
DB2 Universal Database for OS/390 IBM

Release Planning Guide
Version 6

 
 
 
 SC26-9013-02



  
 

 Note! 

Before using this information and the product it supports, be sure to read the general information under
Appendix H, “Notices” on page 313.

Third Edition, Softcopy Only (April 2000)

This edition applies to Version 6 of DB2 Universal Database Server for OS/390, 5645-DB2, and to any subsequent releases until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed version by vertical
bars. Additional changes made to this softcopy version of the manual since the hardcopy manual was published are indicated by the
hash (#) symbol in the left-hand margin. Editorial changes that have no technical significance are not noted.

 Copyright International Business Machines Corporation 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.



  
 

 Contents

Chapter 1. Introduction to this book and the DB2 for OS/390 library . .  1
Who should read this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
How this book is organized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

# Product terminology and citations . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
How to read the syntax diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
How to use the DB2 library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

| How to obtain DB2 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
| DB2 on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
| DB2 publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
| DB2 education  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
| How to order the DB2 library . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
| Summary of changes to DB2 UDB for OS/390 Version 6 . . . . . . . . . . . . . .  7
| Capacity improvements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
| Performance and availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
| Data sharing enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
| User productivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
| Network computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
| Object-relational extensions and active data . . . . . . . . . . . . . . . . . . .  10
| More function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
| Features of DB2 for OS/390 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
| Migration considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2. Capacity improvements  . . . . . . . . . . . . . . . . . . . . . . . . 13
16-terabyte tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Terminology changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Page set types and new storage limits . . . . . . . . . . . . . . . . . . . . . .  14
Creating EA-enabled table spaces and index spaces . . . . . . . . . . . . . .  14
Changes to utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Catalog changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

| Many more open data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Larger secondary quantity value . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
More pieces for nonpartitioning indexes . . . . . . . . . . . . . . . . . . . . . . .  15
Increased total number of extents . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Buffer pools in data spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Total storage in the ssnmDBM1 address space . . . . . . . . . . . . . . . . .  17
Dynamic statement cache in a data space . . . . . . . . . . . . . . . . . . . . .  17

Chapter 3. Improved performance and availability . . . . . . . . . . . . . . .  19
Rebalancing data in a partitioned table space . . . . . . . . . . . . . . . . . . . .  19

Why rebalance data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
The process: ALTER INDEX then REORG . . . . . . . . . . . . . . . . . . . .  20
REORG-pending status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Recovery guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Altering variable length columns . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Changing the limit key value . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Immediate index access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

| Dynamically change checkpoint frequency . . . . . . . . . . . . . . . . . . . . . .  24
| Why change the checkpoint frequency? . . . . . . . . . . . . . . . . . . . . .  24
| Using the SET LOG command . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
| Displaying the current LOGLOAD value . . . . . . . . . . . . . . . . . . . . . .  25

 Copyright IBM Corp. 1999  iii



  
 

Faster restart and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Postponing backout processing at restart . . . . . . . . . . . . . . . . . . . . .  26
Fast log apply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

| Faster log read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Faster, more parallel utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Faster backup and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Parallel index build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Inline statistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Faster discard and unload during REORG . . . . . . . . . . . . . . . . . . . .  33
Decreased elapsed and processor time for online REORG . . . . . . . . . .  34
Avoid delete and redefine of data sets . . . . . . . . . . . . . . . . . . . . . .  34

Query performance and optimization enhancements . . . . . . . . . . . . . . . .  35
Query parallelism enhancements . . . . . . . . . . . . . . . . . . . . . . . . .  35
Improvements to join processing . . . . . . . . . . . . . . . . . . . . . . . . . .  36
Other query optimization enhancements . . . . . . . . . . . . . . . . . . . . .  41

Data sharing enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Continuous availability with group buffer pool duplexing . . . . . . . . . . . .  43
Faster checkpointing of group buffer pools . . . . . . . . . . . . . . . . . . . .  50
Reduced P-lock overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
More caching options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

More performance and availability improvements . . . . . . . . . . . . . . . . . .  53
Direct row access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

# Declared temporary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Increased flexibility with 8-KB and 16-KB page sizes . . . . . . . . . . . . . .  58
Preserving a prior access path . . . . . . . . . . . . . . . . . . . . . . . . . . .  59
More buffer pool tuning options . . . . . . . . . . . . . . . . . . . . . . . . . .  61
Control of space map copy maintenance . . . . . . . . . . . . . . . . . . . . .  63
Reduced DBD logging for CREATE, ALTER, DROP . . . . . . . . . . . . . .  63
Improved performance for DROP . . . . . . . . . . . . . . . . . . . . . . . . .  63
Larger log buffer sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

| Authorization caching for stored procedures and user-defined functions . . .  64
More flexibility when altering space allocations . . . . . . . . . . . . . . . . .  64

# Deferred allocation of data sets . . . . . . . . . . . . . . . . . . . . . . . . . .  64
More command concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

| Increased concurrency for RRSAF and IMS transactions . . . . . . . . . . . .  64

Chapter 4. User productivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Built-in function extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
New ROWID data type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

Characteristics of the ROWID data type . . . . . . . . . . . . . . . . . . . . .  68
Defining a ROWID column . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68
Using a ROWID column as the partitioning key . . . . . . . . . . . . . . . . .  69
Casting to a ROWID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Inserting into a ROWID column . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Declaring host variables for ROWID columns . . . . . . . . . . . . . . . . . .  71

# DB2 REXX Language Support . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
More flexibility and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

Predictive governing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Statement cost estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79
Set default buffer pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
More information available for monitoring DB2 . . . . . . . . . . . . . . . . . .  83

IRLM enhancements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Display IRLM coexistence information . . . . . . . . . . . . . . . . . . . . . . .  85
Option to prevent disconnecting IRLM on DB2 shutdown . . . . . . . . . . .  86

iv Release Planning Guide  



  
 

More control over IRLM storage . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Support for automatic restart manager . . . . . . . . . . . . . . . . . . . . . .  89
Improved serviceability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

More user productivity enhancements . . . . . . . . . . . . . . . . . . . . . . . .  91
DSNTEP2 available in object form . . . . . . . . . . . . . . . . . . . . . . . . .  91

| Customized DB2I defaults can be migrated . . . . . . . . . . . . . . . . . . .  91
# Numeric data type extensions for identity columns . . . . . . . . . . . . . . .  91
# Savepoints to undo selected changes . . . . . . . . . . . . . . . . . . . . . . .  93

More tables allowed in SQL statements . . . . . . . . . . . . . . . . . . . . . .  94
SQL extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
More character conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Utility usability and functionality enhancements . . . . . . . . . . . . . . . . .  95
Enhanced database commands . . . . . . . . . . . . . . . . . . . . . . . . . .  97
Support for multi-volume DASD archive log data sets . . . . . . . . . . . . .  98

| Remote site recovery copy flexibility . . . . . . . . . . . . . . . . . . . . . . . .  98
| Better retention of installation values across migrations . . . . . . . . . . . .  98
| Better diagnostic information for commands executed through IFI . . . . . .  99

Chapter 5. Improved network computing . . . . . . . . . . . . . . . . . . . .  101
Java enablement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Better performance for Java applications with SQLJ . . . . . . . . . . . . . .  101
JDBC application support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

DRDA support for three-part names . . . . . . . . . . . . . . . . . . . . . . . . .  103
Benefits of DRDA access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
Benefits of using three-part names for DRDA access . . . . . . . . . . . . . .  103
Restrictions on DRDA access programs that use three-part names . . . . .  104
Preparing applications with three-part names to use DRDA access . . . . .  105
Moving from DB2 private protocol access to DRDA access . . . . . . . . . .  106

# Choosing a default database protocol . . . . . . . . . . . . . . . . . . . . . . .  107
Stored procedure enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

Creating and modifying stored procedure definitions . . . . . . . . . . . . . .  107
Changes to stored procedure security . . . . . . . . . . . . . . . . . . . . . . .  109
Changes to stored procedure invocation . . . . . . . . . . . . . . . . . . . . .  110

# Using SQL procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
Improved data transfer with OPTIMIZE FOR n ROWS . . . . . . . . . . . . . . .  115
DB2 ODBC enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118

| Faster ODBC catalog queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Better performance for dynamic SQL applications . . . . . . . . . . . . . . . . .  119
Improvements for dynamically prepared SQL statements . . . . . . . . . . . . .  119
DB2 database connection pooling . . . . . . . . . . . . . . . . . . . . . . . . . .  120

Using type 2 inactive threads . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Determining if a thread can become inactive . . . . . . . . . . . . . . . . . . .  121
Enabling threads to become inactive . . . . . . . . . . . . . . . . . . . . . . .  121

Chapter 6. Object-relational extensions and active data . . . . . . . . . . .  123
Working with large objects (LOBs) . . . . . . . . . . . . . . . . . . . . . . . . . .  124
Introduction to defining LOBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
Declaring LOB host variables and LOB locators . . . . . . . . . . . . . . . . . .  127
LOB materialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Using LOB locators to save storage . . . . . . . . . . . . . . . . . . . . . . . . .  132

Deferring evaluation of a LOB expression to improve performance . . . . . .  133
Indicator variables and LOB locators . . . . . . . . . . . . . . . . . . . . . . .  135

| Valid assignments for LOB locators . . . . . . . . . . . . . . . . . . . . . . . .  136
LOB system processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

  Contents v



  
 

Managing buffer pools for LOBs . . . . . . . . . . . . . . . . . . . . . . . . . .  136
Locking LOBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Recovering table spaces that contain LOBs . . . . . . . . . . . . . . . . . . .  141

Creating and using user-defined functions . . . . . . . . . . . . . . . . . . . . . .  143
Overview of user-defined function definition, implementation, and invocation  143
Defining a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . .  146
Implementing an external user-defined function . . . . . . . . . . . . . . . . .  150
Preparing a user-defined function for execution . . . . . . . . . . . . . . . . .  188

Invoking a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192
Syntax for user-defined function invocation . . . . . . . . . . . . . . . . . . . .  193
Ensuring that DB2 executes the intended user-defined function . . . . . . . .  193
Casting of user-defined function arguments . . . . . . . . . . . . . . . . . . .  199
What happens when a user-defined function abnormally terminates . . . . .  200
Other considerations for user-defined function invocation . . . . . . . . . . .  200

Creating and using distinct types . . . . . . . . . . . . . . . . . . . . . . . . . . .  202
Introduction to distinct types . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202
Creating a distinct type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202
Using distinct types in applications . . . . . . . . . . . . . . . . . . . . . . . .  203

Combining distinct types with user-defined functions and LOBs . . . . . . . . .  208
Using triggers for active data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

Example of creating and using a trigger . . . . . . . . . . . . . . . . . . . . .  212
Parts of a trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213
Invoking stored procedures and user-defined functions from triggers . . . . .  218
Trigger cascading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Ordering of multiple triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
Interactions among triggers and referential constraints . . . . . . . . . . . . .  221
Creating triggers to obtain consistent results . . . . . . . . . . . . . . . . . . .  223

| DB2 Extenders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Chapter 7. Features of DB2 UDB Server for OS/390 . . . . . . . . . . . . . .  227
| Control Center for DB2 UDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
| DB2 Stored Procedures Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228

DB2 Installer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
DB2 Visual Explain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
DB2 Estimator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Net.Data for OS/390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229
Query Management Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229
DataPropagator Relational  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
DB2 Performance Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230
DB2 Buffer Pool Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231
DB2 Administration Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231

Chapter 8. Planning for migration and fallback . . . . . . . . . . . . . . . . .  233
Migration considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Type 2 indexes are required . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233
Data set password protection is removed . . . . . . . . . . . . . . . . . . . . .  233
Shared read-only data is removed . . . . . . . . . . . . . . . . . . . . . . . . .  233

| Remove views on two catalog tables . . . . . . . . . . . . . . . . . . . . . . .  234
Private protocol function not enhanced . . . . . . . . . . . . . . . . . . . . . .  234

| More than 32 K databases are supported . . . . . . . . . . . . . . . . . . . .  234
Log buffer size increased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234
Consider enlarging BSDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234
Increase maximum number of data sets open . . . . . . . . . . . . . . . . . .  234

| Customized DB2I defaults can be migrated . . . . . . . . . . . . . . . . . . .  234

vi Release Planning Guide  



  
 

| DB2 online help reader not used . . . . . . . . . . . . . . . . . . . . . . . . . .  235
Stored procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

| ALTER TABLE changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236
Utility enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Work file database size calculations . . . . . . . . . . . . . . . . . . . . . . . .  236

# Changes to Subsystem parameters . . . . . . . . . . . . . . . . . . . . . . . .  236
Release incompatibilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Adjust application programs . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238
Examine all new and changed values for DB2I panels . . . . . . . . . . . . .  241
Changes to the RLST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
SYSIBM.SYSPROCEDURES no longer used . . . . . . . . . . . . . . . . . .  241
An 'X' plan in the PLAN_TABLE . . . . . . . . . . . . . . . . . . . . . . . . .  242
Limit backouts with system restarts . . . . . . . . . . . . . . . . . . . . . . . .  242
Changes to IFCID fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242

| DISPLAY BUFFERPOOL changes . . . . . . . . . . . . . . . . . . . . . . . .  242
| Index changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

ALTER INDEX syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243
RECOVER INDEX becomes REBUILD INDEX . . . . . . . . . . . . . . . . .  243
Work space formulas changed for utilities . . . . . . . . . . . . . . . . . . . .  243

| Support for up to 150000 connections . . . . . . . . . . . . . . . . . . . . . .  244
| Change to parameter in IRLMPROC startup procedure . . . . . . . . . . . .  244

Release coexistence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Coexistence in a distributed data environment . . . . . . . . . . . . . . . . . .  244
Coexistence in a data sharing environment . . . . . . . . . . . . . . . . . . .  244

Preparing for fallback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247
Frozen objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Other fallback considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249

| Installation changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Version 6 panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250

| SMP/E changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
# Changes to installation jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
| Changes to sample jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252

Appendix A. Changes to commands . . . . . . . . . . . . . . . . . . . . . . .  253
New commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Changed commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Appendix B. Changes to utilities . . . . . . . . . . . . . . . . . . . . . . . . .  261
New utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Changed utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Other utility changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268

Appendix C. Changes to SQL . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
New SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
Changed SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270
New built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279
Changed built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282
Other SQL language changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282

Appendix D. Catalog changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
New catalog tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285
Changed catalog tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  286
New indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Revised indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

  Contents vii



  
 

Appendix E. EXPLAIN table changes . . . . . . . . . . . . . . . . . . . . . . .  293
Format of the Version 6 PLAN_TABLE . . . . . . . . . . . . . . . . . . . . . . . .  293
Descriptions of new and changed columns . . . . . . . . . . . . . . . . . . . . .  294

Appendix F. New and changed IFCIDs . . . . . . . . . . . . . . . . . . . . . .  295
New IFCIDs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Changed IFCIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

| Appendix G. Prerequisites of Version 6 of DB2 for OS/390 . . . . . . . . .  301
DB2 for OS/390 Version 6 prerequisites . . . . . . . . . . . . . . . . . . . . . . .  301

Hardware requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Program requirements and optional programs . . . . . . . . . . . . . . . . . .  303
Virtual storage requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307

Prerequisites of features of DB2 for OS/390 Version 6 . . . . . . . . . . . . . .  308
DB2 Installer requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  308

# Visual Explain requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . .  308
DB2 Estimator requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309
Net.Data requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
QMF requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
DB2 Performance Monitor requirements . . . . . . . . . . . . . . . . . . . . .  310
Workstation-Based Analysis and Tuning . . . . . . . . . . . . . . . . . . . . .  311

Appendix H. Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Programming interface information . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

viii Release Planning Guide  



  
 

Chapter 1. Introduction to this book and the DB2 for
OS/390 library

DB2 Release Guide is intended to help you plan for Version 6 of the licensed
program DB2 for OS/390. This introduction describes more about the book, its
intended users, and information about how to use the DB2 library for Version 6.

Who should read this book
This book is intended for all users of DB2 including application programmers,
database administrators, and system programmers. It assumes that the user is
familiar with Version 5.

How this book is organized
Each chapter in this book contains a grouping of functional enhancements that are
new for DB2 Version 6. Chapters 2 through 6 introduce and describe how to use
each enhancement:

� “Chapter 2. Capacity improvements” on page 13
� “Chapter 3. Improved performance and availability” on page 19
� “Chapter 4. User productivity” on page 67
� “Chapter 5. Improved network computing” on page 101
� “Chapter 6. Object-relational extensions and active data” on page 123

Information about the optional features that come with DB2 for OS/390 is included
in “Chapter 7. Features of DB2 UDB Server for OS/390” on page 227.

Information about migration and fallback is included in “Chapter 8. Planning for
migration and fallback” on page 233.

The appendixes contain the following information:

� Appendix A, “Changes to commands” on page 253
� Appendix B, “Changes to utilities” on page 261
� Appendix C, “Changes to SQL” on page 269
� Appendix D, “Catalog changes” on page 285
� Appendix E, “EXPLAIN table changes” on page 293
� Appendix F, “New and changed IFCIDs” on page 295
� Appendix G, “Prerequisites of Version 6 of DB2 for OS/390” on page 301
� Appendix H, “Notices” on page 313

Some of the functions described in this book are available with Version 5 as
functional APARs. When this is the case, the APAR number is identified in the
description of those functions.

 Copyright IBM Corp. 1999  1



  
 

# Product terminology and citations
In this book, DB2 Universal Database Server for OS/390 is referred to as "DB2 for
OS/390." In cases where the context makes the meaning clear, DB2 for OS/390 is
referred to as "DB2." When this book refers to other books in this library, a short
title is used. (For example, "See DB2 SQL Reference" is a citation to IBM
DATABASE 2 Universal Database Server for OS/390 SQL Reference.)

References in this book to "DB2 UDB" relate to the DB2 Universal Database
product that is available on the AIX, OS/2, and Windows NT operating
systems. When this book refers to books about the DB2 UDB product, the citation
includes the complete title and order number.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2
subsystem.

C and C language
Represent the C programming language.

CICS
Represents CICS/ESA and CICS Transaction Server for OS/390 Release
1.

IMS Represents IMS/ESA.

MVS Represents the MVS element of OS/390.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book:

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Required items appear on the horizontal line (the main path). 

��──required_item────────────────────────────────────────────────────��

� Optional items appear below the main path. 

��─ ─required_item─ ──┬ ┬─────────────── ────────────────────────────────��
 └ ┘─optional_item─

2 Release Planning Guide  



  
 

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability. 

 ┌ ┐─optional_item─
��─ ─required_item─ ──┴ ┴─────────────── ────────────────────────────────��

� If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path. 

��─ ─required_item─ ──┬ ┬─required_choice1─ ─────────────────────────────��
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the
main path. 

��─ ─required_item─ ──┬ ┬────────────────── ─────────────────────────────��
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

If one of the items is the default, it appears above the main path and the
remaining choices are shown below. 

 ┌ ┐─default_choice──
��─ ─required_item─ ──┼ ┼───────────────── ──────────────────────────────��
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

� An arrow returning to the left, above the main line, indicates an item that can
be repeated. 

 ┌ ┐───────────────────
��─ ─required_item─ ───

�
┴─repeatable_item─ ──────────────────────────────��

If the repeat arrow contains a comma, you must separate repeated items with a
comma. 

 ┌ ┐─,───────────────
��─ ─required_item─ ───

�
┴─repeatable_item─ ──────────────────────────────��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

� Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example,
column-name). They represent user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

How to use the DB2 library
Titles of books in the library begin with DB2 Universal Database for OS/390 Version
6. However, references from one book in the library to another are shortened and
do not include the product name, version, and release. Instead, they point directly
to the section that holds the information. For a complete list of books in the library,
and the sections in each book, see the bibliography at the back of this book.

  Chapter 1. Introduction to this book and the DB2 for OS/390 library 3



  
 

New Book in Version 6: DB2 ODBC Guide and Reference is new in Version 6. It
describes how to write applications that use DB2 ODBC to access DB2 servers,
and how to write applications that use Open Database Connectivity (ODBC) to
access DB2 servers.

Throughout the library, the DB2 for OS/390 licensed program and a particular DB2
for MVS/ESA subsystem are each referred to as “DB2.” In each case, the context
makes the meaning clear.

The most rewarding task associated with a database management system is asking
questions of it and getting answers, the task called end use. Other tasks are also
necessary—defining the parameters of the system, putting the data in place, and so
on. The tasks associated with DB2 are grouped into the following major categories
(but supplemental information relating to all of the below tasks for new releases of
DB2 can be found in this book):

Installation: If you are involved with DB2 only to install the system, DB2
Installation Guide might be all you need.

If you will be using data sharing then you also need DB2 Data Sharing: Planning
and Administration, which describes installation considerations for data sharing.

End use: End users issue SQL statements to retrieve data. They can also insert,
update, or delete data, with SQL statements. They might need an introduction to
SQL, detailed instructions for using SPUFI, and an alphabetized reference to the
types of SQL statements. This information is found in DB2 Application
Programming and SQL Guide and DB2 SQL Reference.

End users can also issue SQL statements through the Query Management Facility
(QMF) or some other program, and the library for that program might provide all
the instruction or reference material they need. For a list of the titles in the QMF
library, see the bibliography at the end of this book.

Application Programming: Some users access DB2 without knowing it, using
programs that contain SQL statements. DB2 application programmers write those
programs. Because they write SQL statements, they need DB2 Application
Programming and SQL Guide, DB2 SQL Reference, and DB2 ODBC Guide and
Reference just as end users do.

Application programmers also need instructions on many other topics:

� How to transfer data between DB2 and a host program—written in COBOL, C,
or FORTRAN, for example

� How to prepare to compile a program that embeds SQL statements

� How to process data from two systems simultaneously, say DB2 and IMS or
DB2 and CICS

� How to write distributed applications across platforms

� How to write applications that use DB2 ODBC to access DB2 servers

� How to write applications that use Open Database Connectivity (ODBC) to
access DB2 servers

� How to write applications in the Java programming language to access DB2
servers

4 Release Planning Guide  



  
 

The material needed for writing a host program containing SQL is in DB2
Application Programming and SQL Guide and in DB2 Application Programming
Guide and Reference for Java. The material needed for writing applications that
use DB2 ODBC or ODBC to access DB2 servers is in DB2 ODBC Guide and
Reference. For handling errors, see DB2 Messages and Codes .

Information about writing applications across platforms can be found in Distributed
Relational Database Architecture: Application Programming Guide.

System and Database Administration: Administration covers almost everything
else. DB2 Administration Guide divides those tasks among the following sections:

� Section 2 (Volume 1) of DB2 Administration Guide discusses the decisions that
must be made when designing a database and tells how to bring the design
into being by creating DB2 objects, loading data, and adjusting to changes.

� Section 3 (Volume 1) of DB2 Administration Guide describes ways of controlling
access to the DB2 system and to data within DB2, to audit aspects of DB2
usage, and to answer other security and auditing concerns.

� Section 4 (Volume 1) of DB2 Administration Guide describes the steps in
normal day-to-day operation and discusses the steps one should take to
prepare for recovery in the event of some failure.

� Section 5 (Volume 2) of DB2 Administration Guide explains how to monitor the
performance of the DB2 system and its parts. It also lists things that can be
done to make some parts run faster.

In addition, the appendixes in DB2 Administration Guide contain valuable
information on DB2 sample tables, National Language Support (NLS), writing exit
routines, interpreting DB2 trace output, and character conversion for distributed
data.

If you are involved with DB2 only to design the database, or plan operational
procedures, you need DB2 Administration Guide. If you also want to carry out your
own plans by creating DB2 objects, granting privileges, running utility jobs, and so
on, then you also need:

� DB2 SQL Reference, which describes the SQL statements you use to create,
alter, and drop objects and grant and revoke privileges

� DB2 Utility Guide and Reference, which explains how to run utilities

� DB2 Command Reference, which explains how to run commands

If you will be using data sharing, then you need DB2 Data Sharing: Planning and
Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in
DB2 Messages and Codes, which lists messages and codes issued by DB2, with
explanations and suggested responses.

Diagnosis: Diagnosticians detect and describe errors in the DB2 program. They
might also recommend or apply a remedy. The documentation for this task is in
DB2 Diagnosis Guide and Reference and DB2 Messages and Codes.

  Chapter 1. Introduction to this book and the DB2 for OS/390 library 5



  
 

| How to obtain DB2 information

| DB2 on the Web
| Stay current with the latest information about DB2. View the DB2 home page on
| the World Wide Web. News items keep you informed about the latest
| enhancements to the product. Product announcements, press releases, fact sheets,
| and technical articles help you plan your database management strategy.

| You can view and search DB2 publications on the Web, or you can download and
| print many of the most current DB2 books. Follow links to other Web sites with
| more information about DB2 family and OS/390 solutions. Access DB2 on the Web
| at the following address:

|  http://www.ibm.com/software/db2os390

|  DB2 publications
| The DB2 publications for DB2 Universal Database Server for OS/390 are available
| in both hardcopy and softcopy format.

|  BookManager format
| Using online books on CD-ROM, you can read, search across books, print portions
| of the text, and make notes in these BookManager books. With the appropriate
| BookManager READ product or IBM Library Readers, you can view these books in
| the OS/390, VM, OS/2, DOS, AIX, and Windows environments. You can also
| view many of the DB2 BookManager books on the Web.

|  PDF format
| Many of the DB2 books are available in Portable Document Format (PDF) for
| viewing or printing from CD-ROM or the Web. Download the PDF books to your
| intranet for distribution throughout your enterprise.

|  CD-ROMs
| Books for Version 6 of DB2 Universal Database Server for OS/390 are available on
| CD-ROMs:

| � DB2 UDB for OS/390 Version 6 Licensed Online Book, LK3T-3519, containing
| DB2 UDB for OS/390 Version 6 Diagnosis Guide and Reference in
| BookManager format, for ordering with the product.

| � DB2 UDB Server for OS/390 Version 6 Online and PDF Library, SK3T-3518, a
| collection of books for the DB2 server in BookManager and PDF formats.

| Periodically, the books will be refreshed on subsequent editions of these
| CD-ROMs.

| The books for Version 6 of DB2 UDB Server for OS/390 are also available on the
| following collection kits that contain online books for many IBM products:

| � Online Library Omnibus Edition OS/390 Collection, SK2T-6700, in English

| � IBM Online Library MVS Collection Kit, SK88-8002, in Japanese, for viewing on
| DOS and Windows operating systems.

6 Release Planning Guide  



  
 

|  DB2 education
| IBM Education and Training offers a wide variety of classroom courses to help you
| quickly and efficiently gain DB2 expertise. Classes are scheduled in cities all over
| the world. You can find class information, by country, at the IBM Learning Services
| Web site:

| http://www.ibm.com/services/learning/

| For more information, including the current local schedule, please contact your IBM
| representative.

| Classes can also be taught at your location, at a time that suits your needs.
| Courses can even be customized to meet your exact requirements. The All-in-One
| Education and Training Catalog describes the DB2 curriculum in the United States.
| You can inquire about or enroll in these courses by calling 1-800-IBM-TEACH
| (1-800-426-8322).

| How to order the DB2 library
| You can order DB2 publications and CD-ROMs through your IBM representative or
| the IBM branch office serving your locality. If you are located within the United
| States or Canada, you can place your order by calling one of the toll-free numbers :

| � In the U.S., call 1-800-879-2755.
| � In Canada, call 1-800-565-1234.

| To order additional copies of licensed publications, specify the SOFTWARE option.
| To order additional publications or CD-ROMs, specify the PUBLICATIONS and
| SLSS option. Be prepared to give your customer number, the product number, and
| the feature code(s) or order numbers you want.

| Summary of changes to DB2 UDB for OS/390 Version 6
| DB2 UDB for OS/390 Version 6 delivers an enhanced relational database server
| solution for OS/390. This release focuses on greater capacity, performance
| improvements for utilities and queries, easier database management, more
| powerful network computing, and DB2 family compatibility with rich new
| object-oriented capability, triggers, and more built-in functions.

|  Capacity improvements
| 16-terabyte tables provide a significant increase to table capacity for partitioned
| and LOB table spaces and indexes, and for nonpartitioning indexes.

| Buffer pools in data spaces provide virtual storage constraint relief for the
| ssnmDBM1 address space, and data spaces increase the maximum amount of
| virtual buffer pool space allowed.

| Performance and availability
| Improved partition rebalancing lets you redistribute partitioned data with minimal
| impact to data availability. One REORG of a range of partitions both reorganizes
| and rebalances the partitions.

  Chapter 1. Introduction to this book and the DB2 for OS/390 library 7



  
 

| You can change checkpoint frequency dynamically using the new SET LOG
| command and initiate checkpoints any time while your subsystem remains
| available.

| Utilities that are faster, more parallel, easier to use:

| � Faster backup and recovery enables COPY and RECOVER to process a list
| of objects in parallel, and recover indexes and table spaces at the same time
| from image copies and the log.

| � Parallel index build reduces the elapsed time of LOAD and REORG jobs of
| table spaces, or partitions of table spaces, that have more than one index; the
| elapsed time of REBUILD INDEX jobs is also reduced.

| � Tests show decreased elapsed and processor time for online REORG.

| � Inline statistics embeds statistics collection into utility jobs, making table
| spaces available sooner.

| � You can determine when to run REORG by specifying threshold limits for
| relevant statistics from the DB2 catalog.

| Query performance enhancements include:

| � Query parallelism extensions for complex queries, such as outer joins and
| queries that use nonpartitioned tables

| � Improved workload balancing in a Parallel Sysplex that reduces elapsed
| time for a single query that is split across active DB2 members

| � Improved data transfer that lets you request multiple DRDA query blocks
| when performing high-volume operations

| � The ability to use an index to access predicates with noncorrelated IN
| subqueries

| � Faster query processing of queries that include join operations

| More performance and availability enhancements include:

| � Faster restart and recovery with the ability to postpone backout work during
| restart, and a faster log apply process

| � Increased flexibility with 8-KB and 16-KB page sizes for balancing different
| workload requirements more efficiently, and for controlling traffic to the coupling
| facility for some workloads

| � Direct-row access using the new ROWID data type to re-access a row directly
| without using the index or scanning the table

| � Ability to retain prior access path when you rebind a statement. You almost
| always get the same or a better access path. For the exceptional cases,
| Version 6 of DB2 for OS/390 lets you retain the access path from a prior BIND
| by using rows in an Explain table as input to optimization.

| � An increased log output buffer size (from 1000 4-KB to 100000 4-KB buffers)
| that improves log read and write performance

8 Release Planning Guide  



  
 

| Data sharing enhancements
| More caching options use the coupling facility to improve performance in a data
| sharing environment for some applications by writing changed pages directly to
| DASD.

| Control of space map copy maintenance with a new option avoids tracking of
| page changes, thereby optimizing performance of data sharing applications.

|  User productivity
| Predictive governing capabilities enhance the resource limit facility to help
| evaluate resource consumption for queries that run against large volumes of data.

| Statement cost estimation of processing resource that is needed for an SQL
| statement helps you to determine error and warning thresholds for governing, and
| to decide which statements need tuning.

| A default buffer pool for user data and indexes isolates user data from the DB2
| catalog and directory, and separating user data from system data helps you make
| better tuning decisions.

| More information available for monitoring DB2 includes data set I/O activity in
| traces, both for batch reporting and online monitors.

| Better integration of DB2 and Workload Manager delay reporting enables DB2
| to notify Workload Manager about the current state of a work request.

| More tables are allowed in SQL statements SELECT, UPDATE, INSERT, and
| DELETE, and in views. DB2 increases the limit from 15 to 225 tables. The number
| of tables and views in a subselect is not changed.

| Improved DB2 UDB family compatibility includes SQL extensions, such as:

| � A VALUES clause of INSERT that supports any expression
| � A new VALUES INTO statement

| Easier recovery management lets you achieve a single point of recovery and
| recover data at a remote site more easily.

| Enhanced database commands extend support for pattern-matching characters
| (*) and let you filter display output.

| You can easily process dynamic SQL in batch mode with the new object form of
| DSNTEP2 shipped with DB2 for OS/390.

|  Network computing
| SQLJ, the newest Java implementation for the OS/390 environment, supports SQL
| embedded in the Java programming language. With SQLJ, your Java programs
| benefit from the superior performance, manageability, and authorization available to
| static SQL, and they are easy to write.

| DRDA support for three-part names offers more functionality to applications
| using three-part names for remote access and improves the performance of
| client/server applications.

  Chapter 1. Introduction to this book and the DB2 for OS/390 library 9



  
 

| Stored procedure enhancements include the ability to create and modify stored
| procedure definitions, make nested calls for stored procedures and user-defined
| functions, and imbed CALL statements in application programs or dynamically
| invoke CALL statements from IBM's ODBC and CLI drivers.

| DB2 ODBC extensions include new and modified APIs and new data types to
| support the object-relational extensions.

| ODBC access to DB2 for OS/390 catalog data improves the performance of your
| ODBC catalog queries by redirecting them to shadow copies of DB2 catalog tables.

| Better performance for ODBC applications reduces the number of network
| messages that are exchanged when an application executes dynamic SQL.

| Improvements for dynamically prepared SQL statements include a new special
| register that you use to implicitly qualify names of distinct types, user-defined
| functions, and stored procedures.

| DDF connection pooling uses a new type of inactive thread that improves
| performance for large volumes of inbound DDF connections.

| Object-relational extensions and active data
| The object extensions of DB2 offer the benefits of object-oriented technology while
| increasing the strength of your relational database with an enriched set of data
| types and functions. Complementing these extensions is a powerful mechanism,
| triggers, that brings application logic into the database that governs the following
| new structures:

| � Large objects (LOBs) are well suited to represent large, complex structures in
| DB2 tables. Now you can make effective use of multimedia by storing objects
| such as complex documents, videos, images, and voice. Some key elements of
| LOB support include:

| – LOB data types for storing byte strings up to 2 GB in size

| – LOB locators for easily manipulating LOB values in manageable pieces

| – Auxiliary tables (that reside in LOB table spaces) for storing LOB values

| � Distinct types (which are sometimes called user-defined data types), like
| built-in data types, describe the data that is stored in columns of tables where
| the instances (or objects) of these data types are stored. They ensure that
| only those functions and operators that are explicitly defined on a distinct type
| can be applied to its instances.

| � User-defined functions, like built-in functions or operators, support
| manipulation of distinct type instances (and built-in data types) in SQL queries.

| � New and extended built-in functions improve the power of the SQL language
| with about 100 new built-in functions, extensions to existing functions, and
| sample user-defined functions.

| Triggers automatically execute a set of SQL statements whenever a specified
| event occurs. These statements validate and edit database changes, read and
| modify the database, and invoke functions that perform operations inside and
| outside the database.

10 Release Planning Guide  



  
 

| You can use the DB2 Extenders feature of DB2 for OS/390 to store and
| manipulate image, audio, video, and text objects. The extenders automatically
| capture and maintain object information and provide a rich body of APIs.

|  More function
| Some function and capability is available to both Version 6 and Version 5 users.
| Learn how to obtain these functions now, prior to migrating to Version 6, by visiting
| the following Web site:

| http://www.software.ibm.com/data/db2/os390/v5apar.html

| Features of DB2 for OS/390
| DB2 for OS/390 Version 6 offers a number of tools, which are optional features of
| the server, that are shipped to you automatically when you order DB2 Universal
| Database for OS/390:

| � DB2 Management Tools Package, which includes the following elements:

| – DB2 UDB Control Center
| – DB2 Stored Procedures Builder
|  – DB2 Installer
| – DB2 Visual Explain
|  – DB2 Estimator

| � Net.Data for OS/390

| You can install and use these features in a “Try and Buy” program for up to 90
| days without paying license charges:

| � Query Management Facility
|  � DB2 DataPropagator
| � DB2 Performance Monitor
| � DB2 Buffer Pool Tool
| � DB2 Administration Tool

|  Migration considerations
| Migration to Version 6 eliminates all type 1 indexes, shared read-only data, data set
| passwords, use of host variables without the colon, and RECOVER INDEX usage.
| You can migrate to Version 6 only from a Version 5 subsystem.

  Chapter 1. Introduction to this book and the DB2 for OS/390 library 11



  
 

12 Release Planning Guide  



  
 

 Chapter 2. Capacity improvements

DB2 continues to enhance its ability to serve your needs for very large databases
while recognizing that processor memory capacity is limited. The following
enhancements are described in this chapter:

 � “16-terabyte tables”
| � “Many more open data sets” on page 15

� “Larger secondary quantity value” on page 15
� “More pieces for nonpartitioning indexes” on page 15
� “Increased total number of extents” on page 16
� “Buffer pools in data spaces” on page 16
� “Dynamic statement cache in a data space” on page 17

 16-terabyte tables
Previously: The maximum amount of data for a single table space was 1 terabyte.

Now: In Version 6, one table space can hold 16 terabytes of data, either
compressed or uncompressed. The maximum number of partitions remains at 254,
but each partition can be up to 64 GB. This feature is available for partitioned table
spaces, partitioning indexes, nonpartitioning indexes, and LOB table spaces.

Requirements: The following requirements for this enhancement are:

| � DFSMS Version 1.5 (available in OS/390 Release 7, or subsequent releases)

DFSMS Version 1.5 supports extended addressability for the VSAM linear data
sets. This lets individual data sets grow to up to 64 GB in size.

� The data sets must be managed by SMS

For DB2-managed data sets, use '*' in the VOLUMES clause of the CREATE
STOGROUP statement to indicate that you want all data sets in this DB2
storage group to be managed by SMS.

For both user-managed and DB2–managed data sets, then, you use SMS
automatic class selection routines to assign data sets to a data class. See
“Creating EA-enabled table spaces and index spaces” on page 14 for more
information.

 Terminology changes
Because DFSMS's extended addressability function is necessary to create data
sets larger than 4 GB, the term for page sets that are enabled for extended
addressability is EA enabled. An EA-enabled table space or index space is one in
which you specify that the individual partitions (or pieces, for LOB table spaces)
can be greater than 4 GB. You do this with the new DSSIZE option of CREATE
TABLESPACE. DSSIZE stands for “data set size.”

For example, the following specification creates an EA-enabled table space:

DSSIZE 8G NUMPARTS 8

Another terminology change for Version 6 is with regard to the term LARGE. In
Version 5, LARGE referred to table spaces that were created with the LARGE
option. These table spaces have 5-byte RIDs. In Version 6, any table space that is

 Copyright IBM Corp. 1999  13



  
 

created with the new DSSIZE option has 5-byte RIDs, no matter how large the
table space becomes. In cases when this book discusses the RID size of a table
space, the context clarifies how that table space was created (either with the
LARGE or DSSIZE option).

Recommendation: To prepare for future enhancements, use the DSSIZE option
instead of LARGE.

Page set types and new storage limits
Table 1 summarizes the data set size limits for the different types of page sets.

Table 1. Data set or partition storage limits. Changes for Version 6 are indicated with italics

Page set type Data set units Not EA-enabled EA-enabled

Partitioned page set Partitions 254 of 4 GB 254 of 64 GB

Nonpartitioning index Pieces 254 of 4 GB 254 of 64 GB

LOB table space Pieces 254 of 4 GB 254 of 64 GB

Creating EA-enabled table spaces and index spaces
To use EA-enabled page sets, you must:

1. Use SMS to manage the data sets associated with the EA-enabled page sets.

2. Associate the data sets with a data class (an SMS construct) that specifies the
extended format and extended addressability options.

To make this association between data sets and the data class, use an
automatic class selection (ACS) routine to assign the DB2 data sets to the
relevant SMS data class. The ACS routine does the assignment based on the
data set name. No performance penalty occurs for having non-EA-enabled DB2
page sets assigned to this data class, too, if you would rather not have two
separate data classes for DB2.

For user-managed data sets, you can use ACS routines or specify the
appropriate data class on the DEFINE CLUSTER command when you create
the data set.

3. Create the partitioned or LOB table space with a DSSIZE of 8 GB or greater.
(The partitioning index for the partitioned table space takes on the EA-enabled
attribute from its associated table space.) See DB2 SQL Reference for more
information about the correct syntax.

After a page set is created, you cannot use the ALTER TABLESPACE
statement to change the DSSIZE. You must drop and re-create the table
space.

Also, you cannot change the data sets of the page set to turn off the extended
addressability or extended format attributes. If someone modifies the data class
to turn off the extended addressability or extended format attributes, DB2
issues an error message the next time it opens the page set.

14 Release Planning Guide  



  
 

Changes to utilities
The following utilities have a new DSSIZE option:

 � DSN1COMP
 � DSN1COPY
 � DSN1PRNT

REPAIR is also enhanced to be more usable and to handle the new data sets.

See Appendix B, “Changes to utilities” on page 261 for more information on the
syntax of these utilities.

 Catalog changes
To accommodate the very large table sizes, several new floating-point statistics
columns are added to the following catalog tables:

 � SYSTABLESPACE
 � SYSTABLEPART
 � SYSTABSTATS
 � SYSINDEXTATS

See Appendix D, “Catalog changes” on page 285 for more information about those
changes.

| Many more open data sets
| Previously: The maximum number of DB2 open data sets was 10000. For some
| installations, this was a limiting factor.

| Now: With OS/390 Version 2 Release 6 and with the enhancement included in
| Version 5 in APAR PQ18543, you can set your DB2 maximum open data set limit
| (DSMAX subsystem parameter) to a value up to 32767. (The practical limit might
| be less than 32727, depending on available below-the-line storage.)

Larger secondary quantity value
| The maximum value for secondary quantity (SECQTYI) is raised from 131068 KB

to 4 GB (4194304 KB).

More pieces for nonpartitioning indexes
Previously: The number of pieces for a nonpartitioning index was limited to 128.

Now: In Version 6, you can have up to 254 pieces, enhancing your ability to reduce
I/O contention on the nonpartitioning index. If the nonpartitioning index is defined
on an EA-enabled table space, each of the pieces can be up to 64 GB.

  Chapter 2. Capacity improvements 15



  
 

Increased total number of extents
With DFSMS Version 1.4, the total number of extents for data sets is increased
from 123 to 255. However, the number of extents for a data set in each volume is
still limited to 123.

Buffer pools in data spaces
An option to consider for some of your buffer pools is to have DB2 put them in data
spaces. Like hiperspaces, data spaces are data-only spaces; that is, no program
code can run in those areas. With data spaces, though, the system uses the same
resources to back data space virtual storage as it uses to back address space
virtual storage: a combination of central storage and expanded storage frames (if
available), and auxiliary storage slots. The system can move low-use pages of data
space storage to auxiliary storage and bring them in again. The paging activity for a
data space includes I/O between auxiliary-storage paging devices and central
storage.

Figure 1 shows DB2 using a data space for a virtual buffer pool.

DB2’s DBM1 address spacessnm Data space

DASD

Virtual buffer pool

Buffer page
.

.

.

Figure 1. Using a data space for DB2 virtual buffer pools

The main differences between buffer pools in data spaces and in hiperspace are:

� DB2 can put changed pages in data spaces. (Pages in hiperpools must be
unchanged.)

� DB2 can do I/O in and out of a data space but not a hiperpool.

� Less ssnmDBM1 storage is used for a data space virtual pool than is used for
a primary space virtual pool with its associated hiperpool.

16 Release Planning Guide  



  
 

� More potential storage is available. The limits for data spaces are much higher
than that for hiperpools. In addition, when OS/390 and processors are available
that have support for more than 2 GB of real memory per OS/390 image, buffer
pools in data spaces will let DB2 use real memory more efficiently.

Each data space can accommodate almost 2 GB of buffers and any single buffer
pool can span multiple data spaces. (However, no more than one buffer pool can
be in a data space.) The sum of all data space buffers cannot exceed 8 million.
This translates to the maximum sizes that are described in Table 2:

Table 2. Maximum amount of storage available for data space buffers

If all buffers are this size... The total amount of data space storage
is...

4 KB 32 GB

8 KB 64 GB

16 KB 128 GB

32 KB 256 GB

Total storage in the ssnmDBM1 address space
Each buffer in a data space requires about 128 bytes of storage in DB2's
ssnmDBM1 address space. DB2 does not allow more than 1.6 GB of storage in
ssnmDBM1 address space for virtual pool buffers and data space buffer control
storage. Message DSNB508I is issued if the amount of space exceeds 1.6 GB.

Advantages of data spaces
Until processors are available that contain more than 2 GB of real memory, the
main reason to choose data spaces is to relieve storage constraints in DB2's
ssnmDBM1 address space and to provide greater opportunities for caching very
large table spaces or indexes. If you are currently using hiperpools for
read-intensive workloads and have not reached any DB2 virtual storage limits, there
is no immediate benefit to moving to data spaces until large real memory becomes
available.

Dynamic statement cache in a data space
If you are constrained on storage in ssnmDBM1, and your installation uses dynamic
statement caching, move some EDM storage into a data space by specifying a
non-zero value for EDMPOOL DATA SPACE SIZE on installation panel DSNTIPC.

  Chapter 2. Capacity improvements 17



  
 

18 Release Planning Guide  



  
 

Chapter 3. Improved performance and availability

This chapter describes the changes that improve performance and availability in
Version 6. Those changes are described under the following categories:

� “Rebalancing data in a partitioned table space”
� “Altering variable length columns” on page 23

| � “Dynamically change checkpoint frequency” on page 24
| � “Faster restart and recovery” on page 25

� “Faster, more parallel utilities” on page 29
� “Query performance and optimization enhancements” on page 35
� “Data sharing enhancements” on page 43
� “More performance and availability improvements” on page 53

Rebalancing data in a partitioned table space
Previously: Any time you wanted to change the partitioning index to shift data from
one partition to another required that you go through the cumbersome process of
unloading the entire table space, dropping the table space, re-creating the table
space with new index definitions, views, aliases, and authorizations, and then
reloading the table space.

Not only is this process cumbersome, but it causes the data to be unavailable for
that entire time, and during the time you spend rebinding plans and packages and
regranting authorizations.

Now: In DB2 Version 6, you can rebalance data in a partitioned table space with
higher availability and with greater ease.

In this section:

� “Why rebalance data?”

� “The process: ALTER INDEX then REORG” on page 20

� “REORG-pending status” on page 21

� “Recovery guidelines” on page 22

Why rebalance data?
When data in a partitioned table space becomes skewed, performance can be
negatively affected because of contention for I/O and other resources. Or, maybe
you have a situation where some partitions are approaching their maximum size
while other partitions have excess space. Now, with a simple ALTER INDEX
statement and a REORG job, you can shift data among the partitions, reorganize
the affected partitions, and the data is balanced as you specify.

Strategic planning: Work this enhancement into your strategy for table spaces that
you want to grow over time. Define dummy partitions that have key values that fall
out of the range of any data for which you populate the partition, such as a year in
the far future. When needed, you can activate these dummy partitions by altering
the out-of-range partitioning key values to a value that causes DB2 to populate the
partitions.

 Copyright IBM Corp. 1999  19



  
 

Roll changes through: Another possible scenario is to change the limit key values
of all or most of the partitions. The old way to do this was to drop and re-create the
table space. In Version 6, you can roll the changes through the partitions one or
more at a time, making relatively small parts of the data unavailable at any given
time.

The process: ALTER INDEX then REORG
Assume data is skewed as that shown in Figure 2.

321

1929 1939 1949 19691959

644

�1970�1970

5

Figure 2. Skewed data, partition 4 is too large

To rebalance data:

1. Issue the ALTER INDEX statement, specifying the changes to the limit key
such as:

ALTER INDEX birthx PART 1 VALUES ('1935'),

PART 2 VALUES ('1943'),

PART 3 VALUES ('1953');

An additional enhancement to ALTER INDEX is to let you make changes to
more than one partition at a time, so you can change the limit key values of
some partitions and change other attributes of other partitions. See DB2 SQL
Reference for more information about the syntax.

DB2 puts the table space partitions you specified into a new status called
REORG pending. It also places the next higher partition in REORG pending.
Thus, after the above ALTER, partitions 1 through 4 are in REORG pending as
shown in Figure 3.

(1935) (1943) (1953) 1959 1969 �1970

65431 2

REORG pending

�1970

6

1969

5

1959

4

(1953)

3

(1943)

2

(1935)

1

REORG pending

Figure 3. Data partitions in REORG pending status

See “REORG-pending status” on page 21 for more information about the
REORG pending status.

DB2 also invalidates the plans and packages that reference the table space.
The first application access immediately following the ALTER INDEX statement
causes those plans and packages to be rebound. (However, if you have not yet
run REORG to remove the REORG pending status, any access to partitions
that are in REORG pending status receive a -904 SQLCODE.)

20 Release Planning Guide  



  
 

2. Reorganize the entire table space, or just the partitions that are affected by the
ALTER. Here is an example of specifying a range of partitions in REORG.
Notice also that the STATISTICS option is specified, to gather statistics on
those partitions. See DB2 Utility Guide and Reference for more information
about the REORG utility syntax.

REORG TABLESPACE PROD.EMP

 PART 1:4

 STATISTICS

 SORTDEVT SYSDA

 SHRLEVEL NONE

 COPYDDN SYSCOPY

 SORTDATA

A note about the last partition: When a table space is defined with the
LARGE or DSSIZE option, the high partitioning key is enforced. Therefore, if an
ALTER INDEX causes the last partition to be placed in REORG-pending status,
you must specify a discard data set and a punch data set for the REORG job.
The discard data set is used in case the ALTER causes existing values to be
invalid. The punch data set has generated LOAD statements that let you reload
the discarded data, if you want.

Catalog record: When REORG is complete, the REORG-pending status is
turned off, and DB2 writes a SYSCOPY record of a new subtype, A, to the
SYSIBM.SYSCOPY catalog table. This record includes the lowest
(LOWDSNUM) and highest (HIGHDSNUM) partition in the range that was
specified for the REORG job.

3. After the reorganization is complete, data is balanced, as shown in Figure 4.

6

�1970�19701969

5

1959

4

1953

3

1943

2

1935

1

Figure 4. Data is balanced again

4. Rebind plans and packages that are affected by the changed statistics, or
which were invalidated by the ALTER INDEX.

 REORG-pending status
REORG-pending status (REORP) is a restrictive status that is placed on the data
partitions (not the index) that are affected by the ALTER INDEX statement (that is,
the specified partition and the next higher partition). When data partitions are in
REORG-pending status, you cannot SELECT, INSERT, DELETE, or UPDATE data.
This restriction applies to any type of access to the data in those partitions,
including access through a partitioning or nonpartitioning index.

You can, however, drop the entire table space while any of its partitions are in
REORG-pending status.

The DISPLAY DATABASE command displays REORP status, as shown in DB2
Command Reference.

  Chapter 3. Improved performance and availability 21



  
 

REORG-pending and the last partition
If you change the partitioning key for the last partition, and if the table space is not
defined with LARGE or DSSIZE, DB2 does not place that last partition in
REORG-pending status.

If the table space is defined with LARGE or DSSIZE, DB2 puts the last partition in
REORG pending only if you lower the limit key of the last partition for an ascending
index), or if you raise the limit key for a descending index.

Removing REORG-pending status
To remove REORG pending status:

� Run REORG PART m:n with SHRLEVEL(NONE).

� Run REORG TABLESPACE SHRLEVEL(NONE).

� Run LOAD REPLACE on the table space.

� Drop the table space.

The START DATABASE command with ACCESS(FORCE) does not remove the
REORG-pending status.

 Recovery guidelines
The point at which you reset REORG-pending status is an important point in time
for recovery processing:

� Image copies that were taken before this point are not usable for recovery to
the current point in time.

Recommendation: Specify a COPYDDN when you run REORG after altering
the partitioning keys. This provides you with an image copy from which you can
recover.

� Log records cannot be applied across this point.

� Point-in-time recoveries prior to this point cause REORG pending to be turned
back on. By turning REORG-pending status on, you are forced to run REORG
to rebalance the partitions and rebuild the indexes.

Point-in-time recovery scenarios
This section describes some scenarios for point-in-time recovery.

Case 1: You try to do a point-in-time recovery of a single partition after you ran a
REORG to turn off the REORG-pending status.

In this case, DB2 puts all partitions that were specified in that REORG into
REORG-pending status (even those that were not originally in REORG-pending
status). For example:

22 Release Planning Guide  



  
 

Time 1: You specify ALTER INDEX PART 3 VALUES...

Time 2: DB2 puts parts 3 and 4 in REORG-pending status.

Time 3: You run REORG TABLESPACE PART (2:6) SHRLEVEL NONE.

Time 4: DB2 writes a SYSCOPY STYPE A record for partitions 2 through 6.

Time 5: You try to recover partition 5 to any time before time 4.

Time 6: DB2 issues message DSNU556I and return code 8 telling you

that you must run RECOVER on partitions 1 through 6

in the same RECOVER job.

Time 7: You recover partitions 1 through 6 to before time 4.

DB2 puts partitions 1 through 6 in REORG-pending status.

REPORT RECOVERY tells you which image copies will turn REORG pending
status back on.

Case 2: You try to recover a partition while it is in REORG-pending status to any
time before now.

For example:

Time 1: You specify ALTER INDEX PART 3 VALUES...

Time 2: DB2 puts parts 3 and 4 in REORG-pending status.

Time 3: You recover partition 3 to any time before now.

DB2 puts partition 3 in REORG pending. (Partition 4

is still in REORG-pending status, too.)

Case 3: You use RECOVER LOGONLY to a previous point in time.

You can use RECOVER LOGONLY after data has been redistributed among
partitions using REORG. If you are doing a point-in-time recovery, you must keep
the offline copies in sync with the SYSIBM.SYSCOPY records; in other words, do
not delete any SYSCOPY STYPE A records that might be needed during the
recovery. If you delete these records, DB2 does not know that it is to set
REORG-pending state on the relevant partitions.

Altering variable length columns
Now, you can increase the length of variable length character columns easily. The
ability to alter variable length columns is particularly useful during migration to a
new release when the need to store more data requires defining larger variable
length character columns on existing tables.

Previously, altering variable length columns required several steps:

� Creating a new table with the larger columns
� Moving data from the existing table to the new table
� Dropping the existing table
� Renaming the new table
� Recreating authorization and dependent objects

This enhancement eliminates these steps. Now you can change the definition of an
existing VARCHAR column using the new ALTER COLUMN clause of the ALTER
TABLE statement. See DB2 SQL Reference for more information.

| A VARCHAR column cannot be altered if it is used in a referential integrity
| relationship, a view, a temporary table, or a table that is defined with DATA

  Chapter 3. Improved performance and availability 23



  
 

| CAPTURE CHANGES. It also cannot be altered if it belongs to a table defined with
| a user exit (edit procedure, validation routine, field procedure, stored procedure, or
| user-defined function).

Changing the limit key value
Changing the length of a column of a partitioning index can affect partition
boundaries and the limit key of a partition. Now, the length of the limit key can
change. If the length of a column that is part of the limit key is altered, and the
changed column length affects the partition boundary, the limit key can change.
Changing the length of the limit key ensures that the partition boundary does not
change.

Changing the length of a column that is not part of the LIMITKEY value does not
affect the partition boundary. In this case, the length of the limit key does not
require a change.

Immediate index access
When the length of a column of an index key is increased, the index on the altered
table remains available, giving you immediate index access.

# The maximum number of distinct alters that increase the index key column is less
# than or equal to sixteen. If the maximum number of alters is exceeded, an error is
# returned (SQLCODE -148) and you must run a REORG INDEX, REORG
# TABLESPACE, or REBUILD INDEX. An alter is considered distinct if it is in a

different commit scope than the previous alter. For example, two distinct alters are
performed if you alter, commit, and then alter again. One distinct alter is performed
if you alter, alter again, and then commit. In this case, the second alter replaces the
first alter because it occurred in the same commit scope.

If the alter fails because the maximum number of alters has been exceeded and
the index is partitioned, then the utilities must be run on all the partitions before you
can run a new alter successfully.

| Dynamically change checkpoint frequency
| Previously: To change the system checkpoint frequency in DB2 required that you
| change the LOGLOAD subsystem parameter and then start and stop DB2. This
| limited your ability to have different checkpoint frequencies for different times of the
| day. Also, there was no easy way to cause a checkpoint to happen when you
| wanted it to happen.

| Now: A new SET LOG command lets you change the LOGLOAD subsystem
| parameter dynamically. You can initiate a checkpoint by specifying 0 for the
| LOGLOAD value.

| Why change the checkpoint frequency?
| DB2 bases its system checkpoint frequency on how many log records are written.
| At installation time, you tell DB2 that you want it to checkpoint every 'n' number of
| log records that are written. Restart time is directly affected by how many log
| records are written after the latest system checkpoint. The more log records, the
| longer the restart time.

24 Release Planning Guide  



  
 

| During prime shift, you might have a lower logging rate but fast restart is critical.
| Therefore, you might choose a lower LOGLOAD value (which means more frequent
| checkpoints) during prime shift. If you run batch jobs during the off-shift, the logging
| rate might increase significantly. If you keep the same LOGLOAD value, your
| system checkpoints more frequently. This frequent checkpointing might not be
| necessary for these jobs because restart time is not as critical during the off-shift.
| By altering the LOGLOAD value to a higher value, checkpoints happen less
| frequently.

| Preparing for disaster recovery: Another useful purpose for the SET LOG
| command is to initiate a system checkpoint. You might want to do this to create
| recovery logs that have a checkpoint taken at the time the system is quiesced. A
| typical scenario is:

| 1. Quiesce all DB2 activity.

| 2. Issue SET LOG with a LOGLOAD value of 0 to cause a system checkpoint to
| occur.

| 3. Issue ARCHIVE LOG and then ship the logs to the disaster recovery site.

| Using the SET LOG command
| To change the LOGLOAD subsystem parameter, enter a SET LOG command. For
| example:

| -DB1G SET LOG LOGLOAD(15OOOO)

| When you stop and restart DB2, the ssnmPARM value for LOGLOAD is used.

| To initiate a system checkpoint without changing your normal LOGLOAD value,
| enter the following command:

| -DB1G SET LOG LOGLOAD(O)

| For more information about using the SET LOG command, see DB2 Command
| Reference.

| Displaying the current LOGLOAD value
| A new command, DISPLAY LOG, lets you display the current value for LOGLOAD
| and information about offload service tasks. For more information about DISPLAY
| LOG, see DB2 Command Reference.

Faster restart and recovery
DB2 Version 6 makes more improvements in restart and recovery to make data
available quicker:

� “Postponing backout processing at restart” on page 26
� “Fast log apply” on page 29

| � “Faster log read” on page 29

  Chapter 3. Improved performance and availability 25



  
 

Postponing backout processing at restart
Previously: Restart times were sometimes inconsistent or very long, especially
when a restart entailed backing out a long-running unit of recovery, such as with an
errant batch job that does not issue interim commits. The DB2 subsystem was not
able to process new work until all restart work was completed, including the
sometimes lengthy backout process.

In a data sharing environment with spare capacity, you could reroute work to
another member of the group. However, if there was not enough capacity on the
other system, or if you were not able to switch workloads because your
configuration is such that there is a strong one-to-one relationship between a DB2
member and the workload that runs on that member, the same problem existed as
for a non-data-sharing system.

Now: You can tell DB2 to postpone some of the backout work traditionally
performed during system restart. By postponing long-running backout work, new
work can start more quickly.

In this section:

� “Enabling postponed backout processing”
� “How much processing is done at restart?”
� “Restart-pending and advisory restart-pending statuses” on page 27
� “Resolving postponed units of recovery” on page 27

Enabling postponed backout processing
Specify YES or AUTO on the LIMIT BACKOUT field of installation panel DSNTIPN.
By specifying YES or AUTO, DB2 limits backout processing as determined, in part,
by the value you specify for another field, BACKOUT DURATION.

The difference between YES and AUTO is that, with YES, you must use the new
RECOVER POSTPONED command to perform the rest of the backout work.

Recommendation: Choose AUTO. This option makes data available more quickly.

How much processing is done at restart?
The amount of backout work that is performed as part of restart when LIMIT
BACKOUT=YES or LIMIT BACKOUT=AUTO is determined by:

� The frequency of checkpoints.

� The value you specify for BACKOUT DURATION. This value is your indication
how many log records are to be read during restart's backward log scan. The
BACKOUT DURATION field is a multiplier of the value you specify for the
number of log records per checkpoint value (the CHECKPOINT FREQ field on
DSNTIPN).

Use this combination of values to ensure that short-duration URs are handled
during restart rather than being postponed.

� The characteristics of the inflight and inabort activity happening when the
system failed. In particular, backward processing of the log proceeds until both
of the following events occur:

– The oldest inflight or inabort UR with activity against the catalog or directory
is backed out.

26 Release Planning Guide  



  
 

– The requested number of log records are processed (as specified by
BACKOUT DURATION * CHECKPOINT FREQ).

Restart-pending and advisory restart-pending statuses
Between the completion of restart and automatic backout processing (or a
RECOVER POSTPONED command), you can submit new work, and DB2 can
process it. However, the objects for which backout work exists are not available to
applications.

Non-data-sharing:  The particular table spaces (or table space partitions) and
index spaces (or physical index space partitions) with backout work pending are put
in a new restrictive restart-pending (RESTP) status at the end of DB2 restart. An
object in RESTP status is unavailable to all but RECOVER POSTPONED and
RECOVER INDOUBT processing, or to the automatic backout processing that DB2
performs. The restart-pending status remains until backout processing is complete
(or until DB2 is cold started or conditionally restarted).

Data sharing:  In data sharing, no restrictive status is set. Access to data with
backout work pending is blocked by transaction locks that persist through restart.
The following retained locks persist through restart when postponed backout
processing is active:

� Retained transaction locks that are held on page sets or partitions for which
backout work has not been completed.

� Retained transaction locks that are held on tables, pages, rows, or LOBs of
those table spaces or partitions.

The retained transaction locks on any particular page set or partition are freed
when all URs using that page set or partition have completed their backout
processing. Until that happens, the page set or partition is placed in advisory
restart-pending (AREST) status.

Utilities are not restricted by the AREST status, but any write claims that are held
by postponed-abort URs on the objects in AREST status prevent draining utilities
from accessing that page set.

Resolving postponed units of recovery
If you specify LIMIT BACKOUT=AUTO, DB2 resolves all postponed-abort URs.

If you specify LIMIT BACKOUT = YES, you must use the RECOVER POSTPONED
command to resolve postponed units of recovery. The RECOVER POSTPONED
command completes postponed backout processing for all units of recovery; you
cannot specify a single unit of work for resolution. The format of the command is:

- RECOVER POSTPONED

Output from the RECOVER POSTPONED command consists of informational
messages. Figure 5 on page 28 shows that backout processing was performed
against two table space partitions and two index partitions:

  Chapter 3. Improved performance and availability 27



  
 

DSNV435I - RESOLUTION OF POSTPONED ABORT URS HAS BEEN SCHEDULED

DSN9O22I - DSNVRP 'RECOVER POSTPONED' NORMAL COMPLETION

DSNIO24I - DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDBO4 .I PART OOOOOOO4.

DSNIO24I - DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDBO4 .PT PART OOOOOOO4.

DSNIO24I - DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDBO4 .I PART OOOOOOO2.

DSNIO24I - DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDBO4 .PT PART OOOOOOO2.

Figure 5. Example output from RECOVER POSTPONED command

Identifying that postponed URs exist:  You can identify that pending-backout
work exists in several ways:

� Watch for DSNR007I or DSNI023I messages. DSNR007I is issued at the end
of restart's backward phase and indicates which URs (if any) will persist
through restart with backout work pending. DSNI023I is issued at the end of
restart and identifies the page sets and partitions that have backout work
pending on behalf of those URs.

� Issue a DISPLAY THREAD command with TYPE (POSTPONED):

DSNV4O1I ! DISPLAY THREAD REPORT FOLLOWS -

DSNV431I ! POSTPONED ABORT THREADS -

 COORDINATOR STATUS RESET URID AUTHID

 coordinator-name ABORT-P urid authid

 DISPLAY POSTPONED ABORT REPORT COMPLETE

 DSN9O22I ! DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

� Issue a DISPLAY DATABASE command with the RESTRICT option. The status
of any object with postponed UR backout processing is indicated as RESTP
(restart pending) in a non-data-sharing environment. In a data sharing
environment, the status is shown as AREST (advisory restart pending).

� Issue a DISPLAY GROUP command. The following statuses indicate that work
is pending for that member:

A I This active member has indoubt URs, URs for which backout work is
postponed, or both.

Q I This quiesced member has indoubt URs, URs for which backout work
is postponed, or both.

Cold starts and conditional restarts:  A cold start of DB2, or a conditional restart
of DB2 with BACKOUT=NO, ends all postponed abort URs. Those URs are not
resolved. Page sets are removed from restart pending (or advisory restart-pending)
status.

If in a data sharing environment, if same page set or partition is updated by two or
more DB2s, and each DB2 postponed the backout processing of that page set or
partition, a cold or conditional restart of one DB2 does not remove advisory
restart-pending status. AREST status is reset when all URs (from all DB2s) that
have interest on that page set or partition are resolved.

If a conditional restart truncates the log after the beginning of a postponed-abort
UR, that UR is ended without being resolved, and the restrictive restart-pending
status is removed.

28 Release Planning Guide  



  
 

Fast log apply
Previously: The log apply process was I/O-bound. As each log record was read,
the data page affected was read from a buffer or from DASD and changed as
required. Then the next log record was read and the process repeated. Also,
because many different log records can apply to the same data page, any page
might be read many times, unnecessarily increasing the number of I/O operations.

Now: DB2 speeds up the log-apply phase of recovery and restart by sorting log
records so that changes that are to be applied to the same page or same set of
pages are together. Then, using several log-apply tasks, DB2 can apply those
changes in parallel.

Enabling fast log apply: Provide storage for this process on the LOG APPLY
STORAGE field of panel DSNTIPL.

| Faster log read
| Previously: When reading the active log, DB2 read from only one log read buffer,
| which resulted in wait time when waiting for the log read buffer to refill.

| Now: DB2 uses a dual log-read buffer scheme to reduce (and often eliminate) the
| wait time when reading sequentially through the active logs. While DB2 is
| processing the log data in a primary log read buffer, another log read buffer is filled
| asynchronously. When the log-read requester has exhausted the current read
| buffer, the next buffer is available without having to wait for the I/O request.

| This method of reading the log is used whenever reading sequentially through the
| active logs in a forward direction. The following processes can benefit from this
| enhancement:

| � The current status rebuild and forward log recovery phase of restart

|  � RECOVER

| � REORG SHRLEVEL CHANGE

| � START DATABASE for error recovery

| � Log read functions that use IFI READS for IFCID 306 (such as DB2
| DataPropagator)

Faster, more parallel utilities
In addition to the availability enhancement described in “Rebalancing data in a
partitioned table space” on page 19, DB2 adds many performance enhancements
to decrease the elapsed time for the utilities, making data available for your
applications sooner. Utility enhancements described in this section are:

� “Faster backup and recovery” on page 30
� “Parallel index build” on page 32
� “Inline statistics” on page 33
� “Faster discard and unload during REORG” on page 33
� “Avoid delete and redefine of data sets” on page 34

Other utility enhancements focus on improved usability and increased functionality.
See “Utility usability and functionality enhancements” on page 95.

  Chapter 3. Improved performance and availability 29



  
 

|  Important 

| All performance results are based on tests that were done in a control
| environment with an early level of code. Results you might see will vary based
| on your actual system configuration and other factors.

Faster backup and recovery
With Version 6, DB2 is making significant gains in the area of backup and recovery
performance, thereby making your data available sooner. This section describes the
following enhancements:

� “Backup and recover indexes using image copies”
� “Copying a list of objects” on page 31
� “Copying and recovering in parallel” on page 31

The fast log apply function described in “Fast log apply” on page 29 also improves
the elapsed time of recovery processing as does “Parallel index build” on page 32.

Backup and recover indexes using image copies
Previously: Because you could not make image copies of indexes, you could
recover indexes only by rebuilding the indexes from existing data. This process
could be lengthy, especially if index recovery had to wait until the data was
recovered, making those indexes unavailable until the rebuild was complete.

Now: You can take a full image copy or a concurrent copy of an index, just as you
have always done for table spaces. To recover those indexes, you use the
RECOVER utility, which restores the image copy and applies log records.

Enabling indexes for image copies:  To enable an index to be copied using the
COPY utility, you must create it (or alter it) with COPY YES (the default is COPY
NO). Specifying COPY YES gives you two options: copying and recovering the
index, or rebuilding the index, as you did before this enhancement.

Catalog record: The COPY attribute of the index is stored in the COPY field of
SYSIBM.SYSINDEXES.

Recording recovery information in SYSIBM.SYSLGRNX and
SYSIBM.SYSCOPY: With COPY YES, DB2 updates SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX for the index to record recovery information. If you intend to
copy a lot of your indexes, you might want to increase the size of those table
spaces.

Pending statuses for index spaces:  DB2 can place an index that is defined with
COPY YES in a new advisory status called informational COPY pending (ICOPY)
status whenever the index cannot be recovered from the log. Because this is an
advisory status not a restrictive status, DB2 allows full read/write access to the
affected index. To reset the ICOPY status, take a full image copy of the affected
index space.

To find out if an index is in this ICOPY status, issue the DISPLAY DATABASE
command with the ADVISORY option.

Indexes defined with COPY YES might also be placed in check pending status
(CHKP) if the index might be out of synchronization with the associated table

30 Release Planning Guide  



  
 

space. CHKP status on an index is not reflected in the catalog. To find out if this
status exists, issue DISPLAY DATABASE with the RESTRICT option.

Managing index recovery:  REPORT is enhanced to let you request recovery
information for indexes. You can ask for indexes alone, or you can ask for indexes
for tables in the table space you specify on REPORT. See the REPORT utility in
DB2 Utility Guide and Reference for more information.

The MODIFY utility is enhanced to remove recovery information for indexes defined
with COPY YES whenever you remove such information from their associated table
spaces.

Downlevel detection for indexes:  Indexes defined with COPY YES are subject
to DB2's downlevel detection process. REPAIR is enhanced to let you repair the
level ID for indexes. See DB2 Utility Guide and Reference for information about the
REPAIR utility syntax.

Copying a list of objects
Previously: Unless you used the CONCURRENT keyword, you could copy only
one table space at a time.

Now: You can copy a list of table spaces and indexes (if those indexes are defined
with COPY YES) in a single COPY utility. There are two main advantages for
copying more than one object at a time:

� If you specify a list of objects and also specify SHRLEVEL REFERENCE, that
creates a single recovery point for that list of objects. In other words, you can
use that recovery point for any point-in-time recoveries for those objects.

� You can specify the PARALLEL option, which lets DB2 copy a number of
objects in parallel. See “Copying and recovering in parallel” for more
information.

Copying and recovering in parallel
Previously: Although you could specify a list of table spaces to recover, the
objects were restored serially. And you could never copy multiple objects before in
a single COPY job.

Now: When you specify a list of table spaces and index spaces, you can also copy
and recover some or all of those objects in parallel using the new PARALLEL
option of COPY and RECOVER. You can tell DB2 how many objects to process in
parallel, or you can let DB2 choose an optimal number for you. This new
functionality provides a performance advantage, because the RECOVER utility
processes the logs for all of the table spaces and index spaces in a single pass.

Restrictions: You cannot make CONCURRENT copies in parallel, and RECOVER
cannot restore CONCURRENT copies in parallel.

Full parallel processing is available only for copies made to disk or for restoring
those copies from disk.

  Chapter 3. Improved performance and availability 31



  
 

Parallel index build
Previously: When DB2 rebuilt indexes, it scanned the table space or table space
partition, extracted and sorted the index keys for one or more indexes, and built
indexes serially. Building the indexes serially meant longer elapsed times for utilities
in which indexes were rebuilt.

Now: DB2 can build indexes in parallel, reducing the elapsed time of utilities that
rebuild multiple indexes, such as REBUILD INDEX (formerly known as RECOVER
INDEX), LOAD, and REORG TABLESPACE.

Figure 6 shows a REORG TABLESPACE flow with parallel index build. To enable
the process of rebuilding indexes in parallel, you must specify the SORTKEYS
option. DB2 starts multiple subtasks to sort index keys and build indexes in parallel.
If you specified STATISTICS, additional subtasks collect the sorted keys and
update the catalog table in parallel, eliminating the need for a second scan of the
index by a separate RUNSTATS job.

| Figure 6. Building indexes using parallel index build

For examples of parallel index build processing for the REBUILD INDEX utility, see
DB2 Utility Guide and Reference.

Faster index creation and rebuild
Parallel index build sorts index keys, and builds or rebuilds indexes in parallel when
you have defined more than one index.

This functional enhancement takes advantage of multiprocessing and multiple
processors.

| Performance test results for LOAD, REORG, and REBUILD
| INDEX utilities
| Preliminary tests of several utilities demonstrate substantial reductions in elapsed
| times.

| Tests of LOAD and REORG utilities:  Two sets of tests measured the Version 6
| LOAD and REORG utilities. The first set of tests included the following new
| capabilities:

32 Release Planning Guide  



  
 

| � Building indexes in parallel
| � Collecting statistics inline

| The second set of tests excluded these new capabilities. All tests involved a table
| space with 10 partitions and 6 indexes. When the LOAD and REORG utilities ran
| while building indexes in parallel and while collecting statistics inline, the results
| were impressive:

| � Up to a 6 times improvement in elapsed time for LOAD
| � Up to a 2.5 times improvement in elapsed time for REORG

| Tests of REBUILD utility:  A similar comparison of the Version 6 REBUILD utility
| involved a variety of database configurations that DB2 installations commonly use.
| Tests included the rebuilding of:

| � The partitioning index only
| � A single nonpartitioning index only
| � The partitioning index and five nonpartitioning indexes

| Using the capability to build the indexes in parallel while collecting statistics inline,
| tests of the REBUILD utility demonstrated excellent reductions in elapsed time:

| � Up to 5 times faster for a partitioning index
| � Over 3 times faster for a nonpartitioning index
| � Almost 8 times faster for six indexes

 Inline statistics
Previously: If you wanted the catalog to reflect the new statistics after a LOAD,
REBUILD INDEX, or REORG, you had to invoke RUNSTATS separately after those
utility jobs were complete.

Now: Now you can invoke RUNSTATS using the STATISTICS keyword from within
LOAD, REBUILD INDEX, and REORG. By avoiding a separate invocation of
RUNSTATS, the total elapsed time is reduced.

 STATISTICS keyword
Specify the STATISTICS keyword on a LOAD, REBUILD INDEX or REORG job to
collect inline statistics. A number of RUNSTATS options are now available for inline
statistics collection, and are used in conjunction with the STATISTICS keyword.

Benefits of inline statistics
Collecting statistics inline with the LOAD, REORG, and REBUILD INDEX utilities
updates catalog and directory tables with a single scan of the data. Accurate
statistics can improve access path selection.

For an diagram of inline statistics collection for a REORG TABLESPACE job, see
DB2 Utility Guide and Reference.

Faster discard and unload during REORG
Previously: You could discard records using an SQL DELETE operation, followed
by a REORG. You could unload data using the DSNTIAUL sample application.

Now: With the new options of the REORG utility, you can:

� Select rows to be discarded during a REORG, and optionally write the
discarded records to a file

  Chapter 3. Improved performance and availability 33



  
 

� Perform faster external UNLOAD than the DSNTIAUL sample program provides

| Discarding rows during REORG TABLESPACE
You can now efficiently delete a large percentage of rows in a table space, or
archive older data in a table space. Specify the DISCARD FROM TABLE ... WHEN
option to take advantage of this new function. By specifying the selection criteria,
you determine which rows to delete. Rows are only discarded when they match the
WHEN criteria. You can also specify the DISCARDDN keyword to designate a
discard data set, which stores the discarded records.

| This enhancement is available in Version 5 with APAR PQ19897.

| If REORG TABLESPACE discards rows which contain primary keys, a subsequent
| CHECK DATA job with the DELETE YES and LOG NO options does not log the
| deletes for the referential constraints.

Unloading data during REORG
You can use the new UNLOAD EXTERNAL option to unload data in a format that
is acceptable to the LOAD utility of any DB2 subsystem. You can also specify
selection conditions to determine which records are unloaded.

| This enhancement is available in Version 5 with APAR PQ19897.

Decreased elapsed and processor time for online REORG
Processor and elapsed time for online reorganizations (REORG with SHRLEVEL
CHANGE) is greatly reduced. The more disorganized the data, the greater the
benefits. Tests in a controlled environment show that some online reorganizations
take half the elapsed time they did in Version 5.

| You can maximize availability during an online REORG with SHRLEVEL CHANGE
| by using the new TIMEOUT option. This enhancement is available in Version 5 with
| APAR PQ18941.

| You can minimize the potential for deadlocks during an online REORG by using the
| new DRAIN ALL option. This enhancement is available in Version 5 with APAR
| PQ20032.

Avoid delete and redefine of data sets
Previously: For DB2-managed data sets, DB2 did a delete and redefine of the
data sets for LOAD REPLACE, REBUILD INDEX, REORG TABLESPACE,
RECOVER TABLESPACE, or RECOVER INDEX. Deleting and redefining the data
sets takes longer than just doing a logical reset.

In addition to increased elapsed times, deleting and redefining data sets also
makes it difficult to manage the placement of data sets that are managed using
storage management subsystem (SMS). When data sets are deleted, they might be
moved to a different volume when they are defined. You might have to rework your
SMS definitions to get those data sets where you want them.

Now: You can specify a new option, REUSE, to tell DB2 to logically reset data sets
for DB2-managed data sets rather than to do a delete and redefine. This improves
the performance of those utilities and makes it easier to manage using SMS. This
enhancement is available in Version 5 with APAR PQ19077.

34 Release Planning Guide  



  
 

Do not specify REUSE when the reason for a recovery or rebuild is a media failure,
| or if you want to reclaim unused extents for your data sets.

Query performance and optimization enhancements
DB2 continues to improve its ability to execute queries quickly.

In this section:

� “Query parallelism enhancements”
� “Improvements to join processing” on page 36
� “Other query optimization enhancements” on page 41

Query parallelism enhancements
Query parallelism is even more effective in Version 6.

Parallelism for nonpartitioned tables
| If a nonpartitioned table is accessed through an index or by a table space scan,
| DB2 can use query parallelism.

This enhancement applies to single-table access and multi-table joins.

Improved workload balancing in a Parallel Sysplex
Previously: For Sysplex query parallelism, DB2 split the work into equal size work
ranges based on its knowledge of how many DB2 subsystems were available at
bind time. DB2 also made no adjustments based on mixed processor speeds in the
data sharing group. For Sysplexes with mixed processor speeds, this is not always
the best way to divide the work for maximum efficiency.

Now: DB2 considers processing speeds when developing its work ranges. If, at run
time, either the number of members in the group has changed, or if buffer pool
resources have changed, DB2 reformulates the parallel plan to take advantage of
this new environment. DB2 can even adjust the degree of parallelism upward if
more resources are available at run time.

More opportunities for parallelism
The following queries can now benefit from parallelism:

 � Outer joins

� IN list index access of an inner table of a parallel group. For example:

 SELECT Count(S)

 FROM T1, T2

 WHERE T1.C1 = T2.C1 and

T1.C2 > 5 and

T2.C2 IN ( 6 , 7 , 9) ;

In this example, the access path is a nested loop join of T1 to T2. T2 is using
IN list index access and can use parallelism.

