable. The replacement is an assignment operation in which the source is the
value of the host variable and the target is a variable within DB2. The assignment
rules are those described for assignment to a column in “Assignment and

430 SQL Reference  



  OPEN
 

Comparison” on page 65. The attributes of the target variable depend on the role
that the parameter marker plays in its query. The rules for the various roles are
shown below. In those rules, P represents the parameter marker in question.

Arithmetic operand: When P is an operand for an infix operator, the other operand
cannot also be a parameter marker. The data type, scale, and precision of the
target for P are the same as those of the other operand. When P is the operand of
a unary minus, the data type of the target is double precision floating-point.

The pattern in a LIKE predicate: With P in this role, the target is a varying-length
string. If the first operand in the predicate is a character string column, the target is
VARCHAR(n), where n is 10 more than the length attribute of the column, with this
exception: If that length attribute is greater than 246, n is 256. If the first operand is
a graphic string column, the target is VARGRAPHIC(n), where n is 5 more than the
length attribute of the column, with the following exception: if that length attribute is
greater than 123, n is 128.

Comparand: In this case, P could be a comparand in a basic predicate, in an IN
predicate, or in a BETWEEN predicate. At least one of the comparands in such a
predicate must not be a parameter marker. One such comparand determines the
attributes of the target for P. For a basic predicate, this is simply the other
comparand. For a BETWEEN predicate, this is the first (leftmost) comparand that
was specified solely as a column name, if one exists. For an IN predicate, and for a
BETWEEN predicate with no comparand specified solely as a column, this is the
first comparand that is not a parameter marker.

If the comparand that determines the attributes has a data type of DATE, TIME, or
# TIMESTAMP, the target for P is effectively CHAR(255) . Otherwise, the attributes of

the target are those of the comparand.

General rules: Let V denote a host variable that corresponds to parameter marker
P. The value of V is assigned to the target variable for P in accordance with the
rules for assigning a value to a column:

� V must be compatible with the target.

� If V is a string, its length must not be greater than the length attribute of the
target.

� If V is a number, the absolute value of its integral part must not be greater than
the maximum absolute value of the integral part of the target.

� If the attributes of V are not identical to the attributes of the target, the value is
converted to conform to the attributes of the target.

When the prepared statement is executed, the value used in place of P is the value
of the target variable for P. For example, if V is CHAR(6) and the target is
CHAR(8), the value used in place of P is the value of V padded on the right with
two blanks.

  Chapter 6. Statements 431



 OPEN  
 

 Example
The OPEN statement in the following example places the cursor at the beginning of
the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN851,.DEPT

WHERE ADMRDEPT = 'A,,';

EXEC SQL OPEN C1;

DO WHILE (SQLCODE = ,);

EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM;

 END;

EXEC SQL CLOSE C1;

432 SQL Reference  



  PREPARE
 

 PREPARE
The PREPARE statement creates an executable SQL statement from a character
string form of the statement. The executable form is called a prepared statement.
The character string form is called a statement string.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

 Authorization
The authorization rules are those defined for the dynamic preparation of the SQL
statement specified by the PREPARE statement. For example, see “Chapter 5.
Queries” on page 167 for the authorization rules that apply when a SELECT
statement is prepared.

 Syntax

 

��─ ─PREPARE──statement-name─ ──┬ ┬────────────────────────────────────────────── ────────────────────────�
 └ ┘ ─INTO──descriptor-name─ ──┬ ┬───────────────────
 │ │┌ ┐─NAMES──
 └ ┘ ─USING─ ──┼ ┼─LABELS─
 ├ ┤─ANY────
 └ ┘─BOTH───

�─ ─FROM─ ──┬ ┬─string-expression─ ──────────────────────────────────────────────────────────────────────��
 └ ┘─host-variable─────

 Description
statement-name

Names the prepared statement. If the name identifies an existing prepared
statement, that prepared statement is destroyed. The name must not identify a
prepared statement that is the SELECT statement of an open cursor.

INTO
If you use INTO, and the PREPARE statement is successfully executed,
information about the prepared statement is placed in the SQLDA specified by
the descriptor name. Thus, the PREPARE statement:

EXEC SQL PREPARE S1 INTO SQLDA FROM V1;

is equivalent to:

EXEC SQL PREPARE S1 FROM V1;

EXEC SQL DESCRIBE S1 INTO SQLDA;

See “DESCRIBE” on page 362 for an explanation of the information that is
placed in the SQLDA.

descriptor-name
# Identifies the SQLDA. For languages other than REXX, SQLN must be set

to indicate the number of SQLVAR occurrences.

See “Identifying an SQLDA in C” on page 526 for how to represent
descriptor-name in C.

  Chapter 6. Statements 433



 PREPARE  
 

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA
when INTO is used. If the requested value does not exist, SQLNAME is set
to length 0.

NAMES
Assigns the name of the column. This is the default.

LABELS
Assigns the label of the column. (Column labels are defined by the
LABEL ON statement.)

ANY
Assigns the column label, and, if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In that case, two
occurrences of SQLVAR per column are needed to accommodate the
additional information. To specify this form of the SQLVAR array, set
SQLN to 2 × n, where n is the number of columns in the result table.
The first n occurrences of SQLVAR for each of the columns in the
result table contain the column names. The second n occurrences
contain the column labels. If the SQLDA is used in a later FETCH
statement, set SQLN to n before executing that FETCH statement.

# A REXX SQLDA does not include the SQLN field, so you do not need
# to set SQLN for REXX programs.

FROM
Specifies the statement string. The statement string is the value of the specified
string-expression or the identified host-variable.

string-expression
string-expression is any PL/I expression that yields a character string. An
optional colon can precede the string-expression. The colon introduces PL/I
syntax. Therefore, host variables within a string-expression that includes
operators or functions should not be preceded with a colon.

host-variable
Must identify a host variable that is described in the application program in
accordance with the rules for declaring character string variables. An
indicator variable must not be specified. In COBOL and Assembler
language, the host variable must be a varying-length string variable. In C,
the host variable must not be a NUL-terminated string.

 Notes
Rules for statement strings: The statement string must be one of the following
SQL statements:

 ALTER LABEL ON
 COMMENT ON LOCK TABLE

|  COMMIT RENAME
 CREATE REVOKE
 DELETE ROLLBACK

DROP SET CURRENT DEGREE
EXPLAIN SET CURRENT SQLID

434 SQL Reference  



  PREPARE
 

 GRANT UPDATE
 INSERT select-statement

The statement string must not:

� Begin with EXEC SQL and end with a statement terminator
� Include references to host variables

 � Include comments.

Parameter markers: Although a statement string cannot include references to host
variables, it can include parameter markers. Those can be replaced by the values
of host variables when the prepared statement is executed. A parameter marker is
a question mark (?) that appears where a host variable could appear if the
statement string were a static SQL statement. For an explanation of how parameter
markers are replaced by values, see “EXECUTE” on page 382, “OPEN” on
page 428, and Section 6 of Application Programming and SQL Guide .

Rules for parameter markers:

� Parameter markers must not be used:

– In a select list (SELECT ? is invalid)

– As an operand of the concatenation operator

– As both operands of a single arithmetic or comparison operator (WHERE ?
= ? is invalid)

– As an operand in a datetime arithmetic expression

– In a SET statement

– In the first operand of a LIKE predicate

– In the first operand of a NULL predicate

| – As the factored expression following the CASE keyword in a simple-when
| clause of a CASE expression

� At least one of the operands of the BETWEEN or IN predicates must not be a
parameter marker.

| � At least one result-expression in a CASE expression must not be a parameter
| marker.

� An argument of a scalar function cannot be specified solely as a parameter
marker. However, if a scalar function is used in other than a SELECT list, and it
has an argument that can be specified as an arithmetic expression, a
parameter marker can be included in that expression, provided that it is the
operand of an arithmetic operator and that the other operand is a number.

� In other than a SELECT list, a parameter marker can be the operand of a
unary minus. For example, WHERE C = -?.

Error checking: When a PREPARE statement is executed, the statement string is
parsed and checked for errors. If the statement string is invalid, a prepared
statement is not created and the error condition that prevents its creation is
reported in the SQLCA.

| In local and remote processing, the DEFER(PREPARE) and REOPT(VARS) bind
| options can cause some SQL statements to receive “delayed” errors. For example,

  Chapter 6. Statements 435



 PREPARE  
 

| DESCRIBE, EXECUTE, and OPEN might receive an SQLCODE that normally
| occurs during PREPARE processing.

Reference and execution rules: Prepared statements can be referred to in the
following kinds of statements, with the following restrictions shown:

In... The prepared statement...
DESCRIBE has no restrictions
DECLARE CURSOR must be SELECT when the cursor is opened
EXECUTE must not be SELECT

A prepared statement can be executed many times. Indeed, if a prepared
statement is not executed more than once and does not contain parameter
markers, it is more efficient to use the EXECUTE IMMEDIATE statement rather
than the PREPARE and EXECUTE statements.

Prepared statement persistence: All prepared statements created by a unit of
work are destroyed when the unit of work is terminated, with the following
exceptions:

� A SELECT statement whose cursor is declared with the option WITH HOLD
persists over the execution of a commit operation if the cursor is open when
the commit operation is executed.

| � SELECT, INSERT, UPDATE, and DELETE statements that are bound with
| KEEPDYNAMIC(YES) are kept past the commit operation if your system is
| enabled for dynamic statement caching, and none of the following are true:

| – SQL RELEASE has been issued for the site

| – Bind option DISCONNECT(AUTOMATIC) was used

| – Bind option DISCONNECT(CONDITIONAL) was used and there are no
| hold cursors for the site

Scope of a statement name: The scope of a statement-name is the same as the
scope of a cursor-name. See “Notes” on page 349 for more information about the
scope of a cursor-name.

| Preparation with PREPARE INTO and REOPTVAR: If bind option REOPT(VARS)
| is in effect, PREPARE INTO is equivalent to a PREPARE and a DESCRIBE being
| performed. If a statement has input variables, the DESCRIBE causes the statement
| to be prepared with default values, and the statement must be prepared again
| when it is opened or executed. To avoid having a statement prepared twice, avoid
| using PREPARE INTO when REOPT(VARS) is in effect.

 Example
In this PL/I example, an INSERT statement with parameter markers is prepared
and executed. Before execution, values for the parameter markers are read into the
host variables S1, S2, S3, S4, and S5.

EXEC SQL PREPARE DEPT_INSERT FROM

'INSERT INTO DSN851,.DEPT VALUES(?,?,?,?,?)';

(Check for successful execution and read values into host variables)

EXEC SQL EXECUTE DEPT_INSERT USING :S1, :S2, :S3, :S4, :S5;

436 SQL Reference  



  RELEASE
 

 RELEASE
The RELEASE statement places one or more connections in the release pending
state.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. RELEASE cannot be
used if the program is executing as a stored procedure.

 Authorization
None required.

 Syntax

 

��─ ─RELEASE─ ──┬ ┬─location-name─ ──────────────────────────────────────────────────────────────────────��
 ├ ┤─host-variable─
 ├ ┤─CURRENT───────
 │ │┌ ┐─SQL─
 ├ ┤──ALL ──┴ ┴───── ─
 └ ┘─ALL PRIVATE───

 Description
location-name or host-variable

Identifies an SQL connection or a DB2 private connection by the specified
location name or the location name contained in the host variable. If a host
variable is specified:

� It must be a character string variable with a length attribute that is not
greater than 16. (A C NUL-terminated character string may be up to 17
bytes.)

� It must be preceded by a colon and must not be followed by an indicator
variable.

� The location name must be left-justified within the host variable and must
conform to the rules for forming an ordinary location identifier.

� If the length of the location name is less than the length of the host
variable, it must be padded on the right with blanks.

The specified location name or the location name contained in the host variable
must identify an existing SQL connection or DB2 private connection of the
application process.

If the RELEASE statement is successful, the identified connection is placed in
the release pending state and will therefore be ended during the next commit
operation. If the RELEASE statement is unsuccessful, the connection state of
the application process and the states of its connections are unchanged.

CURRENT
Identifies the current SQL connection of the application process. The
application process must be in the connected state.

  Chapter 6. Statements 437



 RELEASE  
 

If the RELEASE statement is successful, the identified connection is placed in
the release pending state and will therefore be ended during the next commit
operation. If the RELEASE statement is unsuccessful, the connection state of
the application process and the states of its connections are unchanged.

ALL or ALL SQL
Identifies all existing connections (including local, SQL, and DB2 private
connections) of the application process and places these connections in the
release pending state. These connections are ended during the next commit
operation. An error or warning does not occur if no connections exist when the
statement is executed.

ALL PRIVATE
Identifies all existing DB2 private connections of the application process and
places these connections in the release pending state. These DB2 private
connections are ended during the next commit operation. An error or warning
does not occur if no DB2 private connections exist when the statement is
executed.

 Notes
Using CONNECT (Type 1) semantics does not prevent using RELEASE.

RELEASE does not close cursors, does not release any resources, and does not
prevent further use of the connection.

ROLLBACK does not reset the state of a connection from release pending to held.

Resources are required to create and maintain remote connections. Thus, a remote
connection that is not going to be reused should be in the release pending state
and one that is going to be reused should not be in the release pending state.
Remote connections can also be ended during a commit operation as a result of
the DISCONNECT(AUTOMATIC) or DISCONNECT(CONDITIONAL) bind option.

If the current SQL connection is in the release pending state when a commit
operation is performed, the connection is ended and the application process is in
the unconnected state. In this case, the next executed SQL statement should be
CONNECT or SET CONNECTION.

An application server named CURRENT or ALL can only be identified by a host
variable or a delimited identifier. A connection in the release pending state is ended
during a commit operation even though it has an open cursor defined with WITH
HOLD.

For further information, see “When a Connection is Ended” on page 36.

 Examples
Example 1: The SQL connection to TOROLAB1 is not needed in the next unit of
work. The following statement causes it to be ended during the next commit
operation:

EXEC SQL RELEASE TOROLAB1;

438 SQL Reference  



  RELEASE
 

Example 2: The current SQL connection is not needed in the next unit of work. The
following statement causes it to be ended during the next commit operation:

EXEC SQL RELEASE CURRENT;

Example 3: The first phase of an application involves explicit CONNECTs to remote
servers and the second phase involves the use of DB2 private protocol access with
the local DB2 subsystem as the application server. None of the existing
connections are needed in the second phase and their existence could prevent the
allocation of DB2 private connections. Accordingly, the following statement is
executed before the commit operation that separates the two phases:

EXEC SQL RELEASE ALL SQL;

Example 4: The first phase of an application involves the use of DB2 private
protocol access with the local DB2 subsystem as the application server and the
second phase involves explicit CONNECTs to remote servers. The existence of the
DB2 private connections allocated during the first phase could cause a CONNECT
operation to fail. Accordingly, the following statement is executed before the commit
operation that separates the two phases:

EXEC SQL RELEASE ALL PRIVATE;

  Chapter 6. Statements 439



 RENAME  
 

|  RENAME
| The RENAME statement renames an existing table.

|  Invocation
| This statement can be embedded in an application program or issued interactively.
| It is an executable statement that can be dynamically prepared. However, if the
| bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
| prepared.

|  Authorization
| The privileges set defined below must include at least one of the following:

| � Ownership of the table
| � DBADM, DBCTRL, or DBMAINT authority for the database that contains the
| table
| � SYSADM or SYSCTRL authority

| Privilege Set: If the statement is embedded in an application program, the privilege
| set is the privileges held by the authorization ID of the owner of the plan or
| package. If the statement is dynamically prepared, the privilege set is the union of
| the privilege sets held by each authorization ID of the process.

| If the name of the existing table includes a qualifier that is different from the
| authorization ID of the statement, the privileges held by the authorization ID of the
| statement must include administrative authority.

|  Syntax

|  

|  ┌ ┐─TABLE─
| ��─| ─RENAME─ ──┴ ┴─────── ─source-table-name──TO──target-identifier──────────────────────────────────────��

|  Description
| source-table-name
| Identifies the existing table that is to be renamed. The name, including the
| implicit or explicit qualifier, must identify a table that already exists at the
| current server. The name cannot be a catalog table, a view, a synonym, or an
| active RLST table. If you specify a three-part name or alias for the source, the
| source table must exist at the current server.

| There is no support for changing the name of an alias. An alias on the source
| table continues to refer to the source table after the rename.

| An error is issued if the source table is currently referenced in any view
| definitions.

| The specified table is renamed to the new name. All privileges and indexes on
| the table are preserved.

440 SQL Reference  



  RENAME
 

| target-identifier
| Specifies the new name for the table without a qualifier. The qualifier of the
| source-table-name is used to qualify the new name for the table. The qualified
| name must not identify a table, view, alias, or synonym that already exists at
| the current server.

|  Notes
| Catalog Table Updates: Entries in the following catalog tables are updated to
| reflect the new table name:

|  � SYSCHECKS
|  � SYSCHECKDEP
|  � SYSCOLAUTH
|  � SYSCOLDIST
|  � SYSCOLDISTSTATS
|  � SYSCOLSTATS
|  � SYSCOLUMNS
|  � SYSFIELDS
|  � SYSFOREIGNKEYS
|  � SYSINDEXES
|  � SYSPLANDEP
|  � SYSPACKDEP
|  � SYSRELS
|  � SYSSYNONYMS
|  � SYSTABAUTH
|  � SYSTABLES
|  � SYSTABSTATS

| Entries in SYSTMTS and SYSPACKSTMTS are not updated.

| Invalidation of plans, packages , and dynamic statements: When the RENAME
| TABLE statement is executed, any plans or packages that refer to that table are
| invalidated. If any dynamic statements in the statement cache refer to this table,
| they are invalidated; DB2 must refresh those statements in the cache the next time
| they are executed.

| Transfer of authorization, referential integrity constraints, and indexes: All
| authorizations associated with the source table name are transferred to the new
| (target) table name. The authorization catalog tables are updated appropriately.

| Referential integrity constraints involving the source table are updated to refer to
| the new table. The catalog tables are updated appropriately.

| Indexes defined over the source table are transferred to the new table. The index
| catalog tables are updated appropriately.

| Object Identifier: Renamed tables keep the same object identifier (OBID) as the
| original table.

| Renaming Registration Tables: If an application registration table or object
| registration table is specified as the source table for RENAME, then once RENAME
| completes, it is as if that table had been dropped. There is no ART (application
| registration table) or ORT (object registration table) once the ART or ORT table has
| been renamed.

  Chapter 6. Statements 441



 RENAME  
 

|  Example
| Change the name of the EMP table to EMPLOYEE:

| RENAME TABLE EMP TO EMPLOYEE;

442 SQL Reference  



  REVOKE
 

 REVOKE
The REVOKE statement revokes privileges from authorization IDs. There is a
separate form of the statement for each of these classes of privilege:

 � Collection
 � Database
 � Package
 � Plan
 � System
� Table or view

 � Use

The applicable objects are always at the current server.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. However, if the
bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically
prepared.

If the authorization mechanism was not activated when the DB2 subsystem was
installed, an error condition occurs.

 Authorization
If the BY clause is not specified, the authorization ID of the statement must have
granted at least one of the specified privileges to every authorization-name
specified in the FROM clause (including PUBLIC, if specified). If the BY clause is
specified, the authorization ID of the statement must have SYSADM or SYSCTRL
authority.

If the statement is embedded in an application program, the authorization ID of the
statement is the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the authorization ID of the statement is the SQL
authorization ID of the process.

 Syntax

 

 ┌ ┐─,───────────────────────────
��─ ─REVOKE──authorization-specification─ ─FROM─ ───

�
┴──┬ ┬─authorization-name────── ───────────────────────�

 ├ ┤─PUBLIC──────────────────
└ ┘─PUBLIC AT ALL LOCATIONS─

�─ ──┬ ┬──────────────────────────────── ───────────────────────────────────────────────────────────────��
 │ │┌ ┐─,──────────────────
 └ ┘ ─BY─ ──┬ ┬───

�
┴─authorization-name─

 └ ┘─ALL────────────────────

  Chapter 6. Statements 443



 REVOKE  
 

 Description
authorization-specification

Names one or more privileges, in one of the formats described below. The
same privilege must not be specified more than once.

FROM
Specifies from what authorization IDs the privileges are revoked.

authorization-name,...
Lists one or more authorization IDs. Do not use the same authorization ID
more than once.

The value of CURRENT RULES determines if you can use the ID of the
REVOKE statement itself (to revoke privileges from yourself). When
CURRENT RULES is:

DB2 You cannot use the ID of the REVOKE statement.
 STD You can use the ID of the REVOKE statement.

PUBLIC
Revokes a grant of privileges to PUBLIC.

PUBLIC AT ALL LOCATIONS
Revokes a grant of privileges to PUBLIC AT ALL LOCATIONS.

BY
Lists grantors who have granted privileges and revokes each named privilege
that was explicitly granted to some named user by one of the named grantors.
Only an authorization ID with SYSADM or SYSCTRL authority can use BY,
even if the authorization ID names only itself in the BY clause.

authorization-name,...
Lists one or more authorization IDs of users who were the grantors of the
privileges named. Do not use the same authorization ID more than once.
Each grantor listed must have explicitly granted some named privilege to all
named users.

ALL
Revokes each named privilege from all named users who were explicitly
granted the privilege, regardless of who granted it.

 Notes
Revoked privileges: The privileges revoked from an authorization ID are those
that are identified in the statement and which were granted to the authorization ID
by the authorization ID of the statement. Other privileges can be revoked as the
result of a cascade revoke.

Cascade revoke: Revoking a privilege from a user can also cause that privilege to
be revoked from other users. This is called a cascade revoke. The following rules
must be true for privilege P' to be revoked from U3 when U1 revokes privilege P
from U2:

� P and P' are the same privilege.

� U2 granted privilege P' to U3.

� No one granted privilege P to U2 prior to the grant by U1.

� U2 does not have installation SYSADM authority.

444 SQL Reference  



  REVOKE
 

The rules also apply to the implicit grants that are made as a result of a CREATE
VIEW statement.

Cascade revoke does not occur if the privilege was granted by a current install
SYSADM.

Refer to the diagrams for the following example:

1. Suppose BOB grants SYSADM authority to WADE. Later, CLAIRE grants the
SELECT privilege on a table with the WITH GRANT OPTION to WADE.

┌───────────────┐ ┌───────────────────┐ ┌─────────────────────────┐

│ User: WADE │ │ User: WADE │ │ User: WADE │

│ ├──────────────�│ Authority: SYSADM ├────────────────�│ Authority: SYSADM │

│ │ � │ │ � │ Privilege: SELECT WITH │

└───────────────┘ │ └───────────────────┘ │ │ GRANT OPTION │

 │ │ └─────────────────────────┘

 │ │

BOB grants SYSADM CLAIRE grants SELECT WITH

to WADE GRANT OPTION to WADE

2. WADE grants the SELECT privilege to JOHN on the same table.

┌──────────────┐ ┌───────────────────┐

│ User: JOHN │ │ User: JOHN │

│ ├─────────────────────────────────────────────────────�│ │

│ │ � │ Privilege: SELECT │

└──────────────┘ │ └───────────────────┘

 │

WADE grants SELECT

 to JOHN

3. When CLAIRE revokes the SELECT privilege on the table from WADE, the
SELECT privilege on that table is also revoked from JOHN.

┌─────────────────────────┐ ┌───────────────────┐

│ User: WADE │ │ User: WADE │

│ Authority: SYSADM ├─────────────────────────────────────────�│ Authority: SYSADM │

│ Privilege: SELECT WITH │ � │ │

│ GRANT OPTION │ │ └───────────────────┘

└─────────────────────────┘ │

 │

 ┌───────────────────┐ │ ┌───────────────┐

 │ User: JOHN │ │ │ User: JOHN │

 │ ├────────────────────┼────────────────────�│ │

│ Privilege: SELECT │ │ │ │

 └───────────────────┘ │ └───────────────┘

 │

CLAIRE revokes SELECT from WADE

SELECT is cascade revoked from JOHN

The grant from WADE to JOHN is removed because WADE had not been granted
the SELECT privilege from any other source before CLAIRE made the grant. The
SYSADM authority granted to WADE from BOB does not affect the cascade
revoke. For more on SYSADM and install SYSADM authority, see Section 3
(Volume 1) of Administration Guide . For another example of cascading revokes,
see Section 3 (Volume 1) of Administration Guide .

# Revoking a SELECT privilege that was exercised to create a view causes the view
# to be dropped, unless the owner of the view was directly granted the SELECT
# privilege from another source before the view was created. Revoking a SYSADM

privilege that was required to create a view causes the view to be dropped. For
details on when SYSADM authority is required to create a view, see Authorization
in “CREATE VIEW” on page 341.

  Chapter 6. Statements 445



 REVOKE  
 

| Invalidation of plans and packages: A revoke or cascade revoke of any privilege
| that was exercised to create a plan or package invalidates the plan or package
| when the revokee no longer holds the privilege from any other source.

Multiple grants: If you granted the same privilege to the same user more than
once, revoking that privilege from that user nullifies all those grants. It does not
nullify any grant of that privilege made by others.

When a REVOKE statement revokes multiple grants, the grants are revoked, one at
a time, in an undefined order. If, for some reason, a revocation is in error, the
execution of the statement is stopped, and all the revoked grants are restored.
Such an error certainly occurs if a table or view is specified twice after the keyword
ON. One also occurs when a table and a view based on the table are both
specified after ON. The error would occur if revoking some grant for the table
causes the view to be dropped before all grants have been revoked for the view.

Privileges belonging to an authority: You can revoke an administrative authority,
but you cannot separately revoke the specific privileges inherent in that
administrative authority.

Let P be a privilege inherent in authority X. A user with authority X can also have
privilege P as a result of an explicit grant of P. In this case:

� If X is revoked, the user still has privilege P.
� If P is revoked, the user still has the privilege because it is inherent in X.

Ownership privileges: The privileges inherent in the ownership of an object
cannot be revoked.

446 SQL Reference  



  REVOKE (Collection Privileges)
 

REVOKE (Collection Privileges)
This form of the REVOKE statement revokes privileges on collections.

 Syntax

 

 ┌ ┐─,─────────────
��─ ─REVOKE─ ──┬ ┬─CREATE── ──┬ ┬─IN─ ─COLLECTION─ ──┬ ┬───

�
┴─collection-id─ ───────────────────────────────────�

 └ ┘─PACKADM─ └ ┘─ON─ └ ┘─O─────────────────

 ┌ ┐─,──────────────────────
�─ ─FROM─ ───

�
┴──┬ ┬─authorization-name─ ──┬ ┬──────────────────────────────── ─────────────────────────────��

 └ ┘─PUBLIC───────────── │ │┌ ┐─,──────────────────
 └ ┘ ─BY─ ──┬ ┬───

�
┴─authorization-name─

 └ ┘─ALL────────────────────

 Description
CREATE IN

Revokes the privilege to use the BIND subcommand to create packages in the
designated collections.

The word ON can be used instead of IN.

PACKADM ON
Revokes the package administrator authority for the designated collections.

The word IN can be used instead of ON.

COLLECTION collection-id,...
Identifies the collections on which the specified privilege is revoked. For each
identified collection, you (or the indicated grantors) must have granted the
specified privilege on that collection to all identified users (including PUBLIC if
specified). The same collection must not be identified more than once.

COLLECTION *
Indicates that the specified privilege on COLLECTION * is revoked. You (or the
indicated grantors) must have granted the specified privilege on COLLECTION

| * to all identified users (including PUBLIC if specified). Privileges granted on
| specific collections are not affected.

FROM
Refer to “REVOKE” on page 443 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 443 for a description of the BY clause.

 Example
Revoke the privilege to create new packages in collections QAACLONE and
DSN8CC51 from CLARK.

REVOKE CREATE IN COLLECTION QAACLONE, DSN8CC51 FROM CLARK;

  Chapter 6. Statements 447



 REVOKE (Database Privileges)  
 

REVOKE (Database Privileges)
This form of the REVOKE statement revokes database privileges.

 Syntax

 

 ┌ ┐─,───────────── ┌ ┐─,───────────── ┌ ┐─,──────────────────────
��─ ─REVOKE─ ───

�
┴──┬ ┬─DBADM───── ─ON DATABASE─ ───

�
┴─database-name─ ─FROM─ ───

�
┴──┬ ┬─authorization-name─ ──────�

 ├ ┤─DBCTRL──── └ ┘─PUBLIC─────────────
 ├ ┤─DBMAINT───
 ├ ┤─CREATETAB─
 ├ ┤─CREATETS──
 ├ ┤─DISPLAYDB─
 ├ ┤─DROP──────
 ├ ┤─IMAGCOPY──
 ├ ┤─LOAD──────
 ├ ┤─RECOVERDB─
 ├ ┤─REORG─────
 ├ ┤─REPAIR────
 ├ ┤─STARTDB───
 ├ ┤─STATS─────
 └ ┘─STOPDB────

�─ ──┬ ┬──────────────────────────────── ───────────────────────────────────────────────────────────────��
 │ │┌ ┐─,──────────────────
 └ ┘ ─BY─ ──┬ ┬───

�
┴─authorization-name─

 └ ┘─ALL────────────────────

 Description
Each keyword listed revokes the privilege described, but only as it applies to or
within the databases named in the statement.

DBADM
Revokes the database administrator authority.

DBCTRL
Revokes the database control authority.

DBMAINT
Revokes the database maintenance authority.

CREATETAB
Revokes the privilege to create new tables.

CREATETS
Revokes the privilege to create new table spaces.

DISPLAYDB
Revokes the privilege to issue the DISPLAY DATABASE command.

DROP
Revokes the privilege to issue the DROP or ALTER statements in the specified
databases.

IMAGCOPY
Revokes the privilege to run the COPY, MERGECOPY, and QUIESCE utilities
against table spaces of the specified databases, and to run the MODIFY utility.

448 SQL Reference  



  REVOKE (Database Privileges)
 

LOAD
Revokes the privilege to use the LOAD utility to load tables.

RECOVERDB
Revokes the privilege to use the RECOVER and REPORT utilities to recover
table spaces and indexes.

REORG
Revokes the privilege to use the REORG utility to reorganize table spaces and
indexes.

REPAIR
Revokes the privilege to use the REPAIR and DIAGNOSE utilities.

STARTDB
Revokes the privilege to issue the START DATABASE command.

STATS
Revokes the privilege to use the RUNSTATS utility to update statistics, and the
CHECK utility to test whether indexes are consistent with the data they index.

STOPDB
Revokes the privilege to issue the STOP DATABASE command.

ON DATABASE database-name,...
Identifies databases on which you are revoking the privileges. For each
database you identify, you (or the indicated grantors) must have granted at
least one of the specified privileges on that database to all identified users
(including PUBLIC, if specified). The same database must not be identified
more than once.

FROM
Refer to “REVOKE” on page 443 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 443 for a description of the BY clause.

 Examples
Example 1: Revoke drop privileges on database DSN8D51A from user PEREZ.

 REVOKE DROP

ON DATABASE DSN8D51A

 FROM PEREZ;

Example 2: Revoke repair privileges on database DSN8D51A from all local users.
(Grants to specific users will not be affected.)

 REVOKE REPAIR

ON DATABASE DSN8D51A

 FROM PUBLIC;

Example 3: Revoke authority to create new tables and load tables in database
DSN8D51A from users WALKER, PIANKA, and FUJIMOTO.

 REVOKE CREATETAB,LOAD

ON DATABASE DSN8D51A

 FROM WALKER,PIANKA,FUJIMOTO;

  Chapter 6. Statements 449



 REVOKE (Package Privileges)  
 

REVOKE (Package Privileges)
This form of the REVOKE statement revokes privileges on packages.

 Syntax

 

 ┌ ┐─,──────────────────────────────
��─ ─REVOKE─ ──┬ ┬─ALL───────────────── ─ON─ ──┬ ┬─PACKAGE─ ───

�
┴──collection-id. ──┬ ┬─package-id─ ─────────────�

│ │┌ ┐─,─────────────── └ ┘─PROGRAM─ └ ┘─O──────────
 └ ┘───

�
┴──┬ ┬─BIND────────

 ├ ┤─COPY────────
 └ ┘──┬ ┬─EXECUTE─
 └ ┘─RUN─────

 ┌ ┐─,──────────────────────
�─ ─FROM─ ───

�
┴──┬ ┬─authorization-name─ ──┬ ┬──────────────────────────────── ─────────────────────────────��

 └ ┘─PUBLIC───────────── │ │┌ ┐─,──────────────────
 └ ┘ ─BY─ ──┬ ┬───

�
┴─authorization-name─

 └ ┘─ALL────────────────────

 Description
BIND

Revokes the privilege to use the BIND and REBIND subcommands for the
designated packages. In addition, if the value of field BIND NEW PACKAGE on
installation panel DSNTIPP is BIND, the additional BIND privilege of adding
new versions of packages is revoked. (For details, see “Notes” on page 407 for
“GRANT (Package Privileges)” on page 406.)

COPY
Revokes the privilege to use the COPY option of the BIND subcommand for
the designated packages.

EXECUTE
Revokes the privilege to run application programs that use the designated
packages and to specify the packages following PKLIST for the BIND PLAN
and REBIND PLAN commands. RUN is an alternate name for the same
privilege.

ALL
Revokes all package privileges for which you have authority for the packages
named in the ON clause.

ON PACKAGE collection-id.package-id,...
Identifies packages for which you are revoking privileges. The revoking of a
package privilege applies to all versions of that package. For each package
that you identify, you (or the indicated grantors) must have granted at least one
of the specified privileges on that package to all identified users (including
PUBLIC, if specified). An authorization ID with PACKADM authority over the
collection or all collections, SYSADM, or SYSCTRL authority can specify all
packages in the collection by using * for package-id. The same package must
not be specified more than once.

The word PROGRAM can be used in place of PACKAGE.

450 SQL Reference  



  REVOKE (Package Privileges)
 

FROM
Refer to “REVOKE” on page 443 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 443 for a description of the BY clause.

 Example
Revoke the privilege to copy all packages in collection DSN8CC51 from LEWIS.

REVOKE COPY ON PACKAGE DSN8CC51.O FROM LEWIS;

  Chapter 6. Statements 451



 REVOKE (Plan Privileges)  
 

REVOKE (Plan Privileges)
This form of the REVOKE statement revokes privileges on application plans.

 Syntax

 

 ┌ ┐─,─────────── ┌ ┐─,───────── ┌ ┐─,──────────────────────
��─ ─REVOKE─ ───

�
┴──┬ ┬─BIND──── ─ON PLAN─ ───

�
┴─plan-name─ ─FROM─ ───

�
┴──┬ ┬─authorization-name─ ────────────────�

 └ ┘─EXECUTE─ └ ┘─PUBLIC─────────────

�─ ──┬ ┬──────────────────────────────── ───────────────────────────────────────────────────────────────��
 │ │┌ ┐─,──────────────────
 └ ┘ ─BY─ ──┬ ┬───

�
┴─authorization-name─

 └ ┘─ALL────────────────────

 Description
BIND

Revokes the privilege to use the BIND, REBIND, and FREE subcommands for
the identified plans.

EXECUTE
Revokes the privilege to run application programs that use the identified plans.

ON PLAN plan-name,...
Identifies application plans for which you are revoking privileges. For each plan
that you identify, you (or the indicated grantors) must have granted at least one
of the specified privileges on that plan to all identified users (including PUBLIC,
if specified). The same plan must not be specified more than once.

FROM
Refer to “REVOKE” on page 443 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 443 for a description of the BY clause.

 Examples
Example 1: Revoke authority to bind plan DSN8IP51 from user JONES.

REVOKE BIND ON PLAN DSN8IP51 FROM JONES;

Example 2: Revoke authority previously granted to all users at the current server to
bind and execute plan DSN8CP51. (Grants to specific users will not be affected.)

REVOKE BIND,EXECUTE ON PLAN DSN8CP51 FROM PUBLIC;

Example 3: Revoke authority to execute plan DSN8CP51 from users ADAMSON
and BROWN.

REVOKE EXECUTE ON PLAN DSN8CP51 FROM ADAMSON,BROWN;

452 SQL Reference  



  REVOKE (System Privileges)
 

REVOKE (System Privileges)
This form of the REVOKE statement revokes system privileges.

 Syntax

 

 ┌ ┐─,─────────────── ┌ ┐─,──────────────────────
��─ ─REVOKE─ ───

�
┴──┬ ┬─ARCHIVE───── ─FROM─ ───

�
┴──┬ ┬─authorization-name─ ────────────────────────────────────�

 ├ ┤─BINDADD───── └ ┘─PUBLIC─────────────
 ├ ┤─BINDAGENT───
 ├ ┤─BSDS────────
 ├ ┤─CREATEALIAS─
 ├ ┤─CREATEDBA───
 ├ ┤─CREATEDBC───
 ├ ┤─CREATESG────

|  ├ ┤─CREATETMTAB─
 ├ ┤─DISPLAY─────
 ├ ┤─MONITOR1────
 ├ ┤─MONITOR2────
 ├ ┤─RECOVER─────
 ├ ┤─STOPALL─────
 ├ ┤─STOSPACE────
 ├ ┤─SYSADM──────
 ├ ┤─SYSCTRL─────
 ├ ┤─SYSOPR──────
 └ ┘─TRACE───────

�─ ──┬ ┬──────────────────────────────── ───────────────────────────────────────────────────────────────��
 │ │┌ ┐─,──────────────────
 └ ┘ ─BY─ ──┬ ┬───

�
┴─authorization-name─

 └ ┘─ALL────────────────────

 Description
ARCHIVE

Revokes the privilege to use the ARCHIVE LOG command.

BINDADD
Revokes the privilege to create plans and packages using the BIND
subcommand with the ADD option.

BINDAGENT
Revokes the privilege to issue the BIND, FREE PACKAGE, or REBIND
subcommands for plans and packages and the DROP PACKAGE statement on
behalf of the grantor. The privilege also allows the holder to copy and replace
plans and packages on behalf of the grantor.

A revoke of this privilege does not cascade.

BSDS
Revokes the privilege to issue the RECOVER BSDS command.

CREATEALIAS
Revokes the privilege to use the CREATE ALIAS statement.

CREATEDBA
Revokes the privilege to issue the CREATE DATABASE statement and acquire
DBADM authority over those databases.

  Chapter 6. Statements 453



 REVOKE (System Privileges)  
 

CREATEDBC
Revokes the privilege to issue the CREATE DATABASE statement and acquire
DBCTRL authority over those databases.

CREATESG
Revokes the privilege to create new storage groups.

| CREATETMTAB
| Revokes the privilege to use the CREATE GLOBAL TEMPORARY TABLE
| statement.

DISPLAY
Revokes the privilege to do the following:

� Use the DISPLAY ARCHIVE command for archive log information
� Use the DISPLAY BUFFERPOOL command for the status of buffer pools
� Use the DISPLAY DATABASE command for the status of all databases
� Use the DISPLAY LOCATION command for statistics about threads with a

distributed relationship
� Use the DISPLAY THREAD command for information on active threads

within DB2
� Use the DISPLAY TRACE command for a list of active traces

MONITOR1
Revokes the privilege to obtain IFC data classified as serviceability data,
statistics, accounting, and other performance data that does not contain
potentially secure data.

MONITOR2
Revokes the privilege to obtain IFC data classified as containing potentially
sensitive data such as SQL statement text and audit data. (Having the
MONITOR2 privilege also implies having MONITOR1 privileges, however,
revoking the MONITOR2 privilege does not cause the revoke of an explicitly
granted MONITOR1 privilege.)

RECOVER
Revokes the privilege to issue the RECOVER INDOUBT command.

STOPALL
Revokes the privilege to use the STOP DB2 command.

STOSPACE
Revokes the privilege to use the STOSPACE utility.

SYSADM
Revokes the system administrator authority.

SYSCTRL
Revokes the system control authority.

SYSOPR
Revokes the system operator authority.

TRACE
Revokes the privilege to use the MODIFY TRACE, START TRACE, and STOP
TRACE commands.

FROM
Refer to “REVOKE” on page 443 for a description of the FROM clause.

454 SQL Reference  



  REVOKE (System Privileges)
 

BY
Refer to “REVOKE” on page 443 for a description of the BY clause.

 Examples
Example 1: Revoke DISPLAY privileges from user LUTZ.

 REVOKE DISPLAY

 FROM LUTZ;

Example 2: Revoke BSDS and RECOVER privileges from users PARKER and
SETRIGHT.

 REVOKE BSDS,RECOVER

 FROM PARKER,SETRIGHT;

Example 3: Revoke TRACE privileges previously granted to all local users. (Grants
to specific users will not be affected.)

 REVOKE TRACE

 FROM PUBLIC;

  Chapter 6. Statements 455



 REVOKE (Table or View Privileges)  
 

REVOKE (Table or View Privileges)
This form of the REVOKE statement revokes privileges on one or more tables or
views.

 Syntax

 

 ┌ ┐─PRIVILEGES─ ┌ ┐─TABLE─ ┌ ┐─,──────────────
��─ ─REVOKE─ ──┬ ┬ ─ALL─ ──┴ ┴──────────── ─ON─ ──┴ ┴─────── ───

�
┴──┬ ┬─table-name─ ───────────────────────────────�

 │ │┌ ┐─,────────────── └ ┘─view-name──
 └ ┘───

�
┴──┬ ┬─ALTER────── ─

 ├ ┤─DELETE─────
 ├ ┤─INDEX──────
 ├ ┤─INSERT─────
 ├ ┤─SELECT─────
 ├ ┤─REFERENCES─
 └ ┘─UPDATE─────

 ┌ ┐─,───────────────────────────
�─ ─FROM─ ───

�
┴──┬ ┬─authorization-name────── ──┬ ┬──────────────────────────────── ────────────────────────��

 ├ ┤─PUBLIC────────────────── │ │┌ ┐─,──────────────────
└ ┘─PUBLIC AT ALL LOCATIONS─ └ ┘ ─BY─ ──┬ ┬───

�
┴─authorization-name─

 └ ┘─ALL────────────────────

 Description
ALL or ALL PRIVILEGES

If you specify ALL, the authorization ID of the statement must have granted a
least one privilege on each identified table or view to each authorization-name.
The privilege revoked from an authorization ID are those privileges on the table
or view that the authorization ID of the statement granted to the authorization
ID.

If you do not use ALL, you must use one or more of the keywords listed below.
Each keyword revokes the privilege described, but only as it applies to the
tables or views named in the ON clause.

ALTER
Revokes the privilege to use the ALTER statement.

DELETE
Revokes the privilege to use the DELETE statement.

INDEX
Revokes the privilege to use the CREATE INDEX statement.

INSERT
Revokes the privilege to use the INSERT statement.

REFERENCES
| Revokes the privilege to define and drop referential constraints. Although you
| can use a list of column names with the GRANT statement, you cannot use a
| list of column names with REVOKE; the privilege is revoked for all columns.

SELECT
Revokes the privilege to use the SELECT statement. A view is dropped when

# the SELECT privilege that was used to create it is revoked, unless the owner of

456 SQL Reference  



  REVOKE (Table or View Privileges)
 

# the view was directly granted the SELECT privilege from another source before
# the view was created.

UPDATE
Revokes the privilege to use the UPDATE statement. A list of column names
can be used only with GRANT, not with REVOKE.

ON or ON TABLE
Names one or more tables or views on which you are revoking the privileges.
The list can consist of table names, view names, or a combination of the two. A
table or view must not be identified more than once.

FROM
Refer to “REVOKE” on page 443 for a description of the FROM clause.

BY
If you omit BY, you must have granted each named privilege to each of the
named users. More precisely, each privilege must have been granted to each
user by a GRANT statement whose authorization ID is also the authorization ID
of your REVOKE statement. Each of these grants is then revoked. (No single
privilege need be granted on all tables and views.)

If BY is specified, each named grantor must satisfy the above requirement. In
that case, the authorization ID of the statement need not satisfy the
requirement unless it is one of the named grantors.

Refer to “REVOKE” on page 443 for a description of the BY clause.

|  Notes
| For a temporary table or a view of a temporary table, only ALL or ALL
| PRIVILEGES can be revoked. Specific table or view privileges cannot be revoked.

 Examples
Example 1: Revoke SELECT privileges on table DSN8510.EMP from user
PULASKI.

REVOKE SELECT ON TABLE DSN851,.EMP FROM PULASKI;

Example 2: Revoke update privileges on table DSN8510.EMP previously granted to
all local DB2 users. (Grants to specific users are not affected.)

REVOKE UPDATE ON TABLE DSN851,.EMP FROM PUBLIC;

Example 3: Revoke all privileges on table DSN8510.EMP from users KWAN and
THOMPSON.

REVOKE ALL ON TABLE DSN851,.EMP FROM KWAN,THOMPSON;

Example 4: Revoke the grant of SELECT and UPDATE privileges on the table
DSN8510.DEPT to every user in the network. Doing so does not affect users who
obtained these privileges from some other grant.

REVOKE SELECT, UPDATE ON TABLE DSN851,.DEPT

FROM PUBLIC AT ALL LOCATIONS;

  Chapter 6. Statements 457



 REVOKE (Use Privileges)  
 

REVOKE (Use Privileges)
This form of the REVOKE statement revokes authority to use particular buffer
pools, storage groups, or table spaces.

 Syntax

 

 ┌ ┐─,──────
��──REVOKE USE OF─ ──┬ ┬─BUFFERPOOL─ ───

�
┴─bpname─ ────────────────────────────── ──────────────────────────�

 ├ ┤─ALL BUFFERPOOLS──────────────────────────────────────
 │ │┌ ┐─,─────────────
 ├ ┤ ─STOGROUP─ ───

�
┴─stogroup-name─ ─────────────────────────

 │ │┌ ┐─,────────────────────────────────────
 └ ┘ ─TABLESPACE─ ───

�
┴── ──┬ ┬──────────────── table-space-name

└ ┘──database-name.

 ┌ ┐─,──────────────────────
�─ ─FROM─ ───

�
┴──┬ ┬─authorization-name─ ──┬ ┬──────────────────────────────── ─────────────────────────────��

 └ ┘─PUBLIC───────────── │ │┌ ┐─,──────────────────
 └ ┘ ─BY─ ──┬ ┬───

�
┴─authorization-name─

 └ ┘─ALL────────────────────

 Description
BUFFERPOOL bpname,...

Revokes the privilege to refer to any of the identified buffer pools in a CREATE
INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE
statement. See “Naming Conventions” on page 48 for more details about
bpname.

ALL BUFFERPOOLS
Revokes the privilege to refer to any buffer pool in a CREATE INDEX, CREATE
TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

STOGROUP stogroup-name,...
Revokes the privilege to refer to any of the identified storage groups in a
CREATE INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER
TABLESPACE statement.

TABLESPACE database-name.table-space-name,...
Revokes the privilege to refer to any of the specified table spaces in a
CREATE TABLE statement. The default database-name is DSNDB04.

FROM
Refer to “REVOKE” on page 443 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 443 for a description of the BY clause.

458 SQL Reference  



  REVOKE (Use Privileges)
 

 Notes
You can revoke privileges for only one type of object with each statement. Thus
you can revoke the use of several table spaces with one statement, but not the use
of a table space and a storage group.

For each object you name, you (or the indicated grantors) must have granted the
USE privilege on that object to all identified users (including PUBLIC, if specified).
The same object must not be identified more than once.

Revoking the privilege USE OF ALL BUFFERPOOLS does not cascade to all other
privileges that can be granted under that privilege. A user with the privilege USE
OF ALL BUFFERPOOLS WITH GRANT OPTION can make two types of grants:

� GRANT USE OF ALL BUFFERPOOLS TO userid. This privilege is revoked
when the original user's privilege is revoked.

� GRANT USE OF BUFFERPOOL BPn TO userid. This privilege is not revoked
when the original user's privilege is revoked.

 Examples
Example 1: Revoke authority to use buffer pool BP2 from user MARINO.

REVOKE USE OF BUFFERPOOL BP2

 FROM MARINO;

Example 2: Revoke a grant of the USE privilege on the table space DSN8S51D in
the database DSN8D51A. The grant is to PUBLIC, that is, to everyone at the local
DB2 subsystem. (Grants to specific users are not affected.)

REVOKE USE OF TABLESPACE DSN8D51A.DSN8S51D

 FROM PUBLIC;

  Chapter 6. Statements 459



 ROLLBACK  
 

 ROLLBACK
The ROLLBACK statement ends a unit of recovery and backs out the relational
database changes that were made by that unit of recovery. If relational databases
are the only recoverable resources used by the application process, ROLLBACK
also ends the unit of work.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. It cannot be used
in the IMS or CICS environment.

 Authorization
None required.

 Syntax

 

 ┌ ┐─WORK─
��─ ─ROLLBACK─ ──┴ ┴────── ──────────────────────────────────────────────────────────────────────────────��

 Description
The unit of recovery in which the ROLLBACK statement is executed is ended and a
new unit of recovery is effectively started. All changes made by ALTER,
COMMENT ON, CREATE, DELETE, DROP, EXPLAIN, GRANT, INSERT, LABEL

| ON, RENAME, REVOKE, and UPDATE statements executed during the unit of
recovery are backed out.

All locks implicitly acquired during the unit of recovery are released. See “LOCK
TABLE” on page 426 for an explanation of the duration of explicitly acquired locks.
All cursors are closed, all prepared statements are destroyed, and any cursors

| associated with the prepared statements are invalidated. All rows and all logical
| work files of every temporary table of the application process are deleted.

ROLLBACK has no effect on connections.

 Notes
When the ROLLBACK statement is used in a program executing as a stored
procedure, the rollback does not take place immediately. Instead, the caller
receives a negative SQLCODE for the statement, and the unit of work is placed in
a “must rollback” state.

The SQL ROLLBACK statement cannot be used in the IMS or CICS environment.
To do a rollback operation in these environments, SQL programs must use the call
prescribed by their transaction manager. The effect of these rollback operations on
DB2 data is the same as that of the SQL ROLLBACK statement.

A rollback operation in the CICS or IMS environment can behave differently than
the SQL ROLLBACK statement with regards to the closing of cursors that were

460 SQL Reference  



  ROLLBACK
 

declared using the WITH HOLD option. If an application requests a rollback
operation from CICS or IMS, but no work has been performed in DB2 since the last
commit point, the rollback request will not be broadcast to DB2. If the application
had opened cursors using the WITH HOLD option in a previous unit of work, the
cursors will not be closed, and any prepared statements associated with those
cursors will not be destroyed.

In all DB2 environments, the abend of a process is an implicit rollback operation.

 Example
Roll back all DB2 database changes made since the unit of recovery was started.

 ROLLBACK WORK;

  Chapter 6. Statements 461



 SELECT INTO  
 

 SELECT INTO
The SELECT INTO statement produces a result table containing at most one row,
and assigns the values in that row to host variables. If the table is empty, the
statement assigns +100 to SQLCODE, '02000' to SQLSTATE, and does not
assign values to the host variables. The tables or views identified in the statement
can exist at the current server or at any DB2 subsystem with which the current
server can establish a connection.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

# This statement cannot be included in a REXX application program.

 Authorization
The privileges held by the authorization ID of the owner of the plan or package
must include at least one of the following for every table and view identified in the
statement:

� The SELECT privilege on the table or view
� Ownership of the table or view
� DBADM authority for the database (tables only)

 � SYSADM authority
� SYSCTRL authority (catalog tables only)

 Syntax

 

 ┌ ┐─,─────────────
��─ ─select-clause─ ─INTO─ ───

�
┴─host-variable─ ─from-clause─ ──┬ ┬────────────── ──┬ ┬────────────── ─────────��

#  └ ┘─where-clause─ └ ┘#  ─WITH─ ──┬ ┬#  ─RR─
#  ├ ┤#  ─RS─

 ├ ┤─CS─
 └ ┘─UR─

 Description
The table is derived by evaluating the from-clause, where-clause, and
select-clause, in this order. The from-clause must not identify a view that includes a
group-by-clause or a having-clause. See “Chapter 5. Queries” on page 167 for a
description of these clauses.

INTO host-variable,...
Each host-variable must identify a structure or variable that is described in the
program in accordance with the rules for declaring host structures and
variables. In the operational form of the INTO clause, a reference to a structure
is replaced by a reference to each of its host variables.

The first value in the result row is assigned to the first variable in the list, the
second value to the second variable, and so on. If the number of host variables
is less than the number of column values, the value W is assigned to the

462 SQL Reference  



  SELECT INTO
 

SQLWARN3 field of the SQLCA. (See “SQL Communication Area (SQLCA)” on
page 513.)

The data type of a variable must be compatible with the value assigned to it. If
the value is numeric, the variable must have the capacity to represent the
integral part of the value. For a date or time value, the variable must be a
character string variable of a minimum length as defined in “Chapter 3.
Language Elements” on page 43. If the value is null, an indicator variable must
be specified.

Each assignment to a variable is made according to the rules described in
“Chapter 3. Language Elements” on page 43. Assignments are made in
sequence through the list.

If an error occurs as the result of an arithmetic expression in the SELECT list of
a SELECT INTO statement (division by zero or overflow) or a numeric
conversion error occurs, the result is the null value. As in any other case of a
null value, an indicator variable must be provided and the main variable is
unchanged. In this case, however, the indicator variable is set to -2.
Processing of the statement continues as if the error had not occurred.
(However, this error causes a positive SQLCODE.) If you do not provide an
indicator variable, a negative value is returned in the SQLCODE field of the
SQLCA. Processing of the statement terminates when the error is encountered.

If an error occurs, no value is assigned to the host variable or to later variables,
though any values that have already been assigned to variables remain
assigned.

If an error occurs because the result table has more than one row, values may
or may not be assigned to the host variables. If values are assigned to the host
variables, the row that is the source of the values is undefined and not
predictable.

WITH
Specifies the isolation level at which the statement is executed.

# RR Repeatable read
# RS Read stability
# CS Cursor stability
# UR Uncommitted read

WITH UR can be specified only if the result table is read-only.

The default isolation level of the statement depends on:

� The isolation of the package or plan that the statement is bound in
� Whether the result table is read-only

  Chapter 6. Statements 463



 SELECT INTO  
 

If package
isolation is:

And plan
isolation is:

And the result
table is:

Then the default
isolation is:

RR Any Any RR

RS Any Any RS

CS Any Any CS

UR Any Read-only UR

Not read-only CS

Not specified Not specified Any RR

RR Any RR

RS Any RS

CS Any CS

UR Read-only UR

Not read-only CS

 Notes
When you set a host variable with an expression, you must specify a table in the
FROM clause even though you may not be interested in the contents of the table.
Instead of creating your own dummy table to reference, you can use DB2 catalog
table SYSIBM.SYSDUMMY1. For an example, see “Example 3”.

 Examples
Example 1: Put the maximum salary in DSN8510.EMP into the host variable
MAXSALRY.

EXEC SQL SELECT MAX(SALARY)

 INTO :MAXSALRY

 FROM DSN851,.EMP;

Example 2: Put the row for employee 528671, from DSN8510.EMP, into the host
structure EMPREC.

EXEC SQL SELECT O INTO :EMPREC

 FROM DSN851,.EMP

WHERE EMPNO = '528671'

 END-EXEC.

| Example 3: Put a date that is twenty days from the current date into host variable
| DUEDATE. Use DB2 catalog table SYSIBM.SYSDUMMY1 as the table referenced.

| SELECT CURRENT DATE + 2, DAYS INTO :DUEDATE FROM SYSIBM.SYSDUMMY1

464 SQL Reference  



  SET CONNECTION
 

 SET CONNECTION
The SET CONNECTION statement establishes the application server of the
process by identifying one of its existing connections.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. SET CONNECTION
cannot be used if the program is executing as a stored procedure.

 Authorization
None required.

 Syntax

 

��─ ─SET CONNECTION─ ──┬ ┬─location-name─ ───────────────────────────────────────────────────────────────��
 └ ┘─host-variable─

 Description
location-name or host-variable

Identifies the SQL connection by the specified location name or the location
name contained in the host variable. If a host variable is specified:

� It must be a character string variable with a length attribute that is not
greater than 16. (A C NUL-terminated character string may be up to 17
bytes.)

� It must be preceded by a colon and must not be followed by an indicator
variable.

� The location name must be left-justified within the host variable and must
conform to the rules for forming an ordinary location identifier.

� If the length of the location name is less than the length of the host
variable, it must be padded on the right with blanks.

Let S denote the specified location name or the location name contained in the
host variable. S must identify an existing SQL connection of the application
process. If S identifies the current SQL connection, the state of S and all other
connections of the application process are unchanged. The following rules
apply when S identifies a dormant SQL connection.

  Chapter 6. Statements 465



 SET CONNECTION  
 

If the SET CONNECTION statement is successful:

� SQL connection S is placed in the current state.

� S is placed in the CURRENT SERVER special register.

� Information about application server S is placed in the SQLERRP field of the
SQLCA. If the application server is an IBM product, the information has the
form pppvvrrm, where:

 – ppp is:

ARI for SQL/DS
DSN for DB2
QSQ for OS/400

– vv is a two-digit version identifier such as '05'.

– rr is a two-digit release identifier such as '01'.

– m is a one-digit modification level such as '0'.

For example, if the server is Version 5 of DB2 for OS/390, the value of
SQLERRP is 'DSN05010'.

� Any previously current SQL connection is placed in the dormant state.

If the SET CONNECTION statement is unsuccessful, the connection state of the
application process and the states of its SQL connections are unchanged.

 Notes
The use of CONNECT (Type 1) statements does not prevent the use of SET
CONNECTION, but the statement either fails or does nothing because dormant
SQL connections do not exist. The SQLRULES(DB2) bind option does not prevent
the use of SET CONNECTION, but the statement is unnecessary because
CONNECT (Type 2) statements can be used instead. Use the SET CONNECTION
statement to conform to the SQL standard.

When an SQL connection is used, made dormant, and then restored to the current
state in the same unit of work, the status of locks, cursors, and prepared
statements for that SQL connection reflects its last use by the application process.

 Example
Execute SQL statements at TOROLAB1, execute SQL statements at TOROLAB2,
and then execute more SQL statements at TOROLAB1.

EXEC SQL CONNECT TO TOROLAB1;

(execute statements referencing objects at TOROLAB1)

EXEC SQL CONNECT TO TOROLAB2;

(execute statements referencing objects at TOROLAB2)

EXEC SQL SET CONNECTION TOROLAB1;

(execute statements referencing objects at TOROLAB1)

466 SQL Reference  



  SET CONNECTION
 

The first CONNECT statement creates the TOROLAB1 connection, the second
CONNECT statement places it in the dormant state, and the SET CONNECTION
statement returns it to the current state.

  Chapter 6. Statements 467



 SET CURRENT DEGREE  
 

SET CURRENT DEGREE
The SET CURRENT DEGREE statement assigns a value to the CURRENT
DEGREE special register.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

 Authorization
None required.

 Syntax

 

��─ ──SET CURRENT DEGREE═ ──┬ ┬─string-constant─ ────────────────────────────────────────────────────────��
 └ ┘─host-variable───

 Description
The value of CURRENT DEGREE is replaced by the value of the string constant or
host variable. The value must be a character string that is not longer than 3 bytes
and the value must be 'ANY', '1', or '1 '.

 Notes
If the value of CURRENT DEGREE is '1' when a query is dynamically prepared,
the execution of that query will not use parallel operations. If the value of
CURRENT DEGREE is 'ANY' when a query is dynamically prepared, the
execution of that query can involve parallel operations.

The initial value of CURRENT DEGREE is determined by the value of field
CURRENT DEGREE on installation panel DSNTIP4. The default for the initial value
is 1 unless your installation has changed it to be ANY by modifying the value in that
field.

For distributed applications, the default value at the server is used unless the
requesting application issues the SQL statement SET CURRENT DEGREE. For
requests using DRDA, the SET CURRENT DEGREE statement must be within the
scope of the CONNECT statement.

The value specified in the SET CURRENT DEGREE statement remains in effect
until it is changed by the execution of another SET CURRENT DEGREE statement
or until deallocation of the application process. For applications that connect to DB2
using the call attachment facility, the value of register CURRENT DEGREE can be
requested to remain in effect for a longer duration. For more information, see the
description of the call attachment facility CONNECT statement in Section 6 of
Application Programming and SQL Guide.