  Chapter 3. Improved performance and availability 35



  
 

Improvements to join processing
Processing joins faster continues to be a priority in DB2, with a special focus on
outer joins. Some of the outer join enhancements are available in Version 5 with
APAR PQ18710.

Faster outer joins
The following optimization enhancements can improve outer join performance:

� An outer join is no longer a criteria for materializing a view or nested table
expression.

The following example demonstrates such a statement:

SELECT S FROM V1 X LEFT JOIN <- Outer SELECT operation
(SELECT S FROM T2) Y <- Inner SELECT operation

 ON X.C1=Y.C1

LEFT JOIN T3 Z ON X.C1=Z.C1;

� DB2 evaluates predicates more aggressively.

In Version 6, DB2 more aggressively applies predicates, as shown in the
example here, in which the predicate is evaluated before the join:

SELECT S FROM T1 X LEFT JOIN T2 Y ON X.C1 = Y.C1

LEFT JOIN T3 Z ON X.C1 = Z.C1

WHERE X.C2 = 1O;

Because this query does not use rows in which X.C2<>10, it is more efficient to
screen X to discard X.C2<>10 before the join operation. Because X has a
value in every row in the join result, DB2 can move X.C2 = 10 from the join
operation to before the join operation.

Another example: In the following example, DB2 Version 6 can evaluate the
predicate after the left join of the department and employee tables; in Version
5, the predicate could not be evaluated until after all the joins:

SELECT ...

FROM DEPT LEFT JOIN EMP ON ...

LEFT JOIN SALES ..

WHERE DEPT.LOC <> EMP.LOC OR EMP.DEPTNO IS NULL;

� Optimize transitive closure across outer join operations

In Version 5, DB2 used the transitive closure rule to derive new predicates
called transitive closure predicates. Only Boolean term predicates that were
evaluated before a join operation and had the following formats were
considered for the transitive closure rule:

– COL = COL
– COL op value
– COL (NOT) BETWEEN value1 AND value2

op is one of the following operators: =, <=, >, >=, <, or <=. value is a constant,
host variable, or special register.

Predicates in the ON clause of an outer join operation were not considered for
transitive closure.

In Version 6, DB2 considers predicates in the ON clause of an outer join
operation for transitive closure. Those predicates must have one of the
following formats:

36 Release Planning Guide  



  
 

– COL = COL

– COL op value

– COL (NOT) BETWEEN value1 AND value2

op is one of the following operators: =, <=, >, >=, <, or <=.

When DB2 applies the transitive closure rule, DB2 generates predicates of the
following format:

– COL op value

– COL (NOT) BETWEEN value1 AND value2

op is one of the following operators: =, <=, >, >=, <, or <=.

� Join operator transformation

This enhancement transforms some outer join operations into simpler join
operations that execute more efficiently.

The types of predicates that enable join operation transformation have the
following characteristics:

– The predicate is a Boolean term predicate
– The predicate becomes false if one table supplies a null value for all of its

columns

DB2 does not use join transformation for predicates that use CASE expressions
or user-defined functions.

For example, DB2 can transform the full outer join operation in the first
SELECT statement that follows into a left outer join, as shown in the second
SELECT statement:

More complicated SELECT statement

SELECT S FROM T1 X FULL JOIN T2 Y

ON X.C1 = Y.C1

WHERE X.C2 > 12;

Simpler SELECT statement

SELECT S FROM T1 X LEFT JOIN T2 Y

ON X.C1 = Y.C1

WHERE X.C2 > 12;

� Avoiding work files when possible.

For a FROM clause that contains a series of outer join or inner join operators,
DB2 uses fewer work files.

� DB2 is more aggressive in choosing a variety of access paths for statements
that contain multiple left, right, and inner joins. This gives DB2 more choice in
choosing the best access path for the join.

Faster join processing when joining columns of different lengths
Previously: In cases like the following two examples, DB2 processed the
predicates as stage 2 because the join columns, although of compatible data types,
are not the same length. This means that an available index cannot be used.

  Chapter 3. Improved performance and availability 37



  
 

 SELECT S

 FROM T1, T2

 WHERE T1.CHAR1O = T2.CHAR5 ....

 SELECT S

 FROM T1, T2

 WHERE T1.VACH1O = T2.VACH15....

Now: For CHAR and VARCHAR data types, DB2 can process equal and Boolean
term join predicates as stage 1, even when the columns are of different lengths.

Example: In this example, the following columns are relevant:

A.ACCESSNAME (CHAR 18)

B.NAME (VARCHAR 18)

An index exists on A.ACCESSNAME. The following statement can now take
advantage of stage 1 processing:

SELECT A.ACCESSNAME, B.NAME

FROM PLAN_TABLE A, SYSIBM.SYSINDEXES B

WHERE A.ACCESSCREATOR = B.CREATOR

 AND A.ACCESSNAME = B.NAME <---Now indexable

| Enhanced Cartesian join
| Previously: DB2's implementation of Cartesian join was limited to a composite
| table of 5 dimensions.

| Now: The composite table size for a Cartesian join is increased to 6 dimensions.

# Star schema (star join)
# A star schema or star join is a logical database design that is included in decision
# support applications. A star schema is composed of a fact table and a number of
# dimension tables that are connected to it. A dimension table contains several
# values that are given an ID, which is used in the fact table instead of all the values.

# You can think of the fact table, which is much larger than the dimension tables, as
# being in the center surrounded by dimension tables; the result resembles a star
# formation. The following diagram illustrates the star formation:

38 Release Planning Guide  



  
 

Fact table

Dimension
table

Dimension
table

Dimension
table

Dimension
table

Dimension
table

# Figure 7. Star schema with a fact table and dimension tables

# Example:  For an example of a star schema, consider the following scenario. A
# star schema is composed of a fact table for sales, with dimension tables connected
# to it for time, products, and geographic locations. The time table has an ID for each
# month, its quarter, and the year. The product table has an ID for each product item
# and its class and its inventory. The geographic location table has an ID for each
# city and its country.

# In this scenario, the sales table contains three columns with IDs from the dimension
# tables for time, product, and location instead of three columns for time, three
# columns for products, and two columns for location. Thus, the size of the fact table
# is greatly reduced. In addition, if you needed to change an item, you would do it
# once in a dimension table instead of several times for each instance of the item in
# the fact table.

# You can create even more complex star schemas by breaking a dimension table
# into a fact table with its own dimension tables. The fact table would be connected
# to the main fact table.

# When it is used:  To access the data in a star schema, you write SELECT
# statements that include join operations between the fact table and the dimension
# tables; no join operations exist between dimension tables. When the query meets
# the following conditions, that query is a star schema:

  Chapter 3. Improved performance and availability 39



  
 

# � The query references at least two dimensions.

# � All join predicates are between the fact table and the dimension tables, or
# within tables of the same dimension.

# � All join predicates between the fact table and dimension tables are equi-join
# predicates.

# � All join predicates between the fact table and dimension tables are Boolean
# term predicates.

# � No correlated subqueries cross dimensions.

# � No single fact table column is joined to columns of different dimension tables in
# join predicates. For example, fact table column F1 cannot be joined to column
# D1 of dimension table T1 and also joined to column D2 of dimension table T2.

# � After DB2 simplifies join operations, no outer join operations exist.

# � The data type and length of both sides of a join predicate are the same.

# � The cardinality of the fact table is at least 25 times the cardinality of the largest
# dimension that meets both of the following conditions:

# – The dimension is a base table.
# – The dimension is joined directly to the fact table.

# Example: query with three dimension tables:  Suppose you have a store in San
# Jose and want information about sales of audio equipment from that store in 2000.
# For this example, you want to join the following tables:

# � A fact table for SALES (S)

# � A dimension table for TIME (T) with columns for an ID, month, quarter, and
# year

# � A dimension table for geographic LOCATION (L) with columns for an ID, city,
# region, and country

# � A dimension table for PRODUCT (P) with columns for an ID, product item,
# class, and inventory

40 Release Planning Guide  



  
 

# You could write the following query to join the tables:

#  SELECT S

# FROM SALES S, TIME T, PRODUCT P, LOCATION L

# WHERE S.TIME = T.ID AND

#    S.PRODUCT = P.ID  AND

#    S.LOCATION = L.ID AND

#    T.YEAR = 2OOO   AND

#    P.CLASS = 'SAN JOSE';

# You would use the following index:

# CREATE INDEX XSALES_TPL ON SALES (TIME, PRODUCT, LOCATION);

# Your EXPLAIN output looks like the following table;

# Figure 8. Plan table output for a star join example with TIME, PRODUCT, and LOCATION

# QUERYNO
# QUERY-
# BLOCKNO# METHOD# TNAME
# JOIN
# TYPE
# SORTN
# JOIN

# 1# 1# 0# TIME# S

# 1# 1# 1# PRODUCT# S

# 1# 1# 1# LOCATION# S

# 1# 1# 1# SALES# S

Other query optimization enhancements
Other query optimization enhancements include:

� DB2 can use index screening for access methods with RID processing, such as
list prefetch and multi-index access for single-table access and joins. This
enhancement avoids processing of unqualified RIDs. Performance is improved
because of reduced access to data pages and fewer RIDs to sort. This
enhancement is available in Version 5 with APAR PQ15670.

� DB2 can use an index to access predicates with noncorrelated IN subqueries.
For example, in the following statement, DB2 was not able to use TAB1's index
on PROG to access TAB1 in Version 5.

UPDATE TAB1

SET SDATE = ?, STIME = ?

 WHERE PROG IN

 (SELECT MASTER

 FROM TAB2

WHERE INCLUDE = ?)

In Version 6, DB2 can use TAB1's index on PROG for matching index access
for TAB1.

Another example: Assume that a clustering, nonunique index exists on
PRODUCT_NBR. In Version 5, that index could not be used for matching index
access for the predicate PRODUCT_NBR IN( ). In Version 6, DB2 can use the
matching index.

  Chapter 3. Improved performance and availability 41



  
 

SELECT ....

FROM PRODUCT

WHERE PRODUCT_NBR IN <-----Indexable in Version 6

 (SELECT S.PRODUCT_NBR

FROM SEARCH_TOKENS S

WHERE S.SEARCH_TOKEN LIKE 'SHOE%')

� Improved processing for dynamic SQL statements that refer to temporary
tables.

Previously DB2 did not keep statistics about temporary tables. In some cases,
DB2's use of default statistics for the number of rows and for the number of
pages could lead to less optimal access paths, especially when temporary
tables are joined with other tables.

Now, DB2 keeps in its memory the number of rows and number of pages for
instantiated temporary tables. DB2 can use this information during the
optimization of dynamically prepared SQL statements that refer to that table.

To find out what values DB2 used: IFCID 0022 is enhanced to tell you what
values DB2 uses for the number of pages and rows it used to optimize the
statement.

Restrictions: This enhancement is not used for static SQL statements,
because the temporary table is not instantiated at the time the access path is
chosen. However, if you have an idea of what good values are for CARDF and
NPAGES, you can populate SYSYSIBM.SYSTABLES with that information for
the temporary table.

This enhancement also does not apply for dynamic SQL statements that are
destined for the dynamic statement cache.

� Improved precision for cluster ratios in the catalog.

When the access path is chosen for a range predicate on a host variable, DB2
uses the cluster ratio as part of its calculations. However, because
CLUSTERRATIO is always a whole percentage value, a table of over 100000
rows can show a CLUSTERRATIO of 99% when 1 row changes or when 1000
rows change. This lack of precision can cause DB2 to choose a
less-than-optimal access path.

Now, DB2 has floating-point columns in SYSINDEXES and SYSINDEXSTATS
to maintain the cluster ratio. The new columns are called CLUSTERRATIOF.
Run RUNSTATS to populate the new columns.

| � More efficient processing of BETWEEN predicates

| DB2 chooses an inefficient access path for a predicate of the form COL
| BETWEEN value1 AND value2, where value1 and value2 are of the same type
| and length and evaluate to the same value.

| In Version 6, DB2 transforms the BETWEEN predicate to a more efficient equal
| predicate when the following conditions are true:

| – The predicate is of the form COL BETWEEN value1 AND value2

| – value1 and value2 are of the same type and length and evaluate to the
| same value

| – The predicate is stage 1

| – The bind option REOPT(VARS) is in effect if either value1 or value2 is not
| a constant

42 Release Planning Guide  



  
 

| � The RUNSTATS utility collects statistics for uniform as well as non-uniform
| distributions. The extra statistics might improve the access path for queries.
| This enhancement is available in Version 5 with APAR PQ21014.

Data sharing enhancements
DB2 continues to improve the performance and availability of its Parallel Sysplex
data sharing.

This section describes the following topics:

� “Continuous availability with group buffer pool duplexing”
� “Faster checkpointing of group buffer pools” on page 50
� “Reduced P-lock overhead” on page 51
� “More caching options” on page 51

| � “More flexible option to wait for retained locks” on page 52

In addition to the topics described here, see the following sections for information
about other improvements that affect the performance and availability of data
sharing systems:

� “IRLM enhancements” on page 85
� “Increased flexibility with 8-KB and 16-KB page sizes” on page 58
� “Faster restart and recovery” on page 25

Continuous availability with group buffer pool duplexing
Previously: Your only options for recovery in the event of a group buffer pool
failure were:

� Group buffer pool recovery, by which DB2 recovers data from its logs in case
the group buffer pool structure is damaged or if all members lose connectivity
to the group buffer pool.

� Group buffer pool rebuild, by which DB2 copies pages from group buffer pool to
a new allocation of the structure in the alternative coupling facility (or to DASD,
if DB2 cannot get enough storage in the alternate coupling facility). DB2 uses
this approach when some but not all members lose connectivity to the
structure.

Now: With more than one coupling facility, you can duplex the group buffer pools.
With duplexing, a secondary group buffer pool is always on standby in another
coupling facility, ready to take over if the primary group buffer pool structure fails or
if a connectivity failure occurs. If you have three coupling facilities, you can even
maintain duplexing while performing maintenance on one of the coupling facilities.

| This enhancement is available for Version 5 with APAR PQ17797.

In this section:

� “How duplexing works” on page 44
� “Starting and stopping duplexing for a group buffer pool” on page 45
� “Performance aspects of duplexing” on page 46
� “Monitoring duplexed group buffer pools” on page 47
� “Summary of failure scenarios for duplexed group buffer pools” on page 49
� “Requirements for duplexing” on page 50

  Chapter 3. Improved performance and availability 43



  
 

How duplexing works
With a duplexed group buffer pool, you have two allocations of the same group
buffer pool that use one logical connection. Each structure allocation must be in a
different coupling facility.

Recommendation: Configure at least one of the coupling facilities to be
non-volatile. If power is lost to both coupling facilities and both coupling facilities are
volatile, the group buffer pool must be recovered from the logs.

One allocation is called the primary structure. The primary structure is used for
cross-invalidation and page registration, and it is the structure from which changed
data is cast out to DASD. From an MVS perspective, duplexing is really an
extended rebuild, so OS/390 documentation and commands sometimes call the
primary structure the old structure.

The other allocation of the structure is called the secondary structure (referred to by
MVS as the new structure). As shown in Figure 9, changed data that is written to
the primary structure is also written to the secondary structure.

Figure 9. Writing changed data to a primary and secondary group buffer pool

Writing to a duplexed group buffer pool:  When a group buffer pool is duplexed,
the following events occur:

1. For some fixed number of pages that must be written, DB2 does the following
activities for each page:

a. Write the page to the secondary structure asynchronously.

b. Write the page to the primary structure synchronously.

| 2. After all pages have been written to the primary structure, DB2 checks to that
| the writes to the secondary structure have completed. If any have not
| completed, DB2 forces the completion of those writes.

44 Release Planning Guide  



  
 

Casting out from a duplexed group buffer pool:  DB2 casts out data to DASD
only from the primary structure. After a set of pages has been cast out, the same
set of pages is deleted from the secondary structure. See the DELETE NAME LIST
counter in the DISPLAY GROUP BUFFERPOOL MDETAIL report for how many
times this event occurs. DB2 ensures that any new pages that are written to the
group buffer pool during castout processing are not deleted from the secondary
structure.

Characteristics of the secondary structure:  The following characteristics of the
secondary structure are different than those of the primary structure:

� DB2 does not read data from the secondary structure.

� DB2 does not use the secondary structure for cross-invalidation of pages.

� DB2 does not cast out data to DASD from the secondary structure.

Starting and stopping duplexing for a group buffer pool
This section describes how you can start and stop duplexing for a particular group
buffer pool.

Starting duplexing:  To start duplexing, at least one DB2 member must be
actively connected to the group buffer pool. When duplexing starts, activity to the
group buffer pools is quiesced until duplexing is established. This period is
generally a few seconds.

Recommendation: Start duplexing during a period of low activity in the system.

Two ways to start duplexing for a group buffer pool are:

� Activate a new CFRM policy with DUPLEX(ENABLED) for the structure. If the
group buffer pool is currently allocated, MVS can automatically initiate the
process to establish duplexing as soon as you activate the policy. If the group
buffer pool is not currently allocated, the duplexing process can be initiated
when the group buffer pool is allocated.

For MVS to automatically initiate duplexing, all CFRM policy parameters other
than DUPLEX must be the same as they were before. For example, if you
change both the DUPLEX value and the SIZE value, neither value takes effect
until you manually rebuild the group buffer pool.

� Activate a new CFRM policy with DUPLEX(ALLOWED) for the structure. If the
group buffer pool is currently allocated, use the following command to start the
duplexing rebuild:

SETXCF START,REBUILD,DUPLEX,STRNAME=strname

If the group buffer pool is not currently allocated, wait until it is allocated before
starting the duplexing rebuild.

While duplexing is being established, and for the entire time duplexing is in effect, a
display of the structure shows the structure as being in DUPLEXING REBUILD.
The rebuild phase is called DUPLEX ESTABLISHED, which means that duplexing
is truly active for the structure. See Figure 10 on page 48 for an example.

| Stopping duplexing:  To stop duplexing, you must first decide which instance of
| the group buffer pool is to remain as the surviving simplexed group buffer pool. If
| you have a choice, use the primary structure as the surviving group buffer pool.
| The primary group buffer pool has intact page registration information, while the

  Chapter 3. Improved performance and availability 45



  
 

| secondary GBP has none of this information. So if you switch to the secondary
| GBP, all GBP-dependent buffers revert to an invalid state and DB2 must refresh
| the group buffer pool or DASD on the next reference.

To switch temporarily to simplexed mode, use the following method:

1. Optional: If DUPLEX(ENABLED) is specified for the active CFRM policy,
activate a new policy specifying DUPLEX(ALLOWED). For the new DUPLEX
value to take effect, all other CFRM policy parameters must be the same as
before.

This first step is necessary only if you have at least three coupling facilities,
and you do not do not want to automatically reestablish duplexing after
stopping it.

2. Use the SETXCF STOP,REBUILD command, specifying KEEP=OLD to revert
to using the primary structure as the simplexed structure, or KEEP=NEW to
switch to the secondary instance. For example, the following command reverts
to using the primary instance as the simplexed group buffer pool:

SETXCF STOP,RB,DUPLEX,STRNAME=strname,KEEP=OLD

If you do not plan on reestablishing duplexing for the group buffer pool in the near
future, activate a new CFRM policy specifying DUPLEX(DISABLED) for the
structure.

Performance aspects of duplexing
| The process of establishing duplexing can be somewhat disruptive because access
| to the group buffer pool is quiesced while the secondary structure is allocated and
| changed pages are copied from the primary structure to the secondary structure (or
| cast out to DASD). Transactions that need access to the group buffer pool during
| this process are suspended until the process is complete. Because of this
| disruption, it is best to establish duplexing at a time of low activity on the system.
| By specifying DUPLEX(ALLOWED) on the CFRM policy, you have more control
| over when to establish duplexing than you do with DUPLEX(ENABLED). How long
| the process takes depends upon how many pages are copied to the secondary
| group buffer pool.

| In general, it takes a bit more processor and elapsed time to do duplexed group
| buffer pool writes and castout processing than it does to do simplexed group buffer
| pool writes and castout processing. Workloads that are more update-intensive will
| probably experience a slight increase in host CPU usage when duplexing is
| activated. In most cases, the majority of the CPU increase will occur in the DB2
| address space. Duplexing can cause a slight increase in the transaction elapsed
| time. Read performance is unaffected by duplexing.

| You will also see an increase in the coupling facility CPU usage in the CF that
| contains the Secondary structure. You can estimate about how much the CF CPU
| usage will increase when you establish duplexing as follows:

| 1. Determine the amount of CF CPU that the simplexed Primary structure
| consumes.

| 2. Divide the result in half to determine how much CF CPU that the duplexed
| Secondary structure will consume.

| Duplexing should have little or no impact on the CF CPU usage for the CF
| containing the Primary structure.

46 Release Planning Guide  



  
 

| The statistics and accounting trace classes contain information about group buffer
| pool duplexing.

Monitoring duplexed group buffer pools
This section describes the following ways to monitor duplexed group buffer pools:

� “Using MVS DISPLAY XCF command”

� “Using DB2 DISPLAY GROUPBUFFERPOOL command” on page 48

� “Using DB2's trace facility” on page 49

Using MVS DISPLAY XCF command:  The following command displays
information about GBP1 in group DSNDB0G:

D XCF,STR,STRNAME=DSNDBOG_GBP1

This particular group buffer pool is duplexed, so you see information about both
allocations of the structure (the old structure is the primary structure, and the new
structure is the secondary one). Output that is produced is similar to the output
shown in Figure 10 on page 48.

  Chapter 3. Improved performance and availability 47



  
 

D XCF,STR,STRNAME=DSNCAT_GBPO

IXC36OI 11.13.38 DISPLAY XCF

STRNAME: DSNCAT_GBPO

 STATUS: REASON SPECIFIED WITH REBUILD START:

 OPERATOR INITIATED

 DUPLEXING REBUILD
REBUILD PHASE: DUPLEX ESTABLISHED POLICY SIZE : 32768 K

POLICY INITSIZE: 5OOO K

REBUILD PERCENT: N/A

 DUPLEX : ALLOWED

PREFERENCE LIST: LFO1 CACHEO1

EXCLUSION LIST IS EMPTY

DUPLEXING REBUILD NEW STRUCTURE
 -------------------------------

ALLOCATION TIME: O4/12/1999 11:13:31

 CFNAME : CACHEO1

COUPLING FACILITY: SIMDEV.IBM.EN.NDO2OOOOOOOO

 PARTITION: O CPCID: OO

ACTUAL SIZE : 512O K

STORAGE INCREMENT SIZE: 256 K

VERSION : B2162O49 D1E56FO2

 DISPOSITION : DELETE

 ACCESS TIME : O

MAX CONNECTIONS: 32

 # CONNECTIONS : 2

 DUPLEXING REBUILD OLD STRUCTURE
 -------------------------------

ALLOCATION TIME: O4/12/1999 11:12:51

 CFNAME : LFO1

COUPLING FACILITY: SIMDEV.IBM.EN.NDO1OOOOOOOO

 PARTITION: O CPCID: OO

ACTUAL SIZE : 512O K

STORAGE INCREMENT SIZE: 256 K

VERSION : B2162O23 45B3CBO6

 ACCESS TIME : O

MAX CONNECTIONS: 32

 # CONNECTIONS : 2

 CONNECTION NAME ID VERSION SYSNAME JOBNAME ASID STATE

 ---------------- -- -------- -------- -------- ---- ----------------

 DB2_V61A O2 OOO2OOO1 UTEC277 V61ADBM1 OO2F ACTIVE NEW,OLD

 DB2_V61B O1 OOO1OOO1 UTEC277 V61BDBM1 OO33 ACTIVE NEW,OLD

Figure 10. MVS command D XCF showing group buffer pool information

For more information about the D XCF command, see OS/390 MVS System
Commands.

Using DB2 DISPLAY GROUPBUFFERPOOL command

Product-sensitive Programming Interface

| The DISPLAY GROUPBUFFERPOOL command of DB2 displays the duplexing
| status of the group buffer pool and provides some statistics on the secondary
| instance of that group buffer pool. Figure 11 on page 49 shows what the output

48 Release Planning Guide  



  
 

| might look like, assuming that the group buffer pool is duplexed. Only the
| messages relevant to duplexing display.

DSNB75OI -DB1G DISPLAY FOR GROUP BUFFER POOL GBPO FOLLOWS

.

.

DSNB757I -DB1G MVS CFRM POLICY STATUS FOR DSNDBOG_GBPO = NORMAL

MAX SIZE INDICATED IN MVS POLICY = 6144O KB

DUPLEX INDICATOR IN POLICY = ENABLED
CURRENT DUPLEXING MODE = DUPLEX

 ALLOCATED = YES

DSNB758I -DB1G ALLOCATED SIZE = 6144O KB

 VOLATILITY STATUS = NON-VOLATILE

 REBUILD STATUS = DUPLEXED
 CFNAME = LFO1

 CFLEVEL = 5

.

.

DSNB799I -DB1G SECONDARY GBP ATTRIBUTES

ALLOCATED SIZE = 6144O KB

 VOLATILITY STATUS = NON-VOLATILE

 CFNAME = LFO1

 CFLEVEL = 5

NUMBER OF DIRECTORY ENTRIES = 61394

NUMBER OF DATA PAGES = 1137O

Figure 11. Partial output from DISPLAY GROUPBUFFERPOOL command

End of Product-sensitive Programming Interface

See DB2 Command Reference for more information about the syntax of the
command.

Using DB2's trace facility:  The “rebuild-for-duplexing” activity and other reasons
for rebuilding are reported in IFCIDs 0267 and 0268.

Summary of failure scenarios for duplexed group buffer pools
For duplexed group buffer pools, a failure response is the same for both structure
failures and lost connectivity.

Table 3 (Page 1 of 2). Summary of scenarios for both structure failure and lost connectivity for duplexed group
buffer pools

Failure occurred
for which
structure?

DB2 response Operational response

Primary Switch to secondary structure in simplex
mode

DSNB744I

DSNB745I

If DUPLEX(ENABLED), reduplexing is
attempted.

Correct the problem with the failed coupling
facility. If you are not using automatic duplexing,
use the command SETXCF START,DUPLEX to
establish duplexing when the failed coupling
facility becomes available.

  Chapter 3. Improved performance and availability 49



  
 

Table 3 (Page 2 of 2). Summary of scenarios for both structure failure and lost connectivity for duplexed group
buffer pools

Failure occurred
for which
structure?

DB2 response Operational response

Secondary Revert to primary structure in simplex
mode

DSNB743I

DSNB745I

If DUPLEX(ENABLED), reduplexing is
attempted.

| Correct the problem with the failed coupling
| facility. If you are not using automatic duplexing,
| use the command SETXCF START,DUPLEX to
| establish duplexing when the failed coupling
| facility becomes available.

Both (structure
failure or 100% lost
connectivity)

Damage assessment, GRECP page
sets.

None needed if the group buffer pool is defined
with AUTOREC(YES) and DB2 successfully
recovers the page set. Otherwise, enter START
DATABASE commands.

Requirements for duplexing
To enable duplexing requires the following configuration:

� At least two coupling facilities with a CFLEVEL of 5 or higher must exist in the
CFRM policy preference list for the group buffer pool. All members of the data
sharing group must have physical connectivity to both coupling facilities in
which the primary and secondary structures reside.

| � All connected DB2 members must be at Version 6 or a subsequent release, or
| a Version 5 member with PQ17797 applied.

� All connected DB2 members must be running on OS/390 Release 3 or a
subsequent release that has APAR OW28460 installed. (The function is
included in the base for OS/390 Release 6.)

� The group buffer pool must be defined with GBPCACHE(YES), which is the
default.

Faster checkpointing of group buffer pools
Previously: Group buffer pool checkpoints are used, in part, to keep track of the
oldest changed page in the group buffer pool at any particular time. This oldest
changed page determines how far back in a member's log DB2 must go to recover
the data in event of a failure.

DB2 had to interactively invoke the function used to determine the oldest changed
page. For a large group buffer pool, this meant scanning perhaps hundreds of
thousands of directory entries, which resulted in spikes of coupling facility resource
use. This heavy use of coupling facility resources can negatively impact other
coupling facility requests.

Now: If the group buffer pool is allocated in a coupling facility that uses
CFLEVEL=5 or higher, and if the system is OS/390 Release 3 through Release 5
with MVS APAR OW28460 (or the base level of OS/390 Release 6), DB2 can
determine the information it needs by issuing one call to the coupling facility, greatly
diminishing its needs for coupling facility resources.

50 Release Planning Guide  



  
 

Reduced P-lock overhead
Previously: In DB2 Version 5, page P-lock latch contention could sometimes cause
performance and concurrency problems on a busy system.

Now: Page P-lock processing runs faster, improving concurrency for the entire data
sharing system.

More caching options
Previously: You had two options for how you wanted pages to be cached in the
group buffer pool (CHANGED or ALL).

Now: Two additional options on CREATE and ALTER TABLESPACE give you the
most flexibility in satisfying the needs of your data sharing applications. Additionally,
you can specify whether you want data cached at the group buffer pool level. The
following enhancements are described here:

� “GBPCACHE SYSTEM (for LOBs)”

� “GBPCACHE NONE ("no caching" option)”

GBPCACHE SYSTEM (for LOBs)
You can specify GBPCACHE SYSTEM on the CREATE or ALTER TABLESPACE
statement for LOB table spaces only. When you do, the only pages that are written
to the group buffer pool are LOB space map pages. All other data pages are
written directly to DASD. SYSTEM is the default for LOB table spaces.

Recommendation: For LOB table spaces, choose GBPCACHE SYSTEM to avoid
having large LOB values overwhelm the group buffer pool. Also, for LOB table
spaces with the LOG NO attribute, GBPCACHE SYSTEM ensures that LOB values
are written to DASD by commit time, thereby avoiding possible recovery problems
that are caused by missing log data.

GBPCACHE NONE ("no caching" option)
You have the option of not using the group buffer pool to cache data. Instead, the
group buffer pool is used solely for the purpose of cross-invalidating buffers. At
every commit, any pages that were updated by the transaction and still have not
yet been written are synchronously written to DASD during commit processing. This
can have a severe impact on performance for most types of transactions.

Reasons to consider not caching:  For workloads that consist of heavy
sequential updates (INSERT, DELETE, UPDATE) and in which there is little
likelihood that a page will be re-referenced, the following benefits are possible when
you do not cache data in the group buffer pool:

� Reduced coupling facility costs and faster coupling facility response time

� Reduced processor time on the host system

� Better transaction throughput at a small cost in higher transaction response
time

| If you choose not to cache in the group buffer pool, consider enabling DASD Fast
| Write and setting the vertical deferred write threshhold VDWQT=0. By setting this
| threshold to 0, you let deferred writes happen continuously before the commit, thus
| avoiding a large surge of write activity at the commit.

  Chapter 3. Improved performance and availability 51



  
 

One other advantage of not caching in the group buffer pool is that data does not
need to be recovered from the log if the coupling facility fails. However, because
DB2 still depends on the cross-invalidation information that is stored in the group
buffer pool, a coupling facility failure still means some data might not be available.
That is why specifying an alternate coupling facility in the CFRM policy is
recommended.

| If you are looking for a high-availability option, consider duplexing the group buffer
| pool rather than suffering the performance ramifications of writing directly to DASD
| at every commit. See “Continuous availability with group buffer pool duplexing” on
| page 43 for more information about duplexing your group buffer pool.

How to specify "no caching":  Two ways to specify that you do not want to
cache data in the group buffer pool are:

� Specify GBPCACHE NONE for the page set.

� Assign the page set to a group buffer pool that is specified with
GBPCACHE(NO). To enable a new GBPCACHE attribute for a group buffer
pool, change the attribute using the ALTER GROUPBUFFERPOOL command,
as described in DB2 Command Reference . The new option doesn't take effect
until the group buffer pool is reallocated, which you can do with the MVS
command SETXCF START,REBUILD.

Although you can specify GBPCACHE(NONE) on the page set level, specifying
it at the group buffer pool level is sometimes appropriate because it is easier to
change the attribute on the group buffer pool than on the page set. Because
the GBPCACHE(NO) attribute takes precedence over the GBPCACHE option
on the page set, you can plan for using different types of processing at different
times of day.

For example, assume that you want to run transactions or queries during the
day, but you want to do batch updates at night. If you determine that your
batch process can benefit by avoiding the group buffer pool for data caching,
you could:

1. Define the table space as GBPCACHE CHANGED and put it into its own
buffer pool.

2. Define the corresponding group buffer pool as GBPCACHE(YES) for
day-time processing.

3. At night, use the ALTER GROUPBUFFERPOOL command to change the
group buffer pool to GBPCACHE(NO).

| 4. Set the SETXCF START,REBUILD command to enable the new attribute.

5. In the morning, use the ALTER GROUPBUFFERPOOL command to
change the group buffer pool back to GBPCACHE(YES).

6. Issue the SETXCF START,REBUILD command to enable the new attribute.

| More flexible option to wait for retained locks
| Previously: The subsystem parameter RETLWAIT (wait for retained locks) lets you
| specify either YES or NO. If you specified YES, DB2 would wait for the normal
| connection timeout value if that connection was waiting on a resource that was held
| by an incompatible retained lock.

52 Release Planning Guide  



  
 

| Now: This parameter is moved to installation panel DSNTIPI and is called
| RETAINED LOCK TIMEOUT. Now you can specify a timeout multiplier, just as you
| do with utility timeout multiplier and other similar options.

| For example, if the retained lock multiplier is 2, then the timeout period for a call
| attachment connection that is waiting for a resource that is held by an incompatible
| retained lock is 1 x 2 (1 for the normal CAF timeout period, 2 for the additional time
| specified for retained locks). If the retained lock multiplier is zero (0), then agents
| do not wait for incompatible retained locks, but instead the lock request is
| immediately rejected and the application receives a “resource unavailable”
| SQLCODE.

| Migration considerations: In Version 5, the allowed values were YES and NO.
| For migration purposes, note that in Version 6, a 0 corresponds to NO and a 1 to
| YES.

More performance and availability improvements
The following performance and availability improvements are delivered in Version 6:

� “Direct row access”
# � “Declared temporary tables” on page 57

� “Increased flexibility with 8-KB and 16-KB page sizes” on page 58
� “Preserving a prior access path” on page 59
� “More buffer pool tuning options” on page 61
� “Control of space map copy maintenance” on page 63
� “Reduced DBD logging for CREATE, ALTER, DROP” on page 63
� “More flexibility when altering space allocations” on page 64
� “Larger log buffer sizes” on page 63
� “Authorization caching for stored procedures and user-defined functions” on

page 64
� “More flexibility when altering space allocations” on page 64

# � “Deferred allocation of data sets” on page 64
� “More command concurrency” on page 64
� “Increased concurrency for RRSAF and IMS transactions” on page 64

Direct row access
If an application selects a row from a table that contains a ROWID column, the row
ID value implicitly contains the location of the row. If you use that row ID value in
the search condition of subsequent SELECTs, DB2 might be able to navigate
directly to the row. This access method is called direct row access.

Direct row access is very fast, because DB2 does not need to use the index or a
table space scan to find the row. Direct row access can be used on any table that
has a ROWID column.

To use direct row access, you first select the column values for a row into host
variables. The value that is selected from the ROWID column contains the location
of that row. Later, when you perform queries that access that row, you include the
row ID value in the search condition. If DB2 determines that it can use direct row
access, it uses the row ID value to navigate directly to the row.

  Chapter 3. Improved performance and availability 53



  
 

Predicates that qualify for direct row access
For a query to qualify for direct row access, the search condition must be a
Boolean term, stage 1 predicate that fits one of these descriptions:

1. A simple Boolean term predicate of the form COL=noncolumn expression,
where COL has the ROWID data type, and noncolumn expression contains a
row ID

2. A simple Boolean term predicate of the form COL IN list, where COL has the
ROWID data type, and the values in list are row IDs, and an index is defined
on COL

3. A compound Boolean term that combines several simple predicates using the
AND operator, and one of the simple predicates fits description 1 or 2

| However, just because a query qualifies for direct row access does not mean that
| that access path is always chosen. If DB2 determines that another access path is
| better, direct row access is not chosen.

Examples: In the following predicate example, ID is a ROWID column in table T1.
A unique index exists on that ID column. The host variables are of the ROWID data
type.

WHERE ID IN (:hv_rowid1,:hv_rowid2,:hv_rowid3)

The following predicate also qualifies for direct row access:

WHERE ID = ROWID(X'FODFD23OE3COD8OD81C2O1AAOA28O1OOOOOOOOOOO2O3')

Reverting to ACCESSTYPE
Although DB2 might plan to use direct row access, circumstances can cause DB2
to not use direct row access at run time. DB2 remembers the location of the row as
of the time it is accessed. However, that row can change locations (such as after a
REORG) between the first and second time it is accessed, which means that DB2
cannot use direct row access to find the row on the second access attempt. Instead
of using direct row access, DB2 uses the access path that is shown in the
ACCESSTYPE column of PLAN_TABLE.

If the predicate you are using to do direct row access is not indexable, and if DB2
is unable to use direct row access, DB2 uses a table space scan to find the row.
This can have a profound impact on the performance of applications that rely on
direct row access. Write your applications to handle the possibility that direct row
access might not be used. Some options are to:

� Ensure that your application does not try to remember ROWID columns across
reorganizations of the table space.

When your application commits, it releases its claim on the table space; it is
possible that a REORG can run and move the row, which disables direct row
access. Plan your commit processing accordingly—use the returned row ID
value before committing, or re-select the row ID value after a commit is issued.

If you are storing ROWID columns from another table, update those values
after the table with the ROWID column is reorganized.

� Create an index on the ROWID column, so that DB2 can use the index if direct
row access is disabled.

54 Release Planning Guide  



  
 

� Supplement the ROWID column predicate with another predicate that enables
DB2 to use an existing index on the table. For example, after reading a row, an
application might perform the following update:

 EXEC SQL

 UPDATE EMP

 SET SALARY = :hv_salary + 12OO

WHERE EMP_ROWID = :hv_emp_rowid

AND EMPNO = :hv_empno;

If an index exists on EMPNO, DB2 can use index access if direct access fails.
The additional predicate ensures DB2 does not revert to a table space scan.

Direct row access and other access methods
Parallelism: Direct row access and parallelism are mutually exclusive. If a query
qualifies for both direct row access and parallelism, direct row access is used. If
direct row access fails, DB2 does not revert to parallelism; instead it reverts to the
backup access type (as designated by column ACCESSTYPE in the
PLAN_TABLE). This might result in a table space scan. To avoid a table space
scan in case direct row access fails, add an indexed column to the predicate.

RID list processing: Direct row access and RID list processing are mutually
exclusive. If a query qualifies for both direct row access and RID list processing,
direct row access is used. If direct row access fails, DB2 does not revert to RID list
processing; instead it reverts to the backup access type.

Example: Coding with row IDs for direct row access
Figure 12 on page 56 is a portion of a C program that shows you how to obtain
the row ID value for a row, and then to use that value to find the row efficiently
when you want to modify it.

  Chapter 3. Improved performance and availability 55



  
 

/SSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Declare host variables S/

/SSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_LOCATOR hv_picture;

SQL TYPE IS CLOB_LOCATOR hv_resume;

SQL TYPE IS ROWID hv_emp_rowid;

short hv_dept, hv_id;

 char hv_name[3O];

 decimal hv_salary[5,2];

EXEC SQL END DECLARE SECTION;

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Retrieve the picture and resume from the PIC_RES table S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

strcpy(hv_name, "Jones");

EXEC SQL SELECT PR.PICTURE, PR.RESUME INTO :hv_picture, :hv_resume

FROM PIC_RES PR

WHERE PR.Name = :hv_name;

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Insert a row into the EMPDATA table that contains the S/

/S picture and resume you obtained from the PIC_RES table S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL INSERT INTO EMPDATA

VALUES (DEFAULT,9999,'Jones', 35OOO.OO, 99,

 :hv_picture, :hv_resume);

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Now retrieve some information about that row, S/

/S including the ROWID value. S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

hv_dept = 99;

EXEC SQL SELECT E.SALARY, E.EMP_ROWID

INTO :hv_salary, :hv_emp_rowid

FROM EMPDATA E

WHERE E.DEPTNUM = :hv_dept AND E.NAME = :hv_name;

Figure 12 (Part 1 of 2). Example of using a row ID value for direct row access

56 Release Planning Guide  



  
 

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Update columns SALARY, PICTURE, and RESUME. Use the S/

/S ROWID value you obtained in the previous statement S/

/S to access the row you want to update. S/

/S smiley_face and update_resume are S/

/S user-defined functions that are not shown here. S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL UPDATE EMPDATA

SET SALARY = :hv_salary + 12OO,

PICTURE = smiley_face(:hv_picture),

RESUME = update_resume(:hv_resume)

WHERE EMP_ROWID = :hv_emp_rowid;

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Use the ROWID value to obtain the employee ID from the S/

/S same record. S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL SELECT E.ID INTO :hv_id

FROM EMPDATA E

WHERE E.EMP_ROWID = :hv_emp_rowid;

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Use the ROWID value to delete the employee record S/

/S from the table. S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL DELETE FROM EMPDATA

WHERE EMP_ROWID = :hv_emp_rowid;

Figure 12 (Part 2 of 2). Example of using a row ID value for direct row access

# Declared temporary tables
# Declared temporary tables, which are defined with the new DECLARE GLOBAL
# TEMPORARY TABLE statement, provide another way to temporarily hold or sort
# data besides the existing support for created temporary tables, which are defined
# with the CREATE GLOBAL TEMPORARY TABLE statement. Like a created
# temporary table, the rows of a declared temporary table persist only as long as the
# application process in which it was defined. However, unlike a created temporary
# table, the description of a declared temporary table is not stored in the DB2 catalog
# tables, is not shareable across application processes, and persists only for the life
# of the application process. Thus, multiple application processes can refer to a
# declared temporary table with the same name, but each application process can
# have its own unique description of the table. For example, application process A
# might define a declared temporary table named TEMP1 with 15 columns while
# application process B defines a declared temporary table named TEMP1 with 5
# columns.

# Some other important differences between the two types of temporary tables
# include:

# � A declared temporary table can have indexes and can be modified by the
# searched as well as the positioned forms of the UPDATE and DELETE
# statements.

# � Some locking, logging, and limited recovery do apply to declared temporary
# tables. Share-level locks on the table space and DBD are acquired. A
# segmented table lock is acquired when all the rows are deleted from a declared
# temporary table or a declared temporary table is dropped. Changes to the rows

  Chapter 3. Improved performance and availability 57



  
 

# of a declared temporary table can be undone (or rolled back) to a savepoint or
# the last commit.

# � A declared temporary table does not require an associated cursor that is
# declared WITH HOLD to keep its rows across a commit operation.

# � DB2 stores declared temporary tables in segmented table spaces in a database
# that must be defined AS TEMP. Declared temporary tables can be used only if
# at least one table space has been explicitly created in that database.

# � The qualifier for a declared temporary table must be SESSION (the second part
# of a three-part name and the first part of a two-part name). If you do not
# explicitly specify SESSION as the qualifier in the DECLARE GLOBAL
# TEMPORARY TABLE statement, DB2 implicitly uses SESSION. You must
# specify SESSION when referring to the declared temporary table in any other
# SQL statement; otherwise, DB2 assumes that the reference is to a base table.

# As with created temporary tables, declared temporary tables provide some
# performance advantages over persistent base tables. For declared temporary
# tables, some of the locking, DB2 catalog table updates, and DB2 restart forward
# and backward log recovery that are associated with base tables are avoided. For a
# more detailed comparison between declared temporary tables, created temporary
# tables, and base tables, see Section 2 of DB2 Administration Guide. For a
# description and syntax of the new DECLARE GLOBAL TEMPORARY TABLE
# statement, see DB2 SQL Reference.

Increased flexibility with 8-KB and 16-KB page sizes
Previously: Your only options for data page sizes were 4 KB and 32 KB.

Now: You can choose 8-KB and 16-KB pages. These additional options give you
the flexibility to manage DASD space more efficiently without sacrificing I/O
performance. In a data sharing environment, these options let you manage coupling
facility space more efficiently with less overhead for reads and writes.

New buffer pool names
The size of the data page is determined by the buffer pool in which you define the
table space. For example, a table space that is defined in a buffer pool with 8-KB
buffers has 8-KB page sizes. (Indexes must be defined in a buffer pool with 4-KB
buffers.)

You can have up to ten buffer pools, each with 16-KB buffers and 8-KB buffers.
Their names are:

� BP8K0, BP8K1,.....,BP8K9 for 8-KB buffers

� BP16K0, BP16K1,.....,BP16K9 for 16-KB buffers

Recommendations for choosing a page size
Initially, use the default of 4-KB page sizes when access to the data is random and
only a few rows per page are needed. If row sizes are very small, use the 4-KB
page size.

However, there are situations in which larger page sizes are needed or
recommended:

� When the size of individual rows is greater than 4 KB, you must use a larger
page size. When considering the size of work file table spaces, remember that

58 Release Planning Guide  



  
 

some SQL operations, such as joins, can create a result row that does not fit
into a 4-KB page. For this reason, define at least one buffer pool with 32-KB
buffers. (Work files cannot use 8-KB or 16-KB pages.)

� When you can achieve higher density on DASD, choose a larger page size.
For example, only one 2100-byte record can be stored in a 4-KB page, wasting
almost half of the space, but storing the record in a 32-KB page can
significantly reduce this waste. The disadvantage with this approach is that
there is the potential of incurring higher buffer pool storage costs or higher I/O
costs. If you access only a small number of rows, you are bringing a larger
amount of data from DASD into the buffer pool.

Using 8-KB or 16-KB page sizes can let you store more data on your DASD
with less impact on I/O and buffer pool storage costs. If you use a larger page
size and access is random, you might have to go back and increase the size of
the buffer pool to achieve the same read-hit ratio you do with the smaller page
size.

� When a larger page size can reduce data sharing overhead, choose a larger
page size. One way to reduce the cost of data sharing is to reduce the number
of times the coupling facility must be accessed. Particularly for sequential
processing, larger page sizes can reduce this number. More data can be
returned on each access of the coupling facility, and fewer locks must be taken
on the larger page size, further reducing coupling facility interactions.

If data is returned from the coupling facility, each access that returns more data
is more costly than those that return smaller amounts of data. However,
because the total number of accesses is reduced, coupling facility overhead is
reduced.

For random processing, using an 8-KB or 16-KB page size instead of a 32-KB
page size might improve the read hit-ratio to the buffer pool and reduce I/O
resource consumption.

Preserving a prior access path
In Version 6, you can have more direct control over the access path that DB2
chooses in those rare situations when the chosen path is not optimal or if you want
to temporarily bypass a chosen path.

Only experienced database administrators should attempt to use optimization hints.
Always test and analyze the results of any query that uses optimization hints.

Consider giving optimization hints for the following situations:

� You have rebound a plan or package and have encountered a performance
problem. If the database or application has changed, or if DB2 has new
function that causes it to choose a different access path, it is handy to have the
ability to use an old access path if the new one does not perform as well.

It is always a good idea to save the access paths of your important programs
and queries before migrating to a new release of DB2.

� You want to bypass the access path chosen by DB2.

  Chapter 3. Improved performance and availability 59



  
 

Use the new version PLAN_TABLE
Appendix E, “EXPLAIN table changes” on page 293 shows the SQL statements to
create the Version 6 PLAN_TABLE. For best performance, create an ascending
index on the PLAN_TABLE with the following columns:

 � QUERYNO

 � APPLNAME

 � PROGNAME

 � VERSION

 � COLLID

 � OPTHINT

The DB2 sample library, in member DSNTESC, contains an appropriate CREATE
INDEX statement that you can modify.

Enabling optimization hints
On the subsystem where the application is bound or where dynamic queries are
prepared, specify YES in the OPTIMIZATION HINTS field of installation panel
DSNTIP4. If you specify NO, DB2 ignores any hints.

Creating the hint
This section describes the procedure you use to create a hint out of an existing
access path. You can also populate PLAN_TABLE to force a different access path,
but that scenario is not described here.

Assign a query number to the SQL statement for which you want to create a hint.
Use the new QUERYNO clause, and use that query number to create a
corresponding row in the PLAN_TABLE (or to update an existing row). Use
EXPLAIN to put rows into the PLAN_TABLE.

Overview of procedure:

1. Optionally, assign the statement a query number, as described in “Correlating
SQL statements with PLAN_TABLE rows.”

2. Run EXPLAIN to put the rows into PLAN_TABLE.

3. Update the rows in PLAN_TABLE, as described in “Update the PLAN_TABLE”
on page 61.

Correlating SQL statements with PLAN_TABLE rows:  Using the new
QUERYNO clause makes correlating a statement with a row in the PLAN_TABLE
easier. You do not need to assign a query number to use optimization hints. If you
don't assign a query number, DB2 uses the statement number. However, assigning
a query number is especially useful in the following cases:

� For dynamic statements

The query number for dynamic applications is the statement number in the
application where the prepare occurs. For some applications, such as
DSNTEP2, the same statement in the application prepares each dynamic
statement, resulting in the same query number for each dynamic statement.
Assigning a query number to each statement that uses optimization hints
eliminates ambiguity as to which rows in the PLAN_TABLE are associated with
each query.

60 Release Planning Guide  



  
 

� For static statements

If you change an application that has static statements, the statement number
might change, causing rows in the PLAN_TABLE to be out of sync with the
modified application. Statements that use the QUERYNO clause are not
dependent on the statement number. You can move those statements around
within the application source without affecting the relationship between rows in
the PLAN_TABLE and the statements that use those rows in the application.

Here is an example of the QUERYNO clause:

SELECT S FROM T1

WHERE C1 = 1O AND

C2 BETWEEN 1O AND 2O AND

C3 NOT LIKE 'A%'

 QUERYNO 1OO;

Update the PLAN_TABLE:  Make the PLAN_TABLE rows for that query
(QUERYNO=100) into a hint by updating the OPTHINT column with the name you
want to call the hint. In this case, the name is OLDPATH:

UPDATE PLAN_TABLE

SET OPTHINT = 'OLDPATH' WHERE

QUERYNO = 1OO AND

APPLNAME = ' ' AND

PROGNAME = 'DSNTEP2' AND

VERSION = '' AND

COLLID = 'DSNTEP2';

Setting the special register
For dynamic statements, you can use a new special register, SET CURRENT
OPTIMIZATION HINT to specify to DB2 the name of the hint to use.

SET CURRENT OPTIMIZATION HINT = 'OLDPATH';

You can put the name of the optimization hint in a host variable. If you don't
explicitly set the special register, the value you specify for the bind option OPTHINT
is used.

 Rebinding
Rebind the plan or package to see if DB2 uses the hint. Use the OPTHINT bind
option, described in DB2 Command Reference. As a result of the BIND, DB2
issues warning SQLCODEs to indicate whether it used the hints. If EXPLAIN is
being done during the REBIND, the PLAN_TABLE rows indicate if the hints are
used.

More buffer pool tuning options
You can tune the buffer pool by choosing a page-stealing method and by specifying
VDWQT as an absolute number of pages.

Choosing a page-stealing method
When DB2 takes away a page in the buffer pool to make room for a newer page,
this is called “stealing” the page from the buffer pool. DB2 usually uses a
least-recently-used (LRU) algorithm for managing pages in storage. That is, it takes
away older pages so that more recently used pages can remain in the virtual buffer
pool.

  Chapter 3. Improved performance and availability 61



  
 

However, by using the ALTER BUFFERPOOL command, you can also choose to
have DB2 use a first-in, first-out (FIFO) algorithm. With this simple algorithm, DB2
does not keep track of how often a page is referenced—the pages that are oldest
are moved out, no matter how frequently they are referenced. This approach to
page stealing results in a small decrease in the cost of doing a getpage operation,
and it can reduce internal DB2 latch contention in environments that require very
high concurrency.

Recommendations:

� In most cases, keep the default, LRU.

� Use FIFO for buffer pools that have little or no I/O; that is, the table space or
index remains in the buffer pool. Because all the pages are there, there is no
need to pay the additional cost of a more complicated page management
algorithm, and it can cause even cause a severe performance degradation.

� Keep objects that can benefit from the FIFO algorithm in different buffer pools
from those that benefit from the LRU algorithm.

Specifying VDWQT as an absolute number of pages
Vertical deferred write threshold (VDWQT) is similar to the deferred write threshold,
but it applies to the amount of updated pages for a data set in the buffer pool. If the
percentage or number of updated pages for the data set exceeds the threshold,
writes are scheduled for that data set.

You can specify this threshold in one of two ways:

� As a percentage of the virtual buffer pool that might be occupied by updated
pages from a single page set.

The default value for this threshold is 10%. You can change the percentage to
any value from 0% to 90%.

� As the total number of buffers in the virtual buffer pool that might be occupied
by updated pages from a single page set.

You can specify the number of buffers from 0 to 9999. If you want to use the
number of buffers as your threshold, you must set the percentage threshold to
0.

Changing the threshold: Change the percent or number of buffers by using the
VDWQT keyword on the ALTER BUFFERPOOL command.

Because any buffers that count toward VDWQT also count toward DWQT, setting
the VDWQT percentage higher than DWQT has no effect: DWQT is reached first,
write operations are scheduled, and VDWQT is never reached. Therefore, the
ALTER BUFFERPOOL command does not allow you to set the VDWQT
percentage to a value greater than DWQT. You can specify a number of buffers for
VDWQT that is higher than DWQT, but again, with no effect.

This threshold is overridden by certain DB2 utilities, which use a constant limit of 64
pages rather than a percentage of the virtual buffer pool size. LOAD, REORG, and
RECOVER use a constant limit of 128 pages.

Setting VDWQT to 0: If you set VDQWT to zero for both the percentage and
number of buffers, the minimum number of pages is MIN(32,1%) of VP size.

62 Release Planning Guide  



  
 

Control of space map copy maintenance
Previously: When an application rapidly updated a single table space, there was
possible contention on the space map pages as DB2 tracked changes to pages
within the table space. DB2 tracks these changes to help make incremental image
copies run faster, but the space map page contention can cause performance
problems, especially in a data sharing environment.

Now: With the TRACKMOD NO option on CREATE and ALTER TABLESPACE,
DB2 avoids tracking changes and thus avoids contention on the space map. Do not
specify this option if you depend on fast incremental image copies for your backup
strategy. However, if you rely on other means of making backups, TRACKMOD NO
can reduce the overhead that is associated with tracking changes in the space
map.

For more information about the syntax, see DB2 SQL Reference.

Reduced DBD logging for CREATE, ALTER, DROP
Previously: When an application entered multiple CREATE, ALTER, or DROP
statements in a single unit of recovery, DB2 logged the changed database
descriptor (DBD) once for each statement. Depending on the size of the DBD, this
can be a significant amount of logging activity.

Now: DB2 logs the changed DBD once for each unit of recovery rather than once
for each statement. For applications that do a lot of data definition within the same
database and within a unit of recovery, this means significantly less logging
overhead. The X lock on the DBD is held until the commit is issued.

Improved performance for DROP
In addition to the enhancement in “Reduced DBD logging for CREATE, ALTER,
DROP,” two enhancements improve the performance of some DROP operations:

� DROP STOGROUP performance is improved because of new indexes on
catalog tables SYSINDEXPART and SYSTABLEPART.

� DROP TABLESPACE and DROP INDEX performance is improved for
DB2-managed data sets. This same enhancement applies for utilities that
logically reset the data set for DB2-managed data sets, including LOAD
REPLACE, REORG, RECOVER, and REBUILD INDEX.

Larger log buffer sizes
The default for the log output buffer size is increased in Version 6 to 4 MB. You
can modify that size to be up to 400 MB (but be sure our system can handle a very
large size). By increasing this buffer size, DB2 can perform better for both log reads
and log writes. Log writes improve because DB2 is less likely to need to wait for a
buffer. Log reads improve because DB2 searches the buffer first when it must read
the log. If the information is in the log buffer, going to DASD is unnecessary.

In Version 6, the default log read buffer size is increased to 60 KB.

  Chapter 3. Improved performance and availability 63



  
 

| Authorization caching for stored procedures and user-defined
| functions
| The routine authorization cache stores a list of authorization IDs that hold the
| EXECUTE privilege on stored procedures and user-defined functions. You set the
| cache size using the ROUTINE AUTH CACHE field on installation panel DSNTIPP.

| By checking the routine authorization cache for routine authorization IDs, DB2
| avoids the performance expense of catalog lookups. This enhancement offers the
| most benefit for packages that run frequently in different collections.

More flexibility when altering space allocations
Previously: Before you could change the primary or secondary space allocation for
a page set, you had to stop the page set.

Now: With the enhancement delivered in Version 5 APAR PQ04053, you can
change those attributes without first stopping the page set. If you change the
secondary quantity, DB2 uses that new value the next time it extends the data set,
but that new value is not reflected in the integrated catalog until you run REORG,
LOAD REPLACE, RECOVER, or REBUILD INDEX.

# Deferred allocation of data sets
# Previously: When you created a tablespace or index space, the underlying VSAM
# data sets were always allocated immediately.

# Now: With the DEFINE NO clause of the CREATE TABLESPACE and CREATE
# INDEX statements, you can defer the physical allocation of the underlying VSAM
# data sets until data if first inserted into the table space or index space. DEFINE NO
# is applicable only for DB2-managed data sets. Deferring the allocation of the data
# sets allows the CREATE TABLESPACE and CREATE INDEX statements to
# execute faster and helps optimize the use of DASD resources. These advantages
# might be particularly beneficial when you use an applicaton package that defines
# numerous tables that you might not use.

More command concurrency
Previously: The following two commands sometimes could cause concurrency
problems:

� DISPLAY DATABASE with the LOCKS option

 � MODIFY irlmproc,STATUS

Now: Both commands now allow greater concurrency. The DISPLAY DATABASE
enhancement is also available with IRLM APAR PQ15854.

| Increased concurrency for RRSAF and IMS transactions
| The Recoverable Resource Manager Services attachment facility (RRSAF) relies on
| an OS/390 component called OS/390 Transaction Management and Recoverable
| Resource Manager Services (OS/390 RRS). OS/390 RRS provides system-wide
| services for coordinating two-phase commit operations across MVS products. For
| RRSAF applications and IMS transactions that run under OS/390 RRS, you can
| group together a number of DB2 agents into a single global transaction. A global
| transaction allows multiple DB2 agents to participate in a single global transaction

64 Release Planning Guide  



  
 

| and thus share the same locks and access the same data. When two agents that
| are in a global transaction access the same DB2 object within a unit of work, those
| agents will not deadlock with each other. The following restrictions apply:

| � A global transaction is restricted to a single DB2 subsystem running on a CEC,
| which has no Parallel Sysplex support.

| � Because each of the "branches" of a global transaction are sharing locks,
| uncommitted updates issued by one branch of the transaction are visible to
| other branches of the transaction.

| � Claim/drain processing is not supported across the branches of a global
| transaction, which means that attempts to issue CREATE, DROP, ALTER,
| GRANT, or REVOKE may deadlock or timeout if they are requested from
| different branches of the same global transaction.

| � Attempts to update a partitioning key may deadlock or timeout because of the
| same restrictions on claim/drain processing.

| � LOCK TABLE may deadlock or timeout across the branches of a global
| transaction.

  Chapter 3. Improved performance and availability 65



  
 

66 Release Planning Guide  



  
 

 Chapter 4. User productivity

This chapter describes user productivity enhancements that improve DB2 family
consistency, expand your access choices, and make administrative, operational,
and programming tasks easier.

� “Built-in function extensions”
� “New ROWID data type”
� “DB2 REXX Language Support” on page 72
� “More flexibility and control” on page 72
� “IRLM enhancements” on page 85
� “More user productivity enhancements” on page 91

Built-in function extensions
In addition to the user-defined functions introduced in Version 6, DB2 provides
many new built-in functions and extends existing functions to improve compatibility
with the same functions across the DB2 family of products.

The new built-in functions include column functions, scalar functions, a number of
new functions for date and time, and functions for manipulating strings. Many of the
built-in functions support the object-relational extensions; for example, LOB values
can be used in the string built-in functions.

See Appendix C, “Changes to SQL” on page 269 for a detailed description of each
function.

New ROWID data type
DB2 introduces a new data type called ROWID. With the ROWID data type, a
unique value for each row in a table is generated by DB2.

Because row IDs are always generated by DB2, you cannot generate your own
values for a ROWID column. You can specify whether the value of a ROWID
column can be supplied at insertion time, but this ability is only provided to facilitate
data propagation. It is not intended to allow you to generate your own row IDs.

Purposes: A value in a ROWID column is used to uniquely and permanently
identify rows in a DB2 table. Other uses for ROWID columns include:

� For direct access to a row, as described in “Direct row access” on page 53.

� To locate LOB values in a row, as described in “Introduction to defining LOBs”
on page 124.

� As a partitioning key value for a partitioned table space, as described in “Using
a ROWID column as the partitioning key” on page 69.

 Copyright IBM Corp. 1999  67



  
 

Characteristics of the ROWID data type
The characteristics of the ROWID data type are:

� It is a new data type with its own rules of operations. ROWIDs are only
compatible with ROWIDs.

# � A ROWID can never be null.

� Its value is generated by DB2. The unique identity of a row is maintained
across table space reorganizations. (This is in contrast with record IDs (RIDs),
that can change whenever a table is reorganized.)

� It can be used in a SELECT list or as a search condition. For example:

SELECT EMP_ROWID INTO :hv_emp_rowid

 FROM EMP

 WHERE ...

DELETE FROM EMP

 WHERE EMP_ROWID = :hv_emp_rowid

� ROWID columns contain bit data and are not subject to character conversion.
Their format is internal and transparent to the SQL end user.

� A ROWID column takes up to 19 bytes of physical storage and 17 bytes for
each index key on a ROWID column.

Restrictions: ROWID columns have the following restrictions:

� A table cannot have more than one ROWID column.

� A trigger cannot modify a ROWID column, nor can ROWID columns be
updated.

# � A ROWID column must be defined as NOT NULL.

� A ROWID column cannot have field procedures or check constraints defined on
it.

� A table with a ROWID column cannot have an edit procedure defined on it.

� The ROWID data type cannot be used with DB2 private protocol.

Defining a ROWID column
Create a ROWID column for a table as you would any other column, using the
ALTER TABLE or CREATE TABLE statement as described in DB2 SQL Reference.
There are two options for how row IDs should be generated: GENERATED
ALWAYS or GENERATED BY DEFAULT. Each of those options is described in this
section. These options also have implications for LOAD, as described in “Loading
columns defined as ROWID” in DB2 Utility Guide and Reference.

 GENERATED ALWAYS
The clause GENERATED ALWAYS means that you want DB2 to generate a row ID
and that users are not allowed to specify a value. For most cases, GENERATED
ALWAYS is the recommended option:

CREATE TABLE EMP

(EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,

 ID SMALLINT,

 NAME CHAR(3O),

...

68 Release Planning Guide  



  
 

GENERATED BY DEFAULT
GENERATED BY DEFAULT means that DB2 accepts valid row IDs as inserted
values into a row. If you do not specify a value, DB2 generates the value for you.
GENERATED BY DEFAULT is recommended for tables that are populated by
propagation from another table.

Required index: If you specify GENERATED BY DEFAULT, you must define a
| unique, single-column index on the ROWID column. Until this index is created, you
| cannot add rows using INSERT.

If you create the table using SQLRULES(STD), the index on the ROWID column is
created implicitly. The name is “I” concatenated with the first ten characters of the
column name followed by seven characters that DB2 chooses.

Using a ROWID column as the partitioning key
The generated value of a ROWID column acts like a random value in the range of
X'00000...' through X'FFFFF...'. Because of this semi-random nature, a ROWID
column used as a partitioning key distributes the rows of a partitioned table across
the partitions in a random way. Therefore, if you would like to partition your table,
and it has no other column that would serve as a good partitioning key, you can
include a ROWID column in your table and use it as your partitioning key.

Example: Assume you want to create four partitions for an employee table, but
because employee numbers are assigned in ascending order, the employee
number is not a good partitioning key. You can include a ROWID column in your
table definition and use that as the partitioning key as shown here:

CREATE TABLESPACE EMPSPACE NUMPARTS 4;

CREATE TABLE EMP

 (Id SMALLINT,

 Name CHARACTER(3O),

 Salary DECIMAL(7,2),

 Deptnum SMALLINT,

Emp_Rowid ROWID NOT NULL GENERATED ALWAYS,

 Picture BLOB(3OOK),

 Resume CLOB(1OOK))

 IN EMPSPACE;

CREATE INDEX EMPARTIX ON EMP(Emp_Rowid)

CLUSTER (PART 1 VALUES(X'3FFF'),

PART 2 VALUES(X'7FFF'),

PART 3 VALUES(X'BFFF'),

PART 4 VALUES(X'FFFF'));

Because DB2 pads the ascending PART values, the CREATE INDEX statement
does not need to specify a complete value of the entire length of a row ID. (In a
WHERE clause, though, the value compared to a row ID is not padded, so
complete values must be specified to confine an SQL statement to a particular
partition.)

  Chapter 4. User productivity 69



  
 

Casting to a ROWID
ROWID values can only be assigned to ROWID columns or ROWID variables. To
assign a character string to ROWID, you must first cast it to the ROWID data type.
There are two ways to cast a CHAR or VARCHAR expression, or a HEX literal, to
ROWID:

� Using the CAST function:

CAST (expression  AS ROWID)

CAST (X'hex_literal' AS ROWID)

� Using the ROWID function:

ROWID (varchar-expression)

When casting a value to a ROWID, the CAST or ROWID function only returns a
valid ROWID value if the argument to the function is a ROWID value that was
previously generated by DB2. For example, you can use the ROWID function to
convert a ROWID value that was cast to a CHAR value back to a ROWID value.
You cast a ROWID value to a VARCHAR as follows:

CAST (rowid-expression AS VARCHAR(4O))

Inserting into a ROWID column
To insert into a ROWID column, use the new DEFAULT clause of the INSERT
statement. The DEFAULT clause lets you insert a default value into a column
(assuming that default values are allowed for the column). If the column is a
ROWID column, DB2 generates a unique value for the column.

Example: Insert a row with a generated row ID and set the employee address to its
default value:

INSERT INTO T2 (EMPROWID, EMPNAME, EMPADDR)

 VALUES (DEFAULT,:hv_name,DEFAULT);

If the ROWID column is defined as GENERATED BY DEFAULT and has the
unique single-column index defined on it, you can insert a valid row ID. A valid row
ID is one that was previously generated by DB2. Do not attempt to create and
insert your own row ID.

Example:

INSERT INTO T2 (EMPROWID, EMPNAME, EMPADDR)

 VALUES (:hv_valid_rowid,:hv_name,DEFAULT);

The above statement does not work for a ROWID column that is defined as
GENERATED ALWAYS.

INSERT with a subselect: The rules for INSERT with a subselect are similar to
those for an INSERT with a VALUES clause. You can specify a ROWID value only
if the ROWID column is defined as GENERATED BY DEFAULT. The following
example is valid only when the ROWID column of T2 is defined as GENERATED
BY DEFAULT:

INSERT INTO T2

SELECT S FROM T1;

70 Release Planning Guide  



  
 

If you have a table with a column defined as ROWID NOT NULL GENERATED
ALWAYS, you can propagate all non-ROWID columns to another table with the
same definitions in one of the following ways:

| � By not specifying the ROWID column in the SELECT list:

| INSERT INTO T2 (intcol1)
| SELECT intcol1 FROM T1;

| � By specify the OVERRIDING USER VALUE clause to tell DB2 to ignore any
| values that you supply for the ROWID column:

| INSERT INTO T2 (INTCOL2,ROWIDCOL2) OVERRIDING USER VALUE

| SELECT INTCOL1, ROWIDCOL1 FROM T1;

Declaring host variables for ROWID columns
Use a new host variable type, SQL TYPE IS ROWID, to store row ID values. You
can select a row ID into a host variable and then use it in subsequent SQL
statements, such as in a search condition. This gives an application the means of
directly referencing a row with no other qualifications needed.

Restriction: You cannot use a host variable of type SQL TYPE IS ROWID in
datetime or numeric operations or with the concatenation operator.

Table 4 shows the SQL declaration and equivalent host language declarations for
ROWID host variables. ROWID host variables are supported in host structures for
C, C++, and PL/I and in group items for COBOL.

Table 4. Host language declarations for ROWID host variables

Host language You declare this variable DB2 generates this variable

Assembler host-variable SQL TYPE IS ROWID host-variable DS H,CL4O

C SQL TYPE IS ROWID host-variable; struct {
short int length;

 char data[40];
} host-variable;

C++ SQL TYPE IS ROWID host-variable; struct {
short int length;

 char data[40];
} host-variable;

COBOL level-1 host-variable <USAGE <IS> >
SQLTYPE IS ROWID.

01 host-variable.
02 host-variable-LEN PIC S9(4).
02 host-variable-TEXT PIC X(40).

Note:  For COBOL, USAGE IS is optional. The declaration for COBOL ROWID host variable can be coded as
USAGE IS SQL TYPE IS ROWID, USAGE SQL TYPE IS ROWID, or SQL TYPE IS ROWID.

FORTRAN SQLTYPE IS ROWID host-variable CHARACTER 40 host-variable

PL/I host-variable SQL TYPE IS ROWID DCL host-variable CHARACTER(40) VARYING

  Chapter 4. User productivity 71



  
 

# DB2 REXX Language Support
# IBM DATABASE 2 Universal Database Server for OS/390 REXX Language
# Support, is a separately-orderable feature of DB2. DB2 REXX Language Support
# provides the ability to write SQL application programs in the REXX programming
# language. See DB2 Installation Guide and the DB2 REXX Language Support
# Program Directory for information on installing DB2 REXX Language Support. See
# DB2 Application Programming and SQL Guide for information on writing and
# running REXX SQL applications and stored procedures.

More flexibility and control
These changes are described in the sections that follow:

 � “Predictive governing”
� “Statement cost estimation” on page 79
� “Set default buffer pools” on page 83
� “More information available for monitoring DB2” on page 83

 Predictive governing
DB2's resource limit facility (governor) lets you set warning and error thresholds by
which the governor can inform users (via your application programs) that a certain
processing limit might be exceeded for a particular dynamic SELECT, INSERT,
UPDATE, or DELETE statement. This function is called predictive governing.

DB2's predictive governing capability has an advantage over the reactive governor,
which stops a currently executing dynamic SQL statement that exceeds the
processor limit that is specified for that statement. With a predictive governor, you
can stop a statement from starting to execute and thus avoid wasting resources.
Resource is spent to roll back a statement when a reactive governor stops a
statement, and there is also the resource used to execute the statement. With
predictive governing both the costs of executing and rolling the statement back are
saved.

Requirement: For complete predictive governing support for incoming client
requests, the requester must be at DRDA level 4. DB2 for OS/390 Version 6 and
DB2 Connect Version 5.2 provide this support.

In this section:

� “Overview of predictive governing process” on page 73

� “Creating an RLST” on page 74

� “Descriptions of the RLST columns” on page 75

� “Combining reactive and predictive governing” on page 78

� “Writing an application to handle predictive governing” on page 79

72 Release Planning Guide  



  
 

Overview of predictive governing process
With predictive governing, at run time, DB2 determines which cost category a
particular statement belongs to. A cost category is DB2's way of distinguishing
statements for which enough information exists to make a good cost estimate from
those that do not. Cost category A is a statement for which adequate information
exists to make a good estimate. See “Understanding the implications of cost
categories” on page 82 for more information about cost categories. You can tell
which category a statement falls into by looking at the COST_CATEGORY column
of the DSN_STATEMNT_TABLE for that statement.

See Figure 13 for an overview of how predictive governing works.

Calculate cost (during PREPARE)

Category A?
Category B

Cost >
RLFASUERR?

Cost >
RLFASUWARN?

-495 SQLCODE

-495 SQLCODE

RLF
CATEGORY

B?

Execute

Y

'Y'

'N'

N

N

N

'W'

Execute

Application decides

Application
decides

+495 SQLCODE

+495 SQLCODE

Y

Y

Figure 13. Processing for predictive governing. 

At prepare time for a dynamic SELECT, INSERT UPDATE, or DELETE statement,
DB2 searches the active RLST to determine if the processor cost estimate exceeds
the error or warning threshold that you set in RLFASUWARN and RLFASUERR
columns for that statement. DB2 compares the cost estimate for a statement to the
thresholds you set, and the following actions occur:

� If the cost estimate is in cost category A and the error threshold is exceeded,
DB2 returns a -495 SQLCODE to the application at PREPARE time, and the
statement is not prepared or executed.

� If the estimate is in cost category A and the warning threshold is exceeded, a
+495 SQLCODE is returned at prepare time. The prepare is completed, and the
application or user decides whether to run the statement.

� If the estimate is in cost category B, DB2 takes the action you specify in the
RLF_CATEGORY_B column; that is, it prepares and executes the statement, it
does not prepare or execute the statement, or it returns a warning SQLCODE,
which lets the application decide what to do.

  Chapter 4. User productivity 73



  
 

Example:  Table 5 on page 74 is an RLST with two rows that use predictive
governing.

Table 5. Predictive governing example

RLFFUNC AUTHID RLFCOLLN RLFPKG RLF-
ASU-
WARN

RLF-
ASU-
ERR

RLF_
CATEGORY_
B

7 (blank) COLL1 C1PKG1 900 1500 Y

7 (blank) COLL2 C2PKG1 900 1500 W

The rows in the RLST for this example cause DB2 to act as follows for all dynamic
INSERT, UPDATE, DELETE, and SELECT statements in the packages listed in this
table (C1PKG1 and C2PKG1):

� Statements in cost category A that are predicted to be less than 900 SUs will
execute.

� Statements in cost category A that are predicted to be between 900 and 1500
SUs receive a +495 SQLCODE.

� Statements in cost category A that are predicted to be greater than 1500 SUs
receive SQLCODE -495, and the statement is not executed.

Cost category B: The two rows in Table 5 differ only in how statements in cost
category B are treated. For C1PKG1, the statement will execute. For C2PKG2, the
statements receive a +495 SQLCODE, and the user or application must decide
whether to execute the statement.

Creating an RLST
You use resource limit specification tables (RLSTs) to give governing information to
DB2. Resource limit specification tables can reside in any database, but, because a
database has some special attributes while the resource limit facility is active, they
should reside in a database of their own.

When you install DB2, installation job DSNTIJSG creates a database, table space,
table, and descending index for the resource limit specification. You can tailor those
statements.

To create a new resource limit specification table, use the statements in Figure 14
on page 75, also included in installation job DSNTIJSG. You must have sufficient
authority to define objects in the DSNRLST database and to specify authid, which
is the authorization ID specified on field RESOURCE AUTHID of installation panel
DSNTIPP.

74 Release Planning Guide  



  
 

CREATE TABLE authid.DSNRLSTxx
(AUTHID CHAR(8) NOT NULL WITH DEFAULT,

PLANNAME CHAR(8) NOT NULL WITH DEFAULT,

 ASUTIME INTEGER,

-------3-column format --------

LUNAME CHAR(8) NOT NULL WITH DEFAULT,

-------4-column format --------

RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,

RLFBIND CHAR(1) NOT NULL WITH DEFAULT,

RLFCOLLN CHAR(18) NOT NULL WITH DEFAULT,

RLFPKG CHAR(8) NOT NULL WITH DEFAULT),

-------8-column format --------

 RLFASUERR INTEGER,

 RLFASUWARN INTEGER,

RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)

-------11-column format --------

 IN DSNRLST.DSNRLSxx;

Figure 14. Creating a resource limit specification table (RLST). 

To create an index for the 11-column format, use the following SQL:

CREATE UNIQUE INDEX authid.DSNARLxx
 ON authid.DSNRLSTxx

(RLFFUNC, AUTHID DESC, PLANNAME DESC,

RLFCOLLN DESC, RLFPKG DESC, LUNAME DESC)

CLUSTER CLOSE NO;

Table name: The name of the table is authid.DSNRLSTxx, where xx is any
two-character alphanumeric value, and authid is specified when DB2 is installed.
Because the two characters xx must be entered as part of the START command,
they must be alphanumeric—no special or DBCS characters.

Adding your own columns: All future column names defined by IBM appear as
RLFxxxxx. To avoid future naming conflicts, begin your own column names with
characters other than RLF.

Index name: The xx in the index name (DSNARLxx) must match the xx in the table
name (DSNRLSTxx), and the index must be a descending index.

Descriptions of the RLST columns
This section contains a complete description for all RLST columns. In no case will
all columns in a particular row be populated; the columns you must populate
depend on the function being performed by that row (determined by the value in
RLFFUNC) and how narrowly you want to qualify values. For example, you can
qualify broadly by leaving the AUTHID column blank, which means that the row
applies to all authorization IDs. Or, you can qualify very narrowly by specifying a
different row for each authorization ID for which the function applies.

  Chapter 4. User productivity 75



  
 

AUTHID
The resource specification limits apply to this primary authorization ID. A
blank means that the limit specifications in this row apply to all
authorization IDs for the location that is specified in LUNAME.

PLANNAME
The resource specification limits apply to this plan. If you are specifying a
function that applies to plans (RLFFUNC=blank or '6'), a blank means that
the limit specifications in this row apply to all plans for the location that is
specified in LUNAME. When dynamic statements are issued from a remote
location to access data at your local location using DB2 private protocol,
they are governed by a row in the RLST with RLFFUNC=blank and the
LUNAME of the originating location first, PUBLIC second.

Qualify by plan name only if the dynamic statement is issued from a DBRM
bound in a plan, not a package; otherwise, DB2 does not find this row. If
the RLFFUNC column contains a function for packages ('1,' '2,' or '7'),
then this column must be blank; if it is not blank, the row is ignored.

ASUTIME
The number of processor service units allowed for any single dynamic
SELECT, INSERT, UPDATE, or DELETE statement. Use this column for
reactive governing. A null value in this column means that no limit exists. A
zero or a negative value means that no dynamic SELECT, INSERT,
UPDATE, or DELETE statements are permitted.

Service units are independent of processor changes. The processing time
for a particular SQL statement varies according to the processor on which it
is executed, but the required service units remain constant. The governor
samples the processing time in service units.

LUNAME
The LU name of the location where the request originated. A blank value in
this column represents the local location, not all locations. The value
PUBLIC represents all of the DBMS locations in the network; these
locations do not need to be DB2 subsystems.

RLFFUNC
Specifies how the row is used:

� Blank means that the row governs dynamic SELECT, INSERT,
UPDATE, or DELETE statements by plan name.

� '1' means that the row governs bind operations.

� '2' means that the row governs dynamic SELECT, INSERT, UPDATE,
or DELETE statements by package or collection name.

� '3' means that the row disables query I/O parallelism.

� '4' means that the row disables query CP parallelism.

� '5' means that the row disables Sysplex query parallelism.

� '6' means that the row predictively governs dynamic SELECT,
INSERT, UPDATE, or DELETE statements by plan name.

� '7' means that the row predictively governs dynamic SELECT,
INSERT, UPDATE, or DELETE statements by package or collection
name.

76 Release Planning Guide  



  
 

� All other values are ignored.

RLFBIND
Shows whether bind operations are allowed. An 'N' implies that bind
operations are not allowed. Any other value means that bind operations are
allowed. This column is used only if RLFFUNC is set to '1'.