468 SQL Reference  



  SET CURRENT DEGREE
 

 Examples
Example 1: The following statement inhibits parallel operations:

SET CURRENT DEGREE = '1';

Example 2: The following statement allows parallel operations:

SET CURRENT DEGREE = 'ANY';

  Chapter 6. Statements 469



 SET CURRENT PACKAGESET  
 

SET CURRENT PACKAGESET
The SET CURRENT PACKAGESET statement assigns a value to the CURRENT
PACKAGESET special register.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

 Authorization
None required.

 Syntax

 

��─ ──SET CURRENT PACKAGESET= ──┬ ┬─USER──────────── ────────────────────────────────────────────────────��
 ├ ┤─string-constant─
 └ ┘─host-variable───

 Description
The value of CURRENT PACKAGESET is replaced by the value of the USER
special register, string-constant, or host-variable. The value specified by
string-constant or host-variable must be a character string no longer than 18 bytes.
If the length of the replacement is less than 18 bytes, it is padded on the right with
blanks so that its length is 18 bytes.

 Notes
Selection of plan elements: A plan element is a DBRM that has been bound into
the plan or a package that is implicitly or explicitly identified in the package list of
the plan. Plan elements contain the control structures used to execute certain SQL
statements.

Since a plan can have many elements, one of the first steps involved in the
execution of an SQL statement that requires a control structure is the selection of
the plan element that contains its control structure. The information used by DB2 to
select plan elements includes the value of CURRENT PACKAGESET.

SET CURRENT PACKAGESET is used to specify the collection ID of a package
that exists at the current server. SET CURRENT PACKAGESET is optional and
should not be used without an understanding of the following rules for selecting a
plan element.

470 SQL Reference  



  SET CURRENT PACKAGESET
 

If the CURRENT PACKAGESET special register is blank, DB2 searches for a
DBRM or a package in one of these sequences:

At the local location (if CURRENT SERVER is blank or explicitly names that
location), the order is:

1. All DBRMs bound directly to the plan

2. All packages that have already been allocated for the application process

3. All unallocated packages explicitly named in, and all collections completely
included in, the package list of the plan. The order of search is the order those
packages are named in the package list.

At a remote location, the order is:

1. All packages that have already been allocated for the application process at
that location

2. All unallocated packages explicitly named in, and all collections completely
included in, the package list of the plan, whose locations match the value of
CURRENT SERVER. The order of search is the order those packages are
named in the package list.

If the special register CURRENT PACKAGESET is set, DB2 skips the check for
programs that are part of the plan and uses the value of CURRENT PACKAGESET
as the collection. For example, if CURRENT PACKAGESET contains COL5, then
DB2 uses COL5.PROG1.timestamp for the search. For additional information, see
Section 4 of Application Programming and SQL Guide .

SET CURRENT PACKAGESET is executed by the application requester and is
therefore classified as a local SET statement in DRDA.

CURRENT PACKAGESET special register and stored procedures: When a
stored procedure receives control, the value of the special register CURRENT
PACKAGESET is set to the value of the COLLID column of the
SYSIBM.SYSPROCEDURES row that is associated with the stored procedure. The
stored procedure can use the command SET CURRENT PACKAGESET to change
the value of the special register CURRENT PACKAGESET. This allows the stored
procedure to select the version of the DB2 package used to process the SQL
statements in the stored procedure and in any external subroutines it calls.

When control returns from the stored procedure to the calling program, the special
register CURRENT PACKAGESET is restored to the value it was before the stored
procedure was called.

 Examples
Example 1: Limit the plan element selection to packages in the PERSONNEL
collection at the current server.

EXEC SQL SET CURRENT PACKAGESET = 'PERSONNEL';

Example 2: Eliminate collections as a factor in plan element selection.

EXEC SQL SET CURRENT PACKAGESET = ';

  Chapter 6. Statements 471



 SET CURRENT PRECISION  
 

# SET CURRENT PRECISION
# The SET CURRENT PRECISION statement assigns a value to the CURRENT
# PRECISION special register.

#  Invocation
# This statement can be embedded in an application program or issued interactively.
# It is an executable statement that can be dynamically prepared.

#  Authorization
# None required.

#  Syntax

#  

# ��─# ─SET CURRENT PRECISION =─ ──┬ ┬─string-constant─ ────────────────────────────────────────────────────��
#  └ ┘─host-variable───

#  Description
# This statement replaces the value of the CURRENT PRECISION special register
# with the value of the string constant or host variable. The value must be a character
# string 5 bytes in length, and the value must be 'DEC15' or 'DEC31'. An error
# occurs if any other values are specified.

#  Example
# Set the CURRENT PRECISION special register so that subsequent statements that
# are prepared use DEC15 rules for decimal arithmetic.

# EXEC SQL SET CURRENT PRECISION = 'DEC15';

472 SQL Reference  



  SET CURRENT RULES
 

SET CURRENT RULES
The SET CURRENT RULES statement assigns a value to the CURRENT RULES
special register.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

 Authorization
None required.

 Syntax

 

��──SET CURRENT RULES =─ ──┬ ┬─string-constant─ ────────────────────────────────────────────────────────��
 └ ┘─host-variable───

 Description
This statement replaces the value of the CURRENT RULES special register with
the value of the string constant or host variable. The value must be a character
string 3 bytes in length, and the value must be 'DB2' or 'STD'. An error occurs if
any other values are specified.

 Notes
For the effect of the values 'DB2' and 'STD' on the execution of certain SQL
statements, see “CURRENT RULES” on page 81.

 Example
Set the SQL rules to be followed to DB2.

EXEC SQL SET CURRENT RULES = 'DB2';

  Chapter 6. Statements 473



 SET CURRENT SQLID  
 

SET CURRENT SQLID
The SET CURRENT SQLID statement assigns a value to the CURRENT SQLID
special register.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. SET CURRENT
SQLID cannot be used if the program is executing as a stored procedure or the
bind option DYNAMICRULES(BIND) applies.

 Authorization
If any of the authorization IDs of the process has SYSADM authority, CURRENT
SQLID can be set to any value. Otherwise, the specified value must be equal to
one of the authorization IDs of the application process. This rule always applies,
even when SET CURRENT SQLID is a static statement.

 Syntax

 

��─ ──SET CURRENT SQLID= ──┬ ┬─USER──────────── ─────────────────────────────────────────────────────────��
 ├ ┤─string-constant─
 └ ┘─host-variable───

 Description
The value of CURRENT SQLID is replaced by the value of USER, string-constant,
or host-variable. The value specified by a string-constant or host-variable must be a
character string that is not longer than 8 bytes. If the length of the value is less
than 8, it is padded on the right with blanks so that it is a string of 8 bytes. Unless
some authorization ID of the process has SYSADM authority, the value must be
equal to one of the authorization IDs of the process.

 Notes
The value of CURRENT SQLID is called the SQL authorization ID. The SQL
authorization ID is:

� The authorization ID used for authorization checking on dynamically prepared
CREATE, GRANT, and REVOKE SQL statements

� The owner of a table space, database, storage group, or synonym created by a
dynamically issued CREATE statement

� The implicit qualifier of all table, view, alias, and index names specified in
dynamic SQL statements

SET CURRENT SQLID does not change the primary authorization ID of the
process.

474 SQL Reference  



  SET CURRENT SQLID
 

The initial value of the SQL authorization ID is established during connection or
signon processing. The value specified in the SET CURRENT SQLID is the SQL
authorization ID until one of the following events occurs:

� The SQL authorization ID is changed by the execution of a new SET
CURRENT SQLID statement.

� A SIGNON or re-SIGNON request is received from a CICS transaction subtask
or an IMS independent region.

� The DB2 connection is ended.

SET CURRENT SQLID is executed by the application server and is therefore
classified as a non-local SET statement in DRDA.

 Example
Set the CURRENT SQLID to the primary authorization ID.

SET CURRENT SQLID=USER;

  Chapter 6. Statements 475



 SET host-variable  
 

 SET host-variable
The SET host-variable statement assigns the value of a special register to a host
variable.

 Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

 Authorization
None required.

 Syntax

 

��──SET─ ──host-variable=special-register ─────────────────────────────────────────────────────────────��

 Description
host-variable

Identifies the host variable to which the value of the special register is
assigned. The reference must not include an indicator variable.

special-register
Identifies the special register whose value is placed in the host variable.

 Notes
The assignment rules are essentially the same as the assignment rules for FETCH
and SELECT INTO:

� If CURRENT TIMEZONE is specified, the host variable must be a numeric
variable with the capacity to hold the value.

� If CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP is specified,
the host variable must be a character string variable of a minimum length as
defined in “Datetime Assignments” on page 71.

� If USER, CURRENT SQLID, CURRENT SERVER, CURRENT DEGREE, or
CURRENT PACKAGESET is specified, the host variable must be a character
string variable with a length attribute that is not less than the register length.

For a description of each special register, see “Special Registers” on page 78,
beginning on page 78.

 Examples
Example 1: Set the host variable SERVER to the name of the current server.

EXEC SQL SET :SERVER = CURRENT SERVER;

Example 2: Set the host variable XTIME to the local time at the current server.

EXEC SQL SET :XTIME = CURRENT TIME;

476 SQL Reference  



  UPDATE
 

 UPDATE
The UPDATE statement updates the values of specified columns in rows of a table
or view. Updating a row of a view updates a row of the table on which the view is
based. The table or view can exist at the current server or at any DB2 subsystem
with which the current server can establish a connection.

There are two forms of this statement:

� The searched UPDATE form is used to update one or more rows optionally
determined by a search condition.

� The positioned UPDATE form is used to update exactly one row, as determined
by the current position of a cursor.

 Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

 Authorization
Authority requirements depend on whether the object identified in the statement is a

| user-defined table, a catalog table for which updates are allowed, or a view, and
| whether the statement is a searched UPDATE and SQL standard rules are in
| effect:

When a user-defined table is identified: The privilege set must include at least
one of the following:

� The UPDATE privilege on the table
� The UPDATE privilege on each column to be updated
� Ownership of the table
� DBADM authority on the database containing the table

 � SYSADM authority

When a catalog table is identified: The privilege set must include at least one of
the following:

� The UPDATE privilege on each column to be updated
� DBADM authority on the catalog database

 � SYSCTRL authority
 � SYSADM authority

When a view is identified: The privilege set must include at least one of the
following:

� The UPDATE privilege on the view
� The UPDATE privilege on each column to be updated

 � SYSADM authority

| Searched UPDATE and SQL standard rules: In a searched UPDATE, the
| SELECT privilege is required in addition to the UPDATE privilege when the option
| for the SQL standard is set as follows:

| � For static SQL statements, if the SQLRULES(STD) bind option was specified.

| � For dynamic SQL statements, if the CURRENT RULES special register is set to
| 'STD'.

  Chapter 6. Statements 477



 UPDATE  
 

The owner of a view, unlike the owner of a table, might not have UPDATE authority
on the view (or might have UPDATE authority without being able to grant it to
others). The nature of the view itself can preclude its use for UPDATE. For more
information, see the discussion of authority in “CREATE VIEW” on page 341.

If a subselect is specified, the privilege set must include authority to execute the
subselect. For more information about the subselect authorization rules, see
“Authorization” on page 169.

If the statement is embedded in an application program, the privilege set is the
privileges held by the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared and the bind option DYNAMICRULES(RUN)
applies, the privilege set is the union of the privilege sets held by each
authorization ID of the process. If the statement is dynamically prepared and the
bind option DYNAMICRULES(BIND) applies, the privilege set is the privileges held
by the authorization ID of the owner of the plan or package.

 Syntax

searched update: 

 ┌ ┐─,────────────────────────────
��─ ─UPDATE─ ──┬ ┬─table-name─ ──┬ ┬────────────────── ─SET─ ───

�
┴──column-name= ──┬ ┬─expression─ ──────────────�

 └ ┘─view-name── └ ┘─correlation-name─ └ ┘─NULL───────

�─ ──┬ ┬───────────────────────── ──┬ ┬────────────── ────────────────────────────────────────────────────��
 └ ┘ ─WHERE──search-condition─ └ ┘ ─WITH─ ──┬ ┬─RR─
 ├ ┤─RS─
 └ ┘─CS─

positioned update: 

 ┌ ┐─,────────────────────────────
��─ ─UPDATE─ ──┬ ┬─table-name─ ─SET─ ───

�
┴──column-name= ──┬ ┬─expression─ ─WHERE CURRENT OF──cursor-name─────��

 └ ┘─view-name── └ ┘─NULL───────

 Description
table-name or view-name

Identifies the object of the UPDATE statement. The name must identify a table
or view that exists at the DB2 subsystem identified by the implicitly or explicitly
specified location name. The name must not identify:

| � A temporary table

� A view of a temporary table

� A catalog table with no updateable columns

� A view of a catalog table with no updateable columns

� A read-only view. (For a description of a read-only view, see “CREATE
VIEW” on page 341.)

In the IMS or CICS environments, the DB2 subsystem containing the identified
table or view must not be a remote Version 2 Release 3 subsystem.

478 SQL Reference  



  UPDATE
 

A catalog table or a view of a catalog table can be identified if every column
identified in the SET clause is an updateable column. If a column of a catalog
table is updateable, then its description in Appendix D, “DB2 Catalog Tables”
on page 529 indicates that the column can be updated. If the object table is
SYSIBM.SYSSTRINGS, any column other than IBMREQD can be updated, but
the rows selected for update must be rows provided by the user (the value of
the IBMREQD column is N) and only certain values can be specified as
explained in Appendix B (Volume 2) of Administration Guide .

correlation-name
Can be used within search-condition to designate the table or view. (For an
explanation of correlation-name, see “Correlation Names” on page 84.)

SET
Introduces a list of column names and values. The column names must not be
qualified, and a column must not be specified more than once.

column-name
# Identifies a column to be updated. column-name must identify a column of
# the specified table or view, but must not identify a view column derived
# from a scalar function, constant, or expression.

For a positioned update, allowable column names can be further restricted
to those in a certain list. This list appears in the FOR UPDATE OF clause
of the SELECT statement for the associated cursor. If the select statement
is dynamically prepared, the FOR UPDATE OF clause must always be
present. Otherwise, the clause can be omitted using the conditions
described in “Positioned Updates of Columns” on page 126.

A view column derived from the same column as another column of the
view can be updated, but both columns cannot be updated in the same
UPDATE statement.

expression or NULL
Indicates the new value of the column. The expression is any expression of
the type described in “Expressions” on page 92. It must not include a
column function. NULL specifies the null value.

A column-name in an expression must identify a column of the table or
view. For each row that is updated, the value of the column in the
expression is the value of the column in the row before the row is updated.

WHERE
Specifies the rows to be updated. You can omit the clause, give a search
condition, or name a cursor. If you omit the clause, all rows of the table or view
are updated.

search-condition
Is any search condition described in “Chapter 3. Language Elements” on
page 43. Each column-name in the search condition, other than in a
subquery, must identify a column of the table or view. The search condition
must not include a subquery where the base object of both the UPDATE
and the subquery is the same table.

The search condition is applied to each row of the table or view and the
updated rows are those for which the result of the search-condition is true.

| If the unique key or primary key is a parent key, the constraints are
effectively checked at the end of the operation.

  Chapter 6. Statements 479



 UPDATE  
 

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, a subquery
with no correlated references is executed just once, whereas it is possible
that a subquery with a correlated reference must be executed once for
each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor name
must identify a declared cursor as explained in “DECLARE CURSOR” on
page 347.

If the UPDATE statement is embedded in a program, the DECLARE
CURSOR statement must include a select-statement rather than a
statement-name.

The object of the UPDATE statement must also be identified in the FROM
clause of the SELECT statement of the cursor, and the columns to be
updated must be identified in the FOR UPDATE OF clause of that SELECT
statement. The result table of the cursor must not be read-only. (For an
explanation of read-only result tables, see “DECLARE CURSOR” on
page 347.)

When the UPDATE statement is executed, the cursor must be positioned
on the row to be updated.

If the application process has another cursor positioned on the updated
row, the position of that cursor is changed to be before the next row.

The successful or unsuccessful execution of a positioned update operation
does not change the position of the cursor. However, it is possible for an
error to make the position of the cursor invalid, in which case the cursor is
closed. It is also possible for an update operation to cause a rollback, in
which case the cursor is closed.

WITH
Specifies the isolation level used when locating the rows to be updated by the
statement.

RR Repeatable read
RS Read stability
CS Cursor stability

The default isolation level of the statement is the isolation level of the package
or plan in which the statement is bound, with the package isolation taking
precedence over the plan isolation. When a package isolation is not specified,
the plan isolation is the default.

 Notes
Update rules: Update values must satisfy the following rules. If they do not, or if
other errors occur during the execution of the UPDATE statement, no rows are
updated and the position of the cursors are not changed.

� Assignment. Update values are assigned to columns using the assignment
rules described in “Chapter 3. Language Elements” on page 43.

If the update value is... Then the column must...

the null value allow null values.

480 SQL Reference  



  UPDATE
 

a number be a numeric column with the capacity to
represent the integral part of the number.

a character string be a character string column with a length attribute
that is not less than the length of the string. The
column can also be a DATE, TIME, or
TIMESTAMP column, in which case the update
value must be a valid character string
representation of a date, time, or timestamp,
respectively.

a graphic string be a graphic string column with a length attribute
that is not less than the length of the string.

a datetime value be a DATE, TIME, or TIMESTAMP column with
the same data type or a character string column of
an appropriate length as specified in “Chapter 3.
Language Elements” on page 43. For more details
on datetime special registers, see “Datetime
special registers” on page 78.

� Uniqueness constraints. The updated row must conform to any constraints
imposed on the table (or on the base table of the view) by any unique index on
an updated column. For a multiple-row update of a unique key, the uniqueness
constraint is effectively checked at the end of the operation.

� Referential constraints. A nonnull update value of a foreign key must be equal
| to some value of the parent key of the parent table of the relationship.

� Check constraints. The table (or base table of the view) might have one or
more check constraints. Each row updated must conform to the conditions
imposed by those check constraints. Thus, each check condition must be true
or unknown.

� Field and validation procedures. The updated row must conform to any
constraints imposed by any field or validation procedures on the table (or on
the base table of the view).

� Views and the WITH CHECK OPTION. For views defined with WITH CHECK
OPTION, an updated row must conform to the definition of the view. If the view
you name is dependent on other views whose definitions include WITH CHECK
OPTION, the updated rows must also conform to the definitions of those views.
For an explanation of the rules governing this situation, see “CREATE VIEW”
on page 341.

For views that are not defined with WITH CHECK OPTION, you can change
the rows so that they no longer conform to the definition of the view. Such rows
are updated in the base table of the view and no longer appear in the view.

Number of rows updated: After an UPDATE statement completes execution, the
value of SQLERRD(3) in the SQLCA is the number of rows updated. (For a
description of the SQLCA, see “SQL Communication Area (SQLCA)” on page 513.)

Locking: Unless appropriate locks already exist, one or more exclusive locks are
acquired by the execution of a successful UPDATE statement. Until the locks are
released by a commit or rollback operation, the updated row can only be accessed
by the application process that performed the update and the locks can prevent
other application processes from performing operations on the table.

  Chapter 6. Statements 481



 UPDATE  
 

# Updating keys of partitioning indexes: If an updated column is a partitioning key
# or part of a partitioning key and the update causes a row to move to a different
# partition, DB2 tries to take exclusive control of the following objects to perform the
# update:

# � The partition of the table space in which the row resides, the partition to which
# the row is moving, and all the partitions in between the two partitions

# � The partition of the partitioning index in which the key resides, the partition to
# which the key is moving, and all the partitions in between the two partitions

# � The nonpartitioning indexes defined on the table space

# If DB2 cannot take control of these objects, the update fails.

| Datetime representation when using datetime registers: As explained under
“Datetime special registers” on page 78, when two or more datetime registers are
implicitly or explicitly specified in a single SQL statement, they represent the same
point in time. This is also true when multiple rows are updated.

 Examples
The following examples refer to the sample table DSN8510.EMP.

Example 1: Change employee 000190's telephone number to 3565 in
DSN8510.EMP.

 UPDATE DSN851,.EMP

 SET PHONENO='3565'

 WHERE EMPNO=',,,19,';

Example 2: Give each member of department D11 a 100-dollar raise.

 UPDATE DSN851,.EMP

SET SALARY = SALARY + 1,,

WHERE WORKDEPT = 'D11';

Example 3: Employee 000250 is going on a leave of absence. Set the salary to
null.

 UPDATE DSN851,.EMP

SET SALARY = NULL

 WHERE EMPNO=',,,25,';

Example 4: Double the salary of the employee represented by the row on which the
cursor C1 is positioned.

EXEC SQL UPDATE DSN851,.EMP

SET SALARY = 2 O SALARY

WHERE CURRENT OF C1;

482 SQL Reference  



  WHENEVER
 

 WHENEVER
The WHENEVER statement specifies the host language statement to be executed
when a specified exception condition occurs.

 Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

# This statement cannot be included in a REXX application program.

 Authorization
None required.

 Syntax

 

��─ ─WHENEVER─ ──┬ ┬─NOT FOUND── ──┬ ┬─CONTINUE────────────── ─────────────────────────────────────────────��
 ├ ┤─SQLERROR─── └ ┘ ──┬ ┬─GOTO── ─host-label─
 └ ┘─SQLWARNING─ └ ┘─GO TO─

 Description
The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the
type of exception condition.

NOT FOUND
Identifies any condition that results in an SQLCODE of +100 (equivalently, an
SQLSTATE code of '02000').

SQLERROR
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARN0 is W),
or that results in a positive SQLCODE other than +100.

The CONTINUE or GO TO clause specifies the next statement to be executed
when the identified type of exception condition exists.

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a
single token, optionally preceded by a colon. The form of the token depends on
the host language. In COBOL, for example, it can be section-name or an
unqualified paragraph-name.

  Chapter 6. Statements 483



 WHENEVER  
 

 Notes
There are three types of WHENEVER statements:

� WHENEVER NOT FOUND
 � WHENEVER SQLERROR
 � WHENEVER SQLWARNING

Every executable SQL statement in an application program is within the scope of
one implicit or explicit WHENEVER statement of each type. The scope of a
WHENEVER statement is related to the listing sequence of the statements in the
application program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each
type that is specified before that SQL statement in the source program. If a
WHENEVER statement of some type is not specified before an SQL statement, that
SQL statement is within the scope of an implicit WHENEVER statement of that type
in which CONTINUE is specified. If a WHENEVER statement is specified in a
FORTRAN subprogram, its scope is that subprogram, not the source program.

 Examples
The following statements can be embedded in a COBOL program.

Example 1: Go to the label HANDLER for any statement that produces an error.

EXEC SQL WHENEVER SQLERROR GOTO HANDLER END-EXEC.

Example 2: Continue processing for any statement that produces a warning.

EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.

Example 3: Go to the label ENDDATA for any statement that does not return.

EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA END-EXEC.

484 SQL Reference  



  SQL Procedure Statements
 

# Chapter 7. SQL procedure statements

# An SQL procedure consists of a CREATE PROCEDURE statement with a
# procedure body. The procedure body contains the source statements for the stored
# procedure, which are called SQL procedure statements.

# This chapter contains syntax diagrams, semantic descriptions, rules, and examples
# of the use of the statements that constitute the procedure body.

 Copyright IBM Corp. 1982, 1997  485



 SQL Procedure Body  
 

#  Procedure body
# The procedure body contains the source code for an SQL stored procedure.

#  Syntax

#  

# ��─ ──┬ ┬─SQL-statement──────── ────────────────────────────────────────────────────────────────────────��
#  ├ ┤─assignment-statement─
#  ├ ┤─case-statement───────
#  ├ ┤─compound-statement───
#  ├ ┤─if-statement─────────
#  ├ ┤─loop-statement───────
#  ├ ┤─repeat-statement─────
#  └ ┘─while-statement──────

#  Notes
# See Table 32 on page 511 for a list of valid values for SQL-statement.

486 SQL Reference  



  Assignment Statement (SQL procedure)
 

#  Assignment statement
# The assignment statement assigns a value to an output parameter or to an SQL
# variable.

#  Syntax

#  

# ��─ ──┬ ┬────────#  ─SET─ ──┬ ┬─SQL-parameter-name─ ─=─ ──┬ ┬─expression─ ──────────────────────────────────────��
#  └ ┘#  ─label:─ ├ ┤─SQL-variable-name── └ ┘─NULL───────
#  └ ┘─special-register───

#  Description
# label
# Defines the label for the assignment statement. The label must be unique
# within the SQL procedure.

# SQL-parameter-name
# Identifies the parameter that is the assignment target. The parameter must be
# specified in parameter-declaration in the CREATE PROCEDURE statement and
# must be defined as OUT or INOUT.

# SQL-variable-name
# Identifies the SQL variable that is the assignment target. An SQL variable must
# be declared before it is used. For information on declaring SQL variables, see
# “Compound statement” on page 491.

# special-register
# Identifies the special register that is the assignment target. If the special
# register accepts a schema name, DB2 determines whether the value on the
# right side of the SET statement is an SQL variable. If the value is an SQL
# variable, DB2 assigns the value in the SQL variable to the special register. If
# the value is not an SQL variable, DB2 determines that the value is a schema
# name and assigns that name to the special register.

# expression or NULL
# Specifies the expression or value that is the assignment source. See
# “Expressions” on page 92 for information on expressions.

#  Notes
# Assignments statements in SQL procedures must conform to the SQL assignment
# rules. See “Assignment and Comparison” on page 65 for assignment rules.

# The data type of the target and source must be compatible.

# When a string is assigned to a fixed-length variable and the length of the string is
# less than the length attribute of the target, the string is padded on the right with the
# necessary number of single-byte or double-byte blanks.

# When a string is assigned to a variable and the string is longer than the length
# attribute of the variable, a negative SQLCODE is set.

  Chapter 7. SQL procedure statements 487



 Assignment Statement (SQL procedure)  
 

# If truncation of the whole part of the number occurs on assignment to a numeric
# variable, a negative SQLCODE is set.

# If an assignment statement is the only statement in the procedure body, the
# statement cannot end with a semicolon. Otherwise, the statement must end with a
# semicolon.

#  Examples
# Increase the SQL variable p_salary by 10 percent.

# SET p_salary = p_salary + (p_salary O .1,)

# Set SQL variable p_salary to the null value.

# SET p_salary = NULL

# Set SQL variable midinit to the first character of SQL variable midname.

# SET midinit = SUBSTR(midname,1,1)

488 SQL Reference  



  CASE (SQL procedure)
 

#  CASE statement
# The CASE statement selects an execution path based on the evaluation of one or
# more conditions. A CASE statement operates in the same way as a CASE
# expression, which is discussed in “CASE Expressions” on page 103

#  Syntax

#  

# �─#  ─CASE─ ──┬ ┬─searched-case-statement-when-clause─ ──┬ ┬────────────────────────────────────── ───────────�
#  └ ┘─simple-case-statement-when-clause─── │ │┌ ┐──────────────────────────────
#  └ ┘#  ─ELSE─ ───

�
┴─SQL-procedure-statement──;─

# �─# ─END CASE───────────────────────────────────────────────────────────────────────────────────────────�

# searched-case-statement-when-clause:#  

#  ┌ ┐────────────────────────────────────────────────────────────────
#  │ │┌ ┐──────────────────────────────
# �─ ───

�
┴─WHEN──search-condition──THEN─ ───

�
┴─SQL-procedure-statement──;─ ──────────────────────────────────�

# simple-case-statement-when-clause:#  

#  ┌ ┐──────────────────────────────────────────────────────────
#  │ │┌ ┐──────────────────────────────
# �─# ─expression─ ───

�
┴─WHEN──expression──THEN─ ───

�
┴─SQL-procedure-statement──;─ ────────────────────────────�

#  Description
# CASE
# Begins a case-expression.

# searched-case-statement-when-clause
# Specifies a search-condition that is applied to each row or group of table data
# presented for evaluation, and the result when that condition is true.

# simple-case-statement-when-clause
# Specifies that the value of the expression prior to the first WHEN keyword is
# tested for equality with the value of each expression that follows the WHEN
# keyword. Specifies the result for each WHEN keyword when the expressions
# are equal.

# The expression prior to the first WHEN keyword is tested for equality with the
# value of the expression that follows the WHEN keyword. The data type of the
# expression prior to the first WHEN keyword must be comparable to the data
# types of each expression that follows the WHEN keywords.

# SQL-procedure-statement
# Specifies a statement that follows the THEN and ELSE keyword. The statement
# must be one of the statements listed under “SQL procedure statement” on
# page 504. It specifies the result of a searched-case-statement-when-clause or
# a simple-case-statement-when-clause that is true, or the result if no case is
# true.

# search-condition
# Specifies a condition that is true, false, or unknown about a row or group of
# table data. The search condition cannot contain a subselect.

  Chapter 7. SQL procedure statements 489



 CASE (SQL procedure)  
 

# END CASE
# Ends a case-statement.

#  Notes
# If none of the conditions specified in the WHEN are true, and an ELSE is not
# specified, an error is issued when the statement executes and the execution of the
# CASE statement is terminated.

# CASE statements that use a simple case statement when clause can be nested up
# to three levels. CASE statements that use a searched statement when clause have
# no limit to the number of nesting levels.

# If a CASE statement is the only statement in the procedure body, the statement
# cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

#  Examples
# Use a simple case statement when clause to update column DEPTNAME in table
# DEPT, depending on the value of SQL variable v_workdept.

# CASE v_workdept

#  WHEN 'A,,'

# THEN UPDATE DEPT SET

# DEPTNAME = 'DATA ACCESS 1';

#  WHEN 'B,1'

# THEN UPDATE DEPT SET

# DEPTNAME = 'DATA ACCESS 2';

#  ELSE UPDATE DEPT SET

# DEPTNAME = 'DATA ACCESS 3';

# END CASE

# Use a searched case statement when clause to update column DEPTNAME in
# table DEPT, depending on the value of SQL variable v_workdept.

# CASE

# WHEN v_workdept = 'A,,'

# THEN UPDATE department SET

# deptname = 'DATA ACCESS 1';

# WHEN v_workdept = 'B,1'

# THEN UPDATE department SET

# deptname = 'DATA ACCESS 2';

# ELSE UPDATE department SET

# deptname = 'DATA ACCESS 3';

# END CASE

490 SQL Reference  



  Compound Statement (SQL procedure)
 

#  Compound statement
# A compound statement contains a group of statements and declarations for SQL
# variables, cursors, and condition handlers.

#  Syntax

#  

#  ┌ ┐─NOT ATOMIC─
# ��─ ──┬ ┬────────#  ─BEGIN─#  ──┴ ┴──────────── ──┬ ┬───────────────────────────────────── ───────────────────────�
#  └ ┘#  ─label:─ │ │┌ ┐───────────────────────────────────
#  └ ┘#  ───

�
┴──┬ ┬─SQL-variable-declaration─ ─;─

#  └ ┘─condition-declaration────

# �─ ──┬ ┬───────────────────────────────── ──┬ ┬──────────────────────────── ───────────────────────────────�
#  │ │┌ ┐─────────────────────────────── │ │┌ ┐──────────────────────────
#  └ ┘#  ───

�
┴─DECLARE-CURSOR-statement──;─ └ ┘#  ───

�
┴─handler-declaration──;─

#  ┌ ┐──────────────────────────────
# �─ ───

�
┴─SQL-procedure-statement──;─#  ─END─ ──┬ ┬─────── ───────────────────────────────────────────────────��

#  └ ┘#  ─label─

# SQL-variable-declaration:#  

#  ┌ ┐─,───────────────── ┌ ┐─DEFAULT NULL──────────
# ��─#  ─DECLARE─ ──┬ ┬#  ───

�
┴─SQL-variable-name─#  ─data-type─ ──┴ ┴──┬ ┬─────────────────── ────────────────────────��

#  │ │└ ┘#  ─DEFAULT──constant─
#  │ │┌ ┐#  ─DEFAULT ',,,,,'───
#  ├ ┤#  ─SQLSTATE──CHAR(5)─ ──┴ ┴#  ─DEFAULT──constant─ ───────────────────
#  │ │┌ ┐#  ─DEFAULT ,─────────
#  └ ┘#  ─SQLCODE──INTEGER─ ──┴ ┴#  ─DEFAULT──constant─ ────────────────────

# condition-declaration:#  

# ��─# ─DECLARE──condition-name──CONDITION──FOR─ ──┬ ┬───────────────────── ─string-constant────────────────��
#  └ ┘#  ─SQLSTATE─ ──┬ ┬───────
#  └ ┘#  ─VALUE─

# handler-declaration:#  

# ��─#  ─DECLARE─ ──┬ ┬─CONTINUE─#  ─HANDLER──FOR─ ──┬ ┬─repeatable-handler-condition──── ─────────────────────────�
#  └ ┘─EXIT───── └ ┘─nonrepeatable-handler-condition─

# �─# ─SQL-procedure-statement───────────────────────────────────────────────────────────────────────────��

  Chapter 7. SQL procedure statements 491



 Compound Statement (SQL procedure)  
 

# repeatable-handler-condition:#  

#  ┌ ┐─,─────────────────────────────
#  │ │┌ ┐─VALUE─
# ��─ ───

�
┴┬ ┬#  ─SQLSTATE─ ──┴ ┴─────── ─string─ ───────────────────────────────────────────────────────────────��

#  └ ┘─condition-name──────────────

# nonrepeatable-handler-condition:#  

# ��─ ──┬ ┬─SQLEXCEPTION─ ────────────────────────────────────────────────────────────────────────────────��
#  ├ ┤─SQLWARNING───
#  └ ┘─NOT FOUND────

#  Description
# label
# Defines the label for the code block. If the beginning label is specified, it can be
# used to qualify SQL variables declared in the compound statement and can
# also be specified on a LEAVE statement. If the ending label is specified, it must
# be the same as the beginning label.

# A label name cannot be the same as the name of the SQL procedure in which
# the label is used.

# NOT ATOMIC
# NOT ATOMIC indicates that an error within the compound statement does not
# cause the compound statement to be rolled back.

# SQL-variable-declaration
# Declares a variable that is local to the compound statement.

# SQL-variable-name
# A qualified or unqualified name that designates a variable in an SQL procedure
# body. The unqualified form of an SQL variable name is an SQL identifier of 1 to
# 18 bytes. If the SQL variable is a delimited identifier, the contents of the
# delimited identifier must conform to the rules for ordinary identifiers. The
# qualified form is an SQL procedure statement label followed by a period (.) and
# an SQL identifier.

# DB2 folds all SQL variable names to uppercase. If an SQL reserved word is
# used as an SQL variable, the SQL variable must be delimited. SQL variable
# names should not be the same as column names. If an SQL statement
# contains an SQL variable or parameter and a column reference with the same
# name, DB2 interprets the name as an SQL variable or parameter name. To
# refer to the column, qualify the column name with the table name.

# SQLSTATE
# A special variable named SQLSTATE that DB2 sets to the SQLSTATE value
# that it returns after it executes an SQL statement. You can assign a value to
# this variable. However, exception handlers ignore the value that you set, and
# the next SQL statement replaces the value that you set.

492 SQL Reference  



  Compound Statement (SQL procedure)
 

# SQLCODE
# A special variable named SQLCODE that DB2 sets to the SQLCODE value that
# it returns after it executes an SQL statement. You can assign a value to this
# variable. However, exception handlers ignore the value that you set, and the
# next SQL statement replaces the value that you set.

# data-type
# Specifies the data type and length of the variable. SQL variables follow the
# same rules for default lengths and maximum lengths as SQL procedure
# parameters. See “CREATE PROCEDURE (SQL procedure)” on page 295 for a
# description of SQL data types and lengths.

# DEFAULT constant or NULL
# Defines the default for the SQL variable. The variable is initialized when the
# SQL procedure is called. If a default value is not specified, the variable is
# initialized to NULL.

# If the SQL variable name is SQLCODE and the data type is INT, the variable is
# used as a stand-alone SQLCODE in the procedure and can be checked to
# determine whether SQL statements are successful. Similarly, if the SQL
# variable name is SQLSTATE and the data type is CHAR(5), the variable is
# used as a stand-alone SQLSTATE in the procedure. After the SQLCODE and
# SQLSTATE variables are declared, they can be referenced anywhere in the
# procedure. The SQLCODE and SQLSTATE variables cannot be set to NULL.
# An SQLCODE or SQLSTATE variable should not be used on the left side of an
# assignment statement.

# condition-declaration
# Declares a condition name and corresponding SQLSTATE value.

# condition-name
# Specifies the name of the condition. The condition name is a long SQL
# identifier that must be unique within the procedure body and can be referenced
# only within the compound statement in which it is declared.

# string-constant
# Specifies the SQLSTATE that is associated with the condition. The string must
# be specified as five characters enclosed in single quotes, and cannot be
# '00000'.

# declare-cursor-statement
# Declares a cursor. Each cursor in the procedure body must have a unique
# name. The cursor can be referenced only from within the compound statement.

# handler-declaration
#  Specifies a set of statements to execute when an exception or completion
# condition occurs in the compound statement. SQL-procedure-statement is the
# set of statements that execute when the handler receives control. See “SQL
# procedure statement” on page 504 for information on
# SQL-procedure-statement.

# A handler is active only within the compound statement in which it is declared.

# The actions that a handler can perform are:

# CONTINUE
# After the handler is invoked successfully, control is returned to the SQL
# statement that follows the statement that raised the exception. If the error

  Chapter 7. SQL procedure statements 493



 Compound Statement (SQL procedure)  
 

# that raised the exception is an IF, CASE, or WHILE statement, control
# returns to the statement that follows END IF, END CASE, END WHILE, or
# END REPEAT.

# EXIT
# After the handler is invoked successfully, control is returned to the end of
# the compound statement.

# The conditions that can cause the handler to gain control are:

# SQLSTATE string
# Specifies an SQLSTATE for which the handler is invoked. The SQLSTATE
# cannot be '00000'.

# condition-name
# Specifies a condition name for which the handler is invoked. The condition
# name must be previously defined in a condition declaration.

# The conditions under which the handler is invoked are:

# SQLEXCEPTION
# Specifies that the handler is invoked when an SQLEXCEPTION occurs. An
# SQLEXCEPTION is an SQLSTATE in which the class code is a value other
# than "00", "01", or "02". For more information on SQLSTATE values, see
# Appendix C of Messages and Codes.

# SQLWARNING
# Specifies that the handler is invoked when an SQLWARNING occurs. An
# SQLWARNING is an SQLSTATE value with a class code of "01".

# NOT FOUND
# Specifies that the handler is invoked when a NOT FOUND condition
# occurs. NOT FOUND corresponds to an SQLSTATE value with a class
# code of "02".

#  Notes
# The order of statements in a compound statement must be:

# 1. SQL variable and condition declarations

#  2. Cursor declarations

#  3. Handler declarations

# 4. Procedure body statements (CASE, IF, LOOP, REPEAT, WHILE, SQL)

# Compound statements cannot be nested.

# Unlike host variables, SQL variables are not preceded by colons when they are
# used in SQL statements.

# Datetime arithmetic operations cannot be performed on SQL variables.

# The following rules apply to handlers:

# � A handler declaration that contains SQLEXCEPTION, SQLWARNING, or NOT
# FOUND cannot contain additional SQLSTATE or condition names.

# � Handler declarations within the same compound statement cannot contain
# duplicate conditions.

494 SQL Reference  



  Compound Statement (SQL procedure)
 

# � A handler declaration cannot contain the same condition code or SQLSTATE
# value more than once, and cannot contain an SQLSTATE value and a
# condition name that represent the same SQLSTATE value.

# � If an error occurs for which there is no handler, execution of the compound
# statement is terminated.

# � A handler cannot be activated by an assignment statement that assigns a value
# to SQLSTATE.

# The following rules and recommendations apply to the SQLCODE and SQLSTATE
# special variables:

# � SQLSTATE must be declared as CHAR(5), and SQLCODE must be declared
# as INTEGER.. Any other data type results in an error.

# � A null value cannot be assigned to SQLSTATE or SQLCODE.

# � To avoid losing the contents of SQLCODE and SQLSTATE, assign their values
# to other variables immediately after SQLCODE and SQLSTATE are set. If a
# handler is declared for SQLSTATE, this assignment needs to be the first
# statement in the SQL procedure statement of the handler.

# If a compound statement is the only statement in the procedure body, the
# statement cannot end with a semicolon. Otherwise, the statement must end with a
# semicolon.

#  Examples
# Create a procedure body with a compound statement that performs the following
# actions:

# � Declares SQL variables, a condition for SQLSTATE '02000', a handler for the
# condition, and a cursor

# � Opens the cursor, fetches a row, and closes the cursor

# CREATE PROCEDURE PROC1(OUT NOROWS INT) LANGUAGE SQL

# BEGIN

#  DECLARE v_firstnme VARCHAR(12);

#  DECLARE v_midinit CHAR(1);

#  DECLARE v_lastname VARCHAR(15);

#  DECLARE v_edlevel SMALLINT;

#  DECLARE v_salary DECIMAL(9,2);

#  DECLARE at_end INT DEFAULT ,;

#  DECLARE not_found

# CONDITION FOR ',2,,,';

#  DECLARE c1 CURSOR FOR

#  SELECT FIRSTNME, MIDINIT, LASTNAME,

#  EDLEVEL, SALARY

#  FROM EMP;

#  DECLARE CONTINUE HANDLER FOR not_found SET NOROWS=1;

#  OPEN c1;

#  FETCH c1 INTO v_firstnme, v_midinit,

# v_lastname, v_edlevel, v_salary;

#  CLOSE c1;

# END

  Chapter 7. SQL procedure statements 495



 IF (SQL procedure)  
 

#  IF statement
# The IF statement selects an execution path based on the evaluation of a condition.

#  Syntax

#  

#  ┌ ┐──────────────────────────────
# ��─# ─IF──search-condition──THEN─ ───

�
┴─SQL-procedure-statement──;─ ───────────────────────────────────────�

#  ┌ ┐──────────────────────────────────────────────────────────────────────
# �─ ───

�
┴──┬ ┬──────────────────────────────────────────────────────────────── ────────────────────────────�

#  │ │┌ ┐──────────────────────────────
#  └ ┘# ─ELSEIF──search-condition──THEN─ ───

�
┴─SQL-procedure-statement──;─

# �─ ──┬ ┬──────────────────────────────────────# ─END IF──────────────────────────────────────────────────��
#  │ │┌ ┐──────────────────────────────
#  └ ┘#  ─ELSE─ ───

�
┴─SQL-procedure-statement──;─

#  Description
# search-condition
# Specifies a search-condition that is applied to each row or group of table data
# presented for evaluation, and the result when that condition is true.

# SQL-procedure-statement
# Specifies a statement that follows the THEN and ELSE keyword. The statement
# must be one of the statements listed under “SQL procedure statement” on
# page 504.

#  Examples
# Assign a value to the SQL variable new_salary based on the value of SQL variable
# rating.

# IF rating = 1

#  THEN SET new_salary =

# new_salary + (new_salary O .1,);

#  ELSEIF rating = 2

# THEN SET new_salary =

# new_salary + (new_salary O .,5);

#  ELSE SET new_salary =

# new_salary + (new_salary O .,2);

# END IF

496 SQL Reference  



  GET DIAGNOSTICS (SQL procedure)
 

# GET DIAGNOSTICS statement
# The GET DIAGNOSTICS statement obtains information about the previous SQL
# statement that was executed.

#  Syntax

#  

# ��─# ─GET DIAGNOSTICS──SQL-variable-name──=──ROW_COUNT─────────────────────────────────────────────────��

#  Description
# SQL-variable-name
# Identifies the SQL variable that is the assignment target. The SQL variable
# must be declared as an integer variable. For information on declaring SQL
# variables, see “Compound statement” on page 491.

# ROW_COUNT
# Identifies the number of rows that are associated with the previous SQL
# statement that was executed. If the previous SQL statement is a DELETE,
# INSERT, or UPDATE statement, ROW_COUNT identifies the number of rows
# that were deleted, inserted, or updated by the SQL statement. That number
# does not include rows that were deleted, inserted, or updated because of
# referential constraints or triggered actions. If the previous statement is
# statement is another SQL statement, the value that is returned has no
# meaning.

#  Notes
# The GET DIAGNOSTICS statement does not change the contents of the SQLCA. If
# SQLCODE and SQLSTATE variables are declared in the SQL procedure, those
# variables contain the SQLCODE and SQLSTATE from the previous SQL statement.

#  Examples
# Use a GET DIAGNOSTICS statement to determine how many rows were updated
# by the previous SQL statement.

# BEGIN

# DECLARE rcount INTEGER;

# UPDATE PROJ

# SET PRSTAFF = PRSTAFF + 1.5

# WHERE DEPTNO = deptnbr;

# GET DIAGNOSTICS rcount = ROW_COUNT;

# END

  Chapter 7. SQL procedure statements 497



 GOTO (SQL procedure)  
 

#  GOTO statement
# The GOTO statement transfers program control to a labelled statement.

#  Syntax

#  

# ��─# ─GOTO──label──────────────────────────────────────────────────────────────────────────────────────��

#  Description
# label
# Specifies a labelled statement at which processing is to continue.

# A label name cannot be the same as the name of the SQL procedure in which
# the label is used.

#  Notes
# The labelled statement and the GOTO statement must be in the same scope. The
# following rules apply to the scope:

# � If the GOTO statement is defined in a compound statement, label must be
# defined inside the same compound statement. label cannot be in a nested
# compound statement.

# � If the GOTO statement is defined in a handler, label must be defined in the
# same handler and follow the other scope rules.

# � If the GOTO statement is defined outside of a handler, label must not be
# defined within a handler.

#  Examples
# Use a GOTO statement to transfer control to the end of a compound statement if
# the value of an SQL variable is less than 600.

498 SQL Reference  



  GOTO (SQL procedure)
 

# BEGIN

#  DECLARE new_salary DECIMAL(9,2);

#  DECLARE service DECIMAL(8,2);

#  SELECT SALARY, CURRENT_DATE - HIREDATE

# INTO new_salary, service

#  FROM EMP

# WHERE EMPNO = v_empno;

# IF service < 6,,

#  THEN GOTO EXIT;

# END IF;

# IF rating = 1

#  THEN SET new_salary =

# new_salary + (new_salary O .1,);

# ELSEIF rating = 2

#  THEN SET new_salary =

# new_salary + (new_salary O .,5);

# END IF;

# UPDATE EMP

# SET SALARY = new_salary

# WHERE EMPNO = v_empno;

# EXIT: SET return_parm = service;

# END

  Chapter 7. SQL procedure statements 499



 LEAVE (SQL procedure)  
 

#  LEAVE statement
# The LEAVE statement transfers program control out of a loop or a block of code.

#  Syntax

#  

# ��─# ─LEAVE──label─────────────────────────────────────────────────────────────────────────────────────��

#  Description
# label
# Specifies the label of the block or loop to exit.

# A label name cannot be the same as the name of the SQL procedure in which
# the label is used.

#  Notes
# When a LEAVE statement transfers control out of a compound statement, all open
# cursors in the compound statement, except cursors that are used to return result
# sets, are closed.

# If a LEAVE statement is the only statement in the procedure body, the statement
# cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

#  Examples
# Use a LEAVE statement to transfer control out of a LOOP statement when a
# negative SQLCODE occurs.

# ftch_loop: LOOP

#  FETCH c1 INTO

#  v_firstnme, v_midinit,

# v_lastname, v_edlevel, v_salary;

#  IF SQLCODE=1,, THEN LEAVE ftch_loop;

#  END IF;

# END LOOP

500 SQL Reference  



  LOOP (SQL procedure)
 

#  LOOP statement
# The LOOP statement executes a statement or group of statements multiple times.

#  Syntax

#  

#  ┌ ┐──────────────────────────────
# ��─ ──┬ ┬────────#  ─LOOP─ ───

�
┴─SQL-procedure-statement──;─#  ─END LOOP─ ──┬ ┬─────── ───────────────────────────��

#  └ ┘#  ─label:─ └ ┘#  ─label─

#  Description
# label
# Specifies the label for the LOOP statement. If the ending label is specified, the
# beginning label must be specified, and the two must match.

# A label name cannot be the same as the name of the SQL procedure in which
# the label is used.

# SQL-procedure-statement
# Specifies the statements to be executed in the loop.

#  Notes
# If a LOOP statement is the only statement in the procedure body, the statement
# cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

#  Examples
# Use a LOOP statement to fetch rows from a table.

# ftch_loop: LOOP

#  FETCH c1 INTO

#  v_firstnme, v_midinit,

# v_lastname, v_edlevel, v_salary;

#  IF SQLCODE<>, THEN SET badsql=1;

#  END IF;

# END LOOP

  Chapter 7. SQL procedure statements 501



 REPEAT (SQL procedure)  
 

#  REPEAT statement
# The REPEAT statement executes a statement or group of statements until a search
# condition is true.

#  Syntax

#  

#  ┌ ┐──────────────────────────────
# ��─ ──┬ ┬────────#  ─REPEAT─ ───

�
┴─SQL-procedure-statement──;─#  ─UNTIL──search-condition─# ─END REPEAT───────────�

#  └ ┘#  ─label:─

# �─ ──┬ ┬─────── ────────────────────────────────────────────────────────────────────────────────────────��
#  └ ┘#  ─label─

#  Description
# label
# Specifies the label for the REPEAT statement. If the ending label is specified,
# the beginning label must be specified, and the two must match.

# A label name cannot be the same as the name of the SQL procedure in which
# the label is used.

# SQL-procedure-statement
# Specifies the statements to be executed.

# search-condition
# Specifies a condition that is evaluated after each execution of the SQL
# procedure statement. If the condition is true, the SQL procedure statement is
# not executed again.

#  Notes
# If a REPEAT statement is the only statement in the procedure body, the statement
# cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

#  Examples
# Use a REPEAT statement to fetch rows from a table.

# fetch_loop:

# REPEAT

#  FETCH c1 INTO

# v_firstnme, v_midinit, v_lastname;

# UNTIL

# SQLCODE <> ,

# END REPEAT fetch_loop

502 SQL Reference  



  WHILE (SQL procedure)
 

#  WHILE statement
# The WHILE statement repeats the execution of a statement or group of statements
# while a specified condition is true.

#  Syntax

#  

#  ┌ ┐──────────────────────────────
# ��─ ──┬ ┬────────# ─WHILE──search-condition──DO─ ───

�
┴─SQL-procedure-statement──;─#  ─END WHILE─ ──┬ ┬─────── ───��

#  └ ┘#  ─label:─ └ ┘#  ─label─

#  Description
# label
# Specifies the label for the WHILE statement. If the ending label is specified, it
# must be the same as the beginning label.

# A label name cannot be the same as the name of the SQL procedure in which
# the label is used.

# search-condition
# Specifies a condition that is evaluated before each execution of the loop. If the
# condition is true, the SQL procedure statement in the loop is executed.

# SQL-procedure-statement
# Specifies the statements to be executed in the loop.

#  Notes
# If a WHILE statement is the only statement in the procedure body, the statement
# cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

#  Examples
# Use a WHILE statement to fetch rows from a table while SQL variable at_end,
# which indicates whether the end of the table has been reached, is 0.

# WHILE at_end = , DO

#  FETCH c1 INTO

#  v_firstnme, v_midinit,

# v_lastname, v_edlevel, v_salary;

#  IF SQLCODE=1,, THEN SET at_end=1;

#  END IF;

# END WHILE

  Chapter 7. SQL procedure statements 503



 SQL Procedure Statement  
 

# SQL procedure statement

#  Syntax

#  

# ��─ ──┬ ┬─assignment-statement────── ───────────────────────────────────────────────────────────────────��
#  ├ ┤─case-statement────────────
#  ├ ┤─get-diagnostics-statement─
#  ├ ┤─goto-statement────────────
#  ├ ┤─if-statement──────────────
#  ├ ┤─leave-statement───────────
#  ├ ┤─loop-statement────────────
#  ├ ┤─repeat-statement──────────
#  ├ ┤─while-statement───────────
#  └ ┘─nested-SQL-statement──────

#  Notes
# See Table 32 on page 511 for a list of valid values for nested-SQL-statement.

504 SQL Reference  



  Limits in DB2 for OS/390
 

Appendix A. Limits in DB2 for OS/390

System storage limits might preclude the limits specified here. The limit for items
not specified below is system storage.

Table 25. Identifier Length Limits

Item Limit

Longest alias, synonym, collection ID, correlation name,
statement name, or name of a column, cursor, index,
table, view, or table check constraint

18 bytes

Longest authorization name, package name, or name of
a plan, database, table space, storage group, or
referential constraint

8 bytes

Longest host identifier 64 bytes

Longest server name or location identifier 16 bytes

Table 26. Numeric Limits

Item Limit

Smallest INTEGER value -2147483648

Largest INTEGER value 2147483647

Smallest SMALLINT value -32768

Largest SMALLINT value 32767

Largest decimal precision 31

Smallest FLOAT value About -7.2×1075

Largest FLOAT value About 7.2×1075

Smallest positive FLOAT value About 5.4×10-79

Largest negative FLOAT value About -5.4×10-79

Smallest DECIMAL value 1 − 1031

Largest DECIMAL value 1031 − 1

Table 27 (Page 1 of 2). String Length Limits

Item Limit

Maximum length of CHAR# 255 bytes

Maximum length of GRAPHIC 127 characters

Maximum length of VARCHAR29 4046 bytes, for 4KB pages
32704 bytes, for 32KB pages

Maximum length of VARGRAPHIC29 4046 bytes (2023 DBCS characters), for 4KB pages
32704 bytes (16352 DBCS characters), for 32KB pages

Maximum length of a character constant# 255 bytes

29 The maximum length can be achieved only if the column is the only column in the table. Otherwise, the maximum length depends
on the amount of space remaining on a page.

 Copyright IBM Corp. 1982, 1997  505



 Limits in DB2 for OS/390  
 

Table 27 (Page 2 of 2). String Length Limits

Item Limit

| Maximum length of a hexadecimal constant| 254 digits

Maximum length of a graphic string constant 124 characters

Maximum length of a concatenated character string 32764 bytes

Maximum length of a concatenated graphic string 16382 DBCS characters

Table 28. Datetime Limits

Item Limit

Smallest DATE value (shown in ISO format) 0001-01-01

Largest DATE value (shown in ISO format) 9999-12-31

Smallest TIME value (shown in ISO format) 00.00.00

Largest TIME value (shown in ISO format) 24.00.00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

Table 29 (Page 1 of 2). DB2 Limits on SQL Statements

Item Limit

Maximum number of columns in a table or view (the
value depends on the complexity of the CREATE VIEW
statement)

750 or fewer
749 if the table is a dependent

Maximum number of base tables in a view 15

Maximum row and record sizes for a table See “Maximum record size” on page 324 under
CREATE TABLE

# Maximum number of volume IDs in a storage group# 133

Maximum number of partitions in a partitioned table
# space or partitioned index
| 64 for table spaces that are not large
| 254 for table spaces that are large

# Maximum size of a partition (table space or index)| For table spaces that are not large:

| 4 gigabytes, for 1 to 16 partitions
| 2 gigabytes, for 17 to 32 partitions
| 1 gigabyte, for 33 to 64 partitions

| For table spaces that are large:

| 4 gigabytes, for 1 to 254 partitions

Maximum size of a DBRM entry 131072 bytes

Longest index key 254 bytes less the number of key columns that allow
nulls. See Table 18 on page 284.

Maximum number of bytes used in the partitioning of a
partitioned index30

40

Maximum number of columns in an index key 64

30 If the key of a partitioned index is longer than 40 bytes, only the first 40 bytes are used to determine the high value for each
partition.

506 SQL Reference  



  Limits in DB2 for OS/390
 

Table 29 (Page 2 of 2). DB2 Limits on SQL Statements

Item Limit

Maximum number of tables and views that can be
identified in a subselect

15 or fewer, depending on the complexity of the
subselect

Maximum total length of host and indicator variables
pointed to in an SQLDA

32767 bytes

Longest host variable used for insert or update 32704 bytes

Longest SQL statement 32765 bytes

Maximum number of elements in a select list 750

Maximum number of predicates in a WHERE or HAVING
clause

750

Maximum total length of columns of a query operation
requiring a sort key (SELECT DISTINCT, ORDER BY,
GROUP BY, UNION without the ALL keyword, and the
DISTINCT column function)

4000 bytes

Maximum length of a table check constraint 3800 bytes

Maximum number of parameters of a stored procedure
and any CALL statement referencing the procedure

As many as can be defined by the parameter list stored
in SYSPROCEDURES.PARMLIST. The maximum length
of the column is 3000 bytes.

Maximum number of bytes that can be passed in a
single parameter of an SQL CALL statement

32765 bytes

Table 30. DB2 System Limits

Item Limit

Maximum number of concurrent DB2 or application
agents

Limited by the EDM pool size, buffer pool size, and the
amount of storage used by each DB2 or application
agent

Largest table or table space| 1016 gigabytes

Largest log space 248

Largest active log data set 2 gigabtyes

Largest archive log data set 2 gigabtyes

Maximum number of active log copies 2

Maximum number of archive log copies 2

Maximum number of active log data sets (each copy) 31

Maximum number of archive log volumes (each copy) 1000

Maximum number of databases accessible to an
application or end user

Limited by system storage and EDM pool size

Largest EDM pool The installation parameter maximum depends on
available space

Maximum number of databases# 32511

Maximum number of rows per page| 255 for all table spaces except catalog and directory
| tables spaces, which have a maximum of 127

Maximum simple or segmented data set size 2 gigabytes

Maximum partitioned data set size See item “maximum size of a partition” in Table 29 on
page  506 

  Appendix A. Limits in DB2 for OS/390 507



 Limits in DB2 for OS/390  
 

508 SQL Reference  



  Characteristics of SQL Statements in DB2 for OS/390
 

Appendix B. Characteristics of SQL Statements in DB2 for
OS/390

This appendix provides a summary of the actions that are allowed on SQL
statements in DB2 for OS/390. It also contains a list of the SQL statements that

# can be executed in SQL procedures.

Actions Allowed on SQL Statements
The following table shows whether a specific DB2 statement can be executed,
prepared interactively or dynamically, or processed by the application requester, the
application server, or the precompiler. The letter Y means yes.

Table 31 (Page 1 of 2). Actions Allowed on SQL Statements in DB2 for OS/390

SQL Statement Executable

Interactively
or

Dynamically
Prepared

Processed by

Requesting
System Server Precompiler

| ALLOCATE CURSOR| Y| Y| Y|  |  

ALTER1 Y Y  Y  

| ASSOCIATE LOCATORS| Y| Y| Y|  |  

BEGIN DECLARE SECTION     Y

CALL Y   Y  

CLOSE Y   Y  

COMMENT Y Y  Y  

COMMIT Y Y  Y  

CONNECT (Type 1 and Type 2) Y  Y   

CREATE1 Y Y  Y  

DECLARE CURSOR     Y

DECLARE STATEMENT     Y

DECLARE TABLE     Y

DELETE Y Y  Y  

DESCRIBE Y   Y  

| DESCRIBE CURSOR| Y|  | Y|  |  

| DESCRIBE PROCEDURE| Y|  | Y|  |  

DROP1 Y Y  Y  

END DECLARE SECTION     Y

EXECUTE Y   Y  

EXECUTE IMMEDIATE Y   Y  

EXPLAIN Y Y  Y  

FETCH Y   Y  

GRANT1 Y Y  Y  

INCLUDE     Y

 Copyright IBM Corp. 1982, 1997  509



 Characteristics of SQL Statements in DB2 for OS/390  
 

Table 31 (Page 2 of 2). Actions Allowed on SQL Statements in DB2 for OS/390

SQL Statement Executable

Interactively
or

Dynamically
Prepared

Processed by

Requesting
System Server Precompiler

INSERT Y Y  Y  

LABEL Y Y  Y  

LOCK TABLE Y Y  Y  

OPEN Y   Y  

| PREPARE| Y|  |  | Y3|  

RELEASE Y  Y   

| RENAME| Y| Y|  | Y|  

REVOKE1 Y Y  Y  

ROLLBACK Y Y  Y  

SELECT INTO Y   Y  

SET CONNECTION Y  Y   

SET CURRENT DEGREE Y Y  Y  

SET CURRENT PACKAGESET Y  Y   

SET CURRENT PACKAGESET Y  Y   

# SET CURRENT PRECISION# Y# Y#  # Y#  

SET CURRENT SQLID2 Y Y  Y  

SET host-variable = CURRENT
DATE

Y   Y  

SET host-variable = CURRENT
DEGREE

Y   Y  

SET host-variable = CURRENT
PACKAGESET

Y  Y   

SET host-variable = CURRENT
SERVER

Y  Y   

SET host-variable = CURRENT
SQLID

Y   Y  

SET host-variable = CURRENT
TIME

Y   Y  

SET host-variable = CURRENT
TIMESTAMP

Y   Y  

SET host-variable = CURRENT
TIMEZONE

Y   Y  

UPDATE Y Y  Y  

WHENEVER      

Note:

1. If the bind option DYNAMICRULES(BIND) applies, the statement cannot be dynamically prepared.

2. If the bind option DYNAMICRULES(BIND) applies, neither a static nor a dynamic SET CURRENT SQLID
statement can be used.

3. The requesting system processes the PREPARE statement when the statement being prepared is ALLOCATE
CURSOR or ASSOCIATE LOCATORS.

510 SQL Reference  



  Characteristics of SQL Statements in DB2 for OS/390
 

# SQL statements allowed in SQL procedures
# Table 32 lists the SQL statements that are valid in an SQL procedure body. The
# table lists the SQL statements that can be used as the only statement in the SQL
# procedure and the statements that can be nested in a compound statement.

# Table 32 (Page 1 of 2). Valid SQL statements in an SQL procedure body

# SQL statement

# SQL statement is...

# The only
# statement in
# the procedure

# Nested in a
# compound
# statement

# ALLOCATE CURSOR#  #  

# ALTER DATABASE# Y# Y

# ALTER INDEX# Y# Y

# ALTER STOGROUP# Y# Y

# ALTER TABLE# Y# Y

# ALTER TABLESPACE# Y# Y

# ASSOCIATE LOCATORS#  #  

# BEGIN DECLARE SECTION#  #  

# CALL#  #  

# CLOSE#  # Y

# COMMENT ON# Y# Y

# COMMIT#  #  

# CONNECT (Type 1 and Type 2)#  #  

# CREATE ALIAS# Y# Y

# CREATE DATABASE# Y# Y

# CREATE GLOBAL TEMPORARY TABLE# Y# Y

# CREATE INDEX# Y# Y

# CREATE PROCEDURE (SQL)#  #  

# CREATE STOGROUP# Y# Y

# CREATE SYNONYM# Y# Y

# CREATE TABLE# Y# Y

# CREATE TABLESPACE# Y# Y

# CREATE VIEW# Y# Y

# DECLARE CURSOR#  # Y

# DECLARE STATEMENT#  #  

# DECLARE TABLE#  #  

# DELETE# Y# Y

# DESCRIBE#  #  

# DESCRIBE CURSOR#  #  

# DESCRIBE INPUT#  #  

# DESCRIBE PROCEDURE#  #  

# DROP# Y# Y

  Appendix B. Characteristics of SQL Statements in DB2 for OS/390 511



 Characteristics of SQL Statements in DB2 for OS/390  
 

# Table 32 (Page 2 of 2). Valid SQL statements in an SQL procedure body

# SQL statement

# SQL statement is...

# The only
# statement in
# the procedure

# Nested in a
# compound
# statement

# END DECLARE SECTION#  #  

# EXECUTE#  # Y

# EXECUTE IMMEDIATE# Y# Y

# EXPLAIN#  #  

# FETCH#  # Y

# GRANT# Y# Y

# INCLUDE#  #  

# INSERT# Y# Y

# LABEL ON# Y# Y

# LOCK TABLE# Y# Y

# OPEN#  # Y

# PREPARE FROM#  # Y

# RELEASE#  #  

# RENAME# Y# Y

# REVOKE# Y# Y

# ROLLBACK#  #  

# SELECT#  #  

# SELECT INTO# Y# Y

# SET CONNECTION#  #  

# SET special register# Y# Y

# UPDATE# Y# Y

# WHENEVER#  #  

512 SQL Reference  



  SQLCA
 

Appendix C. SQLCA and SQLDA

SQL Communication Area (SQLCA)
An SQLCA is a structure or collection of variables that is updated after each SQL
statement executes. An application program that contains executable SQL
statements must provide exactly one SQLCA. There are two exceptions:

� A program that is precompiled with the STDSQL(YES) option must not provide
an SQLCA

� In some cases (as discussed below in “In FORTRAN”), a FORTRAN program
must provide more than one SQLCA.

# In all host languages except REXX, the SQL INCLUDE statement can be used to
provide the declaration of the SQLCA.

In COBOL and Assembler: The name of the storage area must be SQLCA.

In PL/I, and C: The name of the structure must be SQLCA. Every executable SQL
statement must be within the scope of its declaration.

| Unless noted otherwise, C is used to represent C/370 and C/C++ for MVS/ESA
| programming languages.

In FORTRAN: The name of the COMMON area for the INTEGER variables of the
SQLCA must be SQLCA1; the name of the COMMON area for the CHARACTER
variables must be SQLCA2. An SQLCA definition is required for every subprogram
containing SQL statements. One is also needed for the main program if it contains
SQL statements.

# In REXX: DB2 generates the SQLCA automatically. A REXX procedure cannot use
# the INCLUDE statement. The REXX SQLCA has a somewhat different format from
# SQLCAs for the other languages. See “The REXX SQLCA” on page 518 for more
# information on the REXX SQLCA.

Description of Fields
The names in the following table are those provided by the SQL INCLUDE
statement. For the most part, COBOL, C, PL/I, and Assembler use the same
names, and FORTRAN names are different. However, there is one instance where
C, PL/I, and Assembler names differ from COBOL.

Table 33 (Page 1 of 3). Fields of SQLCA

Assembler,
COBOL, or
PL/I Name

 
C
Name

 
FORTRAN
Name

 
Data
Type

 
 
Purpose

SQLCAID sqlcaid Not used. CHAR(8) An “eye catcher” for storage dumps, containing the text
'SQLCA'.

SQLCABC sqlcabc Not used. INTEGER Contains the length of the SQLCA: 136.

 Copyright IBM Corp. 1982, 1997  513



 SQLCA  
 

Table 33 (Page 2 of 3). Fields of SQLCA

Assembler,
COBOL, or
PL/I Name

 
C
Name

 
FORTRAN
Name

 
Data
Type

 
 
Purpose

SQLCODE
(See note 1)

SQLCODE SQLCOD INTEGER Contains the SQL return code. (See note 2)

Code Means
0 Successful execution (though there might

have been warning messages).
positive Successful execution, but with an

exception condition.
negative Error condition.

SQLERRML
(See note 3)

sqlerrml
(See note 3)

SQLTXL SMALLINT Length indicator for SQLERRMC, in the range 0 through
70. 0 means that the value of SQLERRMC is not
pertinent.

SQLERRMC
(See note 3)

sqlerrmc
(See note 3)

SQLTXT VARCHAR(70) Contains one or more tokens, separated by X'FF', that
are substituted for variables in the descriptions of error
conditions.

SQLERRP sqlerrp SQLERP CHAR(8) Provides a product signature and, in the case of an error,
diagnostic information such as the name of the module
that detected the error. In all cases, the first three
characters are 'DSN' for DB2 for OS/390.

SQLERRD(1) sqlerrd[0] SQLERR(1) INTEGER Contains an internal error code.

SQLERRD(2) sqlerrd[1] SQLERR(2) INTEGER Contains an internal error code.

SQLERRD(3) sqlerrd[2] SQLERR(3) INTEGER Contains the number of rows affected after INSERT,
UPDATE, and DELETE (but not rows deleted as a result
of CASCADE delete). Set to 0 if the SQL statement fails,
indicating that all changes made in executing the
statement were canceled. Set to -1 for a mass delete from
a table in a segmented table space.

# SQLERRD(3) can also contain the reason code of a
# timeout or deadlock for SQLCODES -911 and -913.

SQLERRD(4) sqlerrd[3] SQLERR(4) INTEGER# Generally contains timerons, a short floating-point value
that indicates a rough relative estimate of resources
required (See note 4). It does not reflect an estimate of
the time required. When preparing a dynamically defined
SQL statement, you can use this field as an indicator of
the relative cost of the prepared SQL statement. For a
particular statement, this number can vary with changes to
the statistics in the catalog. It is also subject to change
between releases of DB2 for OS/390.

SQLERRD(5) sqlerrd[4] SQLERR(5) INTEGER Contains the position or column of a syntax error for a
PREPARE or EXECUTE IMMEDIATE statement.

SQLERRD(6) sqlerrd[5] SQLERR(6) INTEGER Contains an internal error code.

SQLWARN0 SQLWARN0 SQLWRN(0) CHAR(1) Contains a W if at least one other indicator also contains
a W; otherwise, contains a blank.

SQLWARN1 SQLWARN1 SQLWRN(1) CHAR(1) Contains W if the value of a string column was truncated
when assigned to a host variable.

SQLWARN2 SQLWARN2 SQLWRN(2) CHAR(1) Contains W if null values were eliminated from the
argument of a column function; not necessarily set to W
for the MIN function because its results are not dependent
on the elimination of null values.

SQLWARN3 SQLWARN3 SQLWRN(3) CHAR(1) Contains W if the number of result columns is larger than
# the number of host variables. Contains a Z if fewer
# locators were provided in the ASSOCIATE LOCATORS
# statement than the stored procedure returned.

SQLWARN4 SQLWARN4 SQLWRN(4) CHAR(1) Contains W if a prepared UPDATE or DELETE statement
does not include a WHERE clause.

514 SQL Reference  



  SQLCA
 

Table 33 (Page 3 of 3). Fields of SQLCA

Assembler,
COBOL, or
PL/I Name

 
C
Name

 
FORTRAN
Name

 
Data
Type

 
 
Purpose

SQLWARN5 SQLWARN5 SQLWRN(5) CHAR(1) Contains W if the SQL statement was not executed
because it is not a valid SQL statement in DB2 for
OS/390.

SQLWARN6 SQLWARN6 SQLWRN(6) CHAR(1) Contains W if the addition of a month or year duration to a
DATE or TIMESTAMP value results in an invalid day (for
example, June 31). Indicates that the value of the day was
changed to the last day of the month to make the result
valid.

SQLWARN7 SQLWARN7 SQLWRN(7) CHAR(1) Contains a W if one or more nonzero digits were
eliminated from the fractional part of a number used as
the operand of a decimal multiply or divide operation.

SQLWARN8 SQLWARN8 SQLWRX(1) CHAR(1) Contains a W if a character that could not be converted
was replaced with a substitute character.

SQLWARN9 SQLWARN9 SQLWRX(2) CHAR(1) Contains a W if arithmetic exceptions were ignored during
# COUNT DISTINCT processing. Contains a Z if the stored
# procedure returned multiple result sets.

SQLWARNA SQLWARNA SQLWRX(3) CHAR(1) Contains a W if at least one character field of the SQLCA
or the SQLDA names or labels is invalid due to a
character conversion error.

SQLSTATE sqlstate SQLSTT CHAR(5) Contains a return code for the outcome of the most recent
execution of an SQL statement (See note 5).

Note:

1. With the precompiler option STDSQL(YES) in effect, SQLCODE is replaced by SQLCADE in SQLCA.

2. For the specific meanings of SQL return codes, see Section 2 of Messages and Codes

3. In COBOL, SQLERRM includes SQLERRML and SQLERRMC. In PL/I and C, the varying-length string SQLERRM is equivalent
to SQLERRML prefixed to SQLERRMC. In Assembler, the storage area SQLERRM is equivalent to SQLERRML and
SQLERRMC. See the examples for the various host languages in “The Included SQLCA” on page 515.

4. The use of timerons may require special handling because they are floating-point values in an INTEGER array. In PL/I, for
example, you could first copy the value into a BIN FIXED(31) based variable that coincides with a BIN FLOAT(24) variable.

5. For a description of SQLSTATE values, see Appendix C of Messages and Codes

The Included SQLCA
The description of the SQLCA that is given by INCLUDE SQLCA is shown for each
of the host languages.

  Appendix C. SQLCA and SQLDA 515



 SQLCA  
 

Assembler:

SQLCA DS ,F

SQLCAID DS CL8 ID

SQLCABC DS F BYTE COUNT

SQLCODE DS F RETURN CODE

SQLERRM DS H,CL7, ERR MSG PARMS

SQLERRP DS CL8 IMPL-DEPENDENT

SQLERRD DS 6F

SQLWARN DS ,C WARNING FLAGS

SQLWARN, DS C'W' IF ANY

SQLWARN1 DS C'W' = WARNING

SQLWARN2 DS C'W' = WARNING

SQLWARN3 DS C'W' = WARNING

SQLWARN4 DS C'W' = WARNING

SQLWARN5 DS C'W' = WARNING

SQLWARN6 DS C'W' = WARNING

SQLWARN7 DS C'W' = WARNING

SQLEXT DS ,CL8

SQLWARN8 DS C

SQLWARN9 DS C

SQLWARNA DS C

SQLSTATE DS CL5

C

#ifndef SQLCODE

struct sqlca

{

 unsigned char sqlcaid[8];

 long sqlcabc;

 long sqlcode;

 short sqlerrml;

 unsigned char sqlerrmc[7,];

 unsigned char sqlerrp[8];

 long sqlerrd[6];

 unsigned char sqlwarn[11];

 unsigned char sqlstate[5];

};

#define SQLCODE sqlca.sqlcode

#define SQLWARN, sqlca.sqlwarn[,]

#define SQLWARN1 sqlca.sqlwarn[1]

#define SQLWARN2 sqlca.sqlwarn[2]

#define SQLWARN3 sqlca.sqlwarn[3]

#define SQLWARN4 sqlca.sqlwarn[4]

#define SQLWARN5 sqlca.sqlwarn[5]

#define SQLWARN6 sqlca.sqlwarn[6]

#define SQLWARN7 sqlca.sqlwarn[7]

#define SQLWARN8 sqlca.sqlwarn[8]

#define SQLWARN9 sqlca.sqlwarn[9]

#define SQLWARNA sqlca.sqlwarn[1,]

#define SQLSTATE sqlca.sqlstate

#endif

struct sqlca sqlca;

516 SQL Reference  



  SQLCA
 

COBOL:

,1 SQLCA.

 ,5 SQLCAID PIC X(8).

,5 SQLCABC PIC S9(9) COMP-4.

,5 SQLCODE PIC S9(9) COMP-4.

 ,5 SQLERRM.

49 SQLERRML PIC S9(4) COMP-4.

 49 SQLERRMC PIC X(7,).

 ,5 SQLERRP PIC X(8).

,5 SQLERRD OCCURS 6 TIMES

PIC S9(9) COMP-4.

 ,5 SQLWARN.

 1, SQLWARN, PIC X.

 1, SQLWARN1 PIC X.

 1, SQLWARN2 PIC X.

 1, SQLWARN3 PIC X.

 1, SQLWARN4 PIC X.

 1, SQLWARN5 PIC X.

 1, SQLWARN6 PIC X.

 1, SQLWARN7 PIC X.

 ,5 SQLEXT.

 1, SQLWARN8 PIC X.

 1, SQLWARN9 PIC X.

 1, SQLWARNA PIC X.

 1, SQLSTATE PIC X(5).

FORTRAN:

O

O THE SQL COMMUNICATIONS AREA

O

 INTEGER SQLCOD,

 C SQLERR(6),

 C SQLTXLO2

COMMON /SQLCA1/SQLCOD, SQLERR,SQLTXL

 CHARACTER SQLERPO8,

 C SQLWRN(,:7)O1,

 C SQLTXTO7,,

 C SQLEXTO8,

 C SQLWRX(1:3)O1,

 C SQLSTTO5

 COMMON /SQLCA2/SQLERP,SQLWRN,SQLTXT,SQLWRX,

 C SQLSTT

 EQUIVALENCE (SQLWRX,SQLEXT)

O

  Appendix C. SQLCA and SQLDA 517



 SQLCA  
 

PL/I:

DECLARE

 1 SQLCA,

2 SQLCAID CHAR(8),

2 SQLCABC FIXED(31) BINARY,

2 SQLCODE FIXED(31) BINARY,

2 SQLERRM CHAR(7,) VAR,

2 SQLERRP CHAR(8),

2 SQLERRD(6) FIXED(31) BINARY,

 2 SQLWARN,

3 SQLWARN, CHAR(1),

3 SQLWARN1 CHAR(1),

3 SQLWARN2 CHAR(1),

3 SQLWARN3 CHAR(1),

3 SQLWARN4 CHAR(1),

3 SQLWARN5 CHAR(1),

3 SQLWARN6 CHAR(1),

3 SQLWARN7 CHAR(1),

 2 SQLEXT,

3 SQLWARN8 CHAR(1),

3 SQLWARN9 CHAR(1),

3 SQLWARNA CHAR(1),

3 SQLSTATE CHAR(5);

# The REXX SQLCA
# The REXX SQLCA consists of a set of variables, rather than a structure. DB2
# makes the SQLCA available to your application automatically. Table 34 lists the
# variables in a REXX SQLCA.

# Table 34 (Page 1 of 2). Variables in a REXX SQLCA

# Variable# Contents

# SQLCODE# The SQL return code.

# SQLERRMC# One or more tokens, separated by X'FF', that are substituted for variables in the
# descriptions of error conditions.

# SQLERRP# A product signature and, in the case of an error, diagnostic information such as the
# name of the module that detected the error. For DB2 for OS/390, the product
# signature is 'DSN'.

# SQLERRD.1# An internal error code.

# SQLERRD.2# An internal error code.

# SQLERRD.3# The number of rows affected after INSERT, UPDATE, and DELETE (but not rows
# deleted as a result of CASCADE delete). Set to 0 if the SQL statement fails, indicating
# that all changes made in executing the statement were canceled. Set to -1 for a mass
# delete from a table in a segmented table space.

# For SQLCODE -911 or -913, SQLERRD.3 can also contain the reason code for a
# timeout or deadlock.

518 SQL Reference  



  SQLDA
 

# Table 34 (Page 2 of 2). Variables in a REXX SQLCA

# Variable# Contents

# SQLERRD.4# Generally contains timerons, a short floating-point value that indicates a rough relative
# estimate of resources required. This value does not reflect an estimate of the time
# required to execute the SQL statement. After you prepare an SQL statement, you can
# use this field as an indicator of the relative cost of the prepared SQL statement. For a
# particular statement, this number can vary with changes to the statistics in the catalog.
# This value is subject to change between releases of DB2 for OS/390.

# SQLERRD.5# The position or column of a syntax error for a PREPARE or EXECUTE IMMEDIATE
# statement.

# SQLERRD.6# An internal error code.

# SQLWARN.0# Blank if all other indicators are blank; W if at least one other indicator also contains a
# W.

# SQLWARN.1# W if the value of a string column was truncated when assigned to a host variable.

# SQLWARN.2# W if null values were eliminated from the argument of a column function; not
# necessarily set to W for the MIN function because its results are not dependent on the
# elimination of null values.

# SQLWARN.3# W if the number of result columns is larger than the number of host variables. Z if the
# ASSOCIATE LOCATORS statement contains fewer locators than the stored procedure
# returned.

# SQLWARN.4# W if a prepared UPDATE or DELETE statement does not include a WHERE clause.

# SQLWARN.5# W if the SQL statement was not executed because it is not a valid SQL statement in
# DB2 for OS/390.

# SQLWARN.6# W if the addition of a month or year duration to a DATE or TIMESTAMP value results
# in an invalid day (for example, June 31). Indicates that the value of the day was
# changed to the last day of the month to make the result valid.

# SQLWARN.7# W if one or more nonzero digits were eliminated from the fractional part of a number
# that was used as the operand of a decimal multiply or divide operation.

# SQLWARN.8# W if a character that could not be converted was replaced with a substitute character.

# SQLWARN.9# W if arithmetic exceptions were ignored during COUNT DISTINCT processing. Z if the
# stored procedure returned multiple result sets.

# SQLWARN.10# W if at least one character field of the SQLCA is invalid due to a character conversion
# error.

# SQLSTATE# A return code for the outcome of the most recent execution of an SQL statement.

SQL Descriptor Area (SQLDA)
| An SQLDA is a collection of variables that is required for execution of some SQL
| statements, and is optional for some other SQL statements. The meaning of the
| information in an SQLDA depends on the context in which it is used. For
| DESCRIBE and PREPARE INTO, DB2 sets the fields in the SQLDA to provide
| information to the application program. For OPEN, EXECUTE, FETCH, and CALL,
| the application program sets the fields in the SQLDA to provide DB2 with
| information. Application Programming and SQL Guide discusses ways to use the

SQLDA.

# The following sections discuss the fields of the SQLDA and the format of the
# SQLDA for each language. Because the fields and format of the SQLDA for REXX

  Appendix C. SQLCA and SQLDA 519



 SQLDA  
 

# is somewhat different from the SQLDAs for other languages, the REXX SQLDA is
# discussed separately.

 Field Descriptions
An SQLDA consists of four variables followed by an arbitrary number of

| occurrences of a sequence of five variables collectively named SQLVAR. The
| meaning of the information in an SQLDA depends on its use:

| DESCRIBE statement-name or PREPARE INTO
| With the exception of SQLN, DB2 sets fields of the SQLDA to provide
| information to an application program about a prepared statement. Each
| SQLVAR occurrence describes a column of the result table. An SQLDA can
| be used in a DESCRIBE statement-name or PREPARE INTO statement,
| modified with the addresses of host variables, and then reused in a FETCH
| statement.

| DESCRIBE TABLE
| With the exception of SQLN, DB2 sets fields of the SQLDA to provide
| information to an application program about the columns of a table or view.
| Each SQLVAR occurrence describes a column of the specified table or view.

| DESCRIBE CURSOR
| With the exception of SQLN, DB2 sets fields of the SQLDA to provide
| information to an application program about the result set that is associated
| with the specified cursor. Each SQLVAR occurrence describes a column of
| the result set.

# DESCRIBE INPUT
# With the exception of SQLN, DB2 sets fields of the SQLDA to provide
# information to an application program about the input parameter markers of a
# prepared statement. Each SQLVAR occurrence describes an input parameter
# marker.

| DESCRIBE PROCEDURE
| With the exception of SQLN, DB2 sets fields of the SQLDA to provide
| information to an application program about the result sets returned by the
| specified stored procedure. SQLD contains the number of result sets that the
| stored procedure returned, and each SQLVAR occurrence describes a
| returned result set.

| OPEN, EXECUTE, FETCH, and CALL
| The application program sets fields of the SQLDA to provide information
| about host variables or output buffers in the application program to DB2. Each
| SQLVAR occurrence describes a host variable or output buffer.

| � For OPEN and EXECUTE, each SQLVAR occurrence describes an input
| value that is substituted for a parameter marker in the associated SQL
| statement that was previously prepared.

| � For FETCH, each SQLVAR occurrence describes a host variable or buffer
| in the application program that is to be used to contain an output value
| from a row of the result.

| � For CALL, each SQLVAR occurrence describes a host variable that
| corresponds to a parameter in the parameter list for the stored procedure.

520 SQL Reference  



  SQLDA
 

Table 35. Fields of SQLDA

C Name
Assembler or
PL/I Name

 
Data
Type

 
Usage in DESCRIBE1

and PREPARE INTO

 
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqldaid
SQLDAID

CHAR(8) An “eye catcher” for storage
dumps, containing the text
'SQLDA '.

| For DESCRIBE CURSOR, it is set
| to 'SQLRS'. If the cursor is
| declared WITH HOLD in a stored
| procedure, the high-order bit of the
| 8th byte is set to 1.

For DESCRIBE PROCEDURE, it is
set to 'SQLPR'.

A plus sign (+) in the 6th byte
indicates that SQLNAME contains an
overriding CCSID. Otherwise,
SQLDAID is not used.

sqldabc
SQLDABC

INTEGER Length of the SQLDA, equal to
SQLN×44+16.

Not used.

sqln
SQLN

SMALLINT Total number of occurrences of
SQLVAR.

Same.

sqld
SQLD

SMALLINT The number of columns described
by occurrences of SQLVAR.
Double that number if USING
BOTH appears in the DESCRIBE
or PREPARE INTO statement.
Contains a 0 if the statement string
is not a query.

| For DESCRIBE PROCEDURE, the
| number of result sets returned by
| the stored procedure. Contains a 0
| if no result sets are returned.

The number of host variables
described by occurrences of
SQLVAR.

Notes:

1. The third column of this table represents several forms of the DESCRIBE statement:

� For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.
� For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.
� For DESCRIBE INPUT, the column pertains to parameter markers.
� For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

Field Descriptions in an Occurrence of SQLVAR

Table 36 (Page 1 of 2). Fields in an Occurrence of SQLVAR

C Name
Assembler or
PL/I Name

 
Data
Type

 
Usage in DESCRIBE1

and PREPARE INTO

 
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqltype
SQLTYPE

SMALLINT Tells the data type of the column
and whether or not it allows null
values. For a description of the
type codes, see Table 37 on
page 523.

Tells the data type of the host
variable and whether an indicator
variable is provided. For a
description of the type codes, see
“SQLTYPE and SQLLEN” on
page 523.

  Appendix C. SQLCA and SQLDA 521



 SQLDA  
 

Table 36 (Page 2 of 2). Fields in an Occurrence of SQLVAR

C Name
Assembler or
PL/I Name

 
Data
Type

 
Usage in DESCRIBE1

and PREPARE INTO

 
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqllen
SQLLEN

SMALLINT The length attribute of the column.
For datetime columns, the length
of the string representation of the
value. See “SQLTYPE and
SQLLEN” on page 523 for a
description of allowable values.

The length attribute of the host
variable. See “SQLTYPE and
SQLLEN” on page 523 for a
description of allowable values.

sqldata
SQLDATA

pointer For character or graphic columns,
this variable contains X',,,,zzzz',
where zzzz is the associated
CCSID. (For BIT data, zzzz is
X'FFFF'). Not used for other
types of data.

| For DESCRIBE PROCEDURE, the
| result set locator value associated
| with the result set.

Contains the address of the host
variable.

sqlind
SQLIND

pointer Reserved

| For DESCRIBE PROCEDURE, it is
| set to -1.

Contains the address of an
associated indicator variable, if
SQLTYPE is odd.

sqlname
SQLNAME

VARCHAR(30) Contains the name or label of the
column, or a string of length zero if
the name or label does not exist. If
the prepared statement includes a
UNION or UNION ALL clause,
SQLNAME contains the name or
label, if any, of the corresponding
column of the first operand of the
UNION.

# For DESCRIBE INPUT, SQLNAME
# is not used.

| For DESCRIBE PROCEDURE,
| SQLNAME contains the cursor
| name used by the stored
| procedure to return the result set.
| The values for SQLNAME appear
| in the order the cursors were
| opened by the stored procedure.

Can contain a CCSID. DB2 interprets
the third and fourth byte of
SQLNAME as the CCSID of the host
variable if all of the following are
true:

� The 6th byte of SQLDAID is '+'
� SQLTYPE indicates the host

variable is a string variable
� The length of SQLNAME is 8
� The first two bytes of SQLNAME

are X'0000'.

Notes:

1. The third column of this table represents several forms of the DESCRIBE statement:

� For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.
� For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.
� For DESCRIBE INPUT, the column pertains to parameter markers.
� For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

522 SQL Reference  



  SQLDA
 

SQLTYPE and SQLLEN
The following table shows the values that may appear in the SQLTYPE and
SQLLEN fields of the SQLDA. In DESCRIBE and PREPARE INTO, an even value
of SQLTYPE means the column does not allow nulls, and an odd value means the
column does allow nulls. In FETCH, OPEN, EXECUTE, and CALL, an even value
of SQLTYPE means no indicator variable is provided, and an odd value means that
SQLIND contains the address of an indicator variable.  

Table 37 (Page 1 of 2). SQLTYPE and SQLLEN Values for DESCRIBE, PREPARE INTO, FETCH, OPEN,
EXECUTE, and CALL

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

COLUMN DATA
TYPE SQLLEN

HOST VARIABLE
DATA TYPE SQLLEN

384/385 date 10 31 fixed-length
character string
representation of a
date

length attribute of the
host variable

388/389 time 8 32 fixed-length
character string
representation of a
time

length attribute of the
host variable

392/393 timestamp 26 fixed-length
character string
representation of a
timestamp

length attribute of the
host variable

448/449 varying-length
character string

length attribute of
the column

varying-length
character string

length attribute of the
host variable

452/453 fixed-length
character string

length attribute of
the column

fixed-length
character string

length attribute of the
host variable

456/457 long varying-length
character string

length attribute of
the column

long varying-length
character string

length attribute of the
host variable

460/461 N/A N/A NUL-terminated
character string

length attribute of the
host variable

464/465 varying-length
graphic string

length attribute of
the column

varying-length
graphic string

length attribute of the
host variable

468/469 fixed-length graphic
string

length attribute of
the column

fixed-length graphic
string

length attribute of the
host variable

472/473 long varying-length
graphic string

length attribute of
the column

long graphic string length attribute of the
host variable

480/481 floating point 4 for single precision,
8 for double precision

floating point 4 for single precision,
8 for double precision

484/485 packed decimal precision in byte 1;
scale in byte 2

packed decimal precision in byte 1;
scale in byte 2

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

31 Might be different if a date installation exit is specified.

32 Might be different if a time installation exit is specified.

  Appendix C. SQLCA and SQLDA 523



 SQLDA  
 

Table 37 (Page 2 of 2). SQLTYPE and SQLLEN Values for DESCRIBE, PREPARE INTO, FETCH, OPEN,
EXECUTE, and CALL

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

COLUMN DATA
TYPE SQLLEN

HOST VARIABLE
DATA TYPE SQLLEN

504/505 N/A N/A DISPLAY SIGN
LEADING
SEPARATE

precision in byte 1;
scale in byte 2

| 972/973| result set locator| 4| result set locator| 4

 SQLDATA
The following table identifies the CCSID values that appear in the SQLDATA field
when the SQLVAR element describes a string column.

Table 38. CCSID Values for SQLDATA

Data type Subtype Bytes 1 and 2 Bytes 3 and 4

Character SBCS data X'0000' CCSID

Character mixed data X'0000' CCSID

Character BIT data X'0000' X'FFFF'

Graphic N/A X'0000' CCSID

Any other data type N/A N/A N/A

The Included SQLDA
The description of the SQLDA that is given by INCLUDE SQLDA is shown below.
Only Assembler, PL/I, and C, are supported. Though you can use an SQLDA in VS
COBOL II, the INCLUDE statement does not provide the code. You must provide it
as shown in the chapter on dynamic SQL in Section 6 of Application Programming
and SQL Guide .

Assembler:

SQLDA DSECT

SQLDAID DS CL8

SQLDABC DS F

SQLN DS H

SQLD DS H

SQLVAR DS ,F

SQLVARN DSECT ,

SQLTYPE DS H

SQLLEN DS ,H

SQLPRCSN DS X

SQLSCALE DS X

SQLDATA DS A

SQLIND DS A

SQLNAME DS H,CL3,

SQLVSIZ DS O-SQLDATA

SQLSIZV DS O-SQLVARN

524 SQL Reference  



  SQLDA
 

PL/I:

DECLARE

1 SQLDA BASED(SQLDAPTR),

2 SQLDAID CHAR(8),

2 SQLDABC FIXED(31) BINARY,

 2 SQLN FIXED(15) BINARY,

 2 SQLD FIXED(15) BINARY,

2 SQLVAR(SQLSIZE REFER(SQLN)),

3 SQLTYPE FIXED(15) BINARY,

3 SQLLEN FIXED(15) BINARY,

3 SQLDATA POINTER,

3 SQLIND POINTER,

3 SQLNAME CHAR(3,) VAR;

DECLARE SQLSIZE FIXED(15) BINARY;

DECLARE SQLDAPTR POINTER;

C:

#ifndef SQLDASIZE

struct sqlda

{

 unsigned char sqldaid[8];

 long sqldabc;

 short sqln;

 short sqld;

 struct sqlvar

 {

 short sqltype;

 short sqllen;

unsigned char Osqldata;

 short Osqlind;

 struct sqlname

 {

 short length;

 unsigned char data[3,];

 } sqlname;

 } sqlvar[1];

};

#define SQLDASIZE(n) (sizeof(struct sqlda)+(n-1)Osizeof(struct sqlvar))

#endif

  Appendix C. SQLCA and SQLDA 525



 SQLDA  
 

| C++:

| #ifndef SQLDASIZE

| struct sqlvar

|  { short sqltype;

|  short sqllen;

| unsigned char Osqldata;

|  short Osqlind;

|  struct sqlname

|  { short length;

|  unsigned char data[3,];

|  } sqlname;

|  };

| struct sqlda

| { unsigned char sqldaid[8];

|  long sqldabc;

|  short sqln;

|  short sqld;

| struct sqlvar sqlvar[1];

|  };

| #define SQLDASIZE(n) \

| ( sizeof(struct sqlda) + ((n)-1) O sizeof(struct sqlvar) )

| #endif

Identifying an SQLDA in C
A descriptor-name can be specified in the CALL, DESCRIBE, EXECUTE, FETCH,
and OPEN statements. When the host application is written in C, descriptor-name
can be a pointer variable with pointer notation, for example,

 Osqlptr

descriptor-name could be declared as

 sqlda Ooutsqlda;

and afterwards used in a statement like the following:

EXEC SQL DESCRIBE STMT1 INTO DESCRIPTOR :Ooutsqlda;

# The REXX SQLDA
# A REXX SQLDA consists of a set of REXX variables with a common stem. The
# stem must be a REXX variable name that contains no periods and is the same as
# the value of descriptor-name that you specify when you use the SQLDA in an SQL
# statement. DB2 does not support the INCLUDE SQLDA statement in REXX.

# Table 39 on page 527 shows the variable names in a REXX SQLDA. The values
# in the second column of the table are values that DB2 inserts into the SQLDA when
# the statement executes. Except where noted otherwise, the values in the third
# column of the table are values that the application must put in the SQLDA before
# the statement executes.

526 SQL Reference  



  SQLDA
 

# Table 39 (Page 1 of 2). Fields of a REXX SQLDA

# Variable name
# Usage in DESCRIBE
# and PREPARE INTO
# Usage in FETCH, OPEN,
# EXECUTE, and CALL

# stem.SQLD# The number of columns that are
# described in the SQLDA. Double
# that number if USING BOTH
# appears in the DESCRIBE or
# PREPARE INTO statement.
# Contains a 0 if the statement string
# is not a query.

# For DESCRIBE PROCEDURE, the
# number of result sets returned by
# the stored procedure. Contains a 0
# if no result sets are returned.

# The number of host variables that
# are used by the SQL statement.

# Each SQLDA contains stem.SQLD of the following variables. Therefore, 1<=n<=stem.SQLD. There is one occurrence
# of each variable for each column of the result table or host variable that is described by the SQLDA. This set of
# variables is equivalent to the SQLVAR structure in SQLDAs for other languages.

# stem.n.SQLTYPE# Indicates the data type of the
# column or parameter and whether
# it can contain null values. For a
# description of the type codes, see
# “SQLTYPE and SQLLEN” on
# page 523.

# Indicates the data type of the host
# variable and whether an indicator
# variable is provided. Host variables
# for datetime values must be
# character string variables. For
# FETCH, a datetime type code means
# a fixed-length character string. For a
# description of the type codes, see
# “SQLTYPE and SQLLEN” on
# page 523.

# stem.n.SQLLEN# For a column other than a
# DECIMAL or NUMERIC column,
# the length attribute of the column
# or parameter. For datetime data,
# the length of the string
# representation of the value. See
# “SQLTYPE and SQLLEN” on
# page 523 for a description of
# allowable values.

# For a host variable that does not
# have a decimal data type, the length
# attribute of the host variable. See
# “SQLTYPE and SQLLEN” on
# page 523 for a description of
# allowable values.

# stem.n.SQLLEN.SQLPRECISION# For a DECIMAL or NUMERIC
# column, the precision of the
# column or parameter.

# For a host variable with a decimal
# data type, the precision of the host
# variable.

# stem.n.SQLLEN.SQLSCALE# For a DECIMAL or NUMERIC
# column, the scale of the column or
# parameter.

# For a host variable with a decimal
# data type, the scale of the host
# variable.

# stem.n.SQLCCSID# For a string column or parameter,
# the CCSID of the column or
# parameter.

# For a string host variable, the CCSID
# of the host variable.

# stem.n.SQLLOCATOR# For DESCRIBE PROCEDURE, the
# value of a result set locator.
# Not used.

# stem.n.SQLDATA# Not used.# Before EXECUTE or OPEN, contains
# the value of an input host variable.
# The application must supply this
# value.

# After FETCH, contains the values of
# an output host variable.

  Appendix C. SQLCA and SQLDA 527



 SQLDA  
 

# Table 39 (Page 2 of 2). Fields of a REXX SQLDA

# Variable name
# Usage in DESCRIBE
# and PREPARE INTO
# Usage in FETCH, OPEN,
# EXECUTE, and CALL

# stem.n.SQLIND# Not used.# Before EXECUTE or OPEN, contains
# a negative number to indicate that
# the input host variable in
# stem.n.SQLDATA is null. The
# application must supply this value.

# After FETCH, contains a negative
# number if the value of the output
# host variable in stem.n.SQLDATA is
# null.

# stem.n.SQLNAME# The name of the nth column in the
# result table. For DESCRIBE
# PROCEDURE, contains the cursor
# name that is used by the stored
# procedure to return the result set.
# The values for SQLNAME appear
# in the order that the cursors were
# opened by the stored procedure.

# Not used.

528 SQL Reference  



  DB2 Catalog Tables
 

Appendix D. DB2 Catalog Tables

DB2 for OS/390 maintains a set of tables (in database DSNDB06) called the DB2
catalog. This appendix describes that catalog by describing the columns of each
catalog table.

The catalog tables describe such things as table spaces, tables, columns, indexes,
privileges, application plans, and packages. Authorized users can query the
catalog; however, it is primarily intended for use by DB2 and is therefore subject to
change. All catalog tables are qualified by SYSIBM. Do not use this qualifier for
user-defined tables.

The catalog tables are updated by DB2 during normal operations in response to
certain SQL statements, commands, and utilities.

Use as a Programming Interface

Not all catalog table columns are part of the general-use programming interface.
Whether a column is part of this interface is indicated in a column labeled “Use” in
the table that describes the column. The values that “Use” can assume are as
follows:

Value Meaning
G Column is part of the general-use programming interface
S Column is part of the product-sensitive interface
I Column is for internal use only
N Column is not used

For columns for which “Use” is N or I, the name of the column and its description
do not appear in the column's explanation.

Table Spaces and Indexes
The table below shows to what table spaces the catalog tables are assigned, and
what indexes they have. The pages that follow describe the columns in each table
arranged alphabetically by table name. The indexes are in ascending order, except
where noted.

 Copyright IBM Corp. 1982, 1997  529



 DB2 Catalog Tables  
 

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

 
Page

INDEX
SYSIBM. ...

 
INDEX FIELDS

SYSCOPY SYSCOPY  554 DSNUCH01 DBNAME.TSNAME.START_RBA.1

TIMESTAMP1

   DSNUCX01 DSNAME

     

SYSDBASE SYSCOLAUTH  546   

 SYSCOLUMNS  550 DSNDCX01 TBCREATOR.TBNAME.NAME

 SYSFIELDS  565   

 SYSFOREIGNKEYS  566   

 SYSINDEXES  567 DSNDXX01 CREATOR.NAME

   DSNDXX02 DBNAME.INDEXSPACE

   DSNDXX03 TBCREATOR.TBNAME.CREATOR.
NAME

 SYSINDEXPART  570 DSNDRX01 IXCREATOR.IXNAME.PARTITION

 SYSKEYS  573 DSNDKX01 IXCREATOR.IXNAME.COLNAME

     

 SYSRELS  593 DSNDLX01 REFTBCREATOR.REFTBNAME

 SYSSYNONYMS  599 DSNDYX01 CREATOR.NAME

 SYSTABAUTH  600 DSNATX01 GRANTOR

   DSNATX02 GRANTEE.TCREATOR.TTNAME.
GRANTEETYPE.UPDATECOLS.
ALTERAUTH.DELETEAUTH.
INDEXAUTH.INSERTAUTH.
SELECTAUTH.UPDATEAUTH.
CAPTUREAUTH.REFERENCESAUTH.

| REFCOLS

   DSNATX03 GRANTEE.GRANTEETYPE.COLLID
CONTOKEN

 SYSTABLEPART  603 DSNDPX01 DBNAME.TSNAME.PARTITION

 SYSTABLES  606 DSNDTX01 CREATOR.NAME

   DSNDTX02 DBID.OBID.CREATOR.NAME

 SYSTABLESPACE  610 DSNDSX01 DBNAME.NAME

     

SYSDBAUT SYSDATABASE  557 DSNDDH01 NAME

   DSNDDX02 GROUP_MEMBER

 SYSDBAUTH  559 DSNADH01 GRANTEE.NAME

   DSNADX01 GRANTOR.NAME

     

| SYSDDF| IPNAMES|  537| DSNFPX01| LINKNAME

|  | LOCATIONS|  538| DSNFCX01| LOCATION

|  | LULIST|  539| DSNFLX01| LINKNAME.LUNAME

|  |  |  | DSNFLX02| LUNAME

|  | LUMODES|  540| DSNFMX01| LUNAME.MODENAME

|  | LUNAMES|  541| DSNFNX01| LUNAME

|  | MODESELECT|  543| DSNFDX01| LUNAME.AUTHID1.PLANNAME1

|  | USERNAMES|  620| DSNFEX01| TYPE.AUTHID1.LINKNAME1

530 SQL Reference  



  DB2 Catalog Tables
 

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

 
Page

INDEX
SYSIBM. ...

 
INDEX FIELDS

SYSGPAUT SYSRESAUTH  594 DSNAGH01 GRANTEE.QUALIFIER.
NAME.OBTYPE

   DSNAGX01 GRANTOR.QUALIFIER.
NAME.OBTYPE

     

SYSGROUP SYSSTOGROUP  597 DSNSSH01 NAME

 SYSVOLUMES  619   

     

SYSPKAGE SYSPACKAGE  574 DSNKKX01 LOCATION.COLLID.NAME.
VERSION

   DSNKKX02 LOCATION.COLLID.NAME.
CONTOKEN

 SYSPACKAUTH  578 DSNKAX01 GRANTOR.LOCATION.COLLID.NAME

   DSNKAX02 GRANTEE.LOCATION.COLLID.
NAME.BINDAUTH.COPYAUTH.
EXECUTEAUTH

   DSNKAX03 LOCATION.COLLID.NAME

 SYSPACKDEP  579 DSNKDX01 DLOCATION.DCOLLID.DNAME.
DCONTOKEN

   DSNKDX02 BQUALIFIER.BNAME.BTYPE

 SYSPROCEDURES  590 DSNKCX01 PROCEDURE.AUTHID1.LUNAME1

 SYSPACKLIST  580 DSNKLX01 LOCATION.COLLID.NAME

   DSNKLX02 PLANNAME.SEQNO.LOCATION.
COLLID.NAME

 SYSPACKSTMT  581 DSNKSX01 LOCATION.COLLID.NAME.
CONTOKEN.SEQNO

 SYSPKSYSTEM  583 DSNKYX01 LOCATION.COLLID.NAME.
CONTOKEN.SYSTEM.ENABLE

 SYSPLSYSTEM  589 DSNKPX01 NAME.SYSTEM.ENABLE

     

SYSPLAN SYSDBRM  562   

 SYSPLAN  584 DSNPPH01 NAME

 SYSPLANAUTH  587 DSNAPH01 GRANTEE.NAME.EXECUTEAUTH

   DSNAPX01 GRANTOR

 SYSPLANDEP  588 DSNGGX01 BCREATOR.BNAME.BTYPE

 SYSSTMT  595   

     

SYSSTATS SYSCOLDIST  547 DSNTNX01 TBOWNER.TBNAME.NAME

 SYSCOLDISTSTATS  548 DSNTPX01 TBOWNER.TBNAME.NAME
PARTITION

 SYSCOLSTATS  549 DSNTCX01 TBOWNER.TBNAME.NAME
PARTITION

 SYSINDEXSTATS  572 DSNTXX01 OWNER.NAME.PARTITION

 SYSTABSTATS  613 DSNTTX01 OWNER.NAME.PARTITION

     

SYSSTR SYSSTRINGS  598 DSNSSX01 OUTCCSID.INCCSID.IBMREQD

 SYSCHECKS  545 DSNSCX01 TBOWNER.TBNAME.CHECKNAME

  Appendix D. DB2 Catalog Tables 531



 DB2 Catalog Tables  
 

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

 
Page

INDEX
SYSIBM. ...

 
INDEX FIELDS

 SYSCHECKDEP  544 DSNSDX01 TBOWNER.TBNAME.CHECKNAME
COLNAME

     

SYSUSER SYSUSERAUTH  614 DSNAUH01 GRANTEE

   DSNAUX02 GRANTOR

     

SYSVIEWS SYSVIEWDEP  617 DSNGGX02 BCREATOR.BNAME.BTYPE

 SYSVIEWS  618 DSNVVX01 CREATOR.NAME.SEQNO

Note: 

1. Index field is in descending order

SQL Statements Allowed on the Catalog
The following SQL statements can be used to change the value of certain options
for existing catalog indexes and table spaces, and to add indexes to any of the
catalog tables. 

SQL Statement Index Allowable Clauses and Usage Notes

ALTER INDEX IBM-defined Only these clauses are allowed:

CONVERT TO33

CLOSE
FREEPAGE
GBPCACHE
PCTFREE

# PIECESIZE

# ALTER TABLE#  # The only clause allowed is DATA CAPTURE
# CHANGES.

ALTER TABLESPACE  Only these clauses are allowed:

CLOSE
FREEPAGE
GBPCACHE
LOCKMAX
PCTFREE

CREATE INDEX User-created All clauses are allowed, except for:

CLOSE YES
CLUSTER
UNIQUE
DEFER YES (only on tables SYSINDEXES,

SYSINDEXPART, and SYSKEYS)

The only value allowed for BUFFERPOOL is
BP0.

You can create up to 100 indexes on the
catalog.

33 In a data sharing environment, the only allowable value to specify for SUBPAGES on the COVERT TO clause is 1.

532 SQL Reference  



  DB2 Catalog Tables
 

When using the clause CONVERT TO TYPE 1 to change the type of IBM-defined
indexes, regardless of the value you implicitly or explicitly specify for SUBPAGES,
the number of subpages is 1 for the following indexes:

SQL Statement Index Allowable Clauses and Usage Notes

ALTER INDEX User-created All clauses are allowed, except for:

BUFFERPOOL

DROP INDEX User-created All clauses are allowed.

DSNAPH01
DSNATX01
DSNATX02
DSNATX03
DSNDCX01
DSNDKX01
DSNDLX01
DSNDPX01
DSNDRX01
DSNDSX01
DSNDTX01

DSNDTX02
DSNDXX01
DSNDXX02
DSNDYX01

| DSNFCX01
| DSNFDX01
| DSNFEX01
| DSNFLX01
| DSNFLX02
| DSNFMX01
| DSNFNX01

| DSNFPX01
DSNGGX01
DSNGGX02
DSNKAX01
DSNKAX02
DSNKAX03
DSNKDX01
DSNKDX02
DSNKKX01
DSNKKX02
DSNKLX02

DSNKSX01
DSNSCX01
DSNSDX01
DSNTCX01
DSNTNX01
DSNTPX01
DSNTTX01
DSNTXX01
DSNVTH01
DSNVVX01

Reorganizing the Catalog
The REORG TABLESPACE utility can be run on all the table spaces in the catalog
database (DSNDB06) to reclaim unused or wasted space, which can affect
performance. The utility observes the PCTFREE and FREEPAGE values specified
in the ALTER INDEX statement for all the catalog indexes and the following table
spaces:

 � DSNDB06.SYSCOPY
|  � DSNDB06.SYSDDF

 � DSNDB06.SYSGPAUT
 � DSNDB06.SYSPKAGE
 � DSNDB06.SYSSTR
 � DSNDB06.SYSSTATS
 � DSNDB06.SYSUSER
 � DSNDB01.SCT02
 � DSNDB01.SPT01

For details on running REORG TABLESPACE, see Utility Guide and Reference.

  Appendix D. DB2 Catalog Tables 533



 DB2 Catalog Tables  
 

| New and Changed Catalog Tables
| Descriptions of the following catalog tables have been added:

|  � SYSIBM.IPNAMES
|  � SYSIBM.LOCATIONS
|  � SYSIBM.LULIST
|  � SYSIBM.LUNAMES
|  � SYSIBM.LUMODES
|  � SYSIBM.MODESELECT
|  � SYSIBM.SYSDUMMY1
|  � SYSIBM.USERNAMES

| The following tables have new or revised columns, column values, or column
| descriptions to support the new function in DB2 Version 5:

| Table Name| New Column| Revised Column

| SYSCOLAUTH| PRIVILEGE
| GRANTEDTS
|  

| SYSCOLDIST| TYPE
| CARDF
| COLGROUPCOLNO
| NUMCOLUMNS
| FREQUENCYF

| FREQUENCY
| NAME

| SYSCOLDISTSTATS| TYPE
| CARDF
| COLGROUPCOLNO
| NUMCOLUMNS
| FREQUENCYF

| FREQUENCY
| NAME

| SYSCOLUMNS| COLCARDF| COLCARD
| DEFAULT
| DEFAULTVALUE

| SYSCOPY|  | STYPE

| SYSDATABASE| CREATEDTS
| ALTEREDTS
| ENCODING_SCHEME
| SBCS_CCSID
| DBCS_CCSID
| MIXED_CCSID

|  

| SYSDBAUTH| GRANTEDTS|  

| SYSDBRM| PRECOMPTS| HOSTLANG

| SYSINDEXES| FIRSTKEYCARDF
| FULLKEYCARDF
| CREATEDTS
| ALTEREDTS
| PIECESIZE

| UNIQUERULE
| FIRSTKEYCARD
| FULLKEYCARD

| SYSINDEXPART| FAROFFPOSF
| NEAROFFPOSF
| CARDF

| CARD
| LIMITKEY
| FAROFFPOS
| NEAROFFPOS

| SYSPACKAGE| REOPTVAR
| DEFERPREPARE
| KEEPDYNAMIC

| VALID
| HOSTLANG
| REMOTE
| IBMREQD

| SYSPACKDEP|  | BTYPE

| SYSPACKSTMT| STATUS|  

534 SQL Reference  



  DB2 Catalog Tables
 

| Table Name| New Column| Revised Column

| SYSPLAN| BOUNDTS
| REOPTVAR
| KEEPDYNAMIC

| VALID
| IBMREQD

| SYSPLANAUTH| GRANTEDS|  

| SYSPLANDEP|  | BTYPE

| SYSPROCEDURES| RESULT_SETS
| WLM_ENV
| PGM_TYPE
| EXTERNAL_SECURITY
| COMMIT_ON_RETURN

| LUNAME

| SYSRELS|  | DELETERULE
| IXNAME
| IXOWNER

| SYSRESAUTH| GRANTEDTS|  

| SYSSTMT| STATUS|  

| SYSSTOGROUP| STATSTIME
| CREATEDTS
| ALTEREDTS

|  

| SYSSTRINGS|  | TRANSTYPE

| SYSSYNONYMS| CREATEDTS|  

| SYSTABAUTH| REFCOLS
| GRANTEDTS
| UPDATECOLS

| SYSTABLEPART| CHECKRID5B| LIMITKEY
| CHECKRID

| SYSTABLES| CARDF
| CHECKRID5B
| ENCODING_SCHEME

| TYPE
| DBNAME
| TSNAME
| DBID
| OBID
| CARD
| NPAGES
| PCTPAGES
| IBMREQD
| PARENTS
| CHILDREN
| KEYCOLUMNS
| STATUS
| CHECKRID
| AUDITING
| DATACAPTURE
| RBA1
| RBA2
| PCTROWCOMP
| STATSTIME
| CHECKS

| SYSTABLESPACE| TYPE
| CREATEDTS
| ALTEREDTS
| ENCODING_SCHEME
| SBCS_CCSID
| DBCS_CCSID
| MIXED_CCSID
| MAXROWS
| LOCKPART

| IBMREQD

| SYSUSERAUTH| GRANTEDTS
| CREATETMTABAUTH
|  

| SYSVIEWS|  | CHECK
| IBMREQD

  Appendix D. DB2 Catalog Tables 535



 DB2 Catalog Tables  
 

| Table Name| New Column| Revised Column

| SYSVTREE|  | IBMREQD

536 SQL Reference  



  SYSIBM.IPNAMES
 

|  SYSIBM.IPNAMES Table
| Defines the remote DRDA servers DB2 can access using TCP/IP. Rows in this
| table can be inserted, updated, and deleted.

| Column Name| Data Type| Description| Use

| LINKNAME| CHAR(8)
| NOT NULL
| The value specified in this column must match the value
| specified in the LINKNAME column of the associated row in
| SYSIBM.LOCATIONS.

| G

| SECURITY_OUT| CHAR(1)
| NOT NULL
| WITH DEFAULT 'A'

| This column defines the DRDA security option that is used when
| local DB2 SQL applications connect to any remote server
| associated with this TCP/IP host:

| A The option is “already verified.” Outbound connection
| requests contain an authorization ID and no
| password. The authorization ID used for an outbound
| request is either the DB2 user's authorization ID or a
| translated ID, depending upon the value of the
| USERNAMES column.

| R The option is “RACF PassTicket.” Outbound
| connection requests contain a userid and a RACF
| PassTicket. The value specified in the LINKNAME
| column is used as the RACF PassTicket application
| name for the remote server.

| The authorization ID used for an outbound request is
| either the DB2 user's authorization ID or a translated
| ID, depending upon the value of the USERNAMES
| column.

| P The option is “password.” Outbound connection
| requests contain an authorization ID and a password.
| The password is obtained from the
| SYSIBM.USERNAMES table.

| The USERNAMES column must specify “O.”

| G

| USERNAMES| CHAR(1)
| NOT NULL WITH
| DEFAULT

| This column controls outbound authorization ID translation.
| Outbound translation is performed when an authorization ID is
| sent by DB2 to a remote server.

| O An outbound ID is subject to translation. Rows in the
| SYSIBM.USERNAMES table are used to perform ID
| translation.

| No translation or “come from” checking is performed
| on inbound IDs.

| blank No translation occurs.

| G

| IBMREQD| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether the row came from the basic machine-readable
| material (MRM) tape:

| N No
| Y Yes

| G

| IPADDR| VARCHAR(254)
| NOT NULL WITH
| DEFAULT

| This column contains the IP address or domain name of a
| remote TCP/IP host. The IPADDR column must be specified as
| follows:

| � If the IPADDR contains a left justified character string
| containing four numeric values delimited by decimal points,
| DB2 assumes the value is an IP address in dotted decimal
| format. For example, '123.456.78.91' would be interpreted
| as a dotted decimal IP address.

| � All other values are interpreted as a TCP/IP domain name,
| which can be resolved by the TCP/IP gethostbyname socket
| call. TCP/IP domain names are not case sensitive.

| G

  Appendix D. DB2 Catalog Tables 537



 SYSIBM.LOCATIONS  
 

|  SYSIBM.LOCATIONS Table
| Contains a row for every accessible remote server. The row associates a
| LOCATION name with the TCP/IP or SNA network attributes for the remote server.
| Requesters are not defined in this table. Rows in this table can be inserted,
| updated, and deleted.

| Column Name| Data Type| Description| Use

| LOCATION| CHAR(16)
| NOT NULL
| A unique location name for the accessible server. This is the
| name by which the remote server is known to local DB2 SQL
| applications.

| G

| LINKNAME| CHAR(8)
| NOT NULL
| Identifies the VTAM or TCP/IP attributes associated with this
| location. For any LINKNAME specified, one or both of the
| following statements must be true:

| � A row exists in SYSIBM.LUNAMES whose LUNAME
| matches the value specified in the SYSIBM.LOCATIONS
| LINKNAME column. This row specifies the VTAM
| communication attributes for the remote location.

| � A row exists in SYSIBM.IPNAMES whose LINKNAME
| matches the value specified in the SYSIBM.LOCATIONS
| LINKNAME column. This row specifies the TCP/IP
| communication attributes for the remote location.

| G

| IBMREQD| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether the row came from the basic machine-readable
| material (MRM) tape:

| N No
| Y Yes

| G

| PORT| CHAR(32)
| NOT NULL WITH
| DEFAULT

| TCP/IP is used for outbound DRDA connections when the
| following statement is true:

| � A row exists in SYSIBM.IPNAMES, where the LINKNAME
| column matches the value specified in the
| SYSIBM.LOCATIONS LINKNAME column.

| If the above mentioned row is found, the value of the PORT
| column is interpreted as follows:

| � If PORT is blank, the default DRDA port (446) is used.

| � If PORT is nonblank, the value specified for PORT can take
| one of two forms:

| – If the value in PORT is left justified with 1-5 numeric
| characters, the value is assumed to be the TCP/IP port
| number of the remote database server.

| – Any other value is assumed to be a TCP/IP service
| name, which can be converted to a TCP/IP port number
| using the TCP/IP getservbyname socket call. TCP/IP
| service names are not case sensitive.

| G

| TPN| VARCHAR(64)
| NOT NULL
| WITH DEFAULT

| Used only when the local DB2 begins an SNA conversation with
| another server. When used, TPN indicates the SNA LU 6.2
| transaction program name (TPN) that will allocate the
| conversation. A length of zero for the column indicates the
| default TPN. For DRDA conversations, this is the DRDA default,
| which is X'07F6C4C2'. For DB2 private protocol conversations,
| this column is not used.

| For an SQL/DS server, TPN should contain the resource ID of
| the SQL/DS machine.

| G

538 SQL Reference  



  SYSIBM.LULIST
 

|  SYSIBM.LULIST Table
| Allows multiple LU names to be specified for a given LOCATION. Insert rows into
| this table when you want to define a remote DB2 data sharing group. The same
| value for LUNAME column cannot appear in both the SYSIBM.LUNAMES table and
| the SYSIBM.LULIST table. Rows in this table can be inserted, updated, and
| deleted.

| Column Name| Data Type| Description| Use

| LINKNAME| CHAR(8)
| NOT NULL
| The value of the LINKNAME column in the
| SYSIBM.LOCATIONS table with which this row is associated.
| This is also the value of the LUNAME column in the
| SYSIBM.LUNAMES table. The values of the other columns in
| the SYSIBM.LUNAMES row apply to the LU identified by the
| LUNAME column in this row of SYSIBM.LULIST.

| G

| LUNAME| CHAR(8)
| NOT NULL
| The VTAM logical unit name (LUNAME) of the remote database
| system. This LUNAME must not exist in the LUNAME column of
| SYSIBM.LUNAMES.

| G

| IBMREQD| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether the row came from the basic machine-readable
| material (MRM) tape:

| N No
| Y Yes

| G

  Appendix D. DB2 Catalog Tables 539



 SYSIBM.LUMODES  
 

|  SYSIBM.LUMODES Table
| Each row of the table provides VTAM with conversation limits for a specific
| combination of LUNAME and MODENAME. The table is accessed only during the
| initial conversation limit negotiation between DB2 and a remote LU. This negotiation
| is called change-number-of-sessions (CNOS) processing. Rows in this table can
| be inserted, updated, and deleted.

| Column Name| Data Type| Description| Use

| LUNAME| CHAR(8)
| NOT NULL
# LU name of the other system involved in the CNOS processing.| G

| MODENAME| CHAR(8)
| NOT NULL
| Name of a logon mode description in the VTAM logon mode
| table.
| G

| CONVLIMIT| SMALLINT
| NOT NULL
# Maximum number of active conversations between the local
# DB2 and the other system for this mode. Used to override the
| number in the DSESLIM parameter of the VTAM APPL
| definition statement for this mode.

| G

| IBMREQD| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether the row came from the basic machine-readable
| material (MRM) tape:

| N No
| Y Yes

| G

540 SQL Reference  



  SYSIBM.LUNAMES
 

|  SYSIBM.LUNAMES Table
| The table must contain a row for each remote SNA client or server that
| communicates with DB2. Rows in this table can be inserted, updated, and deleted.

| Column Name| Data Type| Description| Use

| LUNAME| CHAR(8)
| NOT NULL
| Name of the LU for one or more accessible systems. A blank
| string indicates the row applies to clients whose LU name is not
| specifically defined in this table.

| All other column values for a given row in this table are for
| clients and servers associated with the row's LU name.

| G

| SYSMODENAME| CHAR(8)
| NOT NULL
| WITH DEFAULT

| Mode used to establish inter-system conversations. A blank
| indicates the default mode IBMDB2LM (DB2 private protocol
| access).

| G

| SECURITY_IN| CHAR(1)
| NOT NULL WITH
| DEFAULT 'A'

| This column defines the security options that are accepted by
| this DB2 when an SNA client connects to DB2:

| V The option is “verify.” An incoming connection
| request must include one of the following: a userid
| and password, a userid and RACF PassTicket, or a
| DCE security ticket.

| A The option is “already verified.” A request does not
| need a password, although a password is checked if
| it is sent.

| With this option, an incoming connection request is
| accepted if it includes any of the following: a userid,
| a userid and password, a userid and RACF
| PassTicket, or a DCE security ticket.

| If the USERNAMES column contains 'I' or 'B',
| RACF is not invoked to validate incoming connection
| requests that contain only a userid.

| G

| SECURITY_OUT| CHAR(1)
| NOT NULL WITH
| DEFAULT 'A'

| This column defines the security option that is used when local
| DB2 SQL applications connect to any remote server associated
| with this LUNAME:

| A The option is “already verified.” Outbound connection
| requests contain an authorization ID and no
| password.

| The authorization ID used for an outbound request is
| either the DB2 user's authorization ID or a translated
| ID, depending upon the value of the USERNAMES
| column.

| R The option is “RACF PassTicket.” Outbound
| connection requests contain a userid and a RACF
| PassTicket. The server's LU name is used as the
| RACF PassTicket application name.

| The authorization ID used for an outbound request is
| either the DB2 user's authorization ID or a translated
| ID, depending upon the value of the USERNAMES
| column.

| P The option is “password.” Outbound connection
| requests contain an authorization ID and a password.
| The password is obtained from the
| SYSIBM.USERNAMES table or RACF, depending
| upon the value specified in the ENCRYPTPWDS
| column.

| The USERNAMES column must specify 'B' or 'O'.

| G

  Appendix D. DB2 Catalog Tables 541



 SYSIBM.LUNAMES  
 

| Column Name| Data Type| Description| Use

| ENCRYPTPSWDS| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| This column only applies to DB2 for OS/390 partners. It is
| provided to support connectivity to prior releases of DB2 that
| are unable to support RACF PassTickets.

| For connections between DB2 Version 5 and later, we
| recommend using the SECURITY_OUT='R' option instead of
| the ENCRYPTPSWDS='Y' option.

| N No, passwords are not in internal RACF encrypted
| format. This is the default.

| Y Yes for outbound requests, the encrypted password
| is extracted from RACF and sent to the server. For
| inbound requests, the password is treated as
| encrypted.

| G

| MODESELECT| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether to use the SYBIBM.MODESELECT table:

| N Use default modes: IBMDB2LM (for DB2 private
| protocol) and IBMRDB (for DRDA).

| Y Searches SYSIBM.MODESELECT for appropriate
| mode name.

| G

| USERNAMES| CHAR(1)
| NOT NULL WITH
| DEFAULT

| This column controls inbound and outbound authorization ID
| translation, as well as “come from” checking.

| Inbound translation and “come from” checking are performed
| when an authorization ID is received from a remote client.

| Outbound translation is performed when an authorization ID is
| sent by DB2 to a remote server.

| When I, O, or B is specified in this column, rows in the
| SYSIBM.USERNAMES table are used to perform ID translation.

| I An inbound ID is subject to translation and “come
| from” checking.

| No translation is performed on outbound IDs.

| O No translation or “come from” checking is performed
| on inbound IDs.

| An outbound ID is subject to translation.

| B An inbound ID is subject to translation and “come
| from” checking.

| An outbound ID is subject to translation.

| blank No translation occurs.

| G

| GENERIC| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Indicates whether DB2 should use its real LU name or generic
| LU name to identify itself to the partner LU, which is identified
| by this row.

| N The real VTAM LU name of this DB2 subsystem
| Y The VTAM generic LU name of this DB2 subsystem

| G

| IBMREQD| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether the row came from the basic machine-readable
| material (MRM) tape:

| N No
| Y Yes

| G

542 SQL Reference  



  SYSIBM.MODESELECT
 

|  SYSIBM.MODESELECT Table
| Associates a mode name with any conversation created to support an outgoing
| SQL request. Each row represents one or more combinations of LUNAME,
| authorization ID, and application plan name. Rows in this table can be inserted,
| updated, and deleted.

| Column Name| Data Type| Description| Use

| AUTHID| CHAR(8)
| NOT NULL
| WITH DEFAULT

| Authorization ID of the SQL request. Blank (the default)
| indicates that the MODENAME specified for the row is to apply
| to all authorization IDs.

| G

| PLANNAME| CHAR(8)
| NOT NULL
| WITH DEFAULT

| Plan name associated with the SQL request. Blank (the default)
| indicates that the MODENAME specified for the row is to apply
| to all plan names.

| G

| LUNAME| CHAR(8)
| NOT NULL
| LU name associated with the SQL request.| G

| MODENAME| CHAR(8)
| NOT NULL
| Name of the logon mode in the VTAM logon mode table to be
| used in support of the outgoing SQL request. If blank,
| IBMDB2LM is used for DB2 private protocol connections and
| IBMRDB is used for DRDA connections.

| G

| IBMREQD| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether the row came from the basic machine-readable
| material (MRM) tape:

| N No
| Y Yes

| G

  Appendix D. DB2 Catalog Tables 543



 SYSIBM.SYSCHECKDEP  
 

 SYSIBM.SYSCHECKDEP Table
Contains one row for each reference to a column in a table check constraint.