RLFCOLLN
Specifies a package collection. A blank value in this column means that the
row applies to all package collections from the location that is specified in
LUNAME. Qualify by collection name only if the dynamic statement is
issued from a package; otherwise DB2 does not find this row. If
RLFFUNC=blank, '1', or '6', then RLFCOLLN must be blank.

RLFPKG
Specifies a package name. A blank value in this column means that the
row applies to all packages from the that is location specified in LUNAME.
Qualify by package name only if the dynamic statement is issued from a
package; otherwise DB2 does not find this row. If RLFFUNC=blank, '1', or
'6', then RLFPKG must be blank.

RLFASUERR
Used for predictive governing (RLFFUNC= '6' or '7'), and only for
statements that are in cost category A. The error threshold number of
system resource manager processor service units allowed for a single
dynamic SELECT, INSERT, UPDATE, or DELETE statement. If the
predicted processor cost (in service units) is greater than the error
threshold, an SQLCODE -495 is returned to the application.

Other possible values and their effects are:

null No error threshold

0 (zero) or a negative value
All dynamic SELECT, INSERT, UPDATE, or DELETE statements
receive SQLCODE -495.

RLFASUWARN
Used for predictive governing (RELFFUNC= '6' or '7'), and only for
statements that are in cost category A. The warning threshold number of
processor service units that are allowed for a single dynamic SELECT,
INSERT, UPDATE, or DELETE statement. If the predicted processor cost
(in service units) is greater than the warning threshold, an SQLCODE +495
is returned to the application.

Other possible values and their effects are:

null No warning threshold

0 (zero) or a negative value All dynamic SELECT, INSERT, UPDATE,
or DELETE statements receive SQLCODE
+495.

Important: Make sure the value for RLFASUWARN is less than that for
RLFASUERR. If the warning value is higher, the warning is never reported.
The error takes precedence over the warning.

RLF_CATEGORY_B
Used for predictive governing (RLFFUNC= '6' or '7'). Tells the governor
the default action to take when the cost estimate for a given statement falls
into cost category B, which means that the predicted cost is indeterminate

  Chapter 4. User productivity 77



  
 

and probably too low. You can tell if a statement is in cost category B by
running EXPLAIN and checking the COST_CATEGORY column of the
DSN_STATEMNT_TABLE.

The acceptable values are:

'' (blank)
By default, execute the SQL statement.

Y Prepare and execute the SQL statement.

N Do not prepare or execute the SQL statement. Return SQLCODE
-495 to the application.

W Complete the prepare, return SQLCODE +495, and allow the
application logic to decide whether to execute the SQL statement
or not.

Combining reactive and predictive governing
A dynamic statement can be governed both before and after the statement is
executed. For example, if the processing cost estimate is in cost category B and
you decide to run the statement, you can use the RLST to terminate the statement
after a certain amount of processor time, the same as it does today. To use both
modes of governing, you need two rows in the RLST as shown in Table 6.

Table 6. Combining reactive and predictive governing

RLFFUNC AUTHID PLANNAME ASUTIME RLFASUWARN RLFASUERR RLF_
CATEGORY_
B

6 USER1 PLANA 0 800 1000 W

(blank) USER1 PLANA 1100 0 0 (blank)

The rows in the RLST for this example cause DB2 to act as follows for a dynamic
SQL statement that runs under PLANA:

Predictive mode:

� If the statement is in COST_CATEGORY A and the cost estimate is greater
than 1000 SUs, USER1 receives SQLCODE -495 and the statement is not
executed.

� If the statement is in COST_CATEGORY A and the cost estimate is greater
than 800 SUs but less than 1000 SUs, USER1 receives SQLCODE +495.

� If the statement is in COST_CATEGORY B, USER1 receives SQLCODE +495.

Reactive mode: In either of the following cases, a statement is limited to 1100
SUs:

� The cost estimate for a statement in COST_CATEGORY A is less than 800
SUs

� The statement is in COST_CATEGORY A or COST_CATEGORY B and the
user chooses to execute the statement

If the cost estimate for a COST_CATEGORY A dynamic SQL statement run under
PLANA is less than 800 SUs, or if USER1 decides to execute the
COST_CATEGORY A or COST_CATEGORY B statement after receiving
SQLCODE +495, the statement that runs under PLANA is limited to 1100 SUs.

78 Release Planning Guide  



  
 

Writing an application to handle predictive governing
 If your installation uses predictive governing, you need to modify your applications
to check for the +495 and -495 SQLCODEs that predictive governing can generate
after a PREPARE statement executes. The +495 SQLCODE in combination with
deferred prepare requires that DB2 do some special processing to ensure that
existing applications are not affected by this new warning SQLCODE.

Handling the +495 SQLCODE:  If your requester uses deferred prepare, the
presence of parameter markers determines when the application receives the +495
SQLCODE. When parameter markers are present, DB2 cannot do PREPARE,
OPEN, and FETCH processing in one message. If SQLCODE +495 is returned, no
OPEN or FETCH processing occurs until your application requests it.

� If there are parameter markers, the +495 is returned on the OPEN (not the
PREPARE).

� If there are no parameter markers, the +495 is returned on the PREPARE.

Normally with deferred prepare, the PREPARE, OPEN, and first FETCH of the data
are returned to the requester. For a predictive governor warning of +495, you would
ideally like to have the option to choose beforehand whether you want the OPEN
and FETCH of the data to occur. For downlevel requesters, you do not have this
option. The level of DRDA that fully supports predictive governing is DRDA Level 4.

The products that include DRDA support for predictive governing are DB2 for
OS/390 Version 6 and DB2 Connect Version 5.2 with appropriate maintenance. All
other requesters are considered downlevel with regards to predictive governing
support through DRDA.

For downlevel requesters:  If SQLCODE +495 is returned to the requester, OPEN
processing continues but the first block of data is not returned with the OPEN.
Thus, if your application does not continue with the query, you have already
incurred the performance cost of OPEN processing.

For enabled requesters:  If your application does not defer the prepare, SQLCODE
+495 is returned to the requester and OPEN processing does not occur.

If your application does defer prepare processing, the application receives the +495
at its usual time (OPEN or PREPARE). If you have parameter markers with
deferred prepare, you receive the +495 at OPEN time as you normally do.
However, an additional message is exchanged.

Recommendation: Do not use deferred prepare for applications that use
parameter markers and that are predictively governed at the server side.

Statement cost estimation
You can use EXPLAIN to populate a statement table,
owner.DSN_STATEMNT_TABLE, at the same time as your PLAN_TABLE is being
populated. DB2 provides cost estimates, in service units and in milliseconds, for
SELECT, INSERT, UPDATE, and DELETE statements, both static and dynamic.
The estimates do not take into account several factors, including cost adjustments
that are caused by parallel processing, or the use of triggers or user-defined
functions.

Use the information that is provided in the statement table to:

  Chapter 4. User productivity 79



  
 

� Help you determine if a statement is not going to perform within range of your
service-level agreements and to tune accordingly.

DB2 puts its cost estimate into one of two cost categories: category A or
category B. Estimates that go into cost category A are the ones for which DB2
has adequate information to make an estimate. That estimate is not likely to be
100% accurate, but is likely to be more accurate than any estimate that is in
cost category B. For information on what goes into cost category B, see What
goes into cost category B? on page 82.

� Give a system programmer a basis for entering service-unit values by which to
govern dynamic statements.

This section describes the following tasks to obtain and use cost estimate
information from EXPLAIN:

1. “Creating a statement table”

2. “Populating and maintaining a statement table” on page 82

3. “Retrieving rows from a statement table” on page 82

4. “Understanding the implications of cost categories” on page 82

Creating a statement table
To collect information about a statement's estimated cost, create a table called
DSN_STATEMNT_TABLE to hold the results of EXPLAIN. A copy of the
statements that are needed to create the table are in the DB2 sample library, under
the member name DSNTESC.

Figure 15 shows the format of a statement table.

|  CREATE TABLE DSN_STATEMNT_TABLE

| ( QUERYNO INTEGER NOT NULL WITH DEFAULT,

| APPLNAME CHAR(8) NOT NULL WITH DEFAULT,

| PROGNAME CHAR(8) NOT NULL WITH DEFAULT,

| COLLID CHAR(18) NOT NULL WITH DEFAULT,

| GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,

| EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,

| STMT_TYPE CHAR(6) NOT NULL WITH DEFAULT,

| COST_CATEGORY CHAR(1) NOT NULL WITH DEFAULT,

| PROCMS INTEGER NOT NULL WITH DEFAULT,

| PROCSU INTEGER NOT NULL WITH DEFAULT,

| REASON VARCHAR(254) NOT NULL) WITH DEFAULT;

Figure 15. Format of DSN_STATEMNT_TABLE

Table 7 shows the content of each column. The first five columns of the
DSN_STATEMNT_TABLE are the same as PLAN_TABLE.

Table 7 (Page 1 of 2). Descriptions of columns in DSN_STATEMNT_TABLE

Column Name Description

QUERYNO A number that identifies the statement being explained. If QUERYNO is not unique,
the value of EXPLAIN_TIME is unique.

APPLNAME The name of the application plan for the row, or blank.

PROGNAME The name of the program or package containing the statement being explained, or
blank.

80 Release Planning Guide  



  
 

Table 7 (Page 2 of 2). Descriptions of columns in DSN_STATEMNT_TABLE

Column Name Description

COLLID The collection ID for the package, or blank.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN, or blank.

EXPLAIN_TIME The time at which the statement is processed. This time is the same as the
BIND_TIME column in PLAN_TABLE.

STMT_TYPE The type of statement being explained. Possible values are:

SELECT
SELECT

INSERT
INSERT

UPDATE
UPDATE

DELETE
DELETE

SELUPD
SELECT with FOR UPDATE OF

DELCUR
DELETE WHERE CURRENT OF CURSOR

UPDCUR
UPDATE WHERE CURRENT OF CURSOR

COST_CATEGORY Indicates if DB2 was forced to use default values when making its estimates.
Possible values:

A Indicates that DB2 had enough information to make a cost estimate without
using default values.

B Indicates that some condition exists for which DB2 was forced to use default
values. See the values in REASON to determine why DB2 was unable to
put this estimate in cost category A.

PROCMS The estimated processor cost, in milliseconds, for the SQL statement. The estimate is
rounded up to the next integer value. The maximum value for this cost is
2147483647 milliseconds, which is equivalent to approximately 24.8 days. If the
estimated value exceeds this maximum, the maximum value is reported.

PROCSU The estimated processor cost, in service units, for the SQL statement. The estimate
is rounded up to the next integer value. The maximum value for this cost is
2147483647 service units. If the estimated value exceeds this maximum, the
maximum value is reported.

REASON A string that indicates the reasons for putting an estimate into cost category B.

HOST VARIABLES
The statement uses host variables, parameter markers, or special
registers.

TABLE CARDINALITY
The cardinality statistics are missing for one or more of the tables
that are used in the statement.

UDF The statement uses user-defined functions.

TRIGGERS Triggers are defined on the target table of an INSERT, UPDATE, or
DELETE statement.

REFERENTIAL CONSTRAINTS
Referential constraints of the type CASCADE or SET NULL exist on
the target table of a DELETE statement.

  Chapter 4. User productivity 81



  
 

Populating and maintaining a statement table
You populate a statement table at the same time as you populate the
corresponding plan table.

Just as with the plan table, DB2 just adds rows to the statement table; it does not
automatically delete rows. To clear the table of obsolete rows, use DELETE, just as
you would for deleting rows from any table. You can also use DROP TABLE to
drop a statement table completely.

Retrieving rows from a statement table
To retrieve all rows in a statement table, you can use a query like the following
statement, which retrieves all rows about the statement that is represented by
query number 13:

SELECT S FROM JOE.DSN_STATEMNT_TABLE

WHERE QUERYNO = 13;

The QUERYNO, APPLNAME, PROGNAME, COLLID, and EXPLAIN_TIME columns
contain the same values as corresponding columns of PLAN_TABLE for a given
plan. You can use these columns to join the plan table and statement table:

SELECT A.S, PROCMS, COST_CATEGORY

 FROM JOE.PLAN_TABLE A, JOE.DSN_STATEMNT_TABLE B

WHERE A.APPLNAME = 'APPL1' AND

A.APPLNAME = B.APPLNAME AND

A.PROGNAME = B.PROGNAME AND

 A.COLLID = B.COLLID AND

A.BIND_TIME = B.EXPLAIN_TIME

ORDER BY A.QUERYNO, A.QBLOCKNO, A.PLANNO, A.MIXOPSEQ;

Understanding the implications of cost categories
Cost categories are DB2's way of differentiating estimates for which adequate
information is available from those for which it is not. You probably wouldn't want to
spend a lot of time tuning a query based on estimates that are returned in cost
category B, because the actual cost could be radically different based on such
things as what value is in a host variable, or how many levels of nested triggers
and user-defined functions exist.

Similarly, if system administrators use these estimates as input into the resource
limit specification table for governing (either predictive or reactive), they probably
would want to give much greater latitude for statements in cost category B than for
those in cost category A.

Because of the uncertainty involved, category B statements are also good
candidates for reactive governing.

What goes into cost category B? DB2 puts a statement's estimate into cost
category B when any of the following conditions exist:

� The statement has user-defined functions.

� Triggers are defined for the target table:

– The statement is INSERT, and insert triggers are defined on the target
table.

– The statement is UPDATE, and update triggers are defined on the target
table.

82 Release Planning Guide  



  
 

– The statement is DELETE, and delete triggers are defined on the target
table.

� The target table of a DELETE statement has referential constraints that are
defined on it as the parent table, and the delete rules are either CASCADE or
SET NULL.

� The WHERE clause predicate has one of the following forms:

– COL op literal, and the literal is a host variable, parameter marker, or
special register. The operator can be >, >=, <, <=, LIKE, or NOT LIKE.

– COL BETWEEN literal AND literal where either literal is a host variable,
parameter marker, or special register

– LIKE with an escape clause that contains a host variable

� The cardinality statistics are missing for one or more tables that are used in the
statement.

What goes into cost category A? DB2 puts everything that doesn't fall into
category B into category A.

Set default buffer pools
Previously: When you created a table space or index without specifying a buffer
pool, the object went into buffer pool 0 (BP0). BP0 is rarely the best buffer pool in
which to put user data and indexes, because BP0 is always used by the catalog
and directory. Performance monitoring and tuning for user data and indexes is
difficult when all of those objects are in the same buffer pool.

Now: On installation panel DSNTIP1, you can specify a default buffer pool for user
data and a default buffer pool for user indexes.

On CREATE DATABASE, you can specify the default buffer pool for table spaces
in that database by using the BUFFERPOOL clause. Now in Version 6, you can
also specify the default buffer pool for indexes by using the INDEXBP clause. If you
do not specify anything for these values, the installation-specified defaults are used.
See DB2 SQL Reference for more information about the syntax.

More information available for monitoring DB2
To help you more effectively monitor DB2 performance, several enhancements are
added to DB2; these are described in the following sections:

� “Wait times reported more clearly” on page 84

� “Data set I/O statistics in a trace” on page 84

� “Message for lock escalation” on page 84

� “New IFCID for active log shortage” on page 85

# � “Easier monitoring of data sharing groups” on page 85

  Chapter 4. User productivity 83



  
 

Wait times reported more clearly
In Version 6, it is easier to pinpoint where and why wait times occur.

Better reporting of some DB2 wait times in IFC traces:  Before Version 6, some
wait times were reported all together, determining which activities were contributing
to the total wait time was difficult.

Now, the following changes are in the accounting class 3 trace:

� The “wait for I/O” field is separated into two separate fields:
– Wait for log write I/O
– Wait for database I/O

� The “wait for service task” field is separated into the following fields:
– Wait for commit phase 2 or abort
– Wait for open or close service task (including HSM recall)
– Wait for SYSLGRNX recording service task
– Wait for data set extend, delete, or define service task
– Wait for other service tasks

Better reporting of DB2 delays in SMF 72 records:  Before Version 6, all in DB2
time was reported as part of the calling region's other product time in an RMF
workload activity report. Determining what portion of the delay was caused by DB2
was difficult.

Now, DB2 reports the following delays in the SMF 72 record::

 � I/O suspension
� Acquiring a lock or latch
� Queuing for stored procedures execution

By reporting this information in SMF 72 records, performance monitors, including
RMF, can report this time as a subset of the total time from the calling region's
point of view.

Data set I/O statistics in a trace
Previously: Important information about DB2's use of data sets was available only
through the DISPLAY BUFFERPOOL command. Such information was not
available to performance monitors.

Now: You can use a new IFCID, 0199, to help you pinpoint I/O delays for particular
data sets. The IFCID is activated with statistics class 8 or monitor class 1 traces.
The IFCID can let you answer such questions as “what is the average write I/O
delay for this data set over the past 10 minutes?”

If you want to use an online performance monitor to gather this data, it is helpful
gather statistics frequently. You can use the DATASET STATS TIME field of
installation panel DSNTIPN to indicate how often you want those statistics to be
gathered for an online performance monitor. The default value is 5 minutes.

Message for lock escalation
Previously: When lock escalation occurred for a table space or a table of a
segmented table space, no external notification was made.

Now: A new message, DSNI03I, is issued when a lock is escalated.

84 Release Planning Guide  



  
 

DSNIO31I - csect - LOCK ESCALATION HAS OCCURRED FOR
RESOURCE NAME = name
LOCK STATE = state
PLAN NAME : PACKAGE NAME = id1 : id2
STATEMENT NUMBER = id3
CORRELATION-ID = id4
CONNECTION-ID = id5
LUW-ID = id6
THREAD-INFO = id7 : id8 : id9 : id1$

New IFCID for active log shortage
Previously: The console messages indicating that active log data sets are running
out of space were not available to online performance monitors.

Now: A new IFCID, 0330 (statistics class 3), is written at the same time the existing
DSNJ110E message is issued. This means that IFCID 0330 is written when the last
available active log data set is 5% full, and after each additional 5% of the data set
space is filled.

# Easier monitoring of data sharing groups
# DB2 simplifies monitoring of data sharing groups by letting you can collect trace
# data for an entire data sharing group or one member of a data sharing group using
# READS or READA calls in an IFI monitor program. DB2 returns the trace data for
# all members to the return area of the IFI program. For details on how to collect
# trace data for a data sharing group in an IFI program, see Appendixes (Volume 2)
# of DB2 Administration Guide.

 IRLM enhancements
DB2's internal resource lock manager (IRLM) has been significantly improved to
provide better serviceability, availability, and usability. The current version of IRLM
works with all releases of DB2 beginning with Version 4. All changes here apply to
all those versions of DB2:

� “Display IRLM coexistence information”

� “Option to prevent disconnecting IRLM on DB2 shutdown” on page 86

� “More control over IRLM storage” on page 87

� “Support for automatic restart manager” on page 89

� “Improved serviceability” on page 89

Performance enhancements related to IRLM are described in “Reduced P-lock
overhead” on page 51 and “More command concurrency” on page 64.

Display IRLM coexistence information
This enhancement is delivered with APAR PQ09947 and makes it easier for you to
determine what level of service each of the IRLMs in your data sharing group is at.
(This command also works in non-data-sharing environment.)

  Chapter 4. User productivity 85



  
 

IRLM function levels
In a data sharing group, you can have two releases of DB2 running at the same
time. With IRLM, however, coexistence levels are determined using function levels.
A function level is an ever-increasing number that each IRLM can use to tell other
IRLMs in the group what level of function it supports. The group function level is the
minimum of the individual IRLM function levels for all IRLMs that can coexist. Any
IRLM that tries to join a data sharing group is prevented from doing so by active
members that cannot coexist with the new IRLM's function level.

When the function level for the group changes, that change is serialized by IRLM
with lock structure rebuilds. In most cases, however, the lock structure does not
actually do a full rebuild. The first phase of rebuild is enough to quiesce the work
and cause the function level change to occur. These “partial” rebuilds take place
when an IRLM joins or leaves the group and if that activity causes the group
function level to change. For example, if the IRLM group is currently at function
level n, and the IRLM member that wants to join the group is at n-1, the partial
rebuild occurs to lower the group function level. Conversely, if the lowest-level
member leaves the group, the partial rebuild might occur if the group can coexist at
a higher function level.

Command to display function levels
To display the function levels, enter the following command:

MODIFY irlmproc,STATUS,ALLI

You get output like that shown here:

DXR1O3I LRLM STATUS IRLMID=OO7

IRLMS PARTICIPATING IN DATA SHARING GROUP FUNCTION LEVEL=O13

IRLM_NAME IRLMID STATUS LEVEL SERVICE MIN_LEVEL MIN_SERVICE

JRLM OO5 UP O15 PQ1529O O12 PN9O337

KRLM OO6 UP O13 PN92893 OO6 IRLM2.1

LRLM OO7 UP O14 PNO9381 OO6 IRLM2.1

The IRLMs are at group function level 13, which is the lowest level of any of the
individual members (KRLM). The MIN_LEVEL field shows the minimum level with
which this IRLM can coexist. MIN_SERVICE indicates the service or release that
corresponds with that MIN_LEVEL.

Option to prevent disconnecting IRLM on DB2 shutdown
This enhancement is delivered with APAR PQ01040. The new option for the
SCOPE parameter, NODISCON, works similar to SCOPE=GLOBAL, except that
IRLM remains connected to the data sharing group even when DB2 is stopped
(either normally or as a result of a failure). If you want to stop IRLM, you must
explicitly stop it.

By leaving IRLM connected when you apply maintenance to DB2, it can make the
restart of DB2 quicker. Also, less impact on other systems results when a DB2 fails
because MVS is not required to perform certain recovery actions that it normally
performs when IRLM comes down.

86 Release Planning Guide  



  
 

How to specify the new option
You can specify the NODISCON option in two ways:

� By editing your IRLM start-up procedure and specifying NODISCON for the
SCOPE parameter

� By specifying NO for the DISCONNECT IRLM field of installation panel
DSNTIPJ

Change to AUTO START field of DSNTIPI
If you specify YES for the AUTO START field of installation panel DSNTIPI and NO
for the DISCONNECT IRLM field, DB2 does not automatically stop IRLM when DB2
is stopped. However, if you say YES for DISCONNECT IRLM and YES for AUTO
START, DB2 stops IRLM when DB2 terminates.

To summarize:

Table 8. Summary of IRLM actions when DB2 stops, starts, or restarts

DISCONNECT
IRLM option

AUTO
START
option

IRLM action on
DB2 stop

IRLM action on
DB2 start

IRLM action on
DB2 restart

YES YES IRLM
disconnects from
the group and
stops itself.

DB2 starts IRLM. DB2 restarts IRLM.

YES NO IRLM
disconnects from
the group and
remains active.

Manual start of
IRLM is required.

IRLM rejoins the
data sharing
group.

NO NO IRLM remains
active and
connected.

Manual start of
IRLM is required.

No effect. (IRLM is
still active and
connected to the
data sharing
group.)

NO YES IRLM remains
active and
connected.

DB2 starts IRLM. No effect. (IRLM is
still active and
connected to the
data sharing
group.)

More control over IRLM storage
As part of APAR PQ12390, IRLM is better at handling its use of storage by
releasing more ECSA storage back to the system when it is no longer needed.
Additionally, the value you specify for MAXCSA is now used just for lock control
structures, not for the rest of the work space needed by IRLM. This makes it easier
to determine what value to specify for MAXCSA.

Other enhancements related to managing IRLM storage are described in this
section.

  Chapter 4. User productivity 87



  
 

Warning when storage exceeds limits
IRLM processing is critical to the smooth performance of DB2. To alert you when
IRLM is having storage problems, IRLM now issues a message when it does not
have enough storage:

DXR175E irlmnm IRLM IS UNABLE TO OBTAIN STORAGE - storage_type

The storage type indicates what type of storage IRLM is short of. For example,
MCSA indicates that IRLM has exceeded the MAXCSA value you've specified in
the IRLM startup procedure.

This enhancement is delivered in APAR PQ07327.

Dynamically change MAXCSA
This enhancement is delivered in APAR PQ12126 and lets you use a command to
dynamically change the value for MAXCSA. (The upper limit for MAXCSA has been
raised to 999 MB with APAR PQ13498). Use the following command to change the
MAXCSA value:

MODIFY irlmproc,SET,CSA=nnn

where nnn is a value in MB up to 999.

The values you set on a MODIFY,SET command do not persist through a restart of
IRLM. If you want to make this change permanent, you must modify the IRLM
start-up procedure to use the new value, and then stop and restart IRLM.

Better display of IRLM storage use
This enhancement is delivered in APAR PQ12390 and gives you the ability to
better track IRLM storage use, including the current storage allocation and the
“high-water” storage allocation since the last time this IRLM was started. The
command is:

F IR21PROC,STATUS,STOR

The display is similar to the following output:

DXR1OO1 IR21 STOR STATS

�A� PC: NO MAXCSA: 6M

CSA USE: �B� ACNT: 132K AHWM: 132K �C� CUR: 4O48K HWM: 4O86K

 ABOVE 16M: 72 4O33K BELOW 16M: 6 15K

CLASS TYPE SEGS MEM TYPE SEGS MEM TYPE SEGS MEM

ACCNT T-1 1 64K T-2 1 64K T-3 1 4K

PROC WRK 11 58K SRB 3 3K OTH 2 2K

MISC VAR 6O 4O81K N-V 6 22K FIX 1 24K

The example shows that current allocated storage for IRLM is 4048 KB, and the
greatest amount that has been allocated since the last time IRLM was started is
4086 KB. The storage for the locking structures is contained within ECSA, because
this IRLM is defined with PC=NO. Use the following information to interpret the
display output:

�A� Displays the current value for the PC and MAXCSA options of the IRLM
start-up procedure.

88 Release Planning Guide  



  
 

�B� Shows storage use that is accountable toward the MAXCSA value of the
IRLM procedure. In this output, the currently used accountable storage
(ACNT) is 132 KB. The high-water mark since the last time IRLM was
started (AHWM) is also 132 KB.

�C� Shows the total current CSA and ECSA usage. In this case, the current
usage (CUR) is 4048 KB, and the high water mark (HWM) is 4086 KB. The
accountable storage is a subset of this total storage.

The rest of the output contains more detailed information about how storage is
used.

Support for automatic restart manager
This enhancement is delivered in APAR PQ06465. With this enhancement, you
now have the option of registering IRLM with MVS's automatic restart manager, just
as you can do with DB2. This automatic restart only happens when IRLM
abnormally shuts down.

Creating the automatic restart policy
To register IRLM in an automatic restart policy, you must know IRLMs element
name. For a data sharing IRLM, the element name is the IRLM group name,
concatenated with the IRLM subsystem name and three-character member ID
(such as DXRDB0GDJ1G001).

For a non-data-sharing IRLM, the element name is the IRLM subsystem name,
concatenated with the IRLM ID (such as IRLX001).

To specify that IRLM is not to be restarted after a failure, include
RESTART_ATTEMPTS(0) in the policy for that IRLM element.

Stopping and deregistering IRLM
To prevent IRLM from automatically restarting when you stop it, use the following
command to stop IRLM:

MODIFY irlmproc,ABEND,NODUMP

However, if your DB2 has YES for the AUTO START option of installation panel
DSNTIPI, and if MVS restarts DB2 automatically, DB2 restarts IRLM, too.

 Improved serviceability
As a result of improvements to the serviceability of IRLM, problems can be resolved
more quickly.

Dynamically control number of trace buffers
This enhancement is delivered in APAR PQ12126 and lets you increase the
storage used for IRLM diagnostic traces. By increasing the storage when doing
problem diagnosis, you reduce the chances that important trace information will be
lost because of wrapped trace entries. To change the storage, use the following
command:

MODIFY irlmproc,SET,TRACE=nnn

where nnn is the number of 64 KB trace buffers per trace type. This value is used
only when the external CTRACE writer is not activated. The trace buffers are
allocated from ECSA. The default is 10.

  Chapter 4. User productivity 89



  
 

Valid values are from 10 through 255. If you specify a value outside of this range,
IRLM automatically adjusts the value to fall within the range.

IRLM does not immediately acquire the number of trace buffers you set. IRLM
allocates buffers as needed, not to exceed the number of buffers you set in this
command. If the number of trace buffers you set is less than the number of
currently allocated buffers, IRLM brings the number within your specified range by
releasing the oldest buffers at the end of the next deadlock or timeout cycle.

Display trace buffer storage using the following command:

MODIFY irlmproc,STATUS,TRACE

A display similar to the following is produced:

DXR179I PR21O34 TRACE USAGE

TRACE BUFFER STORAGE IN USE: 256KB

MAXIMUM NUMBER OF TRACE BUFFERS ALLOWED PER TRACE TYPE: 1O

TRACE TYPE ACTIVE BUFFERS IN USE CTRACE WRITER

---------- ------ -------------- -------------

 SLM N O N

 XIT Y 2 N

 XCF N O N

 DBM N O N

 EXP Y 1 N

 INT Y 1 N

This display shows that the storage currently allocated for IRLM tracing is 256 KB,
the maximum number of trace buffers allowed per trace type is set to 10, and the
external CTRACE writer is not active.

Prevent unnecessary dumps
This enhancement is delivered in APAR PQ08342 and prevents generation of
unnecessary dumps related to delayed child-lock propagation in a data sharing
group. Because many of the reasons for this type of delay are outside the scope of
IRLM's control (such as member recovery or lost connectivity to the lock structure),
a dump is not necessarily the first course of action. IRLM does retry propagating
the locks if it detects a delays.

If you suspect a problem with lock propagation in your data sharing group, you can
enter a new command:

MODIFY irlmproc,DIAG,DELAY

This command initiates diagnostic dumps for IRLM subsystems in a data sharing
group when responses to XES requests take longer than 45 seconds.

This command is active for only one incident; that is, after an IRLM detects the
delay and generates the dump, you must reenter the command to initiate another
dump. However, when you enter this command for one member of the data sharing
group, any member that detects the delay initiates a dump.

90 Release Planning Guide  



  
 

IRLM ID in messages
This enhancement is delivered in APAR PQ14255. Some IRLM messages only
contain the IRLM name. For Sysplexes in which multiple IRLMs have the same
name, the IRLM ID is the only way to tell which IRLM is displaying the message.
With this enhancement, the IRLM ID is concatenated to the IRLM name in
messages.

For example, message DXR132I now displays as follows:

DXR132I JR21��3 SUCCESSFULLY JOINED THE DATA SHARING GROUP. GLOBAL

INITIALIZATION IS COMPLETE

In the message, JR21 is the IRLM name, and 003 is the IRLM ID.

More user productivity enhancements
� “DSNTEP2 available in object form”
� “Customized DB2I defaults can be migrated”

# � “Numeric data type extensions for identity columns”
# � “Savepoints to undo selected changes” on page 93

� “More tables allowed in SQL statements” on page 94
� “SQL extensions” on page 94

# � “More character conversions” on page 95
� “Utility usability and functionality enhancements” on page 95
� “Enhanced database commands” on page 97
� “Support for multi-volume DASD archive log data sets” on page 98

| � “Better retention of installation values across migrations” on page 98
| � “Better diagnostic information for commands executed through IFI” on page 99

DSNTEP2 available in object form
Previously: The DSNTEP2 sample program, which lets you execute dynamic SQL
in batch mode, was useful only if your site had a PL/I compiler.

Now: An object form of DSNTEP2 is shipped with DB2, allowing this useful
productivity aid to be used at all installations. Use a new sample program,
DSNTEJ1L, to link-edit this object deck with the OS/390 Language Environment
to create an executable load module and to bind a package and plan from the
shipped DBRM.

| Customized DB2I defaults can be migrated
| The DB2I panel variables in the ISPF profile from the previous release can be
| migrated to the new release. The DSNEMC01 CLIST uses the values specified on
| installation panel DSNTIPF and stores the results in the ISPF profile member
| DSNEPROF. Any customized DSNEPROF members can be migrated from Version
| 5 to Version 6. However, you need to examine any new or changed default panel
| values to ensure that your customized values are still valid.

# Numeric data type extensions for identity columns
# DB2 provides new support for defining a table with an identity column. When a
# table has an identity column, DB2 can automatically generate a unique, sequential
# numeric value for each row that is inserted into the table. Therefore, identity
# columns are ideal for primary keys. For example, you might want to use identity
# columns for order numbers, employee numbers, stock numbers, or incident

  Chapter 4. User productivity 91



  
 

# numbers. Using identity columns to generate unique numbers in a column can
# reduce concurrency and performance problems that sometimes occur when
# application programs generate their own unique numbers.

# A table can have no more than one identity column and only a column with a
# SMALLINT, INTEGER, or DECIMAL (with scale zero) can be specified as the
# table's identity column. You can specify the first value that DB2 should assign to an
# identity column and the incremental value (the difference) between generated
# values. For example, you might want the interval between order numbers to be
# 100, starting with 1000 as the first number (1000, 1100, 1200, and so on). An
# identity column cannot be defined as nullable, with a default, or with a field
# procedure. A table with an identity column cannot have an edit procedure.

# Defining an identity column: Create an identity column for a table as you would
# any other column, using the ALTER TABLE or CREATE TABLE statement and
# specify the AS IDENTITY clause. Similar to a ROWID column, there are two
# options for how DB2 should generate identity column values: the GENERATED
# ALWAYS or GENERATED BY DEFAULT clause.

# � GENERATED ALWAYS specifies that DB2 always generates a unique number
# for the column when a row is inserted into the table. You also cannot update
# the value of an identity column that is defined as GENERATED ALWAYS.

# � GENERATED BY DEFAULT, which is recommended when you propagate or
# load data from another data source, specifies that DB2 generates a value for
# the column when a row is inserted into the table unless a user value is
# specified. DB2 can only guarantee uniqueness among the set of values that it
# generates. If you want to ensure uniqueness for an identity column that is
# defined as GENERATED BY DEFAULT, define a unique index on the identity
# column.

# The following example shows how to create a table with an identity column and
# define the identity column such that DB2 will always generate the values for the
# column. If the AS IDENTITY clause had been specified without the optional START
# WITH and INCREMENT BY subclauses, DB2 would use the default value of 1 for
# both the first value to assign to the column and the difference between
# subsequently assigned values.

# CREATE TABLE EMPLOYEE

# (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY START WITH 1OO INCREMENT BY 1O,

#  ID SMALLINT,

#  NAME CHAR(3O),

# ...

# Inserting into an identity column Inserting into an identity column is similar to
# inserting into a ROWID column (see “Inserting into a ROWID column” on page 70).
# By definition, DB2 always generates a unique, sequential value for an identity
# column that is defined as GENERATED ALWAYS; therefore, you cannot insert your
# own value into such a column. To have DB2 successfully insert a generated value,
# your INSERT statement must do one of the following:

# � Not specify a user value for the identity column.

# � Use the DEFAULT keyword in the VALUES clause for the identity column

# � Include the OVERRIDING USER VALUE clause. When this clause is specified,
# DB2 ignores any user-specified values and generates a value to insert. If this
# clause is not specified and a user value is specified, DB2 returns an error.

92 Release Planning Guide  



  
 

# For example, assume that EMPNO is an identity column that is defined as
# GENERATED ALWAYS. DB2 generates and inserts a unique, sequential value into
# the column for either of the following statements:

# INSERT INTO EMPLOYEE (EMPNO, ID, NAME)

# VALUES (DEFAULT, :hv_id, :hv_name);

# INSERT INTO EMPLOYEE (EMPNO, ID, NAME)

# OVERRIDING USER VALUE

# VALUES (:hv_empno, :hv_id, :hv_name);

# You can insert your own value into an identity column that is defined as
# GENERATED BY DEFAULT. DB2 generates the value only if a user value is not
# specified.

# Identity columns versus ROWID columns: Both identity columns and ROWID
# columns contain values that DB2 generates and guarantees as unique. ROWID
# columns, which are described in “New ROWID data type” on page 67, are used in
# large object (LOB) table spaces and can be useful in direct-row access. ROWID
# columns contain values of the ROWID data type, which returns a 40-byte
# VARCHAR value that is not regularly ascending or descending. ROWID data values
# are therefore not well suited to many application uses, such as generating
# employee numbers or product numbers. For data that is not LOB data and that
# does not require direct-row access, identity columns are usually a better approach,
# because identity columns contain existing numeric data types and can be used in a
# wide variety of uses for which ROWID values would not be suitable.

# Savepoints to undo selected changes
# Savepoints let you undo selected changes within a transaction. A savepoint
# represents the state of data at some particular time during a unit of work. An
# application process can set savepoints within a unit of work, and then as logic
# dictates, roll back only the changes that were made after a savepoint was set. For
# example, part of a reservation transaction might involve booking an airline flight and
# then a hotel room. If a flight gets reserved but a hotel room cannot be reserved, the
# application process might want to undo the flight reservation without undoing any
# database changes made in the transaction prior to making the flight reservation. In
# your programs, you can use the SAVEPOINT statement to set savepoints and the
# ROLLBACK statement with the TO SAVEPOINT clause to undo changes to a
# specific savepoint or the last savepoint that was set. Rolling back to a savepoint
# does not end the unit of work. For example, when the ROLLBACK TO SAVEPOINT
# statement is executed in the following code, DB2 rolls back work to savepoint B:

# EXEC SQL SAVEPOINT A;
# .# .# .

# EXEC SQL SAVEPOINT B;
# .# .# .

# EXEC SQL ROLLBACK TO SAVEPOINT;

# Savepoints are automatically released at the end of a unit of work. However, if you
# no longer need a savepoint before the end of a transaction, you can execute the
# RELEASE SAVEPOINT statement to delete the savepoint.

  Chapter 4. User productivity 93



  
 

# When savepoints are active, you cannot access remote sites using three-part
# names or aliases for three-part names. You can, however, use DRDA access with
# explicit CONNECT statements when savepoints are active. If you set a savepoint
# before you execute a CONNECT statement, the scope of that savepoint is the local
# site. If you set a savepoint after you execute the CONNECT statement, the scope
# of that savepoint is the site to which you are connected.

More tables allowed in SQL statements
DB2 increases the maximum number of tables allowed in a view, and in SELECT,
UPDATE, INSERT, and DELETE statements, from 15 to 225. The maximum
number of base tables that are allowed in a view, tables in a FROM clause, and
subqueries in a statement is 15.

 SQL extensions
In addition to the many SQL extensions provided for object support and active data,
Version 6 improves DB2 family compatibility and increases the flexibility of SQL
with the following changes:

� A VALUES clause of INSERT that supports any expression

� A DEFAULT clause on INSERT that lets you insert default values into columns
that allow defaults

� The ability to do a self-referencing subselect on INSERT. For example, you can
populate a table by using values from the table itself. The following example
populates a table partly from existing values in the table and partly from
application values:

INSERT INTO TABLEX

SELECT :hv1, :hv2, COLX, COLY

FROM TABLEX WHERE .....;

# � Support for the WHERE and GROUP BY clauses in a SELECT INTO statement

# � Support for a subselect in the SET clause of an UPDATE statement. However,
# the subselect cannot be self-referencing. For example, you can update a table
# using values from any table except the one being updated.

� A VALUES INTO statement that assigns values to host variables

� An IN predicate that supports any expression

� Support for including SQLDA in a COBOL program on the INCLUDE statement

� A SET assignment statement that you use to assign a value of an expression
or the value of null to a host variable or a transition variable; for example:

SET :lastmon = CURRENT DATE - 3O DAYS

� Extensions to the ON clause, which allow more expressions for LEFT, RIGHT
and INNER joins. Here are some examples of statements you can write in
Version 6 that you could not write before:

Example 1: Assume that you have an EMP table with columns for
FIRSTNAME, NICKNAME and so on. Assume the SALES table has columns
EMPNAME, SALEPRICE, and so on.

This example shows you how to produce a report of sales in which the first
names match the sales record or the nickname matches the sales record:

94 Release Planning Guide  



  
 

SELECT S FROM EMP LEFT JOIN SALES

 ON EMP.FIRSTNAME = SALES.EMPNAME

OR EMP.NICKNAME = SALES.EMPNAME;

Example 2: In addition to the SALES table in Example 1, assume that you
have a REGION table with columns REGION_TYPE, REGION_NAME and a
PROD table with columns PROD_TYPE and PROD_NAME.

This example shows you how to find the sales data on cola sold in the USA, if
any:

SELECT S FROM PROD JOIN REGION

ON 1=1 LEFT JOIN SALES

ON REGION_TYPE = SALES.REGION

WHERE REGION_NAME = 'USA' AND PROD_NAME = 'COLA';

Example 3: Assume that you have a BONUS table that contains a column
called EMPNO.

This example shows you how to produce a report in which only the people
whose last names begins with Z get a bonus:

SELECT S FROM EMP LEFT JOIN BONUS

 ON EMP.LASTNAME LIKE 'Z%' AND EMP.EMPNO = BONUS.EMPNO;

Example 4: In this example, a user-defined function contains the criteria for
assigning bonuses:

SELECT S FROM EMP LEFT JOIN BONUS

ON BOSS_OK_UDF(EMP.EMPNO) = 'OKAY'

AND EMP.EMPNO = BONUS.EMPNO;

See Appendix C, “Changes to SQL” on page 269 for more information about these
SQL enhancements.

More character conversions
Character data can be represented by different encoding representations, and
sometimes character data must be converted from one representation to another.
DB2 performs most character conversions based on CCSIDs. If OS/390 Version 2
Release 9 (or a subsequent release) is installed, DB2 can utilize the character
conversions provided by Language Environment in addition to those in catalog table
SYSIBM.SYSSTRINGS. During character conversion, if SYSIBM.SYSTRINGS does
not contain a row that describes the conversion between the source CCSID and the
target CCSID, DB2 will try to do the conversion through Language Environment. If
the catalog table and Language Environment define the same conversion, DB2
uses the conversion in the catalog table because it looks there first. For a list of the
character conversions that Language Environment supports, refer to OS/390 C/C++
Programming Guide.

Utility usability and functionality enhancements
� “Determining when to run REORG” on page 96
� “Easier to quiesce related table spaces” on page 96
� “REPAIR function and usability” on page 96

| � “Easier to LOAD test tables and read-only tables” on page 96
| � “Improved statistics collection” on page 97

  Chapter 4. User productivity 95



  
 

Determining when to run REORG
Previously: You had to perform catalog queries to determine if data needed
reorganization.

Now: You can now specify threshold limits in your REORG job, which accesses
relevant i8statistics in the catalog. The REORG does not occur unless one of the
thresholds you specify is exceeded.

Additionally, you can specify the REPORTONLY option, which prompts DB2 to
return information on whether or not a REORG is recommended. When you specify
the REPORTONLY option, DB2 does not perform a REORG; if the limits you
specified were exceeded, DB2 recommends a REORG.

Easier to quiesce related table spaces
To establish a point of recovery for table spaces that were related by referential
integrity, you have to quiesce all table spaces in that set before making the image
copies. To quiesce a table space set, you had to do the following steps:

1. Run REPORT TABLESPACESET to find all table spaces in the set

2. Enter those table space names in the QUIESCE SYSIN statement

This procedure was error-prone.

Now, you can use the TABLESPACESET option of QUIESCE to have DB2 quiesce
the entire table space set for any particular table space. You no longer have to
enter that list of names.

REPAIR function and usability
REPAIR is enhanced in support of the new advisory and restrictive states for LOBs,
and to reset level IDs for indexes. (See DB2 Utility Guide and Reference for details
of the syntax.) REPAIR is also made more usable.

Previously, to indicate which page you wanted to repair, you had to enter a
hexadecimal representation of the page and partition number. This process was
difficult and error-prone.

Now you can enter a partition as one decimal number and the page within that
partition as another decimal number.

Easier to LOAD test tables and read-only tables
The LOAD utility now supports the NOCOPYPEND option, which allows you to
avoid making copies for certain tables, such as test tables or read-only tables that
can be easily reloaded. Normal completion of a LOAD LOG NO NOCOPYPEND job
will be return code 0 if no other errors or warnings exist.

If you want to be able to recover the table space after you specify the
NOCOPYPEND option, you should take an inline image copy of the table space.
Alternately, you can use the COPY utility after the LOAD job completes.

96 Release Planning Guide  



  
 

| Improved statistics collection
| When you specify the UPDATE SPACE or UPDATE ALL option, the RUNSTATS
| utility now collects additional space statistics that you can use to estimate the
| number of data set extents used by objects. These statistics are stored in the
| SQTY, PQTY, and SECQTYI columns of the SYSIBM.SYSTABLEPART and
| SYSIBM.SYSINDEXPART catalog tables. Refer to the DSNTESP sample job for
| sample queries that estimate the number of extents used by objects.

| This function is available in Version 5 with APAR PQ25091.

Enhanced database commands
Several improvements to DB2's database commands make identifying the status of
databases, table spaces, and index spaces easier. You can also specify the name
of a database, table space, or index space using a wildcard character combined
with a character string. Additional improvements to the DISPLAY DATABASE
command improve your control over the scope of the information displayed.

Improved DSNT736I message content
The STOP DATABASE command now issues a modified DSNT736I message,
which includes information about which command completed successfully. This
improvement returns specific command syntax in the message, so you can more
easily identify which commands completed successfully when you issue multiple
STOP DATABASE commands from a console.

Specifying pattern-matching characters within object names
You can now use the pattern-matching character (*) combined with a character
string when you specify the name of a database, table space, or index space in the
DISPLAY DATABASE, START DATABASE, or STOP DATABASE commands. You
can also specify a range of spaces to start, stop, or display with these commands.

Limiting DISPLAY DATABASE output
The DISPLAY DATABASE command accepts the ONLY keyword. When you
specify the ONLY keyword without the SPACENAM keyword, DB2 does not display
information for the spaces within the database you specified. If you specify the
ONLY keyword with the SPACENAM keyword, DB2 displays information for the
individual table spaces and indexes. This improvement allows you to narrow the
scope of information that is returned when you invoke the DISPLAY DATABASE
command.

When you specify the SPACENAM keyword, you can limit the display of table
spaces to those that have locks on them, or ones that have write error page range
information (WEPR). You can also use the CLAIMERS, USE, or LPL keywords with
the ONLY keyword.

When you do not specify the SPACENAM keyword, the ONLY keyword is
compatible with the RESTRICT, LIMIT, and AFTER keywords.

  Chapter 4. User productivity 97



  
 

Support for multi-volume DASD archive log data sets
Previously: DB2 restricted archive log data sets to a single volume. Because of
this restriction, the primary and secondary space quantities must be large to put the
entire data set on a single volume. If there is not enough contiguous space
available, the log offload fails.

Now: You are no longer restricted to a single volume for archive log data sets. You
can now have more, smaller extents when allocating DASD archives, which means
a smaller chance of getting "no space available" errors.

| Remote site recovery copy flexibility
| Previously: In some offsite recovery situations, only the second copy (COPY2) of
| the archive log is available at the remote site. The BSDS is restored from an
| archive tape and contains data set information for both COPY1 and COPY2
| archives. DB2 always requested the COPY1 archive before the equivalent COPY2
| archive. This means that you had to either delete all the unavailable COPY1
| archive logs from the BSDS, or you had to reply"N" to the mount requests for the
| COPY1 archive log volumes, which forced DB2 to request the available COPY2
| archive. Either option can lengthen recovery time or be subject to errors.

| Now:DB2 has a new subsystem parameter that lets you specify that DB2 is to
| request COPY2 archive logs for log read requests. In effect, by specifying YES for
| READ COPY2 ARCHIVE on installation panel DSNTIPO, you are reversing the
| archive search order. DB2 attempts to satisfy the log read request with the COPY2
| archive log and reserves the COPY1 archive logs for error recovery.

| Implications for disaster recovery: It is generally recommended that you keep
| both copies of the archive log at the local site in case the first copy becomes
| unreadable. However, if you take precautions, such as making another copy of the
| first archive, you can choose to send the second copy to the recovery site. If a
| recovery is necessary at the recovery site, make sure you specify YES for the
| READ COPY2 ARCHIVE field of installation panel DSNTIPO at the recovery site.
| This option causes DB2 to search for the COPY2 archive first.

| Data sharing recommendation: For predictability, make the READ COPY2
| ARCHIVE option the same on all members. For any given read request, it is the
| member that owns the archive log data set that determines which copy is used.

| Better retention of installation values across migrations
| Previously: Several important subsystem parameter values were not externalized
| on installation panels. If you changed any of those values in the appropriate macro
| or DSNTIJUZ job, the new values were not retained when you migrated to a new
| release.

| Now: These options are on installation panels so that you can be assured that the
| values you choose will be carried over during migration to a new release of DB2.
| The options that are externalized are shown in Table 25 on page 237.

98 Release Planning Guide  



  
 

| Better diagnostic information for commands executed through IFI
| Previously: When you executed a DB2 command through the Instrumentation
| Facility Interface (IFI), you received limited information about results from command
| execution. Those results came only from the DB2 command processor, not from
| the component that actually executed the command.

| Now: The instrumentation facility communication area (IFCA) contains new fields
| that give you more information about why and when a failure occurred during
| command execution.

  Chapter 4. User productivity 99



  
 

100 Release Planning Guide  



  
 

Chapter 5. Improved network computing

In Version 6, DB2 adds a number of enhancements to improve your ability to
develop, maintain, and run your e-business and other client/server applications. The
following sections contain information about the new functions:

 � “Java enablement”
� “DRDA support for three-part names” on page 103
� “Stored procedure enhancements” on page 107
� “Improved data transfer with OPTIMIZE FOR n ROWS” on page 115
� “DB2 ODBC enhancements” on page 118
� “Improvements for dynamically prepared SQL statements” on page 119
� “DB2 database connection pooling” on page 120

 Java enablement
Now, you can combine the power of Java with the latest universal database
features available in the OS/390 environment. Version 6 introduces IBM's newest
Java implementation for the OS/390 environment, SQLJ. In Version 5, DB2 for
OS/390 delivered JDBC application support, which let you write dynamic SQL
applications in Java. With SQLJ support, you can write static SQL applications in
Java.

Better performance for Java applications with SQLJ
SQLJ gives you the ability to embed SQL statements in your Java application
programs. With SQLJ your Java programs can take advantage of the superior
performance, manageability, and authorization that is available to static SQL. SQLJ
includes support the following types of SQL statements:

� SELECT, SELECT INTO, or FETCH
� GRANT or REVOKE
� INSERT, searched or positioned UPDATE, searched or positioned DELETE
� COMMIT or ROLLBACK
� CREATE, ALTER, DROP
� CALL, for calls to stored procedures in supported languages
� SET special register, SET host variable

In addition, SQLJ includes methods for connecting to local DB2 subsystems or
remote data sources.

Advantages of using SQLJ include:

� Portable applications across platforms and database management systems

� Strong typing, with compile and bind-time schema checking to ensure that
applications are well designed for the database

� The good performance and authorization checking of static SQL

Static SQL provides control over authorization checking. You cannot manage
table privileges for applications using dynamic SQL, because every end user
must have table privileges. You can avoid the problem completely by using
static SQL. The application uses the table privileges of the package owner.

 Copyright IBM Corp. 1999  101



  
 

You prepare and execute SQLJ applications in the OS/390 UNIX environment. To
prepare an SQLJ application for execution, you execute these steps:

1. Run the SQLJ translator to produce modified Java source code and serialized
profiles.

2. Compile the modified Java source code.

3. Run the SQLJ customizer on each serialized profile to produce a standard DB2
for OS/390 DBRM.

4. Bind the DBRMs for a program into a plan.

Before you can run an SQLJ application, you must specify the DB2 subsystem ID
and the plan name in environmental variables. You can then run the program using
the command:

java

JDBC application support
JDBC is a Java application programming interface (API) that Java applications use
to access any relational database. DB2 for OS/390's support for JDBC lets you
write Java applications that use dynamic SQL to access local DB2 data or remote
relational data on a server that supports DRDA.

DB2 JDBC supports the full set of APIs that comprise JDBC. The APIs are defined
within 16 classes that support basic SQL functionality for connecting to a database,
executing SQL statements, and processing results. These interfaces and classes
provide the JDBC capabilities that a Java application uses to access relational data.

DB2 JDBC offers a number of advantages for accessing DB2 data:

� Using the Java language, you can write an application on any platform and
execute it on any platform for which the Java Development Kit (JDK) is
available.

� JDBC combines the benefit of running your applications in an OS/390
environment with the portability and ease of writing Java applications.

� The ability to develop an application once and execute it anywhere offers the
potential benefits of reduced development, maintenance, and systems
management costs, and flexibility in supporting diverse hardware and software
configurations.

� The JDBC interface offers the ability to change between drivers and access a
variety of databases without recoding your Java program.

� JDBC applications do not require precompiles or binds.

A JDBC application performs the following basic steps:

1. Imports the appropriate Java package
2. Loads the appropriate JDBC driver
3. Connects to a database, specifying its location with a URL
4. Passes SQL statements to the database
5. Receives the results
6. Closes the connection

102 Release Planning Guide  



  
 

DRDA support for three-part names
DB2 provides two ways to access data at a remote location:

� Through explicit connection to the remote location

With this technique, you execute a CONNECT statement to connect to the
location, and then specify a one- or two-part table name when you execute
SQL statements to access data in that table. A one-part name is an unqualified
table name. A two-part name is a name of the form table-owner.table-name.

� Through implicit connection

With this technique, you specify a three-part table name when you execute
SQL statements to access data in that table. A three-part table name is a name
of the form location.table-owner.table-name.

In previous releases of DB2 for OS/390, you could use three-part table names only
for DB2 private protocol access. With DB2 for OS/390 Version 6, you can use
three-part names with DRDA access.

This section discusses the benefits of using DRDA access for your distributed
applications, the benefits of coding your DRDA applications using three-part names,
and the restrictions on DRDA applications that use three-part names. This section
also explains how to prepare applications that use three-part names to use DRDA
access and gives you extra information you need to know as you move your
existing DB2 private protocol access applications to DRDA access.

Benefits of DRDA access
DRDA access has the following benefits over DB2 private protocol access:

� Access to a broader range of servers

With DB2 private protocol access, you can access only other DB2 for OS/390
servers. DRDA access lets you access any server that supports DRDA
protocols.

� Access to more DB2 function

Features such as support for TCP/IP, LOBs, and distinct types are available for
distributed applications only if you use DRDA access.

 � Better performance

With DB2 private protocol access, DB2 binds statements that execute at the
remote server at execution time. With DRDA access, you bind a package at the
remote server, so DB2 does less work at execution time.

In addition, some performance enhancements in recent releases of DB2 are
available only for DRDA access. When you switch from DB2 private protocol
access to DRDA access, you can take advantage of those enhancements.

Benefits of using three-part names for DRDA access
Using three-part names to access remote data has the following advantages:

 � Simpler coding

Coding a DRDA application to use three-part names is simpler than coding for
explicit connections. For example, to access table DSN8610.EMP at locations

  Chapter 5. Improved network computing 103



  
 

SAN_JOSE and LONDON through an explicit connection, you might execute
statements like these:

EXEC SQL CONNECT TO SAN_JOSE;

SELECT EMPNO FROM DSN861O.EMP;

EXEC SQL CONNECT TO LONDON;

SELECT EMPNO FROM DSN861O.EMP;

To access the same tables using three-part names, you need to execute only
these statements:

SELECT EMPNO FROM SAN_JOSE.DSN861O.EMP;

SELECT EMPNO FROM LONDON.DSN861O.EMP;

� Coding that is independent of precompiler options

The SQL statement that you use to reconnect to a remote location depends on
precompiler option SQLRULES. However, when you use a three-part name to
connect to a location, the coding of your program is independent of the
SQLRULES setting because DB2 handles connection management
automatically.

� Easy conversion from DB2 private protocol access to DRDA access

Three-part name support for DRDA access means that you do not need to
modify your existing DB2 private protocol access applications to convert them
to DRDA access. All you need to do is prepare them, as described in
“Preparing applications with three-part names to use DRDA access” on
page 105.

� Ability to hop to systems other than DB2 for OS/390 systems

DB2 lets you connect explicitly to a remote location, and then use a three-part
name to connect (hop) to a second remote location. In previous releases of
DB2, you could hop to the second location using only DB2 private protocol
access. With DRDA access support for three-part names, the second location
can be any system that supports DRDA access.

Restrictions on DRDA access programs that use three-part names
DRDA access with three-part names has most of the capabilities of DRDA access
with explicit connections. However, there are some restrictions:

� Continuous block fetch is not available.

Continuous block fetch is available for DB2 private protocol access only.
However, you can get the advantages of continuous block fetch for your
queries by specifying OPTIMIZE FOR n ROWS with a large value of n, and by
setting installation parameters that cause DB2 to return multiple query blocks
on each network transmission. Set those installation parameters through fields
EXTRA BLOCKS REQ and EXTRA BLOCKS SRV on installation panel
DSNTIP5.

� Recursive hopping is not supported.

If you perform an explicit connection using DRDA access to access one
location and then use DB2 private protocol access to access a second location,
you can connect from location A to location B and then connect from location B
back to location A. For example:

/S Local location is CHICAGO S/

EXEC SQL CONNECT TO SAN_JOSE;

EXEC SQL SELECT S FROM CHICAGO.DSN861O.EMP;

104 Release Planning Guide  



  
 

However, when you switch from DB2 private protocol access to DRDA access
for executing statements with three-part names, you cannot connect to another
location after you return to the first location (location A).

� CREATE, ALTER, DROP, GRANT, COMMENT ON, LABEL ON, RENAME, and
REVOKE statements cannot contain three-part names or aliases for three-part
names.

To execute these statements at a remote location, you must use an explicit
connection.

Preparing applications with three-part names to use DRDA access
For applications that use three-part names for remote access, you control the
distributed access method when you prepare the applications. To use DRDA
access, you must bind an application that contains three-part names:

� Into a package at each location that is specified in a three-part name

� Into a package or plan at the local location with the bind option
DBPROTOCOL(DRDA)

DB2 determines the default value for bind option DBPROTOCOL from the value of
field DATABASE PROTOCOL on installation panel DSNTIP5.

One method of preparing a program with three-part names to use DRDA access is:

1. Precompile the program.

2. Bind the DBRM into a package at each server that is specified with a three-part
name in the program.

3. Bind the DBRM and the packages into a plan using bind option
DBPROTOCOL(DRDA) at the local location.

For example, suppose that application program DRDA3PRT contains these SQL
statements:

SELECT S FROM SAN_JOSE.DSN861O.EMP;

UPDATE LONDON.DSN861O.EMP SET PHONENO='4145'

 WHERE LASTNAME='QUINTANA';

DELETE FROM TOKYO.DSN861O.DEPT WHERE DEPTNO='MO1';

To prepare program DRDA3PRT to execute using DRDA access, precompile
DRDA3PRT, and bind the DBRM into packages at SAN_JOSE, LONDON, and
TOKYO. Then bind the three remote packages and the DBRM into a plan using
bind option DBPROTOCOL(DRDA).

For an application that uses an explicit connection to one location and a three-part
name to access (hop to) a second location, the program preparation process is
slightly different. In that case, follow steps like these:

1. Precompile the program.

2. Bind the DBRM into a package at the first location using bind option
DBPROTOCOL(DRDA). This causes the connection to the second location to
use DRDA access.

3. Bind the DBRM into a package at the second location.

4. Bind the DBRM and the packages into a plan using bind option
DBPROTOCOL(DRDA) at the local location.

  Chapter 5. Improved network computing 105



  
 

Moving from DB2 private protocol access to DRDA access
Recommendation: Move from DB2 private protocol access to DRDA access
whenever possible. Because DB2 supports DRDA access for three-part names, you
can move to DRDA access without modifying your applications. For any application
that uses DB2 private protocol access, follow these steps to make the application
use DRDA access:

1. Determine which locations the application accesses.

For static SQL applications, you can do this by searching for all SQL
statements that include three-part names and aliases for three-part names. For
three-part names, the high-level qualifier is the location name. For potential
aliases, query catalog table SYSTABLES to determine whether the object is an
alias, and if so, the location name of the table that the alias represents. For
example:

SELECT NAME, CREATOR, LOCATION, TBCREATOR, TBNAME

 FROM SYSIBM.SYSTABLES

 WHERE NAME='name'
 AND TYPE='A';

where name is the potential alias.

For dynamic SQL applications, bind packages at all remote locations that users
might access with three-part names.

2. Bind the application into a package at every location that is named in the
application. Optionally, bind a package locally.

For an application that uses explicit CONNECT statements to connect to a
second location and then accesses a third location using a three-part name,
bind a package at the second location with DBPROTOCOL(DRDA), and bind
another package at the third location.

3. Bind all remote packages into a plan with the local package or DBRM. Bind this
plan with the option DBPROTOCOL(DRDA).

4. Ensure that aliases resolve correctly.

For DB2 private protocol access, DB2 resolves aliases at the requesting
location. For DRDA access, however, DB2 resolves aliases at the location
where the package executes. Therefore, you might need to define aliases for
three-part names at remote locations.

For example, suppose you use DRDA access to run a program that contains
this statement:

SELECT S FROM MYALIAS;

Assume MYALIAS is an alias for LOC2.MYID.MYTABLE. DB2 resolves
MYALIAS at the local location to determine that this statement needs to run at
LOC2. DB2 does not send the resolved name to LOC2. When the statement
executes at LOC2, DB2 resolves MYALIAS using the catalog at LOC2. If the
catalog does not contain the alias MYID.MYTABLE for MYALIAS, the SELECT
statement does not execute successfully.

This situation can become more complicated if you use three-part names to
access DB2 objects from remote locations. For example, suppose you are
connected explicitly to LOC2, and you use DRDA access to execute this
statement:

SELECT S FROM YRALIAS;

106 Release Planning Guide  



  
 

where YRALIAS is an alias for LOC3.MYID.MYTABLE. When this SELECT
statement executes at LOC3, both LOC2 and LOC3 must have an alias
YRALIAS that resolves to MYID.MYTABLE at LOC3.

5. If you use the resource limit facility at the remote locations that are specified in
three-part names to control the amount of time that distributed dynamic SQL
statements run, you must modify the resource limit specification tables at those
locations.

For DB2 private protocol access, you specify plan names to govern SQL
statements that originate at a remote location. For DRDA access, you specify
package names for this purpose. Therefore, you must add rows to your
resource limit specification tables at the remote locations for the packages you
bound for DRDA access with three-part names. You should also delete the
rows that specify plan names for DB2 private protocol access.

# Choosing a default database protocol
# The DATABASE PROTOCOL field on installation panel DSNTIP5 determines
# whether bind operations that do not specify the DBPROTOCOL parameter use
# DRDA access or DB2 private protocol access. Before you set the default to DRDA,
# keep the following factors in mind:

# � If you fall back to DB2 Version 5, you cannot use plans and packages that
# were bound in Version 6 using DBPROTOCOL(DRDA).

# � In a data sharing group that is in coexistence mode, if a data sharing member
# that is at DB2 Version 6 binds a package or plan using DBPROTOCOL(DRDA),
# other members that are at earlier DB2 release levels cannot use that package
# or plan.

# Recommendation: Choose a default database protocol of DRDA only after you are
# sure that your DB2 subsystem is stable at DB2 Version 6. If your installation has
# data sharing groups that are operating in coexistence mode, wait until all members
# are at DB2 Version 6 before choosing a default of DRDA.

Stored procedure enhancements
The following sections discuss changes to stored procedures for Version 6:

� “Creating and modifying stored procedure definitions”
� “Changes to stored procedure security” on page 109
� “Changes to stored procedure invocation” on page 110

Creating and modifying stored procedure definitions
DB2 for OS/390 Version 6 introduces the SQL CREATE PROCEDURE, ALTER
PROCEDURE, and DROP PROCEDURE statements, which you can use to define
stored procedures to DB2. These statements replace the method of inserting,
updating, and deleting rows in catalog table SYSIBM.SYSPROCEDURES.

For details on the syntax of the CREATE PROCEDURE, ALTER PROCEDURE,
and DROP PROCEDURE statements, see Chapter 6 of DB2 SQL Reference.

Example of creating a stored procedure definition: Suppose you have written
and prepared a stored procedure that has these characteristics:

� The name is B.

  Chapter 5. Improved network computing 107



  
 

� The stored procedure should be defined in schema RED.

� It takes two parameters:

– An integer input parameter named V1
– A character output parameter of length 9 named V2

� It is written in the C language.

� It contains no SQL statements.

� The same input always produces the same output.

� The load module name is SUMMOD.

� The package collection name is SUMCOLL.

� It should run for no more than 900 CPU service units.

� The parameters can have null values.

� It should be deleted from memory when it completes.

� The DBINFO structure is not passed to the stored procedure.

� The Language Environment run-time options it needs are:

MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)

� It is part of the WLM application environment named PAYROLL.

� It runs as a main program.

� It does not access non-DB2 resources, so it does not need a special RACF
environment.

� It can return at most 10 result sets.

� When control returns to the client program, DB2 should not commit updates
automatically.

This CREATE PROCEDURE statement defines the stored procedure to DB2:

CREATE PROCEDURE RED.B(V1 INTEGER IN, CHAR(9) OUT)

 LANGUAGE C

 DETERMINISTIC

 NO SQL

EXTERNAL NAME SUMMOD

 COLLID SUMCOLL

ASUTIME LIMIT 9OO

PARAMETER STYLE GENERAL WITH NULLS

STAY RESIDENT NO

 NO DBINFO

RUN OPTIONS 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'

WLM ENVIRONMENT PAYROLL

PROGRAM TYPE MAIN

 SECURITY DB2

RESULT SETS 1O

COMMIT ON RETURN NO;

Example of altering a stored procedure definition: Suppose you need to make
the following changes to the preceding stored procedure definition:

� The stored procedure selects data from DB2 tables but does not modify DB2
data.

108 Release Planning Guide  



  
 

� The parameters can have null values, and the stored procedure can return a
diagnostic string.

� The length of time the stored procedure runs should not be limited.

� If the stored procedure is called by another stored procedure or a user-defined
function, the stored procedure uses the WLM environment of the caller.

Execute this ALTER PROCEDURE statement to make the changes:

ALTER PROCEDURE RED.B

READS SQL DATA

ASUTIME NO LIMIT

PARAMETER STYLE DB2SQL

WLM ENVIRONMENT (PAYROLL,S);

DB2 no longer uses SYSIBM.SYSPROCEDURES to record stored procedure
definitions. When you migrate, DB2 for OS/390 Version 6 automatically creates new
definitions of your old stored procedures in the SYSIBM.SYSROUTINES catalog
table. However, if you specified values for AUTHID or LUNAME in any old stored
procedure definitions, DB2 cannot create new definitions for those stored
procedures, and you must manually redefine those stored procedures using the
CREATE PROCEDURE statement.

To check for stored procedures with nonblank AUTHID or LUNAME values, execute
this query:

SELECT S FROM SYSIBM.SYSPROCEDURES

WHERE AUTHID<>' ' OR LUNAME<>' ';

Then use CREATE PROCEDURE to create definitions for all stored procedures
that are identified by the SELECT statement. You cannot specify AUTHID or
LUNAME using CREATE PROCEDURE. However, AUTHID and LUNAME let you
define several versions of a stored procedure, such as a test version and a
production version. You can accomplish the same task by specifying a unique
schema name for each stored procedure with the same name. For example, for
stored procedure INVENTORY, you might define TEST.INVENTORY and
PRODTN.INVENTORY.

Changes to stored procedure security
DB2 for OS/390 Version 6 contains improvements to authorization for resources
that are internal and external to DB2.

For accessing DB2 resources, DB2 for OS/390 Version 6 introduces the concept of
a stored procedure owner. The owner of a stored procedure is the authorization ID
under which the CREATE PROCEDURE statement is executed. If the CREATE
PROCEDURE statement is embedded in a program, the owner of the stored
procedure is the owner of the plan or package that contains the CREATE
PROCEDURE statement. If the CREATE PROCEDURE statement is executed
dynamically, the owner of the stored procedure is the value of special register
CURRENT SQLID when the CREATE PROCEDURE statement is executed.

The owner of a stored procedure can execute the DB2 commands START
PROCEDURE, STOP PROCEDURE, and DISPLAY PROCEDURE on that stored
procedure. The owner can also grant and revoke the new EXECUTE privilege on
the stored procedure. The ability to grant EXECUTE authority on a stored
procedure, instead of only on a stored procedure package, lets the owner control

  Chapter 5. Improved network computing 109



  
 

access to stored procedures that contain no SQL statements and therefore have no
packages.

For accessing resources that are external to DB2, DB2 can establish a RACF
environment for a stored procedure that runs in a WLM-established stored
procedures address space. The authority that is used when the stored procedure
accesses protected MVS resources depends on the value of SECURITY in the
stored procedure definition:

� If the value of SECURITY is DB2, the authorization ID associated with the
stored procedures address space is used.

� If the value of SECURITY is USER, the authorization ID under which the CALL
statement is executed is used.

� If the value of SECURITY is DEFINER, the authorization ID under which the
CREATE PROCEDURE statement was executed is used.

Changes to stored procedure invocation
DB2 for OS/390 Version 6 introduces the following changes to stored procedure
invocation:

� Support for passing the new data types as parameters

Those data types include BLOB, CLOB, DBCLOB, BLOB locators, CLOB
| locators, DBCLOB locators, DATE, TIME, TIMESTAMP, ROWID, and distinct

types

� Passing host structures as parameters in the CALL statement

� Nesting stored procedure and user-defined function invocations

Stored procedures can contain CALL statements for invoking other stored
procedures or invocations of user-defined functions. DB2 supports 16 levels of
nesting.

� An additional method for passing parameters

In previous releases of DB2, you could pass parameters using the SIMPLE
(now called GENERAL) convention or the SIMPLE WITH NULLS (now called
GENERAL WITH NULLS) convention. DB2 for OS/390 Version 6 adds a new
convention called DB2SQL.

Like GENERAL WITH NULLS, the DB2SQL option lets you supply a null value
for any parameter that is passed to the stored procedure. In addition, DB2
passes input and output parameters to the stored procedure that contain this
information:

– The SQLSTATE that is to be returned to DB2.

– The qualified name of the stored procedure.

– The specific name of the stored procedure. The specific name is the same
as the qualified name.

– The SQL diagnostic string that is to be returned to DB2.

Figure 16 on page 111 shows the structure of the parameter list for
PARAMETER STYLE DB2SQL.

110 Release Planning Guide  



  
 

Figure 16. Parameter convention DB2SQL for a stored procedure

Figure 17 on page 112 shows an example of how a stored procedure that is
defined with the DB2SQL linkage convention receives parameters.

� Using the schema name to determine which version of a stored procedure to
run

When you execute the CREATE PROCEDURE statement, you implicitly or
explicitly specify the name of the schema in which the stored procedure
resides. You can create two stored procedures with the same name in two
different schemas, and DB2 considers each of those stored procedures to be
unique.

When you execute a CALL statement, you can specify zero, one, or two
qualifiers for the stored procedure name. The stored procedure name with its
qualifiers uniquely identifies the version of the stored procedure that DB2
should execute. The first qualifier is the name of the location where the stored
procedure resides, and the second qualifier is the schema in which the stored
procedure resides. If you do not specify a location name, the default location
name is the name of the current server. If you specify a location name, a
schema name is required. If you do not specify a schema name, DB2 uses the
SQL path to determine the default schema name. The SQL path comes from
the PATH bind option if you use the CALL procedure-name form of the CALL
statement, or from the CURRENT PATH special register if you use the CALL
host-variable form of the CALL statement. See the description of the CALL
statement in Chapter 6 of DB2 SQL Reference for more information.

  Chapter 5. Improved network computing 111



  
 

#pragma runopts(plist(os))

#include <;stdlib.h>

#include <;stdio.h>

main(argc,argv)

 int argc;

 char Sargv[];

{

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Assume that the SQL CALL statement includes S/

/S 3 input/output parameters in the parameter list.S/

/S Also assume that the DBINFO was not specified S/

/S in the CREATE PROCEDURE statement. S/

/S The argv vector will contain these entries: S/

/S argv[O] 1 contains load module S/

 /S argv[1-3] 3 input/output parms S/

 /S argv[4-6] 3 null indicators S/

 /S argv[7] 1 SQLSTATE variable S/

/S argv[8] 1 qualified proc name S/

/S argv[9] 1 specific proc name S/

/S argv[1O] + 1 diagnostic string S/

 /S ------ S/

/S 11 for the argc variable S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

if argc<>11 {

...

/S We end up here when invoked with wrong number of parms S/

 }

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Assume the first parameter is an integer. S/

/S The code below shows how to copy the integer S/

/S parameter into the application storage. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 int parm1;

parm1 = S(int S) argv[1];

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S We can access the null indicator for the first S/

/S parameter on the SQL CALL as follows: S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

short int ind1;

ind1 = S(short int S) argv[4];

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S We can use the expression below to assign S/

/S 'xxxxx' to the SQLSTATE returned to caller on S/

/S the SQL CALL statement. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 strcpy(argv[7],"xxxxx/O");

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S We obtain the value of the qualified procedure S/

/S name with this expression. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 char p_proc[28];

 strcpy(p_proc,argv[8]);

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S We obtain the value of the specific procedure S/

/S name with this expression. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 char p_spec[19];

 strcpy(p_spec,argv[9]);

Figure 17 (Part 1 of 2). An example of DB2SQL linkage in C

112 Release Planning Guide  



  
 

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S We can use the expression below to assign S/

/S 'yyyyyyyy' to the diagnostic string returned S/

/S in the SQLCA associated with the CALL statement.S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 strcpy(argv[1O],"yyyyyyyy/O");
...

}

Figure 17 (Part 2 of 2). An example of DB2SQL linkage in C

# Using SQL procedures
# DB2 introduces SQL procedures, which are stored procedures in which the source
# program is included in the stored procedure definition. The source program is
# written using special statements called SQL procedure statements. The SQL
# procedure statements are:

# Assignment statement
# Assigns a value to an output parameter or to an SQL variable, which is a
# variable that is defined and used only within a procedure body. The right side
# of an assignment statement can include SQL built-in functions.

# CALL statement
#  Calls another stored procedure. This statement is similar to the CALL
# statement described in Chapter 6 of DB2 SQL Reference, except that the
# parameters must be SQL variables, parameters for the SQL procedure, or
# constants.

# CASE statement
#  Selects an execution path based on the evaluation of one or more conditions.
# This statement is similar to the CASE expression, which is described in Chapter
# 3 of DB2 SQL Reference.

# GET DIAGNOSTICS statement
#  Obtains information about the previous SQL statement that was executed.

# GOTO statement
#  Transfers program control to a labelled statement.

# IF statement
#  Selects an execution path based on the evaluation of a condition.

# LEAVE statement
#  Transfers program control out of a loop or a block of code.

# LOOP statement
#  Executes a statement or group of statements multiple times.

# REPEAT statement
#  Executes a statement or group of statements until a search condition is true.

# WHILE statement
#  Repeats the execution of a statement or group of statements while a specified
# condition is true.

  Chapter 5. Improved network computing 113



  
 

# Compound statement
#  Can contain one or more of any of the other types of statements in this list. In
# addition, a compound statement can contain SQL variable declarations,
# condition handlers, or cursor declarations.

# The order of statements in a compound statement must be:

# 1. SQL variable and condition declarations

#  2. Cursor declarations

#  3. Handler declarations

# 4. Procedure body statements (CALL, CASE, IF, LOOP, REPEAT, WHILE,
# SQL)

# SQL statement
#  A subset of the SQL statements that are described in Chapter 6 of DB2 SQL
# Reference. Certain SQL statements are valid in a compound statement, but not
# valid if the SQL statement is the only statement in the procedure body.
# Appendix B of DB2 SQL Reference lists the SQL statements that are valid in
# an SQL procedure.

# Figure 18 shows an example of a simple SQL procedure. This SQL procedure
# demonstates how to use a CASE statement. The procedure receives an
# employee's ID number and rating as input parameters. The CASE statement
# modifies the employee's salary and bonus, using a different UPDATE statement for
# each of the possible ratings.

# CREATE PROCEDURE UPDATESALARY2

#  (IN EMPNUMBR CHAR(6),

# IN RATING INT)

#  LANGUAGE SQL

#  MODIFIES SQL DATA

#  CASE RATING

# WHEN 1 THEN

#  UPDATE CORPDATA.EMPLOYEE

# SET SALARY = SALARY S 1.1O, BONUS = 1OOO

# WHERE EMPNO = EMPNUMBR;

# WHEN 2 THEN

#  UPDATE CORPDATA.EMPLOYEE

# SET SALARY = SALARY S 1.O5, BONUS = 5OO

# WHERE EMPNO = EMPNUMBR;

#  ELSE

#  UPDATE CORPDATA.EMPLOYEE

# SET SALARY = SALARY S 1.O3, BONUS = O

# WHERE EMPNO = EMPNUMBR;

#  END CASE

# Figure 18. Example of an SQL procedure definition

114 Release Planning Guide  



  
 

Improved data transfer with OPTIMIZE FOR n ROWS
In previous versions of DB2 for OS/390, client programs could use the clause
OPTIMIZE FOR n ROWS in SELECT statements to limit the number of data rows
that DB2 for OS/390 returned on each DRDA network transmission. DB2 for
OS/390 Version 6, enhances the OPTIMIZE FOR n ROWS clause to optimize
retrieval of a large number of rows.

DB2 for OS/390 Version 6 supports DRDA level 3, which provides support for
returning multiple query blocks on each network transmission. To retrieve multiple
query blocks on each network transmission, a client program that performs
high-volume download operations can specify a large value for n in the OPTIMIZE
for n ROWS clause.

The number of rows that DB2 for OS/390 transmits on each network transmission
depends on the following factors:

� If n rows of the SQL result set fit within a single DRDA query block, a DB2
server can send n rows to any DRDA client. In this case, DB2 sends n rows in
each network transmission, until the entire query result set is exhausted.

� If n rows of the SQL result set exceed a single DRDA query block, the number
of rows that are contained in each network transmission depends on the client's
DRDA software level and configuration:

– If the client does not support DRDA level 3, the DB2 server automatically
reduces the value of n to match the number of rows that fit within a DRDA
query block.

– If the client does support DRDA level 3, the DRDA client can choose to
accept multiple DRDA query blocks in a single data transmission. DRDA
lets the client establish an upper limit on the number of extra DRDA query
blocks in each network transmission.

The upper limit is the smaller of the following values:

- The value of EXTRA BLOCKS SRV in install panel DSNTIP5 at the
DB2 for OS/390 server

This is the maximum number of extra DRDA query blocks that the DB2
server returns to a client in a single network transmission.

- The client's extra query block limit, which DB2 for OS/390 obtains from
the DDM MAXBLKEXT parameter received from the client

When DB2 for OS/390 acts as a DRDA client, DB2 sets the DDM
MAXBLKEXT parameter to the value that is specified on the EXTRA
BLOCKS REQ field of the DSNTIP5 install panel.

The number of rows that a DB2 server sends is the smaller of n rows and
the number of rows that fit within the lesser of these two limitations:

- The value of EXTRA BLOCKS SRV in install panel DSNTIP5 at the
DB2 server

This is the maximum number of extra DRDA query blocks that the DB2
server returns to a client in a single network transmission.

- The client's extra query block limit, which is obtained from the DDM
MAXBLKEXT parameter received from the client

  Chapter 5. Improved network computing 115



  
 

When DB2 acts as a DRDA client, the DDM MAXBLKEXT parameter is
set to the value specified on the EXTRA BLOCKS REQ install option of
the DSNTIP5 install panel.