Column Name Data Type Description Use

TBOWNER CHAR(8)
NOT NULL

The authorization ID of the owner of the table on which the table
check constraint is defined.

G

TBNAME VARCHAR(18)
NOT NULL

The name of the table on which the check constraint is defined. G

CHECKNAME VARCHAR(128)
NOT NULL

The name of the check constraint. G

COLNAME VARCHAR(18)
NOT NULL

The name of the column referenced by the table check
constraint.

G

IBMREQD CHAR(1)
 NOT NULL

Whether the row came from the basic machine readable
material (MRM) tape:

N No
Y Yes

G

544 SQL Reference  



  SYSIBM.SYSCHECKS
 

 SYSIBM.SYSCHECKS Table
Contains one row for each table check constraint.

Column Name Data Type Description Use

TBOWNER CHAR(8)
NOT NULL

The authorization ID of the owner of the table on which the table
check constraint is defined.

G

CREATOR CHAR(8)
NOT NULL

The authorization ID of the creator of the table check constraint. G

DBID SMALLINT
NOT NULL

The internal identifier of the database for the table check
constraint.

S

OBID SMALLINT
NOT NULL

The internal identifier of the table check constraint. S

TIMESTAMP TIMESTAMP
NOT NULL

The time when the table check constraint was created. G

RBA CHAR(6)
FOR BIT DATA
NOT NULL

The log RBA when the table check constraint was created. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine readable
material (MRM) tape:

N No
Y Yes

G

TBNAME VARCHAR(18)
NOT NULL

The name of the table on which the check constraint is defined G

CHECKNAME VARCHAR(128)
NOT NULL

The table check constraint name. G

CHECKCONDITION VARCHAR(3800)
NOT NULL

The text of the table check constraint. G

  Appendix D. DB2 Catalog Tables 545



 SYSIBM.SYSCOLAUTH  
 

 SYSIBM.SYSCOLAUTH Table
| Records the UPDATE or REFERENCES privileges held by users on individual

columns of a table or view.

Column Name Data Type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. Could
also be PUBLIC or PUBLIC followed by an asterisk34.

G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privilege or the name
of an application plan or package that uses the privilege.
PUBLIC for a grant to PUBLIC. PUBLIC followed by an asterisk
for a grant to PUBLIC AT ALL LOCATIONS.

G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:

blank GRANTEE is an authorization ID
P GRANTEE is an application plan or a package. It

is a package if COLLID is not blank.

G

CREATOR CHAR(8)
NOT NULL

The authorization ID of the owner of the table or view on which
the update privilege is held.

G

TNAME VARCHAR(18)
NOT NULL

The name of the table or view. G

 CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privilege was granted, in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privilege was granted, in the form hhmmssth. G

COLNAME VARCHAR(18)
NOT NULL

Name of the column to which the UPDATE privilege applies. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine readable
material (MRM) tape:

N No
Y Yes

G

 CHAR(16)
NOT NULL WITH
DEFAULT

Not used N

COLLID CHAR(18)
NOT NULL WITH
 DEFAULT

If GRANTEE is a package, its collection name. Otherwise,
blank.

G

CONTOKEN CHAR(8)
NOT NULL WITH
 DEFAULT

If GRANTEE is a package, the consistency token of the DBRM
from which the package was derived. Otherwise, blank.

S

| PRIVILEGE| CHAR(1)
| NOT NULL WITH
| DEFAULT

| Indicates which privilege this row describes:

| R Row pertains to the REFERENCES privilege.
| blank Row pertains to the UPDATE privilege.

| G

| GRANTEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the GRANT statement was executed.| G

34 PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For the conditions where GRANTOR can be
PUBLIC or PUBLIC*, see Section 3 (Volume 1) of Administration Guide .

546 SQL Reference  



  SYSIBM.SYSCOLDIST
 

 SYSIBM.SYSCOLDIST Table
Contains one or more rows for the first key column of an index key. Rows in this
table can be inserted, updated, and deleted.

Column Name Data Type Description Use

|  | SMALLINT
| NOT NULL
| Not used| N

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape.

N No
Y Yes

G

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table containing the column. G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(18)
NOT NULL

| Name of the column. If NUMCOLUMNS is greater than 1, this
| name identifies the first column name of the set of columns
| associated with the statistics.

G

COLVALUE VARCHAR(254)
NOT NULL
FOR BIT DATA

Contains the data of a frequently occurring value. If the value
has a non-character data type, the data might not be printable.

S

| TYPE| CHAR(1)
| NOT NULL WITH
| DEFAULT 'F'

| The type of statistics gathered:

| C Cardinality
| F Frequent Value

| G

| CARDF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| The number of distinct values for the column group. This
| number is valid only for TYPE C statistics.
| S

| COLGROUPCOLNO| VARCHAR(254)
| NOT NULL WITH
| DEFAULT

| Identifies the set of columns associated with the statistics. If the
| statistics are only associated with a single column, the field
| contains a zero length. Otherwise, the field is an array of
| SMALLINT column numbers with a dimension equal to the value
| in NUMCOLUMNS. This is an updatable column.

| S

| NUMCOLUMNS| SMALLINT
| NOT NULL WITH
| DEFAULT 1

| Identifies the number of columns associated with the statistics.| G

| FREQUENCYF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| Gives the percentage of rows in the table with the value
| specified in COLVALUE when the number is multiplied by 100.
| For example, a value of 1 indicates 100%. A value of .153
| indicates 15.3%.

| G

  Appendix D. DB2 Catalog Tables 547



 SYSIBM.SYSCOLDISTSTATS  
 

 SYSIBM.SYSCOLDISTSTATS Table
Contains zero or more rows per partition for the first key column of a partitioned
index. Rows are inserted when RUNSTATS scans index partitions of the partitioned
index. No row is inserted if the index is a nonpartitioned index. Rows in this table
can be inserted, updated, and deleted.

Column Name Data Type Description Use

|  | SMALLINT
| NOT NULL
| Not used| N

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape.

N No
Y Yes

G

PARTITION SMALLINT
NOT NULL

Partition number for the table space containing the table in
which the column is defined.

G

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(18)
NOT NULL

| Name of the column. If NUMCOLUMNS is greater than 1, this
| name identifies the first column name of the set of columns
| associated with the statistics.

G

COLVALUE VARCHAR(254)
NOT NULL
 FOR BIT DATA

Contains the data of a frequently occurring value. If the value
has a non-character data type, the data may not be printable.

S

| TYPE| CHAR(1)
| NOT NULL WITH
| DEFAULT 'F'

| The type of statistics gathered:

| C Cardinality
| F Frequent Value

| G

| CARDF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| The number of distinct values for the column group. This
| number is valid only for TYPE C statistics.
| S

| COLGROUPCOLNO| VARCHAR(254)
| NOT NULL WITH
| DEFAULT

| Identifies the set of columns associated with the statistics. If the
| statistics are only associated with a single column, the field
| contains a zero length. Otherwise, the field is an array of
| SMALLINT column numbers with a dimension equal to the value
| in NUMCOLUMNS. This is an updatable column.

| S

| NUMCOLUMNS| SMALLINT
| NOT NULL WITH
| DEFAULT 1

| Identifies the number of columns associated with the statistics.| G

| FREQUENCYF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| Gives the percentage of rows in the table with the value
| specified in COLVALUE when the number is multiplied by 100.
| For example, a value of 1 indicates 100%. A value of .153
| indicates 15.3%.

| G

548 SQL Reference  



  SYSIBM.SYSCOLSTATS
 

 SYSIBM.SYSCOLSTATS Table
Contains partition statistics for selected columns. For each column, a row exists for
each partition in the table. Rows are inserted when RUNSTATS collects either
indexed column statistics or non-indexed column statistics for a partitioned table
space. No row is inserted if the table space is nonpartitioned.

Column Name Data Type Description Use

HIGHKEY CHAR(8)
NOT NULL
FOR BIT DATA

Highest value of the column within the partition. Blank if
statistics have not been gathered. If the column has a
non-character data type, the data might not be printable. This is
an updatable column.

S

HIGH2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second highest value of the column within the partition. Blank if
statistics have not been gathered. If the column has a
non-character data type, the data might not be printable.

S

LOWKEY CHAR(8)
NOT NULL
FOR BIT DATA

Lowest value of the column within the partition. Blank if statistics
have not been gathered. If the column has a non-character data
type, the data might not be printable. This is an updatable
column.

S

LOW2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second lowest value of the column within the partition. Blank if
statistics have not been gathered. If the column has a
non-character data type, the data might not be printable. This is
an updatable column.

S

 INTEGER
NOT NULL

Number of distinct column values in the partition. This is an
updatable column.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when
# the last invocation of RUNSTATS updated the statistics. If the
# value is '0001-01-02.00.00.00.000000', RUNSTATS should be
# run to update the statistics before they are used. This is an

updatable column.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape.

N No
Y Yes

G

PARTITION SMALLINT
NOT NULL

Partition number for the table space containing the table in
which the column is defined.

G

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(18)
NOT NULL

Name of the column. G

COLCARDDATA VARCHAR(1000)
NOT NULL
FOR BIT DATA

| Internal use only I

  Appendix D. DB2 Catalog Tables 549



 SYSIBM.SYSCOLUMNS  
 

 SYSIBM.SYSCOLUMNS Table
Contains one row for every column of each table and view.

Column Name Data Type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the column. G

TBNAME VARCHAR(18)
NOT NULL

Name of the table or view which contains the column. G

TBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table or view that contains
the column.

G

COLNO SMALLINT
NOT NULL

Numeric place of the column in the table or view; for example 4
(out of 10). 0 in an additional row if the definition of the table is
incomplete (all required unique indexes have not been created).

G

COLTYPE CHAR(8)
NOT NULL

The type of the column specified in the definition of the column:

INTEGER Large integer
SMALLINT Small integer
FLOAT Floating-point
CHAR Fixed-length character string
VARCHAR Varying-length character string
LONGVAR Varying-length character string
DECIMAL Decimal
GRAPHIC Fixed-length graphic string
VARG Varying-length graphic string
LONGVARG Varying-length graphic string
DATE Date
TIME Time
TIMESTMP Timestamp

Whether a column described as VARCHAR, LONGVAR, VARG,
or LONGVARG is a long string column or not depends on its
length attribute.

G

LENGTH SMALLINT
NOT NULL

The length attribute of the column or, in the case of a decimal
column, its precision. The number does not include the internal
prefixes used to record actual length and null state, where
applicable.

INTEGER 4
SMALLINT 2
FLOAT 4 or 8
CHAR Length of string
VARCHAR Maximum length of string
LONGVAR Maximum length of string
DECIMAL Precision of number
GRAPHIC Number of DBCS characters
VARG Maximum number of DBCS characters
LONGVARG Maximum number of DBCS characters
DATE 4
TIME 3
TIMESTMP 10

G

SCALE SMALLINT
NOT NULL

Scale of decimal data. Zero if not a decimal column. G

NULLS CHAR(1)
NOT NULL

Whether the column can contain null values:

N No
Y Yes

The value can be N for a view column that is derived from an
expression or a function. Nevertheless, such a column allows
nulls when it is referenced in an outer select list.

G

|  | INTEGER
| NOT NULL
| Not used| N

550 SQL Reference  



  SYSIBM.SYSCOLUMNS
 

Column Name Data Type Description Use

HIGH2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second highest value of the column. Blank if statistics have not
been gathered. If the column has a non-character data type, the
data might not be printable. This is an updatable column.

S

LOW2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second lowest value of the column. Blank if statistics have not
been gathered. If the column has a non-character data type, the
data might not be printable. This is an updatable column.

S

UPDATES CHAR(1)
NOT NULL

Whether the column can be updated:

N No
Y Yes

The value is N if the column is:

� Part of the key of a partitioned index
� Derived from a function or expression.

The value can be Y for columns of a read-only view.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

REMARKS VARCHAR(254)
NOT NULL

A character string provided by the user with the COMMENT ON
statement.

G

  Appendix D. DB2 Catalog Tables 551



 SYSIBM.SYSCOLUMNS  
 

Column Name Data Type Description Use

DEFAULT CHAR(1)
NOT NULL

Default indicator:

N The column has no default value.

Y If the NULLS column is Y, the column has a default
value of null.

If the NULLS column is N, the default value depends
on the data type of the column.

Data Type Default Value
Numeric 0
Fixed-length string Blanks
Varying-length string A string length of 0
Date The current date
Time The current time
Timestamp The current timestamp

B The default value depends on the data type of the
column.

Data Type Default Value
Numeric 0
Fixed-length string Blanks
Varying-length string A string length of 0
Date The current date
Time The current time
Timestamp The current timestamp

1 The column has a default value that is the string
constant found in the DEFAULTVALUE column of
this table row.

2 The column has a default value that is the
floating-point constant found in the DEFAULTVALUE
column of this table row.

3 The column has a default value that is the decimal
constant found in the DEFAULTVALUE column of
this table row.

4 The column has a default value that is the integer
constant found in the DEFAULTVALUE column of
this table row.

| 5 The column has a default value that is the hex string
# found in the DEFAULTVALUE column of this table
# row.

S The column has a default value that is the value of
the SQLID of the process at the time a default value
is used.

U The column has a default value that is the value of
the USER special register at the time a default value
is used.

G

KEYSEQ SMALLINT
NOT NULL

The column's numeric position within the table's primary key. 0 if
it is not part of a primary key.

G

FOREIGNKEY CHAR(1)
NOT NULL

Applies to character columns only, where it indicates the
subtype of the data. A value of B indicates BIT data, and if
value of the field MIXED DATA on installation panel DSNTIPF
is:

� NO, any other value indicates SBCS data
� YES, an S indicates SBCS and any other value indicates

MIXED.

This is an updatable column.

G

552 SQL Reference  



  SYSIBM.SYSCOLUMNS
 

Column Name Data Type Description Use

FLDPROC CHAR(1)
NOT NULL

Whether the column has a field procedure:

N No
Y Yes

This column is blank for views.

G

LABEL VARCHAR(30)
NOT NULL

The column label provided by the user with a LABEL ON
statement; otherwise it is an empty string.

G

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics. The

# default value is '0001-01-01.00.00.00.000000'. If the value is
# '0001-01-02.00.00.00.000000', RUNSTATS should be run to
# update the statistics before they are used. This is an updatable

column.

G

DEFAULTVALUE| VARCHAR(512)
NOT NULL WITH
DEFAULT

# This field is meaningful only if the column being described is for
# a table (the TYPE column of the associated SYSTABLES row is
# T for table or G for global temporary table).

# When the DEFAULT column is 1, 2, 3, 4, or 5, this field contains
the default value of the column.

# If the default value is a string constant or a hexadecimal
# constant (DEFAULT is 1 or 5, respectively), the value is stored

without delimiters, except for a graphic string constant which will
be enclosed by the shift-out and shift-in characters.

If the default value is a numeric constant (DEFAULT is 2, 3, or
4), the value is stored as specified by the user, including sign
and decimal point representation, as appropriate for the
constant. When the default column is S or U and the default
value was specified with the definition of a new column on an
ALTER TABLE statement, this field contains the value of the
CURRENT SQLID or USER special register at the time of the
ALTER statement.

G

| COLCARDF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| Estimated number of distinct values in the column. The value is
| -1 if statistics have not been gathered. This is an updatable
| column.

| S

  Appendix D. DB2 Catalog Tables 553



 SYSIBM.SYSCOPY  
 

 SYSIBM.SYSCOPY Table
Contains information needed for recovery.

Column Name Data Type Description Use

DBNAME CHAR(8)
NOT NULL

Name of the database. G

TSNAME CHAR(8)
NOT NULL

Name of the table space. G

DSNUM INTEGER
NOT NULL

Data set number within the table space. For partitioned table
spaces, this value corresponds to the partition number for a
single partition copy, or 0 for a copy of an entire partitioned
table space.

G

ICTYPE CHAR(1)
NOT NULL

Operation type:

# A ALTER TABLE
F COPY FULL YES
I COPY FULL NO
P RECOVER TOCOPY or RECOVER TORBA (partial

recovery point)
Q QUIESCE
R LOAD REPLACE LOG(YES)
S LOAD REPLACE LOG(NO)
W REORG LOG(NO)
X REORG LOG(YES)
Y LOAD LOG(NO)
Z LOAD LOG(YES)
T TERM UTILITY command (terminated utility)

G

ICDATE CHAR(6)
NOT NULL

Date of the entry in the form yymmdd. G

START_RBA CHAR(6)
NOT NULL
FOR BIT DATA

A 48-bit positive integer containing the LRSN of a point in the
DB2 recovery log. (The LRSN is the RBA in a non-data-sharing
environment.)

� For ICTYPE I or F, the starting point for all updates since
the image copy was taken

� For ICTYPE P, the point after the log-apply phase of
point-in-time recovery

� For ICTYPE Q, the point after all data sets have been
successfully quiesced

� For ICTYPE R or S, the end of the log before the start of
the LOAD utility and before any data is changed

� For ICTYPE T, the end of the log when the utility is
terminated

� For other values of ICTYPE, the end of the log before the
start of the RELOAD phase of the LOAD or REORG utility.

G

FILESEQNO INTEGER
NOT NULL

Tape file sequence number of the copy. G

DEVTYPE CHAR(8)
NOT NULL

Device type the copy is on. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

DSNAME CHAR(44)
NOT NULL

For ICTYPE P (RECOVER TOCOPY only), I, or F, DSNAME
contains the data set name. Otherwise, DSNAME contains the
name of the database and table space in the form,
database-nametable-space-name, or DSNAME is blank for any
row migrated from a DB2 release prior to Version 5.

G

554 SQL Reference  



  SYSIBM.SYSCOPY
 

Column Name Data Type Description Use

ICTIME CHAR(6)
NOT NULL

The time at which this row was inserted, in the form hhmmss.
The insertion takes place after the completion of the operation
that the row represents. ICTIME is blank for any row which was
migrated from Version 1 Release 1 of DB2.

G

SHRLEVEL CHAR(1)
NOT NULL

SHRLEVEL parameter on COPY (for ICTYPE F or I only):

C Change
R Reference
blank Does not describe an image copy or was migrated from

Version 1 Release 1 of DB2.

G

DSVOLSER VARCHAR(1784)
NOT NULL

The volume serial numbers of the data set. A list of 6-byte
numbers separated by commas. Blank if the data set is
cataloged.

G

TIMESTAMP TIMESTAMP
NOT NULL WITH
DEFAULT

The date and time when the row was inserted. This is the date
and time recorded in ICDATE and ICTIME. The use of
TIMESTAMP is recommended over that of ICDATE and
ICTIME, because the latter two columns may not be supported
in later DB2 releases.

G

ICBACKUP CHAR(2)
NOT NULL WITH
DEFAULT

Specifies the type of image copy contained in the data set:

blank LOCALSITE primary copy (first data set named with
COPYDDN)

LB LOCALSITE backup copy (second data set named with
COPYDDN)

RP RECOVERYSITE primary copy (first data set named
with RECOVERYDDN)

RB RECOVERYSITE backup copy (second data set named
with RECOVERYDDN)

G

ICUNIT CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the media that the image copy data set is stored on:

D DASD
T Tape
blank Medium is neither tape nor DASD, or the image copy is

from a DB2 release prior to Version 2 Release 3, or
ICTYPE is neither “I” nor “F.”

G

STYPE CHAR(1)
NOT NULL WITH
DEFAULT

# When ICTYPE=A, the length of a VARCHAR column in a table
# was increased, the value is V.

When ICTYPE=F, the values are:

C DFSMS concurrent copy
blank DB2 image copy

| R LOAD REPLACE(YES)
| S LOAD REPLACE(NO)
| W REORG LOG(NO)
| X REORG LOG(YES)

| The MERGECOPY utility, when used to merge an embedded
| copy with subsequent incremental copies, will also produce a
| record that will contain ICTYPE=F and the STYPE of the original
| image copy (R, S, W, or X).

When ICTYPE=P and the operation is RECOVER TORBA
LOGONLY, the value is L.

When ICTYPE=Q and option WRITE(YES) is in effect when the
quiesce point is taken, the value is W.

When ICTYPE=T, this field indicates which COPY utility was
terminated by the TERM UTILITY command or the START
DATABASE command with the ACCESS(FORCE) option. The
values are:

F COPY FULL YES
I COPY FULL NO

For other values of ICTYPE, the value is blank.

G

  Appendix D. DB2 Catalog Tables 555



 SYSIBM.SYSCOPY  
 

Column Name Data Type Description Use

PIT_RBA CHAR(6)
NOT NULL WITH
DEFAULT
FOR BIT DATA

When ICTYPE=P, this field contains the LRSN for the point in
the DB2 log. (The LRSN is the RBA in a non-data-sharing
environment). For other ICTYPEs, this field is X'000000000000'.

When ICTYPE=P, this field indicates the stop location of a
point-in-time recovery. If a record contains ICTYPE=P and
PIT_RBA=X'000000000000', the copy pending state is active
and a full image copy is required. If such a record is
encountered during fallback processing of RECOVER, the
recover job fails, and a point-in-time recovery is required.
PIT_RBA can be zero if the point-in-time recovery is completed
by the fall-back processing of RECOVER, or if ICTYPE=P from
a prior release of DB2.

G

GROUP_MEMBER CHAR(8)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2 subsystem that
performed the operation. This column is blank if the DB2
subsystem was not in a DB2 data sharing environment at the
time the operation was performed.

G

556 SQL Reference  



  SYSIBM.SYSDATABASE
 

 SYSIBM.SYSDATABASE Table
Contains one row for each database, except for database DSNDB01.

Column Name Data Type Description Use

NAME CHAR(8)
NOT NULL

Database name. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the database. G

STGROUP CHAR(8)
NOT NULL

Name of the default storage group of the database; blank for
a system database.

G

BPOOL CHAR(8)
NOT NULL

Name of the default buffer pool of the database; blank for a
system database.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database. S

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes
E V2R3 dependency indicator; not from MRM tape
G V4 dependency indicator; not from MRM tape

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
database.

G

ROSHARE CHAR(1)
NOT NULL WITH
DEFAULT

Whether this database is shared, through shared read-only
data, with other DB2 subsystems. Value can be:

blank Not shared
O Shared. Local DB2 subsystem is the owner.
R Shared. Local DB2 subsystem is a read-only

user.

G

TIMESTAMP TIMESTAMP
NOT NULL WITH
DEFAULT

The time the database became shared on the owning system
through shared read-only data. If the database is not shared,
the value is 0001-01-01-00.00.00.000000

G

TYPE CHAR(1)
NOT NULL WITH
DEFAULT

Type of database.

blank Database is not a work file database.
W Database is a work file database. The database is

DSNDB07 or it was created with the WORKFILE
clause and used as a work file database by a
member of a DB2 data sharing group.

G

GROUP_MEMBER CHAR(8)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2 subsystem
that uses this work file database. This column is blank if the
work file database was not created in a DB2 data sharing
environment, or if the database is not a work file database as
indicated by the TYPE column.

G

| CREATEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the CREATE statement was executed for the
| database. For DSNDB04 and DSNDB06, the value is
| '1985-04-01.00.00.00.000000'.

| G

| ALTEREDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the most recent ALTER DATABASE statement
| was applied. If no ALTER DATABASE statement has been
| applied, ALTEREDTS has the value of CREATEDTS.

| G

| ENCODING_SCHEME| CHAR(1)
| NOT NULL WITH
| DEFAULT 'E'

| Default encoding scheme for the database.

| E EBCDIC
| A ASCII
| blank For DSNDB04 and work file databases.

| G

| SBCS_CCSID| INTEGER
| NOT NULL WITH
| DEFAULT

| Default SBCS CCSID for the database. For databases
| created in a DB2 release prior to Version 5, the value is 0.
| G

  Appendix D. DB2 Catalog Tables 557



 SYSIBM.SYSDATABASE  
 

Column Name Data Type Description Use

| DBCS_CCSID| INTEGER
| NOT NULL WITH
| DEFAULT

| Default DBCS CCSID for the database. For databases
| created in a DB2 release prior to Version 5, the value is 0.
| G

| MIXED_CCSID| INTEGER
| NOT NULL WITH
| DEFAULT

| Default mixed CCSID for the database. For databases
| created in a DB2 release prior to Version 5, the value is 0.
| G

558 SQL Reference  



  SYSIBM.SYSDBAUTH
 

 SYSIBM.SYSDBAUTH Table
Records the privileges held by users over databases. 

Column Name Data Type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. Could
also be PUBLIC or PUBLIC followed by an asterisk.35

G

GRANTEE CHAR(8)
NOT NULL

Application ID of the user who holds the privilege. Could also be
PUBLIC for a grant to PUBLIC.

G

NAME CHAR(8)
NOT NULL

Database name. G

 CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privileges were granted; in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privileges were granted; in the form hhmmssth. G

 CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.

blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM

G

CREATETABAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create tables within the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATETSAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create table spaces within the
database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DBADMAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has DBADM authority over the
database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DBCTRLAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has DBCTRL authority over the
database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DBMAINTAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has DBMAINT authority over the
database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

35 PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For the conditions where GRANTOR can be
PUBLIC or PUBLIC*, see Section 3 (Volume 1) of Administration Guide.

  Appendix D. DB2 Catalog Tables 559



 SYSIBM.SYSDBAUTH  
 

Column Name Data Type Description Use

DISPLAYDBAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the DISPLAY command for
the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DROPAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the ALTER DATABASE and
DROP DATABASE statement:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

IMAGCOPYAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the COPY, MERGECOPY,
MODIFY, and QUIESCE utilities on the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

LOADAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the LOAD utility to load tables
in the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

REORGAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the REORG utility to
reorganize table spaces and indexes in the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

RECOVERDBAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the RECOVER and REPORT
utilities on table spaces in the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

REPAIRAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the DIAGNOSE and REPAIR
utilities on table spaces and indexes in the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

STARTDBAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the START command against
the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

STATSAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the CHECK and RUNSTATS
utilities against the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

STOPAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the STOP command against
the database:

blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

560 SQL Reference  



  SYSIBM.SYSDBAUTH
 

Column Name Data Type Description Use

| GRANTEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the GRANT statement was executed.| G

  Appendix D. DB2 Catalog Tables 561



 SYSIBM.SYSDBRM  
 

 SYSIBM.SYSDBRM Table
Contains one row for each DBRM of each application plan.

Column Name Data Type Description Use

NAME CHAR(8)
NOT NULL

Name of the DBRM. G

TIMESTAMP CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token. S

PDSNAME CHAR(44)
NOT NULL

Name of the partitioned data set of which the DBRM is a
member.

G

PLNAME CHAR(8)
NOT NULL

Name of the application plan of which this DBRM is a part. G

PLCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the application plan. G

PRECOMPTIME CHAR(8)
NOT NULL

Time of precompilation in the form hhmmssth.

If the LEVEL precompiler option is used, then this value does
not represent the precompile time.

G

PRECOMPDATE CHAR(6)
NOT NULL

Date of precompilation in the form yymmdd.

If the LEVEL precompiler option is used, then this value does
not represent the precompile date.

G

QUOTE CHAR(1)
NOT NULL

SQL string delimiter for the SQL statements in the DBRM:

N Apostrophe
Y Quotation mark

G

COMMA CHAR(1)
NOT NULL

Decimal point representation for SQL statements in the DBRM:

N Period
Y Comma

G

HOSTLANG CHAR(1)
NOT NULL

The host language used:

B Assembler language
C OS/VS COBOL
D C
F FORTRAN
P PL/I
2 VS COBOL II or IBM COBOL Release 1 (formerly called

COBOL/370)
| 3 IBM COBOL (Release 2 or subsequent releases)
| 4 C++

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

CHARSET CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether the system CCSID for SBCS data was 290
(Katakana) when the program was precompiled.

A No
K Yes

G

MIXED CHAR(1)
NOT NULL WITH
DEFAULT

Indicates if mixed data was in effect when the application
program was precompiled (for more on when mixed data is in
effect, see “Character Strings” on page 57):

N No
Y Yes

G

562 SQL Reference  



  SYSIBM.SYSDBRM
 

Column Name Data Type Description Use

DEC31 CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether DEC31 was in effect when the program was
precompiled (for more on when DEC31 is in effect, see
“Arithmetic with Two Decimal Operands” on page 94):

blank No
Y Yes

G

VERSION VARCHAR(64)
NOT NULL WITH
DEFAULT

Version identifier for the DBRM. G

| PRECOMPTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the DBRM was precompiled.| G

  Appendix D. DB2 Catalog Tables 563



 SYSIBM.SYSDUMMY1  
 

|  SYSIBM.SYSDUMMY1 Table
| Contains one row. The table is used for SQL statements in which a table reference
| is required, but the contents of the table are not important.

| Column Name| Data Type| Description| Use

| IBMREQD| CHAR(1)
| NOT NULL
| Whether the row came from the basic machine-readable
| material (MRM) tape:

| N No
| Y Yes

| G

564 SQL Reference  



  SYSIBM.SYSFIELDS
 

 SYSIBM.SYSFIELDS Table
Contains one row for every column that has a field procedure. 

Column Name Data Type Description Use

TBCREATOR CHAR(8)
 NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

COLNO SMALLINT
NOT NULL

Numeric place of this column in the table. G

NAME VARCHAR(18)
NOT NULL

Name of the column. G

FLDTYPE CHAR(8)
NOT NULL

Data type of the encoded values in the field 36.

INTEGER Large integer
SMALLINT Small integer
FLOAT Floating-point
CHAR Fixed-length character string
VARCHAR Varying-length character string
DECIMAL Decimal
GRAPHIC Fixed-length graphic string
VARG Varying-length graphic string

G

LENGTH SMALLINT
NOT NULL

The length attribute of the field; or, for a decimal field, its
precision36. The number does not include the internal prefixes
that can be used to record actual length and null state.

INTEGER 4
SMALLINT 2
FLOAT 8
CHAR Length of string
VARCHAR Maximum length of string
DECIMAL Precision of number
GRAPHIC Number of DBCS characters
VARG Maximum number of DBCS characters

G

SCALE SMALLINT
NOT NULL

Scale if FLDTYPE is DECIMAL; otherwise, 0. G

FLDPROC CHAR(8)
NOT NULL

For a row describing a field procedure, the name of the
procedure36.

G

WORKAREA SMALLINT
NOT NULL

For a row describing a field procedure, the size, in bytes, of the
work area required for the encoding and decoding of the
procedure36.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

EXITPARML SMALLINT
NOT NULL

For a row describing a field procedure, the length of the field
procedure parameter value block36.

G

PARMLIST VARCHAR(254)
NOT NULL

For a row describing a field procedure, the parameter list
following FIELDPROC in the statement that created the column,
with insignificant blanks removed36.

G

EXITPARM VARCHAR(1530)
NOT NULL
FOR BIT DATA

For a row describing a field procedure, the parameter value
block of the field procedure (the control block passed to the field
procedure when it is invoked)36.

G

36 Some columns might contain statistical values from a prior release.

  Appendix D. DB2 Catalog Tables 565



 SYSIBM.SYSFOREIGNKEYS  
 

 SYSIBM.SYSFOREIGNKEYS Table
Contains one row for every column of every foreign key.

Column Name Data Type Description Use

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

RELNAME CHAR(8)
NOT NULL

Constraint name for the constraint for which the column is part
of the foreign key.

G

COLNAME VARCHAR(18)
NOT NULL

Name of the column. G

COLNO SMALLINT
NOT NULL

Numeric place of the column in its table. G

COLSEQ SMALLINT
NOT NULL

Numeric place of the column in the foreign key. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

566 SQL Reference  



  SYSIBM.SYSINDEXES
 

 SYSIBM.SYSINDEXES Table
Contains one row for every index.

Column Name Data Type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the index. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

TBNAME VARCHAR(18)
NOT NULL

Name of the table on which the index is defined. G

TBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table. G

UNIQUERULE CHAR(1)
NOT NULL

Whether the index is unique:

D No (duplicates are allowed)
U Yes

| P Yes, and it is a primary index (As in prior releases of DB2,
| a value of P is used for primary keys that are used to
| enforce a referential constraint.)

C Yes, and it is an index used to enforce UNIQUE constraint
N Yes, and it is defined with UNIQUE WHERE NOT NULL

| R Yes, and it is an index used to enforce the uniqueness of a
| non-primary parent key

G

COLCOUNT SMALLINT
NOT NULL

The number of columns in the key. G

CLUSTERING CHAR(1)
NOT NULL

Whether CLUSTER was specified when the index was created:

N No
Y Yes

G

CLUSTERED CHAR(1)
NOT NULL

Whether the table is actually clustered by the index:

N No: a significant number of rows are not in clustering order,
or statistics were not gathered.

Y Yes: most of the rows are in clustering order.

The entry can be changed by the RUNSTATS utility.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database. S

OBID SMALLINT
NOT NULL

Internal identifier of the index fan set descriptor. S

ISOBID SMALLINT
NOT NULL

Internal identifier of the index page set descriptor. S

DBNAME CHAR(8)
NOT NULL

Name of the database that contains the index. G

INDEXSPACE CHAR(8)
NOT NULL

Name of the index space. G

|  | INTEGER
| NOT NULL
| Not used| N

|  | INTEGER
| NOT NULL
| Not used| N

NLEAF INTEGER
NOT NULL

Number of active leaf pages in the index. The value is -1 before
statistics are gathered. This is an updateable column.

S

NLEVELS SMALLINT
NOT NULL

Number of levels in the index tree. If the index is partitioned, it
is the maximum of the number of levels in the index tree for all
the partitions. Before statistics are gathered, the value is -1.
This is an updateable column.

S

BPOOL CHAR(8)
NOT NULL

Name of the buffer pool used for the index. G

  Appendix D. DB2 Catalog Tables 567



 SYSIBM.SYSINDEXES  
 

Column Name Data Type Description Use

PGSIZE SMALLINT
NOT NULL

Size, in bytes, of the subpages in the index: 256, 512, 1024,
2048, or 4096

G

ERASERULE CHAR(1)
NOT NULL

Whether the data sets are erased when dropped. The value is
meaningless if the index is partitioned.

N No
Y Yes

G

DSETPASS CHAR(8)
NOT NULL

The password for the data sets of the index. G

CLOSERULE CHAR(1)
NOT NULL

Whether the data sets are candidates for closure when the limit
on the number of open data sets is reached.

N No
Y Yes

G

SPACE INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the index, as
determined by the last execution of the STOSPACE utility. The
value is 0 if the index is not related to a storage group, or if
STOSPACE has not been run. If the index space is partitioned,
the value is the total kilobytes of DASD storage allocated to all
partitions that are defined in a storage group.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes
C V2R1 dependency indicator; not from MRM tape
D V2R2 dependency indicator; not from MRM tape
E V2R3 dependency indicator; not from MRM tape
G V4 dependency indicator; not from MRM tape

G

CLUSTERRATIO SMALLINT
NOT NULL WITH
DEFAULT

Percentage of rows that are in clustering order. For a partitioned
index, it is the weighted average of all index partitions in terms
of the number of rows in the partition. 0 before statistics are
gathered. This column is updateable.

S

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the index. G

 SMALLINT
NOT NULL

# Internal use only# I

 SMALLINT
NOT NULL

Not used N

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics. The
default value is '0001-01-01.00.00.00.000000'. This is an
updateable column.

G

INDEXTYPE CHAR(1)
NOT NULL WITH
DEFAULT

The index type.

2 Type 2 index
blank Type 1 index

G

| FIRSTKEYCARDF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| Number of distinct values of the first key column. This number is
| an estimate if updated while collecting statistics on a single
| partition. The value is -1 before statistics are gathered. This is
| an updateable column.

| S

| FULLKEYCARDF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| Number of distinct values of the key. The value is -1 before
| statistics are gathered. This is an updateable column.
| S

| CREATEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the CREATE statement was executed for the index.
| If the index was created in a DB2 release prior to Version 5, the
| value is '0001-01-01.00.00.00.000000'.

| G

568 SQL Reference  



  SYSIBM.SYSINDEXES
 

Column Name Data Type Description Use

| ALTEREDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the most recent ALTER INDEX statement was
| executed for the index. If no ALTER INDEX statement has been
| applied, ALTEREDTS has the value of CREATEDTS. If the
| index was created in a DB2 release prior to Version 5, the value
| is '0001-01-01.00.00.00.000000'.

| G

| PIECESIZE| INTEGER
| NOT NULL
| WITH DEFAULT

| Maximum size of a data set storage piece (in kilobytes, KB) that
| will be used by DB2 for non-partitioned indexes.

| The value of this column is one of the following:

|  256
|  512
|  1024
#  2048
|  4096
|  8192
|  16384
|  32768
|  65536
|  131072
|  262144
|  524288
|  1048576
|  2097152
|  4194304
|  0

| The value of zero (0) indicates that this index is a partitioning
| index or that this index was created in a DB2 release prior to
| Version 5.

| G

  Appendix D. DB2 Catalog Tables 569



 SYSIBM.SYSINDEXPART  
 

 SYSIBM.SYSINDEXPART Table
Contains one row for each nonpartitioned index and one row for each partition of a
partitioned index.

Column Name Data Type Description Use

PARTITION SMALLINT
NOT NULL

Partition number; 0 if index is not partitioned. G

IXNAME VARCHAR(18)
NOT NULL

Name of the index. G

IXCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

PQTY INTEGER
NOT NULL

# Primary space allocation in units of 4KB storage blocks. For
# user-managed data sets, the value is set to the primary space
# allocation only if RUNSTATS INDEX with UPDATE(ALL) or
# UPDATE(SPACE) is executed; otherwise, the value is zero.

G

SQTY SMALLINT
NOT NULL

# Secondary space allocation in units of 4KB storage blocks. For
# user-managed data sets, the value is set to the secondary
# space allocation only if RUNSTATS INDEX with UPDATE(ALL)
# or UPDATE(SPACE) is executed; otherwise, the value is zero.

G

STORTYPE CHAR(1)
NOT NULL

Type of storage allocation:

E explicit and STORNAME names an integrated catalog
facility catalog

I implicit and STORNAME names a storage group

G

STORNAME CHAR(8)
NOT NULL

Name of storage group or integrated catalog facility catalog
used for space allocation.

G

VCATNAME CHAR(8)
NOT NULL

Name of integrated catalog facility catalog used for space
allocation.

G

|  INTEGER
 NOT NULL

| Not used S

|  | INTEGER
| NOT NULL
| Not used| S

LEAFDIST INTEGER
NOT NULL

100 times the average number of leaf pages between
successive active leaf pages of the index. The value is -1 if
statistics have not been gathered.

S

|  | INTEGER
| NOT NULL
| Not used| S

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

LIMITKEY VARCHAR(512)
NOT NULL
FOR BIT DATA

| The high value of the limit key of the partition in an internal
| format. 0 if the index is not partitioned.

If any column of the key has a field procedure, the internal
format is the encoded form of the value.

S

FREEPAGE SMALLINT
NOT NULL

The number of pages that are loaded before a page is left as
free space.

G

PCTFREE SMALLINT
NOT NULL

The percentage of each subpage or nonleaf page that is left as
free space.

G

SPACE INTEGER
NOT NULL WITH
DEFAULT

Number of kilobytes of DASD storage allocated to the index
space partition, as determined by the last execution of the

# STOSPACE or RUNSTATS utility. The value is 0 if STOSPACE
# or RUNSTATS has not been run. The value is updated by
# STOSPACE if the index is related to a storage group. The value
# is updated by RUNSTATS if the utility is executed as
# RUNSTATS INDEX with UPDATE(ALL) or UPDATE(SPACE).

G

570 SQL Reference  



  SYSIBM.SYSINDEXPART
 

Column Name Data Type Description Use

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics. The
default value is '0001-01-01.00.00.00.000000'.

G

 CHAR(1)
NOT NULL

Not used N

GBPCACHE CHAR(1)
NOT NULL WITH
DEFAULT

Group buffer pool cache option specified for this index or index
partition.

blank Only changed pages are cached in the group buffer
pool.

A Changed and unchanged pages are cached in the
group buffer pool.

G

| FAROFFPOSF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| Number of referred to rows far from optimal position because of
| an insert into a full page. The value is -1 if statistics have not
| been gathered.

| S

| NEAROFFPOSF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| Number of referred to rows near, but not at optimal position,
| because of an insert into a full page.
| S

| CARDF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| Number of rows referred to by the index or partition. The value
| is -1 if statistics have not been gathered.
| S

  Appendix D. DB2 Catalog Tables 571



 SYSIBM.SYSINDEXSTATS  
 

 SYSIBM.SYSINDEXSTATS Table
Contains one row for each partition of a partitioned index.

Column Name Data Type Description Use

FIRSTKEYCARD INTEGER
NOT NULL

For the index partition, number of distinct values of the first key
column. This is an updateable column.

S

FULLKEYCARD INTEGER
NOT NULL

For the index partition, number of distinct values of the key. This
is an updateable column.

S

NLEAF INTEGER
NOT NULL

Number of active leaf pages in the index partition. This is an
updateable column.

S

NLEVELS SMALLINT
NOT NULL

Number of levels in the partition index tree. This is an
updateable column.

S

 SMALLINT
NOT NULL

Not used N

 SMALLINT
NOT NULL

Not used N

CLUSTERRATIO SMALLINT
NOT NULL

For the index partition, the percentage of rows that are in
clustering order. 0 before statistics are gathered. This is an
updateable column.

G

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics. This is
an updateable column.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape.

N No
Y Yes

G

PARTITION SMALLINT
NOT NULL

Partition number of the index. G

OWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

NAME VARCHAR(18)
NOT NULL

Name of the index. G

KEYCOUNT INTEGER
NOT NULL

Total number of rows in the partition. This is an updateable
column.

S

572 SQL Reference  



  SYSIBM.SYSKEYS
 

 SYSIBM.SYSKEYS Table
Contains one row for each column of an index key.

Column Name Data Type Description Use

IXNAME VARCHAR(18)
NOT NULL

Name of the index. G

IXCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

COLNAME VARCHAR(18)
NOT NULL

Name of the column of the key. G

COLNO SMALLINT
NOT NULL

Numeric position of the column in the table; for example, 4 (out
of 10).

G

COLSEQ SMALLINT
NOT NULL

Numeric position of the column in the key; for example, 4 (out of
4).

G

ORDERING CHAR(1)
NOT NULL

Order of the column in the key:

A Ascending
D Descending

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

  Appendix D. DB2 Catalog Tables 573



 SYSIBM.SYSPACKAGE  
 

 SYSIBM.SYSPACKAGE Table
Contains a row for every package. 

Column Name Data Type Description Use

LOCATION CHAR(16)
NOT NULL

Always contains blanks S

COLLID CHAR(18)
NOT NULL

Name of the package collection. G

NAME CHAR(8)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL

Consistency token for the package. For a package derived from
a DB2 DBRM, this is either:

� The “level” as specified by the LEVEL option when the
package's program was precompiled

� The timestamp indicating when the package's program was
precompiled, in an internal format.

S

OWNER CHAR(8)
NOT NULL

Authorization ID of the package owner. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the creator of the package version. G

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the package was created. G

BINDTIME TIMESTAMP
NOT NULL

Timestamp indicating when the package was last bound. G

QUALIFIER CHAR(8)
NOT NULL

Implicit qualifier for the unqualified table, view, index, and alias
names in the static SQL statements of the package.

G

PKSIZE INTEGER
NOT NULL

Size of the base section37 of the package, in bytes. G

AVGSIZE INTEGER
NOT NULL

Average size, in bytes, of those sections37 of the plan that
contain SQL statements processed at bind time.

G

SYSENTRIES SMALLINT
NOT NULL

Number of enabled or disabled entries for this package in
SYSIBM.SYSPKSYSTEM. A value of 0 if all types of
connections are enabled.

G

VALID CHAR(1)
NOT NULL

Whether the package is valid:

A The description of the table or base table of a view
referenced by the package was changed by the ALTER
TABLE statement. The change did not require the
invalidation of the package.

| H The description of the table or base table of a view
| referenced by the package was changed by the ALTER
| TABLE statement. The change will invalidate the package
| for a DB2 release prior to Version 5.

N No
Y Yes

G

OPERATIVE CHAR(1)
NOT NULL

Whether the package can be allocated:

N No; an explicit BIND or REBIND is required before the
package can be allocated.

Y Yes

G

37 Packages are divided into sections. The base section of the package must be in the EDM pool during the entire time the package
is executing. Other sections of the package, corresponding roughly to sets of related SQL statements, are brought into the pool as
needed.

574 SQL Reference  



  SYSIBM.SYSPACKAGE
 

Column Name Data Type Description Use

VALIDATE CHAR(1)
NOT NULL

Whether validity checking can be deferred until run time:

B All checking must be performed at bind time.
R Validation is done at run time for tables, views, and

privileges that do not exist at bind time.

G

ISOLATION CHAR(1)
NOT NULL

Isolation level when the package was last bound or rebound

R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
blank Not specified, and therefore at the level specified for the

plan executing the package
U UR (uncommitted read)

G

RELEASE CHAR(1)
NOT NULL

The value used for RELEASE when the package was last
bound or rebound:

C Value used was COMMIT.
D Value used was DEALLOCATE.
blank Not specified, and therefore the value specified for the

plan executing the package.

G

EXPLAIN CHAR(1)
NOT NULL

EXPLAIN option specified for the package; that is, whether
information on the package's statements was added to the
owner of the PLAN_TABLE table:

N No
Y Yes

G

QUOTE CHAR(1)
NOT NULL

SQL string delimiter for SQL statements in the package:

N Apostrophe
Y Quotation mark

G

COMMA CHAR(1)
NOT NULL

Decimal point representation for SQL statements in package:

N Period
Y Comma

G

HOSTLANG CHAR(1)
NOT NULL

Host language for the package's DBRM:

B Assembler language
C OS/VS COBOL
D C
F FORTRAN
P PL/I

| 2 VS COBOL II or IBM COBOL Release 1 (formerly
| called COBOL/370)
| 3 IBM COBOL (Release 2 or subsequent releases)
| 4 C++

blank For remotely bound packages

G

CHARSET CHAR(1)
NOT NULL

Indicates whether the system CCSID for SBCS data was 290
(Katakana) when the program was precompiled:

K Yes
A No

G

MIXED CHAR(1)
NOT NULL

Indicates if mixed data was in effect when the package's
program was precompiled (for more on when mixed data is in
effect, see “Character Strings” on page 57):

N No
Y Yes

G

DEC31 CHAR(1)
NOT NULL

Indicates whether DEC31 was in effect when the package's
program was precompiled (for more on when DEC31 is in effect,
see “Arithmetic with Two Decimal Operands” on page 94):

N No
Y Yes

G

  Appendix D. DB2 Catalog Tables 575



 SYSIBM.SYSPACKAGE  
 

Column Name Data Type Description Use

DEFERPREP CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the package was
bound or rebound:

A Data currency is required for all cursors. Inhibit blocking
for all cursors.

B Data currency is not required for ambiguous cursors.
C Data currency is required for ambiguous cursors.
blank The package was created before the CURRENTDATA

option was available.

G

SQLERROR CHAR(1)
NOT NULL

Indicates the SQLERROR option on the most recent
subcommand that bound or rebound the package:

C CONTINUE
N NOPACKAGE

G

REMOTE CHAR(1)
NOT NULL

Source of the package:

C Package was created by BIND COPY.
| D Package was created by BIND COPY with the
| OPTIONS(COMMAND) option.

K The package was copied from a package that was originally
bound on behalf of a remote requester.

| L The package was copied with the OPTIONS(COMMAND)
| option from a package that was originally bound on behalf
| of a remote requester.

N Package was locally bound from a DBRM.
Y Package was bound on behalf of a remote requester.

G

PCTIMESTAMP TIMESTAMP
NOT NULL

Date and time the application program was precompiled, or
0001-01-01-00.00.00.000000 if the LEVEL precompiler option
was used, or if the package came from a non-DB2 location.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine readable
material (MRM) tape:

N No
Y Yes
B V1R3 dependency indicator; not from MRM tape
C V2R1 dependency indicator; not from MRM tape
D V2R2 dependency indicator; not from MRM tape
E V2R3 dependency indicator; not from MRM tape
F V3R1 dependency indicator; not from MRM tape
G V4 dependency indicator; not from MRM tape

| H V5 dependency indicator; not from MRM tape

G

VERSION VARCHAR(64)
NOT NULL

Version identifier for the package G

PDSNAME VARCHAR(44)
NOT NULL

For a locally bound package, the name of the PDS (library) in
which the package's DBRM is a member. For a locally copied
package, the value in SYSPACKAGE.PDSNAME for the source
package. Otherwise, the product signature of the bind requester
followed by one of the following:

� The requester's location name if the product is DB2
� Otherwise, the requester's LU name enclosed in angle

brackets; for example, “<LUSQLDS>.”

G

DEGREE CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the package was last bound:

ANY DEGREE(ANY)
1 or blank DEGREE(1). Blank if the package was migrated.

G

GROUP_MEMBER CHAR(8)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2 subsystem that
performed the most recent bind. This column is blank if the DB2
subsystem was not in a DB2 data sharing environment when
the bind was performed.

G

576 SQL Reference  



  SYSIBM.SYSPACKAGE
 

Column Name Data Type Description Use

DYNAMICRULES CHAR(1)
NOT NULL WITH
DEFAULT

B Dynamic SQL statements are handled like static SQL
statements at run time.

R Dynamic SQL statements are handled like dynamic
SQL statements at run time.

blank DYNAMICRULES is not specified for the package. The
package uses the DYNAMICRULES value of the plan to
which the package is appended at execution time.

G

| REOPTVAR| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether the access path is determined again at execution time
| using input variable values.

| N Bind option NOREOPT(VARS) indicates that the access
| path is determined at bind time.
| Y Bind option REOPT(VARS) indicates that the access
| path is determined at execution time for SQL
| statements with variable values.

| G

| DEFERPREPARE| CHAR(1)
| NOT NULL WITH
| DEFAULT

| Whether PREPARE processing is deferred until OPEN is
| executed.

| N Bind option NODEFER(PREPARE) indicates that
| PREPARE processing is not deferred until OPEN is
| executed.
| Y Bind option DEFER(PREPARE) indicates that
| PREPARE processing is deferred until OPEN is
| executed.
| blank Bind option not specified for the package. It is inherited
| from the plan.

| G

| KEEPDYNAMIC| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether prepared dynamic statements are to be purged at each
| commit point.

| N The bind option is KEEPDYNAMIC(NO). Prepared
| dynamic SQL statements are destroyed at commit.
| Y The bind option is KEEPDYNAMIC(YES). Prepared
| dynamic SQL statements are kept past commit.

| G

  Appendix D. DB2 Catalog Tables 577



 SYSIBM.SYSPACKAUTH  
 

 SYSIBM.SYSPACKAUTH Table
Records the privileges held by users over packages.

Column Name Data Type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privilege. Could
also be PUBLIC or PUBLIC followed by an asterisk38.

G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privileges, the name
of a plan that uses the privileges or PUBLIC for a grant to
PUBLIC.

G

LOCATION CHAR(16)
NOT NULL

Always contains blanks S

COLLID CHAR(18)
NOT NULL

Collection name for the package or packages on which the
privilege was granted.

G

NAME CHAR(8)
NOT NULL

Name of the package on which the privileges are held. An
asterisk (*) if the privileges are held on all packages in a
collection.

G

 CHAR(8)
NOT NULL

Not used N

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the privilege was granted. G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:

blank Authorization ID
P Application plan

G

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.

blank Not applicable
# A PACKADM (on collection *)

C DBCTL
D DBADM
L SYSCTRL
M DBMAINT

# P PACKADM (on a specific collection)
S SYSADM

G

BINDAUTH CHAR(1)
NOT NULL

Whether GRANTEE can use the BIND and REBIND
subcommands against the package:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

COPYAUTH CHAR(1)
NOT NULL

Whether GRANTEE can COPY the package:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

EXECUTEAUTH CHAR(1)
NOT NULL

Whether GRANTEE can execute the package:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine readable
material (MRM) tape:

N No
Y Yes

G

38 PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For the conditions where GRANTOR can be
PUBLIC or PUBLIC*, see Section 3 (Volume 1) of Administration Guide .

578 SQL Reference  



  SYSIBM.SYSPACKDEP
 

 SYSIBM.SYSPACKDEP Table
Records the dependencies of packages on local tables, views, synonyms, table
spaces, indexes, and aliases.

Column Name Data Type Description Use

BNAME VARCHAR(18)
NOT NULL

The name of an object that a package depends on. G

BQUALIFIER CHAR(8)
NOT NULL

If BNAME identifies a table space, the name of its database.
Otherwise, the authorization ID of the owner of BNAME.

G

BTYPE CHAR(1)
NOT NULL

Type of object identified by BNAME and BQUALIFIER:

A Alias
I Index

| P Partitioned table space
R Table space
S Synonym
T Table
V View

G

DLOCATION CHAR(16)
NOT NULL

Always contains blanks S

DCOLLID CHAR(18)
NOT NULL

Name of the package collection G

DNAME CHAR(8)
NOT NULL

Name of the package G

DCONTOKEN CHAR(8)
NOT NULL

Consistency token for the package. This is either:

� The “level” as specified by the LEVEL option when the
package's program was precompiled

� The timestamp indicating when the package's program was
precompiled, in an internal format.

S

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine readable
material (MRM) tape:

N No
Y Yes

G

  Appendix D. DB2 Catalog Tables 579



 SYSIBM.SYSPACKLIST  
 

 SYSIBM.SYSPACKLIST Table
Contains one or more rows for every local application plan bound with a package
list. Each row represents a unique entry in the plan's package list.

Column Name Data Type Description Use

PLANNAME CHAR(8)
NOT NULL

Name of the application plan G

SEQNO SMALLINT
NOT NULL

Sequence number of the entry in the package list G

LOCATION CHAR(16)
NOT NULL

Location of the package. Blank if this is local. An asterisk (*)
indicates location to be determined at run time.

G

COLLID CHAR(18)
NOT NULL

Collection name for the package. An asterisk (*) indicates that
the collection name is determined at run time.

G

NAME CHAR(8)
NOT NULL

Name of the package. An asterisk (*) indicates an entire
collection.