The OPTIMIZE FOR n ROWS function is useful in two cases:

� If n is less than the number of rows that fit in the DRDA query block, OPTIMIZE
FOR n ROWS can improve performance by preventing the DB2 server from
fetching rows that might never be used by the DRDA client application.

� If n is greater than the number of rows that fit in a DRDA query block,
OPTIMIZE FOR n ROWS lets the DRDA client request multiple blocks of query
data on each network transmission. This use of OPTIMIZE FOR n ROWS can
significantly improve elapsed time for large query download operations.

Specifying a large value for n in OPTIMIZE FOR n ROWS can increase the number
of DRDA query blocks that a DB2 server returns in each network transmission. This
function can significantly improve performance for applications that use DRDA
access to download large amounts of data. However, this same function can
degrade performance if you do not use it properly. The following examples
demonstrate the performance problems that can occur when you do not use
OPTIMIZE FOR n ROWS judiciously.

The example in Figure 19, the DRDA client opens a cursor and fetches rows from
the cursor. At some point before all rows in the query result set are returned, the
application issues an SQL INSERT. DB2 uses normal DRDA blocking, which has
two advantages over the blocking that is used for OPTIMIZE FOR n ROWS:

� If the application issues an SQL statement other than FETCH (the example
shows an INSERT statement), the DRDA client can transmit the SQL statement
immediately, because the DRDA connection is not in use after the SQL OPEN.

� If the SQL application closes the cursor before fetching all the rows in the
query result set, the server fetches the number of rows that fits into one query
block, which is 100 rows. Basically, the DRDA query block size places an upper
limit on the number of rows that are fetched unnecessarily.

Figure 19. Message flows without OPTIMIZE FOR 1000 ROWS

116 Release Planning Guide  



  
 

In Figure 20 on page 117, the DRDA client opens a cursor and fetches rows from
the cursor using OPTIMIZE FOR n ROWS. Both the DRDA client and the DB2
server are configured to support multiple DRDA query blocks. At some time before
the end of the query result set, the application issues an SQL INSERT. Because
OPTIMIZE FOR n ROWS is being used, the DRDA connection is not available
when the SQL INSERT is issued because the connection is still being used to
receive the DRDA query blocks for 1000 rows of data. This causes two
performance problems:

� Application elapsed time can increase if the DRDA client waits for a large query
result set to be transmitted, before the DRDA connection can be used for other
SQL statements. Figure 20 shows how an SQL INSERT statement can be
delayed because of a large query result set.

� If the application closes the cursor before fetching all the rows in the SQL result
set, the server might fetch a large number of rows unnecessarily.

Figure 20. Message flows with OPTIMIZE FOR 1000 ROWS

Recommendation: Use OPTIMIZE FOR n ROWS to increase the number of
DRDA query blocks only in applications that have all these attributes:

� The application fetches a large number of rows from a read-only query.

� The application rarely closes the SQL cursor before fetching the entire query
result set.

  Chapter 5. Improved network computing 117



  
 

� The application does not issue statements other than FETCH to the DB2 server
while the SQL cursor is open.

� The application does not execute FETCH statements using multiple cursors
that are opened concurrently and defined with OPTIMIZE FOR n ROWS.

DB2 ODBC enhancements
In Version 5, DB2 for OS/390 introduced DB2 Call Level Interface (CLI). In Version
6, DB2 CLI is renamed DB2 ODBC (Open Database Connectivity) to align with
common industry terminology. This is a change in name only; the support and
function remain the same.

Enhancements to DB2 ODBC improve performance, support the object-relational
extensions that are introduced in Version 6, and provide usability improvements.

 � Performance improvements

| The new DB2 ODBC shadow catalog provides fast catalog access for your
| ODBC catalog queries. Using the new DB2 ODBC initialization file keyword,
| CLISCHEMA, you can direct your ODCB catalog queries to the shadow
| catalog. See “Faster ODBC catalog queries” on page 119 for more information.

A new API, SQLDescribeParam(), describes parameter markers. This API
improves performance for ODBC applications, as described in “Better
performance for dynamic SQL applications” on page 119.

� Support for object-relational extensions

Three new APIs support the manipulation of LOBs:

– SQLGetLength() retrieves the length of a LOB value.

– SQLGetPosition() returns the starting position of a string within a LOB
value.

– SQLGetSubString() retrieves a portion of a LOB string value.

A number of the existing APIs now support the object extensions.

Additional support for the object extensions includes:

| – LOB and row ID data types.

– LOB locators. For example, ODBC applications can use LOB locators and
apply the new APIs to a LOB value using the LOB locator.

– Support of the new FREE LOCATOR and HOLD LOCATOR SQL
statements.

– Support of distinct types and cast functions.

– Support of user-defined functions.

– A new DB2 ODBC initialization file keyword, CURRENTFUNCTIONPATH,
for setting the CURRENT PATH special register.

| � Usability improvements include more detailed ODBC trace information and
| changes to trace keywords that make application and diagnostic traces easier
| to use.

DB2 ODBC's support of multithreading and multiple contexts is available in Version
5 with APAR PQ09901. With these enhancements, you can write multithreaded

118 Release Planning Guide  



  
 

applications in an LE POSIX(ON) runtime environment, and restrictions on
connection switching are lifted.

For detail about the DB2 ODBC enhancements, see DB2 ODBC Guide and
Reference.

| Faster ODBC catalog queries
| Most ODBC end users require access to a small subset of tables in the DB2
| system catalog. To enable faster, more efficient ODBC catalog queries, Version 6
| introduces the DB2 ODBC shadow catalog. The tables in the shadow catalog are
| pre-joined and indexed to improve performance and are limited to only the subset
| of catalog information needed for ODBC operations.

| You can easily access and manage the DB2 ODBC shadow catalog.

| � The setting you specify in the CLISCHEMA keyword in the DB2 ODBC
| initialization file points your catalog query to a specific set of shadow catalog
| tables or views.

| � DB2 DataPropagator for OS/390 provides an automated process for managing
| the shadow catalog. The DB2 DataPropagator Capture and Apply process
| captures the catalog data and synchronizes updates to the shadow copies of
| the DB2 catalog with the DB2 system catalog.

Better performance for dynamic SQL applications
DB2 adds DRDA support for the new DESCRIBE INPUT statement. DESCRIBE
INPUT obtains information about the input parameter markers of a prepared
statement. This support improves performance for dynamic SQL applications and
many ODBC applications by reducing the number of network messages that need
to be exchanged when an application is executing dynamic SQL with input host
variables and does not know the correct data type of the input host variables ahead
of time. Using DESCRIBE INPUT, you can ask the DBMS to describe what an SQL
statement looks like and avoid the expense of catalog lookups for determining input
parameter marker data.

See Appendix C, “Changes to SQL” on page 269 for a description of the
DESCRIBE INPUT statement.

Improvements for dynamically prepared SQL statements
DB2 uses the SQL path determined by the new CURRENT PATH special register
to implicitly qualify names of distinct types, user-defined functions, and stored
procedures in dynamically prepared SQL statements. The new register can be very
useful for test purposes. You can use it to support both the test and production
versions of a single stored procedure within one DB2 subsystem. For more
information about multiple versions of stored procedures, see “Changes to stored
procedure invocation” on page 110.

For more information about the CURRENT PATH special register, see DB2 SQL
Reference.

  Chapter 5. Improved network computing 119



  
 

DB2 database connection pooling
DB2 Version 6 adds new support for database connection pooling. In previous
releases of DB2, when an application requester established a connection to DB2, a
connection to the DB2 database was also established. A connection to the
database has a much larger footprint than does a DRDA or a private-protocol
connection to a DB2 application server. In Version 6, for DRDA requesters, DB2
maintains a pool of database connections that may be re-used as necessary to
process requests from DRDA application requesters. This pool enables DB2 to
support up to 150 000 DRDA connections to DB2. The pool of connections to the
database consists of a pool of database access threads and the support for this is
called type 2 inactive threads.

DB2 supports two types of inactive threads: type 1 and type 2. The differences
between the types are that type 2 inactive threads are only available for DRDA
connections, use less storage than type 1 inactive threads, and use a pool of
database access threads that can be switched among connections as needed. If
you have a requirement to support more inbound remote connections than you
have database access threads, you should consider using DDF inactive thread
support.

The following sections provide information on inactive thread support.

� “Using type 2 inactive threads”
� “Determining if a thread can become inactive” on page 121
� “Enabling threads to become inactive” on page 121

Using type 2 inactive threads
Type 2 inactive threads use a pool of database access threads that can be
switched among connections as needed. DB2 always tries to make inactive threads
type 2, but in some cases cannot do so. The conditions listed in Table 9 determine
if a thread can be a type 2 or a type 1.

When the conditions listed in Table 9 are true, the thread can become inactive
when a COMMIT is issued. After a ROLLBACK, a thread can become inactive even
if it had open cursors defined WITH HOLD or a held LOB locator because
ROLLBACK closes all cursors and LOB locators.

Table 9. Requirements for type 1 and type 2 inactive threads

If there is... Thread can be type
2?

Thread can be type
1?

A hop to another location Yes Yes

A connection using DB2
private—protocol access

No Yes

A package that is bound with
RELEASE(COMMIT)

Yes Yes

A package that is bound with
RELEASE(DEALLOCATE)

Yes No

A held cursor, a held LOB locator, or a
package bound with
KEEPDYNAMIC(YES)

No No

120 Release Planning Guide  



  
 

Determining if a thread can become inactive
After a COMMIT or ROLLBACK, DB2 determines if a thread can become inactive
and, if so, if that thread can become a type 1 or type 2 inactive thread based on
the conditions shown in Table 9 on page 120.

If a thread is eligible to become a type 2 inactive thread, the thread is made
inactive and the database access thread is eligible to be used by another
connection.

If a thread must become a type 1 inactive thread, DB2 first compares the number
of current type 1 inactive threads to the value that is specified for your installation
for MAX TYPE 1 INACTIVE on panel DSNTIPR:

1. If the current number of type 1 inactive threads is below the value in MAX
TYPE 1 INACTIVE, the thread becomes inactive. It cannot be used by another
connection.

2. If the current number of type 1 inactive threads meets or exceeds the value in
MAX TYPE 1 INACTIVE, the thread remains active. However, too many active
threads (that is, more than MAX REMOTE ACTIVE) can cause the thread and
its connection to be terminated.

Enabling threads to become inactive
You must specify INACTIVE on the DDF THREADS field of installation panel
DSNTIPR to allow threads to become inactive. To limit the number of type 1
inactive threads that can be created, specify a value in the MAX TYPE 1 INACTIVE
field of installation panel DSNTIPR. The default is 0, which means that any thread
that does not qualify for being a type 2 inactive thread remains active.

Recommendation: Use type 2 inactive threads if you can. If you can't, set MAX
TYPE 1 INACTIVE to the maximum number of concurrent connections that use
DB2 private—protocol access.

  Chapter 5. Improved network computing 121



  
 

122 Release Planning Guide  



  
 

Chapter 6. Object-relational extensions and active data

With the object extensions of DB2, you can incorporate object-oriented concepts
and methodologies into your relational database by extending DB2 with richer sets
of data types and functions. With those extensions, you can store instances of
object-oriented data types in columns of tables and perform operations on them
using functions in SQL statements. In addition, you can control the types of
operations that users can perform on those data types.

The object extensions that DB2 provides are:

� Large objects (LOBs)

The VARCHAR and VARGRAPHIC data types have a storage limit of 32 KB.
Although this might be sufficient for small- to medium-size text data,
applications often need to store large text documents. They might also need to
store a wide variety of additional data types such as audio, video, drawings,
mixed text and graphics, and images. DB2 provides three data types to store
these data objects as strings of up to 2 GB - 1 in size. The three data types
are binary large objects (BLOBs), character large objects (CLOBs), and
double-byte character large objects (DBCLOBs).

For a detailed discussion of LOBs, see “Working with large objects (LOBs)” on
page 124.

 � Distinct types

A distinct type is a user-defined data type that shares its internal representation
with a built-in data type but is considered to be a separate and incompatible
type for semantic purposes. For example, you might want to define a picture
type or an audio type which have different semantics but use the built-in data
type BLOB for their internal representation.

For a detailed discussion of distinct types, see “Creating and using distinct
types” on page 202.

 � User-defined functions

The built-in functions that are supplied with DB2 are a useful set of functions,
but they might not satisfy all of your requirements. You can write user-defined
functions to meet the specific needs for your installation. For example, a built-in
function might perform a calculation you need, but the function does not accept
the distinct types you want to pass to it. You can then define a function based
on a built-in function, called a sourced user-defined function, that accepts your
distinct types. You might need to perform another calculation in your SQL
statements for which there is no built-in function. In that situation, you can
define and write an external user-defined function.

For a detailed discussion of user-defined functions, see “Creating and using
user-defined functions” on page 143.

Triggers help you bring application logic into the database. A trigger defines a set
of actions that are to be executed when a specific SQL data change operation
occurs on a specified table. The SQL data change operation includes actions
initiated by SQL inserts, updates, and deletes, as well as actions of referential
integrity constraints. For a detailed discussion of triggers, see “Using triggers for
active data” on page 211.

 Copyright IBM Corp. 1999  123



  
 

Working with large objects (LOBs)
The term large object and the acronym LOB refer to DB2 objects that you can use
to store large amounts of data. A LOB is a varying-length character string that can
contain up to 2 GB - 1 of data.

The three LOB data types are:

� Binary large object (BLOB)

Use a BLOB to store binary data such as pictures, voice, and mixed media.

� Character large object (CLOB)

Use a CLOB to store SBCS or mixed character data, such as documents.

� Double-byte character large object (DBCLOB)

Use a DBCLOB to store data that consists of only DBCS data.

This section presents the following information about LOBs:

� “Introduction to defining LOBs”
� “Declaring LOB host variables and LOB locators” on page 127
� “LOB materialization” on page 132
� “Using LOB locators to save storage” on page 132
� “LOB system processing” on page 136
� “Recovering table spaces that contain LOBs” on page 141

Introduction to defining LOBs
These are the basic steps for defining LOBs and moving the data into DB2:

1. Define a column of the appropriate LOB type and a row identifier (ROWID)
column in a DB2 table. Define only one ROWID column, even if multiple LOB
columns are in the table.

The LOB column contains information about the LOB, not the LOB data itself.
The table that contains the LOB definition is called the base table. DB2 uses
the ROWID column to locate your LOB data. You need only one ROWID
column in a table that contains one or more LOB columns. You can define the
LOB column and the ROWID column in a CREATE TABLE or ALTER TABLE
statement. If you are adding a LOB column and a ROWID column to an
existing table, you must use two ALTER TABLE statements. Add the ROWID
with the first ALTER TABLE statement and the LOB column with the second
ALTER TABLE statement.

2. Create a table space and table to hold the LOB data.

The table space and table are called a LOB table space and an auxiliary table.
If your base table is nonpartitioned, you must create one LOB table space and
one auxiliary table for each LOB column. If your base table is partitioned, for
each LOB column, you must create one LOB table space and one auxiliary
table for each partition. For example, if your base table has three partitions, you
must create three LOB table spaces and three auxiliary tables for each LOB
column. Create these objects using the CREATE LOB TABLESPACE and
CREATE AUXILIARY TABLE statements.

3. Create an index on the auxiliary table.

124 Release Planning Guide  



  
 

Each auxiliary table must have exactly one index. Use CREATE INDEX for this
task.

4. Put the LOB data into DB2.

If the total length of a LOB column and the base table row is less than 32 KB,
you can use the LOAD utility to put the data in DB2. Otherwise, you must use
INSERT or UPDATE statements. Even though the data is stored in the auxiliary
table, the target of your LOAD utility statement or INSERT statement specifies
the name of the base table. Using INSERT can be difficult because your
application needs enough storage to hold the entire value that goes into the
LOB column.

For example, suppose you want to add a resume for each employee to the
employee table. Employee resumes are no more than 1 MB in size. The employee
resumes contain single-byte characters, so you can define the resumes to DB2 as
CLOBs. You therefore need to add a column of data type CLOB with a length of 1
MB to the employee table. If a ROWID column has not been defined in the table,
you need to add the ROWID column before you add the CLOB column. Execute
an ALTER TABLE statement to add the ROWID column, and then execute another
ALTER TABLE statement to add the CLOB column. You might use statements like
this:

ALTER TABLE EMP

ADD ROW_ID ROWID NOT NULL GENERATED ALWAYS;

COMMIT;

ALTER TABLE EMP

ADD EMP_RESUME CLOB(1M);

COMMIT;

Next, you need to define a LOB table space and an auxiliary table to hold the
employee resumes. The LOB table space must be in the same database as the
base table. You also need to define an index on the auxiliary table. You can use
statements like this:

CREATE LOB TABLESPACE RESUMETS

 IN DSN8D61A

 LOG NO;

COMMIT;

CREATE AUXILIARY TABLE EMP_RESUME_TAB

 IN DSN8D61A.RESUMETS

 STORES DSN861O.EMP

 COLUMN EMP_RESUME;

CREATE UNIQUE INDEX XEMP_RESUME

 ON EMP_RESUME_TAB;

COMMIT;

If the value of bind option SQLRULES is STD, or if special register CURRENT
RULES has been set in the program and has the value STD, DB2 creates the LOB
table space, auxiliary table, and auxiliary index for you when you execute the
ALTER statement to add the LOB column.

Now that your DB2 objects for the LOB data are defined, you can load your
employee resumes into DB2. To do this in an SQL application, you can define a
host variable to hold the resume, copy the resume data from a file into the host
variable, and then execute an UPDATE statement to copy the data into DB2.
Although the data goes into the auxiliary table, your UPDATE statement specifies

  Chapter 6. Object-relational extensions and active data 125



  
 

the name of the base table. The C language declaration of the host variable might
be:

SQL TYPE is CLOB (5K) resumedata;

The UPDATE statement looks like this:

UPDATE EMP SET EMP_RESUME=:resumedata

 WHERE EMPNO=:employeenum;

In this example, employeenum is a host variable that identifies the employee who is
associated with a resume.

After your LOB data is in DB2, you can write SQL applications to manipulate the
data. You can use most SQL statements with LOBs. For example, you can use
statements like these to extract information about an employee's department from
the resume:

EXEC SQL BEGIN DECLARE SECTION;

 long deptInfoBeginLoc;

 long deptInfoEndLoc;

SQL TYPE IS CLOB_LOCATOR resume;

SQL TYPE IS CLOB_LOCATOR deptBuffer;

EXEC SQL END DECLARE SECTION;
...

EXEC SQL DECLARE C1 CURSOR FOR

SELECT EMPNO, EMP_RESUME FROM EMP;
...

EXEC SQL FETCH C1 INTO :employeenum, :resume;
...

EXEC SQL SET :deptInfoBeginLoc =

POSSTR(:resumedata, 'Department Information');

EXEC SQL SET :deptInfoEndLoc =

 POSSTR(:resumedata, 'Education');

EXEC SQL SET :deptBuffer =

 SUBSTR(:resume, :deptInfoBeginLoc,

:deptInfoEndLoc - :deptInfoBeginLoc);

These statements use host variables of data type large object locator (LOB locator).
LOB locators let you manipulate LOB data without moving the LOB data into host
variables. By using LOB locators, you need much smaller amounts of memory for
your programs. LOB locators are discussed in “Using LOB locators to save storage”
on page 132.

Sample LOB applications: Table 10 lists the sample programs that DB2 provides
to assist you in writing applications to manipulate LOB data. All programs reside in
data set DSN610.SDSNSAMP.

Table 10 (Page 1 of 2). LOB samples shipped with DB2

Member that
contains
source code Language Function

| DSN8DLPL|  | Demonstrates how to create a table with LOB columns, an
| auxiliary table, and an auxiliary index. Also demonstrates
| how to load LOB data that is 32KB or less into a LOB table
| space.

126 Release Planning Guide  



  
 

Table 10 (Page 2 of 2). LOB samples shipped with DB2

Member that
contains
source code Language Function

DSN8DLPL C Demonstrates the use of LOB locators and UPDATE
statements to move binary data into a column of type
BLOB.

DSN8DLRV C Demonstrates how to use a locator to manipulate data of
type CLOB.

DSNTEP2 PL/I Demonstrates how to allocate an SQLDA for rows that
include LOB data and use that SQLDA to describe an input
statement and fetch data from LOB columns.

Declaring LOB host variables and LOB locators
 When you write applications to manipulate LOB data, you need to declare host
variables to hold the LOB data or LOB locator variables to point to the LOB data.
See “Using LOB locators to save storage” on page 132 for information on what
LOB locators are and when you should use them instead of host variables.

You can declare LOB host variables and LOB locators in assembler, C, C++,
COBOL, FORTRAN, and PL/I. For each host variable or locator of SQL type BLOB,
CLOB, or DBCLOB that you declare, DB2 generates an equivalent declaration that
uses host language data types. When you refer to a LOB host variable or locator in
an SQL statement, you must use the variable you specified in the SQL type
declaration. When you refer to the host variable in a host language statement, you
must use the variable that DB2 generates.

The following examples show you how to declare LOB host variables in each
supported language. In each table, the left column contains the declaration that you
code in your application program. The right column contains the declaration that
DB2 generates.

Important: DB2 supports host variable declarations for LOBs up to 2 GB - 1 bytes
in length, however, the sizes of the LOBs you can declare and manipulate depend
on the limits of the host language and the amount of storage available to your
program.

Declarations of LOB host variables in assembler: Table 11 on page 128 shows
assembler language declarations for some typical LOB types.

  Chapter 6. Object-relational extensions and active data 127



  
 

Notes to Table 11:

1. Because assembler language allows character declarations of no more than
65535 bytes, DB2 separates the host language declarations for BLOB and
CLOB host variables that are longer than 65535 bytes into two parts.

2. Because assembler language allows graphic declarations of no more than
65534 bytes, DB2 separates the host language declarations for DBCLOB host
variables that are longer than 65534 bytes into two parts.

Declarations of LOB host variables in C: Table 12 shows C and C++ language
declarations for some typical LOB types.

Table 11. Example of assembler LOB variable declarations

You declare this variable DB2 generates this variable

blob_var SQL TYPE IS BLOB 1M blob_var DS 0FL4
blob_var_length DS FL4
blob_var_data DS CL655351

ORG blob_var_data+(1048476-65535)

clob_var SQL TYPE IS CLOB
40000K

clob_var DS 0FL4
clob_var_length DS FL4
clob_var_data DS CL655351

ORG clob_var_data +(40960000-65535)

dbclob-var SQL TYPE IS DBCLOB
4000K

dbclob_var DS 0FL4
dbclob_var_length DS FL4
dbclob_var_data DS GL655342

ORG dbclob_var_data+(8192000-65534)

blob_loc SQL TYPE IS
BLOB_LOCATOR

blob_loc DS FL4

clob_loc SQL TYPE IS
CLOB_LOCATOR

clob_loc DS FL4

dbclob_var SQL TYPE IS
DBCLOB_LOCATOR

dbclob_loc DS FL4

Table 12. Examples of C language variable declarations

You declare this variable DB2 generates this variable

SQL TYPE IS BLOB (1M) blob_var; struct {
unsigned long length;

 char data[1048576];
} blob_var;

SQL TYPE IS CLOB (40000K) clob_var; struct {
unsigned long length;

 char data[40960000];
} clob_var;

SQL TYPE IS DBCLOB (4000K) dbclob_var; struct {
unsigned long length;

 wchar_t data[4096000];
} dbclob_var;

SQL TYPE IS BLOB_LOCATOR blob_loc; unsigned long blob_loc;

SQL TYPE IS CLOB_LOCATOR clob_loc; unsigned long clob_loc;

SQL TYPE IS DBCLOB_LOCATOR dbclob_loc; unsigned long dbclob_loc;

128 Release Planning Guide  



  
 

Declarations of LOB host variables in COBOL: Table 13 on page 129 shows
COBOL declarations for some typical LOB types.

Notes to Table 13:

1. Because the COBOL language allows character declarations of no more than
32767 bytes, for BLOB or CLOB host variables that are greater than 32767
bytes in length, DB2 creates multiple host language declarations of 32767 or
fewer bytes.

2. Because the COBOL language allows graphic declarations of no more than
32767 double-byte characters, for DBCLOB host variables that are greater than
32767 double-byte characters in length, DB2 creates multiple host language
declarations of 32767 or fewer double-byte characters.

Table 13. Examples of COBOL variable declarations

You declare this variable DB2 generates this variable

01 BLOB-VAR USAGE IS SQL TYPE
IS BLOB(1M).

01 BLOB-VAR.
 02 BLOB-VAR-LENGTH

PIC 9(9) COMP.
 02 BLOB-VAR-DATA.

49 FILLER PIC X(32767).1
49 FILLER PIC X(32767).
Repeat 30 times

...
 49 FILLER
 PIC X(1048576-32*32767).

01 CLOB-VAR USAGE IS SQL TYPE
IS CLOB(40000K).

01 CLOB-VAR.
 02 CLOB-VAR-LENGTH

PIC 9(9) COMP.
 02 CLOB-VAR-DATA.

49 FILLER PIC X(32767).1
49 FILLER PIC X(32767).
Repeat 1248 times

...
 49 FILLER
 PIC X(40960000-1250*32767).

01 DBCLOB-VAR USAGE IS SQL
TYPE IS DBCLOB(4000K).

01 DBCLOB-VAR.
 02 DBCLOB-VAR-LENGTH

PIC 9(9) COMP.
 02 DBCLOB-VAR-DATA.

49 FILLER PIC G(32767)
 USAGE DISPLAY-1.2

49 FILLER PIC G(32767)
 USAGE DISPLAY-1.

Repeat 1248 times
...
 49 FILLER
 PIC X(20480000-1250*32767)
 USAGE DISPLAY-1.

01 BLOB-LOC USAGE IS SQL TYPE
IS BLOB-LOCATOR.

01 BLOB-LOC PIC S9(9) USAGE IS BINARY.

01 CLOB-LOC USAGE IS SQL TYPE
IS CLOB-LOCATOR.

01 CLOB-LOC PIC S9(9) USAGE IS BINARY.

01 DBCLOB-LOC USAGE IS SQL
TYPE IS DBCLOB-LOCATOR.

01 DBCLOB-LOC PIC S9(9) USAGE IS BINARY.

  Chapter 6. Object-relational extensions and active data 129



  
 

Declarations of LOB host variables in FORTRAN: Table 14 on page 130 shows
FORTRAN declarations for some typical LOB types.

Declarations of LOB host variables in PL/I: Table 15 on page 131 shows PL/I
declarations for some typical LOB types.

Table 14. Examples of FORTRAN variable declarations

You declare this variable DB2 generates this variable

SQL TYPE IS BLOB(1M) blob_var CHARACTER blob_var(1048580)
INTEGER*4 blob_var_LENGTH
CHARACTER blob_var_DATA
EQUIVALENCE( blob_var(1),
+ blob_var_LENGTH )
EQUIVALENCE( blob_var(5),
+ blob_var_DATA )

SQL TYPE IS CLOB(40000K)
clob_var

CHARACTER clob_var(4096004)
INTEGER*4 clob_var_length
CHARACTER clob_var_data
EQUIVALENCE( clob_var(1),
+ clob_var_length )
EQUIVALENCE( clob_var(5),
+ clob_var_data )

SQL TYPE IS BLOB_LOCATOR
blob_loc

INTEGER*4 blob_loc

SQL TYPE IS CLOB_LOCATOR
clob_loc

INTEGER*4 clob_loc

130 Release Planning Guide  



  
 

Notes to Table 15:

1. Because the PL/I language allows character declarations of no more than
32767 bytes, for BLOB or CLOB host variables that are greater than 32767
bytes in length, DB2 creates host language declarations as follows:

� If the length of the LOB is greater than 32767 bytes and evenly divisible by
32767, DB2 creates an array of 32767-byte strings. The dimension of the
array is length/32767.

� If the length of the LOB is greater than 32767 bytes but not evenly divisible
by 32767, DB2 creates two declarations: The first is an array of 32767 byte
strings, where the dimension of the array, n, is length/32767. The second is
a character string of length length-n*32767.

2. Because the PL/I language allows graphic declarations of no more than 16383
double-byte characters, for DBCLOB host variables that have more than 16383
characters, DB2 creates host language declarations as follows:

� If the length of the LOB is greater than 16383 characters and evenly
divisible by 16383, DB2 creates an array of 16383-character strings. The
dimension of the array is length/16383.

� If the length of the LOB is greater than 16383 characters but not evenly
divisible by 16383, DB2 creates two declarations: The first is an array of
16383 byte strings, where the dimension of the array, m, is length/16383.
The second is a character string of length length-m*16383.

Table 15. Examples of PL/I variable declarations

You declare this variable DB2 generates this variable

DCL BLOB_VAR
SQL TYPE IS BLOB (1M);

DCL 1 BLOB_VAR,
2 BLOB_VAR_LENGTH FIXED BINARY(31),

 2 BLOB_VAR_DATA,1
 3 BLOB_VAR_DATA1(32)
 CHARACTER(32767),
 3 BLOB_VAR_DATA2
 CHARACTER(1048576-32*32767);

DCL CLOB_VAR
SQL TYPE IS CLOB (40000K);

DCL 1 CLOB_VAR,
2 CLOB_VAR_LENGTH FIXED BINARY(31),

 2 CLOB_VAR_DATA,1
 3 CLOB_VAR_DATA1(1250)
 CHARACTER(32767),
 3 CLOB_VAR_DATA2
 CHARACTER(40960000-1250*32767);

DCL DBCLOB_VAR
SQL TYPE IS DBCLOB (4000K);

DCL 1 DBCLOB_VAR,
2 DBCLOB_VAR_LENGTH FIXED BINARY(31),

 2 DBCLOB_VAR_DATA,2
 3 DBCLOB_VAR_DATA1(2500)
 GRAPHIC(16383),
 3 DBCLOB_VAR_DATA2
 GRAPHIC(40960000-2500*16383);

DCL BLOB_LOC
SQL TYPE IS BLOB_LOCATOR;

DCL BLOB_LOC FIXED BINARY(31);

DCL CLOB_LOC
SQL TYPE IS CLOB_LOCATOR;

DCL CLOB_LOC FIXED BINARY(31);

DCL DBCLOB_LOC
SQL TYPE IS DBCLOB_LOCATOR;

DCL DBCLOB_LOC FIXED BINARY(31);

  Chapter 6. Object-relational extensions and active data 131



  
 

 LOB materialization
LOB materialization means that DB2 places a LOB value into contiguous storage in
a data space. Because LOB values can be very large, DB2 avoids materializing
LOB data until absolutely necessary. However, DB2 must materialize LOBs when
your application program:

� Calls a user-defined function with a LOB as an argument
� Moves a LOB into or out of a stored procedure
� Assigns a LOB host variable to a LOB locator host variable
� Converts a LOB from one CCSID to another

Data spaces for LOB materialization: The amount of storage that is used in data
spaces for LOB materialization depends on a number of factors including:

� The size of the LOBs
� The number of LOBs that need to be materialized in a statement

DB2 allocates a certain number of data spaces for LOB materialization. If
insufficient space is available in a data space for LOB materialization, your
application receives SQLCODE -904.

Although you cannot completely avoid LOB materialization, you can minimize it by
using LOB locators, rather than LOB host variables in your application programs.
See “Using LOB locators to save storage” for information on how to use LOB
locators.

Using LOB locators to save storage
 To retrieve LOB data from a DB2 table, you can define host variables that are
large enough to hold all of the LOB data. This requires your application to allocate
large amounts of storage, and requires DB2 to move large amounts of data, which
can be inefficient or impractical. Instead, you can use LOB locators. LOB locators
let you manipulate LOB data without retrieving the data from the DB2 table. Using
LOB locators for LOB data retrieval is a good choice in the following situations:

� When you move only a small part of a LOB to a client program

� When the entire LOB does not fit in the application's memory

� When the program needs a temporary LOB value from a LOB expression but
does not need to save the result

� When performance is important

A LOB locator is associated with a LOB value or expression, not with a row in a
DB2 table or a physical storage location in a table space. Therefore, after you
select a LOB value using a locator, the value in the locator normally does not
change until the current unit of work ends. However, the value of the LOB can
change.

If you want to remove the association between a LOB locator and its value before a
unit of work ends, execute the FREE LOCATOR statement. To keep the
association between a LOB locator and its value after the unit of work ends,
execute the HOLD LOCATOR statement. After you execute a HOLD LOCATOR
statement, the locator keeps the association with the corresponding value until you
execute a FREE LOCATOR statement or the program ends.

132 Release Planning Guide  



  
 

If you execute HOLD LOCATOR or FREE LOCATOR dynamically, you cannot use
EXECUTE IMMEDIATE. For more information on the HOLD LOCATOR and FREE
LOCATOR statements, see DB2 SQL Reference.

Deferring evaluation of a LOB expression to improve performance
DB2 moves no bytes of a LOB value until a program assigns a LOB expression to
a target destination. This means that when you use a LOB locator with string
functions and operators, you can create an expression that DB2 does not evaluate
until the time of assignment. This is called deferring evaluation of a LOB
expression. Deferring evaluation can improve LOB I/O performance.

The following example is a C language program that defers evaluation of a LOB
expression. The program runs on a client and modifies LOB data at a server. The
program searches for a particular resume (EMPNO = '000130') in the
EMP_RESUME table. It then uses LOB locators to rearrange a copy of the resume
(with EMPNO = 'A00130'). In the copy, the Department Information Section
appears at the end of the resume. The program then inserts the copy into
EMP_RESUME without modifying the original resume.

Because the program uses LOB locators, rather than placing the LOB data into
host variables, no LOB data is moved until the INSERT statement executes. In
addition, no LOB data moves between the client and the server.

  Chapter 6. Object-relational extensions and active data 133



  
 

EXEC SQL INCLUDE SQLCA;

/SSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Declare host variables S/ �1�
/SSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL BEGIN DECLARE SECTION;

 char userid[9];

 char passwd[19];

 long HV_START_DEPTINFO;

 long HV_START_EDUC;

 long HV_RETURN_CODE;

SQL TYPE IS CLOB_LOCATOR HV_NEW_SECTION_LOCATOR;

SQL TYPE IS CLOB_LOCATOR HV_DOC_LOCATOR1;

SQL TYPE IS CLOB_LOCATOR HV_DOC_LOCATOR2;

SQL TYPE IS CLOB_LOCATOR HV_DOC_LOCATOR3;

EXEC SQL END DECLARE SECTION;

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Delete any instance of "AOO13O" from previous S/

/S executions of this sample S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL DELETE FROM EMP_RESUME WHERE EMPNO = 'AOO13O';

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Use a single row select to get the document S/ �2�
/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL SELECT RESUME

 INTO :HV_DOC_LOCATOR1

 FROM EMP_RESUME

WHERE EMPNO = 'OOO13O'

AND RESUME_FORMAT = 'ascii';

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Use the POSSTR function to locate the start of S/

/S sections "Department Information" and "Education" S/ �3�
/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL SET :HV_START_DEPTINFO =

POSSTR(:HV_DOC_LOCATOR1, 'Department Information');

EXEC SQL SET :HV_START_EDUC =

 POSSTR(:HV_DOC_LOCATOR1, 'Education');

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Replace Department Information section with nothing S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL SET :HV_DOC_LOCATOR2 =

SUBSTR(:HV_DOC_LOCATOR1, 1, :HV_START_DEPTINFO -1)

|| SUBSTR (:HV_DOC_LOCATOR1, :HV_START_EDUC);

Figure 21 (Part 1 of 2). Example of deferring evaluation of LOB expressions

134 Release Planning Guide  



  
 

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Associate a new locator with the Department S/

/S Information section S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL SET :HV_NEW_SECTION_LOCATOR =

 SUBSTR(:HV_DOC_LOCATOR1, :HV_START_DEPTINFO,

 :HV_START_EDUC -:HV_START_DEPTINFO);

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Append the Department Information to the end S/

/S of the resume S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL SET :HV_DOC_LOCATOR3 =

:HV_DOC_LOCATOR2 || :HV_NEW_SECTION_LOCATOR;

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Store the modified resume in the table. This is S/ �4�
/S where the LOB data really moves. S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL INSERT INTO EMP_RESUME VALUES ('AOO13O', 'ascii',

 :HV_DOC_LOCATOR3, DEFAULT);

/SSSSSSSSSSSSSSSSSSSSS/

/S Free the locators S/ �5�
/SSSSSSSSSSSSSSSSSSSSS/

EXEC SQL FREE LOCATOR :HV_DOC_LOCATOR1, :HV_DOC_LOCATOR2, :HV_DOC_LOCATOR3;

Figure 21 (Part 2 of 2). Example of deferring evaluation of LOB expressions

Notes on Figure 21 on page 134:

�1� Declare the LOB locators here.
�2� This SELECT statement associates LOB locator HV_DOC_LOCATOR1 with the

value of column RESUME for employee number 000130.
�3� The next five SQL statements use LOB locators to manipulate the resume data

without moving the data.
�4� Evaluation of the LOB expressions in the previous statements has been deferred

until execution of this INSERT statement.
�5� Free all LOB locators to release them from their associated values.

Indicator variables and LOB locators
For host variables other than LOB locators, when you select a null value into a host
variable, DB2 assigns a negative value to the associated indicator variable.
However, for LOB locators, DB2 uses indicator variables differently. A LOB locator
is never null. When you select a LOB column using a LOB locator and the LOB
column contains a null value, DB2 assigns a negative value to the associated
indicator variable. In a client/server environment, this null information is recorded
only at the client.

| When you use LOB locators to retrieve data from columns that can contain null
| values, define indicator variables for the LOB locators, and check the indicator
| variables after you fetch data into the LOB locators. If an indicator variable is null
| after a fetch operation, you cannot use the value in the LOB locator.

  Chapter 6. Object-relational extensions and active data 135



  
 

| Valid assignments for LOB locators
| Although you usually use LOB locators for assigning data to and retrieving data
| from LOB columns, you can also use LOB locators to assign data to CHAR,
| VARCHAR, GRAPHIC, or VARGRAPHIC columns. However, you cannot fetch data
| from CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC columns into LOB locators.

LOB system processing
The section discusses the following system-related aspects of LOBs:

� “Managing buffer pools for LOBs”
 � “Locking LOBs”

Managing buffer pools for LOBs
Put LOB data in buffer pools that are not shared with other data. For both LOG
YES and LOG NO LOBs, use a deferred write threshold (DWQT) of 0. LOBs
specified with LOG NO have their changed pages written at commit time
(force-at-commit processing). If you set DWQT to 0, those writes happen
continuously in the background rather than in a large surge at commit.

LOBs defined with LOG YES can use deferred write, but by setting DWQT to 0,
you can avoid massive writes at DB2 checkpoints.

 Locking LOBs
Terminology: A lock that is held on a LOB value in a LOB table space is called a
LOB lock.

In this section: The following topics are described:

� “Relationship between transaction locks and LOB locks”

� “Hierarchy of LOB locks” on page 138

� “LOB lock modes” on page 138

� “Duration of locks” on page 139

� “When locks on the LOB table space are not taken” on page 140

� “Controlling the number of locks” on page 140

� “The LOCK TABLE statement” on page 140

� “The LOCKSIZE clause for LOB table spaces” on page 141

Relationship between transaction locks and LOB locks
As described in “Introduction to defining LOBs” on page 124, LOB column values
are stored in a different table space, a LOB table space, from the values in the
base table. An application that reads or updates a row in a table that contains LOB
columns obtains its normal transaction locks on the base table. The locks on the
base table also control concurrency for the LOB table space. When locks are not
acquired on the base table, such as for ISO(UR), DB2 maintains data consistency
by using locks on the LOB table space.

DB2 also obtains locks on the LOB table space and the LOB values stored in that
LOB table space, but the primary purpose of those locks is:

136 Release Planning Guide  



  
 

� To determine whether space from a deleted LOB can be reused by an inserted
or updated LOB

Storage for a deleted LOB is not reused until no more readers (including held
locators) are on the LOB and the delete operation has been committed.

� To prevent deallocating space for a LOB that is currently being read

A LOB can be deleted from one application's point-of-view while a reader from
another application is reading the LOB. The reader continues reading the LOB
because all readers, including those readers that are using uncommitted read
isolation, acquire S-locks on LOBs to prevent the storage for the LOB they are
reading from being deallocated. That lock is held until commit. A held LOB
locator also causes the LOB lock and LOB table space lock to be held past
commit.

In summary, the main purpose of LOB locks is for managing the space used by
LOBs and to ensure that LOB readers do not read partially updated LOBs.
Applications need to free held locators so that the space can be reused.

Table 16 shows the relationship between the action that is occurring on the LOB
value and the associated LOB table space and LOB locks that are acquired.

UR readers: When an application is reading rows using uncommitted read or lock
avoidance, no page or row locks are taken on the base table. Therefore, these

Table 16. Locks that are acquired for operations on LOBs. This table does not account for
gross locks that can be taken because of LOCKSIZE TABLESPACE, the LOCK TABLE
statement, or because of lock escalation.

Action on LOB
value

LOB table
space
lock LOB lock Comment

Read (including
UR)

IS S Prevents storage from being
reused while the LOB is being
read or while locators are
referencing the LOB

Insert IX X Prevents other processes from
seeing a partial LOB

Delete IS S To hold space in case the delete
is rolled back. (The X is on the
base table row or page.) Storage
is not reusable until the delete is
committed and there are no other
readers of the LOB.

Update IS->IX Two LOB locks:
an S-lock for the
delete and an
X-lock for the
insert.

Operation is a delete followed by
an insert.

Update the LOB
to null or
zero-length

IS S No insert, just a delete.

Update a null or
zero-length
LOB to a value

IX X No delete, just an insert.

  Chapter 6. Object-relational extensions and active data 137



  
 

readers must take an S LOB lock to ensure that they are not reading a partial LOB
or a LOB value that is inconsistent with the base row.

Hierarchy of LOB locks
Just as there is a hierarchical relationship between page locks (or row locks) and
table space locks, there is a hierarchical relationship between LOB locks and locks
on LOB table spaces. If the LOB table space is locked with a gross lock, then LOB
locks are not acquired. In a data sharing environment, the lock on the LOB table
space is used to determine whether the lock on the LOB must be propagated
beyond the local IRLM.

LOB lock modes
The modes of locks that can be acquired on LOB table spaces and on the LOBs in
those table spaces are listed below.

Modes of LOB locks

The following LOB lock modes are possible:

S (SHARE) The lock owner and any concurrent processes can read,
update, or delete the locked LOB. Concurrent processes can
acquire an S lock on the LOB. The purpose of the S lock is to
reserve the space used by the LOB.

X (EXCLUSIVE)
The lock owner can read or change the locked LOB. Concurrent
processes cannot access the LOB.

138 Release Planning Guide  



  
 

Modes of LOB table space locks

The following lock modes are possible on the LOB table space:

IS (INTENT SHARE)
The lock owner can update LOBs to null or zero-length, or read
or delete LOBs in the LOB table space. Concurrent processes
can both read and change LOBs in the same table space. The
lock owner acquires a LOB lock on any data that it reads or
deletes.

IX (INTENT EXCLUSIVE)
The lock owner and concurrent processes can read and change
data in the LOB table space. The lock owner acquires a LOB
lock on any data it accesses.

S (SHARE) The lock owner and any concurrent processes can read and
delete LOBs in the LOB table space. The lock owner does not
need LOB locks.

SIX (SHARE with INTENT EXCLUSIVE)
The lock owner can read and change data in the LOB table
space. If the lock owner is inserting (INSERT or UPDATE), the
lock owner obtains a LOB lock. Concurrent processes can read
or delete data in the LOB table space (or update to a null or
zero-length LOB).

X (EXCLUSIVE)
The lock owner can read or change LOBs in the LOB table
space. The lock owner does not need LOB locks.

Duration of locks
Duration of locks on LOB table spaces:  Locks on LOB table spaces are
acquired when they are needed; that is, the ACQUIRE option of BIND has no effect
on when the table space lock on the LOB table space is taken. The table space
lock is released according to the value specified on the RELEASE option of BIND
(except when a cursor is defined WITH HOLD or if there is a held LOB locator).

Duration of LOB locks:  Locks on LOBs are taken when they are needed and are
usually released at commit. However, if that LOB value is assigned to a LOB
locator, the S lock remains until the application commits.

If the application uses HOLD LOCATOR, the locator (and the LOB lock) is not freed
until the first commit operation after a FREE LOCATOR statement is issued, or until
the thread is deallocated.

A note about held cursors: If a cursor is defined WITH HOLD, LOB locks are
held through commit operations.

A note about INSERT with subselect: Because LOB locks are held until commit,
it is possible that a statement such as an INSERT with a subselect that involves
LOB columns can accumulate many more locks than a similar statement that does
not involve LOB columns. To prevent system problems caused by too many locks,
you can:

  Chapter 6. Object-relational extensions and active data 139



  
 

� Ensure that you have lock escalation enabled for the LOB table spaces that are
involved in the INSERT. In other words, make sure that LOCKMAX is non-zero
for those LOB table spaces.

� Alter the LOB table space to change the LOCKSIZE to TABLESPACE before
executing the INSERT with subselect.

| � Use the LOCK TABLE statement to lock the LOB table space.

When locks on the LOB table space are not taken
A lock might not be acquired on a LOB table space at all. For example, if a row is
deleted from a table, and the value of the LOB column is null, the LOB table space
associated with that LOB column is not locked. DB2 does not access the LOB
table space if the application:

� Selects a LOB that is null or zero length

� Deletes a row where the LOB is null or zero length

� Inserts a null or zero length LOB

� Updates a null or zero-length LOB to null or zero-length

Controlling the number of locks
This section describes how you can control the number of LOB locks that are
taken.

Controlling the number of LOB locks that are acquired for a user:  LOB locks
are counted toward the total number of locks allowed per user. Control this number
by the value you specify on the LOCKS PER USER field of installation panel
DSNTIPJ. The number of LOB locks that are acquired during a unit of work is
reported in IFCID 0020.

Controlling LOB lock escalation:  As with any table space, use the LOCKMAX
clause of the CREATE or ALTER TABLESPACE statement to control the number of
LOB locks that are acquired within a particular LOB table space before the lock is
escalated. When the number of LOB locks reaches the maximum you specify in
the LOCKMAX clause, the LOB locks escalate to a gross lock on the LOB table
space, and the LOB locks are released.

Information about LOB locks and lock escalation is reported in IFCID 0020.

The LOCK TABLE statement
The reasons for using LOCK TABLE on an auxiliary table are somewhat different
than that for regular tables.

| � You can use LOCK TABLE to control the number of locks acquired on the
| auxiliary table.

� You can use LOCK TABLE IN SHARE MODE to prevent other applications
from inserting LOBs.

With auxiliary tables, LOCK TABLE IN SHARE MODE does not prevent any
changes to the auxiliary table. The statement does prevent LOBs from being
inserted into the auxiliary table, but it does not prevent deletes. Updates are
generally restricted also, except where the LOB is updated to a null value or a
zero-length string.

140 Release Planning Guide  



  
 

� You can use LOCK TABLE IN EXCLUSIVE MODE to prevent other
applications from accessing LOBs.

With auxiliary tables, LOCK TABLE IN EXCLUSIVE MODE also prevents
access from uncommitted readers.

� Either statement eliminates the need for lower-level LOB locks.

The LOCKSIZE clause for LOB table spaces
The LOCKSIZE TABLE, PAGE, and ROW options are not valid for LOB table
spaces. The other options act as follows:

LOCKSIZE TABLESPACE
A process acquires no LOB locks.

LOCKSIZE ANY
DB2 chooses the size of the lock. For a LOB table space, this is usually
LOCKSIZE LOB.

LOCKSIZE LOB
If a LOB must be accessed, a process acquires LOB locks and the necessary
LOB table space locks (IS or IX).

Recovering table spaces that contain LOBs
In general, planning for LOB recovery is similar to planning for recovery of
databases with referential constraints— a relationship exists between a table with a
LOB column and the associated LOB table space. A LOB table space and its
associated base table space are parts of a table space set that should be
recovered together.

The biggest consideration in planning for recovery of LOBs is that LOBs can be
very large. You need to take this fact into account when you create your LOB table
spaces. The CREATE LOB TABLESPACE statement contains the LOG parameter
that gives you the choice of whether to log changes to the LOB table space. (The
changes to the indicator column in the base table are always logged, along with the
rest of the data in the base table.)

If you specify LOG YES, performance of your database system can degrade
significantly when you insert or update LOBs. However, with LOG NO, database
writes are forced to DASD at commit points, which can also have a severe impact
on performance.

If you specify LOG NO, and you need to recover the LOB table space, changes to
the LOB values after the most recent image copy are lost. If you specify
GBPCACHE CHANGED and LOG NO, the changed pages are written to the group
buffer pool. See “Procedure for recovering invalid LOBs” on page 142 for
information on what you can do to recover the LOB data.

Recovering to a prior point in time
You can recover a LOB table space to a prior point in time by using any of the
following methods:

� Use TOLOGPOINT, TORBA, or TOCOPY options of the RECOVER utility.

� Run the QUIESCE utility with the TABLESPACESET option and recover to a
common quiesce point.

  Chapter 6. Object-relational extensions and active data 141



  
 

� Take an image copy with SHRLEVEL REFERENCE and then run the
RECOVER utility.

If you do not have copies of the LOB table space and the related base table space
at the quiesce point, DB2 puts the table spaces in a check pending state.

If the LOB table space is defined with LOG NO, then any changes to the LOB table
space between its last image copy and the recovery point have not been logged. If
DB2 discovers any missing log records during the recovery process, it marks the
individual LOB value as invalid and sets the Aux Warning status (AUXW) on the
LOB table space. Run the CHECK LOB utility to find any invalid LOBs.

Recovering to the current point in time
Recovery to the current point in time for a base table that contains a LOB column is
the same as the recovery of any other kind of table. DB2 applies the appropriate
image copy to the base table space and then applies log records from the date of
the image copy to the present. The same is true for the LOB table space. However,
if the LOB table space is defined with LOG NO, then any changes to the LOB table
space between its last image copy and the recovery point have not been logged. If
DB2 discovers any missing log records during the recovery process, it marks the
individual LOB value as invalid and sets the Aux Warning status (AUXW) on the
LOB table space. Other LOB values remain accessible.

Recovering LOB pages on the logical page list
You recover logical page list (LPL) entries for a LOB table space the same as for
any other table space: Execute the START DATABASE command with the
SPACENAM option. If the LOB table space is defined with LOG NO and missing
log data is needed for the LPL recovery, DB2 sets the Aux Warning status on the
LOB table space. You then need to run the CHECK LOB utility to identify which
LOBs are invalid.

Procedure for recovering invalid LOBs
Unless your LOBs are fairly small, specifying LOG NO for LOB objects is
recommended. The performance cost of logging exceeds the benefits you can
receive from logging such large amounts of data. If no changes are made to LOB
data, this is not an issue. However, you should make image copies of the LOB
table space to prepare for failures. The frequency with which you make image
copies is based on how often you update LOB data.

If you need to recover LOB data that changed after your last image copy, follow
this procedure:

1. Run the RECOVER utility as you do for other table spaces:

RECOVER TABLESPACE dbname.lobts

If changes were made after the image copy, DB2 puts the table space in Aux
Warning status. The purpose of this status is let you know that some of your
LOBs are invalid. Applications that try to retrieve the values of those LOBs will
receive SQLCODE -904. Applications can still access other LOBs in the LOB
table space.

2. Get a report of the invalid LOBs by running CHECK LOB on the LOB table
space:

CHECK LOB TABLESPACE dbname.lobts

DB2 generates messages like the following one:

142 Release Planning Guide  



  
 

LOB WITH ROWID = 'xxxxxxx' VERSION = n IS INVALID

3. Fix the invalid LOBs, by updating the LOBs or setting them to the null value.
For example, suppose you determine from the CHECK LOB utility that the row
of the EMP_PHOTO_RESUME table with ROWID
X'C1BDC4652940D40A81C201AA0A28' has an invalid value for column
RESUME. If host variable hvlob contains the correct value for RESUME, you
can use this statement to correct the value:

UPDATE DSN861O.EMP_PHOTO_RESUME

SET RESUME = :hvlob

WHERE EMP_ROWID = ROWID(X'C1BDC465294OD4OA81C2O1AAOA28')

;

Creating and using user-defined functions
 A user-defined function (UDF) is an extension to the SQL language. A
user-defined function is similar to a host language subprogram or function.
However, a user-defined function is often the better choice for an SQL application
because you can invoke a user-defined function in an SQL statement.

This chapter presents the following information about user-defined functions:

� “Overview of user-defined function definition, implementation, and invocation”
� “Defining a user-defined function” on page 146
� “Implementing an external user-defined function” on page 150
� “Invoking a user-defined function” on page 192

Overview of user-defined function definition, implementation, and
invocation

The two types of user-defined functions are:

� Sourced user-defined functions, which are based on existing built-in functions
or user-defined functions

� External user-defined functions, which a programmer writes in a host language

User-defined functions can also be categorized as user-defined scalar functions or
a user-defined table functions:

� A user-defined scalar function returns a single-value answer each time it is
invoked.

� A user-defined table function returns a table to the SQL statement that
references it.

External user-defined functions can be user-defined scalar functions or user-defined
table functions. Sourced user-defined functions cannot be user-defined table
functions.

Creating and using a user-defined function involves these steps:

� Setting up the environment for user-defined functions

A system administrator probably performs this step. The user-defined function
environment is shown in Figure 22 on page 144. The steps for setting up and
maintaining the user-defined function environment are the same as for setting
up and maintaining the environment for stored procedures in WLM-established
address spaces.

  Chapter 6. Object-relational extensions and active data 143



  
 

� Writing and preparing the user-defined function

This step is necessary only for an external user-defined function.

The person who performs this step is called the user-defined function
implementer.

� Defining the user-defined function to DB2

The person who performs this step is called the user-defined function definer.

� Invoking the user-defined function from an SQL application

The person who performs this step is called the user-defined function invoker.

Figure 22. The user-defined function environment

Example of creating and using a user-defined scalar function
Suppose that your organization needs a user-defined scalar function that calculates
the bonus that each employee receives. All employee data, including salaries,
commissions, and bonuses, is kept in the employee table, EMP. The input fields for
the bonus calculation function are the values of the SALARY and COMM columns.
The output from the function goes into the BONUS column. Because this function
gets its input from a DB2 table and puts the output in a DB2 table, the most
convenient method to manipulate the data is through a user-defined function.

The user-defined function's definer and invoker determine that this new
user-defined function should have these characteristics:

� The user-defined function name is CALC_BONUS.
� The two input fields are of type DECIMAL(9,2).
� The output field is of type DECIMAL(9,2).
� The user-defined function is written in COBOL, and the load module is named

CBONUS.

Because no built-in or user-defined function exists on which to build a sourced
user-defined function, the function implementer must write an external user-defined
function. The implementer performs the following steps:

� Writes the user-defined function, which is a COBOL program
� Precompiles, compiles, and links the program

144 Release Planning Guide  



  
 

� Binds a package if the user-defined function contains SQL statements
� Tests the program thoroughly
� Grants execute authority on the user-defined function package to the definer

The user-defined function definer executes this CREATE FUNCTION statement to
register CALC_BONUS to DB2:

CREATE FUNCTION CALC_BONUS(DECIMAL(9,2),DECIMAL(9,2))

 RETURNS DECIMAL(9,2)

EXTERNAL NAME 'CBONUS'

PARAMETER STYLE DB2SQL

 LANGUAGE COBOL;

The definer then grants execute authority on CALC_BONUS to all invokers.

User-defined function invokers write and prepare application programs that invoke
CALC_BONUS. An invoker might write a statement like this, which uses the
user-defined function to update the BONUS field in the employee table:

 UPDATE EMP

SET BONUS = CALC_BONUS(SALARY,COMM);

An invoker can execute this statement either statically or dynamically.

User-defined function samples shipped with DB2
To assist you in defining, implementing, and invoking your user-defined functions,
DB2 provides a number of sample user-defined functions. All user-defined function
code is in data set DSN610.SDSNSAMP.

Table 17 summarizes the characteristics of the sample user-defined functions.

Table 17 (Page 1 of 2). User-defined function samples shipped with DB2

User-defined function
name Language

Member
that
contains
source
code Purpose

ALTDATE1 C DSN8DUAD Converts the current date to a
user-specified format

ALTDATE2 C DSN8DUCD Converts a date from one format
to another

ALTTIME3 C DSN8DUAT Converts the current time to a
user-specified format

ALTTIME4 C DSN8DUCT Converts a time from one format
to another

DAYNAME C++ DSN8EUDN Returns the day of the week for
a user-specified date

MONTHNAME C++ DSN8EUMN Returns the month for a
user-specified date

CURRENCY C DSN8DUCY Formats a floating-point number
as a currency value

TABLE_NAME C DSN8DUTI Returns the unqualified table
name for a table, view, or alias

  Chapter 6. Object-relational extensions and active data 145



  
 

Notes to Table 17 on page 145:

1. This version of ALTDATE has one input parameter, of type VARCHAR(13).

2. This version of ALTDATE has three input parameters, of type VARCHAR(17),
VARCHAR(13), and VARCHAR(13).

3. This version of ALTTIME has one input parameter, of type VARCHAR(14).

4. This version of ALTTIME has three input parameters, of type VARCHAR(11),
VARCHAR(14), and VARCHAR(14).

Member DSNTEJ2U shows you how to define and prepare the sample user-defined
functions.

Table 17 (Page 2 of 2). User-defined function samples shipped with DB2

User-defined function
name Language

Member
that
contains
source
code Purpose

TABLE_SCHEMA C DSN8DUTI Returns the schema for a table,
view, or alias

TABLE_LOCATION C DSN8DUTI Returns the location for a table,
view, or alias

WEATHER C DSN8DUWC Returns a table of weather
information from an EBCDIC
data set

Defining a user-defined function
Before you can define a user-defined function to DB2, you must determine the
characteristics of the user-defined function, such as the user-defined function name,
schema (qualifier), and number and data types of the input parameters and types of
the values returned. Then you execute a CREATE FUNCTION statement to register
the information in the DB2 catalog. If you discover after you define the function that
any of these characteristics is not appropriate for the function, you can use an
ALTER FUNCTION statement to change information in the definition. For more
information about the options supported by the ALTER FUNCTION and CREATE
FUNCTION statements, see Chapter 6 of DB2 SQL Reference.

Components of a user-defined function definition
The characteristics you include in a CREATE FUNCTION or ALTER FUNCTION
statement depend on whether the user-defined function is external or sourced.
Table 18 lists the characteristics of a user-defined function, the corresponding
parameters in the CREATE FUNCTION and ALTER FUNCTION statements, and
which parameters are valid for sourced and external user-defined functions.

Table 18 (Page 1 of 3). Characteristics of a user-defined function

Characteristic
CREATE FUNCTION or ALTER
FUNCTION parameter

Valid in
sourced
function?

Valid in external
function?

User-defined function name FUNCTION Yes Yes

Input parameter types FUNCTION Yes Yes

146 Release Planning Guide  



  
 

Table 18 (Page 2 of 3). Characteristics of a user-defined function

Characteristic
CREATE FUNCTION or ALTER
FUNCTION parameter

Valid in
sourced
function?

Valid in external
function?

Output parameter types RETURNS
RETURNS TABLE1

Yes Yes

Specific name SPECIFIC Yes Yes

External name EXTERNAL NAME No Yes

Language LANGUAGE ASSEMBLE
LANGUAGE C
LANGUAGE COBOL
LANGUAGE PLI

No Yes

Deterministic or not deterministic NOT DETERMINISTIC
DETERMINISTIC

No Yes

Types of SQL statements in the
function

NO SQL
CONTAINS SQL
READS SQL DATA
MODIFIES SQL DATA

No Yes2

Name of source function SOURCE Yes No

Parameter style PARAMETER STYLE DB2SQL No Yes

Address space for user-defined
functions

FENCED No Yes

Call with null input RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT

No Yes

External actions EXTERNAL ACTION
NO EXTERNAL ACTION

No Yes

Scratchpad specification NO SCRATCHPAD
SCRATCHPAD length

No Yes

Call function after SQL
processing

NO FINAL CALL
FINAL CALL

No Yes

Consider function for parallel
processing

ALLOW PARALLEL
DISALLOW PARALLEL

No Yes2

Package collection NO COLLID
COLLID collection-id

No Yes

WLM environment WLM ENVIRONMENT name
WLM ENVIRONMENT name,*

No Yes

CPU time for a function
invocation

ASUTIME NO LIMIT
ASUTIME LIMIT integer

No Yes

Load module stays in memory STAY RESIDENT NO
STAY RESIDENT YES

No Yes

Program type PROGRAM TYPE MAIN
PROGRAM TYPE SUB

No Yes

Security SECURITY DB2
SECURITY USER
SECURITY DEFINER

No Yes

Run-time options RUN OPTIONS options No Yes

Pass DB2 environment
information

NO DBINFO
DBINFO

No Yes

  Chapter 6. Object-relational extensions and active data 147



  
 

Table 18 (Page 3 of 3). Characteristics of a user-defined function

Characteristic
CREATE FUNCTION or ALTER
FUNCTION parameter

Valid in
sourced
function?

Valid in external
function?

Expected number of rows
returned

CARDINALITY integer No Yes1

Notes to Table 18 on page 146:

1. RETURNS TABLE and CARDINALITY are valid only for user-defined table
functions.

2. MODIFIES SQL DATA and ALLOW PARALLEL are not valid for user-defined
table functions.

For a complete explanation of the parameters in a CREATE FUNCTION or ALTER
FUNCTION statement, see Chapter 6 of DB2 SQL Reference.

Examples of user-defined function definitions
Example: Definition for an external user-defined scalar function: A
programmer has written a user-defined function that searches for a string of
maximum length 200 in a CLOB value whose maximum length is 500 KB. The
output from the user-defined function is of type float, but users require integer
output for their SQL statements. The user-defined function is written in C and
contains no SQL statements. This CREATE FUNCTION statement defines the
user-defined function:

CREATE FUNCTION FINDSTRING (CLOB(5OOK), VARCHAR(2OO))

 RETURNS INTEGER

CAST FROM FLOAT

 SPECIFIC FINDSTRINCLOB

EXTERNAL NAME 'FINDSTR'

 LANGUAGE C

PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

NO EXTERNAL ACTION

 FENCED;

Example: Definition for an external user-defined scalar function that
overloads an operator: A programmer has written a user-defined function that
overloads the built-in SQL division operator (/). That is, this user-defined function is
invoked when an application program executes a statement like either of the
following:

UPDATE TABLE1 SET INTCOL1=INTCOL2/INTCOL3;

UPDATE TABLE1 SET INTCOL1="/"(INTCOL2,INTCOL3);

The user-defined function takes two integer values as input. The output from the
user-defined function is of type integer. The user-defined function is in the MATH
schema, is written in assembler, and contains no SQL statements. This CREATE
FUNCTION statement defines the user-defined function:

148 Release Planning Guide  



  
 

CREATE FUNCTION MATH."/" (INT, INT)

 RETURNS INTEGER

 SPECIFIC DIVIDE

EXTERNAL NAME 'DIVIDE'

 LANGUAGE ASSEMBLE

PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

NO EXTERNAL ACTION

 FENCED;

Suppose you want the FINDSTRING user-defined function to work on BLOB data
types, as well as CLOB types. You can define another instance of the user-defined
function that specifies a BLOB type as input:

CREATE FUNCTION FINDSTRING (BLOB(5OOK), VARCHAR(2OO))

 RETURNS INTEGER

CAST FROM FLOAT

 SPECIFIC FINDSTRINBLOB

EXTERNAL NAME 'FNDBLOB'

 LANGUAGE C

PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

NO EXTERNAL ACTION

 FENCED;

Each instance of FINDSTRING uses a different application program to implement
the user-defined function.

Example: Definition for a sourced user-defined function: Suppose you need a
user-defined function that finds a string in a value with a distinct type of BOAT.
BOAT is based on a BLOB type. User-defined function FINDSTRING, which takes
a BLOB type and performs the required function, has already been defined. You
can therefore define a sourced user-defined function that is based on FINDSTRING
to do the string search on values of type BOAT. This CREATE FUNCTION
statement defines the sourced user-defined function:

CREATE FUNCTION FINDSTRING (BOAT, VARCHAR(2OO))

 RETURNS INTEGER

 SPECIFIC FINDSTRINBOAT

SOURCE SPECIFIC FINDSTRINBLOB;

Example: Definition for a user-defined table function: An application
programmer has written a user-defined function that receives two values and
returns a table. The two input values are:

� A character string of maximum length 30 that describes a subject
� A character string of maximum length 255 that contains text to search for

The user-defined function scans documents on the subject for the search string and
returns a list of documents that match the search criteria. The list is in the form of a
one-column table. The column is a character column of length 16 that contains
document IDs.

The user-defined function is written in COBOL, uses SQL only to perform queries,
always produces the same output for given input, and should not execute as a
parallel task. The program is reentrant, and successive invocations of the

  Chapter 6. Object-relational extensions and active data 149



  
 

user-defined function share information. You expect an invocation of the
user-defined function to return about 20 rows.

The following CREATE FUNCTION statement defines the user-defined function:

CREATE FUNCTION DOCMATCH (VARCHAR(3O), VARCHAR(255))

  RETURNS TABLE (DOC_ID CHAR(16), DOC_ABSTRACT VARCHAR(5OOO))

 EXTERNAL NAME 'DOCMTCH'

 LANGUAGE COBOL

PARAMETER STYLE DB2SQL

READS SQL DATA

 DETERMINISTIC

NO EXTERNAL ACTION

 FENCED

 SCRATCHPAD

 FINAL CALL

 DISALLOW PARALLEL

 CARDINALITY 2O;

Implementing an external user-defined function
 This section discusses these steps in implementing an external user-defined
function:

� “Writing a user-defined function”
� “Preparing a user-defined function for execution” on page 188
� “Testing a user-defined function” on page 190

Writing a user-defined function
 A user-defined function is similar to any other SQL program. When you write a
user-defined function, you can include static or dynamic SQL statements, IFI calls,
and DB2 commands that are issued through IFI calls.

Your user-defined function can also access remote data using the following
methods:

� DB2 private protocol access using three-part names or aliases for three-part
names

� DRDA access using three-part names or aliases for three-part names
� DRDA access using CONNECT or SET CONNECTION statements

The user-defined function and the application that calls it can access the same
remote site if both use the same protocol.

You can write an external user-defined function in assembler, C, C++, COBOL, or
PL/I. User-defined functions that are written in COBOL can include object-oriented
extensions, just as other DB2 COBOL programs can.

The following sections include additional information that you need when you write
a user-defined function:

� “Restrictions on user-defined function programs” on page 151
� “Writing your user-defined function as a main program or as a subprogram” on

page 151
� “Parallelism considerations” on page 151
� “Passing parameter values to and from a user-defined function” on page 153
� “Examples of passing parameters in a user-defined function” on page 166
� “Using special registers in a user-defined function” on page 179

150 Release Planning Guide  



  
 

� “Using a scratchpad in a user-defined function” on page 181
� “Accessing transition tables in a user-defined function” on page 182

Restrictions on user-defined function programs:   Observe these restrictions
when you write a user-defined function:

� Because DB2 uses the Recoverable Resource Manager Services attachment
facility (RRSAF) as its interface with your user-defined function, you must not
include RRSAF calls in your user-defined function. DB2 rejects any RRSAF
calls that it finds in a user-defined function.

� If your user-defined function is not defined with parameters SCRATCHPAD or
EXTERNAL ACTION, the user-defined function is not guaranteed to execute
under the same task each time it is invoked.

� You cannot execute COMMIT or ROLLBACK statements in your user-defined
function.

� You must close all open cursors in a user-defined scalar function. DB2 returns
an SQL error if a user-defined scalar function does not close all cursors before
it completes.

| � When you choose the language in which to write a user-defined function
| program, be aware of restrictions on the number of parameters that can be
| passed to a routine in that language. User-defined table functions in particular
| can require large numbers of parameters. Consult the programming guide for
| the language in which you plan to write the user-defined function for information
| on the number of parameters that can be passed.

Writing your user-defined function as a main program or as a subprogram:  
You can write your user-defined function as either a main program or a
subprogram. The way in which you write your program must agree with the way in
which you defined the user-defined function: with the PROGRAM TYPE MAIN
parameter or the PROGRAM TYPE SUB parameter. The main difference is that
when a main program starts, Language Environment allocates the application
program storage that the external user-defined function uses. When a main
program ends, Language Environment closes files and releases dynamically
allocated storage.

If you write your user-defined function as a subprogram and manage the storage
and files yourself, you can get better performance. The user-defined function should
always free any allocated storage before it exits. To keep data between invocations
of the user-defined function, use a scratchpad.

Requirement: You must write a user-defined table function that accesses external
resources as a subprogram. Also ensure that the definer specifies the EXTERNAL
ACTION parameter in the CREATE FUNCTION or ALTER FUNCTION statement.
Program variables for a subprogram persist between invocations of the
user-defined function, and use of the EXTERNAL ACTION parameter ensures that
the user-defined function stays in the same address space from one invocation to
another.

Parallelism considerations:   If the definer specifies the parameter ALLOW
PARALLEL in the definition of a user-defined scalar function, and the invoking SQL
statement runs in parallel, the function can run under a parallel task. DB2 executes
a separate instance of the user-defined function for each parallel task. When you

  Chapter 6. Object-relational extensions and active data 151



  
 

write your function program, you need to understand how the following parameter
values interact with ALLOW PARALLEL so that you can avoid unexpected results:

 � SCRATCHPAD

When an SQL statement invokes a user-defined function that is defined with
the ALLOW PARALLEL parameter, DB2 allocates one scratchpad for each
parallel task of each reference to the function. This can lead to unpredictable or
incorrect results.

For example, suppose that the user-defined function uses the scratchpad to
count the number of times it is invoked. If a scratchpad is allocated for each
parallel task, this count is the number of invocations done by the parallel task
and not for the entire SQL statement, which is not the desired result.

 � FINAL CALL

If a user-defined function performs an external action, such as sending a note,
for each final call to the function, one note is sent for each parallel task instead
of once for the function invocation.

 � EXTERNAL ACTION

Some user-defined functions with external actions can receive incorrect results
if the function is executed by parallel tasks.

For example, if the function sends a note for each initial call to the function,
one note is sent for each parallel task instead of once for the function
invocation.

 � NOT DETERMINISTIC

A user-defined function that is not deterministic can generate incorrect results if
it is run under a parallel task.

For example, suppose you execute the following query under parallel tasks:

SELECT S FROM T1 WHERE C1 = COUNTER();

COUNTER is a user-defined function that increments a variable in the
scratchpad every time it is invoked. Counter is nondeterministic because the
same input does not always produce the same output. Table T1 contains one
column, C1, that has these values:

1

2

3

4

5

6

7

8

9

1O

When the query is executed with no parallelism, DB2 invokes COUNTER once
for each row of table T1, and there is one scratchpad for counter, which DB2
initializes the first time that COUNTER executes. COUNTER returns 1 the first
time it executes, 2 the second time, and so on. The result table for the query is
therefore:

152 Release Planning Guide  



  
 

1

2

3

4

5

6

7

8

9

1O

Now suppose that the query is run with parallelism, and DB2 creates three
parallel tasks. DB2 executes the predicate WHERE C1 = COUNTER() for each
parallel task. This means that each parallel task invokes its own instance of the
user-defined function and has its own scratchpad. DB2 initializes the
scratchpad to zero on the first call to the user-defined function for each parallel
task.

If parallel task 1 processes rows 1 to 3, parallel task 2 processes rows 4 to 6,
and parallel task 3 processes rows 7 to 10, the following results occur:

– When parallel task 1 executes, C1 has values 1, 2, and 3, and COUNTER
returns values 1, 2, and 3, so the query returns values 1, 2, and 3.

– When parallel task 2 executes, C1 has values 4, 5, and 6, but COUNTER
returns values 1, 2, and 3, so the query returns no rows.

– When parallel task 3, executes, C1 has values 7, 8, 9, and 10, but
COUNTER returns values 1, 2, 3, and 4, so the query returns no rows.

Thus, instead of returning the 10 rows that you might expect from the query,
DB2 returns only 3 rows.

Passing parameter values to and from a user-defined function:   To receive
parameters from and pass parameters to a function invoker, you must understand
the structure of the parameter list, the meaning of each parameter, and whether
DB2 or your user-defined function sets the value of each parameter. This section
explains the parameters and gives examples of how a user-defined function in each
host language receives the parameter list.

Figure 23 on page 154 shows the structure of the parameter list that DB2 passes
to a user-defined function. An explanation of each parameter follows.

  Chapter 6. Object-relational extensions and active data 153



  
 

Figure 23. Parameter conventions for a user-defined function

Input parameter values: DB2 obtains the input parameters from the invoker's
parameter list, and your user-defined function receives those parameters according
to the rules of the host language in which the user-defined function is written. The
number of input parameters is the same as the number of parameters in the
user-defined function invocation. If one of the parameters in the function invocation
is an expression, DB2 evaluates the expression and assigns the result of the
expression to the parameter. To determine the data types to specify when you
receive input parameters, check the input parameter data types in the user-defined

154 Release Planning Guide  



  
 

function definition. Then use Table 19 on page 155 and Table 20 on page 157
and to find the host data type that is compatible with each input parameter data
type.

You can also retrieve information about the data types from the SYSPARMS
catalog table if you have appropriate authorization.

Table 19 (Page 1 of 2). Compatible C and COBOL declarations for user-defined function parameters

SQL data type C COBOL

SMALLINT short int PIC S9(4)
USAGE COMP

INTEGER long int PIC S9(9)
USAGE COMP

DECIMAL(p,s) decimal (x,y)1 PIC S9(p-s)V9(s)
USAGE COMP-3

REAL float USAGE COMP-1

FLOAT double USAGE COMP-2

CHAR(1) char PIC X(1)

CHAR(n) char var [n+1]2,3 PIC X(n)

VARCHAR(n)
FOR BIT DATA

struct
{short int var_len;
 char var_data[n];
} var;3

01 var.
49 var-LEN PIC 9(4)

 USAGE COMP.
49 var-TEXT PIC X(n).

VARCHAR(n) char var [n+1]2,3 01 var.
49 var-LEN PIC 9(4)

 USAGE COMP.
49 var-TEXT PIC X(n).

GRAPHIC(1) wchar_t var PIC G(1)
 USAGE DISPLAY-1.
 or
PIC N(1).

GRAPHIC(n) wchar_t var [n+1]2 PIC G(n)
 USAGE DISPLAY-1.
PIC N(n).

VARGRAPHIC(n) struct
{short int var_len;
 wchar_t var_data[n];
} var;

01 var.
49 var-LEN PIC 9(4)

 USAGE COMP.
49 var-TEXT PIC G(n)

 USAGE DISPLAY-1.
 or
01 var.

49 var-LEN PIC 9(4)
 USAGE COMP.

49 var-TEXT PIC N(n).

TIME char var [8+1]2,3 PIC X(8)

DATE char var [10+1]2,3 PIC X(10)

TIMESTAMP char var [26+1]2,3 PIC X(26)

ROWID struct
{short int length;
 char data[40];} var;3

01 var.
49 var-LEN PIC 9(4)

 USAGE COMP.
49 var-DATA PIC X(40).

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

unsigned long4 01 var PIC S9(9)
USAGE IS BINARY.4

  Chapter 6. Object-relational extensions and active data 155



  
 

Table 19 (Page 2 of 2). Compatible C and COBOL declarations for user-defined function parameters

SQL data type C COBOL

BLOB(n) struct
{unsigned long length;
 char data[n];
} var;

If n <= 32767:
01 var.

49 var-LENGTH PIC 9(9)
 USAGE COMP.

49 var-DATA PIC X(n).
If length > 32767:
01 var.
 02 var-LENGTH PIC S9(9)
 USAGE COMP.
 02 var-DATA.
 49 FILLER
 PIC X(32767).
 49 FILLER
 PIC X(32767).
...
 49 FILLER
 PIC X(mod(n,32767)).

CLOB(n) struct
{unsigned long length;
 char data[n];
} var;

If n <= 32767:
01 var.

49 var-LENGTH PIC 9(9)
 USAGE COMP.

49 var-DATA PIC X(n).
If length > 32767:
01 var.
 02 var-LENGTH PIC S9(9)
 USAGE COMP.
 02 var-DATA.
 49 FILLER
 PIC X(32767).
 49 FILLER
 PIC X(32767).
...
 49 FILLER
 PIC X(mod(n,32767)).

DBCLOB(n) struct
{unsigned long length;
wchar_t data[n];
} var;

If n <eq; 32767:
01 var.

49 var-LENGTH PIC 9(9)
 USAGE COMP.

49 var-DATA PIC G(n)
 USAGE DISPLAY-1.
If length > 32767:
01 var.
 02 var-LENGTH PIC S9(9)
 USAGE COMP.
 02 var-DATA.
 49 FILLER
 PIC G(32767)
 USAGE DISPLAY-1.
 49 FILLER
 PIC G(32767).
 USAGE DISPLAY-1.
...
 49 FILLER
 PIC G(mod(n,32767))
 USAGE DISPLAY-1.

Notes to Table 19 on page 155:

1. x is the total number of digits. In SQL, this is the precision of the number; in C,
it is the size of the number. y is the number of digits to the right of the decimal

156 Release Planning Guide  



  
 

separator. In SQL, this is the scale of the number; in C, it is the precision of the
number.

2. The length of character string variables is n+1, because DB2 places a null
character at the end of character strings that it passes to external user-defined
functions written in C.

3. Special rules apply to character string parameters of user-defined functions that
are written in C:

� CHAR(n) corresponds to a NUL-terminated character string variable with a
length of n+1 that is defined according to the ANSI/ISO SQL standard of
1992.

� VARCHAR(n) corresponds to a C NUL-terminated character string variable
with a length of n+1.

� VARCHAR(n) FOR BIT DATA corresponds to the VARCHAR structured
form of the character string variable (the simulated VARCHAR form that
can include X'00' because it is not NUL-terminated).

� ROWID corresponds to the ROWID structured form of the row ID variable
(like the simulated VARCHAR form that can include X'00' because it is not
NUL-terminated).

NUL-terminated variables of length n+1 that are defined according to the
ANSI/ISO SQL standard of 1992 differ from C NUL-terminated variables only
when they are the target of an assignment for which the length of the source
string is less than n.

� When the target is a NUL-terminated variable defined according to the
ANSI/ISO SQL standard of 1992, DB2 pads the string on the right with
blanks and the NUL is in the last byte of the variable. This is the same rule
that DB2 uses to assign the value of a fixed-length string column to a
NUL-terminated output variable.

� When the target is a C NUL-terminated variable, the string is assigned to
the variable and the NUL is in the next byte. This is the same rule that DB2
uses to assign the value of a varying-length string column to a
NUL-terminated output variable.

4. When you pass a locator value to a user-defined function. The user-defined
function must contain a host language declaration of a 4-byte binary integer to
receive the locator value. Before you can use the locator in SQL statements in
the user-defined function, you must assign its value to a locator variable that is
declared in the user-defined function.

Table 20 (Page 1 of 3). Compatible PL/I and assembler declarations for user-defined function parameters

SQL data type PL/I Assembler

SMALLINT BIN FIXED(15) DS HL2

INTEGER BIN FIXED(31) DS FL4

DECIMAL(p,s) DEC FIXED(p,s) DS PLn'value'1

REAL BIN FLOAT(21) DS EL42

DS EHL4

FLOAT BIN FLOAT(53) DS DL8
DS DHL8

CHAR(1) CHAR(1) DS CL1

CHAR(n) CHAR(n) DS CLn

  Chapter 6. Object-relational extensions and active data 157



  
 

Table 20 (Page 2 of 3). Compatible PL/I and assembler declarations for user-defined function parameters

SQL data type PL/I Assembler

VARCHAR(n)
FOR BIT DATA

CHAR(n) VAR DS HL2,CLn

VARCHAR(n) CHAR(n) VAR DS HL2,CLn

GRAPHIC(1) GRAPHIC(1) DS GL2

GRAPHIC(n) GRAPHIC(n) DS GLm3

VARGRAPHIC(n) GRAPHIC(n) VAR DS HL2,GLm3

TIME CHAR(8) DS CL8

DATE CHAR(10) DS CL10

TIMESTAMP CHAR(26) DS CL26

ROWID CHAR(40) VAR DS HL2,CL40

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

BIN FIXED(31)4 DS FL44

BLOB(n) If n <= 32767:
01 var,
 03 var_LENGTH
 BIN FIXED(31),
 03 var_DATA
 CHAR(n);
If n > 32767:
01 var,
 02 var_LENGTH
 BIN FIXED(31),
 02 var_DATA,
 03 var_DATA1(n)
 CHAR(32767),
 03 var_DATA2
 CHAR(mod(n,32767));

If n <= 65535:
var DS 0FL4
var_length DS FL4
var_data DS CLn
If n > 65535:
var DS 0FL4
var_length DS FL4
var_data DS CL65535
 ORG var_data+(n-65535)

CLOB(n) If n <= 32767:
01 var,
 03 var_LENGTH
 BIN FIXED(31),
 03 var_DATA
 CHAR(n);
If n > 32767:
01 var,
 02 var_LENGTH
 BIN FIXED(31),
 02 var_DATA,
 03 var_DATA1(n)
 CHAR(32767),
 03 var_DATA2
 CHAR(mod(n,32767));

If n <= 65535:
var DS 0FL4
var_length DS FL4
var_data DS CLn
If n > 65535:
var DS 0FL4
var_length DS FL4
var_data DS CL65535
 ORG var_data+(n-65535)

158 Release Planning Guide  



  
 

Table 20 (Page 3 of 3). Compatible PL/I and assembler declarations for user-defined function parameters

SQL data type PL/I Assembler

DBCLOB(n) If n <eq; 16383:
01 var,
 03 var_LENGTH
 BIN FIXED(31),
 03 var_DATA
 GRAPHIC(n);
If n > 16383:
01 var,
 02 var_LENGTH
 BIN FIXED(31),
 02 var_DATA,
 03 var_DATA1(n)
 GRAPHIC(16383),
 03 var_DATA2
 GRAPHIC(mod(n,16383));

If m (=2*n) <= 65534:
var DS 0FL4
var_length DS FL4
var_data DS CLm
If m > 65534:
var DS 0FL4
var_length DS FL4
var_data DS CL65534
 ORG var_data+(m-65534)

Notes to Table 20 on page 157:

1. You must use L n, value or both. If you use L n, the precision is 2 n-1;
otherwise, it is the number of digits in value. If you use value, the scale is the
number of digits to the right of the decimal point in value; otherwise it is 0.

2. IEEE floating point host variables are not supported in user-defined functions.

3. m is expressed in bytes (2 times n).

4. When you pass a locator value to a user-defined function, the user-defined
function must contain a host language declaration of a 4-byte binary integer to
receive the locator value. Before you can use the locator in SQL statements in
the user-defined function, you must assign its value to a locator variable that is
declared in the user-defined function.

Result parameters: Set these values in your user-defined function before exiting.
For a user-defined scalar function, you return one result parameter. For a
user-defined table function, you return the same number of parameters as columns
in the RETURNS TABLE clause of the CREATE FUNCTION statement. DB2
allocates a buffer for each result parameter value and passes the buffer address to
the user-defined function. Your user-defined function places each result parameter
value in its buffer. You must ensure that the length of the value you place in each
output buffer does not exceed the buffer length. Use the SQL data type and length
in the user-defined function definition to determine the buffer length.

Use Table 19 on page 155 and Table 20 on page 157 to determine the host data
type to use for each result parameter value. If the CREATE FUNCTION statement
contains a CAST FROM clause, use a data type that corresponds to the SQL data
type in the CAST FROM clause. Otherwise, use a data type that corresponds to the
SQL data type in the RETURNS or RETURNS TABLE clause.

To improve performance for user-defined table functions that return many columns,
you can pass values for a subset of columns to the invoker. For example, a
user-defined table function might be defined to return 100 columns, but the invoker
needs values for only two columns. Use the DBINFO parameter to indicate to DB2
the columns for which you will return values. Then return values for only those
columns. See the explanation of DBINFO below for information on how to indicate
the columns of interest.

  Chapter 6. Object-relational extensions and active data 159



  
 

Input parameter indicators: These are SMALLINT values, which DB2 sets before
it passes control to the user-defined function. You use the indicators to determine
whether the corresponding input parameters are null. The number and order of the
indicators are the same as the number and order of the input parameters. On entry
to the user-defined function, each indicator contains one of these values:

0 The input parameter value is not null.

negative The input parameter value is null.

Code the user-defined function to check all indicators for null values unless the
user-defined function is defined with RETURNS NULL ON NULL INPUT. A
user-defined function defined with RETURNS NULL ON NULL INPUT executes
only if all input parameters are not null.

Result indicators: These are SMALLINT values, which you must set before the
user-defined function ends to indicate to the invoking program whether each result
parameter value is null. A user-defined scalar function has one result indicator. A
user-defined table function has the same number of result indicators as the number
of result parameters. The order of the result indicators is the same as the order of
the result parameters. Set each result indicator to one of these values:

0 or positive The result parameter is not null.

negative The result parameter is null.

SQLSTATE value: This is a CHAR(5) value, which you must set before the
user-defined function ends. The user-defined function can return one of these
SQLSTATE values:

00000 Use this value to indicate that the user-defined function executed
without any warnings or errors.

01Hxx Use these values to indicate that the user-defined function detected
a warning condition. xx can be any two single-byte alphanumeric
characters. DB2 returns SQLCODE +462 if the user-defined
function sets the SQLSTATE to 01Hxx.

02000 Use this value to indicate that no more rows are to be returned
from a user-defined table function.

38yxx Use these values to indicate that the user-defined function detected
an error condition. y can be any single-byte alphanumeric character
except 5. xx can be any two single-byte alphanumeric characters.
However, if an SQL statement in the user-defined function returns
one of the following SQLSTATEs, passing that SQLSTATE back to
the invoker is recommended.

| 38001 The user-defined function attempted to execute an
| SQL statement, but the user-defined function is not
| defined with NO SQL. DB2 returns SQLCODE -487
| with this SQLSTATE. The user-defined function
| attempted to execute an SQL statement, but the
| user-defined function is defined with NO SQL. DB2
| returns SQLCODE -487 with this SQLSTATE.

160 Release Planning Guide  



  
 

| 38002 The user-defined function attempted to execute an
| SQL statement that requires that the user-defined
| function is defined with MODIFIES SQL DATA, but
| the user-defined function is not defined with
| MODIFIES SQL DATA. DB2 returns SQLCODE
| -577 with this SQLSTATE.

| 38003 The user-defined function executed a COMMIT or
| ROLLBACK statement, which are not permitted in a
| user-defined function. DB2 returns SQLCODE -751
| with this SQLSTATE.

| 38004 The user-defined function attempted to execute an
| SQL statement that requires that the user-defined
| function is defined with READS SQL DATA or
| MODIFIES SQL DATA, but the user-defined
| function is not defined with either of these options.
| DB2 returns SQLCODE -579 with this SQLSTATE.

When your user-defined function returns an SQLSTATE of 38yxx other than one of
the four listed above, DB2 returns SQLCODE -443.

If the user-defined function returns an SQLSTATE that is not permitted for a
user-defined function, DB2 replaces that SQLSTATE with 39001 and returns
SQLCODE -463.

If both the user-defined function and DB2 set an SQLSTATE value, DB2 returns its
SQLSTATE value to the invoker.

User-defined function name: DB2 sets this value in the parameter list before the
user-defined function executes. This value is VARCHAR(137): 8 bytes for the
schema name, 1 byte for a period, and 128 bytes for the user-defined function
name. If you use the same code to implement multiple versions of a user-defined
function, you can use this parameter to determine which version of the function the
invoker wants to execute.

Specific name: DB2 sets this value in the parameter list before the user-defined
function executes. This value is VARCHAR(128) and is either the specific name
from the CREATE FUNCTION statement or a specific name that DB2 generates. If
you use the same code to implement multiple versions of a user-defined function,
you can use this parameter to determine which version of the function the invoker
wants to execute.

Diagnostic message: This is a VARCHAR(70) value, which your user-defined
function can set before exiting. Use this area to pass descriptive information about
an error or warning to the invoker.

DB2 allocates a 70-byte buffer for this area and passes you the buffer address in
the parameter list. Ensure that you do not write more than 70 bytes to the buffer. At
least the first 17 bytes of the value you put in the buffer appear in the SQLERRMC
field of the SQLCA that is returned to the invoker. The exact number of bytes
depends on the number of other tokens in SQLERRMC. Do not use X'FF' in your
diagnostic message. DB2 uses this value to delimit tokens.

Scratchpad: If the definer specified SCRATCHPAD in the CREATE FUNCTION
statement, DB2 allocates a buffer for the scratchpad area and passes its address to

  Chapter 6. Object-relational extensions and active data 161



  
 

the user-defined function. Before the user-defined function is invoked for the first
time in an SQL statement, DB2 sets the length of the scratchpad in the first 4 bytes
of the buffer and then sets the scratchpad area to X'00'. DB2 does not reinitialize
the scratchpad between invocations of a correlated subquery.

You must ensure that your user-defined function does not write more bytes to the
scratchpad than the scratchpad length.

Call type: For a user-defined scalar function, if the definer specified FINAL CALL in
the CREATE FUNCTION statement, DB2 passes this parameter to the user-defined
function. For a user-defined table function, DB2 always passes this parameter to
the user-defined function.

On entry to a user-defined scalar function, the call type parameter has one of the
following values:

-1 This is the first call to the user-defined function for the SQL statement. For
a first call, all input parameters are passed to the user-defined function. In
addition, the scratchpad, if allocated, is set to binary zeros.

0 This is a normal call. For a normal call, all the input parameters are passed
to the user-defined function. If a scratchpad is also passed, DB2 does not
modify it.

1 This is a final call. For a final call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

This type of final call occurs when the invoking application explicitly closes
a cursor. When a value of 1 is passed to a user-defined function, the
user-defined function can execute SQL statements.

255 This is a final call. For a final call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

This type of final call occurs when the invoking application executes a
COMMIT or ROLLBACK statement, or when the invoking application
abnormally terminates. When a value of 255 is passed to the user-defined
function, the user-defined function cannot execute any SQL statements,
except for CLOSE CURSOR. If the user-defined function executes any
close cursor statements during this type of final call, the user-defined
function should tolerate SQLCODE -501 because DB2 might have already
closed cursors before the final call.

During the first call, your user-defined scalar function should acquire any system
resources it needs. During the final call, the user-defined scalar function should
release any resources it acquired during the first call. The user-defined scalar
function should return a result value only during normal calls. DB2 ignores any
results that are returned during a final call. However, the user-defined scalar
function can set the SQLSTATE and diagnostic message area during the final call.

If an invoking SQL statement contains more than one user-defined scalar function,
and one of those user-defined functions returns an error SQLSTATE, DB2 invokes
all of the user-defined functions for a final call, and the invoking SQL statement
receives the SQLSTATE of the first user-defined function with an error.

162 Release Planning Guide  



  
 

On entry to a user-defined table function, the call type parameter has one of the
following values:

-2 This is the first call to the user-defined function for the SQL statement. A
first call occurs only if the FINAL CALL keyword is specified in the
user-defined function definition. For a first call, all input parameters are
passed to the user-defined function. In addition, the scratchpad, if allocated,
is set to binary zeros.

-1 This is the open call to the user-defined function by an SQL statement. If
FINAL CALL is not specified in the user-defined function definition, all input
parameters are passed to the user-defined function, and the scratchpad, if
allocated, is set to binary zeros during the open call. If FINAL CALL is
specified for the user-defined function, DB2 does not modify the
scratchpad.

0 This is a fetch call to the user-defined function by an SQL statement. For a
fetch call, all input parameters are passed to the user-defined function. If a
scratchpad is also passed, DB2 does not modify it.

1 This is a close call. For a close call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

2 This is a final call. This type of final call occurs only if FINAL CALL is
specified in the user-defined function definition. For a final call, no input
parameters are passed to the user-defined function. If a scratchpad is also
passed, DB2 does not modify it.

This type of final call occurs when the invoking application executes a
CLOSE CURSOR statement.

255 This is a final call. For a final call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

This type of final call occurs when the invoking application executes a
COMMIT or ROLLBACK statement, or when the invoking application
abnormally terminates. When a value of 255 is passed to the user-defined
function, the user-defined function cannot execute any SQL statements,
except for CLOSE CURSOR. If the user-defined function executes any
close cursor statements during this type of final call, the user-defined
function should tolerate SQLCODE -501 because DB2 might have already
closed cursors before the final call.

If a user-defined table function is defined with FINAL CALL, the user-defined
function should allocate any resources it needs during the first call and release
those resources during the final call that sets a value of 2.

If a user-defined table function is defined with NO FINAL CALL, the user-defined
function should allocate any resources it needs during the open call and release
those resources during the close call.

During a fetch call, the user-defined table function should return a row. If the
user-defined function has no more rows to return, it should set the SQLSTATE to
02000.

  Chapter 6. Object-relational extensions and active data 163



  
 

During the close call, a user-defined table function can set the SQLSTATE and
diagnostic message area.

If a user-defined table function is invoked from a subquery, the user-defined table
function receives a CLOSE call for each invocation of the subquery within the
higher level query, and a subsequent OPEN call for the next invocation of the
subquery within the higher level query.

DBINFO: If the definer specified DBINFO in the CREATE FUNCTION statement,
DB2 passes the DBINFO structure to the user-defined function. DBINFO contains
information about the environment of the user-defined function caller. DBINFO
contains the following fields, in the order shown:

Location name length
An unsigned 2-byte integer field. It contains the length of the location name in
the next field.

Location name
A128-byte character field. It contains the name of the location to which the
invoker is currently connected.

Authorization ID length
An unsigned 2-byte integer field. It contains the length of the authorization ID in
the next field.

Authorization ID
A 128-byte character field. It contains the authorization ID of the application
from which the user-defined function is invoked, padded on the right with
blanks. If this user-defined function is nested within other user-defined
functions, this value is the authorization ID of the application that invoked the
highest-level user-defined function.

Subsystem code page
A 48-byte structure that consists of seven integer fields and 20 bytes of
reserved space. These fields provide information about the CCSIDs and
encoding scheme of the subsystem from which the user-defined function is
invoked. The seven integer fields contain:

� ASCII SBCS CCSID
� ASCII MIXED CCSID
� ASCII DBCS CCSID
� EBCDIC SBCS CCSID
� EBCDIC MIXED CCSID
� EBCDIC DBCS CCSID

 � Encoding scheme

Table qualifier length
An unsigned 2-byte integer field. It contains the length of the table qualifier in
the next field. If the table name field is not used, this field contains 0.

Table qualifier
A 128-byte character field. It contains the qualifier of the table that is specified
in the table name field.

Table name length
An unsigned 2-byte integer field. It contains the length of the table name in the
next field. If the table name field is not used, this field contains 0.

164 Release Planning Guide  



  
 

Table name
A 128-byte character field. This field contains the name of the table that the
UPDATE or INSERT modifies if the reference to the user-defined function in
the invoking SQL statement is in one of the places shown in the list that
follows. Otherwise, this field is blank.

� The right side of a SET clause in an UPDATE statement
� In the VALUES list of an INSERT statement

Column name length
An unsigned 2-byte integer field. It contains the length of the column name in
the next field. If no column name is passed to the user-defined function, this
field contains 0.

Column name
A 128-byte character field. This field contains the name of the column that the
UPDATE or INSERT modifies if the reference to the user-defined function in
the invoking SQL statement is in one of the places shown in the list that
follows. Otherwise, this field is blank.

� The right side of a SET clause in an UPDATE statement
� In the VALUES list of an INSERT statement

Product information
An 8-byte character field that defines the product on which the user-defined
function executes. The field has the form pppvvrrm, where:

� ppp is a 3-byte product code:

DSN DB2 for OS/390

ARI DB2 Server for VSE & VM

QSQ DB2 for AS/400

SQL DB2 Universal Database

� vv is a 2-digit version identifier.

� rr is a 2-digit release identifier.

� m is a 1-digit modification level identifier.

Operating system
A 4-byte integer field. It identifies the operating system on which the program
that invokes the user-defined function runs. The value is one of these:

0 Unknown

1 OS/2

3 Windows

4 AIX

5 Windows NT

6 HP-UX

7 Solaris

8 OS/390

13 Siemens Nixdorf

  Chapter 6. Object-relational extensions and active data 165



  
 

15 Windows 95

16 SCO Unix

Number of entries in table function column list
An unsigned 2-byte integer field.

Reserved area
A reserved area that is 24 bytes in length.

Table function column list pointer
If a table function is defined, this field is a pointer to an array that contains
1000 2-byte integers. DB2 dynamically allocates the array. If a table function is
not defined, this pointer is null.

Only the first n entries, where n is the value in the field entitled number of
entries in table function column list, are of interest. n is greater than or equal to
0 and less than or equal to the number result columns defined for the
user-defined function in the RETURNS TABLE clause of the CREATE
FUNCTION statement. The values correspond to the numbers of the columns
that the invoking statement needs from the table function. A value of 1 means
the first defined result column, 2 means the second defined result column, and
so on. The values can be in any order. If n is equal to 0, the first array element
is 0. This is the case for a statement like the following one, where the invoking
statement needs no column values.

SELECT COUNT(S) FROM TABLE(TF(...)) AS QQ

This array represents an opportunity for optimization. The user-defined function
does not need to return all values for all the result columns of the table
function. Instead, the user-defined function can return only those columns that
are needed in the particular context, which you identify by number in the array.
However, if this optimization complicates the user-defined function logic enough
to cancel the performance benefit, you might choose to return every defined
column.

Unique application identifier
This field is a pointer to a string that uniquely identifies the application's
connection to DB2. The string is regenerated at for each connection to DB2.

The string is the LUWID, which consists of a fully-qualified LU network name
followed by a period and an LUW instance number. The LU network name
consists of a 1- to 8-character network ID, a period, and a 1- to 8-character
network LU name. The LUW instance number consists of 12 hexadecimal
characters that uniquely identify the unit of work.

Reserved area
This area is 20 bytes.

See the following section for examples of declarations of passed parameters in
each language. If you write your user-defined function in C or C++, you can use the
declarations in member SQLUDF of DSN610.SDSNSAMP for many of the passed
parameters. To include SQLUDF, put this statement in your program:

#include <sqludf.h>

Examples of passing parameters in a user-defined function:  The following
examples show how a user-defined function that is written in each of the supported
host languages receives the parameter list that is passed by DB2.

166 Release Planning Guide  



  
 

These examples assume that the user-defined function is defined with the
SCRATCHPAD, FINAL CALL, and DBINFO parameters.

Assembler: Figure 24 shows the parameter conventions for a user-defined scalar
function that is written as a main program that receives two parameters and returns
one result. For an assembler language user-defined function that is a subprogram,
the conventions are the same. You must include the CEEENTRY and CEEEXIT
macros.

MYMAIN CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

 USING PROGAREA,R13

L R7,O(R1) GET POINTER TO PARM1

MVC PARM1(4),O(R7) MOVE VALUE INTO LOCAL COPY OF PARM1

L R7,4(R1) GET POINTER TO PARM2

MVC PARM1(4),O(R7) MOVE VALUE INTO LOCAL COPY OF PARM2

L R7,12(R1) GET POINTER TO INDICATOR 1

MVC F_IND1(2),O(R7) MOVE PARM1 INDICATOR TO LOCAL STORAGE

LH R7,F_IND1 MOVE PARM1 INDICATOR INTO R7

LTR R7,R7 CHECK IF IT IS NEGATIVE

BM NULLIN IF SO, PARM1 IS NULL

L R7,16(R1) GET POINTER TO INDICATOR 2

MVC F_IND2(2),O(R7) MOVE PARM2 INDICATOR TO LOCAL STORAGE

LH R7,F_IND2 MOVE PARM2 INDICATOR INTO R7

LTR R7,R7 CHECK IF IT IS NEGATIVE

BM NULLIN IF SO, PARM2 IS NULL

...

L R7,8(R1) GET ADDRESS OF AREA FOR RESULT

NULLIN MVC O(9,R7),RESULT MOVE A VALUE INTO RESULT AREA

L R7,2O(R1) GET ADDRESS OF AREA FOR RESULT IND

MVC O(2,R7),=H'O' MOVE A VALUE INTO INDICATOR AREA

...

 CEETERM RC=O

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S VARIABLE DECLARATIONS AND EQUATES S

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

R1 EQU 1 REGISTER 1

R7 EQU 7 REGISTER 7

PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE

PROGAREA DSECT

ORG S+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART

PARM1 DS F PARAMETER 1

PARM2 DS F PARAMETER 2

RESULT DS CL9 RESULT

F_IND1 DS H INDICATOR FOR PARAMETER 1

F_IND2 DS H INDICATOR FOR PARAMETER 2

F_INDR DS H INDICATOR FOR RESULT

PROGSIZE EQU S-PROGAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA

CEECAA , MAPPING OF THE COMMON ANCHOR AREA

 END MYMAIN

Figure 24. How an assembler language user-defined function receives parameters

  Chapter 6. Object-relational extensions and active data 167



  
 

 C or C++: For C or C++, the conventions for passing parameters are different for
main programs and subprograms. Therefore, for C or C++ user-defined functions,
the conventions for main programs are also different from those for subprograms.

For subprograms, you pass the parameters directly. For main programs, you use
the standard argc and argv variables to access the input and output parameters:

� The argv variable contains an array of pointers to the parameters that are
passed to the user-defined function. All string parameters that are passed back
to DB2 must be null terminated.

– argv[0] contains the address of the load module name for the user-defined
function.

– argv[1] through argv[n] contain the addresses of parameters 1 through n.

� The argc variable contains the number of parameters that are passed to the
external user-defined function, including argv[0].

Figure 25 on page 169 shows the parameter conventions for a user-defined scalar
function that is written as a main program that receives two parameters and returns
one result.

168 Release Planning Guide  



  
 

#include <stdlib.h>
#include <stdio.h>

main(argc,argv)

 int argc;

 char Sargv[];

 {

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Assume that the user-defined function invocationS/

/S included 2 input parameters in the parameter S/

/S list. Also assume that the definition includes S/

/S the SCRATCHPAD, FINAL CALL, and DBINFO options, S/

/S so DB2 passes the scratchpad, calltype, and S/

/S dbinfo parameters. S/

/S The argv vector contains these entries: S/

/S argv[O] 1 load module name S/

 /S argv[1-2] 2 input parms S/

 /S argv[3] 1 result parm S/

 /S argv[4-5] 2 null indicators S/

/S argv[6] 1 result null indicator S/

 /S argv[7] 1 SQLSTATE variable S/

/S argv[8] 1 qualified func name S/

/S argv[9] 1 specific func name S/

 /S argv[1O] 1 diagnostic string S/

 /S argv[11] 1 scratchpad S/

 /S argv[12] 1 call type S/

/S argv[13] + 1 dbinfo S/

 /S ------ S/

/S 14 for the argc variable S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 if argc<>14

 {

...

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S This section would contain the code executed if the S/

/S user-defined function is invoked with the wrong number S/

/S of parameters. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 }

Figure 25 (Part 1 of 2). How a C or C++ user-defined function that is written as a main
program receives parameters

  Chapter 6. Object-relational extensions and active data 169



  
 

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Assume the first parameter is an integer. S/

/S The code below shows how to copy the integer S/

/S parameter into the application storage. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 int parm1;

parm1 = S(int S) argv[1];

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Access the null indicator for the first S/

/S parameter on the invoked user-defined function S/

/S as follows: S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

short int ind1;

ind1 = S(short int S) argv[4];

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Use the expression below to assign S/

/S 'xxxxx' to the SQLSTATE returned to caller on S/

/S the SQL statement that contains the invoked S/

/S user-defined function. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 strcpy(argv[7],"xxxxx/O");

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Obtain the value of the qualified function S/

/S name with this expression. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 char f_func[28];

 strcpy(f_func,argv[8]);

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Obtain the value of the specific function S/

/S name with this expression. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 char f_spec[19];

 strcpy(f_spec,argv[9]);

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Use the expression below to assign S/

/S 'yyyyyyyy' to the diagnostic string returned S/

/S in the SQLCA associated with the invoked S/

/S user-defined function. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 strcpy(argv[1O],"yyyyyyyy/O");

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Use the expression below to assign the S/

/S result of the function. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 char l_result[11];

 strcpy(argv[3],l_result);

...

 }

Figure 25 (Part 2 of 2). How a C or C++ user-defined function that is written as a main
program receives parameters

170 Release Planning Guide  



  
 

Figure 26 on page 171 shows the parameter conventions for a user-defined scalar
function that is written as a C subprogram that receives two parameters and returns
one result.

#pragma runopts(plist(os))

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

struct sqludf_scratchpad

{

unsigned long length; /S length of scratchpad data S/

 char data[SQLUDF_SCRATCHPAD_LEN]; /S scratchpad data S/

};

struct sqludf_dbinfo

{

unsigned short dbnamelen; /S database name length S/

unsigned char dbname[128]; /S database name S/

unsigned short authidlen; /S appl auth id length S/

unsigned char authid[128]; /S appl authorization ID S/

unsigned long ascii_sbcs; /S ASCII SBCS CCSID S/

unsigned long ascii_dbcs; /S ASCII MIXED CCSID S/

 unsigned long ascii_mixed; /S ASCII DBCS CCSID S/

 unsigned long ebcdic_sbcs; /S EBCDIC SBCS CCSID S/

 unsigned long ebcdic_dbcs; /S EBCDIC MIXED CCSID S/

unsigned long ebcdic_mixed; /S EBCDIC DBCS CCSID S/

unsigned long encode; /S UDF encode scheme S/

unsigned char reserv1[2O]; /S reserved for later useS/

unsigned short tbqualiflen; /S table qualifier length S/

unsigned char tbqualif[128]; /S table qualifer name S/

unsigned short tbnamelen; /S table name length S/

unsigned char tbname[128]; /S table name S/

unsigned short colnamelen; /S column name length S/

unsigned char colname[128]; /S column name S/

unsigned char relver[8]; /S Database release & version S/

 unsigned long platform; /S Database platform S/

unsigned short numtfcol; /S # of Tab Fun columns used S/

 unsigned char reserv1[24]; /S reserved S/

unsigned short Stfcolnum; /S table fn column list S/

unsigned short Sappl_id; /S LUWID for DB2 connection S/

 unsigned char reserv2[2O]; /S reserved S/

};

void myfunc(long Sparm1, char parm2[11], char result[11],

short Sf_ind1, short Sf_ind2, short Sf_indr,

char udf_sqlstate[6], char udf_fname[138],

char udf_specname[129], char udf_msgtext[71],

struct sqludf_scratchpad Sudf_scratchpad,

 long Sudf_call_type,

struct sql_dbinfo Sudf_dbinfo);

Figure 26 (Part 1 of 2). How a C language user-defined function that is written as a
subprogram receives parameters

  Chapter 6. Object-relational extensions and active data 171



  
 

 {

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Declare local copies of parameters S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 int l_p1;

 char l_p2[11];

short int l_ind1;

short int l_ind2;

 char ludf_sqlstate[6]; /S SQLSTATE S/

char ludf_fname[138]; /S function name S/

char ludf_specname[129]; /S specific function name S/

char ludf_msgtext[71] /S diagnostic message textS/

sqludf_scratchpad Sludf_scratchpad; /S scratchpad S/

long Sludf_call_type; /S call type S/

sqludf_dbinfo Sludf_dbinfo /S dbinfo S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Copy each of the parameters in the parameter S/

/S list into a local variable to demonstrate S/

/S how the parameters can be referenced. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

l_p1 = Sparm1;

 strcpy(l_p2,parm2);

l_ind1 = Sf_ind1;

l_ind1 = Sf_ind2;

 strcpy(ludf_sqlstate,udf_sqlstate);

 strcpy(ludf_fname,udf_fname);

 strcpy(ludf_specname,udf_specname);

l_udf_call_type = Sudf_call_type;

 strcpy(ludf_msgtext,udf_msgtext);

 memcpy(&ludf_scratchpad,udf_scratchpad,sizeof(ludf_scratchpad));

 memcpy(&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));

...

 }

Figure 26 (Part 2 of 2). How a C language user-defined function that is written as a
subprogram receives parameters

Figure 27 on page 173 shows the parameter conventions for a user-defined scalar
function that is written as a C++ subprogram that receives two parameters and
returns one result. This example demonstrates that you must use an external "C"

modifier to indicate that you want the C++ subprogram to receive parameters
according to the C linkage convention. This modifier is necessary because the
CEEPIPI CALL_SUB interface, which DB2 uses to call the user-defined function,
passes parameters using the C linkage convention.

172 Release Planning Guide  



  
 

#pragma runopts(plist(os))

#include <stdlib.h>

#include <stdio.h>

struct sqludf_scratchpad

{

unsigned long length; /S length of scratchpad data S/

 char data[SQLUDF_SCRATCHPAD_LEN]; /S scratchpad data S/

};

struct sqludf_dbinfo

{

unsigned short dbnamelen; /S database name length S/

unsigned char dbname[128]; /S database name S/

unsigned short authidlen; /S appl auth id length S/

unsigned char authid[128]; /S appl authorization ID S/

unsigned long ascii_sbcs; /S ASCII SBCS CCSID S/

unsigned long ascii_dbcs; /S ASCII MIXED CCSID S/

 unsigned long ascii_mixed; /S ASCII DBCS CCSID S/

 unsigned long ebcdic_sbcs; /S EBCDIC SBCS CCSID S/

 unsigned long ebcdic_dbcs; /S EBCDIC MIXED CCSID S/

unsigned long ebcdic_mixed; /S EBCDIC DBCS CCSID S/

unsigned long encode; /S UDF encode scheme S/

unsigned char reserv1[2O]; /S reserved for later useS/

unsigned short tbqualiflen; /S table qualifier length S/

unsigned char tbqualif[128]; /S table qualifer name S/

unsigned short tbnamelen; /S table name length S/

unsigned char tbname[128]; /S table name S/

unsigned short colnamelen; /S column name length S/

unsigned char colname[128]; /S column name S/

unsigned char relver[8]; /S Database release & version S/

 unsigned long platform; /S Database platform S/

unsigned short numtfcol; /S # of Tab Fun columns used S/

 unsigned char reserv1[24]; /S reserved S/

unsigned short Stfcolnum; /S table fn column list S/

unsigned short Sappl_id; /S LUWID for DB2 connection S/

 unsigned char reserv2[2O]; /S reserved S/

};

extern "C" void myfunc(long Sparm1, char parm2[11],

char result[11], short Sf_ind1, short Sf_ind2, short Sf_indr,

char udf_sqlstate[6], char udf_fname[138],

char udf_specname[129], char udf_msgtext[71],

struct sqludf_scratchpad Sudf_scratchpad,

 long Sudf_call_type,

struct sql_dbinfo Sudf_dbinfo);

Figure 27 (Part 1 of 2). How a C++ user-defined function that is written as a subprogram
receives parameters

  Chapter 6. Object-relational extensions and active data 173



  
 

 {

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Define local copies of parameters. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 int l_p1;

 char l_p2[11];

short int l_ind1;

short int l_ind2;

 char ludf_sqlstate[6]; /S SQLSTATE S/

char ludf_fname[138]; /S function name S/

char ludf_specname[129]; /S specific function name S/

char ludf_msgtext[71] /S diagnostic message textS/

sqludf_scratchpad Sludf_scratchpad; /S scratchpad S/

long Sludf_call_type; /S call type S/

sqludf_dbinfo Sludf_dbinfo /S dbinfo S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Copy each of the parameters in the parameter S/

/S list into a local variable to demonstrate S/

/S how the parameters can be referenced. S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

l_p1 = Sparm1;

 strcpy(l_p2,parm2);

l_ind1 = Sf_ind1;

l_ind1 = Sf_ind2;

 strcpy(ludf_sqlstate,udf_sqlstate);

 strcpy(ludf_fname,udf_fname);

 strcpy(ludf_specname,udf_specname);

l_udf_call_type = Sudf_call_type;

 strcpy(ludf_msgtext,udf_msgtext);

 memcpy(&ludf_scratchpad,udf_scratchpad,sizeof(ludf_scratchpad));

 memcpy(&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));

...

 }

Figure 27 (Part 2 of 2). How a C++ user-defined function that is written as a subprogram
receives parameters

COBOL: Figure 28 on page 175 shows the parameter conventions for a
user-defined table function that is written as a main program that receives two
parameters and returns two results. For a COBOL user-defined function that is a
subprogram, the conventions are the same.

174 Release Planning Guide  



  
 

 CBL APOST,RES,RENT

 IDENTIFICATION DIVISION.

...

 DATA DIVISION.

...

 LINKAGE SECTION.

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare each of the parameters S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

O1 UDFPARM1 PIC S9(9) USAGE COMP.

O1 UDFPARM2 PIC X(1O).

...

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare these variables for result parameters S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

O1 UDFRESULT1 PIC X(1O).

O1 UDFRESULT2 PIC X(1O).

...

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare a null indicator for each parameter S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

O1 UDF-IND1 PIC S9(4) USAGE COMP.

O1 UDF-IND2 PIC S9(4) USAGE COMP.

...

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare a null indicator for result parameter S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

O1 UDF-RIND1 PIC S9(4) USAGE COMP.

O1 UDF-RIND2 PIC S9(4) USAGE COMP.

...

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare the SQLSTATE that can be set by the S

S user-defined function S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

O1 UDF-SQLSTATE PIC X(5).

Figure 28 (Part 1 of 4). How a COBOL user-defined function receives parameters

  Chapter 6. Object-relational extensions and active data 175



  
 

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

O1 UDF-CALL-TYPE PIC 9(9) USAGE BINARY.

S Declare the qualified function name S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

 O1 UDF-FUNC.

49 UDF-FUNC-LEN PIC 9(4) USAGE BINARY.

49 UDF-FUNC-TEXT PIC X(137).

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare the specific function name S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

 O1 UDF-SPEC.

49 UDF-SPEC-LEN PIC 9(4) USAGE BINARY.

49 UDF-SPEC-TEXT PIC X(128).

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare SQL diagnostic message token S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

 O1 UDF-DIAG.

49 UDF-DIAG-LEN PIC 9(4) USAGE BINARY.

49 UDF-DIAG-TEXT PIC X(7O).

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare the scratchpad S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

 O1 UDF-SCRATCHPAD.

49 UDF-SPAD-LEN PIC 9(9) USAGE BINARY.

49 UDF-SPAD-TEXT PIC X(1OO).

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare the call type S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

Figure 28 (Part 2 of 4). How a COBOL user-defined function receives parameters

176 Release Planning Guide  



  
 

S Declare the DBINFO structure

 O1 UDF-DBINFO.

S Location length and name

 O2 UDF-DBINFO-LOCATION.

49 UDF-DBINFO-LLEN PIC 9(4) USAGE BINARY.

 49 UDF-DBINFO-LOC PIC X(128).

S Authorization ID length and name

 O2 UDF-DBINFO-AUTHORIZATION.

49 UDF-DBINFO-ALEN PIC 9(4) USAGE BINARY.

49 UDF-DBINFO-AUTH PIC X(128).

S CCSIDs for DB2 for OS/39O

O2 UDF-DBINFO-CCSID PIC X(48).

O2 UDF-DBINFO-CCSID-REDEFINE REDEFINES UDF-DBINFO-CCSID.

O3 UDF-DBINFO-ESBCS PIC 9(9) USAGE BINARY.

O3 UDF-DBINFO-EMIXED PIC 9(9) USAGE BINARY.

O3 UDF-DBINFO-EDBCS PIC 9(9) USAGE BINARY.

O3 UDF-DBINFO-ASBCS PIC 9(9) USAGE BINARY.

O3 UDF-DBINFO-AMIXED PIC 9(9) USAGE BINARY.

O3 UDF-DBINFO-ADBCS PIC 9(9) USAGE BINARY.

O3 UDF-DBINFO-ENCODE PIC 9(9) USAGE BINARY.

O3 UDF-DBINFO-RESERVO PIC X(2O).

S Schema length and name

 O2 UDF-DBINFO-SCHEMAO.

49 UDF-DBINFO-SLEN PIC 9(4) USAGE BINARY.

49 UDF-DBINFO-SCHEMA PIC X(128).

S Table length and name

 O2 UDF-DBINFO-TABLEO.

49 UDF-DBINFO-TLEN PIC 9(4) USAGE BINARY.

 49 UDF-DBINFO-TABLE PIC X(128).

S Column length and name

 O2 UDF-DBINFO-COLUMNO.

49 UDF-DBINFO-CLEN PIC 9(4) USAGE BINARY.

 49 UDF-DBINFO-COLUMN PIC X(128).

S DB2 release level

O2 UDF-DBINFO-VERREL PIC X(8).

 S Unused

 O2 FILLER PIC X(2).

 S Database Platform

O2 UDF-DBINFO-PLATFORM PIC 9(9) USAGE BINARY.

S # of entries in Table Function column list

O2 UDF-DBINFO-NUMTFCOL PIC 9(4) USAGE BINARY.

 S reserved

O2 UDF-DBINFO-RESERV1 PIC X(24).

 S Unused

 O2 FILLER PIC X(2).

S Pointer to Table Function column list

O2 UDF-DBINFO-TFCOLUMN PIC 9(9) USAGE BINARY.

S Pointer to Application ID

O2 UDF-DBINFO-APPLID PIC 9(9) USAGE BINARY.

 S reserved

O2 UDF-DBINFO-RESERV2 PIC X(2O).

 S

Figure 28 (Part 3 of 4). How a COBOL user-defined function receives parameters

  Chapter 6. Object-relational extensions and active data 177



  
 

PROCEDURE DIVISION USING UDFPARM1, UDFPARM2, UDFRESULT1,

UDFRESULT2, UDF-IND1, UDF-IND2,

 UDF-RIND1, UDF-RIND2,

UDF-SQLSTATE, UDF-FUNC, UDF-SPEC,

 UDF-DIAG, UDF-SCRATCHPAD,

 UDF-CALL-TYPE, UDF-DBINFO.

...

Figure 28 (Part 4 of 4). How a COBOL user-defined function receives parameters

 PL/I: Figure 29 shows the parameter conventions for a user-defined scalar
function that is written as a main program that receives two parameters and returns
one result. For a PL/I user-defined function that is a subprogram, the conventions
are the same.

SPROCESS SYSTEM(MVS);

 MYMAIN: PROC(UDF_PARM1, UDF_PARM2, UDF_RESULT,

UDF_IND1, UDF_IND2, UDF_INDR,

UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,

 UDF_DIAG_MSG, UDF_SCRATCHPAD,

 UDF_CALL_TYPE, UDF_DBINFO)

OPTIONS(MAIN NOEXECOPS REENTRANT);

 DCL UDF_PARM1 BIN FIXED(31); /S first parameter S/

 DCL UDF_PARM2 CHAR(1O); /S second parameter S/

 DCL UDF_RESULT CHAR(1O); /S result parameter S/

 DCL UDF_IND1 BIN FIXED(15); /S indicator for 1st parm S/

 DCL UDF_IND2 BIN FIXED(15); /S indicator for 2nd parm S/

 DCL UDF_INDR BIN FIXED(15); /S indicator for result S/

 DCL UDF_SQLSTATE CHAR(5); /S SQLSTATE returned to DB2 S/

 DCL UDF_NAME CHAR(137) VARYING; /S Qualified function name S/

 DCL UDF_SPEC_NAME CHAR(128) VARYING; /S Specific function name S/

 DCL UDF_DIAG_MSG CHAR(7O) VARYING; /S Diagnostic string S/

Figure 29 (Part 1 of 2). How a PL/I user-defined function receives parameters

178 Release Planning Guide  



  
 

 DCL O1 UDF_SCRATCHPAD /S Scratchpad S/

O3 UDF_SPAD_LEN BIN FIXED(31),

O3 UDF_SPAD_TEXT CHAR(1OO);

 DCL UDF_CALL_TYPE BIN FIXED(31); /S Call Type S/

 DCL DBINFO PTR;

 DCL O1 UDF_DBINFO BASED(DBINFO), /S Dbinfo S/

O3 UDF_DBINFO_LLEN BIN FIXED(15), /S location length S/

O3 UDF_DBINFO_LOC CHAR(128), /S location name S/

O3 UDF_DBINFO_ALEN BIN FIXED(15), /S auth ID length S/

O3 UDF_DBINFO_AUTH CHAR(128), /S authorization ID S/

O3 UDF_DBINFO_CCSID, /S CCSIDs for DB2 for OS/39OS/

O5 R1 BIN FIXED(15), /S Reserved S/

O5 UDF_DBINFO_ASBCS BIN FIXED(15), /S ASCII SBCS CCSID S/

O5 R2 BIN FIXED(15), /S Reserved S/

O5 UDF_DBINFO_AMIXED BIN FIXED(15), /S ASCII MIXED CCSID S/

O5 R3 BIN FIXED(15), /S Reserved S/

O5 UDF_DBINFO_ADBCS BIN FIXED(15), /S ASCII DBCS CCSID S/

O5 R4 BIN FIXED(15), /S Reserved S/

O5 UDF_DBINFO_ESBCS BIN FIXED(15), /S EBCDIC SBCS CCSID S/

O5 R5 BIN FIXED(15), /S Reserved S/

O5 UDF_DBINFO_EMIXED BIN FIXED(15), /S EBCDIC MIXED CCSIDS/

O5 R6 BIN FIXED(15), /S Reserved S/

O5 UDF_DBINFO_EDBCS BIN FIXED(15), /S EBCDIC DBCS CCSID S/

O5 UDF_DBINFO_ENCODE BIN FIXED(31), /S UDF encode scheme S/

O5 UDF_DBINFO_RESERVO CHAR(2O), /S reserved S/

O3 UDF_DBINFO_SLEN BIN FIXED(15), /S schema length S/

O3 UDF_DBINFO_SCHEMA CHAR(128), /S schema name S/

O3 UDF_DBINFO_TLEN BIN FIXED(15), /S table length S/

O3 UDF_DBINFO_TABLE CHAR(128), /S table name S/

O3 UDF_DBINFO_CLEN BIN FIXED(15), /S column length S/

O3 UDF_DBINFO_COLUMN CHAR(128), /S column name S/

O3 UDF_DBINFO_RELVER CHAR(8), /S DB2 release level S/

O3 UDF_DBINFO_PLATFORM BIN FIXED(31), /S database platformS/

O3 UDF_DBINFO_NUMTFCOL BIN FIXED(15), /S # of TF cols usedS/

O3 UDF_DBINFO_RESERV1 CHAR(24), /S reserved S/

O3 UDF_DBINFO_TFCOLUMN PTR, /S -> table fun col list S/

O3 UDF_DBINFO_APPLID PTR, /S -> application id S/

O3 UDF_DBINFO_RESERV2 CHAR(2O); /S reserved S/

...

Figure 29 (Part 2 of 2). How a PL/I user-defined function receives parameters

Using special registers in a user-defined function:   You can use all special
registers in a user-defined function. However, you can modify only some of those
special registers. After a user-defined function completes, DB2 restores all special
registers to the values they had before invocation.

Table 21 on page 180 shows information you need when you use special registers
in a user-defined function.

  Chapter 6. Object-relational extensions and active data 179



  
 

Notes on Table 21:

1. If the function is invoked within the scope of a trigger, DB2 uses the timestamp
for the triggering SQL statement as the timestamp for all SQL statements in the
function package.

2. DB2 allows parallelism at only one level of a nested SQL statement. If you set
the value of the CURRENT DEGREE special register, and parallelism is
disabled, DB2 ignores the CURRENT DEGREE value.

3. If the user-defined function definer specifies a value for COLLID in the
CREATE FUNCTION statement, DB2 sets CURRENT PACKAGESET to the
value of COLLID.

4. Not applicable because no SET statement exists for the special register.

5. If a program within the scope of the invoking program issues a SET statement
for the special register before the user-defined function is invoked, the special

Table 21. Characteristics of special registers in a user-defined function

Special register Initial value

Function can
use SET
statement to
modify?

CURRENT DATE New value for each SQL
statement in the user-defined
function package1

Not applicable4

CURRENT DEGREE Inherited from invoker2 Yes

| CURRENT LOCALE LC_TYPE| Inherited from invoker| Yes

CURRENT OPTIMIZATION HINT The value of bind option
OPTHINT for the user-defined
function package or inherited
from invoker5

Yes

CURRENT PACKAGESET Inherited from invoker3 Yes

CURRENT PATH The value of bind option PATH
for the user-defined function
package or inherited from
invoker5

Yes

CURRENT PRECISION Inherited from invoker Yes

CURRENT RULES Inherited from invoker Yes

CURRENT SERVER Inherited from invoker Yes

CURRENT SQLID The primary authorization ID of
the application process or
inherited from invoker6

Yes7

CURRENT TIME New value for each SQL
statement in the user-defined
function package1

Not applicable4

CURRENT TIMESTAMP New value for each SQL
statement in the user-defined
function package1

Not applicable4

CURRENT TIMEZONE Inherited from invoker Not applicable4

CURRENT USER Primary authorization ID of the
application process

Not applicable4

180 Release Planning Guide  



  
 

register inherits the value from the SET statement. Otherwise, the special
register contains the value that is set by the bind option for the user-defined
function package.

6. If a program within the scope of the invoking program issues a SET CURRENT
SQLID statement before the user-defined function is invoked, the special
register inherits the value from the SET statement. Otherwise, CURRENT
SQLID contains the authorization ID of the application process.

7. If the user-defined function package has a dynamic SQL statement behavior
other than run behavior, the SET CURRENT SQLID statement can be executed
but does not affect the authorization ID that is used for the dynamic SQL
statements in the user-defined function package. The dynamic SQL statement
behavior determines the authorization ID that is used for dynamic SQL
statements. See the discussion of DYNAMICRULES in Chapter 2 of DB2
Command Reference for more information about dynamic SQL statement
behavior.

Using a scratchpad in a user-defined function:   You can use a scratchpad to
save information between invocations of a user-defined function. To indicate that a
scratchpad should be allocated when the user-defined function executes, the
function definer specifies the SCRATCHPAD parameter in the CREATE FUNCTION
statement.

The scratchpad consists of a 4-byte length field, followed by the scratchpad area.
The definer can specify the length of the scratchpad area in the CREATE
FUNCTION statement. The specified length does not include the length field. The
default size is 100 bytes. DB2 initializes the scratchpad for each function to binary
zeros at the beginning of execution for each subquery of an SQL statement and
does not examine or change the content thereafter. On each invocation of the
user-defined function, DB2 passes the scratchpad to the user-defined function. You
can therefore use the scratchpad to preserve information between invocations of a
reentrant user-defined function.

Figure 30 on page 182 demonstrates how to enter information in a scratchpad for
a user-defined function defined like this:

CREATE FUNCTION COUNTER()

 RETURNS INT

 SCRATCHPAD

 FENCED

 NOT DETERMINISTIC

 NO SQL

NO EXTERNAL ACTION

 LANGUAGE C

PARAMETER STYLE DB2SQL

EXTERNAL NAME 'UDFCTR';

The scratchpad length is not specified, so the scratchpad has the default length of
100 bytes, plus 4 bytes for the length field. The user-defined function increments an
integer value and stores it in the scratchpad on each execution.

  Chapter 6. Object-relational extensions and active data 181



  
 

#pragma linkage(ctr,fetchable)

#include <stdlib.h>

#include <stdio.h>

/S Structure scr defines the passed scratchpad for function ctr S/

struct scr {

 long len;

 long countr;

 char not_used[96];

 };

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Function ctr: Increments a counter and reports the value S/

/S from the scratchpad. S/

/S S/

/S Input: None S/

/S Output: INTEGER out the value from the scratchpad S/

/SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

void ctr(

long Sout, /S Output answer (counter) S/

short Soutnull, /S Output null indicator S/

 char Ssqlstate, /S SQLSTATE S/

char Sfuncname, /S Function name S/

char Sspecname, /S Specific function name S/

char Smesgtext, /S Message text insert S/

struct scr Sscratchptr) /S Scratchpad S/

{

Sout = ++scratchptr->countr; /S Increment counter and S/

/S copy to output variable S/

Soutnull = O; /S Set output null indicatorS/

 return;

}

/S end of user-defined function ctr S/

Figure 30. Example of coding a scratchpad in a user-defined function

Accessing transition tables in a user-defined function:   When you write a
user-defined function that is to be invoked from a trigger, you might need access to
transition tables for the trigger. Transition tables are the sets of rows that a
triggering SQL statement modifies. For more information on transition tables, see
“Parts of a trigger” on page 213. To access transition tables in a user-defined
function, use table locators, which are pointers to the transition tables. You declare
table locators as input parameters in the CREATE FUNCTION statement using the
TABLE LIKE table-name AS LOCATOR clause. See Chapter 6 of DB2 SQL
Reference for more information about the CREATE FUNCTION statement.

The five basic steps to accessing transition tables in a user-defined function are:

1. Declare input parameters to receive table locators. You must define each
parameter that receives a table locator as an unsigned 4-byte integer.

2. Declare table locators. You can declare table locators in assembler, C, C++,
COBOL, and PL/I. The syntax for declaring table locators in each language is
described below.

Table locator declaration in assembler

 

��─ ─variable-name──SQL TYPE IS─ ─TABLE LIKE─ ─table-name──AS LOCATOR───────────────────────────────────��

182 Release Planning Guide  



  
 

Table locator declaration in C

 

��─ ──┬ ┬────────── ──┬ ┬────────── ─SQL TYPE IS─ ─TABLE LIKE─ ─table-name──AS LOCATOR───────────────────────�
 ├ ┤─auto───── ├ ┤─const────
 ├ ┤─extern─── └ ┘─volatile─
 ├ ┤─static───
 └ ┘─register─

 ┌ ┐─,─────────────────────────────
�─ ───

�
┴─variable-name─ ──┬ ┬──────────── ─;──────────────────────────────────────────────────────────────��

 └ ┘─init-value─

Table locator declaration in COBOL

 

��─ ─O1──variable-name─ ──┬ ┬─────────────── ─SQL TYPE IS─ ─TABLE LIKE─ ─table-name─ ─AS LOCATOR──.─────────��
 └ ┘ ─USAGE─ ──┬ ┬────
 └ ┘─IS─

Table locator declaration in PL/I

 

��─ ──┬ ┬─DCL───── ──┬ ┬─variable-name─────────── ─SQL TYPE IS─ ─TABLE LIKE─ ─table-name──AS LOCATOR────────��
 └ ┘─DECLARE─ │ │┌ ┐─,───────────────────

└ ┘───
�

┴─(──variable-name──)─

3. Declare a cursor to access the rows in each transition table.

4. Assign the input parameter values to the table locators.

5. Access rows from the transition tables using the cursors that are declared for
the transition tables.

The following examples show how a user-defined function that is written in each of
the supported host languages accesses a transition table for a trigger. The
transition table, NEWEMP, contains modified rows of the employee sample table.
The trigger is defined like this:

CREATE TRIGGER EMPRAISE

AFTER UPDATE ON EMP

REFERENCING NEW TABLE AS NEWEMPS

FOR EACH STATEMENT MODE DB2SQL

 BEGIN ATOMIC

VALUES (CHECKEMP(TABLE NEWEMPS));

 END;

The user-defined function definition looks like this:

CREATE FUNCTION CHECKEMP(TABLE LIKE EMP AS LOCATOR)

 RETURNS INTEGER

EXTERNAL NAME 'CHECKEMP'

PARAMETER STYLE DB2SQL

 LANGUAGE language;

 Assembler: Figure 31 on page 184 shows how an assembler program accesses
rows of transition table NEWEMPS.

  Chapter 6. Object-relational extensions and active data 183



  
 

CHECKEMP CSECT

SAVE (14,12) ANY SAVE SEQUENCE

 LR R12,R15 CODE ADDRESSABILITY

USING CHECKEMP,R12 TELL THE ASSEMBLER

LR R7,R1 SAVE THE PARM POINTER

USING PARMAREA,R7 SET ADDRESSABILITY FOR PARMS

USING SQLDSECT,R8 ESTABLISH ADDRESSIBILITY TO SQLDSECT

L R6,PROGSIZE GET SPACE FOR USER PROGRAM

GETMAIN R,LV=(6) GET STORAGE FOR PROGRAM VARIABLES

LR R1O,R1 POINT TO THE ACQUIRED STORAGE

LR R2,R1O POINT TO THE FIELD

LR R3,R6 GET ITS LENGTH

SR R4,R4 CLEAR THE INPUT ADDRESS

SR R5,R5 CLEAR THE INPUT LENGTH

MVCL R2,R4 CLEAR OUT THE FIELD

ST R13,FOUR(R1O) CHAIN THE SAVEAREA PTRS

ST R1O,EIGHT(R13) CHAIN SAVEAREA FORWARD

LR R13,R1O POINT TO THE SAVEAREA

 USING PROGAREA,R13 SET ADDRESSABILITY

ST R6,GETLENTH SAVE THE LENGTH OF THE GETMAIN

...

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare table locator host variable TRIGTBL S

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

TRIGTBL SQL TYPE IS TABLE LIKE EMPLOYEE AS LOCATOR

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare a cursor to retrieve rows from the transition S

S table S

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

 EXEC SQL DECLARE C1 CURSOR FOR X

 SELECT LASTNAME FROM TABLE(:TRIGTBL LIKE EMP) X

WHERE SALARY > 1OOOOO

Figure 31 (Part 1 of 2). How an Assembler user-defined function accesses a transition
table

184 Release Planning Guide  



  
 

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Copy table locator for trigger transition table S

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

 L R2,TABLOC GET ADDRESS OF LOCATOR

L R2,O(O,R2) GET LOCATOR VALUE

 ST R2,TRIGTBL

EXEC SQL OPEN C1

EXEC SQL FETCH C1 INTO :NAME

...

EXEC SQL CLOSE C1
...

PROGAREA DSECT WORKING STORAGE FOR THE PROGRAM

SAVEAREA DS 18F THIS ROUTINE'S SAVE AREA

GETLENTH DS A GETMAIN LENGTH FOR THIS AREA
...

NAME DS CL24
...

 DS OD

PROGSIZE EQU S-PROGAREA DYNAMIC WORKAREA SIZE

PARMAREA DSECT

TABLOC DS A INPUT PARAMETER FOR TABLE LOCATOR
...

 END CHECKEMP

Figure 31 (Part 2 of 2). How an Assembler user-defined function accesses a transition
table

C or C++: Figure 32 on page 186 shows how a C or C++ program accesses rows of
transition table NEWEMPS.

  Chapter 6. Object-relational extensions and active data 185



  
 

int CHECK_EMP(int trig_tbl_id

)

{

...

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Declare table locator host variable trig_tbl_id S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS TABLE LIKE EMP AS LOCATOR trig_tbl_id;

 char name[25];

EXEC SQL END DECLARE SECTION;

...

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Declare a cursor to retrieve rows from the transition S/

 /S table S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:trig_tbl_id LIKE EMPLOYEE)

WHERE SALARY > 1OOOOO;

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

/S Fetch a row from transition table S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

EXEC SQL OPEN C1;

EXEC SQL FETCH C1 INTO :name;

...

EXEC SQL CLOSE C1;

...

}

Figure 32. How a C or C++ user-defined function accesses a transition table

COBOL: Figure 33 on page 187 shows how a COBOL program accesses rows of
transition table NEWEMPS.

186 Release Planning Guide  



  
 

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CHECKEMP.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare table locator host variable TRIG-TBL-ID S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

O1 TRIG-TBL-ID SQL TYPE IS TABLE LIKE EMP AS LOCATOR.

 O1 NAME PIC X(24).

...

 LINKAGE SECTION.

...

PROCEDURE DIVISION USING TRIG-TBL-ID.

...

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Declare cursor to retrieve rows from transition table S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:TRIG-TBL-ID LIKE EMP)

WHERE SALARY > 1OOOOO END-EXEC.

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

S Fetch a row from transition table S

 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :NAME END-EXEC.

...

EXEC SQL CLOSE C1 END-EXEC.

...

 PROG-END.

 GOBACK.

Figure 33. How a COBOL user-defined function accesses a transition table

PL/I: Figure 34 on page 188 shows how a PL/I program accesses rows of
transition table NEWEMPS.

  Chapter 6. Object-relational extensions and active data 187



  
 

 CHECK_EMP: PROC(TRIG_TBL_ID) RETURNS(BIN FIXED(31))

OPTIONS(MAIN NOEXECOPS REENTRANT);

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 /S Declare table locator host variable TRIG_TBL_ID S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 DECLARE TRIG_TBL_ID SQL TYPE IS TABLE LIKE EMP AS LOCATOR;

 DECLARE NAME CHAR(24);

...

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 /S Declare a cursor to retrieve rows from the S/

 /S transition table S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:TRIG_TBL_ID LIKE EMP)

WHERE SALARY > 1OOOOO;

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 /S Retrieve rows from the transition table S/

 /SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS/

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 INTO :NAME;

...

 EXEC SQL CLOSE C1;

...

 END CHECK_EMP;

Figure 34. How a PL/I user-defined function accesses a transition table

Preparing a user-defined function for execution
 To prepare a user-defined function for execution, perform these steps:

1. Precompile the user-defined function program and bind the DBRM into a
package.

You need to do this only if your user-defined function contains SQL statements.
You do not need to bind a plan for the user-defined function.

2. Compile the user-defined function program and link-edit it with Language
Environment and RRSAF.

You must compile the program with a compiler that supports Language
Environment and link-edit the appropriate Language Environment components
with the user-defined function. You must also link-edit the user-defined function
with RRSAF.

For the minimum compiler and Language Environment requirements for
user-defined functions, see Appendix G, “Prerequisites of Version 6 of DB2 for
OS/390” on page 301.

The program preparation JCL samples DSNHASM, DSNHC, DSNHCPP,
DSNHICOB, and DSNHPLI show you how to precompile, compile, and link-edit
assembler, C, C++, COBOL, and PL/I DB2 programs. If your DB2 subsystem
works with Language Environment, you can use this sample JCL when you
prepare your user-defined functions. For object-oriented programs in C++ or
COBOL, see JCL samples DSNHCPP2 and DSNHICB2 for program
preparation hints.

188 Release Planning Guide  



  
 

3. If your user-defined function contains SQL statements, grant EXECUTE
authority on the user-defined function package to the function definer.

Making a user-defined function reentrant
Compiling and link-editing your user-defined function as reentrant is recommended.
(For an assembler program, you must also code the user-defined function to be
reentrant.) Reentrant user-defined functions have the following advantages:

� The operating system does not need to load the user-defined function into
storage every time the user-defined function is called.

� Multiple tasks in a WLM-established stored procedures address space can
share a single copy of the user-defined function. This decreases the amount of
virtual storage that is needed for code in the address space.

Preparing user-defined functions that contain multiple programs: If your
user-defined function consists of several programs, you must bind each program
that contains SQL statements into a separate package. The definer of the
user-defined function must have EXECUTE authority for all packages that are part
of the user-defined function.

When the primary program of a user-defined function calls another program, DB2
uses the CURRENT PACKAGESET special register to determine the collection to
search for the called program's package. The primary program can change this
collection ID by executing the statement SET CURRENT PACKAGESET.

Determining the authorization ID for user-defined function
invocation
If you invoke your user-defined function statically, the authorization ID under which
that function is invoked is the owner of the package that contains the user-defined
function invocation.

If you invoke your user-defined function dynamically, the authorization ID under
which the user-defined function is invoked depends on the dynamic SQL statement
behavior for the package that contains the user-defined function invocation.

Dynamic SQL statement behavior influences a number of features of an application
program. See Section 6 of DB2 Application Programming and SQL Guide for more
information. on dynamic SQL statement behavior.

For more information on the authorization required to invoke and execute SQL
statements in a user-defined function, see Chapter 6 of DB2 SQL Reference.

Preparing user-defined functions to run concurrently
Multiple user-defined functions and stored procedures can run concurrently, each
under its own OS/390 task (TCB).

To maximize the number of user-defined functions and stored procedures that can
run concurrently, follow these preparation recommendations:

� Ask the system administrator to set the region size parameter in the startup
procedures for the WLM-established stored procedures address spaces to
REGION=0. This lets an address space obtain the largest possible amount of
storage below the 16-MB line.

� Limit storage required by application programs below the 16-MB line by:

  Chapter 6. Object-relational extensions and active data 189



  
 

– Link-editing programs with the AMODE(31) and RMODE(ANY) attributes
– Compiling COBOL programs with the RES and DATA(31) options

� Limit storage that is required by Language Environment by using these run-time
options:

HEAP(,,ANY) Allocates program heap storage above the
16-MB line

STACK(,,ANY,) Allocates program stack storage above the
16-MB line

STORAGE(,,,4K) Reduces reserve storage area below the line to
4 KB

BELOWHEAP(4K,,) Reduces the heap storage below the line to 4
KB

LIBSTACK(4K,,) Reduces the library stack below the line to 4
KB

ALL31(ON) Causes all programs that are contained in the
external user-defined function to execute with
AMODE(31) and RMODE(ANY)

The definer can list these options as values of the RUN OPTIONS parameter of
CREATE FUNCTION, or the system administrator can establish these options
as defaults during Language Environment installation.

For example, the RUN OPTIONS option parameter could contain:

H(,,ANY),STAC(,,ANY,),STO(,,,4K),BE(4K,,),LIBS(4K,,),ALL31(ON)

� Ask the system administrator to set the NUMTCB parameter for
WLM-established stored procedures address spaces to a value greater than 1.
This lets more than one TCB run in an address space. Be aware that setting
NUMTCB to a value greater than 1 also reduces your level of application
program isolation. For example, a bad pointer in one application can overwrite
memory that is allocated by another application.

Testing a user-defined function
 Some commonly used debugging tools, such as TSO TEST, are not available in
the environment where user-defined functions run. This section describes some
alternative testing strategies.

CODE/370: You can use the CoOperative Development Environment/370 licensed
program, which works with Language Environment, to test DB2 for OS/390
user-defined functions written in any of the supported languages. You can use
CODE/370 either interactively or in batch mode.

Using CODE/370 interactively: To test a user-defined function interactively using
CODE/370, you must use the CODE/370 PWS Debug Tool on a workstation. You
must also have CODE/370 installed on the OS/390 system where the user-defined
function runs. To debug your user-defined function using the PWS Debug Tool:

1. Compile the user-defined function with the TEST option. This places
information in the program that the Debug Tool uses.

2. Invoke the Debug Tool. One way to do that is to specify the Language
Environment run-time TEST option. The TEST option controls when and how
the Debug Tool is invoked. The most convenient place to specify run-time

190 Release Planning Guide  



  
 

options is with the RUN OPTIONS parameter of CREATE FUNCTION or
ALTER FUNCTION. See “Components of a user-defined function definition” on
page 146 for more information on the RUN OPTIONS parameter.

For example, assume that you code this option:

TEST(ALL,S,PROMPT,JBJONES%SESSNA:)

The parameter values cause the following things to happen:

ALL
The Debug Tool gains control when an attention interrupt, abend, or
program or Language Environment condition of severity 1 and above
occurs.

* Debug commands will be entered from the terminal.

PROMPT
The Debug Tool is invoked immediately after Language Environment
initialization.

JBJONES%SESSNA:
CODE/370 initiates a session on a workstation identified to APPC/MVS as
JBJONES with a session ID of SESSNA.

3. If you want to save the output from your debugging session, issue a command
that names a log file. For example:

SET LOG ON FILE dbgtool.log;

This command starts logging to a file on the workstation called dbgtool.log. This
should be the first command that you enter from the terminal or include in your
commands file.

Using CODE/370 in batch mode: To test your user-defined function in batch
mode, you must have the CODE/370 Mainframe Interface (MFI) Debug Tool
installed on the OS/390 system where the user-defined function runs. To debug
your user-defined function in batch mode using the MFI Debug Tool:

1. If you plan to use the Language Environment run-time TEST option to invoke
CODE/370, compile the user-defined function with the TEST option. This places
information in the program that the Debug Tool uses during a debugging
session.

2. Allocate a log data set to receive the output from CODE/370. Put a DD
statement for the log data set in the start-up procedure for the stored
procedures address space.

3. Enter commands in a data set that you want CODE/370 to execute. Put a DD
statement for that data set in the start-up procedure for the stored procedures
address space. To define the data set that contains Debug Tool commands to
CODE/370, specify the data set name or DD name in the TEST run-time
option. For example, this option tells CODE/370 to look for the commands in
the data set that is associated with DD name TESTDD:

TEST(ALL,TESTDD,PROMPT,S)

The first command in the commands data set should be:

SET LOG ON FILE ddname;

This command directs output from your debugging session to the log data set
you defined in step 2. For example, if you defined a log data set with DD name

  Chapter 6. Object-relational extensions and active data 191



  
 

INSPLOG in the start-up procedure for the stored procedures address space,
the first command should be:

SET LOG ON FILE INSPLOG;

4. Invoke the Debug Tool. Two possible methods are:

� Specify the run-time TEST option. The most convenient place to do that is
in the RUN OPTIONS parameter of CREATE FUNCTION or ALTER
FUNCTION.

� Put CEETEST calls in the user-defined function source code. If you use
this approach for an existing user-defined function, you must recompile, link
edit again, and bind it, and then issue the STOP FUNCTION SPECIFIC
and START FUNCTION SPECIFIC commands to reload the user-defined
function.

You can combine the run-time TEST option with CEETEST calls. For example,
you might want to use TEST to name the commands data set but use
CEETEST calls to control when the Debug Tool takes control.

For more information on CODE/370, see CoOperative Development
Environment/370: Debug Tool.

Route debugging messages to SYSPRINT: You can include simple print
statements in your user-defined function code that you route to the SYSPRINT data
set. Then use System Display and Search Facility (SDSF) to examine the
SYSPRINT contents while the WLM-established stored procedure address space is
running. You can serialize I/O by running the WLM-established stored procedure
address space with NUMTCB=1.

Driver applications: You can write a small driver application that calls the
user-defined function as a subprogram and passes the parameter list for the
user-defined function. You can then test and debug the user-defined function as a
normal DB2 application under TSO. You can then use TSO TEST and other
commonly used debugging tools.

SQL insert: You can use SQL to insert debugging information into a DB2 table.
This allows other machines in the network (such as a workstation) to easily access
the data in the table using DRDA access.

DB2 discards the debugging information if the application executes the ROLLBACK
statement. To prevent the loss of the debugging data, code the calling application
so that it retrieves the diagnostic data before executing the ROLLBACK statement.

Invoking a user-defined function
You can invoke a sourced or external user-defined scalar function in an SQL
statement wherever you use an expression. For a table function, you can invoke
the user-defined function only in the FROM clause of a SELECT statement. The
invoking SQL statement can be in a stand-alone program, a stored procedure, a
trigger body, or another user-defined function.

See the following sections for details you should know before you invoke a
user-defined function:

� “Syntax for user-defined function invocation” on page 193

192 Release Planning Guide  



  
 

� “Ensuring that DB2 executes the intended user-defined function” on page 193
� “Casting of user-defined function arguments” on page 199
� “What happens when a user-defined function abnormally terminates” on

page 200
� “Other considerations for user-defined function invocation” on page 200

Syntax for user-defined function invocation
 Use the syntax shown in Figure 35 when you invoke a user-defined scalar
function:

 

��─ ─function-name──(─ ──┬ ┬────────────── ──┬ ┬────────────────────────────────────── ─)──────────────────��
 └ ┘ ──┬ ┬─ALL────── │ │┌ ┐─,────────────────────────────────
 └ ┘─DISTINCT─ └ ┘ ───

�
┴──┬ ┬─expression───────────────────

 └ ┘ ─TABLE──transition-table-name─

Figure 35. Syntax for user-defined scalar function invocation

Use the syntax shown in Figure 36 when you invoke a table function:

 

��──TABLE──(──function-name──(─ ──┬ ┬────────────────────────────────────────────── ─)──)────────────────�
 │ │┌ ┐─,────────────────────────────────────────
 └ ┘ ───

�
┴ ─expression─ ─TABLE──transition-table-name─

�──correlation-clause────────────────────────────────────────────────────────────────────────────────��

correlation-clause: 

 ┌ ┐─AS─
��─ ──┴ ┴──── ─correlation-name─ ──┬ ┬─────────────────────── ─────────────────────────────────────────────��
 │ │┌ ┐─,───────────
 └ ┘ ─(─ ───

�
┴─column-name─ ─)─

Figure 36. Syntax for table function invocation

Ensuring that DB2 executes the intended user-defined function
Several user-defined functions with the same name but different numbers or types
of parameters can exist in a DB2 subsystem. Several user-defined functions with
the same name can have the same number of parameters, as long as the data
types of any of the first 30 parameters are different. In addition, several
user-defined functions might have the same name as a built-in function. When you
invoke a user-defined function, DB2 must determine which user-defined function or
built-in function to execute. This process is known as function resolution. You need
to understand DB2's function resolution process to ensure that you invoke the
user-defined function that you want to invoke.

DB2 performs these steps for function resolution:

1. Determines which function instances are candidates for execution. If no
candidates exist, DB2 issues an SQL error message.

2. Compares the data types of the input parameters to determine which
candidates best fit the invocation.

For a qualified function invocation, the result of the data type comparison is one
best fit. That best fit is the choice for execution.

  Chapter 6. Object-relational extensions and active data 193



  
 

For an unqualified function invocation, DB2 might find multiple best fits because
the same function name with the same input parameters can exist in different
schemas.

3. Chooses, if two or more candidates fit the unqualified function invocation
equally well, the user-defined function whose schema name is earliest in the
SQL path.

For example, suppose functions SCHEMA1.X and SCHEMA2.X fit a function
invocation equally well. Assume the SQL path is:

"SCHEMA2", "SYSPROC", "SYSIBM", "SCHEMA1", "SYSFUN"

In this case, DB2 chooses function SCHEMA2.X.

The remainder of this section discusses details of the function resolution process
and gives suggestions on how you can ensure that DB2 picks the right function.

How DB2 chooses candidate functions
An instance of a user-defined function is a candidate for execution only if it meets
all of the following criteria:

� If the function name is qualified in the invocation, the schema of the function
instance matches the schema in the function invocation.

If the function name is unqualified in the invocation, the schema of the function
instance matches a schema in the invoker's SQL path.

� The name of the function instance matches the name in the function invocation.

� The number of input parameters in the function instance matches the number
of input parameters in the function invocation.

� The function invoker is authorized to execute the function instance.

� The type of each of the input parameters in the function invocation matches or
is promotable to the type of the corresponding parameter in the function
instance.

| For a function invocation that passes a transition table, the data type, length,
| precision, and scale of each column in the transition table must match the data
| type, length, precision, and scale of each column of the table that is named in

the function instance definition. For information on transition tables, see “Using
triggers for active data” on page 211.

� The bind timestamp for the user-defined function must be older than the bind
timestamp for the package or plan in which the user-defined function is
invoked.

| If DB2 authorization checking is in effect, and DB2 performs an automatic
| rebind on a plan or package that contains a user-defined function invocation,
| any user-defined functions that were created after the original BIND or REBIND
| of the invoking plan or package are not candidates for execution.

| If you use an access control authorization exit routine, some user-defined
| functions that were not candidates for execution before the original BIND or
| REBIND of the invoking plan or package might become candidates for
| execution during the automatic rebind of the invoking plan or package. See
| Appendix B (Volume 2) of DB2 Administration Guide for information about
| function resolution with access control authorization exit routines.

194 Release Planning Guide  



  
 

If a user-defined function is invoked during an automatic rebind, and that
user-defined function is invoked from a trigger body and receives a transition
table, then the form of the invoked function that DB2 uses for function selection
includes only the columns of the transition table that existed at the time of the
original BIND or REBIND of the package or plan for the invoking program.

To determine whether a data type is promotable to another data type, see
Table 22. The first column lists data types in function invocations. The second
column lists data types to which the types in the first column can be promoted, in
order from best fit to worst fit. For example, suppose that in this statement, the data
type of A is SMALLINT:

SELECT USER1.ADDTWO(A) FROM TABLEA;

Two instances of USER1.ADDTWO are defined: one with an input parameter of
type INTEGER and one with an input parameter of type DECIMAL. Both function
instances are candidates for execution because the SMALLINT type is promotable
to either INTEGER or DECIMAL. However, the instance with the INTEGER type is
a better fit because INTEGER is higher in the list than DECIMAL.

Notes to Table 22:

Table 22. Promotion of data types

Data type in function invocation Possible fits (in best-to-worst order)

CHAR or GRAPHIC CHAR or GRAPHIC
VARCHAR or VARGRAPHIC
CLOB or DBCLOB

VARCHAR or VARGRAPHIC VARCHAR or VARGRAPHIC
CLOB or DBCLOB

CLOB or DBCLOB1 CLOB or DBCLOB

BLOB1 BLOB

SMALLINT SMALLINT
INTEGER
DECIMAL
REAL
DOUBLE

INTEGER INTEGER
DECIMAL
REAL
DOUBLE

DECIMAL DECIMAL
REAL
DOUBLE

REAL2 REAL
DOUBLE

DOUBLE3 DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

ROWID ROWID

Distinct type Distinct type with same name

  Chapter 6. Object-relational extensions and active data 195



  
 

1. This promotion also applies if the parameter type in the invocation is a LOB
locator for a LOB with this data type.

2. The FLOAT type with a length of less than 22 is equivalent to REAL.

3. The FLOAT type with a length of greater than or equal to 22 is equivalent to
DOUBLE.

How DB2 chooses the best fit among candidate functions
 More than one function instance might be a candidate for execution. In that case,
DB2 determines which function instances are the best fit for the invocation by
comparing parameter data types.

If the data types of all parameters in a function instance are the same as those in
the function invocation, that function instance is a best fit. If no exact match exists,
DB2 compares data types in the parameter lists from left to right, using this
method:

1. DB2 compares the data types of the first parameter in the function invocation to
the data type of the first parameter in each function instance.

2. For the first parameter, if one function instance has a data type that fits the
function invocation better than the data types in the other instances, that
function is a best fit. Table 22 on page 195 shows the possible fits for each
data type, in best-to-worst order.

3. If the data types of the first parameter are the same for all function instances,
DB2 repeats this process for the next parameter. DB2 continues this process
for each parameter until it finds a best fit.

For example, suppose that a qualified function invocation has three parameters
whose data types are VARCHAR, SMALLINT, and DECIMAL. Two function
instances meet the criteria in “How DB2 chooses candidate functions” on page 194
and are therefore candidates for execution. Candidate function 1 has parameters
with data types VARCHAR, INTEGER, and DOUBLE. Candidate function 2 has
parameters with data types VARCHAR, REAL, and DOUBLE. For the first
parameter, the data types for both candidate functions fit the function invocation
equally well. However, for the second parameter, the data type of candidate
function 1 (INTEGER) fits the data type in the invocation (SMALLINT) better than
the data type of candidate function 2 (REAL). Therefore, candidate function 1 is the
choice for execution.

How you can simplify function resolution
 When you invoke a function, use the qualified name. This causes DB2 to search
for functions only in the schema you specify. This has two advantages:

� DB2 is less likely to choose a function that you did not intend to use. Several
functions might fit the invocation equally well. DB2 picks the function whose
schema name is earliest in the SQL path, which might not be the function you
want.

� The number of candidate functions is smaller, so DB2 takes less time for
function resolution.

� Cast parameters in a user-defined function invocation to the types in the
user-defined function definition. For example, if an input parameter for
user-defined function FUNC is defined as DECIMAL(13,2), and the value you

196 Release Planning Guide  



  
 

want to pass to the user-defined function is an integer value, cast the integer
value to DECIMAL(13,2):

SELECT FUNC(CAST (INTCOL AS DECIMAL(13,2))) FROM T1;

� Avoid defining user-defined function parameters as CHAR, GRAPHIC,
SMALLINT or REAL. Use VARCHAR, VARGRAPHIC, INTEGER or DOUBLE
instead. An invocation of a user-defined function defined with parameters of
type CHAR, GRAPHIC, SMALLINT, or REAL must use parameters of the same
types. For example, if user-defined function FUNC is defined with a parameter
of type SMALLINT, only an invocation with a parameter of type SMALLINT
resolves correctly. An invocation like this does not resolve to FUNC because
the constant 123 is of type INTEGER, not SMALLINT:

SELECT FUNC(123) FROM T1;

# If you must define parameters for a user-defined function as CHAR, and you
# call the user-defined function from a C program or SQL procedure, you need to
# cast the corresponding parameter values in the user-defined function invocation
# to CHAR to ensure that DB2 invokes the correct function. For example,
# suppose that a C program calls user-defined function CVRTNUM, which takes
# one input parameter of type CHAR(6). Also suppose that you declare host
# variable empnumbr as char empnumbr[6]. When you invoke CVRTNUM, cast
# empnumbr to CHAR:

# UPDATE EMP

#  SET EMPNO=CVRTNUM(CHAR(:empnumbr))

#  WHERE EMPNO = :empnumbr;

Using DSN_FUNCTION_TABLE to see how DB2 resolves a
function
You can use DB2's EXPLAIN tool to obtain information about how DB2 resolves
functions. DB2 stores the information in a table called DSN_FUNCTION_TABLE,
which you create. DB2 puts a row in DSN_FUNCTION_TABLE for each function
that is referenced in an SQL statement when one of the following events occurs:

� You execute the SQL EXPLAIN statement on an SQL statement that contains
user-defined function invocations.

� You run a program whose plan is bound with EXPLAIN(YES), and the program
executes an SQL statement that contains user-defined function invocations.

Before you use EXPLAIN to obtain information about function resolution, create
DSN_FUNCTION_TABLE. The table definition looks like this:

  Chapter 6. Object-relational extensions and active data 197



  
 

|  CREATE TABLE DSN_FUNCTION_TABLE

| (QUERYNO INTEGER NOT NULL WITH DEFAULT,

| QBLOCKNO INTEGER NOT NULL WITH DEFAULT,

| APPLNAME CHAR(8) NOT NULL WITH DEFAULT,

| PROGNAME CHAR(8) NOT NULL WITH DEFAULT,

| COLLID CHAR(18) NOT NULL WITH DEFAULT,

| GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,

| EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,

| SCHEMA_NAME CHAR(8) NOT NULL WITH DEFAULT,

| FUNCTION_NAME CHAR(18) NOT NULL WITH DEFAULT,

| SPEC_FUNC_NAME CHAR(18) NOT NULL WITH DEFAULT,

| FUNCTION_TYPE CHAR(2) NOT NULL WITH DEFAULT,

| VIEW_CREATOR CHAR(8) NOT NULL WITH DEFAULT,

| VIEW_NAME CHAR(18) NOT NULL WITH DEFAULT,

| PATH VARCHAR(254) NOT NULL WITH DEFAULT,

| FUNCTION_TEXT VARCHAR(254) NOT NULL WITH DEFAULT);

Columns QUERYNO, QBLOCKNO, APPLNAME, PROGNAME, COLLID, and
GROUP_MEMBER have the same meanings as in the PLAN_TABLE. The
meanings of the other columns are:

EXPLAIN_TIME
Timestamp when the EXPLAIN statement was executed.