G

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the row was created. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

580 SQL Reference  



  SYSIBM.SYSPACKSTMT
 

 SYSIBM.SYSPACKSTMT Table
Contains one or more rows for each statement in a package.  

Column Name Data Type Description Use

LOCATION CHAR(16)
NOT NULL

Always contains blanks S

COLLID CHAR(18)
NOT NULL

Name of the package collection. G

NAME CHAR(8)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL

Consistency token for the package. This is either:

� The “level” as specified by the LEVEL option when the
package's program was precompiled

� The timestamp indicating when the package's program was
precompiled, in an internal format

S

SEQNO SMALLINT
NOT NULL

Sequence number of the row with respect to a statement in the
package39. The numbering starts with 0.

G

STMTNO SMALLINT
NOT NULL

Statement number of the statement in the package's source
program. A statement number greater than 32767 will be
displayed as zero39 or a negative number40 .

G

SECTNO SMALLINT
NOT NULL

Section number of the statement39. G

BINDERROR CHAR(1)
NOT NULL

Whether an SQL error was detected at bind time:

N No
Y Yes

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine readable
material (MRM) tape:

N No
Y Yes

G

VERSION VARCHAR(64)
NOT NULL

Version identifier for the package. G

STMT VARCHAR(254)
NOT NULL

All or a portion of the text for the SQL statement that the row
represents.

S

ISOLATION CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level for the SQL statement.

R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
U UR (uncommitted read)

| L KEEP UPDATE LOCKS for an RS isolation
| X KEEP UPDATE LOCKS for an RR isolation

blank The WITH clause was not specified on this
statement. The isolation level is recorded in
SYSPACKAGE.ISOLATION and in
SYSPLAN.ISOLATION.

G

39 Rows in which the value of SEQNO, STMTNO, and SECTNO are zero are for internal use.

40 To convert a negative STMTNO to a meaningful statement number that corresponds to your precompile output, add 65536 to it.
For example, -26472 is equivalent to +39064 (-26472 + 65536).

  Appendix D. DB2 Catalog Tables 581



 SYSIBM.SYSPACKSTMT  
 

Column Name Data Type Description Use

| STATUS| CHAR(1)
| NOT NULL WITH
| DEFAULT

| Status of binding the statement.

| A Distributed - statement uses DB2 private protocol
| access. The statement will be parsed and executed
| at the server using defaults for input variables during
| access path selection.
| B Distributed - statement uses DB2 private protocol
| access. The statement will be parsed and executed
| at the server using values for input variables during
| access path selection.
| C Compiled - statement was bound successfully using
| defaults for input variables during access path
| selection.
| E Explain - statement is an SQL EXPLAIN statement.
| The explain is done at bind time using defaults for
| input variables during access path selection.
| F Parsed - statement did not bind successfully and
| VALIDATE(RUN) was used. The statement will be
| rebound at execution time using values for input
| variables during access path selection.
| G Compiled - statement bound successfully, but
| REOPT is specified. The statement will be rebound
| at execution time using values for input variables
| during access path selection.
| H Parsed - statement is either a data definition
| statement or a statement that did not bind
| successfully and VALIDATE(RUN) was used. The
| statement will be rebound at execution time using
| defaults for input variables during access path
| selection. Data manipulation statements use defaults
| for input variables during access path selection.
| I Indefinite - statement is dynamic. The statement will
| be bound at execution time using defaults for input
| variables during access path selection.
| J Indefinite - statement is dynamic. The statement will
| be bound at execution time using values for input
| variables during access path selection.
| K Control - CALL statement.
| L Bad - the statement has some allowable error. The
| bind continues but the statement cannot be
| executed.
| blank The statement is non-executable, or was bound in a
| DB2 release prior to Version 5.

| S

582 SQL Reference  



  SYSIBM.SYSPKSYSTEM
 

 SYSIBM.SYSPKSYSTEM Table
Contains zero or more rows for every package. Each row for a given package
represents one or more connections to an environment in which the package could
be executed.

Column Name Data Type Description Use

LOCATION CHAR(16)
NOT NULL

Always contains blanks S

COLLID CHAR(18)
NOT NULL

Name of the package collection. G

NAME CHAR(8)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL

Consistency token for the package. This is either:

� The “level” as specified by the LEVEL option when the
package's program was precompiled

� The timestamp indicating when the package's program was
precompiled, in an internal format.

S

SYSTEM CHAR(8)
NOT NULL

Environment. Values can be:

BATCH TSO batch
CICS Customer Information Control System
DB2CALL DB2 call attachment facility
DLIBATCH DLI batch support facility
IMSBMP IMS BMP region
IMSMPP IMS MPP and IFP region
REMOTE remote application server

G

ENABLE CHAR(1)
NOT NULL

Indicates whether the connections represented by the row are
enabled or disabled:

N Disabled
Y Enabled

G

CNAME CHAR(20)
NOT NULL

Identifies the connection or connections to which the row
applies. Interpretation depends on the environment specified by
SYSTEM. Values can be:

� Blank if SYSTEM=BATCH or SYSTEM=DB2CALL

� The LU name for an application server if
SYSTEM=REMOTE

� Either the requester's location (if the product is DB2) or the
requester's LU name enclosed in angle brackets if
SYSTEM=REMOTE.

� The name of a single connection if SYSTEM has any other
value.

CNAME can also be blank when SYSTEM is not equal to
BATCH or DB2CALL. When this is so, the row applies to all
servers or connections for the indicated environment.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine readable
material (MRM) tape:

N No
Y Yes

G

  Appendix D. DB2 Catalog Tables 583



 SYSIBM.SYSPLAN  
 

 SYSIBM.SYSPLAN Table
Contains one row for each application plan.

Column Name Data Type Description Use

NAME CHAR(8)
NOT NULL

Name of the application plan. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the application plan. G

BINDDATE CHAR(6)
NOT NULL

The date on which the plan was last bound, in the form
yymmdd.

G

VALIDATE CHAR(1)
NOT NULL

Whether validity checking can be deferred until run time:

B All checking must be performed during BIND.
R Validation is done at run time for tables, views, and

privileges that do not exist at bind time.

G

ISOLATION CHAR(1)
NOT NULL

Isolation level for the plan:

R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
U UR (uncommitted read)

G

VALID CHAR(1)
NOT NULL

Whether the application plan is valid:

A The description of the table or base table of a view
referenced by the application plan was changed by the
ALTER TABLE statement. The change did not require the
invalidation of the application plan.

| H The description of the table or base table of a view
| referenced by the application plan was changed by the
| ALTER TABLE statement. The change will invalidate the
| plan for a DB2 release prior to Version 5.

N No
Y Yes

G

OPERATIVE CHAR(1)
NOT NULL

Whether the application plan can be allocated:

N No; an explicit BIND or REBIND is required before the plan
can be allocated

Y Yes

G

BINDTIME CHAR(8)
NOT NULL

Time of the BIND in the form hhmmssth. G

PLSIZE INTEGER
NOT NULL

Size of the base section 41 of the plan, in bytes. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes
B V1R3 dependency indicator; not from MRM tape
C V2R1 dependency indicator; not from MRM tape
D V2R2 dependency indicator; not from MRM tape
E V2R3 dependency indicator; not from MRM tape
F V3R1 dependency indicator; not from MRM tape
G V4 dependency indicator; not from MRM tape

| H V5 dependency indicator; not from MRM tape

G

AVGSIZE INTEGER
NOT NULL

Average size, in bytes, of those sections41 of the plan that
contain SQL statements processed at bind time.

G

41 Plans are divided into sections. The base section of the plan must be in the EDM pool during the entire time the application
program is executing. Other sections of the plan, corresponding roughly to sets of related SQL statements, are brought into the
pool as needed.

584 SQL Reference  



  SYSIBM.SYSPLAN
 

Column Name Data Type Description Use

ACQUIRE CHAR(1)
NOT NULL

When resources are acquired:

A At allocation
U At first use

G

RELEASE CHAR(1)
NOT NULL

When resources are released:

C At commit
D At deallocation

G

 CHAR(1)
NOT NULL

Not used N

 CHAR(1)
NOT NULL

Not used N

 CHAR(1)
 NOT NULL

Not used N

EXPLAN CHAR(1)
NOT NULL

EXPLAIN option specified for the plan; that is, whether
information on the plan's statements was added to the owner's
PLAN_TABLE table:

N No
Y Yes

G

EXPREDICATE CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the plan was bound
or rebound:

B Data currency is not required for ambiguous cursors. Allow
blocking for ambiguous cursors.

C Data currency is required for ambiguous cursors. Inhibit
blocking for ambiguous cursors.

N Blocking is inhibited for ambiguous cursors, but the plan
was created before the CURRENTDATA option was
available.

G

BOUNDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the binder of the plan. G

QUALIFIER CHAR(8)
NOT NULL WITH
DEFAULT

Implicit qualifier for the unqualified table, view, index, and alias
names in the static SQL statements of the plan.

G

CACHESIZE SMALLINT
NOT NULL WITH
DEFAULT

Size, in bytes, of the cache to be acquired for the plan. A value
of zero indicates that no cache is used.

G

PLENTRIES SMALLINT
NOT NULL WITH
DEFAULT

Number of package list entries for the plan. The negative of that
number if there are rows for the plan in SYSIBM.SYPACKLIST
but the plan was bound in a prior release after fallback.

G

DEFERPREP CHAR(1)
NOT NULL WITH
DEFAULT

Whether the package was last bound with the
DEFER(PREPARE) option:

N No
Y Yes

G

CURRENTSERVER CHAR(16)
NOT NULL WITH
DEFAULT

Location name specified with the CURRENTSERVER option
when the plan was last bound. Blank if none was specified,
implying that the first server is the local DB2 subsystem.

G

SYSENTRIES SMALLINT
NOT NULL WITH
DEFAULT

Number of rows associated with the plan in
SYSIBM.SYSPLSYSTEM. The negative of that number if such
rows exist but the plan was bound in a prior release after
fallback. A negative value or zero means that all connections
are enabled.

G

DEGREE CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the plan was last bound:

ANY DEGREE(ANY)
1 or blank DEGREE(1). Blank if the plan was migrated.

G

  Appendix D. DB2 Catalog Tables 585



 SYSIBM.SYSPLAN  
 

Column Name Data Type Description Use

SQLRULES CHAR(1)
NOT NULL WITH
DEFAULT

The SQLRULES option used when the plan was last bound:

D or blank SQLRULES(DB2)
S SQLRULES(STD)
blank A migrated plan

G

DISCONNECT CHAR(1)
NOT NULL WITH
DEFAULT

The DISCONNECT option used when the plan was last bound:

E or blank DISCONNECT(EXPLICIT) (EXPLICIT)
A DISCONNECT(AUTOMATIC) (AUTOMATIC)
C DISCONNECT(CONDITIONAL)

(CONDITIONAL)
blank a migrated plan.

G

GROUP_MEMBER CHAR(8)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2 subsystem that
performed the most recent bind. This column is blank if the DB2
subsystem was not in a DB2 data sharing environment when
the bind was performed.

G

DYNAMICRULES CHAR(1)
NOT NULL WITH
DEFAULT

B Dynamic SQL statements are handled like static SQL
statements at run time.

blank Dynamic SQL statements are handled like dynamic
SQL statements at run time.

G

| BOUNDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the plan was bound.| G

| REOPTVAR| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether the access path is determined again at execution time
| using input variable values.

| N Bind option NOREOPT(VARS) indicates that the
| access path is determined at bind time.
| Y Bind option REOPT(VARS) indicates that the access
| path is determined at execution time for SQL
| statements with variable values.

| G

| KEEPDYNAMIC| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether prepared dynamic statements are to be purged at each
| commit point.

| N The bind option is KEEPDYNAMIC(NO). Prepared
| dynamic SQL statements are destroyed at commit or
| rollback.
| Y The bind option is KEEPDYNAMIC(YES). Prepared
| dynamic SQL statements are kept past commit or
| rollback.

| G

586 SQL Reference  



  SYSIBM.SYSPLANAUTH
 

 SYSIBM.SYSPLANAUTH Table
Records the privileges held by users over application plans.

Column Name Data Type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privileges. Could also
be PUBLIC for a grant to PUBLIC.

G

NAME CHAR(8)
NOT NULL

Name of the application plan on which the privileges are held. G

 CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privileges were granted; in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privileges were granted; in the form hhmmssth. G

 CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.

blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM

G

BINDAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the BIND, REBIND, or FREE
subcommands against the plan:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

EXECUTEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can run application programs that use
the application plan:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

| GRANTEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the GRANT statement was executed.| G

  Appendix D. DB2 Catalog Tables 587



 SYSIBM.SYSPLANDEP  
 

 SYSIBM.SYSPLANDEP Table
Records the dependencies of plans on tables, views, aliases, synonyms, table
spaces, and indexes.

Column Name Data Type Description Use

BNAME VARCHAR(18)
 NOT NULL

Name of an object the plan is dependent on. G

BCREATOR CHAR(8)
NOT NULL

If BNAME is a table space, its database. Otherwise, the
authorization ID of the owner of BNAME.

G

BTYPE CHAR(1)
NOT NULL

Type of object BNAME:

A Alias
I Index

| P Partitioned table space
R Table space
S Synonym
T Table
V View

G

DNAME CHAR(8)
NOT NULL

Name of the plan. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

588 SQL Reference  



  SYSIBM.SYSPLSYSTEM
 

 SYSIBM.SYSPLSYSTEM Table
Contains zero or more rows for every plan. Each row for a given plan represents
one or more connections to an environment in which the plan could be used.

Column Name Data Type Description Use

NAME CHAR(8)
NOT NULL

Name of the plan G

SYSTEM CHAR(8)
NOT NULL

Environment. Values can be:

BATCH TSO batch
DB2CALL DB2 call attachment facility
CICS Customer Information Control System
DLIBATCH DLI batch support facility
IMSBMP IMS BMP region
IMSMPP IMS MPP or IFP region

G

ENABLE CHAR(1)
NOT NULL

Indicates whether the connections represented by the row are
enabled or disabled:

N Disabled
Y Enabled

G

CNAME CHAR(8)
NOT NULL

Identifies the connection or connections to which the row
applies. Interpretation depends on the environment specified by
SYSTEM. Values can be:

� Blank if SYSTEM=BATCH or SYSTEM=DB2CALL

� The name of a single connection if SYSTEM has any other
value

CNAME can also be blank when SYSTEM is not equal to
BATCH or DB2CALL. When this is so, the row applies to all
connections for the indicated environment.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

  Appendix D. DB2 Catalog Tables 589



 SYSIBM.SYSPROCEDURES  
 

 SYSIBM.SYSPROCEDURES Table
Contains one row for every stored procedure. Rows in this table must be inserted,
updated, and deleted; they are not automatically inserted and maintained by DB2.

One method of adding rows to this table is by using the LOAD utility.

Column Name Data Type Description Use

PROCEDURE CHAR(18)
NOT NULL

The name of the stored procedure specified on the SQL
CALL statement.

G

AUTHID CHAR(8)
NOT NULL WITH
DEFAULT

The SQL authorization ID of the user running the SQL
application that issued the SQL CALL statement. When the
SQL CALL statement is received from a remote location,
this column is compared to the value of the authorization
ID after outbound and inbound name translation operations
have been performed.

If AUTHID is blank, values in this row apply to all
authorization IDs.

G

LUNAME CHAR(8)
NOT NULL WITH
DEFAULT

The LUNAME of the system that issued the SQL CALL
statement.

| � If the LUNAME column contains the local DB2
| system's LUNAME, this row applies to local
| applications that issue the SQL CALL statement.

| � If the LUNAME column contains the LUNAME of a
| remote client, this row applies to SQL CALL statements
| received from that remote client.

| � If LUNAME is blank, the values in this row apply to all
| systems, including the local DB2 system and clients
| connected through TCP/IP or SNA.

| To ease migration to future releases of DB2, specify blanks
| in this field.

G

# LOADMOD# CHAR(8)
# NOT NULL
# The program that runs when the CALL statement is
# executed.

# When the value of LANGUAGE is COMPJAVA, this column
# value is not used.

# G

# LINKAGE# CHAR(1)
# NOT NULL WITH
# DEFAULT

# The linkage convention used to pass parameters to the
# stored procedure:

# blank The SIMPLE linkage convention is used where
# input parameters cannot be null.
# N The SIMPLE WITH NULLS convention is used
# where an indicator array is passed to the stored
# procedure. Null input parameters are allowed.

# This value must be N when the value of LANGUAGE is
# COMPJAVA.

# Conventions for passing parameters to stored procedures
# are described in Section 6 of Application Programming and
# SQL Guide.

# G

COLLID CHAR(18)
NOT NULL

The name of the package collection to use when the stored
procedure is executed.

A blank value indicates that the package collection is the
same as the package collection of the program that issued
the SQL CALL statement.

G

# LANGUAGE# CHAR(8)
# NOT NULL
# The programming language used to create the stored
# procedure. Possible values are 'ASSEMBLE', 'PLI',
# 'COBOL', 'C', 'REXX', or 'COMPJAVA'.

# G

590 SQL Reference  



  SYSIBM.SYSPROCEDURES
 

Column Name Data Type Description Use

ASUTIME INTEGER
NOT NULL WITH
DEFAULT

The number of service units permitted for any single
invocation of this stored procedure. If ASUTIME is zero,
there is no limit on the service units.

If a stored procedure uses more service units than allowed
by the ASUTIME value, DB2 cancels the stored procedure.

G

STAYRESIDENT CHAR(1)
NOT NULL WITH
DEFAULT

Determines whether the stored procedure load module is
deleted from memory when the stored procedure ends.

Y The load module remains resident in memory
after the stored procedure ends.

blank The load module is deleted from memory after
the stored procedure ends.

G

IBMREQD CHAR(1)
NOT NULL

Indicates whether the row came from the basic machine
readable material (MRM) tape:

N No
Y Yes

G

# RUNOPTS# VARCHAR(254)
# NOT NULL
# The Language Environment (Language Environment for
# MVS & VM) run-time options to use for this stored
# procedure. For a REXX stored procedure, this value is the
# Language Environment run-time options for the REXX
# interface to DB2. If this column contains an empty string,
# the installation default Language Environment run-time
# options are used.

# An example Language Environment run-time option list
# follows:

#  'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'

# When the value of LANGUAGE is COMPJAVA, this column
# value is the stored procedure program name, in the format
# class.method or package.class.method.

# G

PARMLIST VARCHAR(3000)
NOT NULL

Defines the parameter list expected by the stored
procedure. For syntax and a description of the information
contained in the PARMLIST string, see Section 6 of
Application Programming and SQL Guide.

G

| RESULT_SETS| SMALLINT
| NOT NULL WITH
| DEFAULT

| The maximum number of query result sets that can be
| returned by this stored procedure.

| Zero indicates there are no query result sets.

| G

# WLM_ENV# CHAR(18)
# NOT NULL WITH
# DEFAULT

# The name of the WLM environment to be used to run this
# stored procedure.

# A blank value results in the stored procedure being run in
# the DB2-established stored procedures address space.

# For a REXX or COMPJAVA stored procedure, this value
# must be non-blank.

# G

# PGM_TYPE# CHAR(1)
# NOT NULL WITH
# DEFAULT 'M'

# Whether the stored procedure runs as a main routine or a
# subroutine.

# M The stored procedure runs as a main routine.
# S The stored procedure runs as a subroutine.

# For a REXX stored procedure, this value is ignored.

# G

| EXTERNAL_SECURITY| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether a special RACF environment is required to control
| access to non-SQL resources.

| N RACF access to non-SQL resources is not required for
| the stored procedure. This option is sufficient when
| the stored procedure only accesses SQL objects.
| Y A RACF environment should be automatically created
| by DB2 each time the stored procedure is invoked so
| that RACF can manage access to non-SQL resources.

| G

  Appendix D. DB2 Catalog Tables 591



 SYSIBM.SYSPROCEDURES  
 

Column Name Data Type Description Use

| COMMIT_ON_RETURN| CHAR(1)
| WITH DEFAULT'N'

| Indicates that the unit of work is always to be committed
| immediately upon successful return (non-negative
| SQLCODE) from this stored procedure.

| N The unit of work is to continue.
| Y The unit of work is to be committed.

|  A null value means the same as the value N.

| G

592 SQL Reference  



  SYSIBM.SYSRELS
 

 SYSIBM.SYSRELS Table
Contains one row for every referential constraint.

Column Name Data Type Description Use

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the dependent table of the
referential constraint.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the dependent table of the referential constraint. G

RELNAME CHAR(8)
NOT NULL

Constraint name G

REFTBNAME VARCHAR(18)
NOT NULL

Name of the parent table of the referential constraint. G

REFTBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the parent table. G

COLCOUNT SMALLINT
NOT NULL

Number of columns in the foreign key. G

DELETERULE CHAR(1)
NOT NULL

Type of delete rule for the referential constraint.

C CASCADE
N SET NULL
R RESTRICT

| A NO ACTION

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

RELOBID1 SMALLINT
NOT NULL WITH
DEFAULT

Internal identifier of the constraint with respect to the database
that contains the parent table.

S

RELOBID2 SMALLINT
NOT NULL WITH
DEFAULT

Internal identifier of the constraint with respect to the database
that contains the dependent table.

S

TIMESTAMP TIMESTAMP
NOT NULL WITH
DEFAULT

The date and time the constraint was defined. If the constraint is
between catalog tables prior to DB2 Version 2 Release 3, the
value is '1985-04-01-00.00.00.000000.' :epsc..

G

| IXOWNER| CHAR(8)
| NOT NULL WITH
| DEFAULT

| Owner of unique non-primary index used for the parent key.
| '99999999' if the enforcing index has been dropped. Blank if
| the enforcing index is a primary index.

| G

| IXNAME| VARCHAR(18)
| NOT NULL WITH
| DEFAULT

| Name of unique non-primary index used for a parent key.
| '99999999' if the enforcing index has been dropped. Blank if
| the enforcing index is a primary index.

| G

  Appendix D. DB2 Catalog Tables 593



 SYSIBM.SYSRESAUTH  
 

 SYSIBM.SYSRESAUTH Table
Records USE privileges for buffer pools, storage groups, and table spaces, and
CREATE IN and PACKADM ON privileges for collections.

Column Name Data Type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privilege. G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privilege. Could also
be PUBLIC for a grant to PUBLIC.

G

QUALIFIER CHAR(8)
NOT NULL

The qualifier of the table space (the database name), if the row
describes a privilege over a table space. Blank otherwise.

G

NAME CHAR(18)
NOT NULL

Name of the buffer pool, collection, DB2 storage group, or table
space. Could also be ALL when USE OF ALL BUFFERPOOLS
is granted.

G

 CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.

blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM
P PACKADM (on a specific collection)
A PACKADM (on collection *)

G

OBTYPE CHAR(1)
NOT NULL

Object type:

B Buffer pool
C Collection
S Storage group
R Table space

G

 CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privilege was granted; in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privilege was granted; in the form hhmmssth. G

USEAUTH CHAR(1)
NOT NULL

Whether the privilege is held with the GRANT option:

G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

The authority held is PACKADM when the OBTYPE is C (a
collection) and QUALIFIER is PACKADM. The authority held is
CREATE IN when the OBTYPE is C and QUALIFIER is blank.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

| GRANTEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the GRANT statement was executed.| G

594 SQL Reference  



  SYSIBM.SYSSTMT
 

 SYSIBM.SYSSTMT Table
Contains one or more rows for each SQL statement of each DBRM. 

Column Name Data Type Description Use

NAME CHAR(8)
NOT NULL

Name of the DBRM. G

PLNAME CHAR(8)
NOT NULL

Name of the application plan. G

PLCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the application plan. G

SEQNO SMALLINT
NOT NULL

The sequence number of this row with respect to a statement of
the DBRM42. The numbering starts with zero.

G

STMTNO SMALLINT
NOT NULL

Statement number of the SQL statement in the source program.
A statement number greater than 32767 will be displayed as
zero42.

G

SECTNO SMALLINT
NOT NULL

The section number of the section within the DBRM identified in
the NAME column42.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

TEXT VARCHAR(254)
NOT NULL

The text or portion of the text of the SQL statement. S

ISOLATION CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level for the SQL statement.

R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
U UR (uncommitted read)

| L KEEP UPDATE LOCKS for an RS isolation
X KEEP UPDATE LOCKS for an RR isolation
blank The WITH clause was not specified on this

statement. The isolation level is recorded in
SYSPACKAGE.ISOLATION and in
SYSPLAN.ISOLATION.

G

42 Rows in which the values of SEQNO, STMTNO, and SECTNO are zero are for internal use.

  Appendix D. DB2 Catalog Tables 595



 SYSIBM.SYSSTMT  
 

Column Name Data Type Description Use

| STATUS| CHAR(1)
| NOT NULL WITH
| DEFAULT

| Status of binding the statement.

| A Distributed - statement uses DB2 private protocol
| access. The statement will be parsed and executed
| at the server using defaults for input variables during
| access path selection.
| B Distributed - statement uses DB2 private protocol
| access. The statement will be parsed and executed
| at the server using values for input variables during
| access path selection.
| C Compiled - statement was bound successfully using
| defaults for input variables during access path
| selection.
| E Explain - statement is an SQL EXPLAIN statement.
| The explain is done at bind time using defaults for
| input variables during access path selection.
| F Parsed - statement did not bind successfully and
| VALIDATE(RUN) was used. The statement will be
| rebound at execution time using values for input
| variables during access path selection.
| G Compiled - statement bound successfully, but
| REOPT is specified. The statement will be rebound
| at execution time using values for input variables
| during access path selection.
| H Parsed - statement is either a data definition
| statement or a statement that did not bind
| successfully and VALIDATE(RUN) was used. The
| statement will be rebound at execution time using
| defaults for input variables during access path
| selection. Data manipulation statements use defaults
| for input variables during access path selection.
| I Indefinite - statement is dynamic. The statement will
| be bound at execution time using defaults for input
| variables during access path selection.
| J Indefinite - statement is dynamic. The statement will
| be bound at execution time using values for input
| variables during access path selection.
| K Control - CALL statement.
| L Bad - the statement has some allowable error. The
| bind continues but the statement cannot be
| executed.
| blank The statement is non-executable, or was bound in a
| DB2 release prior to Version 5.

| S

596 SQL Reference  



  SYSIBM.SYSSTOGROUP
 

 SYSIBM.SYSSTOGROUP Table
Contains one row for each storage group.

Column Name Data Type Description Use

NAME CHAR(8)
NOT NULL

Name of the storage group. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the storage group. G

VCATNAME CHAR(8)
NOT NULL

Name of the integrated catalog facility catalog. G

VPASSWORD CHAR(8)
NOT NULL

Password for the integrated catalog facility catalog. G

SPACE INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the storage
group as determined by the last execution of the STOSPACE
utility.

G

SPCDATE CHAR(5)
NOT NULL

Date when the SPACE column was last updated, in the form
yyddd.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the storage
group.

G

| STATSTIME| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| If STOSPACE utility was executed for the storage group, date
| and time when last executed.
| G

| CREATEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the CREATE statement was executed for the
| storage group.
| G

| ALTEREDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the most recent ALTER STOGROUP statement was
| executed for the storage group. If no ALTER STOGROUP
| statement has been applied, ALTEREDTS has the value of
| CREATEDTS.

| G

  Appendix D. DB2 Catalog Tables 597



 SYSIBM.SYSSTRINGS  
 

 SYSIBM.SYSSTRINGS Table
Contains information about character conversion. Each row describes a conversion
from one coded character set to another.

Column Name Data Type Description Use

INCCSID INTEGER
NOT NULL

The source CCSID for the character conversion represented by
this row.

G

OUTCCSID INTEGER
NOT NULL

The target CCSID for the character conversion represented by
this row.

G

TRANSTYPE CHAR(2)
NOT NULL

Indicates the nature of the conversion. Values can be:

| GG GRAPHIC to GRAPHIC
MM EBCDIC MIXED to EBCDIC MIXED

| MS EBCDIC MIXED to SBCS
| PM ASCII MIXED to EBCDIC MIXED
| PS ASCII MIXED to SBCS

SM SBCS to EBCDIC MIXED
| SS SBCS to SBCS
| MP EBCDIC MIXED to ASCII MIXED
| PP ASCII MIXED to ASCII MIXED
| SP SBCS to ASCII MIXED

G

ERRORBYTE CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as an error byte. Null
indicates the absence of an error byte.

S

SUBBYTE CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as a substitution
character. Null indicates the absence of a substitution character.

S

TRANSPROC CHAR(8)
NOT NULL WITH
DEFAULT

The name of a module or blanks. If IBMREQD is 'N', a
nonblank value is the name of a conversion procedure provided
by the user. If IBMREQD is 'Y', a nonblank value is the name
of a DB2 module that contains DBCS conversion tables. The
first five characters of the name of a user-provided conversion
procedure must not be 'DSNXV'; these characters are used to
distinguish user-provided conversion procedures from DB2
modules that contain DBCS conversion tables.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape (see the information following this table):

N No
Y Yes

G

TRANSTAB VARCHAR(256)
FOR BIT DATA
NOT NULL WITH
DEFAULT

Either a conversion table or an empty string S

Each row in the table must have a unique combination of values for its INCCSID,
OUTCCSID, and IBMREQD columns. Rows for which the value of IBMREQD is N
can be deleted, inserted, and updated subject to this uniqueness constraint and to
the constraints imposed by a VALIDPROC defined on the table. An inserted row
could have values for the INCCSID and OUTCCSID columns that match those of a
row for which the value of IBMREQD is Y. DB2 would then use the information in
the inserted row instead of the information in the IBM-supplied row. Rows for which
the value of IBMREQD is Y cannot be deleted, inserted, or updated. For
information about the use of inserted rows for character conversion, see Appendix
C of Installation Guide.

598 SQL Reference  



  SYSIBM.SYSSYNONYMS
 

 SYSIBM.SYSSYNONYMS Table
Contains one row for each synonym of a table or view.

Column Name Data Type Description Use

NAME VARCHAR(18)
NOT NULL

Synonym for the table or view. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the synonym. G

TBNAME VARCHAR(18)
NOT NULL

Name of the table or view. G

TBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table or view. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the synonym. G

| CREATEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the CREATE statement was executed for the
| synonym. The value will be '0001-01.01.00.00.00.000000' for
| synonyms created in a DB2 release prior to Version 5.

| G

  Appendix D. DB2 Catalog Tables 599



 SYSIBM.SYSTABAUTH  
 

 SYSIBM.SYSTABAUTH Table
Records the privileges held by users on tables and views.

Column Name Data Type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. Could
also be PUBLIC, or PUBLIC followed by an asterisk.43

G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privileges or the
name of an application plan or package that uses the privileges.
PUBLIC for a grant to PUBLIC. PUBLIC followed by an asterisk
for a grant to PUBLIC AT ALL LOCATIONS.

G

GRANTEETYPE CHAR(1)
NOT NULL

Meaning:

blank GRANTEE is an authorization ID
P GRANTEE is an application plan or a package. It

is a package if COLLID is not blank.

G

DBNAME CHAR(8)
NOT NULL

If the privileges were received from a user with DBADM,
DBCTRL, or DBMAINT authority, DBNAME is the name of the
database on which the GRANTOR has that authority. Otherwise,
DBNAME is blank.

G

SCREATOR CHAR(8)
NOT NULL

If the row of SYSIBM.SYSTABAUTH was created as a result of
a CREATE VIEW statement, SCREATOR is the authorization ID
of the owner of a table or view referred to in the CREATE VIEW
statement. Otherwise, SCREATOR is the same as TCREATOR.

G

STNAME VARCHAR(18)
NOT NULL

If the row of SYSIBM.SYSTABAUTH was created as a result of
a CREATE VIEW statement, STNAME is the name of a table or
view referred to in the CREATE VIEW statement. Otherwise,
STNAME is the same as TTNAME.

G

TCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table or view. G

TTNAME VARCHAR(18)
NOT NULL

Name of the table or view. G

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.

blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM

G

 CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privileges were granted, in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privileges were granted, in the form hhmmssth. G

UPDATECOLS CHAR(1)
NOT NULL

The value of this column is blank if the value of UPDATEAUTH
applies uniformly to all columns of the table or view. The value
is an asterisk (*) if the value of UPDATEAUTH applies to some

| columns but not to others. In this case, rows will exist in
| SYSIBM.SYSCOLAUTH with matching timestamps and
| PRIVILEGE = blank. These rows list the columns on which
| update privileges have been granted.

G

43 PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For the conditions where GRANTOR can be
PUBLIC or PUBLIC*, see Section 3 (Volume 1) of Administration Guide.

600 SQL Reference  



  SYSIBM.SYSTABAUTH
 

Column Name Data Type Description Use

ALTERAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can alter the table:

blank Privilege not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

DELETEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can delete rows from the table or view:

blank Privilege not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

INDEXAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create indexes on the table:

blank Privilege not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

INSERTAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can insert rows into the table or view:

blank Privilege not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SELECTAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can select rows from the table or view:

blank Privilege not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

UPDATEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can update rows of the table or view:

blank Privilege not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

 CHAR(16)
NOT NULL WITH
DEFAULT

Not used N

 CHAR(16)
NOT NULL WITH
DEFAULT

Not used N

COLLID CHAR(18)
NOT NULL WITH
DEFAULT

If the GRANTEE is a package, its collection name. Otherwise,
blank.

G

CONTOKEN CHAR(8) NOT NULL
WITH DEFAULT

If the GRANTEE is a package, the consistency token of the
DBRM from which the package was derived. Otherwise, blank.

S

 CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

REFERENCESAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can create or drop referential
constraints in which the table is a parent.

blank Privilege not held
G Privilege held with the GRANT option
Y Privilege held without the GRANT option

G

| REFCOLS| CHAR(1)
| NOT NULL WITH
| DEFAULT

| The value of this column is blank if the value of
| REFERENCESAUTH applies uniformly to all columns of the
| table. The value is an asterisk(*) if the value of
| REFERENCESAUTH applies to some columns but not to
| others. In this case, rows will exist in SYSIBM.SYSCOLAUTH
| with PRIVILEGE = R and matching timestamps that list the
| columns on which reference privileges have been granted.

| G

  Appendix D. DB2 Catalog Tables 601



 SYSIBM.SYSTABAUTH  
 

Column Name Data Type Description Use

| GRANTEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the GRANT statement was executed.| G

602 SQL Reference  



  SYSIBM.SYSTABLEPART
 

 SYSIBM.SYSTABLEPART Table
Contains one row for each nonpartitioned table space and one row for each
partition of a partitioned table space.

Column Name Data Type Description Use

PARTITION SMALLINT
NOT NULL

Partition number; 0 if table space is not partitioned. G

TSNAME CHAR(8)
NOT NULL

Name of the table space. G

DBNAME CHAR(8)
NOT NULL

Name of the database containing the table space. G

IXNAME VARCHAR(18)
NOT NULL

Name of the partitioned index. This column is blank if the table
space is not partitioned.

G

IXCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the partitioned index. This
column is blank if the table space is not partitioned.

G

PQTY INTEGER
NOT NULL

# Primary space allocation in units of 4KB storage blocks. For
# user-managed data sets, the value is set to the primary space
# allocation only if RUNSTATS TABLESPACE with UPDATE(ALL)
# or UPDATE(SPACE) is executed; otherwise, the value is zero.

PQTY is based on a value of PRIQTY in the appropriate
CREATE or ALTER TABLESPACE statement. Unlike PQTY,
however, PRIQTY asks for space in 1KB units.

G

SQTY SMALLINT
NOT NULL

# Secondary space allocation in units of 4KB blocks. For
# user-managed data sets, the value is set to the secondary
# space allocation only if RUNSTATS TABLESPACE with
# UPDATE(ALL) or UPDATE(SPACE) is executed; otherwise, the
# value is zero. SQTY is based on a value of SECQTY in the

appropriate CREATE or ALTER TABLESPACE statement.
Unlike SQTY, however, SECQTY asks for space in 1KB units.

G

STORTYPE CHAR(1)
NOT NULL

Type of storage allocation:

E Explicit (storage group not used)
I Implicit (storage group used)

G

STORNAME CHAR(8)
NOT NULL

Name of storage group used for space allocation. Blank if
storage group not used.

G

VCATNAME CHAR(8)
NOT NULL

Name of integrated catalog facility catalog used for space
allocation.

G

CARD INTEGER
NOT NULL

Number of rows in the table space or partition. The value is
2147483647 if the number of rows is greater than or equal to
2147483647. The value is -1 if statistics have not been
gathered.

G

FARINDREF INTEGER
NOT NULL

Number of rows that have been relocated far from their original
page. The value is -1 if statistics have not been gathered.

S

NEARINDREF INTEGER
NOT NULL

Number of rows that have been relocated near their original
page. The value is -1 if statistics have not been gathered.

S

PERCACTIVE SMALLINT
NOT NULL

Percentage of space occupied by rows of data from active
tables. The value is -1 if statistics have not been gathered.

S

PERCDROP SMALLINT
NOT NULL

Percentage of space occupied by rows of dropped tables. The
value is -1 if statistics have not been gathered. 0 for segmented
table spaces.

S

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

LIMITKEY VARCHAR(512)
NOT NULL

| The high value of the partition in external format. 0 if the table
space is not partitioned.

G

  Appendix D. DB2 Catalog Tables 603



 SYSIBM.SYSTABLEPART  
 

Column Name Data Type Description Use

FREEPAGE SMALLINT
NOT NULL

The number of pages loaded before a page is left as free
space.

G

PCTFREE SMALLINT
NOT NULL

The percentage of each page left as free space. G

CHECKFLAG CHAR(1)
NOT NULL WITH
DEFAULT

C the table space partition is in a check pending
state and there are rows in the table that can
violate referential constraints, table check
constraints, or both.

blank The table space is not a partition, or does not
contain rows that may violate referential
constraints, table check constraints, or both.

G

|  | CHAR(4)
| NOT NULL WITH
| DEFAULT
| FOR BIT DATA

| Not used| N

SPACE INTEGER
NOT NULL WITH
DEFAULT

Number of kilobytes of DASD storage allocated to the table
space partition, as determined by the last execution of the

# STOSPACE or RUNSTATS utility. The value is 0 if STOSPACE
# or RUNSTATS has not been run. The value is updated by
# STOSPACE if the table space is related to a storage group. The
# value is updated by RUNSTATS if the utility is executed as
# RUNSTATS TABLESPACE with UPDATE(ALL) or
# UPDATE(SPACE).

G

COMPRESS CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the following:

� For a table space partition, whether the COMPRESS
attribute for the partition is YES.

� For a nonpartitioned table space, whether the COMPRESS
attribute is YES for the table space.

Values for the column can be:

blank No compression
Y Compression is defined for the table space

G

PAGESAVE SMALLINT
NOT NULL WITH
DEFAULT

Percentage of pages saved in the table space or partition as a
result of defining the table space with COMPRESS YES or other
compression routines. For example, a value of 25 indicates a
savings of 25 percent, so that the pages required are only 75
percent of what would be required without data compression.
The calculation includes overhead bytes for each row, the bytes
required for dictionary, and the bytes required for the current
FREEPAGE and PCTFREE specification for the table space or
partition. This calculation is based on an average row length,
and the result varies depending on the actual lengths of the
rows. The value is 0 if there are no savings from using data
compression, or if statistics have not been gathered. The value
can be negative, if for example, data compression causes an
increase in the number of pages in the data set.

S

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics. The
default value is '0001-01-01.00.00.00.000000'.

G

GBPCACHE CHAR(1)
NOT NULL WITH
DEFAULT

Group buffer pool cache option specified for this table space or
table space partition.

blank Only changed pages are cached in the group buffer
pool.

A Changed and unchanged pages are cached in the
group buffer pool.

G

604 SQL Reference  



  SYSIBM.SYSTABLEPART
 

Column Name Data Type Description Use

| CHECKRID5B| CHAR(5)
| NOT NULL WITH
| DEFAULT

| Blank if the table or partition is not in a check pending state
| (CHECKFLAG is blank), or if the table space is not partitioned.
| Otherwise, the RID of the first row of the table space partition
| that can violate referential constraints, table check constraints,
| or both; or the value is X'0000000000', indicating that any row
| can violate referential constraints.

| S

  Appendix D. DB2 Catalog Tables 605



 SYSIBM.SYSTABLES  
 

 SYSIBM.SYSTABLES Table
Contains one row for each table, view, or alias.

Column Name Data Type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the table, view, or alias. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table, view, or alias. G

TYPE CHAR(1)
NOT NULL

Type of object:

A Alias
| G Temporary table

T Table
V View

G

DBNAME CHAR(8)
NOT NULL

For a table, or a view of tables, the name of the database
| that contains the table space named in TSNAME. For a
| temporary table, an alias, or a view of a view, the value is

DSNDB06.

G

TSNAME CHAR(8)
NOT NULL

For a table, or a view of one table, the name of the table
space that contains the table. For a view of more than one
table, the name of a table space that contains one of the

| tables. For a temporary table, the value is SYSPKAGE. For a
view of a view, the value is SYSVIEWS. For an alias, it is
SYSDBAUT.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database; 0 if the row describes a
| view, an alias, or a temporary table.

S

OBID SMALLINT
NOT NULL

Internal identifier of the table; 0 if the row describes a view,
| an alias, or a temporary table.

S

COLCOUNT SMALLINT
NOT NULL

Number of columns in the table or view. The value is 0 if the
row describes an alias.

G

EDPROC CHAR(8)
NOT NULL

Name of the edit procedure; blank if the row describes a
view or alias or a table without an edit procedure.

G

VALPROC CHAR(8)
NOT NULL

Name of the validation procedure; blank if the row describes
a view or alias or a table without a validation procedure.

G

CLUSTERTYPE CHAR(1)
NOT NULL

Whether RESTRICT ON DROP applies:

blank No
Y Yes. Neither the table nor any table space or

database containing the table can be dropped.

G

 INTEGER
NOT NULL

Not used N

|  | INTEGER
| NOT NULL
| Not used| N

NPAGES INTEGER
NOT NULL

Total number of pages on which rows of the table appear.
The value is -1 if statistics have not been gathered or the

| row describes a view, an alias, or a temporary table. This is
an updatable column.

S

PCTPAGES SMALLINT
NOT NULL

Percentage of active table space pages that contain rows of
the table. A page is termed active if it is formatted for rows,
regardless of whether it contains any. If the table space is
segmented, the percentage is based on the number of active
pages in the set of segments assigned to the table. The
value is -1 if statistics have not been gathered or the row

| describes a view, an alias, or a temporary table. This is an
updatable column.

S

606 SQL Reference  



  SYSIBM.SYSTABLES
 

Column Name Data Type Description Use

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N no
Y Yes
B V1R3 dependency indicator; not from MRM tape
C V2R1 dependency indicator; not from MRM tape
D V2R2 dependency indicator; not from MRM tape
E V2R3 dependency indicator; not from MRM tape
F V3R1 dependency indicator; not from MRM tape
G V4 dependency indicator; not from MRM tape

| H V5 dependency indicator; not from MRM tape

G

REMARKS VARCHAR(254)
NOT NULL

A character string provided by the user with the COMMENT
ON statement.

G

PARENTS SMALLINT
NOT NULL

The number of relationships in which the table is a
dependent. The value is 0 if the row describes a view, an

| alias, or a temporary table.

G

CHILDREN SMALLINT
NOT NULL

The number of relationships in which the table is a parent.
| The value is 0 if the row describes a view, an alias, or a
| temporary table.

G

KEYCOLUMNS SMALLINT
NOT NULL

The number of columns in the table's primary key. The value
| is 0 if the row describes a view, an alias, or a temporary
| table.

G

RECLENGTH SMALLINT
NOT NULL

For user tables, the maximum length of any record in the
table. Length is 8+N+L, where:

� The number 8 accounts for the header (6 bytes) and the
id map entry (2 bytes).

� N is 10 if the table has an edit procedure, or 0 otherwise.
� L is the sum of the maximum column lengths. In

determining a column's maximum length, add a byte for
the null indicator if the column allows nulls. Add 2 bytes
for its length indicator if the column has a varying-length
data type (for example, VARCHAR). For more on column
lengths, see “Data Types” on page 57.

The value is 0 if the row describes a view or alias. For
maximum row and record sizes, see “Maximum record size”
on page 324.

G

STATUS CHAR(1)
NOT NULL

I The definition of the table is incomplete because it
| lacks a parent index.
| X Table has a parent index.
| blank Table has no parent index, or is a catalog table, or

the row describes a view or alias.

G

KEYOBID SMALLINT
NOT NULL

Internal DB2 identifier of the index that enforces uniqueness
of the table's primary key; 0 if not applicable.

S

LABEL VARCHAR(30)
NOT NULL

The label as given by a LABEL ON statement; otherwise an
empty string.

G

CHECKFLAG CHAR(1)
NOT NULL WITH
DEFAULT

C The table space containing the table is in a check
pending state and there are rows in the table that
can violate referential constraints, table check
constraints, or both.

blank The table contains no rows that violate referential
| constraints, table check constraints, or both; or the
| row describes a view, alias, or temporary table.

G

|  | CHAR(4)
| NOT NULL WITH
| DEFAULT
| FOR BIT DATA

| Not used| N

  Appendix D. DB2 Catalog Tables 607



 SYSIBM.SYSTABLES  
 

Column Name Data Type Description Use

AUDITING CHAR(1)
NOT NULL WITH
DEFAULT

Value of the audit option:

A AUDIT ALL
C AUDIT CHANGE
blank AUDIT NONE, or the row describes a view, an alias,

| or a temporary table.

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the table,
view, or alias.

G

LOCATION CHAR(16)
NOT NULL WITH
DEFAULT

The location name of the object of an alias. Blank for a table,
a view, or for an alias that was not defined with a three-part
object name.

G

TBCREATOR CHAR(8)
NOT NULL WITH
DEFAULT

For an alias, the authorization ID of the owner of the referred
to table or view; blank otherwise.

G

TBNAME VARCHAR(18)
NOT NULL WITH
DEFAULT

For an alias, the name for the referred to table or view; blank
otherwise.

G

CREATEDTS TIMESTAMP NOT
NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
table, view, or alias

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

For a table, the time when the latest ALTER TABLE
statement was applied. If no ALTER TABLE statement has
been applied, or if the row is for a view or alias,
ALTEREDTS has the value of CREATEDTS.

G

DATACAPTURE CHAR(1)
NOT NULL WITH
DEFAULT

Records the value of the DATA CAPTURE option for a table.

blank No
Y Yes

| For a temporary table, DATACAPTURE is always blank.

G

RBA1 CHAR(6)
NOT NULL WITH
DEFAULT
FOR BIT DATA

The log RBA when the table was created. Otherwise, RBA1
is X'000000000000', indicating that the log RBA is not

| known, or that the object is a view, an alias, or a temporary
| table. In a data sharing environment, RBA1 is the LRSN (Log
# Record Sequence Number) value.

S

RBA2 CHAR(6)
NOT NULL WITH
DEFAULT
FOR BIT DATA

The log RBA when the table was last altered. Otherwise,
RBA2 is X'000000000000' indicating that the log RBA is not

| known, or that the object is a view, an alias, or a temporary
| table. RBA1 will equal RBA2 if the table has not been
# altered. In a data sharing environment, RBA2 is the LRSN
# (Log Record Sequence Number) value.

S

PCTROWCOMP SMALLINT
NOT NULL WITH
DEFAULT

Percentage of rows compressed within the total number of
active rows in the table. This includes any row in a table
space that is defined with COMPRESS YES. The value is -1

| if the row describes a view, an alias, or a temporary table, or
statistics have not been gathered. This is an updatable
column.

S

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics. The

| default value is '0001-01-01.00.00.00.000000'. For a
| temporary table, the value of STATSTIME is always the
| default value. This is an updatable column.

G

CHECKS SMALLINT
NOT NULL WITH
DEFAULT

The number of check constraints defined on the table. The
| value is 0 if the row describes a view, an alias, or a
| temporary table, or if no constraints are defined on the table.

G

| CARDF| FLOAT
| NOT NULL WITH
| DEFAULT -1

| Total number of rows in the table. The value is -1 if statistics
| have not been gathered or the row describes a view, alias, or
| temporary table. This is an updatable column.

| S

608 SQL Reference  



  SYSIBM.SYSTABLES
 

Column Name Data Type Description Use

| CHECKRID5B| CHAR(5)
| NOT NULL WITH
| DEFAULT

| Blank if the table or partition is not in a check pending state
| (CHECKFLAG is blank), if the table space is not partitioned,
| or if the table is a temporary table. Otherwise, the RID of the
| first row of the table space partition that can violate
| referential constraints, table check constraints, or both; or the
| value is X'0000000000', indicating that any row can violate
| referential constraints.

| S

| ENCODING_SCHEME| CHAR(1)
| NOT NULL WITH
| DEFAULT 'E'

| Default encoding scheme for tables, views, and local aliases:

| E EBCDIC
| A ASCII
| blank For remote aliases

|  The value will be 'E' for tables in non work file databases
| and blank for tables in work file databases created prior to
| Version 5 or the default database, DSNDB04.

| G

  Appendix D. DB2 Catalog Tables 609



 SYSIBM.SYSTABLESPACE  
 

 SYSIBM.SYSTABLESPACE Table
Contains one row for each table space.

Column Name Data Type Description Use

NAME CHAR(8)
NOT NULL

Name of the table space. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table space. G

DBNAME CHAR(8)
NOT NULL

Name of the database containing the table space. G

DBID SMALLINT
NOT NULL

Internal identifier of the database which contains the table
space.

S

OBID SMALLINT
NOT NULL

Internal identifier of the table space file descriptor. S

PSID SMALLINT
NOT NULL

Internal identifier of the table space page set descriptor. S

BPOOL CHAR(8)
NOT NULL

Name of the buffer pool used for the table space. G

PARTITIONS SMALLINT
NOT NULL

Number of partitions of the table space; 0 if the table space
is not partitioned.

G

LOCKRULE CHAR(1)
NOT NULL

Lock size of the table space:

A Any
P Page
R Row
S Table space
T Table

G

PGSIZE SMALLINT
NOT NULL

Size of pages in the table space in kilobytes. G

ERASERULE CHAR(1)
NOT NULL

Whether the data sets are to be erased when dropped. The
value is meaningless if the table space is partitioned.

N No erase
Y Erase

G

STATUS CHAR(1)
NOT NULL

Availability status of the table space:

A Available
C Definition is incomplete because no partitioned index has

been created.
P Table space is in a check pending state.
S Table space is in a check pending state with the scope

less than the entire table space.
T Definition is incomplete because no table has been

created.

G

IMPLICIT CHAR(1)
NOT NULL

Whether the table space was created implicitly:

Y Yes
N No

G

NTABLES SMALLINT
NOT NULL

Number of tables defined in the table space. G

NACTIVE INTEGER
NOT NULL

Number of active pages in the table space. A page is termed
active if it is formatted for rows, even if it currently contains
none. The value is 0 if statistics have not been gathered.
This is an updatable column.

S

DSETPASS CHAR(8)
NOT NULL

The password for the data sets of the table space. G

610 SQL Reference  



  SYSIBM.SYSTABLESPACE
 

Column Name Data Type Description Use

CLOSERULE CHAR(1)
NOT NULL

Whether the data sets are candidates for closure when the
limit on the number of open data sets is reached.

Y Yes
N No

G

SPACE INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the table
space, as determined by the last execution of the
STOSPACE utility. The value is 0 if the table space is not
related to a storage group, or if STOSPACE has not been
run. If the table space is partitioned, the value is the total
kilobytes of DASD storage allocated to all partitions that are
storage group defined.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes
C V2R1 dependency indicator; not from MRM tape
F V3R1 dependency indicator; not from MRM tape
G V4 dependency indicator; not from MRM tape

| H V5 dependency indicator; not from MRM tape

G

 VARCHAR(18)
NOT NULL

Internal use only I

 CHAR(8)
NOT NULL

Internal use only I

SEGSIZE SMALLINT
NOT NULL WITH
DEFAULT

The number of pages in each segment of a segmented table
space. The value is 0 if the table space is not segmented.

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the table
space.

G

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics. The
default value is '0001-01-01.00.00.00.000000'. This is an
updatable column.

G

LOCKMAX INTEGER The maximum number of locks per user to acquire for the
table or table space before escalating to the next locking
level.

0 Lock escalation does not occur.
n n, where n > 0, is the maximum number of locks

(row or page locks for the table or table space) an
application process can acquire before lock
escalation occurs.

-1 Represents LOCKMAX SYSTEM. The value of field
LOCKS PER TABLE(SPACE) on installation panel
DSNTIPJ determines lock escalation. If the value of
the field is 0, lock escalation does not occur. If the
value is n, where n > 0, lock escalation occurs as it
does for LOCKMAX n.

G

| TYPE| CHAR(1)
| NOT NULL WITH
| DEFAULT

| The type of table space:

# blank The table space is not large and was not defined
# with MEMBER CLUSTER.
# I The table space is not large and was defined with
# MEMBER CLUSTER.
# K The table space is large and was defined with
# MEMBER CLUSTER.
# L The table space is large and was not defined with
# MEMBER CLUSTER

| G

  Appendix D. DB2 Catalog Tables 611



 SYSIBM.SYSTABLESPACE  
 

Column Name Data Type Description Use

| CREATEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the CREATE statement was executed for the
| table space. If the table space was created in a DB2 release
| prior to Version 5, the value is
| '0001-01-01.00.00.00.000000'.

| G

| ALTEREDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the most recent ALTER TABLESPACE statement
| was executed for the table space. If no ALTER
| TABLESPACE statement has been applied, ALTEREDTS
| has the value of CREATEDTS. If the index was created in a
| DB2 release prior to Version 5, the value is
| '0001-01-01.00.00.00.000000'.

| G

| ENCODING_SCHEME| CHAR(1)
| NOT NULL WITH
| DEFAULT 'E'

| Default encoding scheme for the table space.

| E EBCDIC
| A ASCII
| blank For tables spaces in work file databases.

|  The value will be 'E' for tables in non work file databases
| and blank for tables in work file databases created prior to
| Version 5 or the default database, DSNDB04.

| G

| SBCS_CCSID| INTEGER
| NOT NULL WITH
| DEFAULT

| Default SBCS CCSID for the table space. For databases
| created in a DB2 release prior to Version 5, the value is 0.
| G

| DBCS_CCSID| INTEGER
| NOT NULL WITH
| DEFAULT

| Default DBCS CCSID for the table space. For databases
| created in a DB2 release prior to Version 5, the value is 0.
| G

| MIXED_CCSID| INTEGER
| NOT NULL WITH
| DEFAULT

| Default mixed CCSID for the table space. For databases
| created in a DB2 release prior to Version 5, the value is 0.
| G

| MAXROWS| SMALLINT
| NOT NULL
| DEFAULT 255

| The maximum number of rows that DB2 will place on a data
| page. The default value is 255.
| G

LOCKPART CHAR(1)
NOT NULL WITH
DEFAULT

Y LOCKPART YES is specified for the table space.
blank LOCKPART NO is specified, or LOCKPART is not

specified or not a partitioned table space.

G

612 SQL Reference  



  SYSIBM.SYSTABSTATS
 

 SYSIBM.SYSTABSTATS Table
Contains one row for each partition of a partitioned table space.

Column Name Data Type Description Use

CARD INTEGER
NOT NULL

Total number of rows in the partition. This is an updatable
column.

S

NPAGES INTEGER
NOT NULL

Total number of pages on which rows of the partition appear.
This is an updatable column.

S

PCTPAGES SMALLINT
NOT NULL

Percentage of total active pages in the partition that contain
rows of the table. This is an updatable column.

S

NACTIVE INTEGER
NOT NULL

Number of active pages in the partition. This is an updatable
column.

S

PCTROWCOMP SMALLINT
NOT NULL

Percentage of rows compressed within the total number of
active rows in the partition. This includes any row in a table
space that is defined with COMPRESS YES. This is an
updatable column.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when
the last invocation of RUNSTATS updated the statistics. This is
an updatable column.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape.

N No
Y Yes

G

DBNAME CHAR(8)
NOT NULL

Database that contains the table space named in TSNAME. G

TSNAME CHAR(8)
NOT NULL

Table space that contains the table. G

PARTITION SMALLINT
NOT NULL

Partition number of the table space that contains the table. G

OWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table. G

NAME VARCHAR(18)
NOT NULL

Name of the table. G

  Appendix D. DB2 Catalog Tables 613



 SYSIBM.SYSUSERAUTH  
 

 SYSIBM.SYSUSERAUTH Table
Records the system privileges held by users.

Column Name Data Type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user that holds the privilege. Could also
be PUBLIC for a grant to PUBLIC.

G

 CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privileges were granted; in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privileges were granted; in the form hhmmssth. G

 CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the
highest authorization level of the grantor.

blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM

G

 CHAR(1)
NOT NULL

Not used N

BINDADDAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the BIND subcommand with
the ADD option:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

BSDSAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the RECOVER BSDS
command:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATEDBAAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create databases and
automatically receive DBADM authority over the new
databases:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATEDBCAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can execute the CREATE DATABASE
statement to create new databases and automatically receive
DBCTRL authority over the new databases:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATESGAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can execute the CREATE
STOGROUP statement to create new storage groups:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

614 SQL Reference  



  SYSIBM.SYSUSERAUTH
 

Column Name Data Type Description Use

DISPLAYAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the DISPLAY commands:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

RECOVERAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the RECOVER INDOUBT
command:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

STOPALLAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the STOP command:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

STOSPACEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the STOSPACE utility:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SYSADMAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has system administration authority:

blank Privilege is not held
G Privilege was granted with the GRANT option
Y Privilege was granted without the GRANT option

GRANTEE has the privilege with the GRANT option for a value
of either Y or G.

G

SYSOPRAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has system operator authority:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

TRACEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the START TRACE and
STOP TRACE commands:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

MON1AUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can obtain IFC serviceability data.

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

MON2AUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can obtain IFC data.

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATEALIASAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can execute the CREATE ALIAS
statement.

blank Privilege not held
G Privilege held with the GRANT option
Y Privilege held without the GRANT option

G

  Appendix D. DB2 Catalog Tables 615



 SYSIBM.SYSUSERAUTH  
 

Column Name Data Type Description Use

SYSCTRLAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has SYSCTRL authority:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

GRANTEE has the privilege with the GRANT option for a value
of either Y or G.

G

BINDAGENTAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has BINDAGENT privilege:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

See “GRANT (System Privileges)” on page 409 for a
description of the BINDAGENT privilege.

G

ARCHIVEAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE is privileged to use the ARCHIVE LOG
command:

blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

 CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

 CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

| GRANTEDTS| TIMESTAMP
| NOT NULL WITH
| DEFAULT

| Time when the GRANT statement was executed. The value is
| '1985-04-01.00.00.00.000000' for the one installation row.
| G

| CREATETMTABAUTH| CHAR(1)
| NOT NULL WITH
| DEFAULT

| Whether the GRANTEE has CREATETMTABAUTH privilege:

| blank Privilege is not held
| G Privilege is held with the GRANT option
| Y Privilege is held without the GRANT option

| G

616 SQL Reference  



  SYSIBM.SYSVIEWDEP
 

 SYSIBM.SYSVIEWDEP Table
Records the dependencies of views on tables and other views.

Column Name Data Type Description Use

BNAME VARCHAR(18)
NOT NULL

Name of a table or view on which the view is dependent. G

BCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of BNAME. G

BTYPE CHAR(1)
NOT NULL

Type of object BNAME:

T Table
V View

G

DNAME VARCHAR(18)
NOT NULL

Name of the view. G

DCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the view. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

  Appendix D. DB2 Catalog Tables 617



 SYSIBM.SYSVIEWS  
 

 SYSIBM.SYSVIEWS Table
Contains one or more rows for each view.

Column Name Data Type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the view. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the view. G

SEQNO SMALLINT
NOT NULL

Sequence number of this row; the first portion of the view is on
row one and successive rows have increasing values of
SEQNO.

G

CHECK CHAR(1)
NOT NULL

Whether the WITH CHECK OPTION clause was specified in the
CREATE VIEW statement:

N No
| C Yes with the cascaded semantic
| Y Yes with the local semantic

The value is N if the view has no WHERE clause.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes
B V1R3 dependency indicator; not from MRM tape
C V2R1 dependency indicator; not from MRM tape
D V2R2 dependency indicator; not from MRM tape
E V2R3 dependency indicator; not from MRM tape
F V3R1 dependency indicator; not from MRM tape
G V4 dependency indicator; not from MRM tape

| H V5 dependency indicator; not from MRM tape

G

TEXT VARCHAR(254)
NOT NULL

The text or portion of the text of the CREATE VIEW statement. G

618 SQL Reference  



  SYSIBM.SYSVOLUMES
 

 SYSIBM.SYSVOLUMES Table
Contains one row for each volume of each storage group.

Column Name Data Type Description Use

SGNAME CHAR(8)
NOT NULL

The name of the storage group. G

SGCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the storage group. G

VOLID CHAR(6)
NOT NULL

The serial number of the volume or * if SMS-managed. G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable
material (MRM) tape:

N No
Y Yes

G

  Appendix D. DB2 Catalog Tables 619



 SYSIBM.USERNAMES  
 

|  SYSIBM.USERNAMES Table
| Each row in the table is used to carry out one of the following operations:

| � Outbound ID translation
| � Inbound ID translation and “come from” checking

| Rows in this table can be inserted, updated, and deleted.

| Column Name| Data Type| Description| Use

| TYPE| CHAR(1)
| NOT NULL
| How the row is to be used:

| O For outbound translation.
| I For inbound translation and “come from” checking.

| G

| AUTHID| CHAR(8)
| NOT NULL WITH
| DEFAULT

| Authorization ID to be translated. Applies to any authorization ID
| if blank.
| G

| LINKNAME| CHAR(8)
| NOT NULL
| Identifies the VTAM or TCP/IP network locations associated with
| this row. A blank value in this column indicates this name
| translation rule applies to any TCP/IP or SNA partner.

| If a nonblank LINKNAME is specified, one or both of the
| following statements must be true:

| � A row exists in SYSIBM.LUNAMES whose LUNAME
| matches the value specified in the SYSIBM.USERNAMES
| LINKNAME column. This row specifies the VTAM site
| associated with this name translation rule.

| � A row exists in SYSIBM.IPNAMES whose LINKNAME
| matches the value specified in the SYSIBM.USERNAMES
| LINKNAME column. This row specifies the TCP/IP host
| associated with this name translation rule.

| Inbound name translation and “come from” checking are not
| performed for TCP/IP clients.

| G

| NEWAUTHID| CHAR(8)
| NOT NULL WITH
| DEFAULT

| Translated value of AUTHID. Blank specifies no translation.| G

| PASSWORD| CHAR(8)
| NOT NULL WITH
| DEFAULT

| Password to accompany an outbound request, if passwords are
| not encrypted. If passwords are encrypted, or the row is for
| inbound requests, the column is not used.

| G

| IBMREQD| CHAR(1)
| NOT NULL WITH
| DEFAULT 'N'

| Whether the row came from the basic machine-readable
| material (MRM) tape:

| N No
| Y Yes

| G

620 SQL Reference  



  SQL Reserved Words
 

Appendix E. SQL Reserved Words

The following words cannot be used as ordinary identifiers in any context where
they could also be interpreted as SQL keywords. For example, COUNT cannot be
used as a column name in a SELECT statement. Each word can, however, be
used as an ordinary identifier in any other context; for example, in statements
where the word can never be an SQL keyword. The word can also be used, as a
delimited identifier, in contexts where it otherwise could not be used. Assume, for
example, that double quotation marks (") are used to begin and end delimited
identifiers. Then “COUNT” can appear as a column name in a SELECT statement. 

IBM SQL has additional reserved words. These additional reserved words are not
enforced by DB2 for OS/390, but we suggest that you do not use them as ordinary

ADD
ALL

# ALLOCATE
ALTER
AND
ANY
AS

# ASSOCIATE
AUDIT
BETWEEN
BUFFERPOOL
BY
CALL

| CASE
CAPTURE

# CASCADED
# CCSID

CHAR
CHARACTER
CHECK
CLUSTER
COLLECTION
COLUMN
CONCAT

# CONDITION
CONSTRAINT

# CONTINUE
COUNT
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURSOR
DATABASE
DAY
DAYS
DEFAULT
DELETE

DESCRIPTOR
DISTINCT

# DO
DOUBLE
DROP
EDITPROC

# ELSE
# ELSEIF
# END

END-EXEC1

ERASE
ESCAPE
EXCEPT
EXECUTE
EXISTS

# EXIT
FIELDPROC
FOR
FROM
FULL
GO
GOTO
GRANT
GROUP

# HANDLER
HAVING
HOUR
HOURS

# IF
IMMEDIATE
IN
INDEX
INNER
INOUT
INSERT
INTO
IS

# ISOBID

JOIN
KEY

# LEAVE
LEFT
LIKE

# LOCAL
# LOCATOR
# LOCATORS

LOCKMAX
LOCKSIZE

# LOOP
MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MONTH
MONTHS

# NO
NOT
NULL
NUMPARTS
OBID
OF
ON
OPTIMIZE
OR
ORDER
OUT
OUTER
PACKAGE
PART

# PIECESIZE
PLAN
PRECISION
PRIQTY
PRIVILEGES
PROGRAM

# PROCEDURE
# PSID

REFERENCES
# RENAME
# REPEAT

RIGHT
SECOND
SECONDS
SECQTY
SELECT
SET
SOME
STOGROUP
SUBPAGES
SYNONYM
TABLE
TABLESPACE

# THEN
TO

# UNDO
UNION
UNIQUE

# UNTIL
UPDATE
USER
USING
VALIDPROC
VALUES
VCAT
VIEW
VOLUMES

# WHEN
WHERE

# WHILE
WITH
YEAR
YEARS

1 COBOL only

 Copyright IBM Corp. 1982, 1997  621



 SQL Reserved Words  
 

identifiers in names that will have a continuing use. See IBM SQL Reference for a
list of these words.

622 SQL Reference  



  SQL Reserved Words
 

  Appendix E. SQL Reserved Words 623



 SQL Reserved Words  
 

624 SQL Reference  



  
 

Appendix F. DB2 Objects Required by the DB2 for OS/390
SQL Procedure Processor

The DB2 for OS/390 SQL procedure processor (DSNTPSMP) uses the tables and
indexes that are described in the following sections. You can create these objects
by customizing and running job DSNTIJSQ, which is in data set
DSN510.SDSNSAMP. DSNTIJSQ creates the objects in database DSNDPSM and
table space DSNSPSM.

Table Spaces and Indexes
625 shows the table spaces to which the SQL procedure tables are assigned, and
which indexes are defined on the tables.

Table 40. Table spaces and indexes for SQL procedure tables

TABLE SPACE
DSNSPSM. ...

TABLE
SYSIBM. ...

 
Page

INDEX
SYSIBM. ...

 
INDEX FIELDS

DSNSPSM SYSPSM  625 DSNPSMX1 PROCEDURENAME

   DSNPSMX2 SCHEMA
PROCEDURENAME
SEQNO

 SYSPSMOPTS 625 DSNPSMOX1 SCHEMA
PROCEDURENAME

The SQL Procedure Source Table (SYSIBM.SYSPSM)
SYSIBM.SYSPSM is used by the SQL procedure processor and IBM DB2 Stored
Procedure Builder to hold the source code for a stored procedure.
SYSIBM.SYSPSM contains at least one row for each SQL procedure that is
prepared by the SQL procedure processor or SQL Procedure Builder. The number
of rows that represent an SQL procedure is

CEILING(n/38,,)

n is the number of bytes in the SQL procedure source statement.

Column Name Data Type Description Use

SCHEMA CHAR(8) Schema of the SQL procedure. Blank for SQL procedures
created before DB2 Version 6.

G

PROCEDURENAME CHAR(18)
NOT NULL

Name of the SQL procedure. G

SEQNO SMALLINT
NOT NULL

Number of the SQL statement piece in PROCCREATESTMT.
SEQNO is between 1 and CEILING(n/3800), where n is the
number of bytes in the SQL procedure source statement.

G

PSMDATE DATE
NOT NULL

The date on which the SQL procedure was created. G

PSMTIME TIME
NOT NULL

The time at which the SQL procedure was created. G

PSMTIME TIME
NOT NULL

The time at which the SQL procedure was created. G

 Copyright IBM Corp. 1982, 1997  625



  
 

Column Name Data Type Description Use

PROCCREATESTMT VARCHAR(3800)
NOT NULL

All or part of an SQL procedure source statement. If the SQL
procedure statement is more than 3800 bytes, this field
contains the portion of the source statement indicated by
SEQNO.

G

The SQL Procedure Options Table (SYSIBM.SYSPSMOPTS)
SYSIBM.SYSPSMOPTS is used by the SQL procedure processor and IBM DB2
Stored Procedure Builder to hold the program preparation options for an SQL
procedure. SYSIBM.SYSPSMOPTS contains one row for each SQL procedure that
is prepared by the SQL procedure processor or SQL Procedure Builder.

Column Name Data Type Description Use

SCHEMA CHAR(8) Schema of the SQL procedure. Blank for SQL procedures
created before DB2 Version 6.

G

PROCEDURENAME CHAR(18)
NOT NULL

Name of the SQL procedure. G

BUILDSCHEMA CHAR(8) The schema name that is the qualifier for the procedure name
that is specified in the BUILDNAME column. The schema
name is SYSPROC.

G

BUILDNAME CHAR(18) A procedure name that is associated with stored procedure
DSNTPSMP. Users of DSNTPSMP might create several
stored procedure definitions for DSNTPSMP so that they can
run DSNTPSMP in different WLM environments. The caller
specifies the environment in which DSNTPSMP runs by
specifying the procedure name that is associated with that
environment in the SQL CALL statement.

G

BUILDOWNER CHAR(8) The authorization ID that was used to create the SQL
procedure.

G

PRECOMPILE_OPTS VARCHAR(255) The options that were specified in the precompiler-options
parameter in the most recent invocation of DSNTPSMP for
the SQL procedure specified in this row.

G

COMPILE_OPTS VARCHAR(255) The options that were specified in the compiler-options
parameter in the most recent invocation of DSNTPSMP for
the SQL procedure specified in this row.

G

PRELINK_OPTS VARCHAR(255) The options that were specified in the prelink-edit-options
parameter in the most recent invocation of DSNTPSMP for
the SQL procedure specified in this row.

G

LINK_OPTS VARCHAR(255) The options that were specified in the link-edit-options
parameter in the most recent invocation of DSNTPSMP for
the SQL procedure specified in this row.

G

BIND_OPTS VARCHAR(1024) The options that were specified in the bind-options parameter
in the most recent invocation of DSNTPSMP for the SQL
procedure specified in this row.

G

SOURCEDSN VARCHAR(255) If the SQL procedure source code that is input to DSNTPSMP
is stored in a data set, the name of that data set.

G

626 SQL Reference  



  Bibliography
 

Temporary Table SYSIBM.SYSPSMOUT
SYSIBM.SYSPSMOUT is used by the SQL procedure processor and IBM DB2
Stored Procedure Builder to hold error information that is returned in a result set.

This SQL statement creates the temporary table:

CREATE GLOBAL TEMPORARY TABLE SYSIBM.SYSPSMOUT

 (STEP VARCHAR(16),

 FILE VARCHAR(8),

 SEQN INTEGER,

 LINE VARCHAR(255) )

 CCSID EBCDIC;

  Appendix F. DB2 Objects Required by the DB2 for OS/390 SQL Procedure Processor 627



 Bibliography  
 

628 SQL Reference  



  abend - ASCII
 

 Glossary

The following terms and abbreviations are defined as
they are used in the DB2 library. If you do not find the
term you are looking for, refer to the index or to
Dictionary of Computing.

A
abend.  Abnormal end of task.

abend reason code.  A 4-byte hexadecimal code that
uniquely identifies a problem with DB2. A complete list
of DB2 abend reason codes and their explanations is
contained in Messages and Codes.

abnormal end of task (abend).  Termination of a task,
a job, or a subsystem because of an error condition that
cannot be resolved during execution by recovery
facilities.

access method services.  A utility program that
defines and manages VSAM data sets (or files).

access path.  The path used to get to data specified in
SQL statements. An access path can involve an index
or a sequential search.

active log.  The portion of the DB2 log to which log
records are written as they are generated. The active
log always contains the most recent log records,
whereas the archive log holds those records that are
older and no longer will fit on the active log.

active member state.  A state of a member of a data
sharing group. An active member is identified with a
group by XCF, which associates the member with a
particular task, address space, and MVS system. A
member that is not active is failed or quiesced.

alias.  An alternate name that can be used in SQL
statements to refer to a table or view in the same or a
remote DB2 subsystem.

allied thread.  A thread originating at the local DB2
subsystem that may access data at a remote DB2
subsystem.

| allocated cursor.  A cursor defined for stored
| procedure results sets by using ALLOCATE CURSOR.

already verified.  An LU 6.2 security option which
allows DB2 to provide the user's verified authorization
ID when allocating a conversation. The user is not
validated by the partner DB2.

ambiguous cursor.  A database cursor that is not
defined with either the clauses FOR FETCH ONLY or
FOR UPDATE OF, is not defined on a read-only result
table, is not the target of a WHERE CURRENT clause
on an SQL UPDATE or DELETE statement, and is in a
plan or package that contains SQL statements
PREPARE or EXECUTE IMMEDIATE.

American National Standards Institute (ANSI).  An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

ANSI.  American National Standards Institute.

API.  Application programming interface.

APPL.  A VTAM network definition statement used to
define DB2 to VTAM as an application program using
SNA LU 6.2 protocols.

application.  A program or set of programs that
perform a task; for example, a payroll application.

application plan.  The control structure produced
during the bind process and used by DB2 to process
SQL statements encountered during statement
execution.

application process.  The unit to which resources and
locks are allocated. An application process involves the
execution of one or more programs.

application program interface (API).  A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
licensed program.

application requester (AR).  See requester.

application server.  See server.

AR.  application requester. See requester.

archive log.  The portion of the DB2 log that contains
log records that have been copied from the active log.

AS.  Application server. See server.

ASCII.  An encoding scheme used to represent strings
in many environments, typically on PCs and
workstations. Contrast with EBCDIC.

 Copyright IBM Corp. 1982, 1997  629



 attachment facility - check clause  
 

attachment facility.  An interface between DB2 and
TSO, IMS, CICS, or batch address spaces. An
attachment facility allows application programs to
access DB2.

attribute.  A characteristic of an entity. For example, in
database design, the phone number of an employee is
one of that employee's attributes.

authorization ID.  A string that can be verified for
connection to DB2 and to which a set of privileges are
allowed. It can represent an individual, an organizational
group, or a function, but DB2 does not determine this
representation.

B
base table.  A table created by the SQL CREATE
TABLE statement that is used to hold persistent data.
Contrast with result table and temporary table.

basic predicate.  A predicate that compares two
values.

binary integer.  A basic data type that can be further
classified as small integer or large integer.

bind.  The process by which the output from the DB2
precompiler is converted to a usable control structure
called a package or an application plan. During the
process, access paths to the data are selected and
some authorization checking is performed.

automatic bind. (More correctly automatic rebind).
A process by which SQL statements are bound
automatically (without a user issuing a BIND
command) when an application process begins
execution and the bound application plan or
package it requires is not valid.
dynamic bind. A process by which SQL statements
are bound as they are entered.
incremental bind. A process by which SQL
statements are bound during the execution of an
application process, because they could not be
bound during the bind process, and
VALIDATE(RUN) was specified.
static bind. A process by which SQL statements
are bound after they have been precompiled. All
static SQL statements are prepared for execution at
the same time. Contrast with dynamic bind.

bit data.  Data that is not associated with a coded
character set.

BMP.  Batch Message Processing (IMS).

bootstrap data set (BSDS).  A VSAM data set that
contains name and status information for DB2, as well
as RBA range specifications, for all active and archive

log data sets. It also contains passwords for the DB2
directory and catalog, and lists of conditional restart and
checkpoint records.

BSDS.  Bootstrap data set.

buffer pool.  Main storage reserved to satisfy the
buffering requirements for one or more table spaces or
indexes.

built-in function.  Scalar function or column function.

C
cache structure.  A coupling facilitystructure that
stores data that can be available to all members of a
Sysplex. A DB2 data sharing group uses cache
structures as group buffer pools.

call level interface (CLI).  A callable application
program interface (API) for database access, which is
an alternative to using embedded SQL. In contrast to
embedded SQL, DB2 CLI does not require the user to
precompile or bind applications, but instead provides a
standard set of functions to process SQL statements
and related services at run time.

cascade delete.  The enforcement of referential
constraints by DB2 when it deletes all descendent rows
of a deleted parent row.

| CASE expression.  Allows an expression to be
| selected based on the evaluation of one or more
| conditions.

castout.  The DB2 process of writing changed pages
from a group buffer pool to DASD.

catalog.  In DB2, a collection of tables that contains
descriptions of objects such as tables, views, and
indexes.

catalog table.  Any table in the DB2 catalog.

CCSID.  Coded character set identifier.

CDB.  See communications database.

CDRA.  Character data representation architecture.

character data representation architecture (CDRA).
An architecture used to achieve consistent
representation, processing, and interchange of string
data.

character set.  A defined set of characters.

check clause.  An extension to the SQL CREATE
TABLE and SQL ALTER TABLE statements that
specifies a table check constraint.

630 SQL Reference  



  check constraint - conversation
 

check constraint.  See table check constraint.

check integrity.  The condition that exists when each
row in a table conforms to the table check constraints
defined on that table. Maintaining check integrity
requires enforcing table check constraints on operations
that add or change data.

check pending.  A state of a table space or partition
that prevents its use by some utilities and some SQL
statements, because it can contain rows that violate
referential constraints, table check constraints, or both.

checkpoint.  A point at which DB2 records internal
status information on the DB2 log that would be used in
the recovery process if DB2 should abend.

CICS.  Represents (in this publication) CICS/MVS and
CICS/ESA.

CICS/MVS: Customer Information Control
System/Multiple Virtual Storage.
CICS/ESA: Customer Information Control
System/Enterprise Systems Architecture.

CICS attachment facility.  A DB2 subcomponent that
uses the MVS Subsystem Interface (SSI) and cross
storage linkage to process requests from CICS to DB2
and to coordinate resource commitment.

clause.  In SQL, a distinct part of a statement, such as
a SELECT clause or a WHERE clause.

CLI.  See call level interface.

client.  See requester.

clustering index.  An index that determines how rows
are physically ordered in a table space.

coded character set.  A set of unambiguous rules that
establish a character set and the one-to-one
relationships between the characters of the set and their
coded representations.

coded character set identifier (CCSID).  A 16-bit
number that uniquely identifies a coded representation
of graphic characters. It designates an encoding
scheme identifier and one or more pairs consisting of a
character set identifier and an associated code page
identifier.

code page.  A set of assignments of characters to
code points.

code point.  In CDRA, a unique bit pattern that
represents a character in a code page.

collection.  A group of packages that have the same
qualifier.

column.  The vertical component of a table. A column
has a name and a particular data type (for example,
character, decimal, or integer).

column function.  An SQL operation that derives its
result from a collection of values across one or more
rows. Contrast with scalar function.

"come from" checking.  An LU 6.2 security option
which defines a list of authorization IDs that are allowed
to connect to DB2 from a partner LU.

command.  A DB2 operator command or a DSN
subcommand. Distinct from an SQL statement.

commit.  The operation that ends a unit of work by
releasing locks so that the database changes made by
that unit of work can be perceived by other processes.

commit point.  A point in time when data is considered
consistent.

committed phase.  The second phase of the multi-site
update process that requests all participants to commit
the effects of the logical unit of work.

communications database (CDB).  A set of tables in
the DB2 catalog that are used to establish
conversations with remote database management
systems.

comparison operator.  A token (such as =, >, <) used
to specify a relationship between two values.

composite key.  An ordered set of key columns of the
same table.

concurrency.  The shared use of resources by more
than one application process at the same time.

connection.  The existence of a communication path
between two partner LUs that allows information to be
exchanged (for example, two DB2s connected and
communicating by way of a conversation).

consistency token.  A timestamp used to generate the
version identifier for an application. See also version.

constant.  A language element that specifies an
unchanging value. Constants are classified as string
constants or numeric constants. Contrast with variable.

constraint.  A rule that limits the values that can be
inserted, deleted, or updated in a table. See referential
constraint, uniqueness constraint, and table check
constraint.

conversation.  (1) A VTAM term for a dialog between
two application processes, on different DB2
subsystems, that is specified by a particular session
name, mode name, and LU name. (2) An LU 6.2

  Glossary 631



 correlated subquery - DB2 command  
 

security option which allows DB2 to require the user's
authorization ID and password when allocating a
conversation to a partner DB2. The user is validated by
the partner DB2.

correlated subquery.  A subquery (part of a WHERE
or HAVING clause) applied to a row or group of rows of
a table or view named in an outer sub-SELECT
statement.

correlation ID.  An identifier associated with a specific
thread. In TSO, it is either an authorization ID or the job
name.

correlation name.  An identifier that designates a
table, a view, or individual rows of a table or view within
a single SQL statement. It can be defined in any FROM
clause or in the first clause of an UPDATE or DELETE
statement.

current data.  Data within a host structure that is
current with (identical to) the data within the base table.

cursor.  A named control structure used by an
application program to point to a row of interest within
some set of rows, and to retrieve rows from the set,
possibly making updates or deletions.

cursor stability (CS).  The isolation level that provides
maximum concurrency without the ability to read
uncommitted data. With cursor stability, a unit of work
holds locks only on its uncommitted changes and on the
current row of each of its cursors.

cycle.  A set of tables that can be ordered so that each
table is a descendent of the one before it, and the first
is a descendent of the last. A self-referencing table is a
cycle with a single member.

D
DASD.  Direct access storage device.

database.  A collection of tables, or a collection of
table spaces and index spaces.

database access thread.  A thread accessing data at
the local subsystem on behalf of a remote subsystem.

database administrator (DBA).  An individual
responsible for the design, development, operation,
safeguarding, maintenance, and use of a database.

database descriptor (DBD).  An internal
representation of DB2 database definition which reflects
the data definition found in the DB2 catalog. The
objects defined in a database descriptor are table
spaces, tables, indexes, index spaces, and
relationships.

database management system (DBMS).  A software
system that controls the creation, organization, and
modification of a database and access to the data
stored within it.

database request module (DBRM).  A data set
member created by the DB2 precompiler that contains
information about SQL statements. DBRMs are used in
the bind process.

DATABASE 2 Interactive (DB2I).  The DB2 facility that
provides for the execution of SQL statements, DB2
(operator) commands, programmer commands, and
utility invocation.

data currency.  The state in which data retrieved into a
host variable in your program is a copy of data in the
base table.

data sharing.  The ability of two or more DB2
subsystems to directly access and change a single set
of data.

data sharing group.  A collection of one or more DB2
subsystems that directly access and change the same
data while maintaining data integrity.

data sharing member.  A DB2 subsystem assigned by
XCF services to a data sharing group.

data type.  An attribute of columns, literals, host
variables, special registers, and the results of functions
and expressions.

date.  A three-part value that designates a day, month,
and year.

date duration.  A decimal integer that represents a
number of years, months, and days.

datetime value.  A value of the data type DATE, TIME,
or TIMESTAMP.

DBA.  Database administrator.

DBCS.  Double-byte character set.

DBD.  Database descriptor.

DBID.  Database identifier.

DBMS.  Database management system.

DBRM.  Database request module.

DB2 catalog.  Tables maintained by DB2 that contain
descriptions of DB2 objects such as tables, views, and
indexes.

DB2 command.  An instruction to the DB2 subsystem
allowing a user to start or stop DB2, to display

632 SQL Reference  



  DB2I - DRDA access
 

information on current users, to start or stop databases,
to display information on the status of databases, and
so on.

DB2I.  DATABASE 2 Interactive.

DB2 private protocol access.  A method of accessing
distributed data by which you can direct a query to
another DB2 system by using an alias or a three-part
name to identify the DB2 subsystems at which the
statements are executed. Contrast with DRDA access.

DB2 private protocol connection.  A DB2 private
connection of the application process. See also private
connection.

DCLGEN.  Declarations generator.

DDF.  Distributed data facility.

declarations generator (DCLGEN).  A subcomponent
of DB2 that generates SQL table declarations and
COBOL, C, or PL/I data structure declarations that
conform to the table. The declarations are generated
from DB2 system catalog information. DCLGEN is also
a DSN subcommand.

default value.  A predetermined value, attribute, or
option that is assumed when no other is explicitly
specified.

deferred embedded SQL.  SQL statements that are
neither fully static nor fully dynamic. Like static
statements, they are embedded within an application,
but like dynamic statements, they are prepared during
the execution of the application.

delete-connected.  A table is delete-connected to table
P if it is a dependent of P or a dependent of a table to
which delete operations from P cascade.

| delete rule.  The rule that tells DB2 what to do to a
| dependent row when a parent row is deleted. For each
| relationship, the rule might be CASCADE, RESTRICT,
| SET NULL, or NO ACTION.

delimited identifier.  A sequence of characters
enclosed within quotation marks ("). The sequence
must consist of a letter followed by zero or more
characters, each of which is a letter, digit, or the
underscore character (_).

delimiter token.  A string constant, a delimited
identifier, an operator symbol, or any of the special
characters shown in syntax diagrams.

dependent.  An object (row, table, or table space) is a
dependent if it has at least one parent. The object is
also said to be a dependent (row, table, or table space)
of its parent. See parent row, parent table, parent table
space.

dependent row.  A row that contains a foreign key that
matches the value of a primary key in the parent row.

dependent table.  A table that is dependent in at least
one referential constraint.

descendent.  An object is a descendent of another
object if it is a dependent of the object, or if it is the
dependent of a descendent of that object.

descendent row.  A row that is dependent on another
row or a row that is a dependent of a descendent row.

descendent table.  A table that is a dependent of
another table or a dependent of a descendent table.

direct access storage device (DASD).  A device in
which access time is independent of the location of the
data.

directory.  The system database that contains internal
objects such as database descriptors and skeleton
cursor tables.

distributed data facility (DDF).  A set of DB2
components through which DB2 communicates with
another RDBMS.

distributed relational database architecture
(DRDA).  A connection protocol for distributed relational
database processing that is used by IBM's relational
database products. DRDA includes protocols for
communication between an application and a remote
relational database management system, and for
communication between relational database
management systems.

domain name.  The name used by TCP/IP applications
to refer to a TCP/IP host within a TCP/IP network.

domain name server (DNS).  A special TCP/IP
network server that manages a distributed directory that
is used to map TCP/IP host names to IP addresses.

double-byte character set (DBCS).  A set of
characters used by national languages such as
Japanese and Chinese that have more symbols than
can be represented by a single byte. Each character is
two bytes in length, and therefore requires special
hardware to be displayed or printed.

double-precision floating point number.  A 64-bit
approximate representation of a real number.

DRDA.  Distributed relational database architecture.

DRDA access.  A method of accessing distributed data
by which you can explicitly connect to another location,
using an SQL statement, to execute packages that have
been previously bound at that location. The SQL

  Glossary 633



 DSN - graphic string  
 

CONNECT statement is used to identify application
servers, and SQL statements are executed using
packages that were previously bound at those servers.
Contrast with DB2 private protocol access.

DSN.  (1) The default DB2 subsystem name. (2) The
name of the TSO command processor of DB2. (3) The
first three characters of DB2 module and macro names.

duration.  A number that represents an interval of time.
See date duration, labeled duration, and time duration.

dynamic SQL.  SQL statements that are prepared and
executed within an application program while the
program is executing. In dynamic SQL, the SQL source
is contained in host language variables rather than
being coded into the application program. The SQL
statement can change several times during the
application program's execution.

E
EBCDIC.  Extended binary coded decimal interchange
code. An encoding scheme used to represent character
data in the MVS, VM, VSE, and OS/400 environments.
Contrast with ASCII.

EDM pool.  A pool of main storage used for database
descriptors and application plans.

embedded SQL.  SQL statements coded within an
application program. See static SQL.

| encoding scheme.  A set of rules to represent
| character data (ASCII or EBCDIC).

equi-join.  A join operation in which the join-condition
has the form expression = expression.

escape character.  The symbol used to enclose an
SQL delimited identifier. The escape character is the
quotation mark ("), except in COBOL applications,
where the symbol (either a quotation mark or an
apostrophe) can be assigned by the user.

EUR.  IBM European Standards.

exclusive lock.  A lock that prevents concurrently
executing application processes from reading or
changing data. Contrast with shared lock.

executable statement.  An SQL statement that can be
embedded in an application program, dynamically
prepared and executed, or issued interactively.

exit routine.  A user-written (or IBM-provided default)
program that receives control from DB2 to perform
specific functions. Exit routines run as extensions of
DB2.

exposed name.  Names specified in a FROM clause
are exposed or non-exposed. An exposed name is a
correlation name or a table or view name for which a
correlation name is not specified.

expression.  An operand or a collection of operators
and operands that yields a single value.

F
failed member state.  A state of a member of a data
sharing group. A failed member has permanent status
recording with XCF, and its task, address space, or
MVS system has terminated before the state changed
from active to quiesced.

fallback.  The process of returning to a previous
release of DB2 after attempting or completing migration
to a current release.

field procedure.  A user-written exit routine designed
to receive a single value and transform (encode or
decode) it in any way the user can specify.

fixed-length string.  A character or graphic string
whose length is specified and cannot be changed.
Contrast with varying-length string.

foreign key.  A key that is specified in the definition of
a referential constraint. Because of the foreign key, the
table is a dependent table. The key must have the
same number of columns, with the same descriptions,
as the primary key of the parent table.

free space.  The total unused space in a page, that is,
the space not used to store records or control
information.

full outer join.  The result of a join operation that
includes the matched rows of both tables being joined
and preserves the unmatched rows of both tables. See
also join.

function.  A scalar function or column function. Same
as built-in function.

G
GB.  Gigabyte (1,073,741,824 bytes).

GBP-dependent.  A page set or page set partition
status when it is dependent upon the group bufferpool.
There is either inter-DB2 read/write interest active for
this page set or the page set has changed pages in the
group buffer pool that have not yet been castout to
DASD.

graphic string.  A sequence of DBCS characters.

634 SQL Reference  



  gross lock - join
 

gross lock.  The shared, update, or exclusive mode
locks on a table, partition, or table space.

group buffer pool.  A coupling facility cache structure
used by a data sharing group to cache data and to
ensure that the data is consistent for all members.

group name.  The MVS XCF identifier for a data
sharing group.

group restart.  A restart of at least one member of a
data sharing group after either locks or the shared
communications area have been lost.

H
host.  The set of programs and resources that are
available on a given TCP/IP instance.

host identifier.  A name declared in the host program.

host language.  A programming language in which you
can embed SQL statements.

host program.  An application program written in a
host language that contains embedded SQL statements.

host structure.  In an application program, a structure
referenced by embedded SQL statements.

host variable.  In an application program, an
application variable referenced by embedded SQL
statements.

I
ICF.  Integrated catalog facility.

image copy.  An exact reproduction of all or part of a
table space. DB2 provides utility programs to make full
image copies (to copy the entire table space) or
incremental image copies (to copy only those pages
that have been modified since the last image copy).

IMS.  Information Management System.

independent.  An object (row, table, or table space) is
independent if it is neither a parent nor a dependent of
another object.

index.  A set of pointers that are logically ordered by
the values of a key. Indexes can provide faster access
to data and can enforce uniqueness on the rows in a
table.

index key.  The set of columns in a table used to
determine the order of index entries.

index partition.  A VSAM data set that is contained
within a partitioned index space.

index space.  A page set used to store the entries of
one index.

indicator variable.  A variable used to represent the
null value in an application program. If the value for the
selected column is null, a negative value is placed in
the indicator variable.

indoubt.  A status of a unit of recovery. If DB2 fails
after it has finished its phase 1 commit processing and
before it has started phase 2, only the commit
coordinator knows if this unit of recovery is to be
committed or rolled back. At emergency restart, if DB2
does not have the information needed to make this
decision, its unit of recovery is indoubt until DB2 obtains
this information from the coordinator.

indoubt resolution.  The process of resolving the
status of an indoubt logical unit of work to either the
committed or the rollback state.

inner join.  The result of a join operation that includes
only the matched rows of both tables being joined. See
also join.

internal resource lock manager (IRLM).  An MVS
subsystem used by DB2 to control communication and
database locking.

inter-DB2 R/W interest.  A property of data in a table
space, index, or partition that has been opened by more
than one member of a data sharing group and that has
been opened for writing by at least one of those
members.

IP address.  A 4-byte value that uniquely identifies a
TCP/IP host.

IRLM.  internal resource lock manager.

ISO.  International Standards Organization.

isolation level.  The degree to which a unit of work is
isolated from the updating operations of other units of
work. See also cursor stability, repeatable read,
uncommitted read, and read stability.

J
JIS.  Japanese Industrial Standard.

join.  A relational operation that allows retrieval of data
from two or more tables based on matching column
values. See also full outer join, inner join, left outer join,
outer join, right outer join, equi-join.

  Glossary 635



 KB - LUW  
 

K
KB.  Kilobyte (1024 bytes).

key.  A column or an ordered collection of columns
identified in the description of a table, index, or
referential constraint.

keyword.  In SQL, a name that identifies an option
used in an SQL statement.

L
labeled duration.  A number that represents a duration
of years, months, days, hours, minutes, seconds, or
microseconds.

large partitioned table space.  A table space that
allows the partitioned table it contains to exceed 64 GB
of data in either compressed or uncompressed format.

leaf page.  A page that contains pairs of keys and
RIDs and that points to actual data. Contrast with
nonleaf page.

left outer join.  The result of a join operation that
includes the matched rows of both tables being joined,
and preserves the unmatched rows of the first table.
See also join.

L-lock.  See logical lock.

local.  Refers to any object maintained by the local
DB2 subsystem. A local table, for example, is a table
maintained by the local DB2 subsystem. Contrast with
remote.

local subsystem.  The unique RDBMS to which the
user or application program is directly connected (in the
case of DB2, by one of the DB2 attachment facilities).

location name.  The name by which DB2 refers to a
particular DB2 subsystem in a network of subsystems.
Contrast with LU name.

lock.  A means of controlling concurrent events or
access to data. DB2 locking is performed by the IRLM.

lock duration.  The interval over which a DB2 lock is
held.

lock escalation.  The promotion of a lock from a row
or page lock to a table space lock because the number
of page locks concurrently held on a given resource
exceeds a preset limit.

locking.  The process by which the integrity of data is
ensured. Locking prevents concurrent users from
accessing inconsistent data.

lock mode.  A representation for the type of access
concurrently running programs can have to a resource
held by a DB2 lock.

lock object.  The resource that is controlled by a DB2
lock.

lock promotion.  The process of changing the size or
mode of a DB2 lock to a higher level.

lock size.  The amount of data controlled by a DB2
lock on table data; the value can be a row, a page, a
table, or a table space.

log.  A collection of records that describe the events
that occur during DB2 execution and their sequence.
The information thus recorded is used for recovery in
the event of a failure during DB2 execution.

logical index partition.  The set of all keys that
reference the same data partition.

logical lock.  The lock type used by transactions to
control intra- and inter-DB2 data concurrency between
transactions.

logical unit.  An access point through which an
application program accesses the SNA network in order
to communicate with another application program.

logical unit of work (LUW).  In IMS, the processing
that program performs between synchronization points.

log initialization.  The first phase of restart processing
during which DB2 attempts to locate the current end of
the log.

log record sequence number (LRSN).  A number
DB2 generates and associates with each log record.
DB2 also uses the LRSN for page versioning. The
LRSNs generated by a given DB2 data sharing group
form a strictly increasing sequence for each DB2 log
and a strictly increasing sequence for each page across
the DB2 group.

log truncation.  A process by which an explicit starting
RBA is established. This RBA is the point at which the
next byte of log data will be written.

long string.  A string whose actual length, or a
varying-length string whose maximum length, is greater
than 255 bytes or 127 double-byte characters.

LRSN.  See log record sequence number.

LU name.  From logical unit name, the name by which
VTAM refers to a node in a network. Contrast with
location name.

LUW.  Logical unit of work.

636 SQL Reference  



  member name - parent key
 

M
member name.  The MVS XCF identifier for a
particular DB2 subsystem in a data sharing group.

migration.  The process of converting a DB2
subsystem with a previous release of DB2 to an
updated or current release. In this process, you can
acquire the functions of the updated or current release
without losing the data you created on the previous
release.

mixed data string.  A character string that can contain
both single-byte and double-byte characters.

mode name.  A VTAM name for the collection of
physical and logical characteristics and attributes of a
session.

multi-site update.  Distributed relational database
processing in which data is updated in more than one
location within a single unit of work.

MVS.  Multiple Virtual Storage.

MVS/ESA.  Multiple Virtual Storage/Enterprise Systems
Architecture.

MVS/XA.  Multiple Virtual Storage/Extended
Architecture.

N
nested table expression.  A subselect in a FROM
clause (surrounded by parentheses).

nonleaf page.  A page that contains keys and page
numbers of other pages in the index (either leaf or
nonleaf pages). Nonleaf pages never point to actual
data.

nonpartitioned index.  Any index that is not a
partitioned index.

NUL.  In C, a single character that denotes the end of
the string.

null.  A special value that indicates the absence of
information.

NULLIF.  A scalar function which evaluates two passed
expressions, returning NULL if the arguments are equal,
or the value of the first argument if they are not.

NUL-terminated host variable.  A varying-length host
variable in which the end of the data is indicated by the
presence of a NUL terminator.

NUL terminator.  In C, the value that indicates the end
of a string. For character strings, the NUL terminator is
X'00'.

O
OBID.  Data object identifier.

ordinary identifier.  An uppercase letter followed by
zero or more characters, each of which is an uppercase
letter, a digit, or the underscore character. An ordinary
identifier must not be a reserved word.

ordinary token.  A numeric constant, an ordinary
identifier, a host identifier, or a keyword.

outer join.  The result of a join operation that includes
the matched rows of both tables being joined and
preserves some or all of the unmatched rows of the
tables being joined. See also join.

P
package.  Also application package. An object
containing a set of SQL statements that have been
bound statically and that are available for processing.

package list.  An ordered list of package names that
may be used to extend an application plan.

package name.  The name given an object created by
a BIND PACKAGE or REBIND PACKAGE command.
The object is a bound version of a database request
module (DBRM). The name consists of a location
name, a collection ID, a package ID, and a version ID.

page.  A unit of storage within a table space (4KB or
32KB) or index space (4KB). In a table space, a page
contains one or more rows of a table.

page set.  A table space or index space consisting of
pages that are either 4KB or 32KB in size. Each page
set is made from a collection of VSAM data sets.

parallel I/O processing.  A form of I/O processing in
which DB2 initiates multiple concurrent requests for a
single user query and performs I/O processing
concurrently (in parallel), on multiple data partitions.

parameter marker.  A question mark (?) that appears
in a statement string of a dynamic SQL statement. The
question mark can appear where a host variable could
appear if the statement string was a static SQL
statement.

parent key.  A primary key or unique key in the parent
table of a referential constraint. The values of a parent
key determine the valid values of the foreign key in the
referential constraint.

  Glossary 637



 parent row - quiesced member state  
 

parent row.  A row whose primary key value is the
foreign key value of a dependent row.

parent table.  A table whose primary key is referenced
by the foreign key of a dependent table.

parent table space.  A table space that contains a
parent table. A table space containing a dependent of
that table is a dependent table space.

partition.  A portion of a page set. Each partition
corresponds to a single, independently extendable data
set. Partitions can be extended to a maximum size of 1,
2, or 4 gigabytes, depending upon the number of
partitions in the partitioned page set. All partitions of a
given page set have the same maximum size.

partitioned data set (PDS).  A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data. Synonymous with program library.

partitioned table space.  A table space subdivided
into parts (based upon index key range), each of which
may be processed by utilities independently.

PDS.  Partitioned data set.

piece.  A data set of a nonpartitioned page set.

plan.  See application plan.

plan allocation.  The process of allocating DB2
resources to a plan in preparation to execute it.

plan name.  The name of an application plan.

point of consistency.  A time when all recoverable
data an application accesses is consistent with other
data. Synonymous with sync point or commit point.

precompilation.  A processing of application programs
containing SQL statements that takes place before
compilation. SQL statements are replaced with
statements that are recognized by the host language
compiler. Output from this precompilation includes
source code that can be submitted to the compiler and
the database request module (DBRM) that is input to
the bind process.

predicate.  An element of a search condition that
expresses or implies a comparison operation.

prefix.  A code at the beginning of a message or
record.

prepare.  The first phase of a two-phase commit
process in which all participants are requested to
prepare for commit.

prepared SQL statement.  A named object that is the
executable form of an SQL statement that has been
processed by the PREPARE statement.

primary authorization ID.  The authorization ID used
to identify the application process to DB2.

primary index.  An index that enforces the uniqueness
of a primary key.

primary key.  A unique, nonnull key that is part of the
| definition of a table. A table cannot be defined as a
| parent unless it has a unique key or primary key.

private connection.  A communications connection
that is specific to DB2.

privilege.  The capability of performing a specific
function, sometimes on a specific object. The term
includes:

explicit privileges, which have names and are held
as the result of SQL GRANT and REVOKE
statements. For example, the SELECT privilege.
implicit privileges, which accompany the
ownership of an object, such as the privilege to
drop a synonym one owns, or the holding of an
authority, such as the privilege of SYSADM
authority to terminate any utility job.

privilege set.  For the installation SYSADM ID, the set
of all possible privileges. For any other authorization ID,
the set of all privileges recorded for that ID in the DB2
catalog.

process.  A general term for a unit that depends on the
environment, but has the same basic properties in every
environment. A process involves the execution of one or
more programs, and is the unit to which resources and
locks are allocated. The execution of an SQL statement
is always associated with some process.

program.  A single compilable collection of executable
statements in a programming language.

protected conversation.  A VTAM conversation that
supports two-phase commit flows.

Q
QMF.  Query Management Facility.

query.  A component of certain SQL statements that
specifies a result table.

quiesced member state.  A state of a member of a
data sharing group. An active member becomes
quiesced when a STOP DB2 command takes effect
without a failure. If the member's task, address space,

638 SQL Reference  



  RACF - result table
 

or MVS system fails before the command takes effect,
the member state is failed.

R
RACF.  OS/VS2 MVS Resource Access Control
Facility.

RDB.  See relational database.

RDBMS.  Relational database management system.

RDBNAM.  See relational database name.

read stability (RS).  An isolation level that is similar to
repeatable read but does not completely isolate an
application process from all other concurrently executing
application processes. Under level RS, an application
that issues the same query more than once might read
additional rows, known as phantom rows, that were
inserted and committed by a concurrently executing
application process.

rebind.  To create a new application plan for an
application program that has been bound previously. If,
for example, you have added an index for a table
accessed by your application, you must rebind the
application in order to take advantage of that index.

record.  The storage representation of a row or other
data.

recovery.  The process of rebuilding databases after a
system failure.

recovery log.  A collection of records that describes
the events that occur during DB2 execution and their
sequence. The information recorded is used for
recovery in the event of a failure during DB2 execution.

referential constraint.  The requirement that nonnull
values of a designated foreign key are valid only if they
equal values of the primary key of a designated table.

referential integrity.  The condition that exists when all
intended references from data in one column of a table
to data in another column of the same or a different
table are valid. Maintaining referential integrity requires
enforcing referential constraints on all LOAD,
RECOVER, INSERT, UPDATE, and DELETE
operations.

referential structure.  A set of tables and relationships
that includes at least one table and, for every table in
the set, all the relationships in which that table
participates and all the tables to which it is related.

relational database.  A database that can be
perceived as a set of tables and manipulated in
accordance with the relational model of data.

relational database management system (RDBMS).
A relational database manager that operates
consistently across supported IBM systems.

relational database name (RDBNAM).  A unique
identifier for an RDBMS within a network. In DB2, this
must be the value in the LOCATION column of table
SYSIBM.LOCATIONS in the CDB. DB2 publications
refer to the name of another RDBMS as a LOCATION
value or a location name.

relationship.  A defined connection between the rows
of a table or the rows of two tables. A relationship is the
internal representation of a referential constraint.

remote.  Refers to any object maintained by a remote
DB2 subsystem; that is, by a DB2 subsystem other than
the local one. A remote view, for instance, is a view
maintained by a remote DB2 subsystem. Contrast with
local.

remote subsystem.  Any RDBMS, except the local
subsystem, with which the user or application can
communicate. The subsystem need not be remote in
any physical sense, and may even operate on the same
processor under the same MVS system.

repeatable read (RR).  The isolation level that provides
maximum protection from other executing application
programs. When an application program executes with
repeatable read protection, rows referenced by the
program cannot be changed by other programs until the
program reaches a commit point.

request commit.  The vote submitted to the prepare
phase if the participant has modified data and is
prepared to commit or roll back.

requester.  Also application requester (AR). The
source of a request to a remote RDBMS, the system
that requests the data.

resource.  The object of a lock or claim, which could
be a table space, an index space, a data partition, an
index partition, or a logical partition.

resource limit facility (RLF).  A portion of DB2 code
that prevents dynamic manipulative SQL statements
from exceeding specified time limits.

result set.  The set of rows returned to a client
application by a stored procedure.

result set locator.  A 4-byte value used by DB2 to
uniquely identify a query result set returned by a stored
procedure.

result table.  The set of rows specified by a SELECT
statement.

  Glossary 639



 right outer join - SQL communication area (SQLCA)  
 

right outer join.  The result of a join operation that
includes the matched rows of both tables being joined
and preserves the unmatched rows of the second join
operand. See also join.

RLF.  Resource limit facility.

rollback.  The process of restoring data changed by
SQL statements to the state at its last commit point. All
locks are freed. Contrast with commit.

row.  The horizontal component of a table. A row
consists of a sequence of values, one for each column
of the table.

S
SBCS.  Single-byte character set.

scalar function.  An SQL operation that produces a
single value from another value and is expressed as a
function name followed by a list of arguments enclosed
in parentheses. See also column function.

search condition.  A criterion for selecting rows from a
table. A search condition consists of one or more
predicates.

secondary authorization ID.  An authorization ID that
has been associated with a primary authorization ID by
an authorization exit routine.

segmented table space.  A table space that is divided
into equal-sized groups of pages called segments.
Segments are assigned to tables so that rows of
different tables are never stored in the same segment.

self-referencing constraint.  A referential constraint
that defines a relationship in which a table is a
dependent of itself.

self-referencing table.  A table with a self-referencing
constraint.

sequential prefetch.  A mechanism that triggers
consecutive asynchronous I/O operations. Pages are
fetched before they are required, and several pages are
read with a single I/O operation.

server.  Also application server (AS). The target for a
request from a remote RDBMS, the RDBMS that
provides the data.

shared lock.  A lock that prevents concurrently
executing application processes from changing data, but
not from reading data.

shift-in character.  A special control character (X'0F')
used in EBCDIC systems to denote that the following

bytes represent SBCS characters. See shift-out
character.

shift-out character.  A special control character
(X'0E') used in EBCDIC systems to denote that the
following bytes, up to the next shift-in control character,
represent DBCS characters.

short string.  A string whose actual length, or a
varying-length string whose maximum length, is 255
bytes (127 double-byte characters) or less.

sign-on.  A request made on behalf of an individual
CICS or IMS application process by an attach facility to
enable DB2 to verify that it is authorized to use DB2
resources.

simple table space.  A table space that is neither
partitioned nor segmented.

single-byte character set (SBCS).  A set of characters
in which each character is represented by a single byte.

single-precision floating point number.  A 32-bit
approximate representation of a real number.

SMF.  System management facility.

SMS.  Storage Management Subsystem.

socket.  A callable TCP/IP programming interface that
is used by TCP/IP network applications to communicate
with remote TCP/IP partners.

source program.  A set of host language statements
and SQL statements that is processed by an SQL
precompiler.

space.  A sequence of one or more blank characters.

special register.  A storage area that is defined for a
process by DB2 and is used to store information that
can be referenced in SQL statements. Examples of
special registers are USER, CURRENT DATE, and
CURRENT TIME.

SPUFI.  SQL Processor Using File Input. A facility of
the TSO attachment subcomponent that enables the
DB2I user to execute SQL statements without
embedding them in an application program.

SQL.  Structured Query Language.

SQL authorization ID (SQL ID).  The authorization ID
that is used for checking dynamic SQL statements in
some situations.

SQL communication area (SQLCA).  A structure used
to provide an application program with information about
the execution of its SQL statements.

640 SQL Reference  



  SQL descriptor area (SQLDA) - three-part name
 

SQL descriptor area (SQLDA).  A structure that
describes input variables, output variables, or the
columns of a result table.

SQL escape character.  The symbol used to enclose
an SQL delimited identifier. This symbol is the quotation
mark ("). See escape character.

SQL ID.  SQL authorization ID.

SQL return code.  Either SQLCODE or SQLSTATE.

SQL string delimiter.  A symbol used to enclose an
SQL string constant. The SQL string delimiter is the
apostrophe ('), except in COBOL applications, in which
case the symbol (either an apostrophe or a quotation
mark) may be assigned by the user.

SQLCA.  SQL communication area.

SQLDA.  SQL descriptor area.

SQL/DS.  SQL/Data System. Also known as DB2/VSE
& VM.

SSI.  MVS subsystem interface.

static SQL.  SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is executed).
After being prepared, the SQL statement does not
change (although values of host variables specified by
the statement might change).

storage group.  A named set of DASD volumes on
which DB2 data can be stored.

stored procedure.  A user-written application program,
that can be invoked through the use of the SQL CALL
statement.

string.  See character string or graphic string.

Structured Query Language (SQL).  A standardized
language for defining and manipulating data in a
relational database.

subpage.  The unit into which a physical index page
can be divided.

subquery.  A SELECT statement within the WHERE or
HAVING clause of another SQL statement; a nested
SQL statement.

subselect.  That form of a query that does not include
ORDER BY clause, UPDATE clause, or UNION
operators.

substitution character.  A unique character that is
substituted during character conversion for any

characters in the source program that do not have a
match in the target coding representation.

subsystem.  A distinct instance of a RDBMS.

sync point.  See commit point.

synonym.  In SQL, an alternative name for a table or
view. Synonyms can only be used to refer to objects at
the subsystem in which the synonym is defined.

system administrator.  The person having the second
highest level of authority within DB2. System
administrators make decisions about how DB2 is to be
used and implement those decisions by choosing
system parameters. They monitor the system and
change its characteristics to meet changing
requirements and new data processing goals.

system conversation.  The conversation that two
DB2s must establish to process system messages
before any distributed processing can begin.

T
table.  A named data object consisting of a specific
number of columns and some number of unordered
rows. Synonymous with base table or temporary table.

table check constraint.  A user-defined constraint that
specifies the values that specific columns of a base
table can contain.

table space.  A page set used to store the records in
one or more tables.

TCP/IP.  A network communication protocol used by
computer systems to exchange information across
telecommunication links.

TCP/IP port.  A 2-byte value that identifies an end user
or a TCP/IP network application within a TCP/IP host.

temporary table.  A table created by the SQL
CREATE GLOBAL TEMPORARY TABLE statement that
is used to hold temporary data. Contrast with result
table and temporary table.

thread.  The DB2 structure that describes an
application's connection, traces its progress, processes
resource functions, and delimits its accessibility to DB2
resources and services. Most DB2 functions execute
under a thread structure. See also allied thread and
database access thread.

three-part name.  The full name of a table, view, or
alias. It consists of a location name, authorization ID,
and an object name separated by a period.

  Glossary 641



 time - VTAM  
 

time.  A three-part value that designates a time of day
in hours, minutes, and seconds.

time duration.  A decimal integer that represents a
number of hours, minutes, and seconds.

time-sharing option (TSO).  Provides interactive time
sharing from remote terminals.

timestamp.  A seven-part value that consists of a date
and time expressed in years, months, days, hours,
minutes, seconds, and microseconds.

trace.  A DB2 facility that provides the ability to monitor
and collect DB2 monitoring, auditing, performance,
accounting, statistics, and serviceability (global) data.

transaction program name.  In SNA LU 6.2
conversations, the name of the program at the remote
logical unit that will be the other half of the
conversation.

TSO.  Time-sharing option.

type 1 indexes.  Indexes that were created by a
release of DB2 before DB2 Version 4 or that are
specified as type 1 indexes in Version 4. Contrast with
type 2 indexes.

type 2 indexes.  A new type of indexes available in
Version 4. They differ from type 1 indexes in several
respects; for example, they are the only indexes
allowed on a table space that uses row locks.

U
uncommitted read (UR).  The isolation level that
allows an application to read uncommitted data.

underlying view.  The view upon which another view
is directly or indirectly defined.

UNION.  An SQL operation that combines the results of
two select statements. UNION is often used to merge
lists of values obtained from several tables.

unique index.  An index which ensures that no
identical key values are stored in a table.

uniqueness constraint.  The rule that no two values in
a primary key or key of a unique index can be the
same.

unit of recovery.  A recoverable sequence of
operations within a single resource manager, such as
an instance of DB2. Contrast with unit of work.

unit of work.  A recoverable sequence of operations
within an application process. At any time, an
application process is a single unit of work, but the life
of an application process can involve many units of
work as a result of commit or rollback operations. In a
multi-site update operation, a single unit of work can
include several units of recovery.

UT.  Utility-only access.

V
value.  The smallest unit of data manipulated in SQL.

variable.  A data element that specifies a value that
can be changed. A COBOL elementary data item is an
example of a variable. Contrast with constant.

varying-length string.  A character or graphic string
whose length varies within set limits. Contrast with
fixed-length string.

version.  A member of a set of similar programs,
DBRMs, or packages.

A version of a program is the source code
produced by precompiling the program. The
program version is identified by the program name
and a timestamp (consistency token).
A version of a DBRM is the DBRM produced by
precompiling a program. The DBRM version is
identified by the same program name and
timestamp as a corresponding program version.
A version of a package is the result of binding a
DBRM within a particular database system. The
package version is identified by the same program
name and consistency token as the DBRM.

view.  An alternative representation of data from one or
more tables. A view can include all or some of the
columns contained in tables on which it is defined.

view check option.  An option that specifies whether
every row that is inserted or updated through a view
must conform to the definition of that view. A view
check option can be specified with the WITH
CASCADED CHECK OPTION, WITH CHECK OPTION,
or WITH LOCAL CHECK OPTION clauses of CREATE
VIEW.

Virtual Telecommunications Access Method
(VTAM).  An IBM licensed program that controls
communication and the flow of data in an SNA network.

VSAM.  Virtual storage access method.

VTAM.  MVS Virtual telecommunication access
method.