SCHEMA_NAME
Schema name of the function that is invoked in the explained statement.

FUNCTION_NAME
Name of the function that is invoked in the explained statement.

SPEC_FUNC_NAME
Specific name of the function that is invoked in the explained statement.

FUNCTION_TYPE
The type of function that is invoked in the explained statement. Possible values
are:

SU Scalar function

TU Table function

VIEW_CREATOR
The creator of the view if the function that is specified in the FUNCTION_NAME
column is referenced in a view definition. Otherwise, this field is blank.

VIEW_NAME
The name of the view if the function that is specified in the FUNCTION_NAME
column is referenced in a view definition. Otherwise, this field is blank.

PATH
The value of the SQL path when DB2 resolved the function reference.

FUNCTION_TEXT
The text of the function reference (the function name and parameters). If the
function reference exceeds 100 bytes, this column contains the first 100 bytes.

For a function specified in infix notation, FUNCTION_TEXT contains only the
function name. For example, suppose a user-defined function named / is in the
function reference A/B. Then FUNCTION_TEXT contains only /, not A/B.

198 Release Planning Guide  



  
 

Casting of user-defined function arguments
 Whenever you invoke a user-defined function, DB2 assigns your input parameter
values to parameters with the data types and lengths in the user-defined function
definition.

When you invoke a user-defined function that is sourced on another function, DB2
casts your parameters to the data types and lengths of the sourced function.

The following example demonstrates what happens when the parameter definitions
of a sourced function differ from those of the function on which it is sourced.

Suppose that external user-defined function TAXFN1 is defined like this:

CREATE FUNCTION TAXFN1(DEC(6,O))

 RETURNS DEC(5,2)

PARAMETER STYLE DB2SQL

 LANGUAGE C

EXTERNAL NAME TAXPROG;

Sourced user-defined function TAXFN2, which is sourced on TAXFN1, is defined
like this:

CREATE FUNCTION TAXFN2(DEC(8,2))

 RETURNS DEC(5,O)

 SOURCE TAXFN1;

You invoke TAXFN2 using this SQL statement:

UPDATE TB1

SET SALESTAX2 = TAXFN2(PRICE2);

TB1 is defined like this:

CREATE TABLE TB1

 (PRICE1 DEC(6,O),

 SALESTAX1 DEC(5,2),

 PRICE2 DEC(9,2),

 SALESTAX2 DEC(7,2));

Now suppose that PRICE2 has the DECIMAL(9,2) value 0001234.56. DB2 must
first assign this value to the data type of the input parameter in the definition of
TAXFN2, which is DECIMAL(8,2). The input parameter value then becomes
001234.56. Next, DB2 casts the parameter value to a source function parameter,
which is DECIMAL(6,0). The parameter value then becomes 001234. (When you
cast a value, that value is truncated, rather than rounded.)

Now, if TAXFN1 returns the DECIMAL(5,2) value 123.45, DB2 casts the value to
DECIMAL(5,0), which is the result type for TAXFN2, and the value becomes 00123.
This is the value that DB2 assigns to column SALESTAX2 in the UPDATE
statement.

Casting of parameter markers: If you use a parameter marker in a function
invocation, you must cast the parameter to the correct type. For example, if function
FX is defined with one parameter of type INTEGER, an invocation of FX with a
parameter marker looks like this:

SELECT FX(CAST(? AS INTEGER)) FROM T1;

  Chapter 6. Object-relational extensions and active data 199



  
 

What happens when a user-defined function abnormally terminates
 When an external user-defined function abnormally terminates, your program
receives SQLCODE -430 for the invoking statement, and DB2 places the unit of
work that contains the invoking statement in a must-rollback state. You should
include code in your program to check for a user-defined function abend and to roll
back the unit of work that contains the user-defined function invocation.

Other considerations for user-defined function invocation
Invoke user-defined functions with external actions from SELECT lists: Invoke
functions with external actions from SELECT lists, rather than predicates. The
access path that DB2 chooses for a predicate determines whether a user-defined
function in that predicate is executed. To ensure that DB2 executes the
user-defined function (and therefore executes the external action) for each row of
the result set, put the user-defined function invocation in the SELECT list.

Invoke user-defined functions defined as NOT DETERMINISTIC from SELECT
lists: It is best to invoke nondeterministic user-defined functions from the SELECT
list, rather than in a predicate. The following example demonstrates that invoking a
nondeterministic user-defined function in a predicate can yield undesirable results.

Suppose that you execute this query:

SELECT COUNTER(), C1, C2 FROM T1 WHERE COUNTER() = 2;

Table T1 looks like this:

C1 C2

-- --

 1 b

 2 c

 3 a

COUNTER is a user-defined function that increments a variable in the scratchpad
each time it is invoked.

DB2 invokes an instance of COUNTER in the predicate 3 times. Assume that
COUNTER is invoked for row 1 first, for row 2 second, and for row 3 third. Then
COUNTER returns 1 for row 1, 2 for row 2, and 3 for row 3. Therefore, row 2
satisfies the predicate WHERE COUNTER()=2, so DB2 evaluates the SELECT list
for row 2. DB2 uses a different instance of COUNTER in the SELECT list from the
instance in the predicate. Because the instance of COUNTER in the SELECT list is
invoked only once, it returns a value of 1. Therefore, the result of the query is:

COUNTER() C1 C2

--------- -- --

 1 2 c

This is not the result you might expect.

The results can differ even more, depending on the order in which DB2 retrieves
the rows from the table. Suppose that an ascending index is defined on column C2.
Then DB2 retrieves row 3 first, row 1 second, and row 2 third. This means that row
1 satisfies the predicate WHERE COUNTER()=2. The value of COUNTER in the
SELECT list is again 1, so the result of the query in this case is:

COUNTER() C1 C2

--------- -- --

 1 1 b

200 Release Planning Guide  



  
 

| Figure DB2 cost information for accessing user-defined functions:
| User-defined table functions add additional access cost to the execution of an SQL
| statement. For DB2 to factor in the effect of user-defined table functions in the
| selection of the best access path for an SQL statement, the total cost of the
| user-defined table function must be determined.

The total cost of a table function consists of the following three components:

� The initialization cost that results from the first call processing

� The cost that is associated with acquiring a single row

� The final call cost that performs the clean up processing

These costs, though, are not known to DB2 when I/O costs are added to the CPU
cost.

To assist DB2 in determining the cost of user-defined table functions, you can use
four fields in SYSIBM.SYSROUTINES. Use the following fields to provide cost
information:

� IOS_PER_INVOC for the estimated number of I/Os per row

� INSTS_PER_INVOC for the estimated number of instructions

� INITIAL_IOS for the estimated number of I/Os performed the first and last time
the function is invoked

� INITIAL_INSTS for the estimated number of instructions for the first and last
time the function is invoked

These values, along with the CARDINALITY value of the table being accessed, are
used by DB2 to determine the cost. The results of the calculations can influence
such things as the join sequence for a multi-table join and the cost estimates
generated for and used in predictive governing.

Determine values for the four fields by examining the source code for the table
function. Estimate the I/Os by examining the code executed during the FIRST call
and FINAL call. Look for the code executed during the OPEN, FETCH, and CLOSE
calls. The costs for the OPEN and CLOSE calls can be amortized over the
expected number of rows returned. Estimate the I/O cost by providing the number
of I/Os that will be issued. Include the I/Os for any file access.

Figure the instruction cost by counting the number of high level instructions
executed in the user-defined table function and multiplying it by a factor of 20. For
assembler programs, the instruction cost is the number of assembler instructions.

If SQL statements are issued within the user-defined table function, use DB2
Estimator to determine the number of instructions and I/Os for the statements.
Examining the JES job statistics for a batch program doing equivalent functions can
also be helpful. For all fields, a precise number of instructions is not required.
Because DB2 already accounts for the costs of invoking table functions, these
costs should not be included in the estimates.

The following example shows how these fields can be updated. The authority to
update is the same authority as that required to update any catalog statistics
column.

  Chapter 6. Object-relational extensions and active data 201



  
 

UPDATE SYSIBM.SYSROUTINES SET

 IOS_PER_INVOC = O.O,

INSTS_PER_INVOC = 4.5E3,

 INITIAL_IOS = 2.O

 INITIAL_INSTS = 1.OE4,

 CARDINALITY = 5E3

WHERE

SCHEMA = 'SYSADM' AND

SPECIFICNAME = 'FUNCTION1' AND

ROUTINETYPE = 'F';

Creating and using distinct types
A distinct type is a data type that you define using the CREATE DISTINCT TYPE
statement. Each distinct type has the same internal representation as a built-in data
type. You can use distinct types in the same way that you use built-in data types, in
any type of SQL application except for a DB2 private protocol application.

This section presents the following information about distinct types:

� “Introduction to distinct types”
� “Creating a distinct type”
� “Using distinct types in applications” on page 203

Introduction to distinct types
The main reason to use distinct types is because DB2 enforces strong typing for
distinct types. Strong typing ensures that only functions, procedures, comparisons,
and assignments that are defined for a data type can be used.

For example, if you have defined a user-defined function to convert U.S. dollars to
euro currency, you do not want anyone to use this same function to convert
Japanese Yen to euros because the wrong amount is returned. Suppose you define
three distinct types:

CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL(9,2) WITH COMPARISONS;

CREATE DISTINCT TYPE EURO AS DECIMAL(9,2) WITH COMPARISONS;

CREATE DISTINCT TYPE JAPANESE_YEN AS DECIMAL(9,2) WITH COMPARISONS;

If a conversion function is defined that takes an input parameter of type
US_DOLLAR as input, DB2 returns an error if you try to execute the function with
an input parameter of type JAPANESE_YEN.

Creating a distinct type
Suppose you want to define some audio and video data in a DB2 table. You can
define columns for both types of data as BLOB, but you might want to use a data
type that more specifically describes the data. To do that, define distinct types. You
can then use those types when you define columns in a table or manipulate the
data in those columns. For example, you can define distinct types for the audio and
video data like this:

CREATE DISTINCT TYPE AUDIO AS BLOB (1M);

CREATE DISTINCT TYPE VIDEO AS BLOB (1M);

Then, your CREATE TABLE statement might look like this:

202 Release Planning Guide  



  
 

CREATE TABLE VIDEO_CATALOG

 (VIDEO_NUMBER CHAR(6) NOT NULL,

 VIDEO_SOUND AUDIO,

 VIDEO_PICS VIDEO,

ROW_ID ROWID NOT NULL GENERATED ALWAYS);

You must define a column of type ROWID in the table because tables with any type
of LOB columns require a ROWID column, and internally, the VIDEO_CATALOG
table contains two LOB columns. For more information on LOB data, see “Working
with large objects (LOBs)” on page 124. For syntax information for the CREATE
DISTINCT TYPE statement, see DB2 SQL Reference.

After you define distinct types and columns of those types, you can use those data
types in the same way you use built-in types. You can use the data types in
assignments, comparisons, function invocations, and stored procedure calls.
However, when you assign one column value to another or compare two column
values, those values must be of the same distinct type. For example, you must
assign a column value of type VIDEO to a column of type VIDEO, and you can
compare a column value of type AUDIO only to a column of type AUDIO. When
you assign a host variable value to a column with a distinct type, you can use any
host data type that is compatible with the source data type of the distinct type. For
example, to receive an AUDIO or VIDEO value, you can define a host variable like
this:

SQL TYPE IS BLOB (1M) HVAV;

When you use a distinct type as an argument to a function, a version of that
function must accept that distinct type. For example, if function SIZE takes a BLOB
type as input, you cannot automatically use a value of type AUDIO as input.
However, you can create a sourced user-defined function that takes the AUDIO
type as input. For example:

CREATE FUNCTION SIZE(AUDIO)

 RETURNS INTEGER

 SOURCE SIZE(BLOB(1M));

Using distinct types in applications
You can use distinct types in applications to enforce strong typing, which means
that functions, comparisons, and assignments that are defined for a data type can
be executed. To use distinct types in applications, follow these steps:

1. Determine which distinct types you want to use. This determination depends on
where and how you choose to enforce strong typing in your applications.

2. Create each distinct type based on one of DB2's built-in data types, such as
INTEGER, CHARACTER, or DATE. See “Creating a distinct type” on page 202
for an example.

3. Create the DB2 tables you need that include columns of the distinct types you
created. See “Creating a distinct type” on page 202 for an example.

4. Create user-defined functions to manipulate columns with distinct types. DB2
automatically creates cast functions between each distinct type and its base
type. See “Example: Casting constants and host variables to distinct types to
invoke a user-defined function” on page 204 for an example.

  Chapter 6. Object-relational extensions and active data 203



  
 

Invoking functions with distinct types
DB2 enforces strong typing when you pass arguments to a function. This means
that you can pass arguments that have distinct types to a function if either of the
following conditions is true:

� A version of the function that accepts those distinct types is defined.

This also applies to infix operators. If you want to use one of the five built-in
infix operators with your distinct types, you must define a version of that
operator that accepts the distinct types.

� You can cast your distinct types to the argument types of the function.

If you pass arguments to a function that accepts only distinct types, the
arguments you pass must have the same distinct types as in the function
definition. If the types are different, you must cast your arguments to the
distinct types in the function definition. If you pass constants or host variables
to a function that accepts only distinct types, you must cast the constants or
host variables to the distinct types that the function accepts.

The following examples demonstrate how to use distinct types as arguments in
function invocations.

Example: Defining a function with distinct types as arguments:  Suppose you
want to invoke the built-in function HOUR with a distinct type that is defined like
this:

CREATE DISTINCT TYPE FLIGHT_TIME AS TIME WITH COMPARISONS;

The HOUR function takes only the TIME or TIMESTAMP data type as an
argument, so you need a sourced function that is based on the HOUR function that
accepts the FLIGHT_TIME data type. You might declare a function like this:

CREATE FUNCTION HOUR(FLIGHT_TIME)

 RETURNS INTEGER

 SOURCE SYSIBM.HOUR(TIME);

Example: Casting function arguments to acceptable types:  You can invoke
the HOUR function using the FLIGHT_TIME distinct type by listing all of the flights
that depart at a certain hour of the day. This example casts a host variable of type
CHAR to the TIME data type, then casts TIME to the FLIGHT_TIME distinct type,
then invokes the HOUR function.

SELECT HOUR(CAST(TIME(:charhostvar) AS FLIGHT_TIME)) FROM FLIGHT_INFO;

Example: Using an infix operator with distinct type arguments:  Suppose you
want to add two values of type US_DOLLAR. Before you can do this, you must
define a version of the + function that accepts values of type US_DOLLAR as
operands:

CREATE FUNCTION "+"(US_DOLLAR,US_DOLLAR)

 RETURNS US_DOLLAR

 SOURCE SYSIBM."+"(DECIMAL(9,2),DECIMAL(9,2));

Because the US_DOLLAR type is based on the DECIMAL(9,2) type, the source
function must be the version of + with arguments of type DECIMAL(9,2).

Example: Casting constants and host variables to distinct types to invoke a
user-defined function:  Suppose function EURO_TO_US is defined like this:

204 Release Planning Guide  



  
 

CREATE FUNCTION EURO_TO_US(EURO)

 RETURNS US_DOLLAR

EXTERNAL NAME 'EUROCVT'

PARAMETER STYLE DB2SQL

 LANGUAGE C;

This means that EURO_TO_US accepts only the EURO type as input. Therefore,
if you want to call EURO_TO_US with a constant or host variable argument, you
must cast that argument to distinct type EURO:

SELECT S FROM US_SALES

WHERE TOTAL = EURO_TO_US(EURO(:H1));

SELECT S FROM US_SALES

WHERE TOTAL = EURO_TO_US(EURO(1OOOO));

Comparing distinct types
The basic rule for comparisons is that the data types of the operands must be
compatible. The compatibility rule defines, for example, that all numeric types
(SMALLINT, INTEGER, FLOAT, and DECIMAL) are compatible. That is, you can
compare an INTEGER value with a value of type FLOAT. However, you cannot
compare an object of a distinct type to an object of a different type. You can
compare an object with a distinct type only to an object with exactly the same
distinct type.

DB2 does not let you compare data of a distinct type directly to data of its source
type. However, you can compare a distinct type to its source type by using a cast
function.

For example, suppose you want to know which products sold more than US
$100,000.00 in the U.S. in July of 1992. Because you cannot compare data of type
US_DOLLAR with instances of data of the source type of US_DOLLAR (DECIMAL)
directly, you must use a cast function to cast data from DECIMAL to US_DOLLAR
or from US_DOLLAR to DECIMAL. Whenever you create a distinct type, DB2
creates two cast functions, one to cast from the source type to the distinct type and
the other to cast from the distinct type to the source type. For distinct type
US_DOLLAR, DB2 creates a cast function called DECIMAL and a cast function
called US_DOLLAR. When you compare an object of type US_DOLLAR to an
object of type DECIMAL, you can use one of those cast functions to make the data
types identical for the comparison. Suppose table US_SALES is defined like this:

CREATE TABLE US_SALES

 (PRODUCT_ITEM INTEGER,

MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),

YEAR INTEGER CHECK (YEAR > 1985),

 TOTAL US_DOLLAR);

Then you can cast DECIMAL data to US_DOLLAR like this:

SELECT PRODUCT_ITEM

 FROM US_SALES

 WHERE TOTAL > US_DOLLAR(1OOOOO.OO)

AND MONTH = 7

 AND YEAR = 1992;

This satisfies the requirement that the compared data types are identical.

You cannot use host variables in statements that you prepare for dynamic
execution; however, you can substitute parameter markers for host variables when

  Chapter 6. Object-relational extensions and active data 205



  
 

you prepare a statement, and then use host variables when you execute the
statement.

If you use a parameter marker in a predicate of a query, and the column to which
you compare the value represented by the parameter marker is of a distinct type,
you must cast the parameter marker to the distinct type, or cast the column to its
source type.

For example, suppose distinct type CNUM is defined like this:

CREATE DISTINCT TYPE CNUM AS INTEGER WITH COMPARISONS;

Table CUSTOMER is defined like this:

CREATE TABLE CUSTOMER

(CUST_NUM CNUM NOT NULL,

 FIRST_NAME CHAR(3O) NOT NULL,

LAST_NAME CHAR(3O) NOT NULL,

PHONE_NUM CHAR(2O) WITH DEFAULT,

 PRIMARY KEY (CUST_NUM));

In an application program, you prepare a SELECT statement that compares the
CUST_NUM column to a parameter marker. Because CUST_NUM is of a distinct
type, you must cast the distinct type to its source type:

SELECT FIRST_NAME, LAST_NAME, PHONE_NUM FROM CUSTOMER

WHERE CAST(CUST_NUM AS INTEGER) = ?

Alternatively, you can cast the parameter marker to the distinct type:

# SELECT FIRST_NAME, LAST_NAME, PHONE_NUM FROM CUSTOMER

# WHERE CUST_NUM=CAST(? AS CNUM)

Making assignments involving distinct types
For assignments from columns to columns or from constants to columns for distinct
types, the type of that value to be assigned must match the type of the object to
which the value is assigned, or you must be able to cast one type to the other.

If you need to assign a value of one distinct type to a column of another distinct
type, a function must exist that converts the value from one type to another.
Because DB2 provides cast functions only between distinct types and their source
types, you must write the function to convert from one distinct type to another.

Example: Assigning column values to columns with different distinct types:
Suppose tables JAPAN_SALES and JAPAN_SALES_98 are defined like this:

CREATE TABLE JAPAN_SALES

 (PRODUCT_ITEM INTEGER,

MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),

YEAR INTEGER CHECK (YEAR > 1985),

 TOTAL JAPANESE_YEN);

CREATE TABLE JAPAN_SALES_98

 (PRODUCT_ITEM INTEGER,

 TOTAL US_DOLLAR);

You need to insert values from the TOTAL column in JAPAN_SALES into the
TOTAL column of JAPAN_SALES_98. Because INSERT statements follow
assignment rules, DB2 does not let you insert the values directly from one column
to the other because the columns are of different distinct types. Suppose that a

206 Release Planning Guide  



  
 

user-defined function called US_DOLLAR has been written that accepts values of
type JAPANESE_YEN as input and returns values of type US_DOLLAR. You can
then use this function to insert values into the JAPAN_SALES_98 table:

INSERT INTO JAPAN_SALES_98

SELECT PRODUCT_ITEM, US_DOLLAR(TOTAL)

 FROM JAPAN_SALES

WHERE YEAR = 1998;

Example: Assigning column values with distinct types to host variables:  The
rules for assigning distinct types to host variables or host variables to columns of
distinct types differ from the rules for constants and columns.

You can assign a column value of a distinct type to a host variable if you can
assign a column value of the distinct type's source type to the host variable. In the
following example, you can assign SIZECOL1 and SIZECOL2, which has distinct
type SIZE, to host variables of type double and short because the source type of
SIZE, which is INTEGER, can be assigned to host variables of type double or
short.

EXEC SQL BEGIN DECLARE SECTION;

 double hv1;

 short hv2;

EXEC SQL END DECLARE SECTION;

CREATE DISTINCT TYPE SIZE AS INTEGER;

CREATE TABLE TABLE1 (SIZECOL1 SIZE, SIZECOL2 SIZE);
...

SELECT SIZECOL1, SIZECOL2

INTO :hv1, :hv2

 FROM TABLE1;

Example: Assigning host variable values to columns with distinct types:
When you assign a value in a host variable to a column with a distinct type, the
type of the host variable must be castable to the distinct type. For a table of base
data types and the base data types to which they can be cast, see Table 22 on
page 195.

In this example, values of host variable hv2 can be assigned to columns SIZECOL1
and SIZECOL2, because C data type short is equivalent to DB2 data type
SMALLINT, and SMALLINT is promotable to data type INTEGER. However, values
of hv1 cannot be assigned to SIZECOL1 and SIZECOL2, because C data type
double, which is equivalent to DB2 data type DOUBLE, is not promotable to data
type INTEGER.

EXEC SQL BEGIN DECLARE SECTION;

 double hv1;

 short hv2;

EXEC SQL END DECLARE SECTION;

CREATE DISTINCT TYPE SIZE AS INTEGER;

CREATE TABLE TABLE1 (SIZECOL1 SIZE, SIZECOL2 SIZE);
...

INSERT INTO TABLE1

VALUES (:hv1,:hv1); /S Invalid statement S/

INSERT INTO TABLE1

VALUES (:hv2,:hv2); /S Valid statement S/

  Chapter 6. Object-relational extensions and active data 207



  
 

Using distinct types in UNION
As with comparisons, DB2 enforces strong typing of distinct types in UNIONs.
When you use a UNION to combine column values from several tables, the
combined columns must be of the same types. For example, suppose you create a
view that combines the values of the US_SALES, EUROPEAN_SALES, and
JAPAN_SALES tables. The TOTAL columns in the three tables are of different
distinct types, so before you combine the table values, you must convert the types
of two of the TOTAL columns to the type of the third TOTAL column. Assume that
the US_DOLLAR type has been chosen as the common distinct type. Because
DB2 does not generate cast functions to convert from one distinct type to another,
two user-defined functions must exist:

� A function that converts values of type EURO to US_DOLLAR
� A function that converts values of type JAPANESE_YEN to US_DOLLAR

Assume that these functions exist, and that both are called US_DOLLAR. Then
you can execute a query like this to display a table of combined sales:

SELECT PRODUCT_ITEM, MONTH, YEAR, TOTAL

FROM US_SALES

UNION

SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR(TOTAL)

FROM EUROPEAN_SALES

UNION

SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR(TOTAL)

FROM JAPAN_SALES;

Because the result type of both US_DOLLAR functions is US_DOLLAR, you have
satisfied the requirement that the distinct types of the combined columns are the
same.

Combining distinct types with user-defined functions and LOBs
The example in this section demonstrates the following concepts:

� Creating a distinct type based on a LOB data type
� Defining a user-defined function with a distinct type as an argument
� Creating a table with a distinct type column that is based on a LOB type
� Defining a LOB table space, auxiliary table, and auxiliary index
� Inserting data from a host variable into a distinct type column based on a LOB

column
� Executing a query that contains a user-defined function invocation
� Casting a LOB locator to the input data type of a user-defined function

Suppose you keep electronic mail documents that are sent to your company in a
DB2 table. The DB2 data type of an electronic mail document is CLOB, but you
define it as a distinct type so that you can control the types of operations that are
performed on the electronic mail. The distinct type is defined like this:

CREATE DISTINCT TYPE E_MAIL AS CLOB(5M);

You have also defined and written user-defined functions to search for and return
the following information about an electronic mail document:

 � Subject
 � Sender
 � Date sent
 � Message content

208 Release Planning Guide  



  
 

� Indicator of whether the document contains a user-specified string

The user-defined function definitions look like this:

CREATE FUNCTION SUBJECT(E_MAIL)

 RETURNS VARCHAR(2OO)

EXTERNAL NAME 'SUBJECT'

 LANGUAGE C

PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

NO EXTERNAL ACTION;

CREATE FUNCTION SENDER(E_MAIL)

 RETURNS VARCHAR(2OO)

EXTERNAL NAME 'SENDER'

 LANGUAGE C

PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

NO EXTERNAL ACTION;

CREATE FUNCTION SENDING_DATE(E_MAIL)

 RETURNS DATE

EXTERNAL NAME 'SENDDATE'

 LANGUAGE C

PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

NO EXTERNAL ACTION;

CREATE FUNCTION CONTENTS(E_MAIL)

 RETURNS CLOB(1M)

EXTERNAL NAME 'CONTENTS'

 LANGUAGE C

PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

NO EXTERNAL ACTION;

CREATE FUNCTION CONTAINS(E_MAIL, VARCHAR (2OO))

 RETURNS INTEGER

EXTERNAL NAME 'CONTAINS'

 LANGUAGE C

PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

NO EXTERNAL ACTION;

The table that contains the electronic mail documents is defined like this:

CREATE TABLE DOCUMENTS

 (LAST_UPDATE_TIME TIMESTAMP,

DOC_ROWID ROWID NOT NULL GENERATED ALWAYS,

 A_DOCUMENT E_MAIL);

Because the table contains a column with a source data type of CLOB, the table
requires a ROWID column and an associated LOB table space, auxiliary table, and
index on the auxiliary table. Use statements like this to define the LOB table space,
the auxiliary table, and the index:

  Chapter 6. Object-relational extensions and active data 209



  
 

CREATE LOB TABLESPACE DOCTSLOB

 LOG YES

 GBPCACHE SYSTEM;

CREATE AUX TABLE DOCAUX_TABLE

 IN DOCTSLOB

STORES DOCUMENTS COLUMN A_DOCUMENT;

CREATE INDEX A_IX_DOC ON DOCAUX_TABLE;

To populate the document table, you write code that executes an INSERT
statement to put the first part of a document in the table, and then executes
multiple UPDATE statements to concatenate the remaining parts of the document.
For example:

EXEC SQL BEGIN DECLARE SECTION;

 char hv_current_time[26];

SQL TYPE IS CLOB (1M) hv_doc;

EXEC SQL END DECLARE SECTION;

/S Determine the current time and put this value S/

/S into host variable hv_current_time. S/

/S Read up to 1 MB of document data from a file S/

/S into host variable hv_doc. S/
...

/S Insert the time value and the first 1 MB of S/

/S document data into the table. S/

EXEC SQL INSERT INTO DOCUMENTS

VALUES(:hv_current_time, DEFAULT, E_MAIL(:hv_doc));

/S While there is more document data in the S/

/S file, read up to 1 MB more of data, and then S/

/S use an UPDATE statement like this one to S/

/S concatenate the data in the host variable S/

/S to the existing data in the table. S/

EXEC SQL UPDATE DOCUMENTS

SET A_DOCUMENT = A_DOCUMENT || E_MAIL(:hv_doc)

WHERE LAST_UPDATE_TIME = :hv_current_time;

Now that the data is in the table, you can execute queries to learn more about the
documents. For example, you can execute this query to determine which
documents contain the word “performance”:

SELECT SENDER(A_DOCUMENT), SENDING_DATE(A_DOCUMENT), SUBJECT(A_DOCUMENT)

 FROM DOCUMENTS

WHERE CONTAINS(A_DOCUMENT,'performance') = 1;

Because the electronic mail documents can be very large, you might want to use
LOB locators to manipulate the document data instead of fetching all of a document
into a host variable. You can use a LOB locator on any distinct type that is defined
on one of the LOB types. The following example shows how you can cast a LOB
locator as a distinct type, and then use the result in a user-defined function that
takes a distinct type as an argument:

210 Release Planning Guide  



  
 

EXEC SQL BEGIN DECLARE SECTION

 long hv_len;

 char hv_subject[2OO];

SQL TYPE IS CLOB_LOCATOR hv_email_locator;

EXEC SQL END DECLARE SECTION
...

/S Select a document into a CLOB locator. S/

EXEC SQL SELECT A_DOCUMENT, SUBJECT(A_DOCUMENT)

INTO :hv_email_locator, :hv_subject

 FROM DOCUMENTS

WHERE LAST_UPDATE_TIME = :hv_current_time;
...

/S Extract the subject from the document. The S/

/S SUBJECT function takes an argument of type S/

/S E_MAIL, so cast the CLOB locator as E_MAIL. S/

EXEC SQL SET :hv_subject =

SUBJECT(CAST(:hv_email_locator AS E_MAIL));
...

Using triggers for active data
Triggers are sets of SQL statements that execute when a certain event occurs in a
DB2 table. Like constraints, triggers can be used to control changes in DB2
databases. Triggers are more powerful, however, because they can monitor a
broader range of changes and perform a broader range of actions than constraints
can. For example, a constraint can disallow an update to the salary column of the
employee table if the new value is over a certain amount. A trigger can monitor the
amount by which the salary changes, as well as the salary value. If the change is
above a certain amount, the trigger might substitute a valid value and call a
user-defined function to send a notice to an administrator about the invalid update.

Triggers also move application logic into DB2, which can result in faster application
development and easier maintenance. For example, you can write applications to
control salary changes in the employee table, but each application program that
changes the salary column must include logic to check those changes. A better
method is to define a trigger that controls changes to the salary column. Then DB2
does the checking for any application that modifies salaries.

This section presents the following information about triggers:

� “Example of creating and using a trigger” on page 212
� “Parts of a trigger” on page 213
� “Invoking stored procedures and user-defined functions from triggers” on

page 218
� “Trigger cascading” on page 219
� “Ordering of multiple triggers” on page 220
� “Interactions among triggers and referential constraints” on page 221
� “Creating triggers to obtain consistent results” on page 223

  Chapter 6. Object-relational extensions and active data 211



  
 

Example of creating and using a trigger
Triggers automatically execute a set of SQL statements whenever a specified event
occurs. These SQL statements can perform tasks such as validation and editing of
table changes, reading and modifying tables, or invoking functions or stored
procedures that perform operations both inside and outside DB2.

You create triggers using the CREATE TRIGGER statement. Figure 37 shows an
example of a CREATE TRIGGER statement.

 �1�
CREATE TRIGGER REORDER

 �2� �3� �4�
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

 �5�
REFERENCING NEW AS N_ROW

 �6�
FOR EACH ROW MODE DB2SQL

 �7�
WHEN (N_ROW.ON_HAND < O.1O S N_ROW.MAX_STOCKED)

 �8�
 BEGIN ATOMIC

CALL ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

 N_ROW.ON_HAND,

 N_ROW.PARTNO);

 END

Figure 37. Example of a trigger

The parts of this trigger are:

When you execute this CREATE TRIGGER statement, DB2 creates a trigger
package called REORDER and associates the trigger package with table PARTS.
DB2 records the timestamp when it creates the trigger. If you define other triggers
on the PARTS table, DB2 uses this timestamp to determine which trigger to
activate first. The trigger is now ready to use.

After DB2 updates columns ON_HAND or MAX_STOCKED in each row of table
PARTS, trigger REORDER is activated. The trigger calls a stored procedure called
ISSUE_SHIP_REQUEST if, after a row is updated, the quantity of parts on hand is
less than 10% of the maximum quantity stocked. In the trigger condition, N_ROW
represents the value of a modified row after the triggering event.

When you no longer want to use trigger REORDER, you can delete the trigger by
executing the statement:

DROP TRIGGER REORDER RESTRICT;

�1� Trigger name (REORDER)
�2� Trigger activation time (AFTER)
�3� Triggering event (UPDATE)
�4� Triggering table name (PARTS)
�5� New transition variable correlation name (N_ROW)
�6� Granularity (FOR EACH ROW)
�7� Trigger condition (WHEN...)
�8� Trigger body (BEGIN ATOMIC...END;)

212 Release Planning Guide  



  
 

Executing this statement drops trigger REORDER and its associated trigger
package named REORDER.

If you drop table PARTS, DB2 also drops trigger REORDER and its trigger
package.

Parts of a trigger
 This section gives you the information you need to code each of the trigger parts:

 � Trigger name
 � Triggering table
� Trigger activation time

 � Triggering event
 � Granularity
 � Transition variables
 � Transition tables
� Triggered action, which consists of a trigger condition and trigger body

Trigger name: Use a short, ordinary identifier to name your trigger. You can use a
qualifier or let DB2 determine the qualifier. When DB2 creates a trigger package for
the trigger, it uses the qualifier for the collection ID of the trigger package. DB2
uses these rules to determine the qualifier:

� If you use static SQL to execute the CREATE TRIGGER statement, DB2 uses
the authorization ID in the bind option QUALIFIER for the plan or package that
contains the CREATE TRIGGER statement. If the bind command does not
include the QUALIFIER option, DB2 uses the owner of the package or plan.

� If you use dynamic SQL to execute the CREATE TRIGGER statement, DB2
uses the authorization ID in special register CURRENT SQLID.

Triggering table: When you perform an insert, update, or delete operation on this
table, the trigger is activated. You must name a local table in the CREATE
TRIGGER statement. You cannot define a trigger on a catalog table or on a view.

Trigger activation time: The two choices for trigger activation time are NO
CASCADE BEFORE and AFTER. NO CASCADE BEFORE means that the trigger
is activated before DB2 makes any changes to the triggering table, and that the
triggered action does not activate any other triggers. AFTER means that the trigger
is activated after DB2 makes changes to the triggering table and can activate other
triggers. Triggers with an activation time of NO CASCADE BEFORE are known as
before triggers. Triggers with an activation time of AFTER are known as after
triggers.

Triggering event: Every trigger is associated with an event. A trigger is activated
when the triggering event occurs in the triggering table. The triggering event is one
of the following SQL operations:

 � INSERT
 � UPDATE
 � DELETE

A triggering event can also be an update or delete operation that occurs as the
result of a referential constraint with ON DELETE SET NULL or ON DELETE
CASCADE.

  Chapter 6. Object-relational extensions and active data 213



  
 

Triggers are not activated as the result of updates made to tables by DB2 utilities.

When the triggering event for a trigger is an update operation, the trigger is called
an update trigger. Similarly, triggers for insert operations are called insert triggers,
and triggers for delete operations are called delete triggers.

The SQL statement that performs the triggering SQL operation is called the
triggering SQL statement.

The following example shows a trigger that is defined with an INSERT triggering
event:

CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP

FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;

 END

Each triggering event is associated with one triggering table and one SQL
operation. If the triggering SQL operation is an update operation, the event can be
associated with specific columns of the triggering table. In this case, the trigger is
activated only if the update operation updates any of the specified columns. For
example, the following trigger, PAYROLL1, is activated only if an update operation
is performed on columns SALARY or BONUS of table PAYROLL:

CREATE TRIGGER PAYROLL1

AFTER UPDATE OF SALARY, BONUS ON PAYROLL

FOR EACH STATEMENT MODE DB2SQL

 BEGIN ATOMIC

VALUES(PAYROLL_LOG(USER, 'UPDATE', CURRENT TIME, CURRENT DATE));

 END

Granularity: The triggering SQL statement might modify multiple rows in the table.
The granularity of the trigger determines whether the trigger is activated only once
for the triggering SQL statement or once for every row that the SQL statement
modifies. The granularity values are:

� FOR EACH ROW

The trigger is activated once for each row that DB2 modifies in the triggering
table. If the triggering SQL statement modifies no rows, the trigger is not
activated. However, if the triggering SQL statement updates a value in a row to
the same value, the trigger is activated. For example, if an UPDATE trigger is
defined on table COMPANY_STATS, the following SQL statement will activate
the trigger.

UPDATE COMPANY_STATS SET NBEMP = NBEMP;

� FOR EACH STATEMENT

The trigger is activated once when the triggering SQL statement executes. The
trigger is activated even if the triggering SQL statement modifies no rows.

Triggers with a granularity of FOR EACH ROW are known as row triggers.
Triggers with a granularity of FOR EACH STATEMENT are known as statement
triggers. Statement triggers can only be after triggers.

The following statement is an example of a row trigger:

214 Release Planning Guide  



  
 

CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP

FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;

 END

Trigger NEW_HIRE is activated once for every row inserted into the employee
table.

Transition variables: When you code a row trigger, you might need to refer to the
values of columns in each updated row of the triggering table. To do this, specify
transition variables in the REFERENCING clause of your CREATE TRIGGER
statement. The two types of transition variables are:

� Old transition variables, specified with the OLD transition-variable clause,
capture the values of columns before the triggering SQL statement updates
them. You can define old transition variables for update and delete triggers.

� New transition variables, specified with the NEW transition-variable clause,
capture the values of columns after the triggering SQL statement updates them.
You can define new transition variables for update and insert triggers.

The following example uses a new transition variable to capture an employee's
salary after it is updated:

CREATE TRIGGER BIGPAY AFTER UPDATE OF SALARY ON EMP

REFERENCING NEW AS MODIFIED

FOR EACH ROW MODE DB2SQL WHEN (MODIFIED.SALARY > 99999)

 BEGIN ATOMIC

CALL BIGPAY_LIST(MODIFIED.EMPNO, MODIFIED.FIRSTNME,

 MODIFIED.MIDINIT, MODIFIED.LASTNAME,

 MODIFIED.SALARY);

 END

Transition tables: If you want to refer to the entire set of rows that a triggering
SQL statement modifies, rather than to individual rows, use a transition table. Like
transition variables, transition tables can appear in the REFERENCING clause of a
CREATE TRIGGER statement. Transition tables are valid for both row triggers and
statement triggers. The two types of transition tables are:

� Old transition tables, specified with the OLD TABLE transition-table clause,
capture the values of columns before the triggering SQL statement updates
them. You can define old transition tables for update and delete triggers.

� New transition tables, specified with the NEW TABLE transition-table clause,
capture the values of columns after the triggering SQL statement updates them.
You can define new transition variables for update and insert triggers.

The scope of old and new transition table names is the trigger body. If another
table exists that has the same name as a transition table, any unqualified reference
to that name in the trigger body points to the transition table. To reference the other
table in the trigger body, you must use the fully qualified table name.

The following example uses a new transition table to capture the set of rows that
are inserted into the INVOICE table:

  Chapter 6. Object-relational extensions and active data 215



  
 

CREATE TRIGGER LRG_ORDR

AFTER INSERT ON INVOICE

REFERENCING NEW TABLE AS N_TABLE

FOR EACH STATEMENT MODE DB2SQL

 BEGIN ATOMIC

SELECT LARGE_ORDER_ALERT(CUST_NO, TOTAL_PRICE, DELIVERY_DATE)

FROM N_TABLE WHERE TOTAL_PRICE > 1OOOO;

 END

The SELECT statement in LRG_ORDER causes user-defined function
LARGE_ORDER_ALERT to execute for each row in transition table N_TABLE that
satisfies the WHERE clause (TOTAL_PRICE > 10000).

Triggered action: When a trigger is activated, a triggered action occurs. Every
trigger has one triggered action, which consists of two parts: the trigger condition
and the trigger body.

Trigger condition: If you want the triggered action to occur only when certain
conditions are true, code a trigger condition. A trigger condition is similar to a
predicate in a SELECT, except that the trigger condition begins with WHEN, rather
than WHERE. If you do not include a trigger condition in your triggered action, the
trigger body executes every time the trigger is activated.

For a row trigger, DB2 evaluates the trigger condition once for each modified row of
the triggering table. For a statement trigger, DB2 evaluates the trigger condition
once for each execution of the triggering SQL statement.

The following example shows a trigger condition that causes the trigger body to
execute only when the number of ordered items is greater than the number of
available items:

CREATE TRIGGER CK_AVAIL

NO CASCADE BEFORE INSERT ON ORDERS

REFERENCING NEW AS NEW_ORDER

FOR EACH ROW MODE DB2SQL

WHEN (NEW_ORDER.QUANTITY >

(SELECT ON_HAND FROM PARTS

 WHERE NEW_ORDER.PARTNO=PARTS.PARTNO))

 BEGIN ATOMIC

 VALUES(ORDER_ERROR(NEW_ORDER.PARTNO, NEW_ORDER.QUANTITY));

 END

Trigger body: In the trigger body, you code the SQL statements that you want to
execute whenever the trigger condition is true. The trigger body begins with BEGIN

| ATOMIC and ends with END. You cannot include host variables or parameter
| markers in your trigger body.

The statements you can use in a trigger body depend on the activation time of the
trigger. Table 23 summarizes which SQL statements you can use in which types of
triggers.

Table 23 (Page 1 of 2). Valid SQL statements for triggers and trigger activation times

SQL statement

Valid for activation time

Before After

SELECT Yes Yes

216 Release Planning Guide  



  
 

The following list provides more information about the SQL statements that are
valid for triggers:

� SELECT, VALUES, and CALL: Use the SELECT or VALUES statement in a
trigger body to conditionally or unconditionally invoke a user-defined function.
Use the CALL statement to invoke a stored procedure. See “Invoking stored
procedures and user-defined functions from triggers” on page 218 for more
information on invoking user-defined functions and stored procedures from
triggers.

� SET transition-variable: Because before triggers operate on rows of a table
before those rows are modified, you cannot perform operations in the body of a
before trigger that directly modify the triggering table. You can, however, use
the SET transition-variable statement to modify the values in a row before
those values go into the table. For example, this trigger uses a new transition
variable to fill in today's date for the new employee's hire date:

CREATE TRIGGER HIREDATE

NO CASCADE BEFORE INSERT ON EMP

REFERENCING NEW AS NEW_VAR

FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

SET NEW_VAR.HIRE_DATE = CURRENT_DATE;

 END

� SIGNAL SQLSTATE: Use the SIGNAL SQLSTATE statement in the trigger
body to report an error condition and back out any changes that are made by
the trigger, as well as actions that result from referential constraints on the
triggering table. When DB2 executes the SIGNAL SQLSTATE statement, it
returns an SQLCA to the application with SQLCODE -438. The SQLCA also
includes the following values, which you supply in the SIGNAL SQLSTATE
statement:

– A five-character value that DB2 uses as the SQLSTATE
– An error message that DB2 places in the SQLERRMC field

 In the following example, the SIGNAL SQLSTATE statement causes DB2 to
return an SQLCA with SQLSTATE 75001 and terminate the salary update
operation if an employee's salary increase is over 20%:

Table 23 (Page 2 of 2). Valid SQL statements for triggers and trigger activation times

SQL statement

Valid for activation time

Before After

VALUES Yes Yes

CALL Yes Yes

SIGNAL SQLSTATE Yes Yes

SET transition-variable Yes No

INSERT No Yes

UPDATE No Yes

DELETE No Yes

  Chapter 6. Object-relational extensions and active data 217



  
 

CREATE TRIGGER SAL_ADJ

BEFORE UPDATE OF SALARY ON EMP

REFERENCING OLD AS OLD_EMP

NEW AS NEW_EMP

FOR EACH ROW MODE DB2SQL

WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY S 1.2O))

 BEGIN ATOMIC

SIGNAL SQLSTATE '75OO1'

('Invalid Salary Increase - Exceeds 2O%');

 END

� INSERT, UPDATE, and DELETE: Because you can include INSERT, UPDATE,
and DELETE statements in your trigger body, execution of the trigger body
might cause activation of other triggers. See “Trigger cascading” on page 219
for more information.

� Failures during trigger execution: If any SQL statement in the trigger body fails
during trigger execution, DB2 rolls back all changes that are made by the
triggering SQL statement and the triggered SQL statements. However, if the
trigger body executes actions that are outside of DB2's control or are not
under the same commit coordination as the DB2 subsystem in which the trigger
executes, DB2 cannot undo those actions. Examples of external actions that
are not under DB2's control are:

– Performing updates that are not under RRS commit control
– Sending an electronic mail message

 If the trigger executes external actions that are under the same commit
coordination as the DB2 subsystem under which the trigger executes, and an
error occurs during trigger execution, DB2 places the application process that
issued the triggering statement in a must-rollback state. The application must
then execute a rollback operation to roll back those external actions. Examples
of external actions that are under the same commit coordination as the
triggering SQL operation are:

– Executing a distributed update operation
– From a user-defined function or stored procedure, executing an external

action that affects an external resource manager that is under RRS commit
control

Invoking stored procedures and user-defined functions from triggers
 A trigger body can include only SQL statements. Therefore, if you want the trigger
to perform actions or use logic that is not available in SQL, you need to write a
user-defined function or stored procedure and invoke that function or stored
procedure from the trigger body.

Because a before trigger must not modify any table, functions and procedures that
you invoke from a trigger cannot include INSERT, UPDATE, or DELETE statements
that modify the triggering table.

To invoke a user-defined function from a trigger, code a SELECT statement or
VALUES statement. Use a SELECT statement to execute the function conditionally.
The number of times the user-defined function executes depends on the number of
rows in the result set of the SELECT statement. For example, in this trigger, the
SELECT statement causes user-defined function LARGE_ORDER_ALERT to
execute for each row in transition table N_TABLE with an order of more than
10000:

218 Release Planning Guide  



  
 

CREATE TRIGGER LRG_ORDR

AFTER INSERT ON INVOICE

REFERENCING NEW TABLE AS N_TABLE

FOR EACH STATEMENT MODE DB2SQL

 BEGIN ATOMIC

SELECT LARGE_ORDER_ALERT(CUST_NO, TOTAL_PRICE, DELIVERY_DATE)

FROM N_TABLE WHERE TOTAL_PRICE > 1OOOO;

 END

Use the VALUES statement to execute a function unconditionally; that is, once for
each execution of a statement trigger or once for each row in a row trigger. In this
example, user-defined function PAYROLL_LOG executes every time an update
operation occurs that activates trigger PAYROLL1:

CREATE TRIGGER PAYROLL1

AFTER UPDATE ON PAYROLL

FOR EACH STATEMENT MODE DB2SQL

 BEGIN ATOMIC

 VALUES(PAYROLL_LOG(USER, 'UPDATE',

CURRENT TIME, CURRENT DATE));

 END

To invoke a stored procedure from a trigger, use the CALL statement. The
parameters of this stored procedure call must be literals, transition variables, table
locators, or expressions.

Passing transition tables to user-defined functions and stored
procedures
When you call a user-defined function or stored procedure from a trigger, you might
want to give the function or procedure access to the entire set of modified rows.
That is, you want to pass a pointer to the old or new transition table. You do this
using table locators.

Most of the coding work for using a table locator occurs in the function or stored
procedure that receives the locator. “Accessing transition tables in a user-defined
function” on page 182 explains how a function defines a table locator and uses it to
receive a transition table. To pass the transition table from a trigger, specify the
parameter TABLE transition-table when you invoke the function or stored
procedure. For example, this trigger passes a table locator for a new transition
table to stored procedure CHECKEMP:

CREATE TRIGGER EMPRAISE

AFTER UPDATE ON EMP

REFERENCING NEW TABLE AS NEWEMPS

FOR EACH STATEMENT MODE DB2SQL

 BEGIN ATOMIC

CALL (CHECKEMP(TABLE NEWEMPS));

 END

 Trigger cascading
 An SQL operation that a trigger performs might modify the triggering table or other
tables with triggers, so DB2 also activates those triggers. A trigger that is activated
as the result of another trigger can be activated at the same level as the original
trigger or at a different level. Two triggers, A and B, are activated at different levels
if trigger B is activated after trigger A is activated and completes before trigger A
completes. If trigger B is activated after trigger A is activated and completes after

  Chapter 6. Object-relational extensions and active data 219



  
 

trigger A completes, then the triggers are at the same level. For example, in these
cases, trigger A and trigger B are activated at the same level:

� Table X has two triggers defined on it, A and B. A is a before trigger and B is
an after trigger. An update to table X causes both trigger A and trigger B to
activate.

� Trigger A updates table X, which has a referential constraint with table Y, which
has trigger B defined on it. The referential constraint causes table Y to be
updated, which activates trigger B.

In these cases, trigger A and trigger B are activated at different levels:

� Trigger A is defined on table X, and trigger B is defined on table Y. Trigger B
is an update trigger. An update to table X activates trigger A, which contains an
UPDATE statement on table B in its trigger body. This UPDATE statement
activates trigger B.

� Trigger A calls a stored procedure. The stored procedure contains an INSERT
statement for table X, which has insert trigger B defined on it. When the
INSERT statement on table X executes, trigger B is activated.

Trigger cascading occurs when triggers are activated at different levels. Trigger
cascading can occur only for after triggers, because DB2 does not support
cascading of before triggers.

To prevent the possibility of endless trigger cascading, DB2 supports only 16 levels
of cascading of triggers, stored procedures, and user-defined functions. If a trigger,
user-defined function, or stored procedure at the 17th level is activated, DB2
returns SQLCODE -724 and backs out all SQL changes in the 16 levels of
cascading. However, as with any other SQL error that occurs during trigger
execution, if any action occurs that is outside the control of DB2, that action is not
backed out.

You can write a monitor program that issues IFI READS requests to collect DB2
trace information about the levels of cascading of triggers, user-defined functions,
and stored procedures in your programs. See Appendixes (Volume 2) of DB2
Administration Guide for information on how to write a monitor program.

Ordering of multiple triggers
You can create multiple triggers for the same triggering table, event, and activation
time. The order in which those triggers are activated is the order in which the
triggers were created. DB2 records the timestamp when each CREATE TRIGGER
statement executes. When an event occurs in a table that activates more than one
trigger, DB2 uses the stored timestamps to determine which trigger to activate first.

DB2 always activates all before triggers defined on a table before the after triggers
that are defined on that table, but within the set of before triggers, the activation
order is by timestamp, and within the set of after triggers, the activation order is by
timestamp.

In this example, triggers NEWHIRE1 and NEWHIRE2 have the same triggering
event (INSERT), the same triggering table (EMP), and the same activation time
(AFTER). Suppose that the CREATE TRIGGER statement for NEWHIRE1 is run
before the CREATE TRIGGER statement for NEWHIRE2:

220 Release Planning Guide  



  
 

CREATE TRIGGER NEWHIRE1

AFTER INSERT ON EMP

FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;

 END

CREATE TRIGGER NEWHIRE2

AFTER INSERT ON EMP

REFERENCING NEW AS N_EMP

FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

UPDATE DEPTS SET NBEMP = NBEMP + 1

WHERE DEPT_ID = N_EMP.DEPT_ID;

 END

When an insert operation occurs on table EMP, DB2 activates NEWHIRE1 first
because NEWHIRE1 was created first. Now suppose that someone drops and
recreates NEWHIRE1. NEWHIRE1 now has a later timestamp than NEWHIRE2, so
the next time an insert operation occurs on EMP, NEWHIRE2 is activated before
NEWHIRE1.

| If two row triggers are defined for the same action, the trigger that was created
| earlier is activated first for all affected rows. Then the second trigger is activated for
| all affected rows. In the previous example, suppose that an INSERT statement with
| a subselect inserts 10 rows into table EMP. NEWHIRE1 is activated for all 10
| rows, then NEWHIRE2 is activated for all 10 rows.

Interactions among triggers and referential constraints
When you create triggers, you need to understand the interactions among the
triggers and constraints on your tables and the effect that the order of processing of
those constraints and triggers can have on the results.

In general, the following steps occur when triggering SQL statement S1 performs
an insert, update, or delete operation on table T1:

1. DB2 determines the rows of T1 to modify. Call that set of rows M1. The
contents of M1 depend on the SQL operation:

� For a delete operation, all rows that satisfy the search condition of the
statement for a searched delete operation, or the current row for a
positioned delete operation

� For an insert operation, the row identified by the VALUES statement , or
the rows identified by a SELECT clause

� For an update operation, all rows that satisfy the search condition of the
statement for a searched update operation, or the current row for a
positioned update operation

2. DB2 processes all before triggers that are defined on T1, in order of creation.

Each before trigger executes the triggered action once for each row in M1. If
M1 is empty, the triggered action does not execute.

If an error occurs when the triggered action executes, DB2 rolls back all
changes made by S1.

3. DB2 makes the changes that are specified in statement S1 to table T1.

  Chapter 6. Object-relational extensions and active data 221



  
 

If an error occurs, DB2 rolls back all changes made by S1.

4. DB2 applies all the following constraints and checks that are defined on table
T1 if M1 is not empty:

 � Referential constraints
 � Check constraints
� Checks that are due to updates of the table through views that are defined

WITH CHECK OPTION

Application of referential constraints with rules of DELETE CASCADE or
DELETE SET NULL are activated before delete triggers or before update
triggers on the dependent tables.

If any constraint is violated, DB2 rolls back all changes that are made by
constraint actions or by statement S1.

5. DB2 processes all after triggers that are defined on T1, and all after triggers on
tables modified as the result of referential constraint actions, in order of
creation.

Each after row trigger executes the triggered action once for each row in M1. If
M1 is empty, the triggered action does not execute.

Each after statement trigger executes the triggered action once for each
execution of S1, even if M1 is empty.

If any triggered actions contain SQL insert, update, or delete operations, repeat
steps 1 through 5 for each of those operations.

If an error occurs when the triggered action executes, or if a triggered action is at
the 17th level of trigger cascading, DB2 rolls back all changes that are made in
step 5 and all previous steps.

For example, table DEPT is a parent table of EMP, with these conditions:

� The DEPTNO column of DEPT is the primary key.
� The WORKDEPT column of EMP is the foreign key.
� The constraint is ON DELETE SET NULL.

Suppose the following trigger is defined on EMP:

CREATE TRIGGER EMPRAISE

AFTER UPDATE ON EMP

REFERENCING NEW TABLE AS NEWEMPS

FOR EACH STATEMENT MODE DB2SQL

 BEGIN ATOMIC

 VALUES(CHECKEMP(TABLE NEWEMPS));

 END

Also suppose that an SQL statement deletes the row with department number E21
from DEPT. Because of the constraint, DB2 finds the rows in EMP with a
WORKDEPT value of E21 and sets WORKDEPT in those rows to null. This is
equivalent to an update operation on EMP, which has update trigger EMPRAISE.
Therefore, because EMPRAISE is an after trigger, EMPRAISE is activated after the
constraint action sets WORKDEPT values to null.

222 Release Planning Guide  



  
 

Creating triggers to obtain consistent results
When you create triggers and write SQL statements that activate those triggers,
you need to ensure that executing those statements on the same set of data
always produces the same results. Two common reasons that you can get
inconsistent results are:

� Positioned UPDATE or DELETE statements that use uncorrelated subqueries
cause triggers to operate on a larger result set than you intended.

� DB2 does not always process rows in the same order, so triggers that
propagate rows of a table can generate different result tables at different times.

The following examples demonstrate these situations.

Example: Effect of an uncorrelated subquery on a triggered action: Suppose
that tables T1 and T2 look like this:

Table T1 Table T2

 A1 B1

 == ==

 1 1

 2 2

The following trigger is defined on T1:

CREATE TRIGGER TR1

AFTER UPDATE OF T1

FOR EACH ROW

 MODE DB2SQL

 BEGIN ATOMIC

DELETE FROM T2 WHERE B1 = 2;

 END

Now suppose that an application executes the following statements to perform a
positioned update operation:

EXEC SQL BEGIN DECLARE SECTION;

 long hv1;

EXEC SQL END DECLARE SECTION;
...

EXEC SQL DECLARE C1 CURSOR FOR

SELECT A1 FROM T1

WHERE A1 IN (SELECT B1 FROM T2)

FOR UPDATE OF A1;
...

EXEC SQL OPEN C1;
...

while(SQLCODE>═O && SQLCODE!=1OO)

{

EXEC SQL FETCH C1 INTO :hv1;

UPDATE T1 SET A1=5 WHERE CURRENT OF C1;

}

When DB2 executes the FETCH statement that positions cursor C1 for the first
time, DB2 evaluates the subselect, SELECT B1 FROM T2, to produce a result
table that contains the two rows of column T2:

1

2

  Chapter 6. Object-relational extensions and active data 223



  
 

When DB2 executes the positioned UPDATE statement for the first time, trigger
TR1 is activated. When the body of trigger TR1 executes, the row with value 2 is
deleted from T2. However, because SELECT B1 FROM T2 is evaluated only once,
when the FETCH statement is executed again, DB2 finds the second row of T1,
even though the second row of T2 was deleted. The FETCH statement positions
the cursor to the second row of T1, and the second row of T1 is updated. The
update operation causes the trigger to be activated again, which causes DB2 to
attempt to delete the second row of T2, even though that row was already deleted.

To avoid processing of the second row after it should have been deleted, use a
correlated subquery in the cursor declaration:

DCL C1 CURSOR FOR

SELECT A1 FROM T1 X

WHERE EXISTS (SELECT B1 FROM T2 WHERE X.A1 = B1)

FOR UPDATE OF A1;

In this case, the subquery, SELECT B1 FROM T2 WHERE X.A1 = B1, is evaluated
for each FETCH statement. The first time that the FETCH statement executes, it
positions the cursor to the first row of T1. The positioned UPDATE operation
activates the trigger, which deletes the second row of T2. Therefore, when the
FETCH statement executes again, no row is selected, so no update operation or
triggered action occurs.

Example: Effect of row processing order on a triggered action: The following
example shows how the order of processing rows can change the outcome of an
after row trigger.

Suppose that tables T1, T2, and T3 look like this:

Table T1 Table T2 Table T3

A1 B1 C1

== == ==

 1 (empty) (empty)

 2

The following trigger is defined on T1:

CREATE TRIGGER TR1

AFTER UPDATE ON T1

REFERENCING NEW AS N

FOR EACH ROW

 MODE DB2SQL

 BEGIN ATOMIC

INSERT INTO T2 VALUES(N.C1);

INSERT INTO T3 (SELECT B1 FROM T2);

 END

Now suppose that a program executes the following UPDATE statement:

UPDATE T1 SET A1 = A1 + 1;

The contents of tables T2 and T3 after the UPDATE statement executes depend on
the order in which DB2 updates the rows of T1. If DB2 updates the first row of T1
first, after the UPDATE statement and the trigger execute for the first time, the
values in the three tables are:

224 Release Planning Guide  



  
 

Table T1 Table T2 Table T3

A1 B1 C1

== == ==

2 2 2

 2

After the second row of T1 is updated, the values in the three tables are:

Table T1 Table T2 Table T3

A1 B1 C1

== == ==

2 2 2

3 3 2

 3

However, if DB2 updates the second row of T1 first, after the UPDATE statement
and the trigger execute for the first time, the values in the three tables are:

Table T1 Table T2 Table T3

A1 B1 C1

== == ==

1 3 3

 3

After the first row of T1 is updated, the values in the three tables are:

Table T1 Table T2 Table T3

A1 B1 C1

== == ==

2 3 3

3 2 3

 2

|  DB2 Extenders
| You can easily leverage DB2' support for large multimedia objects by using the
| DB2 Extenders feature of DB2 for OS/390. Use DB2 Extenders to store and
| manipulate image, audio, video, and text objects.

| The DB2 Extenders comprise a separate Image Extender, Audio Extender, Video
| Extender, and Text Extender. Each extender defines a distinct type, and a set of
| user-defined functions for use with objects of its distinct type. The extenders
| automatically capture and maintain a variety of attribute information about each
| object that you store. They also provide a rich body of APIs that can take your
| object-oriented applications to new of sophistication.

  Chapter 6. Object-relational extensions and active data 225



  
 

226 Release Planning Guide  



  
 

Chapter 7. Features of DB2 UDB Server for OS/390

The DB2 UDB Server for OS/390 offers a number of optional features that come
with DB2 for OS/390 and make it easy for you to take advantage of the full
potential of your DB2 subsystem.

| The following no-charge features are shipped to you automatically when you order
| DB2 Universal Database for OS/390.

| � DB2 Management Tools Package, which includes the following elements:

| – DB2 UDB Control Center
| – DB2 Stored Procedures Builder
|  – DB2 Installer
| – DB2 Visual Explain
|  – DB2 Estimator

| � Net.Data for OS/390

| Priced features are offered in a “Try and Buy” program that you can install and use
| for up to 90 days without paying license charges. To obtain unrestricted access for
| a priced feature, simply order the “Buy” component and install it onto your DB2
| UDB server. The following features are provided in the “Try and Buy” program:

� Query Management Facility
 � DB2 DataPropagator
� DB2 Performance Monitor
� DB2 Buffer Pool Tool
� DB2 Administration Tool

This section provides an overview of each feature. You can obtain additional
information at the DB2 Universal Database for OS/390 Web site:
http://www.software.ibm.com/data/db2/os390, or see DB2 What's New?.

| DB2 is Tivoli ready and will work with Tivoli Global Enterprise Manager (GEM)
| which is available from IBM.

| Control Center for DB2 UDB
| Users of DB2 for OS/390 can now manage data in a new way.

| The Control Center capability of IBM's DB2 Universal Database Version 6 for
| Windows, UNIX, and OS/2 now extends support to DB2 for OS/390 Version 6. As a
| Java-based tool, the Control Center can run on many types of workstations and on
| many different operating systems. Users can now use the same tool, with its
| easy-to-use graphical user interface (GUI), to manage DB2 databases on OS/390,
| as well as on workstation servers. The GUI supports DB2 for OS/390 SQL
| statements (such as CREATE and ALTER), DB2 commands (such as DISPLAY,
| START, and STOP), and utilities (such as REORG and LOAD).

| The Control Center can run either as a Java application or as an application on
| your Web server that your Web browser can access. Because the Control Center
| requires DB2 Connect, the DB2 Management Tools Package provides a
| restricted-use copy of DB2 Connect Version 6 to satisfy this functional dependency.
| Control Center is packaged along with DB2 Connect on the same CD.

 Copyright IBM Corp. 1999  227



  
 

| DB2 Stored Procedures Builder
| The IBM DB2 Stored Procedure Builder (SPB), an element of the DB2
| Management Tools Package, provides an easy-to-use development environment for
| creating, installing, and testing stored procedures. With the DB2 Stored Procedure
| Builder, you can focus on creating your stored procedure logic rather than on the
| details of registering, building, and installing stored procedures on a DB2 server.
| You can develop stored procedures on one operating system and deploy them on
| other server operating systems. The Stored Procedure Builder provides a single
| development environment that supports the entire DB2 family ranging from the
| workstation to System/390.

| Because the Stored Procedures Builder requires DB2 Connect, the DB2
| Management Tools Package provides a restricted-use copy of DB2 Connect
| Version 6 to satisfy this functional dependency. The DB2 Stored Procedures Builder
| is packaged along with DB2 Connect on the same CD.

 DB2 Installer
DB2 Installer enhances your productivity whether you are installing DB2 for the first
time or are an experienced installer. From your workstation, you can install,
migrate, or update DB2 for OS/390 from a graphical interface, customize your DB2
subsystem, and run your install-related jobs. Windows NT support and the
migration and update options were added to Version 5 of DB2 Installer. In Version
6, several optional features that come with DB2 for OS/390 can be installed using
DB2 Installer, including DB2 PM.

DB2 Visual Explain
DB2 Visual Explain graphically presents DB2 EXPLAIN output. You can use DB2
Visual Explain on Windows NT or OS/2. Many enhancements for Version 6 are
from specific customer requests. These enhancements include:

� View statement cost in milliseconds and service units

� Filter explainable statements from multiple plans and packages

� Specify your own qualifier for the catalog and explain tables

� Generate customized reports quickly

DB2 Visual Explain works with a Version 5 or Version 6 plan table.

| If you are using Control Center, you can launch Visual Explain directly from the
| Control Center.

| Because DB2 Visual Explain requires DB2 Connect, the DB2 Management Tools
| Package provides a restricted-use copy of DB2 Connect Version 6 to satisfy this
| functional dependency.

228 Release Planning Guide  



  
 

 DB2 Estimator
DB2 Estimator is an easy-to-use, stand-alone tool for estimating the performance of
applications for Version 5 and Version 6 of DB2 for OS/390. From a simple table
sizing to a detailed performance analysis of an entire DB2 application, DB2
Estimator saves time and lowers costs by letting you investigate the impact to your
production system of new or modified applications before you implement them.

| You can use DB2 Estimator for both Version 5 and Version 6 of DB2 for OS/390. It
| runs on any 16-bit or 32-bit Windows operating system. Use DB2 Estimator on any
| data that has been imported from DB2 for OS/390, or you can model an application
| for which none of the tables, SQL, transactions, or configuration exist.

In Version 6, DB2 Estimator expands support for utilities and SQL statements to
help you approximate your working environment more closely.

| DB2 Estimator is available for download at the DB2 Universal Database for OS/390
| Web site: http://www.software.ibm.com/data/db2/os390/downloads.html

Net.Data for OS/390
Net.Data for OS/390 lets you access your business data from the World Wide Web.
With Net.Data for OS/390, you can build high-performance Web applications that
execute your business logic to create dynamic Web pages based on data stored
within DB2 and other data sources within your enterprise. Net.Data provides
continuous application availability in a scalable, secure, high performance
environment. And Net.Data provides a powerful macro capability for robust Web
application development.

| Net.Data Version 2.2, which is a no-charge feature of DB2 for OS/390 Version 6,
| now uses the IBM and Domino Web server application programming interfaces,
| Internet Connection Application Interfaces (API), and Domino Go Web server API.
| Applications that use the Web server APIs perform more efficiently than Common
| Gateway Interface (CGI) applications.

| With Net.Data for OS/390, your high-performance, business-critical Web
| applications can more efficiently use the data in your enterprise. Enhancements
| improve Net.Data's performance, scalability, and usability.

Query Management Facility
IBM Query Management Facility (QMF), is the tightly integrated, powerful, reliable
query and reporting tool for IBM's DB2 family. New capabilities help you access
and present mission-critical data better than ever before. QMF enables you to work
with data all over the enterprise. Data can be anywhere from DB2 for OS/390 and
DB2 for VSE and VM, to workstation servers that run OS/2, Windows NT, AIX
and other UNIX operating systems, and to large parallel processors. When coupled
with IBM's DB2 DataJoiner product, QMF allows access to non-relational and
other vendor data sources.

The QMF family of integrated tools—QMF, QMF High Performance Option (HPO),
and QMF for Windows—offers a total solution for you to access large amounts of

  Chapter 7. Features of DB2 UDB Server for OS/390 229



  
 

data, share central repositories of queries and enterprise reports, and implement
tightly controlled distributed or client/server solutions.

| � QMF HPO includes QMF for Windows, QMF HPO/Manager, and the QMF
| HPO/Compiler as one comprehensive feature. When you get QMF HPO
| Version 6, you always get all three components. QMF HPO is a multi-functional
| performance package that lets you ramp up the availability of on-demand
| information, while protecting production applications and operational data.

| � QMF for Windows provides a Windows-based, point-and-click query tool for
| customers with DB2 databases of many sizes.

| QMF Version 6 includes enhancements for end users, administrators, application
| developers, and the enterprise. Some highlights are the Euro currency symbol,
| formal QMF administrative authority, use of the DB2 Version 6 predictive governor
| with QMF for Windows, and DB2 for OS/390 server load balancing.

 DataPropagator Relational
DB2 DataPropagator provides a powerful replication capability for the DB2 family of
databases. Data replication has evolved as the key technology for harnessing the
full power and potential of distributed database environments. DB2
DataPropagator, the core component of IBM's replication solution, lets you unite
your distributed relational databases into a cohesive and integrated database
solution. It automatically captures your data changes against a source database
and propagates those changes to any specified target database, keeping the two
consistent.

| DB2 DataPropagator enables you to tailor data for maximum usability. You can:

| � Manage replication with a graphical interface

| � Minimize impact on production systems and networks

| � Integrate mixed database environments

| In Version 6, DB2 DataPropagator delivers many new and powerful functions and
| capabilities such as DB2 Catalog replication for speeding up of ODBC-based
| queries.

| For more information about catalog replication is available at the DB2 Universal
| Database for OS/390 Web site:
| http://www.software.ibm.com/data/db2/os390/downloads.html

DB2 Performance Monitor
DB2 Performance Monitor for OS/390 (DB2 PM) is IBM's strategic tool for
analyzing, controlling, and tuning the performance of DB2 and DB2 applications. It
includes a real-time online monitor, a wide variety of reports for in-depth analysis,
and an Explain feature to analyze and optimize SQL statements. DB2 PM Version
6 supports full performance monitoring and problem analysis for all functions of
DB2.

| If you are using Control Center, you can launch DB2 PM directly from the Control
| Center.

230 Release Planning Guide  



  
 

| The following components and functions are new or enhanced for DB2 PM Version
| 6:

| � Workstation Online Monitor for Windows NT and OS/2
| � Online monitoring of data sharing groups in a Parallel Sysplex environment
| � Additional improvements that make performance monitoring even more
| efficient, such as more detailed DDF thread information.

DB2 Buffer Pool Tool
DB2 Buffer Pool Tool helps performance analysts evaluate tuning alternatives and
achieve performance gains by tuning DB2 buffer pools. The tool collects
performance data and provides information at the buffer pool and individual object
levels.

DB2 Administration Tool
The DB2 Administration Tool (DB2 ADMIN) provides an easy way to perform
queries of the DB2 catalog and manage DB2 objects. The tool runs under
Interactive System Productivity Facility (ISPF) and uses SQL to access DB2 catalog
tables. The tool provides comprehensive information for system administrators,
database administrators, and application developers. Use DB2 ADMIN to obtain a
quick overview of a database, discover problems, copy tables from one DB2 to
another, and perform many administration tasks with ease.

  Chapter 7. Features of DB2 UDB Server for OS/390 231



  
 

232 Release Planning Guide  



  
 

Chapter 8. Planning for migration and fallback

This chapter contains considerations for migration and fallback between DB2 for
OS/390 Version 5 and DB2 for OS/390 Version 6, and a directory of new and
revised installation panels. See DB2 Installation Guide for complete, step-by-step
instructions for installing, migrating, or falling back. This chapter contains these
sections:

 � “Migration considerations”
� “Release incompatibilities” on page 237
� “Release coexistence” on page 244
� “Preparing for fallback” on page 247
� “Installation changes” on page 250

 Migration considerations
This section includes items to consider before migrating to DB2 for OS/390 Version
6. DB2 for OS/390 Version 5 is the only release from which you can migrate.

Make sure that your Version 5 subsystem is at the proper service level. See IBM
Database 2 Program Directory, which is shipped with the product, for keyword
specifications for preventive service planning (PSP). Check Information/Access or
the ServiceLink facility of IBMLink for PSP information both before you migrate
and monthly for access to the most current information about DB2.

| In Version 6, the following items are no longer supported. You cannot migrate to
| Version 6 until these items are removed from your catalog.

| � Type 1 indexes
| � Data set passwords for all objects except the bootstrap data set (BSDS)
| � Shared read-only data

| The new job DSNTIJPM identifies these unsupported objects.

Type 2 indexes are required
Type 1 indexes are no longer supported. You must convert all indexes to type 2
before migrating to Version 6. Catalog migration will fail if any type 1 indexes are
found.

Data set password protection is removed
You must remove data set passwords before migrating to Version 6. Use OS/390
Security Server or an equivalent security system to protect your data sets. Catalog
migration will fail if any data set passwords are found.

Shared read-only data is removed
Data sharing is a more substantial and more usable function than shared read-only
data. You can also use distributed data to share information. Catalog migration will
fail if any shared read-only data is found.

 Copyright IBM Corp. 1999  233



  
 

| Remove views on two catalog tables
| Before running job DSNTIJTC (CATMAINT), remove all views on catalog tables
| SYSIBM.SYSCOLDIST and SYSIBM.SYSCOLDISTSTATS.

Private protocol function not enhanced
No enhancements are planned for distributed data using private protocol.

| Private-protocol support may be removed in a later release of DB2. Private protocol
| can no longer use type 2 inactive threads. Specify a non-zero value for MAXTYPE1
| to use type 1 inactive threads for private protocol. To take advantage of the

enhancements to stored procedures, TCP/IP, and new data types, you must use
the DRDA protocol. You can use DRDA without changing your applications by
rebinding with the DBPROTOCOL option set to DRDA. See Chapter 2 of DB2
Command Reference for more information.

| More than 32 K databases are supported
| The maximum number of databases is no longer 32K. The database identifier
| column of catalog table SYSIBM.SYSDATABASE can contain negative numbers, to
| indicate that there are more than 32K databases defined.

Log buffer size increased
The maximum log output buffer size is 100000 4-KB buffers (400 MB). The default
input (read) buffer size is increased to 60 KB. You will probably experience better
log read and log write performance with these increases.

Consider enlarging BSDS
The BSDS may need to be larger to accommodate the additional buffer pools. To
avoid the BSDS going into secondary extents, change the record size of the
primary allocation to 180 records. To increase the space allocation for the BSDS:

1. Rename existing BSDSs.

2. Define larger BSDSs with the original names.

3. Copy the renamed BSDSs into the new BSDSs.

You can do this using access method services. See the Version 6 installation job
DSNTIJIN for the definition that uses the larger primary extent size.

Increase maximum number of data sets open
The maximum number of concurrently allocated data sets increases to 32767 for
customers running OS/390 Version 2 Release 6. The practical limit for concurrently
allocated data sets depends on virtual storage below the 16M line, OS/390
allocation control blocks and some DB2 storage. For more details, refer to Section
5 (Volume 2) of DB2 Administration Guide.

| Customized DB2I defaults can be migrated
| A DB2I TSO IPSF profile member from a prior release can be migrated to the
| current release. The DSNEMC01 CLIST uses the values specified on installation
| panel DSNTIPF and stores the results in the ISPF profile member DSNEPROF.
| Any customized DSNEPROF members can be migrated from Version 5 to Version
| 6. However, you need to examine any new or changed default panel values to
| ensure that your customized values are still valid.

234 Release Planning Guide  



  
 

| DB2 online help reader not used
| The DB2 online help reader is no longer needed. BookManager READ/MVS is
| included with OS/390 base. Before you install online help, you must first install
| BookManager READ/MVS. See BookManager READ/MVS V1R3: Installation
| Planning & Customization for information on how to do this.

 Stored procedures
In earlier releases of DB2, the AUTHID and LUNAME columns of the
SYSIBM.SYSPROCEDURES catalog table were used to uniquely identify multiple
instances of a procedure. After migrating to Version 6, use the SCHEMA column in
the SYSIBM.SYSROUTINES catalog table, the CURRENT PATH special register,
and the PATH bind option to identify multiple instances of a procedure. During
migration, DB2 generates CREATE PROCEDURE statements which populate
SYSROUTINES and SYSPARMS. Rows in SYSIBM.SYSPROCEDURES that
contain non-blank values for the AUTHID or LUNAME columns are not used to
generate the CREATE PROCEDURE statements . You can identify those rows by
using the following statement:

SELECT S FROM SYSIBM.SYSPROCEDURES WHERE AUTHID <> ' ' OR LUNAME <> ' ';

DB2 also copies information from the rows in SYSIBM.SYSPROCEDURES into the
SYSIBM.SYSPARMS table and propagates information from the PARAMETER
column of SYSIBM.SYSPROCEDURES into SYSIBM.SYSROUTINES and
SYSIBM.SYSPARMS.

Procedures that are migrated from Version 5 have no owner, because they were
not created with the CREATE PROCEDURE statement. DB2 authorization treats
these migrated procedures differently than procedures that are created with
CREATE PROCEDURE. The authorization for migrated procedures is unchanged.

The SYSIBM.SYSPROCEDURES catalog table is not used in Version 6 to define
stored procedures to DB2. The SYSCAT.PROCEDURES view of the
SYSIBM.SYSPROCEDURES catalog table is not used to list the stored procedures
that are registered in DB2. Although these tables are no longer used in Version 6,
DB2 does not drop them during migration, because they are needed for fall back
and data sharing coexistence.

# You can enable the DB2-supplied stored procedures after you have completed the
# installation process. The two new jobs provided to assist you with enabling some of
# the DB2-supplied stored procedures are:

# � DSNTIJCC defines the DB2-supplied stored procedures for DB2 UDB Control
# Center.

# � DSNTIJSQ defines the SQL procedures support.

# Both jobs require tailoring which is listed in the job prolog. For more details about
# these jobs, see DB2 Installation Guide.

For more information on stored procedures, refer to DB2 Application Programming
and SQL Guide.

  Chapter 8. Planning for migration and fallback 235



  
 

| ALTER TABLE changes
| A new clause called ALTER COLUMN was added to the ALTER TABLE statement.
| The new clause allows the definition of an existing VARCHAR column to be
| changed up to the maximum length allowed for the VARCHAR data type. For
| details on the changes see the ALTER TABLE statement in DB2 SQL Reference.

 Utility enhancements
The online REORG performance has been enhanced. The performance
improvements are explained in Section 5 (Volume 2) of DB2 Administration Guide.
The enhancements use new calculations for the sort and unload data sets. You
may need to increase the size of your unload and sort data sets. The new
calculations are explained in DB2 Utility Guide and Reference under Defining work
data sets.

Work file database size calculations
The migration job DSNTIJTC creates and updates indexes on catalog tables. These
indexes are created and updated sequentially during migration. The work file
database is used for the sort of each index; DB2 needs enough work file storage to
sort the largest of the indexes that are listed in Table 24. The migration fails if you
do not have enough storage, so ensure that you have enough space before you
begin.

Table 24 shows the indexes that are new and changed for existing catalog tables.

Table 24. Indexes added or updated sequentially using the work file database

Catalog table name Index name Column names

SYSIBM.SYSINDEXPART SYSIBM.DSNDRX02 STORNAME

SYSIBM.SYSCOLUMNS SYSIBM.DSNDCX02 TYPESCHEMA, TYPENAME

SYSIBM.SYSPACKDEP SYSIBM.DSNKDX03 BQUALIFIER, BNAME, BTYPE, DTYPE

SYSIBM.SYSTABLEPART SYSIBM.DSNDPX02 STORNAME

SYSIBM.SYSVIEWDEP SYSIBM.DSNGGX03 BSCHEMA, BNAME, BTYPE

SYSIBM.SYSTABAUTH SYSIBM.DSNATX02 GRANTEE, TCREATOR, TTNAME,
GRANTEETYPE, UPDATECOLS,
ALTERAUTH, DELETEAUTH, INDEXAUTH,
INSERTAUTH, SELECTAUTH, UPDATEAUTH,
CAPTUREAUTH,REFERENCESAUTH,
REFCOLS, TRIGGERAUTH

SYSIBM.SYSUSERAUTH SYSIBM.DSNAUH01 GRANTEE, GRANTEDTS

SYSIBM.SYSINDEXES SYSIBM.DSNDXX02# DBNAME, INDEXSPACE, COPY, COPYLRSN

# Changes to Subsystem parameters
# Subsystem parameter OJPERFEH is no longer used.

# The subsystem parameter, EDMBFIT is added in macro DSN6SPRM. It is used to
# adjust the free chain search algorithm on systems with a large EDM pool which is
# greater than 40M.