642 SQL Reference  



  
 

 Bibliography

DB2 for OS/390 Version 5

� Administration Guide, SC26-8957

� Application Programming and SQL Guide,
SC26-8958

� Call Level Interface Guide and Reference,
SC26-8959

� Command Reference, SC26-8960

� Data Sharing: Planning and Administration,
SC26-8961

� Data Sharing Quick Reference Card, SX26-3841

� Diagnosis Guide and Reference, LY27-9659

� Diagnostic Quick Reference Card, LY27-9660

� Installation Guide, GC26-8970

� Application Programming Guide and Reference for
Java, SC26-9547

� Licensed Program Specifications, GC26-8969

� Messages and Codes, GC26-8979

� Reference for Remote DRDA Requesters and
Servers, SC26-8964

� Reference Summary, SX26-3842

� Release Guide, SC26-8965

� SQL Reference, SC26-8966

� Utility Guide and Reference, SC26-8967

� What's New?, GC26-8971

 � Program Directory

DB2 PM for OS/390 Version 5

� Batch User's Guide, SC26-8991

� Command Reference, SC26-8987

� General Information, GC26-8982

� Getting Started on the Workstation, SC26-8989

� Master Index, SC26-8984

� Messages Manual, SC26-8988

� Online Monitor User's Guide, SC26-8990

� Report Reference Volume 1, SC26-8985

� Report Reference Volume 2, SC26-8986

 � Program Directory

Ada/370

� IBM Ada/370 Language Reference, SC09-1297
� IBM Ada/370 Programmer's Guide, SC09-1414
� IBM Ada/370 SQL Module Processor for DB2

Database Manager User's Guide, SC09-1450

APL2

� APL2 Programming Guide, SH21-1072
� APL2 Programming: Language Reference,

SH21-1061
� APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

AS/400

� DB2 for OS/400 SQL Programming, SC41-4611
� DB2 for OS/400 SQL Reference, SC41-4612

BASIC

�  IBM BASIC/MVS Language Reference, GC26-4026
�  IBM BASIC/MVS Programming Guide, SC26-4027

C/370

� IBM SAA AD/Cycle C/370 Programming Guide,
SC09-1356

� IBM SAA AD/Cycle C/370 Programming Guide for
Language Environment/370, SC09-1840

� IBM SAA AD/Cycle C/370 User's Guide,
SC09-1763

� SAA CPI C Reference, SC09-1308

Character Data Representation Architecture

# � Character Data Representation Architecture
# Overview, GC09-2207
# � Character Data Representation Architecture
# Reference, SC09-2190

CICS/ESA

� CICS/ESA Application Programming Guide,
SC33-1169

� CICS/ESA Application Programming Reference,
SC33-1170

� CICS/ESA CICS - RACF Security Guide,
SC33-1185

� CICS/ESA CICS-Supplied Transactions, SC33-1168
� CICS/ESA Customization Guide, SC33-1165
� CICS/ESA Data Areas, LY33-6083
� CICS/ESA Installation Guide, SC33-1163
� CICS/ESA Intercommunication Guide, SC33-1181
� CICS/ESA Messages and Codes, SC33-1177
� CICS/ESA Operations and Utilities Guide,

SC33-1167
� CICS/ESA Performance Guide, SC33-1183
� CICS/ESA Problem Determination Guide,

SC33-1176
� CICS/ESA Resource Definition Guide, SC33-1166
� CICS/ESA System Definition Guide, SC33-1164
� CICS/ESA System Programming Reference,

GC33-1171

 Copyright IBM Corp. 1982, 1997  643



  
 

CICS/MVS

� CICS/MVS Application Programming Primer,
SC33-0139

� CICS/MVS Application Programmer's Reference,
SC33-0512

� CICS/MVS Facilities and Planning Guide,
SC33-0504

� CICS/MVS Installation Guide, SC33-0506
� CICS/MVS Operations Guide, SC33-0510
� CICS/MVS Problem Determination Guide,

SC33-0516
� CICS/MVS Resource Definition (Macro), SC33-0509
� CICS/MVS Resource Definition (Online), SC33-0508

IBM C/C++ for MVS/ESA or OS/390

� IBM C/C++ for MVS/ESA Library Reference,
SC09-1995

� IBM C/C++ for MVS/ESA Programming Guide,
SC09-1994

� IBM C/C++ for OS/390 User's Guide, SC09-2361

IBM COBOL for MVS & VM

� IBM COBOL for MVS & VM Language Reference,
SC26-4769

� IBM COBOL for MVS & VM Programming Guide,
SC26-4767

Conversion Guides

� DBMS Conversion Guide: DATACOM/DB to DB2,
GH20-7564

� DBMS Conversion Guide: IDMS to DB2,
GH20-7562

� DBMS Conversion Guide: Model 204 to DB2 or
SQL/DS, GH20-7565

� DBMS Conversion Guide: VSAM to DB2,
GH20-7566

� IMS-DB and DB2 Migration and Coexistence Guide,
GH21-1083

Cooperative Development Environment

� CoOperative Development Environment/370: Debug
Tool, SC09-1623

DATABASE 2 for Common Servers

� DATABASE 2 Administration Guide for common
servers, S20H-4580

� DATABASE 2 Application Programming Guide for
common servers, S20H-4643

� DATABASE 2 Software Developer's Kit for AIX:
Building Your Applications, S20H-4780

� DATABASE 2 Software Developer's Kit for OS/2:
Building Your Applications, S20H-4787

� DATABASE 2 SQL Reference for common servers,
S20H-4665

� DATABASE 2 Call Level Interface Guide and
Reference for common servers, S20H-4644

Data Extract (DXT)

� Data Extract Version 2: General Information,
GC26-4666

� Data Extract Version 2: Planning and Administration
Guide, SC26-4631

DataPropagator NonRelational

� DataPropagator NonRelational MVS/ESA
Administration Guide, SH19-5036

� DataPropagator NonRelational MVS/ESA
Reference, SH19-5039

DataPropagator Relational

� DataPropagator Relational User's Guide,
SC26-3399

� IBM An Introduction to DataPropagator Relational,
GC26-3398

Data Facility Data Set Services

� Data Facility Data Set Services: User's Guide and
Reference, SC26-4125

Database Design

� DB2 Database Design and Implementation Using
DB2, SH24-6101

� DB2 Design and Development Guide, Gabrielle
Wiorkowski and David Kull, Addison Wesley

� Handbook of Relational Database Design, C.
Fleming and B Von Halle, Addison Wesley

� Principles of Database Systems, Jeffrey D. Ullman,
Computer Science Press

DataHub

� IBM DataHub General Information, GC26-4874

DB2 Universal Database

� DB2 Universal Database Administration Guide,
S10J-8157

� DB2 Universal Database API Reference, S10J-8167
� DB2 Universal Database Application Development

Guide, SC09-2845
� DB2 Universal Database Building Applications for

UNIX Environments, S10J-8161
� DB2 Universal Database Building Applications for

Windows and OS/2 Environments, S10J-8160
� DB2 Universal Database CLI Guide and Reference,

S10J-8159
� DB2 Universal Database SQL Reference,

S10J-8165

Device Support Facilities

� Device Support Facilities User's Guide and
Reference, GC35-0033

644 SQL Reference  



  
 

DFSMS/MVS

� DFSMS/MVS: Access Method Services for the
Integrated Catalog, SC26-4906

� DFSMS/MVS: Access Method Services for VSAM
Catalogs, SC26-4905

� DFSMS/MVS: Administration Reference for
DFSMSdss, SC26-4929

� DFSMS/MVS: DFSMShsm Managing Your Own
Data, SH21-1077

� DFSMS/MVS: Diagnosis Reference for DFSMSdfp,
LY27-9606

� DFSMS/MVS: Macro Instructions for Data Sets,
SC26-4913

� DFSMS/MVS: Managing Catalogs, SC26-4914
� DFSMS/MVS: Program Management, SC26-4916
� DFSMS/MVS: Storage Administration Reference for

DFSMSdfp, SC26-4920
� DFSMS/MVS: Using Advanced Services for Data

Sets, SC26-4921
� DFSMS/MVS: Utilities, SC26-4926
� MVS/DFP: Managing Non-VSAM Data Sets,

SC26-4557

DFSORT

� DFSORT Application Programming: Guide,
SC33-4035

Distributed Relational Database

� Data Stream and OPA Reference, SC31-6806
� Distributed Relational Database Architecture:

Application Programming Guide, SC26-4773
� Distributed Relational Database Architecture:

Connectivity Guide, SC26-4783
� Distributed Relational Database Architecture:

Evaluation and Planning Guide, SC26-4650
� Distributed Relational Database Architecture:

Problem Determination Guide, SC26-4782
� Distributed Relational Database: Every Manager's

Guide, GC26-3195
� IBM SQL Reference, SC26-8416
� Open Group Technical Standard (the Open Group

presently makes the following books available
through their website at www.opengroup.org):

– DRDA Volume 1: Distributed Relational
Database Architecture (DRDA), ISBN
1-85912-295-7

– DRDA Volume 3: Distributed Database
Management (DDM) Architecture, ISBN
1-85912-206-X

Education

� Dictionary of Computing, SC20-1699
� IBM Enterprise Systems Training Solutions Catalog,

GR28-5467

Enterprise System/9000 and Enterprise System/3090

� Enterprise System/9000 and Enterprise
System/3090 Processor Resource/System Manager
Planning Guide, GA22-7123

FORTRAN

� VS FORTRAN Version 2: Language and Library
Reference, SC26-4221

� VS FORTRAN Version 2: Programming Guide for
CMS and MVS, SC26-4222

High Level Assembler

� High Level Assembler/MVS and VM and VSE
Language Reference, SC26-4940

� High Level Assembler/MVS and VM and VSE
Programmer's Guide, SC26-4941

Parallel Sysplex Library

� System/390 MVS Sysplex Application Migration,
GC28-1211

� System/390 MVS Sysplex Hardware and Software
Migration, GC28-1210

� System/390 MVS Sysplex Overview: An Introduction
to Data Sharing and Parallelism, GC28-1208

� System/390 MVS Sysplex Systems Management,
GC28-1209

� System/390 MVS 9672/9674 System Overview,
GA22-7148

ICSF/MVS

� ICSF/MVS General Information, GC23-0093

IMS/ESA

� IMS Batch Terminal Simulator General Information,
GH20-5522

� IMS/ESA Administration Guide: System, SC26-8013
� IMS/ESA Application Programming: Database

Manager, SC26-8727
� IMS/ESA Application Programming: Design Guide,

SC26-8016
� IMS/ESA Application Programming: Transaction

Manager, SC26-8729
� IMS/ESA Customization Guide, SC26-8020
� IMS/ESA Installation Volume 1: Installation and

Verification, SC26-8023
� IMS/ESA Installation Volume 2: System Definition

and Tailoring, SC26-8024
� IMS/ESA Messages and Codes, SC26-8028
� IMS/ESA Operator's Reference, SC26-8030
� IMS/ESA Utilities Reference: System, SC26-8035

ISPF

� ISPF Version 4 Messages and Codes, SC34-4450
� ISPF Version 4 for MVS Dialog Management Guide,

SC34-4213
� ISPF/PDF Version 4 for MVS Guide and Reference,

SC34-4258

  Bibliography 645



  
 

� ISPF and ISPF/PDF Version 4 for MVS Planning
and Customization, SC34-4134

Language Environment for MVS & VM

� Language Environment for MVS & VM Concepts
Guide, GC26-4786

� Language Environment for MVS & VM Debugging
and Run-Time Messages Guide, SC26-4829

� Language Environment for MVS & VM Installation
and Customization, SC26-4817

� Language Environment for MVS & VM
Programming Guide, SC26-4818

� Language Environment for MVS & VM
Programming Reference, SC26-3312

MVS/ESA

� MVS/ESA Analyzing Resource Measurement
Facility Monitor I and Monitor II Reference and
User's Guide, LY28-1007

� MVS/ESA Analyzing Resource Measurement
Facility Monitor III Reference and User's Guide,
LY28-1008

� MVS/ESA Application Development Reference:
Assembler Callable Services for OpenEdition MVS,
SC23-3020

� MVS/ESA Data Administration: Utilities, SC26-4516
� MVS/ESA Diagnosis: Procedures, LY28-1844
� MVS/ESA Diagnosis: Tools and Service Aids,

LY28-1845
� MVS/ESA Initialization and Tuning Guide,

SC28-1451
� MVS/ESA Initialization and Tuning Reference,

SC28-1452
� MVS/ESA Installation Exits, SC28-1459
� MVS/ESA JCL Reference, GC28-1479
� MVS/ESA JCL User's Guide, GC28-1473
� MVS/ESA JES2 Initialization and Tuning Guide,

SC28-1453
� MVS/ESA MVS Configuration Program, GC28-1615
� MVS/ESA Planning: Global Resource Serialization,

GC28-1450
� MVS/ESA Planning: Operations, GC28-1441
� MVS/ESA Planning: Workload Management,

GC28-1493
� MVS/ESA Programming: Assembler Services

Guide, GC28-1466
� MVS/ESA Programming: Assembler Services

Reference, GC28-1474
� MVS/ESA Programming: Authorized Assembler

Services Guide, GC28-1467
� MVS/ESA Programming: Authorized Assembler

Services Reference, Volumes 1-4, GC28-1475,
GC28-1476, GC28-1477, GC28-1478

� MVS/ESA Programming: Extended Addressability
Guide, GC28-1468

� MVS/ESA Programming: Sysplex Services Guide,
GC28-1495

� MVS/ESA Programming: Sysplex Services
Reference, GC28-1496

� MVS/ESA Programming: Workload Management
Services, GC28-1494

� MVS/ESA Routing and Descriptor Codes,
GC28-1487

� MVS/ESA Setting Up a Sysplex, GC28-1449
� MVS/ESA SPL: Application Development Guide,

GC28-1852
� MVS/ESA System Codes, GC28-1486
� MVS/ESA System Commands, GC28-1442
� MVS/ESA System Management Facilities (SMF),

GC28-1457
� MVS/ESA System Messages Volume 1, GC28-1480
� MVS/ESA System Messages Volume 2, GC28-1481
� MVS/ESA System Messages Volume 3, GC28-1482
� MVS/ESA Using the Subsystem Interface,

SC28-1502

Net.Data for OS/390

# � Net.Data Language Environment Guide,
# http://www.ibm.com/software/net.data/docs
# � Net.Data Programming Guide,
# http://www.ibm.com/software/net.data/docs
# � Net.Data Reference Guide,
# http://www.ibm.com/software/net.data/docs

NetView

� NetView Installation and Administration Guide,
SC31-8043

� NetView User's Guide, SC31-8056

ODBC

� ODBC 2.0 Programmer's Reference and SDK
Guide, ISBN 1-55615-658-8

� Inside ODBC, ISBN 1-55615-815-7

OS/390

� OS/390 C/C++ Programming Guide, SC09-2362
� OS/390 C/C++ Run-Time Library Reference,

SC28-1663
� OS/390 Information Roadmap, GC28-1727
� OS/390 Introduction and Release Guide,

GC28-1725
� OS/390 JES2 Initialization and Tuning Guide,

SC28-1791
� OS/390 JES3 Initialization and Tuning Guide,

SC28-1802
� OS/390 Language Environment for OS/390 & VM

Concepts Guide, GC28-1945
� OS/390 Language Environment for OS/390 & VM

Customization, SC28-1941
� OS/390 Language Environment for OS/390 & VM

Debugging Guide, SC28-1942
� OS/390 Language Environment for OS/390 & VM

Programming Guide, SC28-1939
� OS/390 Language Environment for OS/390 & VM

Programming Reference, SC28-1940
� OS/390 MVS Diagnosis: Procedures, LY28-1082
� OS/390 MVS Diagnosis: Reference, SY28-1084

646 SQL Reference  



  
 

� OS/390 MVS Diagnosis: Tools and Service Aids,
LY28-1085

� OS/390 MVS Initialization and Tuning Guide,
SC28-1751

� OS/390 MVS Initialization and Tuning Reference,
SC28-1752

� OS/390 MVS Installation Exits, SC28-1753
� OS/390 MVS JCL Reference, GC28-1757
� OS/390 MVS JCL User's Guide, GC28-1758
� OS/390 MVS Planning: Global Resource

Serialization, GC28-1759
� OS/390 MVS Planning: Operations, GC28-1760
� OS/390 MVS Planning: Workload Management,

GC28-1761
� OS/390 MVS Programming: Assembler Services

Guide, GC28-1762
� OS/390 MVS Programming: Assembler Services

Reference, GC28-1910
� OS/390 MVS Programming: Authorized Assembler

Services Guide, GC28-1763
� OS/390 MVS Programming: Authorized Assembler

Services Reference, Volumes 1-4, GC28-1764,
GC28-1765, GC28-1766, GC28-1767

� OS/390 MVS Programming: Callable Services for
High-Level Languages, GC28-1768

� OS/390 MVS Programming: Extended
Addressability Guide, GC28-1769

� OS/390 MVS Programming: Sysplex Services
Guide, GC28-1771

� OS/390 MVS Programming: Sysplex Services
Reference, GC28-1772

� OS/390 MVS Programming: Workload Management
Services, GC28-1773

� OS/390 MVS Routing and Descriptor Codes,
GC28-1778

� OS/390 MVS Setting Up a Sysplex, GC28-1779
� OS/390 MVS System Codes, GC28-1780
� OS/390 MVS System Commands, GC28-1781
� OS/390 MVS System Messages Volume 1,

GC28-1784
� OS/390 MVS System Messages Volume 2,

GC28-1785
� OS/390 MVS System Messages Volume 3,

GC28-1786
� OS/390 MVS System Messages Volume 4,

GC28-1787
� OS/390 MVS System Messages Volume 5,

GC28-1788
� OS/390 Security Server (RACF) Auditor's Guide,

SC28-1916
� OS/390 Security Server (RACF) Command

Language Reference, SC28-1919
� OS/390 Security Server (RACF) General User's

Guide, SC28-1917
� OS/390 Security Server (RACF) Security

Administrator's Guide, SC28-1915
� OS/390 Security Server (RACF) System

Programmer's Guide, SC28-1913
� OS/390 SMP/E Reference, SC28-1806

� OS/390 SMP/E User's Guide, SC28-1740
� OS/390 RMF User's Guide, SC28-1949
� OS/390 TSO/E CLISTS, SC28-1973
� OS/390 TSO/E Command Reference, SC28-1969
� OS/390 TSO/E Customization, SC28-1965
� OS/390 TSO/E Messages, GC28-1978
� OS/390 TSO/E Programming Guide, SC28-1970
� OS/390 TSO/E Programming Services, SC28-1971
� OS/390 TSO/E REXX Reference, SC28-1975
� OS/390 TSO/E User's Guide, SC28-1968

OS/390 OpenEdition

� OS/390 OpenEdition DCE Administration Guide,
SC28-1584

� OS/390 OpenEdition DCE Introduction, GC28-1581
� OS/390 R1 OE DCE Messages and Codes,

ST01-0920
� OS/390 OpenEdition Command Reference,

SC28-1892
� OS/390 OpenEdition Messages and Codes,

SC28-1908
� OS/390 OpenEdition Planning, SC28-1890
� OS/390 OpenEdition User's Guide, SC28-1891

PL/I for MVS & VM

� IBM PL/I MVS & VM Language Reference,
SC26-3114

� IBM PL/I MVS & VM Programming Guide,
SC26-3113

OS PL/I

� OS PL/I Programming Language Reference,
SC26-4308

� OS PL/I Programming Guide, SC26-4307

PROLOG

� IBM SAA AD/Cycle Prolog/MVS & VM
Programmer's Guide, SH19-6892

Query Management Facility

� Query Management Facility: Managing QMF for
MVS, SC26-8218

� Query Management Facility: Reference, SC26-4716
� Query Management Facility: Using QMF,

SC26-8078

Remote Recovery Data Facility

� Remote Recovery Data Facility Program Description
and Operations, LY37-3710

Resource Access Control Facility (RACF)

� External Security Interface (RACROUTE) Macro
Reference for MVS and VM, GC28-1366

� Resource Access Control Facility (RACF) Auditor's
Guide, SC28-1342

� Resource Access Control Facility (RACF) Command
Language Reference, SC28-0733

  Bibliography 647



  
 

� Resource Access Control Facility (RACF) General
Information Manual, GC28-0722

� Resource Access Control Facility (RACF) General
User's Guide, SC28-1341

� Resource Access Control Facility (RACF) Security
Administrator's Guide, SC28-1340

� Recource Access Control Facility (RACF) System
Programmer's Guide, SC28-1343

Storage Management

� MVS/ESA Storage Management Library:
Implementing System-Managed Storage,
SC26-3123

� MVS/ESA Storage Management Library: Leading an
Effective Storage Administration Group, SC26-3126

� MVS/ESA Storage Management Library: Managing
Data, SC26-3124

� MVS/ESA Storage Management Library: Managing
Storage Groups, SC26-3125

� MVS Storage Management Library: Storage
Management Subsystem Migration Planning Guide,
SC26-4659

System/370 and System/390

� IBM System/370 ESA Principles of Operation,
SA22-7200

� IBM System/390 ESA Principles of Operation,
SA22-7205

� System/390 MVS Sysplex Hardware and Software
Migration, GC28-1210

System Modification Program Extended (SMP/E)

� System Modification Program Extended (SMP/E)
Reference, SC28-1107

� System Modification Program Extended (SMP/E)
User's Guide, SC28-1302

System Network Architecture (SNA)

� SNA Formats, GA27-3136
� SNA LU 6.2 Peer Protocols Reference, SC31-6808
� SNA Transaction Programmer's Reference Manual

for LU Type 6.2, GC30-3084
� SNA/Management Services Alert Implementation

Guide, GC31-6809

TCP/IP

� IBM TCP/IP for MVS: Customization &
Administration Guide, SC31-7134

� IBM TCP/IP for MVS: Diagnosis Guide, LY43-0105
� IBM TCP/IP for MVS: Messages and Codes,

SC31-7132
� IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

TSO Extensions

� TSO/E CLISTS, SC28-1876
� TSO/E Command Reference, SC28-1881
� TSO/E Customization, SC28-1872
� TSO/E Messages, GC28-1885
� TSO/E Programming Guide, SC28-1874
� TSO/E Programming Services, SC28-1875
� TSO/E User's Guide, SC28-1880

VS COBOL II

� VS COBOL II Application Programming Guide for
MVS and CMS, SC26-4045

� VS COBOL II Application Programming: Language
Reference, SC26-4047

� VS COBOL II Installation and Customization for
MVS, SC26-4048

VTAM

� Planning for NetView, NCP, and VTAM, SC31-8063
� VTAM for MVS/ESA Diagnosis, LY43-0069
� VTAM for MVS/ESA Messages and Codes,

SC31-6546
� VTAM for MVS/ESA Network Implementation Guide,

SC31-6548
� VTAM for MVS/ESA Operation, SC31-6549
� VTAM for MVS/ESA Programming, SC31-6550
� VTAM for MVS/ESA Programming for LU 6.2,

SC31-6551
� VTAM for MVS/ESA Resource Definition Reference,

SC31-6552

648 SQL Reference  



  
 

 Index

Special Characters
_ (underscore)

LIKE predicate 114
, (comma) as decimal point 121
: (colon) 89, 90

See also host variable
? (question mark) 382
/ (divide sign) 93
. (period) as decimal point 121
* (asterisk)

COUNT function 130
multiply sign 93
use in subselect 171

% (percent sign)
LIKE predicate 114

− (minus sign) 94
+ (plus sign) 94, 521
|| (vertical bars) 92

See also CONCAT

A
access path

description 21
ACQUIRE

column of SYSPLAN catalog table 584
ADD

clause of ALTER TABLE statement 219
ADD VOLUMES clause of ALTER STOGROUP

statement 215
alias

creating 270
description 51
dropping 376
qualifying a column name 84
referencing another DB2 32

ALIAS clause
COMMENT ON statement 255
CREATE ALIAS statement 270
DROP statement 376
LABEL ON statement 424

ALL
clause of RELEASE statement 438
clause of subselect 171
keyword

AVG function 131
column functions 130
MAX function 133
MIN function 134
SUM function 135

quantified predicate 107

ALL clause
ALTER INDEX statement 210

ALL PRIVILEGES clause
GRANT statement 412
REVOKE statement 456

ALL SQL clause of RELEASE statement 438
ALLOCATE CURSOR statement

description 200
alphabetic extender 45, 48
ALTER DATABASE statement

description 202
ALTER INDEX statement

description 205
ALTER privilege

GRANT statement 412
REVOKE statement 456

ALTER STOGROUP statement 214
ALTER TABLE statement

description 217
ALTER TABLESPACE statement

description 233
ALTERAUTH column of SYSTABAUTH catalog

table 600
ALTEREDTS column

SYSDATABASE catalog table 557
SYSINDEXES catalog table 568
SYSSTOGROUP catalog table 597
SYSTABLESPACE catalog table 612

ALTEREDTS column of SYSTABLES catalog
table 608

AND
truth table 118

ANY
quantified predicate 107
USING clause of DESCRIBE statement 365
USING clause of PREPARE statement 434

APOST option
precompiler 122

apostrophe
string delimiter precompiler option 122

APOSTSQL option
precompiler 122

application plan
description 30
invalidated

ALTER TABLE statement 230
application process 28
application program

recovery 28
SQLCA 513

See also SQLCA (SQL communications area)
SQLDA 519

See also SQLDA (SQL descriptor area)

 Copyright IBM Corp. 1982, 1997  649



  
 

ARCHIVE privilege
GRANT statement 409
REVOKE statement 453

ARCHIVEAUTH column of SYSUSERAUTH catalog
table 616

arithmetic operators 93
AS clause

CREATE VIEW statement 343
naming result columns 171
use in subselect 171

AS WORKFILE clause of CREATE DATABASE
statement 273

ASC clause of select-statement 189
ASCII and DBCS characters 58
Assembler application program

host variable
EXECUTE IMMEDIATE statement 386
referencing 89

INCLUDE SQLCA 516
INCLUDE SQLDA 524
varying-length string variables 60

assignment
datetime values 71
numbers 66
strings 69

assignment statement
example 488
SQL procedure 486

ASSOCIATE LOCATORS statement
description 243

asterisk (*)
COUNT function 132
multiply sign 93
use in subselect 171

ASUTIME clause
CREATE PROCEDURE statement 299

ASUTIME column
SYSPROCEDURES catalog table 590

AUDIT
clause of ALTER TABLE statement 222
clause of CREATE TABLE statement 322

auditing
ALTER TABLE statement 222
CREATE TABLE statement 322

AUDITING column of SYSTABLES catalog table 608
AUTHHOWGOT column

SYSDBAUTH catalog table 559
SYSPACKAUTH catalog table 578
SYSPLANAUTH catalog table 587
SYSRESAUTH catalog table 594
SYSTABAUTH catalog table 600
SYSUSERAUTH catalog table 614

AUTHID
column of MODESELECT catalog table 543
column of SYSPROCEDURES catalog table 590
column of USERNAMES catalog table 620

authorization ID
description 52
primary

description 52
resulting from errors 463
secondary

description 52
translating

concepts 56
AVG function 131
AVGSIZE column

SYSPACKAGE catalog table 574
SYSPLAN catalog table 584

B
base table 22
basic operations in SQL 65
basic predicate 106
BCREATOR column

SYSPLANDEP catalog table 588
SYSVIEWDEP catalog table 617

BEGIN DECLARE SECTION statement 246
BETWEEN predicate 109
BIND PACKAGE subcommand of DSN

options
QUALIFIER 51

BIND PLAN subcommand of DSN
options

QUALIFIER 51
BIND privilege

GRANT statement 406, 408
REVOKE statement 450, 452

bind process 53
See also binding

BIND_OPTS
column of SYSPSMOPTS table 626

BINDADD privilege
binding a package 55
GRANT statement 409
REVOKE statement 453

BINDADDAUTH column of SYSUSERAUTH catalog
table 614

BINDAGENT privilege
GRANT statement 409
REVOKE statement 453

BINDAGENTAUTH column of SYSUSERAUTH catalog
table 616

BINDAUTH column
SYSPACKAUTH catalog table 578
SYSPLANAUTH catalog table 587

BINDDATE column of SYSPLAN catalog table 584
BINDERROR column of SYSPACKSTMT catalog

table 581
binding

description 21

650 SQL Reference  



  
 

binding (continued)
process 53

BINDTIME column
SYSPACKAGE catalog table 574
SYSPLAN catalog table 584

bit data
conversion restrictions 40
description 57

BNAME column
SYSPACKDEP catalog table 579
SYSPLANDEP catalog table 588
SYSVIEWDEP catalog table 617

BOUNDBY column of SYSPLAN catalog table 585
BOUNDTS column

SYSPLAN catalog table 586
BPOOL column

SYSDATABASE catalog table 557
SYSINDEXES catalog table 567
SYSTABLESPACE catalog table 610

BQUALIFIER column of SYSPACKDEP catalog
table 579

BSDS (bootstrap data set)
granting privilege to recover 409
revoking privilege to recover 453

BSDS privilege
granting 409
revoking 453

BSDSAUTH column of SYSUSERAUTH catalog
table 614

BTYPE column
SYSPACKDEP catalog table 579
SYSPLANDEP catalog table 588
SYSVIEWDEP catalog table 617

buffer pool
naming convention 49

BUFFERPOOL clause
ALTER DATABASE statement 202
ALTER INDEX statement 206
ALTER TABLESPACE statement 234
CREATE DATABASE statement 273
CREATE INDEX statement 290
CREATE TABLESPACE statement 335

BUFFERPOOL privilege
GRANT statement 415
REVOKE statement 458

BUILDNAME
column of SYSPSMOPTS table 626

BUILDOWNER
column of SYSPSMOPTS table 626

BUILDSCHEMA
column of SYSPSMOPTS table 626

built-in function 129
See also function

BY clause of REVOKE statement 444

C
C application program

host variable
EXECUTE IMMEDIATE statement 386
referencing 89

INCLUDE SQLCA 515
INCLUDE SQLDA 524
varying-length string 60

CACHESIZE
column of SYSPLAN catalog table 585

call level interface 22
CALL statement 248
capturing changed data

ALTER TABLE statement 227
CREATE TABLE statement 322

CARD column
SYSTABLEPART catalog table

description 603
SYSTABSTATS catalog table

description 613
CARDF column

SYSCOLDIST catalog table 547
SYSCOLDISTSTATS catalog table 548
SYSINDEXPART catalog table 571
SYSTABLES catalog table 608

CASCADE delete rule
ALTER TABLE statement 226
CREATE TABLE statement 318
description 24

cascade revoke 444
CASE expression

description 103
CASE statement

example 490
SQL procedure 489

catalog name
naming convention 49
VCAT clause

ALTER INDEX statement 208
CREATE INDEX statement 285
CREATE TABLESPACE statement 330, 332

catalog tables 529
description 27, 529
indexes 529
IPNAMES 537
LOCATIONS 538
LULIST 539
LUMODES 540
LUNAMES 541
MODESELECT 543
SQL statements allowed 532
SYSCHECKDEP 544
SYSCHECKS 545
SYSCOLAUTH 546
SYSCOLDIST

contents 547

  Index 651



  
 

catalog tables (continued)
SYSCOLDISTSTATS

contents 548
SYSCOLSTATS

contents 549
SYSCOLUMNS

contents 550
SYSCOPY

contents 554
SYSDATABASE

contents 557
SYSDBAUTH 559
SYSDBRM 562
SYSDUMMY1 464, 564
SYSFIELDS 565
SYSFOREIGNKEYS 566
SYSINDEXES

contents 567
SYSINDEXPART

contents 570
SYSINDEXSTATS 572
SYSKEYS 573
SYSPACKAGE 574
SYSPACKAUTH 578
SYSPACKDEP 579
SYSPACKLIST 580
SYSPACKSTMT 581
SYSPKSYSTEM 583
SYSPLAN 584
SYSPLANAUTH

contents 587
SYSPLANDEP

contents 588
SYSPLSYSTEM 589
SYSPROCEDURES

contents 590
SYSRELS

contents 593
SYSRESAUTH 594
SYSSTMT 595
SYSSTOGROUP

contents 597
SYSSTRINGS

contents 598
SYSSYNONYMS 599
SYSTABAUTH

contents 600
SYSTABLEPART

contents 603
SYSTABLES

contents 606
SYSTABLESPACE

contents 610
SYSTABSTATS

contents 613
SYSUSERAUTH 614

catalog tables (continued)
SYSVIEWDEP

contents 617
SYSVIEWS 618
SYSVOLUMES 619
table space 529
USERNAMES 620

catalog, DB2
description 27
tables 529

See also catalog tables
CCSID

clause of ALTER DATABASE statement 203
clause of ALTER TABLESPACE statement 241
clause of CREATE DATABASE statement 273
clause of CREATE GLOBAL TEMPORARY TABLE

statement 277
clause of CREATE PROCEDURE statement 298
clause of CREATE TABLE statement 323
clause of CREATE TABLESPACE statement 337

CCSID (coded character set identifier) 37
See also character conversion
definition 37
description 38
system 39

CD-ROM, books on 7
CHANGED clause

ALTER INDEX statement 210
CHAR

function 137
CHAR VARYING data type 312
character 45
character conversion

assignment rules 70
character set 37
code page 37
code point 37
coded character set 37
comparison rules 73
concatenation rules 185
contracting conversion 41
description 37
encoding scheme 38
expanding conversion 40
substitution byte 38
SYSIBM.SYSSTRINGS catalog table 598
UNION and UNION ALL rules 185

CHARACTER data type
CREATE TABLE statement 312
DECLARE TABLE statement 354
description 57

character set 37
character string

assignment 69
comparison 72
constants 75

652 SQL Reference  



  
 

character string (continued)
description 57
empty 57

CHARACTER VARYING data type 312
CHARSET column

SYSDBRM catalog table 562
SYSPACKAGE catalog table 575

CHECK
clause of ALTER TABLE statement 223
clause of CREATE TABLE statement 319
column of SYSVIEWS catalog table 618

check constraint
See table check constraint

CHECKCONDITION column
SYSCHECKS catalog table 545

CHECKFLAG column
SYSTABLEPART catalog table 604
SYSTABLES catalog table 607

CHECKNAME column
SYSCHECKDEP catalog table 544
SYSCHECKS catalog table 545

CHECKRID5B column
SYSTABLEPART catalog table 605
SYSTABLES catalog table 609

CHECKS column
SYSTABLES catalog table 608

CHILDREN column of SYSTABLES catalog table 607
CLOSE

clause of ALTER INDEX statement 206
clause of ALTER TABLESPACE statement 236
clause of CREATE INDEX statement

description 291
clause of CREATE TABLESPACE statement

description 336
statement

description 253
closed state of cursor 430
CLOSERULE column

SYSINDEXES catalog table 568
SYSTABLESPACE catalog table 611

CLUSTER clause of CREATE INDEX statement
description 289

CLUSTERED column of SYSINDEXES catalog table
description 567

CLUSTERING column of SYSINDEXES catalog table
description 567

CLUSTERRATIO column
SYSINDEXES catalog table

description 568
SYSINDEXSTATS catalog table

description 572
CLUSTERTTYPE column of SYSTABLES catalog

table 606
CNAME column

SYSPKSYSTEM catalog table 583
SYSPLSYSTEM catalog table 589

COALESCE function 139
COBOL application program

host structure 90
host variable

description 89
EXECUTE IMMEDIATE statement 386

INCLUDE SQLCA 517
varying-length string 60

code page 37
code point 37
coded character set 37
coded character set identifier 37

See also CCSID (coded character set identifier)
COLCARDDATA column of SYSCOLSTATS catalog

table 549
COLCARDF column of SYSCOLUMNS catalog

table 553
COLCOUNT column

SYSINDEXES catalog table 567
SYSRELS catalog table 593
SYSTABLES catalog table 606

COLGROUPCOLNO column
SYSCOLDIST catalog table 547
SYSCOLDISTSTATS catalog table 548

collection, package
granting privileges 403
revoking privileges 447
SET CURRENT PACKAGESET statement 470

COLLID clause
CREATE PROCEDURE statement 298

COLLID column
SYSCOLAUTH catalog table 546
SYSPACKAGE catalog table 574
SYSPACKAUTH catalog table 578
SYSPACKLIST catalog table 580
SYSPACKSTMT catalog table 581
SYSPKSYSTEM catalog table 583
SYSPROCEDURES catalog table 590
SYSTABAUTH catalog table 601

COLNAME column
SYSCHECKDEP catalog table 544
SYSCOLAUTH catalog table 546
SYSFOREIGNKEYS catalog table 566
SYSKEYS catalog table 573

COLNO column
SYSCOLUMNS catalog table 550
SYSFIELDS catalog table 565
SYSFOREIGNKEYS catalog table 566
SYSKEYS catalog table 573

colon 89
See also host variable
host variable in SQL 90

COLSEQ column
SYSFOREIGNKEYS catalog table 566
SYSKEYS catalog table 573

  Index 653



  
 

COLTYPE column of SYSCOLUMNS catalog
table 550

column
derived

CREATE VIEW statement 343
functions 129
INSERT statement 420
null value 173
string comparison 73
UPDATE statement 479

description 22
name

ambiguous reference 85
correlated reference 86
in a result 173
undefined reference 85

restricting values 26
rules 183

COLUMN 
clause of COMMENT ON statement 255
clause of LABEL ON statement 425

column function 130
See also function

COLVALUE column
SYSCOLDIST catalog table

description 547
SYSCOLDISTSTATS catalog table

description 548
COMMA

column of SYSDBRM catalog table 562
column of SYSPACKAGE catalog table 575
option of precompiler 121

comment
adding 255
replacing 255
SQL 125

COMMENT ON statement
column name qualification 84
description 255

commit
description 28

COMMIT ON RETURN clause
CREATE PROCEDURE statement 300

COMMIT statement
description 257

COMMIT_ON_RETURN column
SYSPROCEDURES catalog table 591

comparison
compatibility rules 65
datetime values 74
numbers 72
strings 72

compatibility
data types 65
rules 65

COMPILE_OPTS
column of SYSPSMOPTS table 626

compound statement
example 495
order of statements in 494
SQL procedure 491

COMPRESS
clause of ALTER TABLESPACE statement 240
clause of CREATE TABLESPACE statement 337
column of SYSTABLEPART catalog table 604

CONCAT operator 92
concatenation

operator 92
concurrency

application 28
LOCK TABLE statement 426

CONNECT
option of precompiler 119
statement

differences, type 1 and type 2 259
type 1 262
type 2 267

connected state 35
connection

DB2 private 32
SQL 33

connection exit routine
description 82

connection state
application process 33, 264
CONNECT (Type 1) statement 264
SET CONNECTION statement 465
SQL 33

constant
character string 75
decimal 75
floating-point 75
graphic string 77
hexadecimal 75
integer 74

constants
datetime 76

constraint
See table check constraint

CONSTRAINT 
clause of ALTER TABLE statement 223
clause of CREATE TABLE statement 319

CONTINUE
clause of WHENEVER statement 483

CONTINUE handler
SQL procedure 493

CONTOKEN column
SYSCOLAUTH catalog table 546
SYSPACKAGE catalog table 574
SYSPACKSTMT catalog table 581
SYSPKSYSTEM catalog table 583

654 SQL Reference  



  
 

CONTOKEN column (continued)
SYSTABAUTH catalog table 601

conversion of numbers
errors 463
precision 68
scale 68

conversion, character 37
See also character conversion

CONVERT TO clause
ALTER INDEX statement 211

CONVERT TO clause of ALTER INDEX
statement 205

CONVLIMIT column of LUMODES catalog table
description 540

COPY privilege
GRANT statement 406
REVOKE statement 450

COPYAUTH column of SYSPACKAUTH catalog
table 578

correlated reference
correlation name

defining 84
FROM clause of subselect 174
naming convention 49
qualifying a column name 84

description 86
HAVING clause 178
WHERE clause 177

COUNT function 132
CREATE ALIAS statement 270
CREATE DATABASE statement

description 272
CREATE GLOBAL TEMPORARY TABLE statement

description 275
CREATE IN privilege

binding a package 55
GRANT statement 403
REVOKE statement 447

CREATE INDEX statement
description 280

CREATE PROCEDURE (SQL procedure) statement
description 295

CREATE PROCEDURE statement
assignment statement 487
SQL procedure body 486

CREATE STOGROUP statement 303
CREATE SYNONYM statement 306
CREATE TABLE statement

description 308
CREATE TABLESPACE statement

description 327
CREATE VIEW statement

description 341
use 27

CREATEALIAS privilege
GRANT statement 409

CREATEALIAS privilege (continued)
REVOKE statement 453

CREATEALIASAUTH column of SYSUSERAUTH
catalog table 615

CREATEDBA privilege
GRANT statement 409
REVOKE statement 453

CREATEDBAAUTH column of SYSUSERAUTH catalog
table 614

CREATEDBC privilege
GRANT statement 409
REVOKE statement 454

CREATEDBCAUTH column of SYSUSERAUTH catalog
table 614

CREATEDBY column
SYSDATABASE catalog table 557
SYSINDEXES catalog table 568
SYSSTOGROUP catalog table 597
SYSSYNONYMS catalog table 599
SYSTABLES catalog table 608
SYSTABLESPACE catalog table 611

CREATEDTS column
SYSDATABASE catalog table 557
SYSINDEXES catalog table 568
SYSSTOGROUP catalog table 597
SYSSYNONYMS catalog table 599
SYSTABLESPACE catalog table 612

CREATEDTS column of SYSTABLES catalog
table 608

CREATESG privilege
GRANT statement 410
REVOKE statement 454

CREATESGAUTH column of SYSUSERAUTH catalog
table 614

CREATETAB privilege
GRANT statement 404
REVOKE statement 448

CREATETABAUTH column of SYSDBAUTH catalog
table 559

CREATETMTAB privilege
GRANT statement 410
REVOKE statement 454

CREATETMTABAUTH column
SYSUSERAUTH catalog table 616

CREATETS privilege
GRANT statement 404
REVOKE statement 448

CREATETSAUTH column of SYSDBAUTH catalog
table 559

CREATOR column
SYSCHECKS catalog table 545
SYSCOLAUTH catalog table 546
SYSDATABASE catalog table 557
SYSFOREIGNKEYS catalog table 566
SYSINDEXES catalog table 567
SYSPACKAGE catalog table 574

  Index 655



  
 

CREATOR column (continued)
SYSPLAN catalog table 584
SYSRELS catalog table 593
SYSSTOGROUP catalog table 597
SYSSYNONYMS catalog table 599
SYSTABLES catalog table 606
SYSTABLESPACE catalog table 610
SYSVIEWS catalog table 618

CURRENT
clause of RELEASE statement 437

current connection state 34
CURRENT DATE special register 79
CURRENT DEGREE special register

assigning value to 468
description 79
setting 468

CURRENT PACKAGESET special register
assigning value to 470
description 80
stored procedures 471

CURRENT PRECISION special register
assigning value to 472
description 80

CURRENT RULES special register
assigning value to 473
description 81

current server
description 260
designating

CONNECT (Type 1) statement 262
CONNECT (Type 2) statement 267

CURRENT SERVER special register
description 82

CURRENT SQLID special register
assigning value to 474
description 82
initial value 54, 82

CURRENT TIME special register
description 82

CURRENT TIMESTAMP special register
description 83

CURRENT TIMEZONE special register 83
CURRENTSERVER

column of SYSPLAN catalog table 585
option of BIND PLAN subcommand 261
option of REBIND PLAN subcommand 261

cursor
See also ALLOCATE CURSOR statement
See also DECLARE CURSOR statement
associating 200
closed state 430
closing

CLOSE statement 253
CONNECT (Type 1) statement 262
CONNECT (Type 2) statement 267
error in FETCH 398
error in UPDATE 480

cursor (continued)
declaring 347
open state 398
opening

errors 430
OPEN statement 428

using
current row 398
FETCH statement 397
positions 398

D
DATA CAPTURE clause

ALTER TABLE statement 227
CREATE TABLE statement 322

data compression
COMPRESS clause of ALTER TABLESPACE

statement 240
COMPRESS clause of CREATE TABLESPACE

statement 337
data type

ALTER TABLE statement 220
character string 57
CREATE TABLE statement 311
datetime

DATE 62
TIME 62

DECLARE TABLE statement 354
graphic string 60
list of 57
numeric 61
result column 173

database
altering

ALTER DATABASE statement 202
creating 272
default database 50

See also default database (DSNDB04)
description 27
DSNDB04 50

See also default database (DSNDB04)
limits 505
naming convention 49

DATABASE 
clause of ALTER DATABASE statement 202
clause of DROP statement 376
clause of GRANT statement 405
clause of REVOKE statement 449

DATACAPTURE column of SYSTABLES catalog
table 608

date
arithmetic 99
data type 62
duration 97
strings 63

656 SQL Reference  



  
 

DATE 
data type

CREATE TABLE statement 313
DECLARE TABLE statement 354
description 62

function 140
DATE FORMAT field of panel DSNTIP4 124
date routine

CHAR function 137
DATEGRANTED column

SYSCOLAUTH catalog table 546
SYSDBAUTH catalog table 559
SYSPLANAUTH catalog table 587
SYSRESAUTH catalog table 594
SYSTABAUTH catalog table 600
SYSUSERAUTH catalog table 614

datetime
arithmetic 98
constants 76
data types

description 62
string representation 63

description 63
format

EUR 63
ISO 63
JIS 63
LOCAL 63
setting through the CHAR function 137
USA 63

DAY function 141
day of week calculation 142
DAYS function 142
DB2 books on line 7
DB2 catalog tables

See catalog tables
DB2 private protocol access

authorization ID 55
description 31, 32
mixed environment 509

DB2 system tables
SYSPSM 625
SYSPSMOPTS 626

DB2 version identification, current server 263, 268
DBADM authority

GRANT statement 404
REVOKE statement 448

DBADMAUTH column of SYSDBAUTH catalog
table 559

DBCS (double-byte character set)
ASCII 47, 58
EBCDIC 46, 58
site 59
SQL ordinary identifier 45, 46

DBCS_CCSID column
SYSDATABASE catalog table 557

DBCS_CCSID column (continued)
SYSTABLESPACE catalog table 612

DBCTRL authority
GRANT statement 404
REVOKE statement 448

DBCTRLAUTH column of SYSDBAUTH catalog
table 559

DBID
column of SYSCHECKS catalog table 545
column of SYSDATABASE catalog table 557
column of SYSINDEXES catalog table 567
column of SYSTABLES catalog table 606
column of SYSTABLESPACE catalog table 610

DBMAINT authority
GRANT statement 404
REVOKE statement 448

DBMAINTAUTH column of SYSDBAUTH catalog
table 559

DBNAME column
SYSCOPY catalog table 554
SYSINDEXES catalog table 567
SYSTABAUTH catalog table 600
SYSTABLEPART catalog table 603
SYSTABLES catalog table 606
SYSTABLESPACE catalog table 610
SYSTABSTATS catalog table 613

DBRM (database request module)
description 30

DCLGEN subcommand of DSN
description 62

DCOLLID column of SYSPACKDEP catalog table 579
DCONTOKEN column of SYSPACKDEP catalog

table 579
DCREATOR column of SYSVIEWDEP catalog

table 617
deadlock

locks and uncommitted changes 28
DEC15 precompiler option 94
DEC31

column of SYSDBRM catalog table 562
column of SYSPACKAGE catalog table 575
precompiler option 94

decimal
constants 75
data type

CREATE TABLE statement 312
DECLARE TABLE statement 354
description 61

function
description 143

numbers 61
DECIMAL POINT IS field of panel DSNTIPF 121
decimal point precompiler option 121
DECLARE CURSOR statement

description 347

  Index 657



  
 

DECLARE STATEMENT statement 352
DECLARE TABLE statement

description 354
DEFAULT

column of SYSCOLUMNS catalog table 551
default database (DSNDB04)

implicit specification 50
DEFAULTVALUE column of SYSCOLUMNS catalog

table 553
DEFER

clause of CREATE INDEX statement 291
DEFERPREP column

SYSPACKAGE catalog table 575
SYSPLAN catalog table 585

DEFERPREPARE
column of SYSPACKAGE catalog table 577

deferred embedded SQL 21
DEGREE

column of SYSPACKAGE catalog table 576
column of SYSPLAN catalog table 585

DELETE
statement

description 357
DELETE privilege

GRANT statement 412
REVOKE statement 456

delete rule 24, 360
delete-connected 24
DELETEAUTH column of SYSTABAUTH catalog

table 601
DELETERULE column of SYSRELS catalog table 593
deleting

rows from a table 357
SQL objects 375

delimited identifier in SQL 47
delimiter

SQL 47
dependent

row 24
table 24

DESC clause
CREATE INDEX statement 284
select-statement 189

descendent table 24
 DESCRIBE CURSOR statement

description 368
DESCRIBE INPUT statement

prepared statement 370
 DESCRIBE PROCEDURE statement

description 372
DESCRIBE statement

prepared statement 362
table or view 362
variables 363

descriptor name 49

DEVTYPE column of SYSCOPY catalog table 554
DFSMShsm (Data Facility Hierarchical Storage

Manager)
dropping an index or table space 379

digit, description in DB2 45
DIGITS function 144
DISCONNECT

column of SYSPLAN catalog table 586
DISPLAY privilege

GRANT statement 410
REVOKE statement 454

DISPLAYAUTH column of SYSUSERAUTH catalog
table 615

DISPLAYDB privilege
GRANT statement 404
REVOKE statement 448

DISPLAYDBAUTH column of SYSDBAUTH catalog
table 559

DISTINCT
clause of subselect 171
keyword

AVG function 131
column functions 130
COUNT function 132
MAX function 133
MIN function 134
SUM function 135

distributed data
CONNECT statement 259
CURRENT SERVER special register 82
description 31
RELEASE statement 437
SET CONNECTION statement 465

Distributed Relational Database Architecture
(DRDA) 32

distributed unit of work 31
See also &duw.

DLOCATION column of SYSPACKDEP catalog
table 579

DNAME column
SYSPACKDEP catalog table 579
SYSPLANDEP catalog table 588
SYSVIEWDEP catalog table 617

dormant connection state 34
DOUBLE data type

CREATE TABLE statement 311
DOUBLE PRECISION data type

CREATE TABLE statement 311
DECLARE TABLE statement 354

double precision floating-point number 61
double-byte character

See also DBCS (double-byte character set)
LABEL ON statement 425
LIKE predicate 115
strings 60
truncated during assignment 70

658 SQL Reference  



  
 

double-byte character set (DBCS) 45
See also DBCS (double-byte character set)

DRDA (distributed relational database architecture) 32
DRDA access

authorization ID 55
CONNECT (Type 1) statement 262
CONNECT (Type 2) statement 267
description 31, 32
mixed environment 509
restricted function 33

DROP
statement

description 375
DROP FOREIGN KEY clause of ALTER TABLE

statement 227
DROP PRIMARY KEY clause of ALTER TABLE

statement 227
DROP privilege

GRANT statement 404
REVOKE statement 448

DROPAUTH column of SYSDBAUTH catalog
table 560

DSETPASS
clause of ALTER INDEX statement 207
clause of ALTER TABLESPACE statement 236
clause of CREATE INDEX statement 291
clause of CREATE TABLESPACE statement 337
column of SYSINDEXES catalog table 568
column of SYSTABLESPACE catalog table 610

DSNAME
column of SYSCOPY catalog table 554

DSNUM
column of SYSCOPY catalog table 554

DSVOLSER column of SYSCOPY catalog table 555
duplicate rows, UNION clause 183
duration

date 97
labeled 97
time 97
timestamp 97

dynamic SQL
description 21, 195
EXECUTE IMMEDIATE statement 386
EXECUTE statement 382
execution 197
INTO clause

DESCRIBE statement 362
PREPARE statement 433

invocation of SELECT statement 198
preparation 197
SQLDA 519
statements allowed 509

DYNAMICRULES
column of SYSPACKAGE catalog table 576
column of SYSPLAN catalog table 586

DYNRULS installation parameter 121

E
EBCDIC and DBCS characters 58
EBCDIC CODED CHAR SET field of panel

DSNTIPF 123
edit routine

named in CREATE TABLE statement 321
specified by EDITPROC option 321

EDITPROC clause
CREATE TABLE statement 321

EDPROC column of SYSTABLES catalog table 606
ENABLE

column of SYSPKSYSTEM catalog table 583
column of SYSPLSYSTEM catalog table 589

encoding scheme 38
ENCODING_SCHEME column

SYSDATABASE catalog table 557
SYSTABLES catalog table 609
SYSTABLESPACE catalog table 612

ENCRYPTPSWDS column of LUNAMES catalog
table 541

END DECLARE SECTION statement 380
ERASE clause

ALTER INDEX statement 210
ALTER TABLESPACE statement 239
CREATE INDEX statement 286
CREATE TABLESPACE statement 332

ERASERULE column
SYSINDEXES catalog table 568
SYSTABLESPACE catalog table 610

error
arithmetic expression 463
closes cursor 430
during FETCH 398
during update 480
numeric conversion 463

ERRORBYTE column of SYSSTRINGS catalog
table 598

escape character
LIKE predicate 113

ESCAPE clause of LIKE predicate 113
EUR (IBM European standard) 63

See also datetime
evaluation order 102
EXCLUSIVE

option of LOCK TABLE statement 427
exclusive dependence 444
executable statement 195, 196
EXECUTE IMMEDIATE statement

description 386
EXECUTE privilege

GRANT statement 406, 408
REVOKE statement 450, 452

  Index 659



  
 

EXECUTE statement
description 382

EXECUTEAUTH column
SYSPACKAUTH catalog table 578
SYSPLANAUTH catalog table 587

EXISTS predicate 109
EXIT handler

SQL procedure 494
exit procedure 222

See also exit routine
exit routine 137, 321

See also date routine
See also edit routine
See also field procedure
See also validation routine
named in ALTER TABLE statement 222
named in CREATE TABLE statement 315, 321

EXITPARM column of SYSFIELDS catalog table 565
EXITPARML column of SYSFIELDS catalog table 565
EXPLAIN

column of SYSPACKAGE catalog table 575
statement

description 388
explainable statement

description 388
EXPLAIN statement 389
using bind or rebind 390

EXPLAN column of SYSPLAN catalog table 585
exposed name 87
EXPREDICATE column of SYSPLAN catalog

table 585
expression

arithmetic operators 93
CASE 103
concatenation operator 92
datetime operands 97
decimal operands 94
floating-point operands 97
integer operands 94
precedence of operation 102
subselect statement 171
without operators 92

EXTERNAL_SECURITY column
SYSPROCEDURES catalog table 591

F
FARINDREF column of SYSTABLEPART catalog table

description 603
FAROFFPOSF column

SYSINDEXPART catalog table 571
FETCH statement

description 397
field description 221
field procedure

comparisons 73

field procedure (continued)
named in ALTER TABLE statement 221
named in CREATE TABLE statement 315

FIELDPROC clause
ALTER TABLE statement 221
CREATE TABLE statement 315

FILESEQNO column of SYSCOPY catalog table 554
FIRSTKEYCARD column

SYSINDEXSTATS catalog table
description 572

FIRSTKEYCARDF column
SYSINDEXES catalog table 568

FLDPROC column
SYSCOLUMNS catalog table 552
SYSFIELDS catalog table 565

FLDTYPE column of SYSFIELDS catalog table 565
FLOAT

data type
CREATE TABLE statement 311
DECLARE TABLE statement 354
format 311

function 145
floating-point

constants 75
double precision number 61
single precision number 61

FOR
clause of ALTER TABLE statement 220
clause of CREATE ALIAS statement 271
clause of CREATE SYNONYM statement 306
clause of CREATE TABLE statement 313
clause of EXPLAIN statement 389

FOR FETCH ONLY clause 190
FOR READ ONLY clause 190
FOR RESULT SET clause of ALLOCATE CURSOR

statement 200
FOR UPDATE OF clause

NOFOR precompiler option 126
select-statement 189

foreign key
description 24

See also key, foreign
FOREIGN KEY clause

ALTER TABLE statement
description 225

CREATE TABLE statement
description 317

FOREIGNKEY column of SYSCOLUMNS catalog
table 552

FORTRAN application program
host variable 89
INCLUDE SQLCA 517
varying-length string 60

free space
index 288
table space 237

660 SQL Reference  



  
 

FREEPAGE
clause of ALTER INDEX statement

description 207
clause of ALTER TABLESPACE statement

description 237
clause of CREATE INDEX statement

description 288
clause of CREATE TABLESPACE statement

description 333
column of SYSINDEXPART catalog table 570
column of SYSTABLEPART catalog table 604

FREQUENCYF column
SYSCOLDIST catalog table 547
SYSCOLDISTSTATS catalog table 548

FROM clause
DELETE statement 358
PREPARE statement 434
REVOKE statement 444
subselect 174

FULL OUTER JOIN 175
See also join operation
example 180
FROM clause of subselect 175

FULLKEYCARD column
SYSINDEXSTATS catalog table 572

FULLKEYCARDF column
SYSINDEXES catalog table 568

fullselect 183, 187
function

column
AVG 131
column name 84
COUNT 132
description 129
example 130
MAX 133
MIN 134
SUM 135

maximum number in select 506
nesting 136
scalar

CHAR 137
COALESCE 139
DATE 140
DAY 141
DAYS 142
DECIMAL 143
description 136
DIGITS 144
example 136
FLOAT 145
HEX 146
HOUR 147
INTEGER 148
LENGTH 149
MICROSECOND 150
MINUTE 151

function (continued)
scalar (continued)

MONTH 152
NULLIF 153
SECOND 154
STRIP 155
SUBSTR 157
TIME 159
TIMESTAMP 160
VALUE 162
VARGRAPHIC 164
YEAR 166

G
GBPCACHE clause

ALTER INDEX statement 210
ALTER TABLESPACE statement 240
CREATE INDEX statement 288
CREATE TABLESPACE statement 333

GBPCACHE column
SYSINDEXPART catalog table 571
SYSTABLEPART catalog table 604

GENERIC column of LUNAMES catalog table 542
GET DIAGNOSTICS statement

example 497
SQL procedure 497

GMT (Greenwich Mean Time) 79
GO TO clause of WHENEVER statement 483
GOTO statement

example 498
SQL procedure 498

GRANT statement
collection privileges 403
database privileges 404
description 400
package privileges 406
plan privileges 408
system privileges 409
table privileges 412
use privileges 415
view privileges 412

GRANTEDTS column
SYSCOLAUTH catalog table 546
SYSDBAUTH catalog table 560
SYSPLANAUTH catalog table 587
SYSRESAUTH catalog table 594
SYSTABAUTH catalog table 601
SYSUSERAUTH catalog table 616

GRANTEE column
SYSCOLAUTH catalog table 546
SYSDBAUTH catalog table 559
SYSPACKAUTH catalog table 578
SYSPLANAUTH catalog table 587
SYSRESAUTH catalog table 594
SYSTABAUTH catalog table 600

  Index 661



  
 

GRANTEE column (continued)
SYSUSERAUTH catalog table 614

GRANTEETYPE column
SYSCOLAUTH catalog table 546
SYSPACKAUTH catalog table 578
SYSTABAUTH catalog table 600

GRANTOR column
SYSCOLAUTH catalog table 546
SYSDBAUTH catalog table 559
SYSPACKAUTH catalog table 578
SYSPLANAUTH catalog table 587
SYSRESAUTH catalog table 594
SYSTABAUTH catalog table 600
SYSUSERAUTH catalog table 614

GRAPHIC
data type

CREATE TABLE statement 312
DECLARE TABLE statement 354

option of precompiler 59, 123
graphic string

constants 77
description 60

Greenwich Mean Time (GMT) 79
GROUP BY clause

cannot join view 345
subselect

description 177
results 172

GROUP_MEMBER column
SYSCOPY catalog table 556
SYSDATABASE catalog table 557
SYSPACKAGE catalog table 576
SYSPLAN catalog table 586

grouping column 177

H
handler

SQL procedure 493
handling errors

SQL procedure 493
HAVING clause of subselect

description 178
results 172

held connection state 34
HEX function 146
hexadecimal constants 75
HIGH2KEY column

SYSCOLSTATS catalog table
description 549

SYSCOLUMNS catalog table
description 550

HIGHKEY column of SYSCOLSTATS catalog
table 549

host identifier 48

host structure
description 90

host variable
colon 90
description 89
EXECUTE IMMEDIATE statement 386
EXPLAIN statement 389
FETCH statement 397
input 89
naming convention 49
output 89
PREPARE statement 434
SELECT

assignment 462
substitution for parameter markers 382

HOSTLANG column
SYSDBRM catalog table 562
SYSPACKAGE catalog table 575

HOUR function 147

I
I/O processing

CURRENT DEGREE special register 79
IBM SQL 3
IBMREQD column

IPNAMES catalog table 537
LOCATIONS catalog table 538
LULIST catalog table 539
LUMODES catalog table 540
MODESELECT catalog table 543
SYSCHECKDEP catalog table 544
SYSCHECKS catalog table 545
SYSCOLAUTH catalog table 546
SYSCOLDIST catalog table 547
SYSCOLDISTSTATS catalog table 548
SYSCOLSTATS catalog table 549
SYSCOLUMNS catalog table 551
SYSCOPY catalog table 554
SYSDATABASE catalog table 557
SYSDBAUTH catalog table 560
SYSDBRM catalog table 562
SYSDUMMY1 catalog table 564
SYSFIELDS catalog table 565
SYSFOREIGNKEYS catalog table 566
SYSINDEXES catalog table 568
SYSINDEXPART catalog table 570
SYSINDEXSTATS catalog table 572
SYSKEYS catalog table 573
SYSPACKAGE catalog table 576
SYSPACKAUTH catalog table 578
SYSPACKDEP catalog table 579
SYSPACKLIST catalog table 580
SYSPACKSTMT catalog table 581
SYSPKSYSTEM catalog table 583
SYSPLAN catalog table 584

662 SQL Reference  



  
 

IBMREQD column (continued)
SYSPLANAUTH catalog table 587
SYSPLANDEP catalog table 588
SYSPLSYSTEM catalog table 589
SYSPROCEDURES catalog table 591
SYSRELS catalog table 593
SYSRESAUTH catalog table 594
SYSSTMT catalog table 595
SYSSTOGROUP catalog table 597
SYSSTRINGS catalog table 598
SYSSYNONYMS catalog table 599
SYSTABAUTH catalog table 601
SYSTABLEPART catalog table 603
SYSTABLES catalog table 607
SYSTABLESPACE catalog table 611
SYSTABSTATS catalog table 613
SYSUSERAUTH catalog table 615
SYSVIEWDEP catalog table 617
SYSVIEWS catalog table 618
SYSVOLUMES catalog table 619
USERNAMES catalog table 620

ICBACKUP column of SYSCOPY catalog table 555
ICDATE column of SYSCOPY catalog table 554
ICTIME column of SYSCOPY catalog table 554
ICTYPE column of SYSCOPY catalog table 554
ICUNIT column of SYSCOPY catalog table 555
identifier in SQL

delimited 47
long 47
ordinary 46

IF statement
example 496
SQL procedure 496

IMAGCOPY privilege
GRANT statement 404
REVOKE statement 448

IMAGCOPYAUTH column of SYSDBAUTH catalog
table 560

IMBREQD column
LUNAMES catalog table 542

IMPLICIT column of SYSTABLESPACE catalog
table 610

IN
clause of CREATE PROCEDURE statement 297
clause of CREATE TABLE statement 320
clause of CREATE TABLESPACE statement 329
predicate 111

IN EXCLUSIVE MODE clause of LOCK TABLE
statement 427

IN SHARE MODE clause of LOCK TABLE
statement 426

INCCSID column of SYSSTRINGS catalog table 598
INCLUDE statement

assembler declarations 516
description 417
SQLCA

C 516

INCLUDE statement (continued)
SQLCA (continued)

COBOL 517
FORTRAN 517

SQLDA
Assembler 524
C 525, 526
PL/I 518, 525

index
altering

ALTER INDEX statement 205
catalog table 529
creating

CREATE INDEX statement 280
description 23
dropping 376
partitioned 289
primary 23
space

description 26
types

changing 205
default 282

unique 23
INDEX clause

ALTER INDEX statement 205
CREATE INDEX statement 283
DROP statement 376

INDEX privilege
GRANT statement 412
REVOKE statement 456

INDEXAUTH column of SYSTABAUTH catalog
table 601

INDEXSPACE column of SYSINDEXES catalog
table 567

INDEXTYPE column
SYSINDEXES catalog table 568

indicator array 90
indicator variable

description 89
string expression 386

infix operators 94
INNER JOIN 175

See also join operation
example 180
FROM clause of subselect 175

INOUT clause
CREATE PROCEDURE statement 297

input host variable 89
INSERT privilege

GRANT statement 412
REVOKE statement 456

insert rule 24, 421
INSERT statement

description 419

  Index 663



  
 

INSERTAUTH column of SYSTABAUTH catalog
table 601

inserting
declaration in a program 417
rows in a table 419

INTEGER
data type

CREATE TABLE statement 311
DECLARE TABLE statement 354
large 61
small 61

function 148
integer constants 74
integrated catalog facility

CREATE INDEX statement 287
identifier 49

interactive SQL 22, 198
INTO clause

DESCRIBE CURSOR statement 368
DESCRIBE INPUT statement 370
DESCRIBE PROCEDURE statement 373
DESCRIBE statement 363
FETCH statement 397
INSERT statement 420
PREPARE statement 433
SELECT INTO statement 462

IPADDR column of IPNAMES catalog table 537
IS clause

COMMENT ON statement 256
LABEL ON statement 425

ISO (International Standards Organization) 63
See also datetime

ISOBID column of SYSINDEXES catalog table 567
ISOLATION

column of SYSPACKAGE catalog table 575
column of SYSPACKSTMT catalog table 581
column of SYSPLAN catalog table 584
column of SYSSTMT catalog table 595

isolation level
control by SQL statement

DELETE statement 360
INSERT statement 421
SELECT INTO statement 463
select-statement 191

IXCREATOR column
SYSINDEXPART catalog table 570
SYSKEYS catalog table 573
SYSTABLEPART catalog table 603

IXNAME column
SYSINDEXPART catalog table 570
SYSKEYS catalog table 573
SYSTABLEPART catalog table 603

IXNAME column of SYSRELS catalog table 593
IXOWNER column of SYSRELS catalog table 593

J
JIS (Japanese Industrial Standard) 63

See also datetime
join operation

example 180, 182
FROM clause of subselect 176
FULL OUTER JOIN

FROM clause of subselect 175
INNER JOIN

FROM clause of subselect 175
joining tables 175
LEFT OUTER JOIN

FROM clause of subselect 175
RIGHT OUTER JOIN

FROM clause of subselect 175
summary of results 176

K
Katakana character 46
KATAKANA value for EBCDIC CODED CHAR SET 46
KEEPDYNAMIC column

SYSPACKAGE catalog table 577
SYSPLAN catalog table 586

key
composite

description 23
description 23
foreign

description 24
length

maximum 506
partitioned index 289, 479

parent 24
primary

defining on a single column 313
description 23

unique 23
KEYCOLUMNS column of SYSTABLES catalog

table 607
KEYCOUNT column of SYSINDEXSTATS catalog

table 572
KEYOBID column of SYSTABLES catalog table 607
KEYSEQ column of SYSCOLUMNS catalog table 552
keywords, reserved 621

L
LABEL 

column of SYSCOLUMNS catalog table 553
column of SYSTABLES catalog table 607

LABEL ON statement 424
labeled duration 97
LABELS

USING clause of DESCRIBE statement 365
USING clause of PREPARE statement 434

664 SQL Reference  



  
 

LANGUAGE
clause of CREATE PROCEDURE statement 298
column of SYSPROCEDURES catalog table 590

LEAFDIST column of SYSINDEXPART catalog table
description 570

LEAVE statement
example 500
SQL procedure 500

LEFT OUTER JOIN 175
See also join operation
example 181
FROM clause of subselect 175

LENGTH
column of SYSCOLUMNS catalog table 550
column of SYSFIELDS catalog table 565
function 149

length attribute of column 59
letter, description in DB2 45
library

online 7
LIKE clause

CREATE GLOBAL TEMPORARY TABLE
statement 277

CREATE TABLE statement 320
LIKE predicate 112
LIMITKEY column

SYSINDEXPART catalog table 570
SYSTABLEPART catalog table 603

limits, DB2 505
LINK_OPTS

column of SYSPSMOPTS table 626
LINKAGE column of SYSPROCEDURES catalog

table 590
LINKNAME

column of USERNAMES catalog table 620
LINKNAME column

IPNAMES catalog table 537
LOCATIONS catalog table 538
LULIST catalog table 539

literal 74
LOAD privilege

GRANT statement 405
REVOKE statement 449

LOADAUTH column of SYSDBAUTH catalog
table 560

LOADMOD column
SYSPROCEDURES catalog table 590

LOCAL 63
See also datetime

local DB2 31
LOCATION

column of LOCATIONS catalog table 538
column of SYSPACKLIST catalog table 580
column of SYSTABLES catalog table 608

LOCATION column
SYSPACKAGE catalog table 574

LOCATION column (continued)
SYSPACKAUTH catalog table 578
SYSPACKSTMT catalog table 581
SYSPKSYSTEM catalog table 583

location identifier 48
lock

ALTER TABLESPACE statement 235
CREATE TABLESPACE statement 335
description 28
during update 480
LOCK TABLE statement 426
object

table space (table) 426
LOCK TABLE statement

description 426
LOCKMAX clause

ALTER TABLESPACE statement
description 235

CREATE TABLESPACE statement
description 336

LOCKMAX column
SYSTABLESPACE catalog table 611

LOCKPART clause
ALTER TABLESPACE statement 241
CREATE TABLESPACE statement 338

LOCKPART column
SYSTABLESPACE catalog table 612

LOCKRULE column of SYSTABLESPACE catalog
table 610

LOCKSIZE clause
ALTER TABLESPACE statement

description 235
CREATE TABLESPACE statement

description 335
logical operator 118
logical unit of work 28

See also unit of work
LONG VARCHAR data type

CREATE TABLE statement 312
DECLARE TABLE statement 354

LONG VARGRAPHIC data type
CREATE TABLE statement 312
DECLARE TABLE statement 354

LOOP statement
example 501
SQL procedure 501

LOW2KEY column
SYSCOLSTATS catalog table 549
SYSCOLUMNS catalog table

description 551
lowercase character folded to uppercase 46
LOWKEY column of SYSCOLSTATS catalog

table 549
LUNAME

column of LULIST catalog table 539
column of LUMODES catalog table 540

  Index 665



  
 

LUNAME (continued)
column of LUNAMES catalog table 541
column of MODESELECT catalog table 543
column of SYSPROCEDURES table 590

M
MAX function 133
MAXROWS clause

ALTER TABLESPACE statement 241
CREATE TABLESPACE statement 338

MAXROWS column
SYSTABLESPACE catalog table 612

MEMBER CLUSTER clause
CREATE TABLESPACE statement 334

message
precompiler processing of DECLARE TABLE

statement 356
MICROSECOND function 150
MIN function 134
MINUTE function 151
MIXED column

SYSDBRM catalog table 562
SYSPACKAGE catalog table 575

mixed data
convention 5
description 58
in string assignments 70
LIKE predicate 115

MIXED DATA
field of panel DSNTIPF 59, 123

MIXED_CCSID column
SYSDATABASE catalog table 558
SYSTABLESPACE catalog table 612

MODENAME column
LUMODES catalog table 540
MODESELECT catalog table 543

MODESELECT column of LUNAMES catalog
table 542

MON1AUTH column of SYSUSERAUTH catalog
table 615

MON2AUTH column of SYSUSERAUTH catalog
table 615

MONITOR1 privilege
GRANT statement 410
REVOKE statement 454

MONITOR2 privilege
GRANT statement 410
REVOKE statement 454

MONTH function 152

N
NACTIVE column

SYSTABLESPACE catalog table
description 610

NACTIVE column (continued)
SYSTABSTATS catalog table 613

NAME
column of SYSCOLDIST catalog table 547
column of SYSCOLDISTSTATS catalog table 548
column of SYSCOLSTATS catalog table 549
column of SYSCOLUMNS catalog table 550
column of SYSDATABASE catalog table 557
column of SYSDBAUTH catalog table 559
column of SYSDBRM catalog table 562
column of SYSFIELDS catalog table 565
column of SYSINDEXES catalog table 567
column of SYSINDEXSTATS catalog table 572
column of SYSPACKAGE catalog table 574
column of SYSPACKAUTH catalog table 578
column of SYSPACKLIST catalog table 580
column of SYSPACKSTMT catalog table 581
column of SYSPKSYSTEM catalog table 583
column of SYSPLAN catalog table 584
column of SYSPLANAUTH catalog table 587
column of SYSPLSYSTEM catalog table 589
column of SYSRESAUTH catalog table 594
column of SYSSTMT catalog table 595
column of SYSSTOGROUP catalog table 597
column of SYSSYNONYMS catalog table 599
column of SYSTABLES catalog table 606
column of SYSTABLESPACE catalog table 610
column of SYSTABSTATS catalog table 613
column of SYSVIEWS catalog table 618

NAMES 
USING clause of DESCRIBE statement 365
USING clause of PREPARE statement 434

names, prepared SQL statements 352
naming convention

SQL 48
NEARINDREF column of SYSTABLEPART catalog

table 603
NEAROFFPOSF column

SYSINDEXPART catalog table 571
nested table expressions 174
NEWAUTHID column of USERNAMES catalog

table 620
NLEAF column

SYSINDEXES catalog table
description 567

SYSINDEXSTATS catalog table 572
NLEVELS column

SYSINDEXES catalog table
description 567

SYSINDEXSTATS catalog table 572
NO ACTION

delete rule
CREATE TABLE statement 318

NO ACTION delete rule
description 24

666 SQL Reference  



  
 

NO WLM ENVIRONMENT clause
CREATE PROCEDURE statement 299

NOCOLLID clause
CREATE PROCEDURE statement 298

NOFOR option
precompiler 126

NOGRAPHIC option of precompiler 123
nonexecutable statement 195, 196
NOT FOUND clause of WHENEVER statement 483
NOT NULL clause

ALTER TABLE statement 220
CREATE GLOBAL TEMPORARY TABLE statement

description 277
CREATE TABLE statement

description 313
NPAGES column

SYSTABLES catalog table
description 606

SYSTABSTATS catalog table 613
NTABLES column of SYSTABLESPACE catalog

table 610
NULL

predicate 116
VALIDPROC clause of ALTER TABLE

statement 222
null value

assigned to host variable 462
assignment 66
description 57
duplicate rows 171
grouping columns 177
result columns 173
specified by indicator variable 89

NULLIF function 153
NULLS column of SYSCOLUMNS catalog table 550
numbers in SQL 61
NUMCOLUMNS column

SYSCOLDIST catalog table 547
SYSCOLDISTSTATS catalog table 548

numeric
assignments 66
comparisons 72
conversion errors 463
data type 61

NUMERIC data type
CREATE TABLE statement 312
DECLARE TABLE statement 354

NUMPARTS
clause of CREATE TABLESPACE statement 334

O
OBID

clause of CREATE TABLE statement 322
column of SYSCHECKS catalog table 545
column of SYSINDEXES catalog table 567

OBID (continued)
column of SYSTABLES catalog table 606
column of SYSTABLESPACE catalog table 610

object table 84
OBTYPE column of SYSRESAUTH catalog table 594
ON clause

CREATE INDEX statement 284
joining tables 175

ON DELETE clause
ALTER TABLE statement 226
CREATE TABLE statement 318

ON TABLE clause
GRANT statement 413
REVOKE statement 457

online books 7
OPEN

statement
description 428

open cursor 398
operands

datetime 97
decimal 94
floating-point 97
integer 94

operation
SQL

assignment 65
comparison 72
description 65

OPERATIVE column
SYSPACKAGE catalog table 574
SYSPLAN catalog table 584

operator
arithmetic 93

OPTIMIZE FOR n ROWS
clause of SELECT statement 190

OR truth table 118
ORDER BY clause

select-statement 188
order of evaluation, operators 102
order of statements

in a compound statement 494
ORDERING column of SYSKEYS catalog table 573
ordinary identifier in SQL 46
OUT clause of CREATE PROCEDURE statement 297
OUTCCSID column of SYSSTRINGS catalog

table 598
outer join 175

See also join operation
example 180, 181, 182
FULL OUTER JOIN 180

FROM clause of subselect 175
LEFT OUTER JOIN 181

FROM clause of subselect 175
RIGHT OUTER JOIN 181

FROM clause of subselect 175

  Index 667



  
 

output host variable 89
OWNER

column of SYSINDEXSTATS catalog table 572
column of SYSPACKAGE catalog table 574
column of SYSTABSTATS catalog table 613

P
PACKADM authority

GRANT statement 403
REVOKE statement 447

package
binding

remote 55
description 30
dropping 377
invalidated

ALTER TABLE statement 230
privileges

remote bind 55
PACKAGE 

clause of DROP statement 377
clause of GRANT statement 406
clause of REVOKE statement 450

page set
description 26

PAGESAVE column of SYSTABLEPART catalog table
description 604

parallel processing
SET CURRENT DEGREE statement 468

parameter
assignment rules for CALL statement 251
passing to stored procedure 250

parameter marker
description 435
EXECUTE statement 382
EXPLAIN statement 389
obtaining information with DESCRIBE INPUT 370
OPEN statement 429
PREPARE statement 435
rules 435

parent key
description 24

parent row 24
parent table 24
PARENTS column of SYSTABLES catalog table 607
PARMLIST column

SYSFIELDS catalog table 565
SYSPROCEDURES catalog table 591

PART
clause of ALTER INDEX statement 207
clause of ALTER TABLESPACE statement 237
clause of LOCK TABLE statement 426
CLUSTER clause of CREATE INDEX

statement 289
NUMPARTS clause of CREATE TABLESPACE

statement 335

PARTITION column
SYSCOLDISTSTATS catalog table 548
SYSCOLSTATS catalog table 549
SYSINDEXPART catalog table 570
SYSINDEXSTATS catalog table 572
SYSTABLEPART catalog table 603
SYSTABLESPACE catalog table 610
SYSTABSTATS catalog table 613

PASSWORD 
clause of ALTER STOGROUP statement 214
clause of CREATE STOGROUP statement 304
column of USERNAMES catalog table 620

pattern character
description 114

PCTFREE
clause of ALTER INDEX statement 207
clause of ALTER TABLESPACE statement 237
clause of CREATE INDEX statement 288
clause of CREATE TABLESPACE statement 333
column of SYSINDEXPART catalog table 570
column of SYSTABLEPART catalog table 604

PCTIMESTAMP column of SYSPACKAGE catalog
table 576

PCTPAGES column
SYSTABLES catalog table 606
SYSTABSTATS catalog table 613

PCTROWCOMP column
SYSTABLES catalog table

description 608
SYSTABSTATS catalog table 613

PDSNAME column
SYSDBRM catalog table 562
SYSPACKAGE catalog table 576

PERCACTIVE column of SYSTABLEPART catalog
table

description 603
PERCDROP column of SYSTABLEPART catalog table

description 603
PERIOD option

precompiler 121
PGM_TYPE column

SYSPROCEDURES catalog table 591
PGSIZE column

SYSINDEXES catalog table 567
SYSTABLESPACE catalog table 610

PIECESIZE clause
ALTER INDEX statement 211
CREATE INDEX statement 291

PIECESIZE column
SYSINDEXES catalog table 569

PIT_RBA column of SYSCOPY catalog table 555
PKSIZE column of SYSPACKAGE catalog table 574
PL/I application program

host structure 90
host variable

description 89

668 SQL Reference  



  
 

PL/I application program (continued)
INCLUDE SQLCA 518
INCLUDE SQLDA 525
varying-length string 60

PLAN 
clause of EXPLAIN statement 388
clause of GRANT statement 408
clause of REVOKE statement 452

plan element 30, 470
plan table 388
PLAN_TABLE table

EXPLAIN statement 389
plan, application 230

See also application plan
PLANNAME column

SYSIBM.MODESELECT catalog table 543
SYSPACKLIST catalog table 580

PLCREATOR column
SYSDBRM catalog table 562
SYSSTMT catalog table 595

PLENTRIES column of SYSPLAN catalog table 585
PLNAME column

SYSDBRM catalog table 562
SYSSTMT catalog table 595

PLSIZE column of SYSPLAN catalog table 584
point of consistency

description 28
PORT column of LOCATIONS catalog table 538
PQTY column

SYSINDEXPART catalog table 570
SYSTABLEPART catalog table 603

precedence of operators 102
precision of numbers

description 61
determined by SQLLEN variable 523
in assignments 66
in comparisons 72
results of arithmetic operations 93
values for data types 61

PRECOMPDATE column of SYSDBRM catalog
table 562

PRECOMPILE_OPTS
column of SYSPSMOPTS table 626

precompiler
checks SQL statements 354
DECLARE TABLE statement 354
escape character 47
options

COBOL decimal point 121
CONNECT 119
date 124
NOFOR 126
STDSQL 124
string delimiter 122
time 124

using INCLUDE statements 417

PRECOMPTIME column of SYSDBRM catalog
table 562

PRECOMPTS column
SYSDBRM catalog table 563

predicate
basic 106
BETWEEN 109
description 106
EXISTS 109
IN 111
LIKE 112
NULL 116
quantified 107

prefix operator 94
PRELINK_OPTS

column of SYSPSMOPTS table 626
PREPARE

statement
description 433

prepared SQL statement
dynamically prepared by PREPARE 433
executing 382
identifying by DECLARE 352
obtaining information with DESCRIBE 362
obtaining information with DESCRIBE INPUT 370
SQLDA provides information 519
statements allowed 509

primary index 23
See also index, primary

primary key 23
See also key, primary

PRIMARY KEY clause
ALTER TABLE statement 223
CREATE TABLE statement

description 313, 316
PRIQTY clause

ALTER INDEX statement 209
ALTER TABLESPACE statement 238
CREATE INDEX statement 286
CREATE TABLESPACE statement 330

privilege
revoking 456
types 400

See also GRANT statement
PRIVILEGE column

SYSCOLAUTH catalog table 546
PROCEDURE column of SYSPROCEDURES catalog

table 590
PROCEDURENAME

column of SYSPSM table 625
column of SYSPSMOPTS table 626

process
description 28

PROGRAM TYPE clause
CREATE PROCEDURE statement 300

  Index 669



  
 

PSID column of SYSTABLESPACE catalog table 610
PSMDATE

column of SYSPSM table 625
PSMTIME

column of SYSPSM table 625
PUBLIC AT ALL LOCATIONS clause

GRANT statement 401
REVOKE statement 444

PUBLIC clause
GRANT statement 401
REVOKE statement 444

Q
qualification of column names 84
QUALIFIER

column of SYSPACKAGE catalog table 574
column of SYSPLAN catalog table 585
column of SYSRESAUTH catalog table 594
unqualified option names 51

quantified predicate 107
query 169
question mark (?) 382

See also parameter marker
quotation mark 47, 122
QUOTE

column of SYSDBRM catalog table 562
column of SYSPACKAGE catalog table 575
option of precompiler 122

QUOTESQL option
precompiler 122

R
RACF (Resource Access Control Facility)

security for remote execution 56
RBA column of SYSCHECKS catalog table 545
RBA1 column of SYSTABLES catalog table 608
RBA2 column of SYSTABLES catalog table 608
read-only

FOR FETCH ONLY clause 190
FOR READ ONLY clause 190
result table 349
view 345

REAL data type
CREATE TABLE statement 311
DECLARE TABLE statement 354

RECLENGTH column of SYSTABLES catalog
table 607

RECOVER privilege
GRANT statement 410
REVOKE statement 454

RECOVERAUTH column of SYSUSERAUTH catalog
table 615

RECOVERDB privilege
GRANT statement 405

RECOVERDB privilege (continued)
REVOKE statement 449

RECOVERDBAUTH column of SYSDBAUTH catalog
table 560

recovery 257
See also unit of recovery
description

restoring data consistency 28
REFCOLS column

SYSTABAUTH catalog table 601
REFERENCES clause

ALTER TABLE statement 225
CREATE TABLE statement 317

REFERENCES privilege
GRANT statement 412
REVOKE statement 456

REFERENCESAUTH column of SYSTABAUTH catalog
table 601

referential constraint
ALTER TABLE statement 224
CREATE TABLE statement 317
description 24

referential cycle 24
referential integrity

description 24
REFTBCREATOR column of SYSRELS catalog

table 593
REFTBNAME column of SYSRELS catalog table 593
RELEASE

column of SYSPACKAGE catalog table 575
column of SYSPLAN catalog table 585
statement 437

release level identification, current server 263, 268
release pending connection state 34
RELNAME column

SYSFOREIGNKEYS catalog table 566
SYSRELS catalog table 593

RELOBID1 column of SYSRELS catalog table 593
RELOBID2 column of SYSRELS catalog table 593
REMARKS column

SYSCOLUMNS catalog table 551
SYSTABLES catalog table 607

REMOTE
column of SYSPACKAGE catalog table 576

Remote Recovery Data Facility (RRDF) 227, 322
See also RRDF (Remote Recovery Data Facility)

remote unit of work 31
See also &ruw.

REMOVE VOLUMES clause of ALTER STOGROUP
statement 215

RENAME
statement 440

REOPTVAR
column of SYSPACKAGE catalog table 577
column of SYSPLAN catalog table 586

670 SQL Reference  



  
 

REORG privilege
GRANT statement 405
REVOKE statement 449

REORGAUTH column of SYSDBAUTH catalog
table 560

REPAIR privilege
GRANT statement 405
REVOKE statement 449

REPAIRAUTH column of SYSDBAUTH catalog
table 560

REPEAT statement
example 502
SQL procedure 502

reserved keywords 621
RESET

clause of CONNECT statement 268
RESTRICT

delete rule
ALTER TABLE statement 226
CREATE TABLE statement 318
description 24

result column
data type 173
names 173

RESULT SET clause
CREATE PROCEDURE statement 298

result table
description 22

RESULT_SETS column
SYSPROCEDURES catalog table 591

REVOKE statement
cascading effect 444
collection privileges 447
database privileges 448
description 443
package privileges 450
plan privileges 452
system privileges 453
table privileges 456
use privileges 458
view privileges 456

RIGHT OUTER JOIN 175
See also join operation
example 181
FROM clause of subselect 175

rollback
description 28

ROLLBACK statement
description 460

ROSHARE
clause of ALTER DATABASE statement 203
clause of CREATE DATABASE statement 273
column of SYSDATABASE catalog table 557

row
deleting 357
description 22

row (continued)
inserting 419
selecting single row 462
updating 477

RRDF (Remote Recovery Data Facility)
altering a table for 227
creating a table for 322

RUN OPTIONS clause
CREATE PROCEDURE statement 300

RUNOPTS column of SYSPROCEDURES catalog
table 591

S
sample table

description 22
SBCS data

description 57
SBCS site 59
SBCS_CCSID column

SYSDATABASE catalog table 557
SYSTABLESPACE catalog table 612

scalar function 136
See also function

SCALE column
SYSCOLUMNS catalog table 550
SYSFIELDS catalog table 565

scale of numbers
description 61
in assignments 68
in comparisons 72
results of arithmetic operations 95

SCHEMA column
SYSPSM table 625
SYSPSMOPTS table 626

SCREATOR column of SYSTABAUTH catalog
table 600

search condition
DELETE statement 358
description 118
HAVING 178
order of evaluation 118
UPDATE statement 479
WHERE clause 177

SECOND function 154
SECQTY

clause of ALTER INDEX statement 209
clause of ALTER TABLESPACE statement 239
clause of CREATE INDEX statement 286
clause of CREATE TABLESPACE statement 331

SECTNO column
SYSPACKSTMT catalog table 581
SYSSTMT catalog table 595

SECURITY clause
CREATE PROCEDURE statement 300

  Index 671



  
 

SECURITY_IN column of LUNAMES catalog table 541
SECURITY_OUT column

IPNAMES catalog table 537
LUNAMES catalog table 541

SEGSIZE
clause of CREATE TABLESPACE statement 337
column of SYSTABLESPACE catalog table 611

SELECT
clause as syntax component 171

SELECT INTO statement 462
SELECT privilege

GRANT statement 413
REVOKE statement 456

SELECT statement
description 188
dynamic invocation 198
example 191
fullselect 183
list

application 172
description 171
maximum number of elements 506
notation 171

static invocation 197
subselect 170

SELECTAUTH column of SYSTABAUTH catalog
table 601

selecting
single row 462

self-referencing constraint 24
self-referencing row 24
self-referencing table 24
SEQNO

column of SYSPSM table 625
SEQNO column

SYSPACKLIST catalog table 580
SYSPACKSTMT catalog table 581
SYSSTMT catalog table 595
SYSVIEWS catalog table 618

server
accessible 32
current 32
establishing with CONNECT 261
remote 31

SET clause of UPDATE statement 479
SET CONNECTION statement 465
SET CURRENT DEGREE statement 468
SET CURRENT PACKAGESET statement 470
SET CURRENT PRECISION statement 472
SET CURRENT RULES statement 473
SET CURRENT SQLID statement 474
SET host-variable statement 476
SET NULL delete rule

ALTER TABLE statement 226
CREATE TABLE statement 318
description 24

SET QUERYNO clause of EXPLAIN statement 388
SGCREATOR column of SYSVOLUMES catalog

table 619
SGNAME column of SYSVOLUMES catalog table 619
SHARE

option of LOCK TABLE statement 426
shift-in character

convention 5
LABEL ON statement 425
not truncated by assignments 70

shift-out character
convention 5
LABEL ON statement 425

short identifier in SQL 47
short string columns 59
SHRLEVEL

column of SYSCOPY catalog table 555
sign-on exit routine

CURRENT SQLID special register 54, 82
single precision floating-point number 61
single-byte character in LIKE predicate 115
SMALLINT

data type
CREATE TABLE statement 311
DECLARE TABLE statement 354

softcopy publications 7
SOME quantified predicate 107
SOURCEDSN

column of SYSPSMOPTS table 626
space character 46
SPACE column

SYSINDEXES catalog table 568
SYSINDEXPART catalog table 570
SYSSTOGROUP catalog table 597
SYSTABLEPART catalog table 604
SYSTABLESPACE catalog table 611

SPCDATE column of SYSSTOGROUP catalog
table 597

special character 45
special register

CURRENT DATE 79
CURRENT DEGREE 79
CURRENT PACKAGESET 80
CURRENT PRECISION 80
CURRENT RULES 81
CURRENT SERVER 82
CURRENT SQLID 82
CURRENT TIME 82
CURRENT TIMESTAMP 83
CURRENT TIMEZONE 83
CURRENT_DATE 79
CURRENT_TIME 82
CURRENT_TIMESTAMP 83
description 78
USER 83

672 SQL Reference  



  
 

SQL (Structured Query Language)
assignment operation 65
call level interface 22
character 45
comparison operation 65
constants 74
data types

character strings 57
datetime 62
description 57
graphic strings 60
numbers 61

deferred embedded 21
delimited identifier 47
description 21
dynamic

description 21
statements allowed 509

identifier 46
interactive 22
keywords, reserved 621
limits 505
naming conventions 48
null value 57
ordinary identifier 45
rules 81
standard 3, 124
static

description 21
token 45
value 57
variable names 48

SQL procedure
statements allowed 511

SQL procedure statement
assignment statement 486
CASE statement 489
compound statement 491
CONTINUE handler 493
EXIT handler 494
GET DIAGNOSTICS statement 497
GOTO statement 498
handler 493
handling errors 493
IF statement 496
LEAVE statement 500
LOOP statement 501
order of statements 494
REPEAT statement 502
WHILE statement 503

SQL return code
See SQLCODE

SQL statements
ALLOCATE CURSOR

description 200
ALTER DATABASE 202

SQL statements (continued)
ALTER INDEX 205
ALTER STOGROUP 214
ALTER TABLE 217
ALTER TABLESPACE

description 233
ASSOCIATE LOCATORS

description 243
BEGIN DECLARE SECTION 246
CALL

description 248
catalog table restrictions 532
CLOSE 253
COMMENT ON 255
COMMIT 257
CONNECT (Type 1) 262
CONNECT (Type 2) 267
CONNECT differences 259
CONTINUE 483
CREATE ALIAS 270
CREATE DATABASE 272
CREATE GLOBAL TEMPORARY TABLE 275
CREATE INDEX 280
CREATE PROCEDURE 295
CREATE STOGROUP 303
CREATE SYNONYM 306
CREATE TABLE 308
CREATE TABLESPACE

description 327
CREATE VIEW 341
DECLARE CURSOR

description 347
DECLARE STATEMENT 352
DECLARE TABLE 354
DELETE

description 357
DESCRIBE 362
DESCRIBE CURSOR

description 368
DESCRIBE INPUT 370
DESCRIBE PROCEDURE

description 372
DROP

description 375
END DECLARE SECTION 380
EXECUTE 382
EXECUTE IMMEDIATE 386
EXPLAIN

description 388
FETCH

description 397
FOR 389
GRANT 400
INCLUDE

description 417
SQLCA 517
SQLDA 524

  Index 673



  
 

SQL statements (continued)
INSERT

description 419
invocation 195
LABEL ON 424
LOCK TABLE 426
OPEN

description 428
PREPARE 433
RELEASE 437
remote execution

description 55
dynamic execution 56
static execution 56

RENAME 440
REVOKE 443
ROLLBACK 460
SELECT INTO 462
SET CONNECTION 465
SET CURRENT DEGREE 468
SET CURRENT PRECISION 472
SET CURRENT RULES 473
SET CURRENT SQLID 474
UPDATE

description 477
WHENEVER 483

SQLCA (SQL communication area)
contents 513
entry changed by UPDATE 480
INCLUDE statement 417

SQLCABC field of SQLCA 513
SQLCAID field of SQLCA 513
SQLCODE 206

-626 206
-752 264
-900 265
-918 264
+100 199, 397, 421, 428, 462, 483
description 199
field of SQLCA 513

SQLD field of SQLDA 363, 521
SQLDA (SQL descriptor area)

clause of INCLUDE statement 417
contents 519, 520

SQLDABC field of SQLDA 363, 521
SQLDAID field of SQLDA 363, 521
SQLDATA field of SQLDA 522
SQLERRD(3) field of SQLCA 361
SQLERRD(n) field of SQLCA 513
SQLERRMC field of SQLCA 513
SQLERRML field of SQLCA 513
SQLERROR

clause of WHENEVER statement 483
column of SYSPACKAGE catalog table 576

SQLERRP field of SQLCA 513

SQLIND field of SQLDA 522
SQLLEN field of SQLDA 363, 522
SQLN field of SQLDA

description 363, 521
SQLNAME field of SQLDA 363, 522
SQLRULES

column of SYSPLAN catalog table 585
SQLSTATE 206

'02000' 397, 421, 428, 462, 483
'55015' 206
description 199
field of SQLCA 513

SQLTYPE field of SQLDA
description 521
values 363, 523

SQLVAR field of SQLDA 363
SQLWARN6 field of SQLCA 99
SQLWARNING clause

WHENEVER statement 483
SQLWARNn field of SQLCA 513
SQTY column

SYSINDEXPART catalog table 570
SYSTABLEPART catalog table 603

standard, SQL (ANSI/ISO)
description 3
SET CONNECTION statement 465
SQL-style comments 125
STDSQL precompiler option 124

START_RBA column of SYSCOPY catalog table 554
STARTDB privilege

GRANT statement 405
REVOKE statement 449

STARTDBAUTH column of SYSDBAUTH catalog
table 560

state
application process 262
SQL connection 34

statement
descriptions 21

See also SQL statements
operational form 21
preparation 21
source form 21

STATEMENT clause of DECLARE STATEMENT
statement 352

static SQL
description 21, 195
invocation of SELECT statement 197

STATS privilege
GRANT statement 405
REVOKE statement 449

STATSAUTH column of SYSDBAUTH catalog
table 560

STATSTIME column
SYSCOLDIST catalog table 547
SYSCOLDISTSTATS catalog table 548

674 SQL Reference  



  
 

STATSTIME column (continued)
SYSCOLSTATS catalog table 549
SYSCOLUMNS catalog table 553
SYSINDEXES catalog table 568
SYSINDEXPART catalog table 570
SYSINDEXSTATS catalog table 572
SYSSTOGROUP catalog table 597
SYSTABLEPART catalog table 604
SYSTABLES catalog table 608
SYSTABLESPACE catalog table 611
SYSTABSTATS catalog table 613

STATUS
column of SYSPACKSTMT catalog table 581
column of SYSSTMT catalog table 595

STATUS 
column of SYSTABLES catalog table 607
column of SYSTABLESPACE catalog table 610

STAY RESIDENT clause
CREATE PROCEDURE statement 300

STAYRESIDENT column of SYSPROCEDURES
catalog table 591

STD SQL LANGUAGE field of panel DSNTIP4 124
STDSQL option

precompiler 124
STGROUP column of SYSDATABASE catalog

table 557
STMT column of SYSPACKSTMT catalog table 581
STMTNO column

SYSPACKSTMT catalog table 581
SYSSTMT catalog table 595

STNAME column of SYSTABAUTH catalog table 600
STOGROUP

clause of ALTER DATABASE statement 203
clause of ALTER INDEX statement 208
clause of ALTER STOGROUP statement 214
clause of ALTER TABLESPACE statement 238
clause of CREATE DATABASE statement 273
clause of CREATE INDEX statement 285, 287
clause of CREATE STOGROUP statement 303
clause of CREATE TABLESPACE statement 330,

332
clause of DROP statement 376

STOGROUP privilege
GRANT statement 415
REVOKE statement 458

STOPALL privilege
GRANT statement 410
REVOKE statement 454

STOPALLAUTH column of SYSUSERAUTH catalog
table 615

STOPAUTH column of SYSDBAUTH catalog
table 560

STOPDB privilege
GRANT statement 405
REVOKE statement 449

storage group, DB2
altering 214
creating 303
defining 303
description 27
dropping 376

storage structure 26
stored procedure

CALL statement 248
creating

CREATE PROCEDURE statement 295
CURRENT PACKAGESET special register 471
invoking 248

STORNAME column
SYSINDEXPART catalog table 570
SYSTABLEPART catalog table 603

STORTYPE column
SYSINDEXPART catalog table 570
SYSTABLEPART catalog table 603

STOSPACE privilege
GRANT statement 410
REVOKE statement 454

STOSPACEAUTH column of SYSUSERAUTH catalog
table 615

string
columns 57
comparison 72
constant 75
conversion 37
delimiter

COBOL 122
controlling representation 122
SQL 122

description 37
long

column limitations 172
columns 59
use restrictions 59

varying-length
description 59

string delimiter precompiler option 122
STRIP function 155
STYPE column of SYSCOPY catalog table 555
SUBBYTE column of SYSSTRINGS catalog table 598
SUBPAGES clause

ALTER INDEX statement 211
SUBPAGES clause of CREATE INDEX statement 290
subquery

description 86
HAVING clause 178
WHERE clause 177

subselect
CREATE VIEW statement 170, 343
description 170
example 178
INSERT statement 170, 421

  Index 675



  
 

substitution byte 38
substitution character 71
SUBSTR function 157
SUM function 135
synonym

defining 306
description 51
dropping 377
naming convention 50
qualifying a column name 84

SYNONYM clause
CREATE SYNONYM statement 306
DROP statement 377

syntax diagrams, how to read 4
SYSADM authority

GRANT statement 410
REVOKE statement 454

SYSADMAUTH column of SYSUSERAUTH catalog
table 615

SYSCTRL authority
GRANT statement 410
REVOKE statement 454

SYSCTRLAUTH column of SYSUSERAUTH catalog
table 616

SYSENTRIES column
SYSPACKAGE catalog table 574
SYSPLAN catalog table 585

SYSIBM.... catalog tables
See catalog tables

SYSMODENAME column of LUNAMES catalog
table 541

SYSOPR authority
GRANT statement 410
REVOKE statement 454

SYSOPRAUTH column of SYSUSERAUTH catalog
table 615

system
limits 505

SYSTEM 
column of SYSPKSYSTEM catalog table 583
column of SYSPLSYSTEM catalog table 589

T
table

altering
ALTER TABLE statement 217

base table 22
creating

CREATE GLOBAL TEMPORARY TABLE
statement 275

CREATE TABLE statement 308
description 22
designator 85
dropping

DROP statement 377

table (continued)
empty table 22
joining 175
obtaining information with DESCRIBE 362
renaming

RENAME statement 440
restricting column values 26
result table 22, 430
temporary copy 430
temporary table 22

TABLE 
clause of COMMENT ON statement 255
clause of DECLARE TABLE statement 354
clause of DROP statement 377
clause of LABEL ON statement 424

table check constraint 223
defining

ALTER TABLE statement 223
CREATE TABLE statement 319

deleting rows 360
description 26
inserting rows 422
SYSCHECKDEP catalog table 544
updating rows 481

table name
naming convention 50
qualifying a column name 84

table space
altering

ALTER TABLESPACE statement 233
catalog table 529
creating

CREATE TABLESPACE statement 327
implicitly 320

description 26
dropping 377
naming convention 50

TABLESPACE
clause of ALTER TABLESPACE statement 233
clause of DROP statement 377
clause of GRANT statement 415
clause of REVOKE statement 458

TABLESPACE privilege
GRANT statement 415
REVOKE statement 458

TBCREATOR column
SYSCOLUMNS catalog table 550
SYSFIELDS catalog table 565
SYSINDEXES catalog table 567
SYSSYNONYMS catalog table 599
SYSTABLES catalog table 608

TBNAME column
SYSCHECKDEP catalog table 544
SYSCHECKS catalog table 545
SYSCOLDIST catalog table 547
SYSCOLDISTSTATS catalog table 548

676 SQL Reference  



  
 

TBNAME column (continued)
SYSCOLSTATS catalog table 549
SYSCOLUMNS catalog table 550
SYSFIELDS catalog table 565
SYSFOREIGNKEYS catalog table 566
SYSINDEXES catalog table 567
SYSRELS catalog table 593
SYSSYNONYMS catalog table 599
SYSTABLES catalog table 608

TBOWNER column
SYSCHECKDEP catalog table 544
SYSCHECKS catalog table 545
SYSCOLDIST catalog table 547
SYSCOLDISTSTATS catalog table 548
SYSCOLSTATS catalog table 549

TCREATOR column of SYSTABAUTH catalog
table 600

temporary
table copy 430

temporary table
description 22

TEXT column
SYSSTMT catalog table 595
SYSVIEWS catalog table 618

three-part name
description 32

TIME
arithmetic 100
data type

CREATE TABLE statement 313
DECLARE TABLE statement 354
description 62

duration 97
function 159
strings 64

TIME FORMAT field of panel DSNTIP4 124
TIMEGRANTED column

SYSCOLAUTH catalog table 546
SYSDBAUTH catalog table 559
SYSPLANAUTH catalog table 587
SYSRESAUTH catalog table 594
SYSTABAUTH catalog table 600
SYSUSERAUTH catalog table 614

timestamp
arithmetic 101
data type 63
duration 97
strings 65

TIMESTAMP 
column of SYSCHECKS catalog table 545
column of SYSCOPY catalog table 555
column of SYSDATABASE catalog table 557
column of SYSDBRM catalog table 562
column of SYSPACKAGE catalog table 574
column of SYSPACKAUTH catalog table 578
column of SYSPACKLIST catalog table 580

TIMESTAMP (continued)
column of SYSRELS catalog table 593
data type

CREATE TABLE statement 313
DECLARE TABLE statement 354
description 63

function 160
TNAME column of SYSCOLAUTH catalog table 546
TO

clause of CONNECT (Type 1) statement 262
clause of CONNECT (Type 2) statement 267
clause of GRANT statement 401

token in SQL 45
TPN column of LOCATIONS catalog table 538
TRACE privilege

GRANT statement 411
REVOKE statement 454

TRACEAUTH column of SYSUSERAUTH catalog
table 615

TRANSPROC column of SYSSTRINGS catalog
table 598

TRANSTAB column of SYSSTRINGS catalog
table 598

TRANSTYPE column of SYSSTRINGS catalog
table 598

truncation
numbers 66

truth table 118
truth valued logic 118
TSNAME column

SYSCOPY catalog table 554
SYSTABLEPART catalog table 603
SYSTABLES catalog table 606
SYSTABSTATS catalog table 613

TTNAME column of SYSTABAUTH catalog table 600
TYPE

clause of CREATE INDEX statement 282
column of SYSCOLDIST catalog table 547
column of SYSCOLDISTSTATS catalog table 548
column of SYSDATABASE catalog table 557
column of SYSTABLES catalog table 606
column of USERNAMES catalog table 620

TYPE 1 clause
ALTER INDEX statement 211

TYPE 2 clause
ALTER INDEX statement 211

TYPE column
SYSTABLESPACE catalog table 611

U
unary operation 94
unconnected state 35
UNION clause

duplicate rows 183
fullselect 183

  Index 677



  
 

UNIQUE clause
CREATE INDEX statement 282
CREATE TABLE statement 313, 316

unique index
description 23

unique key
description 23

UNIQUERULE column of SYSINDEXES catalog
table 567

unit of recovery
COMMIT statement 257
description 28
ROLLBACK statement 460

unit of work
closes cursors 430
description 29
dynamic caching 436
ending 29, 257, 460
initiating 29
persistence of prepared statements 436
referring to prepared statements 433

universal time, coordinated (UTC) 79
unqualified object names 51
UPDATE

statement
description 477

UPDATE privilege
GRANT statement 413
REVOKE statement 457

update rule 24, 480
UPDATEAUTH column of SYSTABAUTH catalog

table 601
UPDATECOLS column of SYSTABAUTH catalog

table 600
UPDATES column of SYSCOLUMNS catalog

table 551
updating

rows in a table 477
USA 63

See also datetime
USEAUTH column of SYSRESAUTH catalog

table 594
USER

special register 83
USERNAMES column

IPNAMES catalog table 537
LUNAMES catalog table 542

USING clause
ALTER INDEX statement 208
ALTER TABLESPACE statement 237
CREATE INDEX statement 285, 287
CREATE TABLESPACE statement 329, 332
DESCRIBE statement 365
EXECUTE statement 382
OPEN statement 428
PREPARE statement 434

USING DESCRIPTOR clause
EXECUTE statement 382
FETCH statement 398
OPEN statement 429

UTC (universal time, coordinated) 79

V
VALID column

SYSPACKAGE catalog table 574
SYSPLAN catalog table 584

VALIDATE
column of SYSPACKAGE catalog table 574
column of SYSPLAN catalog table 584

validation procedure 222
See also validation routine

validation routine
VALIDPROC clause 222, 321

VALIDPROC clause
ALTER TABLE statement 222
CREATE TABLE statement 321

VALPROC column of SYSTABLES catalog table 606
value

composite 23
SQL 57

VALUE function 162
VALUES

clause of CREATE INDEX statement 289
clause of INSERT statement 421

VARCHAR
data type

CREATE TABLE statement 312
DECLARE TABLE statement 354

VARGRAPHIC
data type

CREATE TABLE statement 312
DECLARE TABLE statement 354

function 164
variable

host
referencing 89
SQL syntax 89

VCAT
clause of CREATE STOGROUP statement 304
USING clause

ALTER INDEX statement 208
ALTER TABLESPACE statement 237
CREATE INDEX statement 285, 287
CREATE TABLESPACE statement 330, 332

VCATNAME column
SYSINDEXPART catalog table 570
SYSSTOGROUP catalog table 597
SYSTABLEPART catalog table 603

VERSION 
clause of DROP statement 377
column of SYSDBRM catalog table 563

678 SQL Reference  



  
 

VERSION (continued)
column of SYSPACKAGE catalog table 576
column of SYSPACKSTMT catalog table 581

version identificaton, current server 263, 268
version-id naming convention 50
view

creating
CREATE VIEW statement 341

description 27
dropping

description 377
read-only 345
using 345

obtaining information with DESCRIBE 362
VIEW clause

CREATE VIEW statement 341
DROP statement 377

VOLID column of SYSVOLUMES catalog table 619
VOLUMES clause of CREATE STOGROUP

statement 303
VPASSWORD column of SYSSTOGROUP catalog

table 597
VSAM (virtual storage access method)

catalog 287
See also integrated catalog facility

password
ALTER STOGROUP statement 214
CREATE INDEX statement 291

W
WHENEVER statement

description 483
WHERE clause

DELETE statement 358
description 177
search condition 177
UPDATE statement 479

WHILE statement
example 503
SQL procedure 503

WITH clause
DELETE statement 360
INSERT statement 421
SELECT INTO statement 463
select-statement 191

WITH GRANT OPTION clause of GRANT
statement 401

WITH HOLD clause of DECLARE CURSOR
statement 348

WITH PROCEDURE clause of ASSOCIATE
LOCATORS statement 243

WITH RETURN clause of DECLARE CURSOR
statement 349

WITH RR|RS|CS|UR 463
See also WITH clause

WLM ENVIRONMENT clause
CREATE PROCEDURE statement 299

WLM_ENV column
SYSPROCEDURES catalog table 591

work file database
creating 273

WORKAREA column of SYSFIELDS catalog table 565

Y
YEAR function 166

  Index 679



We'd Like to Hear from You

DB2 for OS/390
Version 5
SQL Reference

Publication No. SC26-8966-03

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773 or (408) 463-4393.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIBMXFC @ IBMMAIL
 – IBMLink: DB2PUBS @ STLVM27
 – Internet: DB2PUBS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number or your name and electronic address if

you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.



 

 Readers' Comments

DB2 for OS/390
Version 5
SQL Reference

Publication No. SC26-8966-03

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �



Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-8966-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department BWE/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-8966-03



 

 



IBM

Program Number: 5655-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

DB2 for OS/390
Version 5

SC26-8957 Administration Guide
SC26-8958 Application Programming and SQL Guide
SC26-8959 Call Level Interface Guide and Reference
SC26-8960 Command Reference
SC26-8961 Data Sharing: Planning and Administration
SX26-3841 Data Sharing Quick Reference
LY27-9659 Diagnosis Guide and Reference
LY27-9660 Diagnosis Quick Reference
GC26-8970 Installation Guide
GC26-8979 Master Index
SC26-8962 Messages and Codes
SC26-8964 Reference for Remote DRDA Requesters and Servers
SX26-3842 Reference Summary
SC26-8965 Release Guide
SC26-8966 SQL Reference
SC26-8967 Utility Guide and Reference
GC26-8971 What's New?

SC26-8966-,3


	Contents
	Notices
	Programming Interface Information
	Trademarks

	Chapter 1.  Introduction
	Who Should Read This Book
	How to Use This Book
	SQL Standards
	How to Read the Syntax Diagrams
	Conventions for Describing Mixed Data Values
	How to Use the DB2 Library
	How to Obtain DB2 Information
	DB2 on the Web
	DB2 Publications
	How to Order the DB2 Library

	Summary of Changes to DB2 for OS/390 Version 5
	Server Solution
	Net.Data for OS/390
	DB2 Installer
	DB2 Estimator for Windows
	DB2 Visual Explain
	Workstation-based Performance Analysis and Tuning
	DATABASE 2 Performance Monitor (DB2 PM)

	Performance
	Sysplex Query Parallelism
	Prepared Statement Caching
	Reoptimization
	Faster Transactions and Batch
	Faster Utilities
	Other Performance Enhancements

	Increased Capacity
	Improved Availability
	Online REORG
	Data Sharing Enhancements
	Tracker site for disaster recovery

	Client/Server and Open Systems
	Native TCP/IP Network Support
	Stored Procedures
	Dynamic Query and Network Performance
	Improved Application Portability
	Improved Security

	User Productivity
	Improved SQL Compatibility
	New Access Choice
	Image Copy Enhancements
	Improved Integration of C++ and IBM COBOL for MVS & VM Support
	Other Usability Enhancements


	Summary of Changes to This Book

	Chapter 2.  DB2 Concepts
	Structured Query Language
	Static SQL
	Dynamic SQL
	Deferred Embedded SQL
	Interactive SQL
	DB2 Call Level Interface (CLI)

	Tables
	Indexes
	Keys
	Unique Keys
	Primary Keys
	Parent Keys
	Foreign Keys

	Referential Integrity
	Check Constraints
	Storage Structures
	Storage Groups
	Databases
	Catalog
	Views
	Application Processes, Concurrency, and Recovery
	Locking, Commit, and Rollback
	Unit of Work
	Unit of Recovery
	Rolling Back Work

	Packages and Application Plans
	Distributed Data
	DB2 Private Protocol Access
	DRDA Access
	Remote Unit of Work
	Connection Management for DB2 Private Protocol and DRDA Access
	SQL Connection States
	Application Process Connection States
	DB2 Private Connections
	When a Connection is Ended


	Character Conversion
	Character Sets and Code Pages
	System CCSIDs
	Restrictions on BIT Data
	Expanding Conversions
	Contracting Conversions


	Chapter 3.  Language Elements
	Characters
	Tokens
	Spaces
	Uppercase and Lowercase

	Identifiers
	SQL Identifiers
	Ordinary Identifiers
	Delimited Identifiers
	Short and Long Identifiers

	Location Identifiers
	Host Identifiers

	Naming Conventions
	Aliases and Synonyms
	Authorization IDs and Authorization-names
	Authorization IDs and Statement Preparation
	Authorization IDs and Dynamic SQL
	Authorization IDs and Remote Execution
	DRDA Access with DB2 for OS/390 Only
	DRDA Access with a Server or Requester Other Than DB2 for OS/390
	DB2 Private Protocol Access
	Authorization ID Translations
	Other Security Measures


	Data Types
	Character Strings
	DBCS Characters and ASCII and EBCDIC
	Examples
	SBCS Sites
	DBCS Sites
	Fixed-Length Character Strings
	Varying-Length Character Strings
	Character String Host Variables

	Graphic Strings
	Fixed-Length Graphic Strings
	Varying-Length Graphic Strings
	Graphic String Host Variables

	Numbers
	Small Integer
	Large Integer
	Single Precision Floating-Point
	Double Precision Floating-Point
	Decimal
	Numeric Host Variables

	Datetime Values
	Date
	Time
	Timestamp
	String Representations of Datetime Values
	Restrictions on the Use of LOCAL Datetime Formats


	Assignment and Comparison
	Numeric Assignments
	Decimal or Integer to Floating-Point
	Floating-Point or Decimal to Integer
	Decimal to Decimal
	Integer to Decimal
	Floating-Point to Floating-Point
	Floating-Point to Decimal
	To COBOL Integers

	String Assignments
	Conversion Rules for String Assignment

	Datetime Assignments
	Numeric Comparisons
	String Comparisons
	String Comparisons With Field Procedures
	Conversion Rules for String Comparison

	Datetime Comparisons

	Constants
	Integer Constants
	Floating-Point Constants
	Decimal Constants
	Character String Constants
	Datetime Constants
	Graphic String Constants

	Special Registers
	General Rules for Special Registers
	CURRENT DATE
	CURRENT DEGREE
	CURRENT PACKAGESET
	CURRENT PRECISION
	CURRENT RULES
	CURRENT SERVER
	CURRENT SQLID
	CURRENT TIME
	CURRENT TIMESTAMP
	CURRENT TIMEZONE
	USER

	Column Names
	Qualified Column Names
	Correlation Names
	Column Name Qualifiers to Avoid Ambiguity
	Column Name Qualifiers in Correlated References
	Resolution of Column Name Qualifiers

	Referencing Host Variables
	Host Structures in PL/I, C, and COBOL
	Expressions
	Without Operators
	With the Concatenation Operator
	With Arithmetic Operators
	Arithmetic with Two Integer Operands
	Arithmetic with an Integer and a Decimal Operand
	Arithmetic with Two Decimal Operands
	Decimal Addition and Subtraction
	Decimal Multiplication
	Decimal Division

	Arithmetic with Floating-Point Operands
	Datetime Operands and Durations
	Datetime Arithmetic in SQL
	Date Arithmetic
	Time Arithmetic
	Timestamp Arithmetic

	Precedence of Operations
	CASE Expressions

	Predicates
	Basic Predicate
	Quantified Predicate
	BETWEEN Predicate
	EXISTS Predicate
	IN Predicate
	LIKE Predicate
	Evaluating the Predicate
	The Pattern String
	The Optional ESCAPE Clause
	The Pattern
	Examples

	NULL Predicate

	Search Conditions
	Options Affecting SQL
	Precompiler Options for Dynamic Statements
	Decimal Point Representation
	Apostrophes and Quotation Marks in String Delimiters
	Katakana Characters for EBCDIC
	Mixed Data in Character Strings
	Formatting of Datetime Strings
	SQL Standard Language
	Positioned Updates of Columns


	Chapter 4.  Functions
	Column Functions
	AVG
	COUNT
	MAX
	MIN
	SUM

	Scalar Functions
	CHAR
	COALESCE
	DATE
	DAY
	DAYS
	DECIMAL
	DIGITS
	FLOAT
	HEX
	HOUR
	INTEGER
	LENGTH
	MICROSECOND
	MINUTE
	MONTH
	NULLIF
	SECOND
	STRIP
	SUBSTR
	TIME
	TIMESTAMP
	VALUE
	VARGRAPHIC
	YEAR


	Chapter 5.  Queries
	Authorization
	subselect
	select-clause
	from-clause
	table-spec
	joined-table
	join-condition
	join-expression
	Join Operations

	where-clause
	group-by-clause
	having-clause
	Examples of subselects

	fullselect
	Data Type Rules for UNION and the VALUE Function
	Character Conversion in Unions and Concatenations
	Selecting the Result CCSID
	Examples of fullselects

	select-statement
	order-by-clause
	update-clause
	read-only-clause
	optimize-for-clause
	with-clause
	Examples of select statements


	Chapter 6.  Statements
	How SQL Statements Are Invoked
	Embedding a Statement in an Application Program
	Dynamic Preparation and Execution
	Static Invocation of a SELECT Statement
	Dynamic Invocation of a SELECT Statement
	Interactive Invocation
	Checking the Execution of SQL Statements
	SQLCODE
	SQLSTATE

	ALLOCATE CURSOR
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	ALTER DATABASE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	ALTER INDEX
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	ALTER STOGROUP
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	ALTER TABLE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	ALTER TABLESPACE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	ASSOCIATE LOCATORS
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	BEGIN DECLARE SECTION
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	CALL
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	CLOSE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	COMMENT ON
	Invocation
	Authorization
	Syntax
	Description
	Examples

	COMMIT
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	CONNECT
	CONNECT (Type 1) and CONNECT (Type 2) Differences
	When an Application Process Has a Current Server
	Establishing a Different Server

	CONNECT (Type 1)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	CONNECT (Type 2)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	CREATE ALIAS
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	CREATE DATABASE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	CREATE GLOBAL TEMPORARY TABLE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	CREATE INDEX
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	CREATE PROCEDURE (SQL procedure)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	CREATE STOGROUP
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	CREATE SYNONYM
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	CREATE TABLE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	CREATE TABLESPACE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	CREATE VIEW
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	DECLARE CURSOR
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	DECLARE STATEMENT
	Invocation
	Authorization
	Syntax
	Description
	Example

	DECLARE TABLE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	DELETE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	DESCRIBE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	DESCRIBE CURSOR
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	DESCRIBE INPUT
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	DESCRIBE PROCEDURE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	DROP
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	END DECLARE SECTION
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	EXECUTE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	EXECUTE IMMEDIATE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	EXPLAIN
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	FETCH
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	GRANT
	Invocation
	Authorization
	Syntax
	Description
	Notes

	GRANT (Collection Privileges)
	Syntax
	Description
	Example

	GRANT (Database Privileges)
	Syntax
	Description
	Examples

	GRANT (Package Privileges)
	Syntax
	Description
	Notes
	Examples

	GRANT (Plan Privileges)
	Syntax
	Description
	Examples

	GRANT (System Privileges)
	Syntax
	Description
	Examples

	GRANT (Table or View Privileges)
	Syntax
	Description
	Notes
	Examples

	GRANT (Use Privileges)
	Syntax
	Description
	Notes
	Examples

	INCLUDE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	INSERT
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	LABEL ON
	Invocation
	Authorization
	Syntax
	Description
	Examples

	LOCK TABLE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	OPEN
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	PREPARE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	RELEASE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	RENAME
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	REVOKE
	Invocation
	Authorization
	Syntax
	Description
	Notes

	REVOKE (Collection Privileges)
	Syntax
	Description
	Example

	REVOKE (Database Privileges)
	Syntax
	Description
	Examples

	REVOKE (Package Privileges)
	Syntax
	Description
	Example

	REVOKE (Plan Privileges)
	Syntax
	Description
	Examples

	REVOKE (System Privileges)
	Syntax
	Description
	Examples

	REVOKE (Table or View Privileges)
	Syntax
	Description
	Notes
	Examples

	REVOKE (Use Privileges)
	Syntax
	Description
	Notes
	Examples

	ROLLBACK
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	SELECT INTO
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	SET CONNECTION
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	SET CURRENT DEGREE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	SET CURRENT PACKAGESET
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	SET CURRENT PRECISION
	Invocation
	Authorization
	Syntax
	Description
	Example

	SET CURRENT RULES
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	SET CURRENT SQLID
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	SET host-variable
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	UPDATE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	WHENEVER
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples


	Chapter 7.  SQL procedure statements
	Procedure body
	Syntax
	Notes

	Assignment statement
	Syntax
	Description
	Notes
	Examples

	CASE statement
	Syntax
	Description
	Notes
	Examples

	Compound statement
	Syntax
	Description
	Notes
	Examples

	IF statement
	Syntax
	Description
	Examples

	GET DIAGNOSTICS statement
	Syntax
	Description
	Notes
	Examples

	GOTO statement
	Syntax
	Description
	Notes
	Examples

	LEAVE statement
	Syntax
	Description
	Notes
	Examples

	LOOP statement
	Syntax
	Description
	Notes
	Examples

	REPEAT statement
	Syntax
	Description
	Notes
	Examples

	WHILE statement
	Syntax
	Description
	Notes
	Examples

	SQL procedure statement
	Syntax
	Notes


	Appendix A.  Limits in DB2 for OS/390
	Appendix B.  Characteristics of SQL Statements in DB2 for OS/390
	Actions Allowed on SQL Statements
	SQL statements allowed in SQL procedures

	Appendix C.  SQLCA and SQLDA
	SQL Communication Area (SQLCA)
	Description of Fields
	The Included SQLCA
	The REXX SQLCA

	SQL Descriptor Area (SQLDA)
	Field Descriptions
	Field Descriptions in an Occurrence of SQLVAR
	SQLTYPE and SQLLEN
	SQLDATA
	The Included SQLDA
	Identifying an SQLDA in C
	The REXX SQLDA


	Appendix D.  DB2 Catalog Tables
	Table Spaces and Indexes
	SQL Statements Allowed on the Catalog
	Reorganizing the Catalog

	New and Changed Catalog Tables
	SYSIBM.IPNAMES Table
	SYSIBM.LOCATIONS Table
	SYSIBM.LULIST Table
	SYSIBM.LUMODES Table
	SYSIBM.LUNAMES Table
	SYSIBM.MODESELECT Table
	SYSIBM.SYSCHECKDEP Table
	SYSIBM.SYSCHECKS Table
	SYSIBM.SYSCOLAUTH Table
	SYSIBM.SYSCOLDIST Table
	SYSIBM.SYSCOLDISTSTATS Table
	SYSIBM.SYSCOLSTATS Table
	SYSIBM.SYSCOLUMNS Table
	SYSIBM.SYSCOPY Table
	SYSIBM.SYSDATABASE Table
	SYSIBM.SYSDBAUTH Table
	SYSIBM.SYSDBRM Table
	SYSIBM.SYSDUMMY1 Table
	SYSIBM.SYSFIELDS Table
	SYSIBM.SYSFOREIGNKEYS Table
	SYSIBM.SYSINDEXES Table
	SYSIBM.SYSINDEXPART Table
	SYSIBM.SYSINDEXSTATS Table
	SYSIBM.SYSKEYS Table
	SYSIBM.SYSPACKAGE Table
	SYSIBM.SYSPACKAUTH Table
	SYSIBM.SYSPACKDEP Table
	SYSIBM.SYSPACKLIST Table
	SYSIBM.SYSPACKSTMT Table
	SYSIBM.SYSPKSYSTEM Table
	SYSIBM.SYSPLAN Table
	SYSIBM.SYSPLANAUTH Table
	SYSIBM.SYSPLANDEP Table
	SYSIBM.SYSPLSYSTEM Table
	SYSIBM.SYSPROCEDURES Table
	SYSIBM.SYSRELS Table
	SYSIBM.SYSRESAUTH Table
	SYSIBM.SYSSTMT Table
	SYSIBM.SYSSTOGROUP Table
	SYSIBM.SYSSTRINGS Table
	SYSIBM.SYSSYNONYMS Table
	SYSIBM.SYSTABAUTH Table
	SYSIBM.SYSTABLEPART Table
	SYSIBM.SYSTABLES Table
	SYSIBM.SYSTABLESPACE Table
	SYSIBM.SYSTABSTATS Table
	SYSIBM.SYSUSERAUTH Table
	SYSIBM.SYSVIEWDEP Table
	SYSIBM.SYSVIEWS Table
	SYSIBM.SYSVOLUMES Table
	SYSIBM.USERNAMES Table

	Appendix E.  SQL Reserved Words
	Appendix F.  DB2 Objects Required by the DB2 for OS/390 SQL Procedure Processor
	Table Spaces and Indexes
	The SQL Procedure Source Table (SYSIBM.SYSPSM)
	The SQL Procedure Options Table (SYSIBM.SYSPSMOPTS)
	Temporary Table SYSIBM.SYSPSMOUT

	Glossary
	Bibliography
	Index