236 Release Planning Guide  



  
 

# The subsystem parameters, SMSCDFL and SMSCDIX in macro DSN6SPRM,
# specify whether SMS dataclass names are used for table spaces and indexes.

# The subsystem parameter, NPGTHRSH in macro DSN6SPRM, controls whether
# DB2 uses special access path selection for tables under a given size.

# The subsystem parameter, IMMEDWRI in macro DSN6GRP, controls at the DB2
# member level when DB2 writes updated group buffer pool dependent pages. This
# option only applies to data sharing environments.

Several important subsystem parameters have been moved to installation panels
(see Table 25). As a result, the values you choose for these parameters are used
during migration to a new release of DB2.

Table 25. Subsystem parameters that are moved to installation panels

Subsystem
parameter

Panel Field name

BMPTOUT DSNTIPI IMS BMP TIMEOUT

DESCSTAT DSNTIPF DESCRIBE FOR STATIC

DLDFREQ DSNTIPN LEVELID UPDATE FREQ

DLITOUT DSNTIPI DL/I BATCH TIMEOUT

HOPAUTH DSNTIP5 AUTH AT HOP SITE

PCLOSEN DSNTIPN RO SWITCH CHKPTS

PCLOSET DSNTIPN RO SWITCH TIME

RELCURHL DSNTIP4 RELEASE LOCKS

RETLWAIT DSNTIPI RETAINED LOCK TIMEOUT

 Release incompatibilities
# Maintenance level requirements: The following enhancements require a higher
# maintenance level as described in DB2 Program Directory number GI10-8182-02
# than the base Version 6 maintenance level as described in DB2 Program Directory
# number GI10-8182-01:

#  � External savepoints

#  � Identity columns

# � Declared temporary tables

# � Deferred define dataset

# � Subselect on the SET clause of an UPDATE

# � VARCHAR_FORMAT and TIMESTAMP_FORMAT built-in functions

#  � IFI consolidation

# To determine whether a DB2 subsystem supports these functions, take the
# following actions:

# � For a connection to a remote subsystem, after you execute a CONNECT
# statement, check for SQLERRP value in the SQLCA. The value must be
# DSN06011.

  Chapter 8. Planning for migration and fallback 237



  
 

# � For a connection through RRSAF or CAF, after you execute an IDENTIFY call
# (for RRSAF) or CONNECT call (for CAF), check the RIBCNUMB and
# RIBCINFO fields in the RIB. RIBCNUMB must be 1 and RIBCINFO must be
# DSN06011.

This section describes changes that might affect your DB2 operations after
migrating to Version 6 of DB2 for OS/390.

Adjust application programs
You might need to modify your application programs because of the following
release incompatibilities.

SQLCODE -101: After migrating to DB2 Version 6, you might receive SQLCODE
-101 on long or complicated SQL statements that previously executed successfully.
This is possible because SQL statements and DB2 internal structures are buffered
in the same local storage, and release changes in the internal structures can result
in less storage being available for the SQL statements.

| Rewrite the unsuccessful SQL statements by using correlated references, breaking
| up UNIONs, or using OUTER JOINs.

| SQLCODE +802: In Version 6, if an arithmetic overflow occurs when DB2
| evaluates the arguments of a VALUE or COALESCE function, DB2 returns
| SQLCODE +802. In Version 5, DB2 returned SQLCODE 0 under those
| circumstances.

# No colon on a host variable is an error: All host variable references must have
# the leading colon. If you neglect to use a colon to designate a host variable, the
# precompiler issues a DSNH104I message or interprets the host variable as an
# unqualified column name, which might lead to unintended results. The host variable
# without a colon is interpreted as a column name when the host variable is
# referenced in a context in which a column name can also be referenced.

# Changed format for DSN messages: The DSN message identifiers can now be 8
# or 9 characters long. The message identifier formats are DSNcnnnI and
# DSNcnnnnI. To accommodate the longer message identifier, the message text will
# begin in column 13 for all DSN messages. If you have applications that scan the
# text of DSN messages, you might have to modify them.

| Changed format for message DSNU050I: Certain formatting problems in
| message DSNU050I have been corrected in Version 6. The message formats
| differently in Version 6 than it did in previous versions. If you have applications that
| scan the text of message DSNU050I, you might have to modify them.

SQL reserved words: Version 6 has several new SQL reserved words. Refer to
DB2 SQL Reference for the list, and adjust your applications accordingly.

| Using the Euro symbol: New CCSIDs that support the Euro symbol have been
| added to DB2. See Appendix A in DB2 Installation Guide for details on the coded
| character set identifiers.

Using aliases: Before Version 6, aliases were known locally. Now, if remote
aliases are used in SQL, they should be defined at the server site. With SET

238 Release Planning Guide  



  
 

statements that assign a host variable with the value of a special register, the host
variable is only assigned the local value.

QUIESCE return code: The QUIESCE utility command produces a return code of
4 for duplicate names in the list of table spaces that are to be quiesced. This is a
change from a return code of 8. The QUIESCE processing continues, and the table
space is quiesced only once.

| DSNH message ID lengths: DSNH messages can be 8, 9, or 10 characters long.
| Existing messages in Version 6 will not be modified to use the longer length.

Positive SQLCODE from PREPARE: A return code greater than zero can be
returned from a PREPARE statement if your migrated application is using predictive
governing or query optimization hints.

| Changed SQLSTATEs: For SQLCODE +2000 change the SQLSTATE to 01638.
| For SQLCODE +655 change the SQLSTATE to 01597. For SQLCODE +466
| change the SQLSTATE to 0100D. For SQLCODE +464 change the SQLSTATE to
| 0100E. For SQLCODE -470 change the SQLSTATE to 39004. For SQLCODE
| -751 change the SQLSTATE to 38003. For SQLCODE -30081 change the
| SQLSTATE to 08001. For a complete listing of SQLSTATEs, see Appendix C of
| DB2 Messages and Codes.

| New meaning for SQLCODE: SQLCODE -120 has been expanded to include a
| WHERE clause, SET clause, VALUES clause, or a SET ASSIGNMENT statement
| that includes a column function.

New DBPROTOCOL option: Applications may be affected by the new
DBPROTOCOL option which is both a subsystem parameter and a bind parameter.
If the DBPROTOCOL option is not coded on the BIND, the value listed in the
subsystem parameter DBPROTCL will be used. For plans and packages to execute
the same as they did in Version 5, they may need to be rebound depending on the
DBPROTOCOL value selected. In prior releases, remote access by name resulted
in the use of DB2 Private Protocol to communicate with a remote DB2 for OS/390
site. Remote access with the CONNECT statement used the DRDA database
protocol. Users can now specify which protocol to use when communicating with
the remote server.

Changed default for RELCURHL subsystem parameter: Use the RELCURHL
subsystem parameter to indicate whether you want DB2 to release a data page or
row lock at COMMIT for the row on which a cursor that is defined WITH HOLD is
positioned. In Version 5, the default value was NO. Although this particular row or
page lock is not necessary for maintaining cursor position, NO was provided as a
default for existing applications that relied on that data lock. In Version 6,
RELCURHL is a field on installation panel DSNTIP4. The field name is RELEASE
LOCKS, and the default is changed to YES to provide for better concurrency. If you
still require the lock, specify NO for RELEASE LOCKS.

| Changed default for DYNAMICRULES(BIND) as specified in subsystem
| parameter DYNRULS: In earlier releases, the default for the DYNRULS subsystem
| parameter is NO. NO means that the values of the precompiler options are used for
| dynamic SQL statements in plans or packages bound with
| DYNAMICRULES(BIND). For Version 6, the default is YES. YES means the
| application programming (DSNHDECP) defaults will be used for dynamic SQL

  Chapter 8. Planning for migration and fallback 239



  
 

| statements in plans or packages bound using DYNAMICRULES bind, define, or
| invoke behavior.

Changed default for PTASKROL subsystem parameter: In Version 5, the default
for the PTASKROL subsystem parameter is NO, which means that each parallel

| task produces its own accounting trace record . For Version 6, the default is YES,
which means that the originating task cuts an additional accounting trace record
with all the roll up values from parallel tasks.

Using new column called CLUSTERRATIOF: The CLUSTERRATIOF column has
been added to SYSINDEXES and SYSINDEXSTATS. After migration this column
will have a default value until it is updated by RUNSTATS or some other
application. If the optimizer sees the default value in CLUSTERRATIOF, it will use
the value in CLUSTERRATIO.

| Support for large objects: The following incompatibilities result from the
| expansion of the SQLDA to support large objects:

| � Because of the additional data types supported in Version 6, the host language
| statements generated by the precompiler for each SQL statement include a
| larger parameter list. As a result, the size of the object code that results from
| compiling the output of the precompiler increases. This increase varies
| according to the number of host variables that are specified in an SQL
| statement.

| � INCLUDE SQLDA generates additional fields for applications written in
| assembler, PL/I, C, and C++ (see Appendix C of DB2 SQL Reference for
| descriptions of these fields). If an SQL application program written in one of
| those languages defines a name that matches any symbol in the additional
| fields, and the program also uses INCLUDE SQLDA, then that program might
| not operate, assemble, or compile correctly.

| A technique for reducing the number of matching columns no longer works:
| Section 5 (Volume 2) of DB2 Administration Guide formerly described a technique
| for reducing the number of matching columns for an index by changing equal
| predicates to BETWEEN predicates. Due to enhancements to BETWEEN predicate
| processing, this technique no longer reduces the number of matching columns. If
| you have written queries that use this technique, consider using the alternative
| technique of discouraging the use of a particular index.

# New reserved qualifer for tables, SESSION: DB2 uses a new implicit qualifier,
# SESSION for a declared temporary table. All tables with a high level qualifier of
# SESSION will be treated as a declared temporary table. You must modify any
# existing tables with a high level qualifier of SESSION to use another qualifier.

# Use the following query to identify existing tables, views, aliases, and synonyms
# that will be inaccessible because of the 'SESSION' qualifier: 

#
Product-sensitive Programming Interface

240 Release Planning Guide  



  
 

# SELECT 'TABLE', CREATOR, NAME

#  FROM SYSIBM.SYSTABLES

# WHERE CREATOR = 'SESSION' AND TYPE IN ('T', 'G', 'X')

# UNION

# SELECT 'VIEW', CREATOR, NAME

#  FROM SYSIBM.SYSTABLES

# WHERE CREATOR = 'SESSION' AND TYPE = 'V'

# UNION

# SELECT 'ALIAS', CREATOR, NAME

#  FROM SYSIBM.SYSTABLES

# WHERE CREATOR = 'SESSION' AND TYPE = 'A'

# UNION

# SELECT 'SYNONYM', CREATOR, NAME

#  FROM SYSIBM.SYSSYNONYMS

# WHERE CREATOR = 'SESSION';

# End of Product-sensitive Programming Interface

# DB2 cannot know during the bind of the plan or package whether the static SQL
# statement that references a table name qualified by SESSION is for a persistent
# base table or for a declared temporary table. These static SQL statements will be
# incrementally bound at run-time when the static SQL statement is issued.

Examine all new and changed values for DB2I panels
The DB2I default panels DSNEOP01 and DSNEOP02, will not be initialized with the
values specified during the installation CLIST process during a migration. The DB2I
panel variables in the ISPF profile from the previous release will be used on the
current release. Any customized DSNEPROF members will be migrated from
Version 5 to Version 6. However, you must examine any new or changed default
panel values to ensure that your customized values are still valid.

Changes to the RLST
The RLST has new optional columns and a new search order for the index. You
can use an RLST that has been defined from a release earlier then Version 6 (the
RLST index is in ascending order, and no new columns exist), but you cannot do
predictive governing, and you cannot take advantage of the performance
improvements with the new descending index. You can alter an existing RLST to

| add the new columns and change the definition of the index. Migration job
| DSNTIJSG modifies your existing RLST.

SYSIBM.SYSPROCEDURES no longer used
The SYSIBM.SYSPROCEDURES catalog table is no longer used to define stored
procedures to DB2. During catalog migration, all rows in
SYSIBM.SYSPROCEDURES are automatically migrated to the new
SYSIBM.SYSROUTINES catalog table and to SYSIBM.SYSPARMS.

In Version 6, you use the CREATE and ALTER PROCEDURE statements to define
stored procedures. To prepare for fallback, or to run in a coexistence environment
for data sharing, you must modify the SYSPROCEDURES catalog table to match
the updates to SYSROUTINES and SYSPARMS that those CREATE statements
make.

  Chapter 8. Planning for migration and fallback 241



  
 

An 'X' plan in the PLAN_TABLE
If you rebind a parallel group that is capable of Sysplex query parallelism to Version
6, and only one DB2 data sharing member is active, a single-CEC parallel plan is
developed, and an X is placed in column PARALLEL_MODE of table PLAN_TABLE
instead of the C that was used in Version 5. If you do not want the X, bind the plan
or package on a member that is installed with COORDINATOR=NO. The X for
column PARALLEL_MODE means that all available assisting DB2 members are to
be used at run time. To take advantage of this change, you need to rebind all static
plans that have a PARALLEL_MODE of X after migrating.

Limit backouts with system restarts
An incompatibility exists if you use the AUTO setting of LIMIT BACKOUT on
installation panel DSNTIPN. The purpose of the setting is so that you can indicate
that you want DB2 to postpone some of the back-out work that is usually performed
during system restart. The default setting, AUTO, is recommended. However, be
aware that after restart, some objects (table spaces, index spaces, or partitions)
might be unavailable until the automatically started process completes the back-out
work. In releases prior to Version 6, all of DB2 was unavailable until the back-out
work was completed.

Changes to IFCID fields
The following IFCID fields are no longer set by DB2:

 � QWACBSRB
 � QWACESRB
 � QWACASRB
 � QW0148SB
 � QW0148SE

See Appendix F, “New and changed IFCIDs” on page 295 for a complete listing of
changes to IFCIDs.

| DISPLAY BUFFERPOOL changes
| The DISPLAY BUFFERPOOL command syntax and output have changed. The new
| command provides more data sharing information required for understanding the
| level of inter-system sharing taking place. The DISPLAY BUFFERPOOL output no
| longer issues messages DSNB450I, DSNB451I, and DSNB452I. Several new
| messages with expanded information are generated by this command. For details
| on the changes see the DISPLAY BUFFERPOOL command in DB2 Command
| Reference.

|  Index changes
| Indexes that have been altered, rebuilt, reorganized, or newly created can increase
| in size by one page per nonpartitioned index or one page per index partition. The
| leaf distribution column (LEAFDIST) value in SYSINDEXPART may increase for
| indexes that have been altered, rebuilt, reorganized, or newly created.

242 Release Planning Guide  



  
 

ALTER INDEX syntax
In Version 6, ALTER INDEX is more flexible in allowing multiple PART clauses to
be specified in a single ALTER INDEX statement. Existing ALTER INDEX
statements that specify partition-level options before the PART keyword have
different results in Version 6 than in previous releases. In Version 6, when these
options are specified before the PART keyword, they apply to all partitions in the
index unless you override them with a PART specification.

For example, assume that you have the following statement to change the
FREEPAGE value to 10 for partition 1:

ALTER INDEX ixname

 FREEPAGE 1O

 PART 1;

In Version 6, this same statement changes the FREEPAGE value to 10 for all index
partitions. If you want to obtain the same results for this statement as you did in
previous releases, change the statement as follows:

ALTER INDEX ixname

 PART 1

 FREEPAGE 1O;

See DB2 SQL Reference for the correct syntax of ALTER INDEX.

RECOVER INDEX becomes REBUILD INDEX
Before migrating to Version 6, ensure that you have applied APAR PQ09842, which
enables you to change your RECOVER INDEX jobs to use the new syntax
REBUILD INDEX. In Version 6, RECOVER INDEX means to use a copy of the
index and apply log records. Thus, your old RECOVER INDEX jobs are likely to
fail. Change any existing RECOVER INDEX utility jobs to use REBUILD INDEX.
See APAR PQ09842 for more information.

Work space formulas changed for utilities
| Due to the larger table spaces and indexes available, the record header for several
| utility work data sets is lengthened by several bytes. The changed record headers

which are used in several formulas for estimating work data set size affects the
following utilities:

 � CHECK DATA

 � CHECK INDEX

 � LOAD

 � REBUILD INDEX

 � REORG

| The new calculations are explained in DB2 Utility Guide and Reference under the
| topic for defining work data sets for each utility.

  Chapter 8. Planning for migration and fallback 243



  
 

| Support for up to 150000 connections
To support up to 150000 connections, the token for displaying LUWIDs for
DISPLAY THREAD is now a 6–digit decimal number.

| Change to parameter in IRLMPROC startup procedure
| The GROUP parameter in the IRLMPROC startup procedure has been changed to
| IRLMGRP. Be sure to use the IRLMGRP parameter instead of the GROUP
| parameter to prevent JCL errors during IRLM startup.

 Release coexistence
This section describes changes that might affect your DB2 operations after
migrating to Version 6 of DB2 for OS/390.

Coexistence in a distributed data environment
DB2 for OS/390 communicates in a distributed data environment with DB2 Version
2 Release 3 and later, using either DB2 private protocol access or DRDA access.
However, the distributed enhancements and the new object data types and that are
introduced in this release of DB2 for OS/390 can be used only when using DRDA
access.

Other DRDA partners at DRDA level 4 can also take advantage of the functions
introduced in Version 6 of DB2 for OS/390.

Coexistence in a data sharing environment
DB2 can support both Version 5 and Version 6 members in a data sharing group.

When developing your migration plan, keep in mind that new functions introduced
in this release are not available to members of the group who have not yet
migrated.

Coexistence considerations for BIND options
If DSN is under Version 6 and if the DB2 member that is named in the DSN
command is Version 5, a BIND or REBIND subcommand that uses any of the
following options is rejected:

| � OPTHINT (non-blank) for BIND PLAN or PACKAGE

� OPTHINT (any value) for REBIND PLAN or PACKAGE

� DBPROTOCOL(DRDA) for BIND PLAN or PACKAGE

� DBPROTOCOL (any value) for REBIND PLAN or PACKAGE

| � The DYNAMICRULES values of DEFINEBIND, DEFINERUN, INVOKEBIND, or
| INVOKERUN for BIND and REBIND PACKAGE

� PATH for BIND and REBIND PLAN or PACKAGE

� PATHDEFAULT for REBIND PLAN or PACKAGE

� REBIND TRIGGER PACKAGE

To avoid problems, make sure the DB2 subsystem named in the DSN
subcommand matches the load libraries that are used for the DSN command.

244 Release Planning Guide  



  
 

# If you chose a default value of DRDA for DATABASE PROTOCOL on panel
# DSNTIP5, and your DB2 Version 6 subsystem is in a data sharing group with DB2
# subsystems that are at previous release levels, you need to bind the plans for
# DB2-supplied applications such as SPUFI and DCLGEN with the
# DBPROTOCOL(PRIVATE) option so that those applications are accessible to
# non-Version 6 members of the data sharing group. Edit the BIND commands for
# DB2-supplied applications in job DSNTIJSG.

| Coexistence considerations for specific capabilities
The purpose of this section is to clarify how some of the new Version 6 functions
work (or not) when there are mixed releases in the data sharing group. These
considerations are similar to those you have to understand for the fallback
environment. Objects that are frozen in fallback are not accessible from a Version 5
subsystem.

New page sizes: Table spaces that use an 8-KB or 16-KB buffer pool are not
available to Version 5 members. You cannot issue the ALTER or DISPLAY
BUFFERPOOL commands for those buffer pools from a Version 5 system.

| New built-in functions: DB2 uses the new CURRENT LOCALE LC_CTYPE
| special register when evaluating the TRANSLATE, UPPER, and LOWER scalar
| functions.

New GBPCACHE options: Table spaces or indexes that are defined with
GBPCACHE NONE or GBPCACHE SYSTEM are not available to Version 5
members. Table spaces that are defined in a buffer pool defined with GBPCACHE
NO are also not available to Version 5 members.

TRACKMOD options: If you try to use COPY from a Version 5 member for a table
space defined with TRACKMOD NO, the result will always be a full image copy. If
you change from TRACKMOD NO to TRACKMOD YES and then try to copy from a
Version 5 member, the first copy will be a full image copy.

New resource limit facility columns for predictive governing: If you populate
the new columns in the resource limit facility table, those columns are ignored on a
Version 5 member. There is no predictive governing on a Version 5 members.

Populating DSN_STATEMNT_TABLE: You cannot use EXPLAIN to populate the
DSN_STATEMNT table from a Version 5 member.

Duplexed group buffer pools: Do not start duplexing until all members of the
group are at the level of DB2 and OS/390, and until the group buffer pool is
allocated in a coupling facility with coupling facility control code level 5 or higher.
No Version 5 members can connect to a duplexed group buffer pool. A Version 6
member that is not running on an OS/390 system at the correct level cannot
connect to a duplexed group buffer pool.

If any downlevel members are connected to a group buffer pool, duplexing cannot
start for that group buffer pool until all downlevel members are disconnected from
the group buffer pool.

Postponed backout processing: A Version 5 member cannot request limited
backout processing. However, if you enter a DISPLAY DATABASE command on a

  Chapter 8. Planning for migration and fallback 245



  
 

Version 5 subsystem, it is possible for that display to show the advisory
restart-pending (AREST) state of page sets that can result when Version 6
members use postponed backout processing.

Similarly, if you issue a DISPLAY GROUP command on a Version 5 subsystem, a
member that is both active and has indoubt URs is displayed as ACTIVE (they are
displayed as 'A I' on a Version 6 subsystem).

The meaning of the 'Q I' status is slightly different for Version 5 and Version 6
members in the display. For a Version 6 member, it can indicate that postponed
abort URs are present.

Optimization hints: Although a Version 5 member can use a Version 6
PLAN_TABLE, it cannot use any hints that you've added to the PLAN_TABLE. If a
static statement is bound using optimization hints, that statement can be executed
on a Version 5 member as long as that statement has no other release
dependencies. The static statement can also run on another Version 6 member that
does not have optimization hints enabled.

For dynamic statements, hints are only used if the subsystem that the statement is
running on has enabled optimization hints.

Changing partitioning values: You cannot issue the ALTER INDEX statement
with the VALUES clause from a Version 5 member. Also, while a table space has
any partitions in REORG pending, that entire table space cannot be accessed from
a Version 5 member. However, you can run REORG TABLESPACE from the
Version 5 member to turn off the REORG pending state and to rebalance the
partitions.

Data sets that use extended addressability: The following objects are not
available from a Version 5 member:

� Partitioned table spaces with a DSSIZE greater than 4 GB
� Partitioning indexes for those partitioned table spaces
� Nonpartitioning indexes created with a PIECESIZE value greater than 4 GB

Nonpartitioning indexes of greater than 128 pieces: As of Version 6, your
nonpartitioning index can grow to 254 pieces (from a previous limit of 128). As long
as that nonpartitioning index is not for an EA-enabled table space, you can still
access a nonpartitioning index of more than 128 pieces.

Change RECOVER INDEX to REBUILD INDEX: As of Version 6, you must use
the syntax REBUILD INDEX to build an index from data. RECOVER INDEX is used
to recover an index from an image copy of the index and with log record updates.
Install APAR PQ09842 on your Version 5 subsystems and change utility JCL to use
the REBUILD INDEX syntax so that you can run the JCL on any subsystem on the
group and to avoid confusion over the fact that RECOVER INDEX works differently
on Version 5 than it does in Version 6.

Sysplex query parallelism: If a plan or package that uses Sysplex query
parallelism is bound on Version 6, then DB2 will not distribute queries to Version 5
subsystems. If the plan or package is bound on Version 5, though, queries can be
distributed to both Version 5 and Version 6 subsystems.

246 Release Planning Guide  



  
 

Revoking SYSADM or SYSCTRL in Version 5: If SYSADM or SYSCTRL grants
privileges on new objects in Version 6, you cannot revoke SYSADM or SYSCTRL
from a Version 5 subsystem. This operation is disallowed on Version 5 because the
revoke cascades, and a DB2 Version 5 is not aware of the new objects or
privileges in Version 6. You must issue the revoke from a Version 6 subsystem.

Preparing for fallback
You can fall back to DB2 for OS/390 Version 5 after migrating to Version 6. This
section highlights fallback considerations for Version 6. If you experience a severe

| application or performance error and want to return to Version 5, follow the detailed
step-by-step instructions in DB2 Installation Guide.

To avoid complications, do not use the new DB2 for OS/390 Version 6 facilities
until you are certain that you will not need to fall back. You can save your Version
6 TSO LOGON procedures and JCL for remigration to Version 6.

To fall back to Version 5:

1. Run Phase 0 of the Version 6 installation verification procedure.
2. Stop DB2 Version 6 activity.
3. Reactivate Version 5.
4. Reconnect TSO, IMS, and CICS to Version 5.
5. Start DB2 Version 5.
6. Verify fallback by running the DB2 sample applications or your own

applications.

After fallback to Version 5, plans or packages that were bound in Version 6 will be
automatically rebound the first time they run in Version 5.

If you fallback and then try to use frozen plans or packages, the automatic rebind in
Version 5 fails. To make the plans and packages that were not automatically
rebound on Version 5 available, change the SQL statements or remove the
reference to a frozen object, precompile the application programs, and explicitly
BIND the plans and packages on Version 5.

 Frozen objects
Falling back does not undo changes that were made to the catalog during migration
to Version 6. The migrated catalog is used after fallback. Some objects in this
catalog that have been affected by Version 6 function might become frozen objects
after fallback. Frozen objects are unavailable, and they are marked with the release

# dependency marker I or J . If an object is marked with a release dependency, it is
never unmarked. The release dependency marker is listed in the IBMREQD column
of catalog tables.

In general, objects that depend on the new facilities of DB2 for OS/390 Version 6
are frozen after you fall back to Version 5 until you remigrate to Version 6.
Table 26 on page 248 lists the objects that are frozen when falling back to Version

# 5. They are marked with the release dependency marker, I or J.

  Chapter 8. Planning for migration and fallback 247



  
 

Plans and packages become frozen objects when they use new SQL syntax, new
BIND options or attributes, or reference frozen objects. When plans and packages
become frozen objects, the automatic rebind process is adversely affected.

Product-sensitive Programming Interface

While operating in Version 5, you can determine if any of your objects are frozen by
issuing the following SELECT statements:

Table 26. Objects that are frozen when falling back to DB2 for OS/390 Version 5

RELEASE DEPENDENCY MARKER = I or J

� Plans that use any new syntax or objects(1)

� Packages that use any new syntax or objects(1)

� Tables and views with triggers

� 8 KB and 16 KB table spaces and associated indexes(2)

� Plans or packages that reference user-defined functions

| � Plans or packages that use any of the new bind options such as
| DBPROTOCOL(DRDA)(3).

 � Trigger packages

� Tables with LOB columns

� LOB table spaces

 � Auxiliary tables

� Indexes on auxiliary tables

� Tables with columns using the ROWID data type

� Tables that are defined with a user-defined type

# � Tables defined with identity columns

| � Any table space with a DSSIZE greater that 4GB and their partitioning indexes and
| nonpartitioning indexes with PIECESIZE greater than 4GB.

Notes: 

# 1. If a plan or package simply references a declared temporary table using the
# qualifier SESSION., but do not use a DELCARE GLOBAL TEMPORARY TABLE
# statement, the plan or package does not become frozen.

2. The table spaces are marked with a release dependency. The indexes are not
marked with a release dependency but are unavailable after fallback due to their
association with the table spaces.

3. The release dependency is marked whether the DBPROTOCOL(DRDA) option is
specified on bind, rebind, or is the default defined in the subsystem parameter.

248 Release Planning Guide  



  
 

# SELECT NAME FROM SYSIBM.SYSPLAN

# WHERE IBMREQD = 'I' OR IBMREQD = 'J';

# SELECT LOCATION, COLLID, NAME, VERSION FROM SYSIBM.SYSPACKAGE

# WHERE IBMREQD = 'I' OR IBMREQD = 'J';

# SELECT CREATOR, NAME FROM SYSIBM.SYSVIEWS

# WHERE IBMREQD = 'I' OR IBMREQD = 'J';

# SELECT CREATOR, NAME FROM SYSIBM.SYSINDEXES

# WHERE IBMREQD = 'I' OR IBMREQD = 'J';

# SELECT CREATOR, NAME, TYPE FROM SYSIBM.SYSTABLES

# WHERE IBMREQD = 'I' OR IBMREQD = 'J';

# SELECT DBNAME, NAME FROM SYSIBM.SYSTABLESPACE

# WHERE IBMREQD = 'I' OR IBMREQD = 'J';

End of Product-sensitive Programming Interface

Other fallback considerations
Before you fall back to Version 5, you must be aware of the following
considerations:

� You should remove all restrictive states from a table space before falling back.

� You should alter indexes with the COPY NO option before falling back to
Version 5.

After you have fallen back to Version 5 and you are operating on that subsystem,
you must be aware of the following operational considerations:

� Any stored procedures created with the Version 6 CREATE PROCEDURE
statement will be unavailable when you fall back to Version 5.

| � After you fall back to Version 5, you can not use any frozen objects as listed in
| 248.

� You can use the Version 6 RLST after falling back, but you cannot take
advantage of the predictive governing features.

� If any log records are found for LOBs, the applicable pages for the LOB table
space are placed in the LPL.

� You can use your Version 6 PLAN_TABLE after falling back, but you cannot
take advantage of the optimization hints that you have added to the
PLAN_TABLE.

� You must use the Version 5 COPY and RECOVER utility jobs for backup and
recovery after fallback.

� Falling back causes postponed abort units of recovery (URs) to be treated as
inabort or inflight.

� A CREATE or ALTER DATABASE or TABLESPACE that specifies an 8 KB or
16 KB buffer pool name does not work after falling back.

� If a buffer pool is defined as VPTYPE(DATASPACE) in Version 6, and you
fallback to Version 5, this buffer pool becomes a primary type buffer pool and it
is allocated with the specified VPSIZE unless the VPSIZE is larger than the
allowable 1.6 GB in which case the default VPSIZE is used.

� When you fall back to Version 5, the value in CLUSTERRATIO will be used
instead of the value in CLUSTERRATIOF.

  Chapter 8. Planning for migration and fallback 249



  
 

� Changing the length of a column of an index in Version 6 may cause an error
after falling back to Version 5. A resource unavailable message with RC
'00C9009E' occurs if the APAR to enable immediate index access has not been
applied.

� When you fallback to Version 5 and attempt to revoke SYSADM or SYSCTRL
privileges for a grantor and that revoke cascades down to Version 6 objects or
new privilege grants on Version 5 objects, the revoke will fail with message
DSNT501I.

# � When you fallback to Version 5, any Version 6 plan or package bound with
# IMMEDWRITE(YES | PH1) will use the default IMMEDWRITE(NO) behavior
# without having to be rebound.

# � In Version 6, you can use the DEFINE NO option on the CREATE
# TABLESPACE or CREATE INDEX statements to defer creating the VSAM data
# set until it is used. If the underlying VSAM data sets have not been created
# when you fall back to Version 5, you will receive an -904 SQLCODE for any
# SQL statements that refer to the table spaces and index spaces with undefined
# data sets. Do not use the REPAIR DBD or STOSPACE utilities on the
# undefined data sets.

For more information on fallback considerations, refer to DB2 Installation Guide.

|  Installation changes
This section shows the panels used by the installation CLIST to customize the jobs
you use to install or migrate to Version 6. This section also lists the changes to
installation jobs, SMP/E jobs, and sample jobs.

In Version 6, you can also install DB2 for OS/390 from a Windows NT or OS/2
workstation with the DB2 Installer feature.

Version 6 panels
Table 27 shows the panels for DB2 for OS/390 Version 6 installation and migration.
With the addition of the new functions in Version 6, several panels have been
modified and new fields have been added. The new and modified panels have a
'yes' listed under the Panel modified column in Table 27.

| Table 27 (Page 1 of 2). Version 6 installation and migration panels

| Panel ID| Panel title
| Panel
| modified

| DSNTIPA0| Online Book Data Set Names
| DSNTIPA1| Main Panel
| DSNTIPA2| Data Parameters
| DSNTIPK| Define Group or Member (1)

| DSNTIPH| System Resource Data Set Names
| DSNTIPT| Data Set Names Panel 1| yes
| DSNTIPU| Data Set Names Panel 2| yes
| DSNTIPQ| Data Set Names Panel 3| yes
| DSNTIPG| Data Set Names Panel 4| yes
| DSNTIPW| Data Set Names Panel 5| yes
| DSNTIPD| Sizes Panel 1| yes
| DSNTIP7| Sizes Panel 2| yes
| DSNTIPE| Thread Management| yes
| DSNTIP1| Buffer Pool Sizes Panel 1| yes

250 Release Planning Guide  



  
 

| Table 27 (Page 2 of 2). Version 6 installation and migration panels

| Panel ID| Panel title
| Panel
| modified

| DSNTIP2| Buffer Pool Sizes Panel 2| yes
| DSNTIP6| Buffer Pool Sizes Panel 3| yes
| DSNTIPN| Tracing and Checkpoint Parameters| yes
| DSNTIPO| Operator Functions| yes
| DSNTIPF| Application Programming Defaults Panel 1| yes
| DSNTIP4| Application Programming Defaults Panel 2| yes
| DSNTIPI| IRLM Panel 1| yes
| DSNTIPJ| IRLM Panel 2| yes
| DSNTIPP| Protection| yes
| DSNTIPM| MVS PARMLIB Updates
| DSNTIPL| Active Log Data Set Parameters| yes
| DSNTIPA| Archive Log Data Set Parameters
| DSNTIPS| Databases and Spaces to Start Automatically
| DSNTIPR| Distributed Data Facility Panel 1| yes
| DSNTIP5| Distributed Data Facility Panel 2| yes
| DSNTIPX| Routine Parameters| yes
| DSNTIPZ| Data Definition Control Support
| DSNTIPY| Job Editing# yes
| DSNTIPC| DB2 CLIST Calculations Panel 1| yes
| DSNTIPC1| DB2 CLIST Calculations Panel 2
| DSNTIPB| Update Selection Menu| yes
| Notes: 

| 1. DSNTIPK is for installing and migrating data sharing.

|  SMP/E changes
| The SMP/E process for installing DB2 has been simplified. There is a separate
| optional job for defining SMP/E data sets and zones for DB2. All required FMIDs for
| DB2 UDB for OS/390 are consolidated into one set of SMP/E jobs for receive,
| apply and accept processing. The FMIDs that have been moved into the
| consolidated set of jobs include online help, and DB2I English panels.

# Changes to installation jobs
# Installation job DSNTIJSG is modified to define a new stored procedure,
# DSNTPSMP. If you have already installed DB2, you can use job DSNTIJCC to
# define stored procedures for the DB2 Control Center. You can use job DSNTIJSQ
# to define the SQL procedures support. See . for details on enabling stored
# procedures after installation. The new stored procedures are:

# DSNACCQC
# DB2 UDB Control Center catalog query stored procedure

# DSNACCAV
# DB2 UDB Control Center partition information stored procedure

# DSNTPSMP
# SQL procedures processor stored procedure

  Chapter 8. Planning for migration and fallback 251



  
 

| Changes to sample jobs
| With the addition of the new functions in Version 6, several existing sample jobs
| have been modified and several new jobs added. The new and changed sample
| jobs are listed in Table 28.

| Table 28. New and modified sample jobs

| Sample job| New or modified

| DSNTEJ0| modified

| DSNTEJ1L| new

| DSNTEJ1P| modified

| DSNTEJ2U| new

| DSNTEJ6S| modified

| DSNTEJ6T| modified

# DSNTEJ63# new

# DSNTEJ64# new

# DSNTEJ65# new

| DSNTEJ7| new

| DSNTEJ71| new

| DSNTEJ73| new

| DSNTEJ75| new

252 Release Planning Guide  



  
 

Appendix A. Changes to commands

This appendix provides an overview of the new and changed commands in Version
6 of DB2 for OS/390:

“New commands” 
Table 30 on page  254 

The purpose of the appendix is to highlight the major changes. For complete
information on all the changes, such as the syntax for new or changed commands
see DB2 Command Reference.

 New commands
“New commands” shows the new commands in Version 6.

Table 29. New commands

Command name Description

DISPLAY FUNCTION SPECIFIC (DB2) Displays statistics about external user-defined functions that
DB2 applications access

DISPLAY LOG (DB2) Displays log information and the status of the off-load task.

MODIFY irlmproc, DIAG, DELAY (MVS IRLM) Initiates diagnostic dumps for IRLM subsystems in a data
sharing group when responses to XES requests take longer
than 45 seconds.

MODIFY irlmproc, SET (MVS IRLM) Dynamically sets the maximum CSA allowed for IRLM and the
number of trace buffers allowed for IRLM

REBIND TRIGGER PACKAGE (DSN) Can be used to do the following:

� Rebind a package that was created when DB2 executed a
CREATE TRIGGER statement.

� Change a limited subset of the default bind options that
DB2 used when creating the package.

� Re-optimize its SQL statements after you create a new
index or use the RUNSTATS utility.

� Rebind a package if it has been marked invalid because an
index, or another object it was dependent on, was dropped.

RECOVER POSTPONED (DB2) Completes back-out processing for units of recovery that are left
incomplete during an earlier restart (POSTPONED ABORT units
of recovery). Use this command when automatic resolution was
not selected.

SET LOG (DB2) Until restart, modifies the checkpoint frequency specified during
installation. This command also overrules the value that was
specified in a previous invocation of the SET LOG command.

START FUNCTION SPECIFIC (DB2) Activates an external function that is stopped.

STOP FUNCTION SPECIFIC (DB2) Prevents DB2 from accepting SQL statements with invocations
of the specified functions.

 Copyright IBM Corp. 1999  253



  
 

 Changed commands
As shown in Table 30, many existing commands have new and changed options.

Table 30 (Page 1 of 7). Changes to existing commands

Command Description of enhancements and notes

ALTER BUFFERPOOL New option:

PGSTEAL

Changed options:

VPSIZE
HPSIZE

PGSTEAL specifies the page stealing algorithm DB2 uses for the virtual buffer pool
(LRU, FIFO). VPSIZE, HPSIZE and (bpname) are changed to support 8-KB and
16-KB page sizes.

ALTER
GROUPBUFFERPOOL

New option:

GBPCACHE

GBPCACHE specifies whether (gbpname) is used for both caching data and
cross-invalidation, or just for cross-invalidation (YES, NO). (gbpname) has been
change to support 8-KB and 16-KB page sizes.

BIND and REBIND
PACKAGE

New options:

DBPROTOCOL
OPTHINT
PATH
PATHDEFAULT (REBIND only)

Changed option:

DYNAMICRULES

DBPROTOCOL Directs DB2 to use either DRDA or PRIVATE protocol when it
connects to a remote site that is identified by a three-part name statement.
DYNAMICRULES accepts four new values, DEFINEBIND, DEFINERUN,
INVOKEBIND, or INVOKERUN, to determine what rules apply to dynamic SQL
statements issued within a stored procedure or user-defined function. OPTHINT
controls whether query optimization hints are used for static SQL. PATH determines
the SQL path that DB2 uses to resolve unqualified names for the following items:

� Stored procedure names in CALL statements

� User-defined distinct types

 � User-defined functions

PATHDEFAULT resets the PATH to the default value (REBIND only).

254 Release Planning Guide  



  
 

Table 30 (Page 2 of 7). Changes to existing commands

Command Description of enhancements and notes

BIND and REBIND PLAN New options:

DBPROTOCOL
OPTHINT
PATH
PATHDEFAULT (REBIND only)

DBPROTOCOL Directs DB2 to use either DRDA or PRIVATE protocol when it
connects to a remote site that is identified by a three-part name statement.
OPTHINT controls whether query optimization hints are used for static SQL. PATH
determines the SQL path that DB2 uses to resolve unqualified names for the
following items:

� Stored procedure names in CALL statements

� User-defined distinct types

 � User-defined functions

PATHDEFAULT resets the PATH to the default value (REBIND only).

Bind Options New options:

DBPROTOCOL
OPTHINT
PATH
PATHDEFAULT (REBIND only)

Changed option:
DYNAMICRULES

See BIND and REBIND PLAN for a description of enhancements.

DISPLAY BUFFERPOOL New options:

GBPDEP
CASTOWNR

Changed options:

LIST
LSTATS

GBPDEP indicates whether to restrict the list of data sets to those that are
group-buffer-pool-dependent. CASTOWNR indicates to restrict the list of data sets to
those for which this DB2 member is the castout owner.

LIST lists the open index spaces and the table spaces associated with the buffer
pools included in the report. Basic information is provided for non-data-sharing
systems while more detail is provided if data-sharing is active. LSTATS lists data set
statistics for the open index spaces and table spaces associated with the buffer
pools included in the report. The statistics displayed are incremental since the last
time they were displayed.

  Appendix A. Changes to commands 255



  
 

Table 30 (Page 3 of 7). Changes to existing commands

Command Description of enhancements and notes

DISPLAY DATABASE New option:

ADVISORY

Changed options:

SPACENAM
AFTER
RESTRICT

ADVISORY limits the display to indexes and table spaces to which read/write
access is allowed, but for which some action is recommended. SPACENAM has
been enhanced so that you can write space-name like database-name to designate
a partial name, including a beginning or ending pattern-matching character (*), a
pattern-matching character between two strings, or any combination of these.

Message DSNT392I status information: The new status codes displayed by the
DISPLAY DATABASE command and their respective descriptions are as follows:

ACHKP
Indicates an error in the LOB column of the base table space. The base
table space is in the auxiliary CHECK pending restrictive state.

AUXW
Either the base table space in the auxiliary warning advisory state, indicating
an error in the LOB column, or the LOB table space is in the auxiliary
warning advisory state, indicating an invalid LOB.

CHKP The object (a table space, a partition within a table space, or an index) is in
the CHECK pending state.

ICOPY
The index space is in the informational COPY pending advisory state.

PSRBD
The index space is in page set rebuild pending status.

RBDP The object (an index space, index partition or logical index partition) is in
rebuild pending status. For logical partitions, the RBDP status can appear as
RBDP*.

REORP
The data partition is in the REORG pending state.

RESTP
The table space or index space is in the restart pending state.

256 Release Planning Guide  



  
 

Table 30 (Page 4 of 7). Changes to existing commands

Command Description of enhancements and notes

DISPLAY
GROUPBUFFERPOOL

Changed option:

TYPE(NOCACHE)

TYPE(NOCACHE) displays group buffer pools that have the GBPCACHE attribute
set to NO.

New information in the Summary Report is as follows:

DUPLEX
Indicates the current option for the group buffer pool specified in the active
CFRM policy.

DUPLEXING STATUS
Indicates the current state of the group buffer pool relative to duplexing.

CFNAME, CFLEVEL
Indicates the names and level of the coupling facility in which the group
buffer pool is associated. If the group buffer pool is duplexed, this is the
coupling facility name and level associated with the primary group buffer
pool.

ICOPY
The index space is in the informational COPY pending advisory state.

REORP
The data partition is in the REORG pending state.

RESTP
The table space or index space is in the restart pending state.

New information in the Group Detail Report is as follows:

DUPLEXING STATISTICS FOR GBPn
Indicates detailed duplexing statistics.

New information in the Member Detail Report is as follows:

DUPLEXING STATISTICS FOR GBP0-SEC
Lists details of other interactions that the DB2 has with the group buffer
pool.

DELETE NAME LIST
Indicates the number of Delete List requests to delete a set of pages from
the secondary group buffer pool that have just been cast out from the
primary buffer pool.

DELETE NAME
Indicates the number of Delete Name requests to delete orphaned data
entries from the secondary group buffer pool. The DB2 member that is the
group buffer pool structure owner issues these requests if it determines that
garbage collection is necessary.

  Appendix A. Changes to commands 257



  
 

Table 30 (Page 5 of 7). Changes to existing commands

Command Description of enhancements and notes

DISPLAY PROCEDURE New options:

(schema.procedure-name)
(schema.partial-name*)

Changed options:

(procedure-name)
(partial-name*)
(*.*)

(schema.procedure-name) displays the specified stored procedure in the specified
schema. (schema.partial-name*) displays a set of stored procedures in the specified
schema that have been accessed by DB2 applications since DB2 was started. The
names of all procedures in the set begin with partial-name and can end with an
string, including the empty string. (procedure-name) displays one or more specific
stored procedure names in the SYSPROC schema. I (partial-name*) displays
information for a set of stored procedures in the SYSPROC schema that have been
accessed by DB2 applications since DB2 was started. (*.*) Displays information for
all stored procedures in all schemas that have been accessed by DB2 applications
since DB2 was started.

New output columns are as follows:

MAXQUE
The maximum number of threads that have waited concurrently for the
procedure to be scheduled since DB2 was started. DB2 resets this value to
0 each time you execute the START PROCEDURE command.

TIMEOUT
The number of times an SQL CALL statement timed out while waiting for a
request for the procedure to be scheduled. DB2 resets this value to 0 each
time you execute the START PROCEDURE command.

DISPLAY THREAD Changed option:

TYPE(POSTPONED)

TYPE(POSTPONED) displays information about units of work whose back-out
processing has been postponed.

DSNH (TSO CLIST) and
DB2I panels

New DSNH CLIST parameters:

PDBPROTOCAL
PDYNAMICRULES
POPTHINT
PPATH

New DSN BIND PACKAGE subcommand keywords:

DBPROTOCOL
DYNAMICRULES
OPTHINT
PATH

258 Release Planning Guide  



  
 

Table 30 (Page 6 of 7). Changes to existing commands

Command Description of enhancements and notes

START DATABASE Changed options:

SPACENAM
ACCESS(FORCE)

SPACENAM has been enhances so you can write space-name like database-name
to designate:

� The name of a single table space or index space

� A range of names

� A partial name, including a beginning or ending pattern-matching character (*), a
pattern-matching character (*) between two strings, or any combination of these
uses.

You cannot use a partial name or range of names with the ACCESS(FORCE)
option. ACCESS(FORCE) has been changed so that FORCE cannot be used to
reset the restart pending (RESTP) state. START DATABASE ACCESS(FORCE) will
not execute as long as postponed abort or indoubt units of recovery exist, and the
command will fail issuing SQLCODE -904.

The START DATABASE command can be used to start LOB table spaces and
indexes on auxiliary tables. LOB table spaces are started independently of the base
table space with which the LOB table space is associated.

START PROCEDURE New options:

(schema.procedure-name)
(schema.partial-name*)
(*.*)

Changed options:

(procedure-name)
(partial-name*)

You can now qualify stored procedures with schema name.
(schema.procedure-name) starts the specified stored procedure in the specified
schema. (schema.partial-name*) starts a set of stored procedures in the specified
schema. The names of all procedures in the set begin with partial-name and can
end with an string, including the empty string. (*.*) marks all stored procedures in all
schemas as available to be called.procedure-name marks one or more specific
stored procedure as available to be called. partial-name* marks a set of stored
procedures in the SYSPROC schema as available to be called.

  Appendix A. Changes to commands 259



  
 

Table 30 (Page 7 of 7). Changes to existing commands

Command Description of enhancements and notes

STOP DATABASE Changed options:

SPACENAM
AT(COMMIT)

SPACENAM has been enhances so you can write space-name like database-name
to designate:

� The name of a single table space or index space

� A range of names

� A partial name, including a beginning or ending pattern-matching character (*), a
pattern-matching character (*) between two strings, or any combination of these
uses.

AT(COMMIT) marks the specified object as being in STOPP status to prevent
access from new requesters. The object is actually stopped and put in the STOP
status when all jobs release their claims on it and all utilities release their drain locks
on it. An object might remain in the STOPP status if the STOP DATABASE
command did not successfully complete processing.

The STOP DATABASE command can be used to stop LOB table spaces and
indexes on auxiliary tables. LOB table spaces are stopped independently of the
base table space with which the LOB table space is associated.

STOP PROCEDURE New options:

(schema.procedure-name)
(schema.partial-name*)

Changed options:

(procedure-name)
(partial-name*)
(*.*)

A stopped procedure does not remain stopped if DB2 is stopped and restarted. To
disable a stored procedure you can drop the procedure using the DROP
PROCEDURE SQL statement. (schema.procedure-name) identifies the fully-qualified
procedure name that is stopped. (schema.partial-name*) stops a set of stored
procedures in the specified schema. The names of all procedures in the set begin
with partial-name and can end with an string, including the empty string.

procedure-name indicates one or more specific stored procedure names to be
stopped. The procedure name is implicitly qualified with the SYSPROC schema
name.partial-name* stops a set of stored procedures in the SYSPROC schema. The
names of all procedures in the set begin with partial-name and can end with an
string, including the empty string. (*.*) Stops access to all stored procedures in all
schemas, including procedure definitions that have not yet been accessed by DB2
applications.

260 Release Planning Guide  



  
 

Appendix B. Changes to utilities

This chapter summarizes the numerous changes to utilities in Version 6 of DB2 for
OS/390:

“New utilities” 
“Changed utilities” 
“Other utility changes” on page 268

 New utilities
Table 31 shows the new utilities.

Table 31. Overview of new utilities

Utility name Description

CHECK LOB The CHECK LOB online utility can be run against a LOB table space to
identify any structural defects in the LOB table space and any invalid LOB
values.

Run the CHECK LOB online utility against a LOB table space that is marked
CHECK pending (CHKP) to identify structural defects. If none is found, the
CHECK LOB utility turns the CHKP status off.

Run the CHECK LOB online utility against a LOB table space that is in
auxiliary warning (AUXW) status to identify invalid LOBs. If none exists, the
CHECK LOB utility turns AUXW status off.

Run CHECK LOB after a conditional restart or a point-in-time recovery on all
table spaces where LOB table spaces might not be synchronized.

REBUILD INDEX REBUILD INDEX recreates indexes from the table that they reference.

Important:  You must modify all RECOVER INDEX jobs from a previous
release of DB2 to use REBUILD INDEX instead.

The REBUILD INDEX utility supports the following enhancements:

� Collect inline statistics for an index using the STATISTICS keyword.
� Rebuild indexes in parallel using the SORTKEYS keyword.
� Logically reset DB2-managed data sets using the REUSE keyword.

 Changed utilities
As shown in Table 32 on page 262, many existing DB2 for OS/390 utilities have
new and changed options.

 Copyright IBM Corp. 1999  261



  
 

Table 32 (Page 1 of 7). New and changed utility options

Utility name Description of enhancements and notes

CHECK DATA New options:

AUXERROR
| LOG

Changed option:
SCOPE

 Use the AUXERROR option of the CHECK DATA utility to detect, identify, and
| invalidate LOB column errors. If you specify the LOG NO option, CHECK DATA
| does not log any records that are deleted during the REPORTCK phase.

The SCOPE option now supports checking LOB columns in a base table space for
errors, or excluding these from being checked.

COPY New options:

# CHECKPAGE
INDEX
INDEXSPACE
PARALLEL

Changed option:
CHANGELIMIT

# Specify the new CHECKPAGE keyword to check each page in the table space or
# index space for validity. You can now take a full image copy of indexes and index

spaces that were defined with the COPY YES attribute. To improve performance for
image copies on DASD devices, use the new PARALLEL option to copy any of the
following objects in parallel:

 � Table space
� Table space partition
� Data set of a linear table space

 � Index space
� Index space partition

Specifying objects in a list is useful for copying a complete set of referentially related
table spaces after running QUIESCE.

The CHANGELIMIT option now accepts either an integer or a decimal value from 0
to 100.

DSN1COMP New options:

DSSIZE
PAGESIZE

Changed option:
LARGE

The new DSSIZE option allows you to specify the size, in gigabytes, of the input
data set. Use the PAGESIZE option to specify the size of the input data set that is
defined by SYSUT1. If you specify LARGE, then DB2 assumes that the data set has
a 4-GB boundary. The preferred method of specifying a table space defined with
LARGE is DSSIZE(4G).

262 Release Planning Guide  



  
 

Table 32 (Page 2 of 7). New and changed utility options

Utility name Description of enhancements and notes

DSN1COPY New options:

DSSIZE
LOB
PAGESIZE

Changed options:

FULLCOPY
LARGE

The new DSSIZE option allows you to specify the size, in gigabytes, of the input
data set. The new LOB option specifies that the SYSUT1 data set is a LOB table
space. Use the PAGESIZE option to specify the size of the input data set that is
defined by SYSUT1.

DSN1COPY now accepts an index image copy as input when you specify the
FULLCOPY option. If you specify LARGE, then DB2 assumes that the data set has
a 4-GB boundary. The preferred method of specifying a table space defined with
LARGE is DSSIZE(4G).

DSN1PRNT New options:

DSSIZE
LOB
PAGESIZE

Changed options:

FULLCOPY
LARGE

The new DSSIZE option allows you to specify the size, in gigabytes, of the input
data set. The new LOB option specifies that the SYSUT1 data set is a LOB table
space. Use the PAGESIZE option to specify the size of the input data set that is
defined by SYSUT1.

DSN1PRNT now accepts an index image copy as input when you specify the
FULLCOPY option. If you specify LARGE, then DB2 assumes that the data set has
a 4-GB boundary. The preferred method of specifying a table space defined with
LARGE is DSSIZE(4G).

  Appendix B. Changes to utilities 263



  
 

Table 32 (Page 3 of 7). New and changed utility options

Utility name Description of enhancements and notes

LOAD New options:

| FLOAT
| NOCOPYPEND

REUSE
STATISTICS

New options for data types in a field specification:

BLOB
CLOB
DBCLOB
ROWID

Changed option:
SORTKEYS

| Specify the new FLOAT keyword to indicate whether floating point numbers are
| provided in System/390 hexadecimal Floating Point (HPF) format, or in IEEE Binary
| Floating Point (BFP) format. NOCOPYPEND specifies that LOAD is not to set the
| table space in the COPY pending status, even though LOG NO was specified. A
| NOCOPYPEND specification will not turn on or change any informational COPY
| pending (ICOPY) status for indexes. Logically reset DB2-managed data sets with the

new REUSE keyword. Collect inline statistics for a table or index using the new
STATISTICS keyword.

Specify any of the following new data types in a field specification:

� Binary large object (BLOB)
� Character large object (CLOB)
� Double-byte character large object (DBCLOB)
� A row ID (ROWID)

Build multiple indexes in parallel using the SORTKEYS keyword.

QUIESCE New option:
TABLESPACESET

The QUIESCE utility now supports specifying a set of referentially-related table
spaces using the TABLESPACESET keyword. You can also specify a list of table
spaces and table space sets to QUIESCE, within the limits of available memory.

264 Release Planning Guide  



  
 

Table 32 (Page 4 of 7). New and changed utility options

Utility name Description of enhancements and notes

RECOVER New options:

INDEXSPACE
PARALLEL
REUSE

Compatibility with prior releases: In previous releases of DB2, REBUILD INDEX
was called RECOVER INDEX. You must modify all utility control statements from
previous releases to use REBUILD INDEX if you want to continue recovering the
indexes via a scan of the data. However, if you want to recover the indexes from a
full image copy, change those control statements to use the new RECOVER INDEX
syntax. Only indexes that were defined with the COPY YES attribute can be copied
and subsequently recovered; see “Backup and recover indexes using image copies”
on page 30 for more information about copying and recovering indexes.

Specify the new INDEXSPACE keyword to recover an index space for which a full
image copy exists. The new PARALLEL keyword allows you to recover a list of
objects in parallel. If you use the RECOVER utility to recover a table space set, then
you must ensure that you recover the entire set of table spaces, including all
indexes on auxiliary tables, to a common quiesce point or to a SHRLEVEL
REFERENCE copy. The new REUSE keyword specifies that RECOVER logically
resets and reuses DB2-managed data sets without deleting and redefining them.

REORG INDEX New options:

| DRAIN
LEAFDISTLIMIT
REPORTONLY
REUSE
STATISTICS

| TIMEOUT

| DRAIN specifies drain behavior at the end of the log phase after the MAXRO
| threshold is reached and when the last iteration of the log is to be applied.You can

determine when to run REORG INDEX by using the LEAFDISTLIMIT catalog query
option. Specify the REPORTONLY option to produce a report that indicates if a
REORG is recommended; a REORG is not performed.

Specify the REUSE keyword to enable logical reset of DB2-managed data sets.
Logically resetting data sets is faster than a delete and redefine. STATISTICS
collects inline statistics, updating the catalog tables during a reorganization.

| TIMEOUT specifies the action to be taken (ABEND or TERM) if the REORG utility
| gets a time out condition while trying to drain objects in either the LOG or the
| SWITCH phase.

  Appendix B. Changes to utilities 265



  
 

Table 32 (Page 5 of 7). New and changed utility options

Utility name Description of enhancements and notes

REORG TABLESPACE New options:

DISCARD
DISCARDDN

| DRAIN
INDREFLIMIT

| NOPAD
OFFPOSLIMIT

| PART m:n
PUNCHDDN
REPORTONLY
REUSE
STATISTICS
TIMEOUT
UNLOAD EXTERNAL

Changed option:
SORTKEYS

Specify the DISCARD option to delete rows during the REORG. The optional
DISCARDDN keyword specifies a discard data set to hold copies of records that
meet the DISCARD FROM TABLE ... WHEN criteria.

| DRAIN specifies drain behavior at the end of the log phase after the MAXRO
| threshold is reached and when the last iteration of the log is to be applied.

You can determine when to run REORG for non-LOB table spaces and indexes by
using the OFFPOSLIMIT and INDREFLIMIT catalog query options. Specify the
REPORTONLY option to produce a report that indicates if a REORG is
recommended; a REORG is not performed.

| The new NOPAD option specifies that the variable-length columns in unloaded or
| discarded records occupy the actual data length without additional padding. The
| unloaded or discarded records may have varying lengths.

You can reorganize a single partition of a partitioned table space using the PART
| keyword. You can also rebalance a range of partitions that are in REORG pending
| status using the PART m:n keyword.

Specify the PUNCHDDN keyword to designate a data set to receive the LOAD utility
control statements that are generated by UNLOAD EXTERNAL or DISCARD FROM
TABLE ... WHEN.

Specify the REUSE keyword to enable logical reset of DB2-managed data sets.
Logically resetting data sets is faster than a delete and redefine.

STATISTICS collects inline statistics, updating the catalog tables during a
reorganization.

You can maximize availability during an online REORG with SHRLEVEL CHANGE
by using the new TIMEOUT option.

You can use the UNLOAD EXTERNAL option to unload data in a format that is
acceptable to the LOAD utility of any DB2 subsystem.

The SORTKEYS option provides improved performance by sorting index keys and
building indexes in parallel.

266 Release Planning Guide  



  
 

Table 32 (Page 6 of 7). New and changed utility options

Utility name Description of enhancements and notes

REPAIR New SET TABLESPACE statement options:

NOAUXCHKP
NOAUXWARN

The SET TABLESPACE statement resets the auxiliary warning (AUXW) or auxiliary
CHECK pending (ACHKP) status for a table space or data set.

New SET INDEX statement options:

NOCOPYPEND
NOCHECKPEND

The SET INDEX statement resets the informational COPY pending (ICOPY) or
CHECK pending status for an index.

New LOCATE TABLESPACE statement options:

PART
ROWID
VERSION

Changed LOCATE TABLESPACE statement option:

PAGE

Using the LOCATE block statement, you can now specify the partition (PART) and
relative page number (PAGE) as an integer value within a table space or partitioned

| table space. Alternatively, you can specify PAGE as a hexadecimal value. ROWID
or VERSION specifies that the data to be located is a LOB in a LOB table space.
ROWID byte-string is the row ID that identifies the LOB column. VERSION
byte-string is the version number that identifies the version of the LOB column.

New LOCATE INDEX statement option:
PART

Changed LOCATE INDEX statement option:
PAGE

Using the LOCATE block statement, you can now specify the partition (PART) and
relative page number (PAGE) as an integer value within a partitioning index on a

| partitioned table space. Alternatively, you can specify PAGE as a hexadecimal
| value.

New DUMP statement options:

DATA
MAP

Use the DUMP statement to dump LOB map pages and data pages, or specify the
new MAP or DATA options to dump one or the other.

  Appendix B. Changes to utilities 267



  
 

Table 32 (Page 7 of 7). New and changed utility options

Utility name Description of enhancements and notes

REPORT New options:

ARCHLOG
INDEX
INDEXSPACE

You can now use REPORT RECOVERY to find information that is necessary for
recovering a table space, index, or a table space and all related indexes. REPORT
RECOVERY output also includes information about any indexes that are in
informational COPY pending (ICOPY) status, because this affects the recoverability
of an index. You can use the new ARCHLOG option to designate which archive log
data sets are reported. The REPORT utility also gives the LOB table spaces
associated with a base table space.

RUNSTATS Changed option:

STATISTICS

Use the STATISTICS keyword with LOAD, REBUILD INDEX, and REORG jobs to
eliminate the need to execute RUNSTATS for updating catalog statistics. If you
restart a LOAD or REBUILD INDEX job that uses the STATISTICS keyword, inline
statistics collection does not occur. To update catalog statistics, run the RUNSTATS
utility after the restarted utility job completes.

You can specify that a LOB table space is to have space statistics collected so you
can determine when the LOB table space should be reorganized. No statistics on
the LOB table space affect access path selection.

| Distribution statistics are now collected for uniform distributions as well as
| non-uniform distributions. New space statistics are collected for the SPACE, PQTY,
| and SECQTYI catalog columns in SYSIBM.SYSTABLEPART and
| SYSIBM.SYSINDEXPART.

Other utility changes
Some other Version 6 functions impact utility operations as follows:

� The CATMAINT UPDATE utility abends if you still have type 1 indexes, shared
read-only data, or data set passwords.

� The CHECK INDEX utility verifies that each LOB is represented by an index
entry in the index on the auxiliary table, and that an index entry exists for every
LOB.

� The MODIFY utility automatically removes the SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX recovery records that meet the AGE and DATE criteria for
all indexes over the table space that were defined with the COPY YES
attribute.

268 Release Planning Guide  



  
 

Appendix C. Changes to SQL

This appendix provides an overview of the new and changed SQL in Version 6 of
DB2 for OS/390:

“New SQL statements” 
“Changed SQL statements” on page  270 
“New built-in functions” on page  279 
“Changed built-in functions” on page  282 
“Other SQL language changes” on page 282

The purpose of the appendix is to highlight the major changes. For complete
information on all the changes, such as the syntax for new or changed SQL
statements, comprehensive descriptions of keywords, and examples of usage, see
DB2 SQL Reference.

New SQL statements
Table 33 shows the new SQL statements in Version 6. Many of these statements
were introduced to provide support for object-relational extensions and active data,
such as defining user-defined functions, distinct types, or triggers.

Table 33 (Page 1 of 2). New SQL statements

SQL statement Description

ALTER FUNCTION Changes the description of an external user-defined function

ALTER PROCEDURE Changes the description of a stored procedure

CREATE AUXILIARY TABLE Defines an auxiliary table for storing LOB data

CREATE DISTINCT TYPE Defines a distinct type (user-defined data type)

CREATE FUNCTION Defines a user-defined function

CREATE PROCEDURE Defines a stored procedure

CREATE TRIGGER Defines a trigger

# DECLARE GLOBAL TEMPORARY
# TABLE
# Defines a declared temporary table

DESCRIBE INPUT Puts information about the input parameters (markers) of a prepared
statement into a descriptor

FREE LOCATOR Removes the association between a LOB locator variable and its value

GRANT (Distinct Type Privileges) Grants the usage privilege on a distinct type (user-defined data type)

GRANT (Function or Procedure
Privileges)

Grants privileges on a user-defined function or a stored procedure

GRANT (Schema Privileges) Grants privileges on a schema

HOLD LOCATOR Allows a LOB locator variable to retain its association with its value beyond
a unit of work

# RELEASE SAVEPOINT# Releases a savepoint and any subsequently set savepoints within a unit of
# recovery

REVOKE (Distinct Type Privileges) Revokes the usage privilege on a distinct type (user-defined data type)

REVOKE (Function or Procedure
Privileges)

Revokes privileges on a user-defined function or a stored procedure

 Copyright IBM Corp. 1999  269



  
 

Table 33 (Page 2 of 2). New SQL statements

SQL statement Description

REVOKE (Schema Privileges) Revokes privileges on a schema

# SAVEPOINT# Sets a savepoint within a unit of recovery

SET Assignment Assigns values to host variables and transition variables

SET CURRENT LOCALE
LC_CTYPE

Assigns a value to the CURRENT LOCALE LC_CTYPE special register

SET CURRENT OPTIMIZATION
HINT

Assigns a value to the CURRENT OPTIMIZATION HINT special register

SET CURRENT PATH Assigns a value to the CURRENT PATH special register

SIGNAL SQLSTATE Signals an error with a user-specified SQLSTATE and description

VALUES Provides a method to invoke a user-defined function from a trigger

VALUES INTO Assigns values to host variables

Changed SQL statements
As shown in Table 34, many existing SQL statements have new and changed
clauses.

Table 34 (Page 1 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

ALTER DATABASE New clause:
INDEXBP

Changed clause:
BUFFERPOOL

BUFFERPOOL is changed to only identify the default buffer pool for table spaces
and to support 8-KB and 16-KB page sizes. Use the new clause INDEXBP to
specify the default buffer pool for indexes.

270 Release Planning Guide  



  
 

Table 34 (Page 2 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

ALTER INDEX New clauses:

COPY
VALUES

Changed clauses:

GBPCACHE
PIECESIZE

Deleted clauses:

CONVERT TO
DSETPASS

The new COPY clause specifies whether the COPY and RECOVER utilities are
allowed on the index.

For partitioning indexes, the statement is enhanced to allow more than one partition
to be altered in a single ALTER statement, allowing you to alter some or all of the
partitions in one statement. In addition, the VALUES clause is supported to change
the index key for a partition. For nonpartitioning indexes defined on EA-enabled
table spaces, changes to PIECESIZE enable a larger maximum piece size to be
specified.

In a data sharing environment, a new value of NONE for GBPCACHE indicates that
pages are not cached to the group buffer pool and DB2 will use the group buffer
pool only for cross-invalidation.

Because DB2 now only allows type 2 indexes, an index cannot be altered to a type
1. Therefore, the CONVERT TO and associated TYPE 1, TYPE 2, and SUBPAGES
clauses are no longer supported. You can also no longer use DSETPASS to specify
a password; support for the clause is removed.

ALTER STOGROUP Deleted clause:
PASSWORD

The PASSWORD clause is no longer supported. To protect your data sets, use
OS/390 Security Server or an equivalent security system.

  Appendix C. Changes to SQL 271



  
 

Table 34 (Page 3 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

ALTER TABLE New clauses:

ALTER COLUMN
GENERATED

Changed clauses:

ADD column-definition
DEFAULT

With the new ALTER COLUMN clause, you can increase the length of any
VARCHAR column that exists in the table. The length of a VARCHAR column can
be increased only if the table is not defined with DATA CAPTURE CHANGE.
Changing the length of a VARCHAR column invalidates all the plans and packages
that refer to the table.

The ADD clause is enhanced to support adding a column that has a LOB data type
(CLOB, DBCLOB, or BLOB), a row ID data type, or a distinct type (user-defined data

# type). A column that is being added can also be identified as an identity column. For
additional details about adding these types of columns to a table and the
GENERATED and DEFAULT clauses, see the description of changes for the
CREATE TABLE statement in this table.

ALTER TABLESPACE New clauses:

LOG
TRACKMOD

Changed clauses:

GBPCACHE
LOCKSIZE
PRIQTY
SECQTY

For LOB table spaces, the new LOG clause specifies whether changes to LOB
columns in the table space are logged. A new value of LOB for the LOCKSIZE
clause enables LOB locks to be acquired on a LOB table space.

The new TRACKMOD clause specifies whether modified pages in the space map
pages are tracked. You cannot specify TRACKMOD for LOB tables spaces.

For the primary space allocation, the PRIQTY clause is extended to support
minimum allocation values for 8-KB and 16-KB page sizes, in addition to the already
supported minimums for 4-KB and 32-KB page sizes. For secondary space
allocation, the maximum value that DB2 can allocate for any page size is increased
to 4194304 kilobytes (for both LOB and non-LOB table spaces). For LOB table
spaces, DB2 uses minimum allocation values for each page size that are larger than
the minimum values that are used for non-LOB table spaces.

For data sharing, the GBPCACHE clause has two new values. The value SYSTEM,
which can only be specified for LOB table spaces, indicates that only changed
system pages within the table space are to be cached to the group buffer pool. A
system page is a space map page or any other page that does not contain actual
data values. A value of NONE, which can be specified for any table space, indicates
that pages are not cached to the group buffer pool and DB2 will use the group buffer
pool only for cross-invalidation.

272 Release Planning Guide  



  
 

Table 34 (Page 4 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

ASSOCIATE LOCATORS Changed clause:
WITH PROCEDURE

The procedure name that is identified in the WITH PROCEDURE clause must be
specified the same way that it was specified on the CALL statement. The names
must have the same number of parts. However, if a three-part name was used in the
CALL statement and the current server is the same as the location name specified,
the location name can be omitted in the ASSOCIATE LOCATORS statement.

CALL To support the enhancements for stored procedures, the CALL statement is revised
to invoke procedures that are qualified by schema names. The statement also
supports the ability to pass more types of parameters. For example, any expression
that does not contain a column name, labeled duration, column function or
user-defined function that is based on a column function can be passed. If the
expression is a single host variable, the host variable can identify a structure. In
addition, if the CALL statement is used within the triggered action of a trigger, a
table can be passed as a parameter.

COMMENT ON New clauses:

DISTINCT TYPE
FUNCTION
SPECIFIC FUNCTION
PROCEDURE
TRIGGER

You can use the new clauses in the COMMENT ON statement to add or replace
comments in the descriptions of distinct types, user-defined functions, stored
procedures, and triggers in the DB2 catalog.

# COMMIT# When the COMMIT statement ends a unit of recovery, the statement will also
# release any active savepoints that were set within the unit of recovery.

CREATE ALIAS If an application program use three-part alias names for remote objects and DRDA
access to the remote site, the application must be bound at each location that is
specified in the three-part names. Also, each alias must defined at the remote site
as well as the local site.

An application uses DRDA access for three-part names when the plan or package
that contains the query to distributed data is bound with bind option
DBPROTOCOL(DRDA), or the value of installation panel field DATABASE
PROTOCOL is DRDA and the bind option DBPROTOCOL was not specified when
the plan or package was bound.

  Appendix C. Changes to SQL 273



  
 

Table 34 (Page 5 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

CREATE DATABASE New clause:
INDEXBP

Changed clause:

# AS
BUFFERPOOL

BUFFERPOOL is changed to only identify the default buffer pool for table spaces
and to support 8-KB and 16-KB page sizes. Use the new clause INDEXBP to
specify the default buffer pool for indexes.

# The AS clause is enhanced to support TEMP as an additional keyword. Specifying
# AS TEMP indicates that the database is for declared temporary tables only. If you
# are using declared temporary tables, you must create a database that is defined AS
# TEMP (the TEMP database) because declared temporary tables can only reside in
# that database. A DB2 subsystem or data sharing member can have no more than
# one TEMP database.

CREATE INDEX New clause:

COPY
# DEFINE

Changed clauses:

GBPCACHE
ON
PIECESIZE

Deleted clauses:

DSETPASS
SUBPAGES
TYPE 1

The new COPY clause specifies whether the COPY and RECOVER utilities are
# allowed on the index. For DB2-managed data sets, you can use the new DEFINE
# clause to delay the physical creation of the underlyng data sets for the index until
# data is first inserted into the index.

Auxiliary tables can have indexes; therefore, you can identify an auxiliary table in the
ON clause. For nonpartitioning indexes defined on EA-enabled table spaces,
changes to PIECESIZE enable a larger maximum piece size to be specified. In a
data sharing environment, a new value of NONE for the GBPCACHE clause
indicates that pages are not cached to the group buffer pool and DB2 will use the
group buffer pool only for cross-invalidation.

Because DB2 now only allows type 2 indexes, a type 1 index cannot be created.
Therefore, the TYPE 1 and SUBPAGES clauses are no longer supported. You can
also no longer use DSETPASS to specify a password; support for the clause is
removed.

CREATE STOGROUP Deleted clause:
PASSWORD

The PASSWORD clause is no longer supported. To protect your data sets, use
OS/390 Security Server or an equivalent security system.

274 Release Planning Guide  



  
 

Table 34 (Page 6 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

CREATE TABLE New clause:

GENERATED
# AS IDENTITY

Changed clauses:

data-type
DEFAULT

# LIKE

The CREATE TABLE statement is enhanced to support the new data types: LOBs
(CLOB, DBCLOB, or BLOB), row IDs, and distinct types (user-defined data types). A
table can have only one column with a row ID data type (or distinct type based on a
row ID type). When creating a table with a ROWID column, you must use the new
GENERATED clause to specify whether DB2 will generate a value for the column
when a row is inserted into the table regardless of whether a value is specified. You
cannot use the DEFAULT clause to specify a default value for a ROWID column.
When creating a table with a distinct type column, you can use one of the cast
functions that DB2 generated when the distinct type was created as the value for the
DEFAULT clause.

If you define a table with a LOB column (or distinct type based on a LOB data type),
you must also define a ROWID column for the table. Unless DB2 implicitly creates
the LOB table space, auxiliary table to store the actual values of the LOB column,
and index on the auxiliary table, you need to create these objects using the
CREATE TABLESPACE, CREATE AUXILIARY TABLE and CREATE INDEX
statements. DB2 implicitly creates the objects if bind option SQLRULES(STD) is in
effect for the plan or package. If you define a table with a LOB column in a
partitioned table space, there must be one auxiliary table defined for each partition
of the base table space.

# You can use the new AS IDENTITY clause in conjunction with the GENERATED
# clause to define a column with an exact numeric type as the identity column of the
# table. When a table has an identity column, DB2 generates a unique, sequential
# numeric value for each row that is inserted into the table, making the column
# suitable for the task of generating unique primary key values. A table can have only
# one identity column. As with a ROWID column, the GENERATED clause for an
# identity column indicates whether DB2 will generate the value for the column
# regardless of whether a value is specified. You cannot use the DEFAULT clause to
# specify a default value for an identity column.

# When you are creating a table like another table that has an identity column, you
# can use an optional clause with the LIKE clause to indicate that the corresponding
# column of the new table is the identity column for the table. The new INCLUDING
# IDENTITY COLUMN ATTRIBUTES clause causes the new column to inherit all of
# the identity attributes of the identity column in the table identified in the LIKE clause.

  Appendix C. Changes to SQL 275



  
 

Table 34 (Page 7 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

CREATE TABLESPACE New clauses:

# DEFINE
DSSIZE
LOB
LOG
TRACKMOD

Changed clauses:

GBPCACHE
LOCKSIZE
PRIQTY
SECQTY

# For DB2-managed data sets, the new DEFINE clause can delay the physical
# creation of the underlyng data sets for the table space until data is first inserted into
# the table space. You can use the new DSSIZE clause to create a table space that

holds up to 16 terabytes of data. The value specified in DSSIZE indicates the
maximum size in gigabytes of each partition (or for LOB table spaces, each data
set).

You can use the new LOB clause to indicate that the table space is to be a LOB
table space. LOB table spaces hold auxiliary tables, which hold the actual LOB
values for base tables that are defined with LOB columns. For LOB table spaces,
you can specify whether changes to LOB columns in the table space are logged with
the new LOG clause. A new value of LOB for the LOCKSIZE clause enables LOB
locks to be acquired on a LOB table space.

The new TRACKMOD clause specifies whether modified pages in the space map
pages are tracked. You cannot specify TRACKMOD for LOB tables spaces.

For the primary space allocation, the PRIQTY clause is extended to support
minimum allocation values for 8-KB and 16-KB page sizes, in addition to the already
supported minimums for 4-KB and 32-KB page sizes. For secondary space
allocation, the maximum value that DB2 can allocate for any page size is increased
to 4194304 kilobytes (for both LOB and non-LOB table spaces). For LOB table
spaces, DB2 uses minimum allocation values for each page size that are larger than
the minimum values that are used for non-LOB table spaces.

For data sharing, the GBPCACHE clause has two new values. The value SYSTEM,
which can only be specified for LOB table spaces, indicates that only changed
system pages within the table space are to be cached to the group buffer pool. A
system page is a space map page or any other page that does not contain actual
data values. A value of NONE, which can be specified for any table space, indicates
that pages are not cached to the group buffer pool and DB2 will use the group buffer
pool only for cross-invalidation.

DECLARE TABLE A table that is defined with a column that has any data type, including any one of
the new built-in data types (CLOB, DBCLOB, BLOB, or row ID) or a distinct type,
can be documented.

276 Release Planning Guide  



  
 

Table 34 (Page 8 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

DELETE New clause:
QUERYNO

Rows cannot be explicitly deleted from an auxiliary table. When a row that contains
a LOB column is deleted from a base table, the appropriate row that holds the actual
LOB data in the corresponding auxiliary table row is deleted.

You can use the new QUERYNO clause to assign a particular number to the
QUERYNO column of the plan table for information that is added to the plan table
for the statement.

DESCRIBE When allocating the SQLDA, additional occurrences of the SQLVAR might be
needed if the information that is returned describes LOB columns or distinct type
columns. The number of SQLVAR occurrences that are required per column
depends on whether both labels and names of the columns are returned. The first
SQLVAR occurrence per column, which is always present, is called the base
SQLVAR entry. When a second or third SQLVAR occurrence is required for a
column, an extended SQLVAR entry is used. (The DB2 SQL Reference contains a
complete description of the these two types of SQLVARs.)

DESCRIBE PROCEDURE The procedure name that is identified in the WITH PROCEDURE clause must be
specified the same way that it was specified on the CALL statement. The names
must have the same number of parts. However, if a three-part name was used in the
CALL statement and the current server is the same as the location name specified,
the location name can be omitted in the DESCRIBE PROCEDURE statement.

DROP New clauses:

DISTINCT TYPE
FUNCTION
SPECIFIC FUNCTION
PROCEDURE
TRIGGER

You can use the new clauses in the DROP statement to drop distinct types,
user-defined functions, stored procedures, and triggers.

EXPLAIN The plan table has three new columns. For the format of the table and descriptions
of the new and changed columns, see Appendix E, “EXPLAIN table changes” on
page 293.

The EXPLAIN statement is also extended to insert information into two new tables.
The new DSN_FUNCTION_TABLE is useful for finding out information about
function resolution, and the new DSN_STATEMENT_TABLE is useful for finding out
the estimated cost of SQL statements. Unlike the plan table, neither the function
table nor the statement table has to exist to use EXPLAIN. For more details on
these new tables, see “Using DSN_FUNCTION_TABLE to see how DB2 resolves a
function” on page 197 and “Creating a statement table” on page 80.

EXECUTE As described under the changes for the DESCRIBE statement, when allocating the
SQLDA, additional occurrences of the SQLVAR might be needed.

FETCH As described under the changes for the DESCRIBE statement, when allocating the
SQLDA, additional occurrences of the SQLVAR might be needed.

  Appendix C. Changes to SQL 277



  
 

Table 34 (Page 9 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

GRANT (table and view
privileges)

New clause:
TRIGGER

The new TRIGGER clause grants the privilege to use the CREATE TRIGGER
statement to create a trigger on a table.

For an auxiliary table, only the INDEX privilege can be granted. DELETE, INSERT,
SELECT, and UPDATE privileges on the base table that is associated with the
auxiliary table extend to the auxiliary table.

INSERT New clause:

OVERRIDING USER VALUE
QUERYNO

Changed clause:

VALUES
subselect

# Some types of columns, such as a ROWID column or an identity column, can be
defined with the new attribute GENERATED ALWAYS. This attribute indicates that
DB2 will always generate a value for the column when a row is inserted into the
table. If you try to provide a value for such a column on the INSERT statement, the
statement will fail unless you specify the new OVERRIDING USER VALUE clause.
OVERRIDING USER VALUE specifies that DB2 will ignore the user-specified value
and use a system-generated value instead.

You can use the new QUERYNO clause to assign a particular number to the
QUERYNO column of the plan table for information that is added to the plan table
for the statement.

The VALUES clause is enhanced to support any type of expression in the VALUES
clause. In addition, a value of DEFAULT can be specified in the VALUES clause to

# indicate that the default value of the column will be assigned. You can specify
# DEFAULT only for columns that have an assigned default value, ROWID columns,
# and identity columns. When DEFAULT is specifiedfor a ROWID or identity column,
# DB2 will generate a unique value for the column.

The rules for the subselect now allow the target table of the INSERT to be identified
as a table in the subselect. With the ability to retrieve data from the table into which
it is to be inserted, you can quickly replicate rows in a table or certain data fields.

LOCK TABLE An auxiliary table can be locked. The effect of locking an auxiliary table is to lock the
LOB table space that contains the auxiliary table. For information on the reasons to
lock an auxiliary table, see “The LOCK TABLE statement” on page 140. For general
guidance information on locking LOBs, see “Locking LOBs” on page 136.

OPEN As described under the changes for the DESCRIBE statement, when allocating the
SQLDA, additional occurrences of the SQLVAR might be needed.

PREPARE As described under the changes for the DESCRIBE statement, when allocating the
SQLDA, additional occurrences of the SQLVAR might be needed.

RENAME An auxiliary table can be renamed. However, unlike plans and packages that refer to
other tables that are renamed, plans and packages that refer to the auxiliary table
are not invalidated.

REVOKE (table and view
privileges)

New clause:
TRIGGER

The new TRIGGER clause revokes the privilege to use the CREATE TRIGGER
statement to create a trigger on a table.

278 Release Planning Guide  



  
 

Table 34 (Page 10 of 10). Changes to existing SQL statements

SQL statement Description of enhancements and notes

# ROLLBACK# New clause:
# TO SAVEPOINT

# Instead of rolling back all the database changes that were made in the unit of
# recovery, the ROLLBACK statement can be used to perform a partial rollback to a
# savepoint within the unit of recovery. You can specify the new TO SAVEPOINT
# clause to back out only those changes made after a savepoint was set. The unit of
# recovery is not ended when a partial rollback is performed. In addition, these items
# are not rolled back when the TO SAVEPOINT clause is specified: the opening and
# closing of cursors, changes in cursor positioning, the acquisition and release of
# locks, and the caching of the rolled back statements.

SELECT INTO New clauses:

WHERE
GROUP BY
QUERYNO

# The SELECT INTO statement is enhanced to support the WHERE and a GROUP
# BY clauses, which allow you to specify a search condition and group results when
# selecting values for the result table. You can also use the new QUERYNO clause to

assign a particular number to the QUERYNO column of the plan table for
information that is added to the plan table for the statement.

UPDATE New clause:
QUERYNO

# Changed clause:

# SET

You can use the new QUERYNO clause to assign a particular number to the
QUERYNO column of the plan table for information that is added to the plan table

# for the statement. The SET clause is enhanced to support subselects. When
# specifying the new values for the columns to be updated, you can use a subselect
# that returns a single row on the right side of the SET clause.

# The values in a ROWID column, an identity column that is defined as GENERATED
# ALWAYS, or an auxiliary table cannot be updated.

New built-in functions
Table 35 shows the new built-in functions in Version 6, which improve the power of
the SQL language.

Table 35 (Page 1 of 3). New built-functions

Function name Description

Column functions

COUNT_BIG Same as COUNT, except the result can be greater than the maximum value of
an integer

STDDEV Returns the standard deviation of a set of numbers

VARIANCE Returns the variance of a set of numbers

Scalar functions

  Appendix C. Changes to SQL 279



  
 

Table 35 (Page 2 of 3). New built-functions

Function name Description

ABS or ABSVAL Returns the absolute value of its argument

ACOS Returns the arcosine of an argument as an angle, expressed in radians

ASIN Returns the arcsine of an argument as an angle, expressed in radians

ATAN Returns the arctangent of an argument as an angle, expressed in radians

ATANH Returns the hyperbolic arctangent of an argument as an angle, expressed in
radians

ATAN2 Returns the arctangent of x and y coordinates as an angle, expressed in
radians

BLOB Returns a BLOB representation of its argument

CEIL or CEILING Returns the smallest integer greater than or equal to the argument

CLOB Returns a CLOB representation of its argument

CONCAT Returns the concatenation of two strings

COS Returns the cosine of an argument that is expressed as an angle in radians

COSH Returns the hyperbolic cosine of an argument that is expressed as an angle in
radians

DAYOFMONTH Similar to DAY

DAYOFWEEK Returns an integer in the range of 1 to 7, where 1 represents Sunday

DAYOFYEAR Returns an integer in the range of 1 to 366, where 1 represents January 1

DBCLOB Returns a DBCLOB representation of its argument

DEGREES Returns the number of degrees for an argument that is expressed in radians

DOUBLE or
DOUBLE-PRECISION

Returns a double precision floating-point representation of its argument

EXP Returns the exponential function of an argument

FLOOR Returns the largest integer that is less than or equal to the argument

GRAPHIC Returns a GRAPHIC representation of its argument

IFNULL Returns the first argument in a set of two arguments that is not null

INSERT Returns a string that is composed of an argument inserted into another
argument at the same position where some number of bytes have been deleted

JULIAN_DAY Returns an integer that represents the number of days from January 1, 4712
B.C.

LCASE or LOWER Returns a string with the characters converted to lowercase

LEFT Returns a string that consists of the specified number of leftmost bytes of a
string

LOCATE Returns the position at which the first occurrence of an argument starts within
another argument

LOG or LN Returns the natural logarithm of an argument

LOG10 Returns the base 10 logarithm of an argument

LTRIM Returns the characters of a string with the leading blanks removed

MIDNIGHT_SECONDS Returns an integer in the range of 0 to 86400 that represents the number of
seconds between midnight and the argument

MOD Returns the remainder of one argument divided by second argument

280 Release Planning Guide  



  
 

Table 35 (Page 3 of 3). New built-functions

Function name Description

POSSTR Returns the position of the first occurrence of an argument within another
argument

POWER Returns the value of one argument raised to the power of a second argument

QUARTER Returns an integer in the range of 1 to 4 that represents the quarter of the year
for the date specified in the argument

RADIANS Returns the number of radians for an argument that is expressed in degrees

RAISE_ERROR Raises an error in the SQLCA with the specified SQLSTATE and error
description

RAND Returns a double precision floating-point random number

REAL Returns a single precision floating-point representation of its argument

REPEAT Returns a character string composed of an argument repeated a specified
number of times

REPLACE Returns a string in which all occurrences of an argument within a second
argument are replaced with a third argument

RIGHT Returns a string that consists of the specified number of rightmost bytes of a
string

ROUND Returns a number rounded to the specified number of places to the right or left
of the decimal place

ROWID Returns a row ID representation of its argument

RTRIM Returns the characters of an argument with the trailing blanks removed

SECOND Returns the second part of its argument

SIGN Returns the sign of an argument

SIN Returns the sine of an argument that is expressed as an angle in radians

SINH Returns the hyperbolic sine of an argument that is expressed as an angle in
radians

SMALLINT Returns a small integer representation of its argument

SPACE Returns a string that consists of the number of blanks the argument specifies

SQRT Returns the square root of its argument

SUBSTR Returns a substring of a string

TAN Returns the tangent of an argument that is expressed as an angle in radians

TANH Returns the hyperbolic tangent of an argument that is expressed as an angle in
radians

# TIMESTAMP_FORMAT# Returns a timestamp for a character string, using a specified format to interpret
# the string

TRANSLATE Returns a string with one or more characters translated

TRUNCATE Returns a number truncated to the specified number of spaces to the right or
left of the decimal point

UCASE or UPPER Returns a string with the characters converted to uppercase

VARCHAR Returns the varying-length character string representation of its argument

# VARCHAR_FORMAT# Returns a varying-length character string representation of a timestamp, with
# the string in a specified format

WEEK Returns an integer that represents the week of the year

  Appendix C. Changes to SQL 281



  
 

Changed built-in functions
As shown in Table 36, many of the existing built-in functions are enhanced to
support arguments with additional data types, such as the new large object (LOB)
and row ID data types.

Table 36. Changes to existing built-functions

Function name Newly supported argument types

Column functions

COUNT Argument values can have a LOB (CLOB, DBCLOB, and BLOB) or row ID data
type

Scalar functions

CHAR The argument can be any character string that is 255 bytes or less (including a
CLOB), an integer, a floating-point number, or a row ID value

COALESCE The arguments can have a LOB or row ID data type

INT The argument can be any character string that is 255 bytes or less (excluding a
CLOB)

LENGTH The arguments can have a LOB or row ID data type

MICROSECOND The argument can be a valid character string representation of a timestamp

MINUTE The argument can be a valid character string representation of a time or
timestamp

MONTH The argument can be a valid character string representation of a date or
timestamp

NULLIF The arguments can have a row ID type

SECOND The argument can be a valid character string representation of a time or
timestamp

SUBSTR The argument from which the substring is derived can be a LOB data type
(CLOB, DBCLOB, and BLOB)

TIME The argument can be a character string representation of a time or timestamp

VARGRAPHIC The argument can be an EBCDIC-encoded character string

Other SQL language changes
In addition to the many new SQL statements and built-in functions in Version 6,
Table 37 on page 283 shows some of the other enhancements to the SQL
language.

282 Release Planning Guide  



  
 

Table 37. Other changes to SQL language

Item Description

Special registers There are three new special registers:

� CURRENT LOCALE LC_CTYPE specifies the LC_CTYPE locale that will
be used to execute SQL statements that use a function that references a
locale. Built-in functions LCASE, UCASE, and TRANSLATE (with a single
argument) refer to the locale when they are executed. You can change the
value of the register by executing the statement SET CURRENT LOCALE
LC_CTYPE.

� CURRENT OPTIMIZATION HINT specifies the user-defined optimization
hint that DB2 should use to generate the access path for dynamic
statements. (DB2 must be installed with optimization hints enabled for hints
to be used.) You can change the value of the special register by executing
the statement SET CURRENT OPTIMIZATION HINT.

� CURRENT PATH specifies the SQL path that is used to resolve unqualified
data type names (both built-in and distinct type) and function names in
dynamically prepared SQL statements. It is also used to resolve unqualified
procedure names that are specified as host variables in SQL CALL
statements (CALL host-variable). You can change the value of the special
register by executing the statement SET CURRENT PATH.

Expressions The types of expression that can be specified is extended to support
user-defined functions (scalar and sourced functions only) and CAST
specifications. A CAST specification changes the data type of a value into
another data type.

Predicates The non-select form of the IN predicate is extended to support any type of
expression in the second operand. The LIKE predicate is enhanced to support
more types of expression for its arguments.

Queries In a subselect, a table function can be used to specify the intermediate result
table in a FROM clause. Also, when tables are joined to form an intermediate
result table, the join condition for inner, left outer, and right outer joins can be
any search condition that does not contain a subquery. The join condition for a
full join continues to be a search condition in which the predicates can be
combined only with AND.

In a select statement, the new QUERYNO clause can be specified. The clause
specifies the number to assign to the QUERYNO column of the plan table for
information that is added to the plan table for the statement. If optimization hints
are being given to DB2 for access path selection when the statement is
executed, the clause also specifies the value of the QUERYNO column in the
plan table to use for the hints.

  Appendix C. Changes to SQL 283



  
 

284 Release Planning Guide  



  
 

 Appendix D. Catalog changes

This appendix provides an overview of the changes to the catalog for Version 6 of
DB2 for OS/390:

“New catalog tables” 
“Changed catalog tables” on page  286 
“New indexes” on page  288 
“Revised indexes” on page 290

For a complete description of the columns of the new and changed tables, see DB2
SQL Reference.

New catalog tables
Table 38 shows the nine new catalog tables.

# SYSLOBSTATS resides in existing table space DSNDB06.SYSTATS. The other
# new tables are in new table spaces. SYSEQUENCES is in DSNDB06.SYSSEQ;
# SYSEQUENCDEP is in DSNDB06.SYSSEQ2; and the remaining tables are in

DSNDB06.SYSOBJ.

Table 38. New catalog tables

Catalog table name Description

SYSIBM.SYSAUXRELS Contains one row for each auxiliary table created for a
LOB column. A base table space that is partitioned
must have one auxiliary table for each partition of each
LOB column

SYSIBM.SYSCONSTDEP Records dependencies on check constraints or
user-defined defaults for a column

SYSIBM.SYSDATATYPES Contains one row for each distinct type defined to the
system

SYSIBM.SYSLOBSTATS Contains one row for each LOB table space

SYSIBM.SYSPARMS Contains a row for each parameter of a routine or
multiple rows for table parameters (one row for each
column of the table)

SYSIBM.SYSROUTINEAUTH Records the privileges that are held by users on
routines (A routine can be a user-defined function, cast
function, or stored procedure.)

SYSIBM.SYSROUTINES Contains a row for every routine (A routine can be a
user-defined function, cast function, or stored
procedure.)

SYSIBM.SYSSCHEMAAUTH Contains one or more rows for each user that is
granted a privilege on a particular schema in the
database

# SYSIBM.SYSSEQUENCEDEP# Records the dependencies of identity columns on
# tables

# SYSIBM.SYSSEQUENCES# Contains one row for each identity column

SYSIBM.SYSTRIGGERS Contains one row for each trigger

 Copyright IBM Corp. 1999  285



  
 

Changed catalog tables
Many existing catalog tables were changed in Version 6. Table 39 shows a list of
the new columns that were added and the existing columns that were revised.

Table 39 (Page 1 of 3). Summary of new and revised catalog table columns

Catalog table name New column Revised column

SYSCOLDIST - COLVALUE
FREQUENCYF

SYSCOLDISTSTATS - COLVALUE
FREQUENCYF

SYSCOLSTATS - HIGHKEY
HIGH2KEY
LOWKEY
LOW2KEY
STATSTIME
In addition, all columns
can be inserted,
updated and deleted

SYSCOLUMNS COLSTATUS
LENGTH2
DATATYPEID
SOURCETYPEID
TYPESCHEMA
TYPENAME
CREATEDTS

COLTYPE
LENGTH
HIGH2KEY
LOW2KEY

| UPDATES
DEFAULT
STATSTIME
DEFAULTVALUE
COLCARDF

SYSCOPY OTYPE
LOWDSNUM
HIGHDSNUM

TSNAME
DSNUM
ICTYPE
DSNAME
STYPE

SYSDATABASE INDEXBP BPOOL
| DBID

ROSHARE
TIMESTAMP

# TYPE
# ENCODING_SCHEME
# SBCS_CCSID
# DBCS_CCSID
# MIXED_CCSID

SYSINDEXES COPY
COPYLRSN
CLUSTERRATIOF

| UNIQUERULE
CLUSTERED
DSETPASS
IBMREQD
CLUSTERRATIO
INDEXTYPE

SYSINDEXPART SECQTYI
IPREFIX
ALTEREDTS

SQTY
# SPACE

GBPCACHE
FAROFFPOSF
NEAROFFPOSF
CARDF

286 Release Planning Guide  



  
 

Table 39 (Page 2 of 3). Summary of new and revised catalog table columns

Catalog table name New column Revised column

SYSINDEXSTATS FIRSTKEYCARDF
FULLKEYCARDF
KEYCOUNTF
CLUSTERRATIOF

All columns can be inserted,
updated, and deleted

SYSPACKAGE PATHSCHEMAS
TYPE
DBPROTOCOL
FUNCTIONTS
OPTHINT

COLLID
HOSTLANG
IBMREQD
VERSION
DYNAMICRULES

SYSPACKDEP DOWNER
DTYPE

BTYPE

SYSPACKSTMT ACCESSPATH
STMTNOI
SECTNOI

STMTNO
SECTNO

SYSPLAN PATHSCHEMAS
DBPROTOCOL
FUNCTIONTS
OPTHINT

IBMREQD

SYSPLANDEP - BTYPE

SYSRESAUTH - QUALIFIER
| NAME

OBTYPE
IBMREQD

SYSSTMT ACCESSPATH
STMTNOI
SECTNOI

STMTNO
SECTNO

SYSSTOGROUP - VPASSWORD

SYSTABAUTH TRIGGERAUTH IBMREQD

SYSTABLEPART TRACKMOD
EPOCH
SECQTYI
CARDF
IPREFIX
ALTEREDTS

SQTY
CARD
FARINDREF
NEARINDREF
PERCACTIVE
PERCDROP

# SPACE
GBPCACHE

SYSTABLES TABLESTATUS TYPE
NPAGES
PCTPAGES
IBMREQD
RECLENGTH
STATUS
PCTROWCOMP
CARDF

  Appendix D. Catalog changes 287



  
 

The changes made to SYSPACKDEP and SYSTABAUTH were to extend their
support for triggers. For example, SYSPACKDEP now also records the
dependencies of packages on triggers, and SYSTABAUTH records the privileges
that users hold on triggers.

Table 39 (Page 3 of 3). Summary of new and revised catalog table columns

Catalog table name New column Revised column

SYSTABLESPACE LOG
NACTIVEF
DSSIZE

LOCKRULE
DSETPASS
IBMREQD
LOCKMAX
TYPE

# ENCODING_SCHEME
# SBCS_CCSID
# DBCS_CCSID
# MIXED_CCSID

SYSTABSTATS CARDF All columns can be inserted,
updated, and deleted

SYSVIEWDEP BSCHEMA BNAME
BCREATOR
BTYPE

SYSVIEWS PATHSCHEMAS IBMREQD

 New indexes
Table 40 shows the new indexes in Version 6.

Table 40 (Page 1 of 3). New indexes

Table space
DSNDB06. ...

Catalog table
SYSIBM. ... Index Key column

SYSDBASE SYSCOLUMNS DSNDCX02 Non-unique index TYPESCHEMA
TYPENAME

 SYSINDEXPART DSNDRX02 Non-unique index STORNAME

 SYSTABLEPART DSNDPX02 Non-unique index STORNAME

SYSOBJ SYSAUXRELS DSNOXX01 Non-unique clustering
index

TBOWNER
TBNAME

DSNOXX02 Non-unique index AUXTBOWNER
AUXTBNAME

SYSCONSTDEP DSNCCX01 Non-unique clustering
index

BSCHEMA
BNAME
BTYPE

| DSNCCX02| Non-unique index| DTBCREATOR
| DTBNAME

SYSDATATYPES DSNODX01 Primary unique clustering
index

SCHEMA
NAME

DSNODX02 Unique index
(descending)

DATATYPEID

SYSPARMS DSNOPX01 Unique clustering index SCHEMA
SPECIFICNAME
ROUTINETYPE
ROWTYPE
ORDINAL

288 Release Planning Guide  



  
 

Table 40 (Page 2 of 3). New indexes

Table space
DSNDB06. ...

Catalog table
SYSIBM. ... Index Key column

DSNOPX02 Non-unique index TYPESCHEMA
TYPENAME
ROUTINETYPE
CAST_FUNCTION
OWNER
SCHEMA
SPECIFICNAME

DSNOPX03 Non-unique index TYPESCHEMA
TYPENAME

SYSROUTINEAUTH DSNOAX01 Non-unique index GRANTOR
SCHEMA
SPECIFICNAME
ROUTINETYPE
GRANTEETYPE
EXECUTEAUTH

DSNOAX02 Non-unique clustering
index

GRANTEE
SCHEMA
SPECIFICNAME
ROUTINETYPE
GRANTEETYPE
EXECUTEAUTH
GRANTEDTS

DSNOAX03 Non-unique index SCHEMA
SPECIFICNAME
ROUTINETYPE

SYSROUTINES DSNOFX01 Unique clustering index NAME
PARM_COUNT
PARM_SIGNATURE
ROUTINETYPE
SCHEMA
PARM1
PARM2
PARM3
PARM4
PARM5
PARM6
PARM7
PARM8
PARM9
PARM10
PARM11
PARM12
PARM13
PARM14
PARM15
PARM16
PARM17
PARM18
PARM19
PARM20
PARM21
PARM22
PARM23
PARM24
PARM25
PARM26
PARM27
PARM28
PARM29
PARM30

  Appendix D. Catalog changes 289



  
 

Table 40 (Page 3 of 3). New indexes

Table space
DSNDB06. ...

Catalog table
SYSIBM. ... Index Key column

DSNOFX02 Primary unique index SCHEMA
SPECIFICNAME
ROUTINETYPE

DSNOFX03 Non-unique index NAME
SCHEMA
CAST_FUNCTION
PARM_COUNT
PARM_SIGNATURE
PARM1

DSNOFX04 Unique index
(descending)

ROUTINE_ID

DSNOFX05 Non-unique index SOURCESCHEMA
SOURCESPECIFIC
ROUTINETYPE

DSNOFX06 Non-unique index SCHEMA
NAME
ROUTINETYPE
PARM_COUNT

SYSSCHEMAAUTH DSNSKX01 Non-unique clustering
index

GRANTEE
SCHEMANAME

DSNSKX02 Non-unique index GRANTOR

SYSTRIGGERS DSNOTX01 Unique clustering index SCHEMA
NAME
SEQNO

DSNOTX02 Non-unique index TBOWNER
TBNAME

SYSPKAGE SYSPACKDEP DSNKDX03 Non-unique index BQUALIFIER
BNAME
BTYPE
DTYPE

# SYSSEQ# SYSSEQUENCES# DSNSQX01# Unique index# SCHEMA
# NAME

# DSNSQX02# Unique index
# (descending)
# SEQUENCEID

# SYSSEQ2# SYSSEQUENCEDEP# DSNSRX01# Unique index# DCREATOR
# DNAME
# DCOLNAME

SYSSTATS SYSLOBSTATS DSNLNX01 Unique clustering index DBNAME
NAME

SYSVIEWS SYSVIEWDEP DSNGGX03 Non-unique index BSCHEMA
BNAME
BTYPE

 Revised indexes
Table 41 on page 291 shows the revised indexes in Version 6. Index DSNDXX02
is now a non-unique index. Columns were added to DSNATX02 and DSNAUH01.

290 Release Planning Guide  



  
 

Table 41. Revised indexes

Table space
DSNDB06. ...

Catalog table
SYSIBM. ... Index Key column

SYSDBASE SYSINDEXES DSNDXX02 Non-unique index TBCREATOR
TBNAME
CREATOR
NAME

 SYSTABAUTH DSNATX02 Non-unique index GRANTEE
TCREATOR
TTNAME
GRANTEETYPE
UPDATECOLS
ALTERAUTH
DELETEAUTH
INDEXAUTH
INSERTAUTH
SELECTAUTH
UPDATEAUTH
CAPTUREAUTH
REFERENCESAUTH
REFCOLS
TRIGGERAUTH

SYSUSER SYSUSERAUTH DSNAUH01 Non-unique index GRANTEE
GRANTEDTS

  Appendix D. Catalog changes 291



  
 

292 Release Planning Guide  



  
 

Appendix E. EXPLAIN table changes

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information, as defined in Appendix H, “Notices” on
page 313.

This appendix includes the complete definitions for a DB2 PLAN_TABLE and a
description of the PLAN_TABLE columns that are new for Version 6 of DB2 for
OS/390.

Other tables that can be used with EXPLAIN are the DSN_FUNCTION_TABLE,
which is useful for finding out information about function resolution and the
DSN_STATEMNT_TABLE, which you can use to find out the estimated cost of your
SQL statements. See “Using DSN_FUNCTION_TABLE to see how DB2 resolves a
function” on page 197 for information about the new DSN_FUNCTION_TABLE.
See “Creating a statement table” on page 80 information about the
DSN_STATEMNT_TABLE.

Before you can use EXPLAIN, you must create a table called PLAN_TABLE to hold
the results of EXPLAIN. If you have an existing PLAN_TABLE, you can alter it to
add the new columns. The format of the PLAN_TABLE is shown in Figure 38. The
content of each of the new or changed columns for Version 6 is shown in Table 42
on page 294.

Format of the Version 6 PLAN_TABLE
The Version 6 PLAN_TABLE has three additional columns, giving it a total of 49
columns.

QUERYNO INTEGER NOT NULL PREFETCH CHAR(1) NOT NULL WITH DEFAULT

QBLOCKNO SMALLINT NOT NULL COLUMN_FN_EVAL CHAR(1) NOT NULL WITH DEFAULT

APPLNAME CHAR(8) NOT NULL MIXOPSEQ SMALLINT NOT NULL WITH DEFAULT

PROGNAME CHAR(8) NOT NULL -------28 column format --------

PLANNO SMALLINT NOT NULL VERSION VARCHAR(64) NOT NULL WITH DEFAULT

METHOD SMALLINT NOT NULL COLLID CHAR(18) NOT NULL WITH DEFAULT

CREATOR CHAR(8) NOT NULL -------3O column format --------

 TNAME CHAR(18) NOT NULL ACCESS_DEGREE SMALLINT

 TABNO SMALLINT NOT NULL ACCESS_PGROUP_ID SMALLINT

ACCESSTYPE CHAR(2) NOT NULL JOIN_DEGREE SMALLINT

 MATCHCOLS SMALLINT NOT NULL JOIN_PGROUP_ID SMALLINT

ACCESSCREATOR CHAR(8) NOT NULL -------34 column format --------

 ACCESSNAME CHAR(18) NOT NULL SORTC_PGROUP_ID SMALLINT

 INDEXONLY CHAR(1) NOT NULL SORTN_PGROUP_ID SMALLINT

SORTN_UNIQ CHAR(1) NOT NULL PARALLELISM_MODE CHAR(1)

SORTN_JOIN CHAR(1) NOT NULL MERGE_JOIN_COLS SMALLINT

 SORTN_ORDERBY CHAR(1) NOT NULL CORRELATION_NAME CHAR(18)

SORTN_GROUPBY CHAR(1) NOT NULL PAGE_RANGE CHAR(1) NOT NULL WITH DEFAULT

SORTC_UNIQ CHAR(1) NOT NULL JOIN_TYPE CHAR(1) NOT NULL WITH DEFAULT

SORTC_JOIN CHAR(1) NOT NULL GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT

SORTC_ORDERBY CHAR(1) NOT NULL IBM_SERVICE_DATA VARCHAR(254) NOT NULL WITH DEFAULT

SORTC_GROUPBY CHAR(1) NOT NULL ------43 column format --------

TSLOCKMODE CHAR(3) NOT NULL WHEN_OPTIMIZE CHAR(1) NOT NULL WITH DEFAULT

 TIMESTAMP CHAR(16) NOT NULL QBLOCK_TYPE CHAR(6) NOT NULL WITH DEFAULT

REMARKS VARCHAR(254) NOT NULL BIND_TIME TIMESTAMP NOT NULL WITH DEFAULT

-------25 column format -------- ------46 column format -----------

OPTHINT CHAR(8) NOT NULL WITH DEFAULT

HINT_USED CHAR(8) NOT NULL WITH DEFAULT

PRIMARY_ACCESSTYPE CHAR(1) NOT NULL WITH DEFAULT

-------49 column format-----------

Figure 38. Format of PLAN_TABLE

 Copyright IBM Corp. 1999  293



  
 

Descriptions of new and changed columns
You can now set a query number for non-EXPLAIN statements using the
QUERYNO clause. This changes the description of the QUERYNO column. The
new columns include OPTHINT, HINT_USED, and PRIMARY_ACCESSTYPE.

| Table 42. Descriptions of new and changed columns in PLAN_TABLE

| Column Name| Description

| QUERYNO| A number intended to identify the statement being explained. For a row produced by
| an EXPLAIN statement, you can specify the number in the QUERYNO clause. For a
| row produced by non-EXPLAIN statements, you can specify the number using the
| QUERYNO clause, which is the optional part of the SELECT, INSERT, UPDATE, and
| DELETE statement syntax. Otherwise, DB2 assigns a number based on the line
| number of the SQL statement in the source program.

| FETCH statements do not each have an individual QUERYNO assigned to them.
| Instead, DB2 uses the QUERYNO of the DECLARE CURSOR statement for all
| corresponding FETCH statements for that cursor.

| OPTHINT| A string that you use to identify this row as an optimization hint for DB2. DB2 uses
| this row as input when choosing an access path.

| HINT_USED| If DB2 used one of your optimization hints, it puts the identifier for that hint (the value
| in OPTHINT) in this column.

| PRIMARY_ACCESSTYPE| Indicates whether direct row access will be attempted first:

| D DB2 will try to use direct row access. If DB2 cannot use direct row access at
| runtime, it uses the access path described in the ACCESSTYPE column of
| PLAN_TABLE.

| blank DB2 will not try to use direct row access.

294 Release Planning Guide  



  
 

Appendix F. New and changed IFCIDs

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information, as defined in Appendix H, “Notices” on
page 313.

This appendix briefly describes the new IFCIDs and the changes to the existing
IFCIDs for each new function. The new IFCIDs are described in Table 43; the
changes to existing IFCIDs are described in Table 44. For a detailed description of
the fields in each IFCID record, refer to the mapping macros data set library
prefix.SDSNMACS.

 New IFCIDs
Table 43 lists the new IFCIDs.

Table 43. New IFCIDs

IFCID Trace Class Mapping macro Description

Data set statistics for buffer pools

0199 STATISTICS 8 DSNDQW02 Records data set information that is provided in the
-DISPLAY BUFFERPOOL LSTATS command

# Data sharing enhancements

# 0329# ACCOUNTING# 3# DSNDQW04# Records asynchronous wait times for IXLCACHE and
# IXLFCOMP requests

Triggers

0325 PERFORMANCE 8 DSNDQW04 Records the start or end of trigger activation

User-defined functions

0324 PERFORMANCE 3 DSNDQW04 Records function resolution information

Other enhancements

0330 STATISTICS 3 DSNDQW04 Records an active log shortage condition

 Changed IFCIDs
Table 44 gives an overview of changes to existing IFCIDs. Changes to IFCID 0106,
the system parameters record, are not included.

Table 44 (Page 1 of 6). Changed IFCIDs

IFCID Description of changes

Dynamic SQL enhancements

0002, 0003, 0124, 0147,
0148

Add a field to record DESCRIBE INPUT statements

| Data sharing enhancments

| 0254| Add a field to record the number of cross invalidate (XI) signals due to explicit XI
| requests from DB2 for page sets that are define with GBPCACHE NONE or SYSTEM
| or group buffer pools that are defined with GBPCACHE(NO).

 Copyright IBM Corp. 1999  295



  
 

Table 44 (Page 2 of 6). Changed IFCIDs

IFCID Description of changes

| 0256| Add fields to record:

| � The GBPCACHE value before an ALTER GROUPBUFFERPOOL command is
| issued
| � The GBPCACHE value after an ALTER GROUPBUFFERPOOL command is
| issued

# 0263# Add fields to record information for CFLEVEL 7.

DDF inactive connection support

0001 Add fields to record:

� Number of connections that DB2 terminates instead of making them type 1
inactive

� Current and maximum number of type 2 inactive threads
� Number of queued receive requests for type 2 inactive threads
� Number of queued type 2 inactive threads
� Current and maximum number of active database access thread slots that are not

in use

DRDA support for three-part names

0108, 0177 Add a value for bind parameter DBPROTOCOL

0112, 0113, 0177 Add a field to indicate the protocol that is used for sending three-part names

Group buffer pool duplexing

0002 Add fields to record:

� The number of group buffer pool rebuilds in which a member participated
� For writes to the secondary group buffer pool, the number of writes of changed

pages that failed
� The number of completion checks for writes to the secondary group buffer pool

that were suspended because the write had not completed
� The number of IXLCACHE requests to the secondary group buffer pool

0003 Add fields to record:

� The number of writes of changed pages to the secondary group buffer pool for
duplexing

� The number of completion checks for writes to the secondary group buffer pool
that were suspended because the write had not completed

0230 Add fields to record:

� Whether the group buffer pool is duplexed
� If the group buffer pool is duplexed, the size, number of allocated directory entries,

and number of allocated data entries for the secondary group buffer pool

0250 Add a value for a connect to secondary group buffer pool

0252 Add a value for connect to secondary group buffer pool

0254 Add fields to record these counters for the secondary group buffer pool:

� Number of successful coupling facility write requests for changed pages
� Number of coupling facility write requests that did not complete because of a lack

of resources
� Number of allocated directory entries
� Number of allocated data entries
� Number of allocated data entries in the changed state

0263 Add a field to record the number of delete name list requests for the secondary group
buffer pool

296 Release Planning Guide  



  
 

Table 44 (Page 3 of 6). Changed IFCIDs

IFCID Description of changes

0267, 0268 Add values for:

� Rebuild started to establish group buffer pool duplexing
� Group buffer pool duplexing stopped
� Dynamic expand or contract initiated on secondary group buffer pool

Inline statistics

0023, 0024, 0025 Add the RUNSTATS phase for REORG TABLESPACE, REORG INDEX, LOAD, and
REBUILD INDEX

LOBs

0002 Add fields to record:

� Maximum storage that is used for LOB values
� The number of CREATE AUXILIARY TABLE, HOLD LOCATOR, and FREE

LOCATOR statements that are executed

0003 Add fields to record:

� Maximum storage that is used for LOB values
� Number of log records that are written
� Number of bytes of log records that are written

0058 Add fields to record:

� Additional pages that are scanned in a LOB table space
� Number of LOB data pages that are updated by an INSERT or UPDATE

statement

0020 Enhance existing fields to record:

� Maximum number of page, row, and LOB locks held
� Maximum number of page, row, or LOB locks held for the thread

0021, 0044, 0150, 0172,
0196

Add LOB locks

0023, 0024, 0025 Add the CHECKLOB phase for the CHECK LOB utility

0062 Add values for CREATE AUXILIARY TABLE, HOLD LOCATOR, and FREE LOCATOR

0141 Add values for a LOB table space and an auxiliary table

Optimization hints

0022, 0108, 0112, 0113,
0177

Add a field to record the query optimization hints

Parallelism for COPY and RECOVER

# 0023, 0024, 0025# � The number of records of these types and the sequence of these records differ
# when COPY or RECOVER run with parallelism and when they run without
# parallelism

# � Use an existing field to record the number of subtasks that are starteds.

Parallel index build

0023, 0024, 0025 Add values to record:

� The phases of parallel index build
� Whether a main task or a subtask performs the work

Predictive governing

  Appendix F. New and changed IFCIDs 297



  
 

Table 44 (Page 4 of 6). Changed IFCIDs

IFCID Description of changes

0022 Add fields to record:

� The estimated processor cost, in milliseconds, for an SQL statement
� The estimator processor cost, in service units, for an SQL statement
� The reasons that the value of COST_CATEGORY is B
� The cost estimate and cost category of an SQL statement

0112, 0113, 0177 Add a field to indicate the protocol used for sending three-part names

ROWIDs

0002, 0003, 0148 Add fields to record:

� The number of times that DB2 used direct row access
� The number of times that DB2 tried to use direct row access but used an index

instead
� The number of times that DB2 tried to use direct row access but used a table

space scan instead

0022 Add a value that indicates that a statement is a candidate for direct row access

Stored procedures enhancements

0002, 0003, 0147, 0148 Add fields to record the number of CREATE PROCEDURE, ALTER PROCEDURE,
and DROP PROCEDURE statements that are executed

Triggers

0002, 0003, 0147, 0148 Add fields to record:

� The number of times a statement trigger is activated
� The number of times a row trigger is activated
� The number of times an error occurs during trigger execution
� Maximum level of nesting of user-defined functions, stored procedures, and

triggers

0003, 0147, 0148 Add fields to record:

� TCB time spent executing a trigger, or a user-defined function or stored procedure
under a trigger

� Elapsed time spent executing a trigger, or a user-defined function or stored
procedure under a trigger

0016, 0017, 0018 Add:

� Values for updating or scanning a transition table
� A field to record the trigger level

0311 Add values for:

� A temporary table that is a transition table
� A cursor on a transition table

0124 Add values for:

 � CREATE TRIGGER
 � DROP TRIGGER
� SET transition variable

 � SIGNAL SQLSTATE

0140 Add a value for a trigger authorization check

0148 Add a field to record the name and schema name of a trigger

User-defined functions

298 Release Planning Guide  



  
 

Table 44 (Page 5 of 6). Changed IFCIDs

IFCID Description of changes

0002, 0003 Add fields to record:

� Authorization checks for user-defined functions
� Maximum level of nesting of user-defined functions, stored procedures, and

triggers
� Number of user-defined functions that are executed
� Number of times a user-defined function abnormally terminated or timed out
� Number of times a user-defined function was rejected

0003 Add fields to record:

� Accumulated TCB time to satisfy user-defined function requests
� Accumulated TCB time that user-defined functions spend under triggers
� Number of SQL entry and exit events for user-defined functions
� Elapsed time spent in user-defined functions and by user-defined functions

processing SQL
� Time spent waiting for a user-defined function to be scheduled

0022 Add fields to record:

� The length and contents of the CURRENT PATH special register
� The text of a user-defined function invocation
� The position, schema name, name, and specific name of a user-defined function

| 0108, 0177| Add values DEFINEBIND, INVOKEBIND, DEFINERUN, and INVOKERUN for bind
| option DYNAMICRULES

8-KB and 16-KB page sizes

0002, 0003, 0006, 0008,
0010, 0127, 0201, 0226,
0251, 0259

Add values for 8-KB and 16 KB buffer pools

0002, 0003 Add a field to record the number of explicit cross-invalidations

16-TB table spaces

0006, 0127, 0128, 0223,
0226, 0227, 0305

Add values for:

� Table space with a 4-byte RID
� Table space with a 5-byte RID that is not EA-enabled
� Table space with a 5-byte RID that is EA-enabled

0018, 0058 Extend the size of fields for the number of rows that are processed, looked at,
qualified, inserted, updated, or deleted

Miscellaneous changes

| 0002, 0003, 0148| Add two counters to indicate the number of times that a parallel group's parallel plan
| was rebalanced.

| 0003, 0147, 0148| Make the following changes to fields for wait times:

| � Separate the wait for log write I/O field into the following fields:
| – Wait for log write I/O
| – Wait for database I/O
| � Separate the wait for service task field into the following fields:
| – Wait for Commit phase 2 or abort
| – Wait for open/close service task, which includes the wait for HSM recall
| – Wait for SYSLGRNG recording service task
| – Wait for data set extend/delete/define service task
| – Wait for other service tasks
| � Move service task wait fields to a new accounting section

| 0024| When a range of partitions is reorganized, an IFCID 0024 record is generated for each
| partition.

  Appendix F. New and changed IFCIDs 299



  
 

Table 44 (Page 6 of 6). Changed IFCIDs

IFCID Description of changes

| 0202| Add fields for the VPTYPE and PGSTEAL buffer pool attributes.

300 Release Planning Guide  



  
 

| Appendix G. Prerequisites of Version 6 of DB2 for OS/390

This chapter identifies prerequisites and optional programs of DB2 for OS/390
Version 6 and for the features that are delivered with it. See “Prerequisites of
features of DB2 for OS/390 Version 6” on page 308 for information about the
requirements for the features of DB2 for OS/390 Version 6. This chapter identifies
the minimum level of hardware or software that is required; unless otherwise noted,
subsequent versions and releases of these products are acceptable.

DB2 for OS/390 Version 6 prerequisites
DB2 for OS/390 Version 6 has requirements for processors, other programs, and
virtual storage.

 Hardware requirements
DB2 for OS/390 Version 6 operates on any processor that is supported by OS/390
Version 1 Release 3 or subsequent releases. The processor must have enough
real storage to satisfy the combined requirements of DB2, OS/390, the appropriate
Data Facility Product, the appropriate access methods, telecommunications, batch,
and other customer-required applications.

OS/390 runs on the hardware listed below:

� All models of the S/390 Parallel Enterprise Servers or S/390 Parallel
Transaction Servers (IBM 9672)

� All models of the IBM ES/9000 Processor Unit 9021, the 9121, or the 9221

� PC Server S/390 or RS/6000 with S/390 Server-on-Board

� S/390 Multiprise 2000

The configuration must include sufficient I/O devices to support the requirements for
system output, system residence, and system data sets. Sufficient direct access
storage (DASD) must be available to satisfy the user's information storage
requirements and can consist of any direct-access facility that is supported by the
system configuration and the programming system.

In addition to listing auxiliary storage and data communications devices, this section
identifies function-dependent hardware requirements and virtual storage
requirements.

 Auxiliary storage
DB2 is independent of both DASD and tape device type. You can use any
magnetic, optical, or tape device that is supported by the data facilities component
of DFSMS/MVS for the DB2 data sets. See Table 45 on page 302 for a list of
device types that are supported for DB2 data sets.

 Copyright IBM Corp. 1999  301



  
 

If these data sets are on DASD that is shared with other OS/390 systems, you
should use global resource serialization to prevent concurrent access by more than
one OS/390 system.

The minimum DASD space requirement, based on installing DB2 using the panel
default values, is approximately 600 MB. Users need additional DASD space for
their data.

If you use dual logging and tape for the log archiving device, you need at least two
tape drives.

Table 45. Auxiliary storage

Data set type Device type

Active recovery log data sets DASD

Archive recovery log data sets DASD, tape

Image copy data sets DASD, tape

Bootstrap data set DASD

User data sets DASD

DB2 catalog data sets DASD

Work data sets (for utilities) DASD, tape

Data communication devices
Control DB2 operations from:

� The system console
� Authorized IMS/ESA Transaction Manager terminals
� Authorized CICS terminals
� TSO terminals (by authorized users)

For information about the data communication devices that are supported by
IMS/ESA Transaction Manager, CICS, and TSO, see the documentation for these
products.

Function-dependent hardware requirements
| DB2 has the following function-dependent requirements.

| COPY and RECOVER INDEX:  Use of the COPY utility to take DFSMS
concurrent copies of indexes requires a 9390, a 3990 Model 6, or a 3990 Model 3
with the Extended Platform installed or equivalent function.

| Use of the RECOVER utility to restore DFSMS concurrent copies of indexes also
| requires a 9390, a 3990 Model 6, or a 3990 Model 3 3390 Model 3 or 3990 Model
| 6 controller at the with the Extended Platform installed or equivalent function.

DB2 table spaces that are larger than 1 terabyte:  DB2 table spaces that are
larger than 1 terabyte require one of the following products:

� 3990 Model 3 or Model 6 controllers with extended support
� 9340 DASD array

302 Release Planning Guide  



  
 

Program requirements and optional programs
This section lists licensed programs that are required in the DB2 for OS/390
environment. You can use subsequent versions or releases of these programs,
unless the description for a given program states otherwise. Check the RETAIN
Preventative Service Planning (PSP) Facility for the most current information about
APARs you must install to run DB2 for OS/390 and its optional features.

| This section also identifies the requirements associated with specific DB2
| capabilities, as well as optional programs that you can use with DB2 for OS/390
| Version 6.

Operating system and support programs
For an OS/390 environment, DB2 requires the function that is provided by the
following licensed programs or their equivalents; subsequent versions or releases of
any product are acceptable.

# � OS/390 Version 1 Release 3 Base Services (5645-001)

� OS/390 Version 1 Release 3 Application Enablement optional feature for
DFSORT

Function-dependent program requirements
DB2 for OS/390 has the following function-specific program requirements. For
specific software requirements for the required products, refer to the respective
product announcements.

User-defined functions:  User-defined functions require that you include
Language Environment mapping macros and macros that generate a Language
Environment-conforming prolog and epilog. Language Environment is part of the
OS/390 Version 1 Release 3 Application Enablement base feature.

| See OS/390 Language Environment for OS/390 & VM Programming Guide for
| details. See “Programming languages” on page 307 for specific levels of
| Assembler, COBOL, C, C++, or PL/I.

# SQL procedures:  SQL procedures have the following requirements:

# � Execution of SQL procedures requires Language Environment.

# Language Environment is part of the OS/390 Version 1 Release 3 Application
# Enablement base feature.

# � Preparation of SQL procedures for execution using JCL requires the following
# compiler language levels, or higher:

# – IBM C/C++ for MVS/ESA Version 3 Release 2 (5655-121)
# – IBM SAA AD/Cycle C/370 Version 1 Release 2 (5688-194)

# � Preparation of SQL procedures for execution using the SQL procedure
# processor requires the following products:

# – The following compiler language levels, or higher:

# - IBM C/C++ for MVS/ESA Version 3 Release 2 (5655-121)
# - IBM SAA AD/Cycle C/370 Version 1 Release 2 (5688-194)

# – IBM DATABASE 2 Universal Database Server for OS/390 REXX Language
# Support (5645-DB2)

  Appendix G. Prerequisites of Version 6 of DB2 for OS/390 303



  
 

| Predictive governing:  To take full advantage of DB2 for OS/390 Version 6
| predictive governing capabilities, DB2 Connect workstation clients require DB2
| Connect Version 5.2 (with appropriate service applied).

| Language Environment built-in functions:  Use of any of the following built-in
| functions requires OS/390 Version 2 Release 4 Application Enablement base
| element with APARs.

| � Language Environment built-in functions, including the following advanced math
| functions:

| – DEGREES and RADIANS
|  – RAND
| – EXP and POWER
| – LOG10, LOG, and LN
| – Trigonometry functions (ACOS, ASIN, ATAN, ATANH, ATAN2, COS,
| COSH, SIN, SINH, TAN, TANH)

| � DB2 built-in functions UPPER, LOWER, and TRANSLATE with locale

# Language Environment character conversion:  Use of Language Environment
# character conversions requires OS/390 Version 2 Release 9.

| More than 10 000 open data sets:  Use of more than 10 000 open data sets
| requires OS/390 Version 2 Release 6.

| DB2 table spaces that are larger than 1 terabyte:  DB2 table spaces that are
| larger than 1 terabyte require one of the following products:

| � VSAM Extended Addressability Linear Data Sets in OS/390 Version 2 Release
| 7 (5647-A01)

| � DFSMS Version 1 Release 5 (5695-DF1)

Group buffer pool duplexing:  Group buffer pool duplexing has the following
requirements:

� A minimum coupling facility architectural level of CFLEVEL=5.

� OS/390 Version 2 Release 6, or OS/390 Release 3, 4, or 5 with APAR; OS/390
Version 2 Release 6 and above do not require the APAR.

Open Database Connectivity:  Open Database Connectivity (ODBC) functions
have the following requirements:

� Execution of ODBC component in the application address space requires
OS/390 Version 1 Release 3 Application Enablement optional feature for C/C++.

� Customer applications are supported in the following compiler language levels,
or higher:

# – IBM C/C++ for MVS/ESA Version 3 Release 2 (5655-121)
– IBM SAA AD/Cycle C/370 Version 1 Release 2 (5688-194)

Java Database Connectivity:  Java Database Connectivity (JDBC) requires Java
for OS/390 (5655-A46).

# Java stored procedures:  Java stored procedures require Enterprise ToolKit for
# OS/390, which is part of VisualAge for Java, Enterprise Edition for OS/390
# (5655-JAV).

304 Release Planning Guide  



  
 

| DB2 Extenders:  Use of the DB2 Extenders requires OS/390 Version 2 Release 4
| (5647-801).

| To write extender applications, C or C++ for OS/390 is required. Use of DB2
| Extenders does not require C or C++.

| In addition, use of the DB2 Text Extender requires the IBM Text Search Engine
| Version 2 Release 1 (FMID HIMN210) or higher. If you are running OS/390 Version
| 2 (Releases 4 through 7), download and install the IBM Text Search Engine in
| SMP/E format from the following Web site:

# http://www.ibm.com/software/iminer/fortext/

| OS/390 Release 8 includes the IBM Text Search Engine as a base element of that
| operating system.

| Sysplex workload balancing:  For Sysplex workload balancing, workstation
| clients require one of the following products:

| � DB2 Connect Version 6 (strongly recommended)
| � DB2 Connect Version 5 Release 2

| IEEE floating point:  For DB2 for OS/390 to accept IEEE floating point (also
| called binary floating point) values in SQL statements or LOAD utility jobs, OS/390
| Version 2 Release 6 is required.

# 31-digit decimal support in COBOL:  DB2 COBOL application program use of
# 31-digit decimal variables requires IBM COBOL for OS/390 and VM Version 2
# (5648-A25).

 Optional programs
You can use the following optional licensed programs with DB2 for OS/390 Version
6. Unless otherwise specified, the release shown for a product and any subsequent
release are acceptable. In some cases, earlier versions or releases of IBM licensed
programs may also work with DB2 for OS/390, but IBM may not have tested them
at the time this document was published. If you have questions, please check with
your IBM representative.

Connectivity:  In addition to any DRDA-compliant database management systems,
DB2 for OS/390 Version 6 supports the following IBM relational database products:

| � IBM DB2 Universal Database Extended Enterprise Edition Version 5 with the
| DB2 Connect component installed

| � IBM DB2 Universal Database Enterprise Edition Version 5 with the DB2
| Connect component installed

| � IBM DB2 Universal Database for AS/400 Version 4 Release 2

| � IBM Operating System/400 (OS/400) Version 4 Release 1 with DB2 for
| AS/400 (5769-SS1)

� IBM DB2 Server for VM and VSE Version 5 (5648-158)

| � DB2 DataJoiner Version 2 Release 1.1 (5231-200)

Net.Data for OS/390, a feature of DB2 for OS/390 Version 6, provides connectivity
to DB2 from the Web.

  Appendix G. Prerequisites of Version 6 of DB2 for OS/390 305



  
 

| Capacity planning:  DB2 Estimator, a feature of DB2 for OS/390 Version 6, works
| with DB2 data to estimate application feasibility, to model application cost and
| performance, and to estimate required CPU and I/O capacity.

Transaction management:  The following transaction management products work
with DB2:

� Information Management System (IMS)
– Information Management System/ESA (IMS/ESA) Version 6 (5655-158)
– Information Management System/ESA (IMS/ESA) Version 5 (5695-176)

� Customer Information Control System (CICS)
– CICS Transaction Server for OS/390 Release 1 (5655-147)
– CICS/ESA Version 4 (5655-018)

Query support:  The following query products work with DB2:

� Query Management Facility (QMF), a feature of DB2 for OS/390 Version 6
� QMF for Windows, a feature of DB2 for OS/390 Version 6
� QMF High Performance Option, a feature of DB2 for OS/390 Version 6

| � The DB2 Extenders capability of DB2 for OS/390 Version 6

Application development:  The following application development programs work
with DB2:

# � C/C++ Productivity Tools for OS/390 (5655-B85)
� IBM VisualAge Generator Version 3 (see software announcement 297-395)

| � IBM VisualAge for Java, Enterprise Edition for OS/390, Version 2 (5655-JAV)
� IBM VisualAge COBOL Version 2 (see software announcement 297-371)
� IBM VisualAge PL/I Version 2 (see software announcement 297-372)

| � Application System (AS) Version 4 Release 2 (5648-092)

Operational support:  The following programs provide operational support for
DB2:

� IBM DATABASE 2 Performance Monitor (DB2 PM), an optional feature of DB2
for OS/390 Version 6

� OS/390 Version 1 Release 3 System Services optional feature for DFSMS
features

� OS/390 Version 1 Release 3 Security Server optional feature for RACF

� NetView Version 3 for MVS/ESA (5655-007), or NetView Version 2 Release
4 (5685-111)

# � Tivoli Performance Reporter for OS/390 Version 1 Release 4 (569510100) or
# Performance Reporter for MVS Version 1 Release 2 (5695-101)

� Library Readers included on the CD-ROMs for BookManager books

Replication support:  The following programs provide replication support for DB2:

� DB2 DataPropagator, an optional feature of DB2 for OS/390 Version 6; or one
or both of the following products:

– DataPropagator Relational Apply for MVS Version 5 Release 1 (5655-A22)

– DataPropagator Relational Capture for MVS Version 5 Release 1
(5655-A23)

� DataPropagator NonRelational MVS/ESA Version 2 (5696-705)

306 Release Planning Guide  



  
 

� IBM DataRefresher Version 1 (5696-703)

Database administration and systems management support:  The following
programs support database systems management for DB2:

� DB2 Automated Utility Generator (DB2AUG) Version 1 Release 2 (5695-077)

� DB2 Administration Tool, a feature of DB2 for OS/390 Version 6

� DB2 Buffer Pool Tool, a feature of DB2 for OS/390 Version 6

| � DB2 Control Center, an element of the DB2 Management Tools Package

| � DB2 Installer, an element of the DB2 Management Tools Package

| � Visual Explain, an element of the DB2 Management Tools Package

| � DB2 Estimator, an element of the DB2 Management Tools Package

| The DB2 Management Tools Package is a feature of DB2 for OS/390 Version 6.

Programming languages:  You can use the following programming languages (in
addition to High-Level Assembler, which is part of OS/390) to develop application
programs for DB2 for OS/390 Version 6:

C IBM AD/Cycle C/370 Compiler Version 1 Release 2 (5688-216);
IBM C/370 Library Version 2 Release 2 (5688-188)

C++ OS/390 Version 1 Release 3 Application Enablement optional
feature for C/C++

COBOL IBM COBOL for MVS and VM Version 1 Release 2 (5688-197), or
IBM COBOL for OS/390 and VM Version 2 Release 1 (5648-A25),
or VS COBOL II Compiler and Library Version 1 Release 4
(5668-958)

Fortran VS Fortran Compiler, Library, and Interactive Debugger Version 2
Release 6 (5668-806)

Java Java for OS/390 (5655-A46)

| PL/I IBM PL/I for MVS and VM Version 1 Release 1 (5688-235), or OS
| PL/I Compiler, Library, and Interactive Test Facility Version 2
| Release 3 (5668-909)

| REXX IBM TSO Extensions for MVS REXX, which is part of OS/390

Smalltalk IBM VisualAge Smalltalk Version 4 Release 5 (5655-B14 or
5802-AAR)

Virtual storage requirements
The amount of space needed for the common service area (CSA) below the 16-MB
line is less than 40 KB for each DB2 subsystem and 24 KB for each IRLM when
APAR PQ12390 and prior service is applied. High concurrent activity, parallelism,
or high contention can require more CSA.

Most of the DB2 common data resides in the extended common service area
(ECSA). Most modules, control blocks, and buffers reside in the extended private
area. A DB2 subsystem with 200 concurrent users and 2000 open data sets should
need less than 2 MB of virtual storage below the 16-MB line.

  Appendix G. Prerequisites of Version 6 of DB2 for OS/390 307



  
 

Prerequisites of features of DB2 for OS/390 Version 6
| DB2 for OS/390 Version 6 includes many features, some of which have
| requirements of their own, above and beyond what DB2 for OS/390 Version 6
| requires. This section identifies the requirements for using these features with DB2
| for OS/390 Version 6, but it does not repeat those DB2 for OS/390 requirements
| that apply to the features. Also, some of these features can be used with prior
| releases of DB2; these requirements are not included in this section, but rather in
| the detailed installation information for the specific feature.

| You can use subsequent versions or releases of the products mentioned in this
| section, unless otherwise noted.

| Recommendation: Before using these features, refer to the installation information
| for these features to ensure that you have all required and recommended products.

DB2 Installer requirements
DB2 Installer is an element of the DB2 Management Tools Package, which is a
feature of DB2 for OS/390 Version 6. DB2 Installer has hardware and program
requirements.

 Hardware requirements
DB2 Installer requires:

| � 20 MB disk memory on the target drive and 2 MB of disk space for each
| subsystem that is defined

� A monitor that is capable of displaying 1024-by-768 resolution

 Program requirements
| DB2 Installer can run in either of the following environments, each of which has its
| own requirements:

| � Windows NT, which requires Microsoft Windows NT Version 4.0

| � OS/2, which requires:

| – OS/2 Version 4
| – TCP/IP on OS/2, Version 3.0

Both environments require TCP/IP in any of the following circumstances:

� To run jobs from the workstation
| � To use the copy-jobs-to-host function from the workstation

� To use all the functions of DB2 Installer

If you don't have TCP/IP, you can use DB2 Installer to customize your installation
jobs, but you need to use a method outside of DB2 Installer to move jobs from the
workstation to OS/390 for execution.

# Visual Explain requirements
# The Visual Explain element of the DB2 Management Tools Package has hardware
# and program requirements.

308 Release Planning Guide  



  
 

#  Hardware requirements
# The Visual Explain element of the DB2 Management Tools Package requires:

| � A workstation with either OS/2 Version 4 or Windows NT 4.0
| � Approximately 12 MB of hard disk space
# � A high-resolution monitor

#  Program requirements
| One of the following products must be installed on the DB2 Visual Explain
| workstation:

| � DB2 Connect Personal Edition Version 5.2

| � DB2 Client Application Enablers (CAE) Version 5.2, connected to a server
| that is running DB2 Connect Enterprise Edition Version 5.2

| In addition, DB2 Visual Explain requires one of the following communication
| protocols:

|  � TCP/IP

| � SNA communications using a product such as Communication Server 5.0, SNA
| Server Version 4.0, or the integrated SNA support in DB2 Universal Database
| Personal Edition

| Visual Explain includes a browser that lets users view current values of subsystem
| parameters. To use this browser, your DB2 subsystem must have:

| � Stored procedures capability
| � The DSNWZP stored procedure enabled

DB2 Estimator requirements
| DB2 Estimator has hardware and program requirements.

|  Hardware requirements
| DB2 Estimator, which is an element of the DB2 Management Tools Package,
| requires:

| � A workstation with one of the operating systems listed under “Program
| requirements.”

| � Approximately 12 MB of hard disk space

|  Program requirements
| The DB2 Estimator operates in the following environments:

| � Windows 3.1 and subsequent releases
|  � Windows 98
|  � Windows 95
| � Windows NT 4

 Net.Data requirements
| Net.Data for OS/390 Version 2 Release 2 requires an HTTP Web server that is
| installed on the same server as Net.Data and DB2 for OS/390. The Web server can
| be another HTTP-compliant Web server or one of the following servers:

| � IBM Internet Connection Secure Server for OS/390 Version 2 Release 2
| (5697-B14)

  Appendix G. Prerequisites of Version 6 of DB2 for OS/390 309



  
 

| � Domino Go Webserver Version 4 Release 6 Modification 1 for OS/390
| (5697-C58)

| In addition, Net.Data servlets have the following requirements:

| � OS/390 Version 2 Release 5 (5647-A01)
| � Domino Go Webserver Version 5 (5697-D43) with Servlet Express

| Net.Data for OS/390 has no hardware requirements.

 QMF requirements
QMF, which is a feature of DB2 for OS/390 Version 6, has hardware and program
requirements.

 Hardware requirements
| The following QMF features have hardware dependencies:

| � QMF for OS/390 requires a display station that is supported by GDDM.

| � QMF High Performance Option (HPO) requires a display station that is
| supported by ISPF.

| � QMF for Windows requires a workstation that supports:

| – A Windows (16-bit or 32-bit) operating system
|  – Network connectivity

 Program requirements
| The following QMF features have program dependencies.

| � QMF for OS/390 requires Graphical Data Display Manager (GDDM) Version 2
| Release 3 (5665-356). (This requirement is satisfied by OS/390 Version 2.)

| Use of QMF forms calculations requires a Windows 32-bit operating system
| and IBM Object REXX Interpreter Edition Version 1.0 (5639-B73).

| � QMF for Windows requires:

| – A Windows (16-bit or 32-bit) operating system

| – Network communication software on each user machine, plus one or both
| of the following programs:

| - An SNA product that provides a CPI-C interface
| - A TCP/IP product that provides a WinSock Version 1.1 interface

| Use of QMF for Windows with English Wizard natural language query requires
| English Wizard Release 3.1, from Linguistic Technologies.

| The QMF for Windows Administrator module requires a Windows 32-bit
| operating system.

DB2 Performance Monitor requirements
DB2 Performance Monitor (DB2 PM), which is a feature of DB2 for OS/390 Version
6, has hardware and program requirements.

310 Release Planning Guide  



  
 

 Hardware requirements
DB2 Performance Monitor has the following dependencies.

� For the host-based Online Monitor, a display station that is supported by
Interactive System Productivity Facility (ISPF)

� For the host-based graphics facility, an IBM color graphics display station, or
equivalent, that is supported by Graphical Data Display Manager (GDDM)

The DB2 PM Workstation-Based Online Monitor has the following dependencies:

� A high-resolution monitor
� A workstation that supports OS/2 Version 3 or Windows NT Version 4.0
� Approximately 20 MB of hard disk space

 Program requirements
For the host-based Online Monitor and host-based graphics facility, DB2
Performance Monitor has no functional dependencies if you are monitoring DB2 for
OS/390 Version 6. The DB2 Performance Monitor feature supports an environment
of multiple DB2 releases, namely instrumentation, catalog, and PLAN_TABLE data
from:

| � DB2 UDB for OS/390 Version 6 (5645-DB2)
� DB2 for OS/390 Version 5 (5655-DB2)
� DB2 for MVS/ESA Version 4 (5695-DB2)

Refer to the software requirements for the specific version of DB2.

Workstation-Based Analysis and Tuning
The Workstation-Based Analysis and Tuning feature of DB2 for OS/390 Version 6
has hardware and program requirements.

 Hardware requirements
Workstation-Based Analysis and Tuning has the following hardware requirements:

� A high-resolution monitor
| � A workstation that supports OS/2 Version 3 or Windows NT Version 4.0

 Program requirements
Workstation-Based Analysis and Tuning requires one of the following operating
systems:

� OS/2, which requires both:

| – OS/2 Version 3
– Personal Communications AS/400 and 3270 V4.1 (5622-972)

� Windows NT Version 4.0. Windows NT uses TCP/IP to communicate with the
programs that run on OS/390, which requires TCP/IP for MVS Version 3
Release 2 (5655-HAL).

  Appendix G. Prerequisites of Version 6 of DB2 for OS/390 311



  
 

312 Release Planning Guide  



  
 

 Appendix H. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

 Copyright IBM Corp. 1999  313



  
 

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

314 Release Planning Guide  



  
 

Programming interface information
This book is intended to help you to use the new commands and options of Version
6 of DB2 for OS/390 and write programs that contain the new SQL statements and
clauses of Version 6 of DB2 for OS/390. This book primarily documents
General-use Programming Interface and Associated Guidance Information provided
by IBM DATABASE 2 Universal Database Server for OS/390 (DB2 for OS/390).

General-use programming interfaces allow the customer to write programs that
obtain the services of DB2 for OS/390.

However, this book also documents Product-sensitive Programming Interface and
Associated Guidance Information.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
this IBM software product. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces might need to be changed in
order to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, by the following marking:

Product-sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information ...

End of Product-sensitive Programming Interface

  Appendix H. Notices 315



  
 

 Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, other countries, or both:

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

Lotus, Domino, and Go Webserver are trademarks of Lotus Development
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

AD/Cycle
AIX
APL2
AS/400
BookManager
CICS
CICS/ESA
CICS/MVS
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Client Application Enablers
DB2 Connect
DB2 Universal Database
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
DFSORT
Distributed Relational Database Architecture
DRDA

ES/3090
ES/9000
GDDM
IBM
IBMLink
IMS
IMS/ESA
Language Environment
Multiprise
MVS/ESA
Net.Data
Operating System/400
OS/390
OS/400
OS/2
Parallel Sysplex
QMF
RACF
RETAIN
RMF
RS/6000
System/390
S/390
VisualAge
VTAM

316 Release Planning Guide  



  after trigger � DBCLOB
 

 Glossary

The following terms and abbreviations are defined as
they are used in the DB2 library. If you do not find the
term you are looking for, refer to the index or to IBM
Dictionary of Computing.

A
after trigger.  A trigger that is defined with the trigger
activation time AFTER.

auxiliary index.  An index on an auxiliary table in
which each index entry refers to a LOB.

auxiliary table.  A table that stores columns outside
the table in which they are defined. Contrast with base
table.

B
base table.  (1) A table that is created by the SQL
CREATE TABLE statement and that holds persistent
data. Contrast with result table and temporary table.

(2) A table containing a LOB column definition. The
actual LOB column data is not stored with the base
table. The base table contains a row identifier for each
row and an indicator column for each of its LOB
columns. Contrast with auxiliary table.

base table space.  A table space that contains base
tables.

before trigger.  A trigger that is defined with the trigger
activation time BEFORE.

binary large object (BLOB).  A sequence of bytes,
where the size of the value ranges from 0 bytes to
2 GB - 1. Such a string does not have an associated
CCSID.

binary string.  A sequence of bytes that is not
associated with a CCSID. For example, the BLOB data
type is a binary string.

BLOB.  Binary large object.

built-in function.  A function that DB2 supplies.
Contrast with user-defined function.

C
cast function.  A function that is used to convert
instances of a (source) data type into instances of a
different (target) data type. In general, a cast function
has the name of the target data type. It has one single
argument whose type is the source data type; its return
type is the target data type.

character large object (CLOB).  A sequence of bytes
representing single-byte characters or a mixture of
single- and double-byte characters where the size of the
value can be up to 2 GB - 1. In general, character
large object values are used whenever a character
string might exceed the limits of the VARCHAR type.

CLOB.  Character large object.

column function.  An SQL operation that derives its
result from a collection of values across one or more
rows. Contrast with scalar function.

cost category.  A category into which DB2 places cost
estimates for SQL statements at the time the statement
is bound. A cost estimate can be placed in either of the
following cost categories:

� A: Indicates that DB2 had enough information to
make a cost estimate without using default values.

� B: Indicates that some condition exists for which
DB2 was forced to use default values for its
estimate.

The cost category is externalized in the
COST_CATEGORY column of
DSN_STATEMNT_TABLE when a statement is
explained.

# created temporary table.  A table that holds temporary
# data and is defined with the SQL statement CREATE
# GLOBAL TEMPORARY TABLE. Information about
# created temporary tables is stored in the DB2 catalog,
# so this kind of table is persistent and can be shared
# across application processes. Contrast with declared
# temporary table. See also temporary table.

D
data space.  A range of up to 2 GB of contiguous
virtual storage addresses that a program can directly
manipulate. Unlike an address space, a data space can
hold only data; it does not contain common areas,
system data, or programs.

DBCLOB.  Double-byte character large object.

 Copyright IBM Corp. 1999  317



 declared temporary table � insert trigger  
 

# declared temporary table.  A table that holds
# temporary data and is defined with the SQL statement
# DECLARE GLOBAL TEMPORARY TABLE. Information
# about declared temporary tables is not stored in the
# DB2 catalog, so this kind of table is not persistent and
# can only be used by the application process that issued
# the DECLARE statement. Contrast with created
# temporary table. See also temporary table.

delete trigger.  A trigger that is defined with the
triggering SQL operation DELETE.

deterministic function.  A user-defined function whose
result is dependent on the values of the input
arguments. That is, successive invocations with the
same input values produce the same answer.
Sometimes referred to as a not-variant function.
Contrast this with an not-deterministic function
(sometimes called a variant function), which might not
always produce the same result for the same inputs.

distinct type.  A user-defined data type that is
internally represented as an existing type (its source
type), but is considered to be a separate and
incompatible type for semantic purposes.

double-byte character large object (DBCLOB).  A
sequence of bytes representing double-byte characters
where the size of the values can be up to 2 GB. In
general, double-byte character large object values are
used whenever a double-byte character string might
exceed the limits of the VARGRAPHIC type.

E
EA-enabled table space.  A table space or index
space that is enabled for extended addressability and
that contains individual partitions (or pieces, for LOB
table spaces) that are greater than 4 GB.

external function.  A function for which the body is
written in a programming language that takes scalar
argument values and produces a scalar result for each
invocation. Contrast with sourced function and built-in
function.

F
function.  A specific purpose of an entity or its
characteristic action such as a column function or scalar
function. (See also column function and scalar function.)

Functions can be user-defined, built-in, or generated by
DB2. (See built-in function, cast function, external
function, sourced function, and user-defined function.)

function definer.  The authorization ID of the owner of
the schema of the function that is specified in the
CREATE FUNCTION statement.

function implementer.  The authorization ID of the
owner of the function program and function package.

function package.  A package that results from
binding the DBRM for a function program.

function package owner.  The authorization ID of the
user who binds the function program's DBRM into a
function package.

function resolution.  The process, internal to the
DBMS, by which a function invocation is bound to a
particular function instance. This process uses the
function name, the data types of the arguments, and a
list of the applicable schema names (called the SQL
path) to make the selection. This process is sometimes
called function selection.

function selection.  See function resolution.

function signature.  The logical concatenation of a
fully qualified function name with the data types of all of
its parameters.

G
group buffer pool duplexing.  The ability to write data
to two instances of a group buffer pool structure: a
primary group buffer pool and a secondary group buffer
pool. OS/390 publications refer to these instances as
the 'old' (for primary) and 'new' (for secondary)
structures.

I
# identity column.  A column that provides a way for
# DB2 to automatically generate a guaranteed-unique
# numeric value for each row that is inserted into the
# table. Identity columns are defined with the AS
# IDENTITY clause. A table can have no more than one
# identity column.

indicator column.  A 4-byte value that is stored in a
base table in place of a LOB column.

inheritance.  The passing of class resources or
attributes from a parent class downstream in the class
hierarchy to a child class.

inoperative package.  A package that cannot be used
because one or more user-defined functions that the
package depends on were dropped. Such a package
must be explicitly rebound. Contrast with invalid
package.

insert trigger.  A trigger that is defined with the
triggering SQL operation INSERT.

318 Release Planning Guide  



  invalid package � row trigger
 

invalid package.  A package that depends on an
object (other than a user-defined function) that is
dropped. Such a package is implicitly rebound on
invocation. Contrast with inoperative package.

invariant character set.  (1) A character set, such as
the syntactic character set, whose code point
assignments do not change from code page to code
page. (2) A minimum set of characters that is available
as part of all character sets.

L
large object (LOB).  A sequence of bytes representing
bit data, single-byte characters, double-byte characters,
or a mixture of single- and double-byte characters. A
LOB can be up to 2 GB - 1 byte in length. See also
BLOB, CLOB, and DBCLOB.

LOB.  Large object.

LOB locator.  A mechanism that allows an application
program to manipulate a large object value in the
database system. A LOB locator is a fullword integer
value that represents a single LOB value. An application
program retrieves a LOB locator into a host variable
and can then apply SQL operations to the associated
LOB value using the locator.

LOB lock.  A lock on a LOB value.

LOB table space.  A table space that contains all the
data for a particular LOB column in the related base
table.

locale.  The definition of a subset of a user's
environment that combines characters that are defined
for a specific language and country, and a CCSID.

M
materialize.  (1) The process of putting rows from a
view or nested table expression into a work file for
additional processing by a query.

(2) The placement of a LOB value into contiguous
storage. Because LOB values can be very large, DB2
avoids materializing LOB data until doing so becomes
absolutely necessary.

N
not-deterministic function.  A user-defined function
whose result is not solely dependent on the values of
the input arguments. That is, successive invocations
with the same argument values can produce a different
answer. this type of function is sometimes called a

variant function. Contrast this with a deterministic
function (sometimes called a not-variant function), which
always produces the same result for the same inputs.

not-variant function.  See deterministic function.

O
overloaded function.  A function name for which
multiple function instances exist.

P
path.  See SQL path.

postponed abort UR.  A unit of recovery that was
inflight or in-abort, was interrupted by system failure or
cancellation, and did not complete backout during
restart.

primary group buffer pool.  For a duplexed group
buffer pool, the structure used to maintain the
coherency of cached data. This structure is used for
page registration and cross-invalidation. The OS/390
equivalent is old structure. Compare with secondary
group buffer pool.

R
REORG pending (REORP).  A condition that restricts
SQL access and most utility access to an object that
must be reorganized.

REORP.  REORG pending.

restart pending (RESTP).  A restrictive state of a page
set or partition that indicates that restart (backout) work
needs to be performed on the object. All access to the
page set or partition is denied except for access by the:

� RECOVER POSTPONED command
� Automatic online backout (which DB2 invokes after

restart if the system parameter LBACKOUT=AUTO)

RESTP.  Restart pending.

result table.  The set of rows that are specified by a
SELECT statement.

ROWID.  Row identifier.

row identifier (ROWID).  A value that uniquely
identifies a row. This value is stored with the row and
never changes.

row trigger.  A trigger that is defined with the trigger
granularity FOR EACH ROW.

  Glossary 319



 savepoint � transition table  
 

S
# savepoint.  A named entity that represents the state of
# data and schemas at a particular point in time within an
# agent's transaction. Special SQL statements exist to
# create savepoints, destroy savepoints, and restore data
# and schemas to the states that the savepoints
# represent. The restoration of data and schemas to a
# savepoint is usually referred to as rolling back to a
# savepoint.

scalar function.  An SQL operation that produces a
single value from another value and is expressed as a
function name, followed by a list of arguments that are
enclosed in parentheses. Contrast with column function.

schema.  A logical grouping for user-defined functions,
distinct types, triggers, and stored procedures. When an
object of one of these types is created, it is assigned to
one schema, which is determined by the name of the
object. For example, the following statement creates a
distinct type T in schema C:

CREATE DISTINCT TYPE C.T ...

secondary group buffer pool.  For a duplexed group
buffer pool, the structure that is used to back up
changed pages that are written to the primary group
buffer pool. No page registration or cross-invalidation
occurs using the secondary group buffer pool. The
OS/390 equivalent is new structure.

sourced function.  A function that is implemented by
another built-in or user-defined function that is already
known to the database manager. This function can be a
scalar function or a column (aggregating) function; it
returns a single value from a set of values (for example,
MAX or AVG). Contrast with external function and
built-in function.

source type.  An existing type that is used to internally
represent a distinct type.

specific function name.  A particular user-defined
function that is known to the database manager by its
specific name. Many specific user-defined functions can
have the same function name. When a user-defined
function is defined to the database, every function is
assigned a specific name that is unique within its
schema. Either the user can provide this name, or a
default name is used.

SQL path.  An ordered list of schema names that are
used in the resolution of unqualified references to
user-defined functions, distinct types, and stored
procedures. In dynamic SQL, the current path is found
in the CURRENT PATH special register. In static SQL,
it is defined in the PATH bind option.

statement trigger.  A trigger that is defined with the
trigger granularity FOR EACH STATEMENT.

strong typing.  A process that guarantees that only
user-defined functions and operations that are defined
on a distinct type can be applied to that type. For
example, you cannot directly compare two currency
types, such as Canadian dollars and US dollars. But
you can provide a user-defined function to convert one
currency to the other and then do the comparison.

syntactic character set.  A set of 81 graphic
characters that are registered in the IBM registry as
character set 00640. This set was originally
recommended to the programming language community
to be used for syntactic purposes toward maximizing
portability and interchangeability across systems and
country boundaries. It is contained in most of the
primary registered character sets, with a few
exceptions. See also invariant character set.

T
table function.  A function that receives a set of
arguments and returns a table to the SQL statement
that references the function. A table function can only
be referenced in the FROM clause of a subselect.

table locator.  A mechanism that allows access to
trigger transition tables in the FROM clause of SELECT
statements, the subselect of INSERT statements, or
from within user-defined functions. A table locator is a
fullword integer value that represents a transition table.

table space set.  A set of table spaces and partitions
that should be recovered together for one of these
reasons:

� Each of them contains a table that is a parent or
descendent of a table in one of the others.

� The set contains a base table and associated
auxiliary tables.

A table space set can contain both types of
relationships.

# temporary table.  A table that holds temporary data;
# for example, temporary tables are useful for holding or
# sorting intermediate results from queries that contain a
# large number of rows. The two kinds of temporary table,
# which are created by different SQL statements, are the
# created temporary table and the declared temporary
# table. Contrast with result table. See also created
# temporary table and declared temporary table.

transition table.  A temporary table that contains all
the affected rows of the triggering table in their state
before or after the triggering event occurs. Triggered
SQL statements in the trigger definition can reference
the table of changed rows in the old state or the new
state.

320 Release Planning Guide  



  transition variable � variant function
 

transition variable.  A variable that contains a column
value of the affected row of the triggering table in its
state before or after the triggering event occurs.
Triggered SQL statements in the trigger definition can
reference the set of old values or the set of new values.

trigger.  A set of SQL statements that are stored in a
DB2 database and executed when a certain event
occurs in a DB2 table.

trigger activation.  The process that occurs when the
trigger event that is defined in a trigger definition is
executed. Trigger activation consists of the evaluation of
the triggered action condition and conditional execution
of the triggered SQL statements.

trigger activation time.  An indication in the trigger
definition of whether the trigger should be activated
before or after the triggered event.

trigger body.  The set of SQL statements that is
executed when a trigger is activated and its triggered
action condition evaluates to true.

trigger cascading.  The process that occurs when the
triggered action of a trigger causes the activation of
another trigger.

triggered action.  The SQL logic that is performed
when a trigger is activated. The triggered action
consists of an optional triggered action condition and a
set of triggered SQL statements that are executed only
if the condition evaluates to true.

triggered action condition.  An optional part of the
triggered action. This Boolean condition appears as a
WHEN clause and specifies a condition that DB2
evaluates to determine if the triggered SQL statements
should be executed.

triggered SQL statements.  The set of SQL
statements that is executed when a trigger is activated
and its triggered action condition evaluates to true.
Triggered SQL statements are also called the trigger
body.

trigger granularity.  A characteristic of a trigger, which
determines whether the trigger is activated:

Only once for the triggering SQL statement
Once for each row that the SQL statement modifies

trigger package.  A package that is created when a
CREATE TRIGGER statement is executed. The
package is executed when the trigger is activated.

triggering event.  The specified operation in a trigger
definition that causes the activation of that trigger. The
triggering event is comprised of a triggering operation
(INSERT, UPDATE, or DELETE) and a triggering table
on which the operation is performed.

triggering SQL operation.  The SQL operation that
causes a trigger to be activated when performed on the
triggering table.

triggering table.  The table for which a trigger is
created. When the defined triggering event occurs on
this table, the trigger is activated.

typed parameter marker.  A parameter marker that is
specified along with its target data type. It has the
general form:

CAST(? AS data-type)

U
UDF.  User-defined function.

UDT.  User-defined data type. In DB2 for OS/390, the
term distinct type is used instead of user-defined
function.

untyped parameter marker.  A parameter marker that
is specified without its target data type. It has the form
of a single question mark (?).

update trigger.  A trigger that is defined with the
triggering SQL operation UDPATE.

user-defined data type (UDT).  See distinct type.

user-defined function (UDF).  A function that is
defined to DB2 using the CREATE FUNCTION
statement and that can be referenced thereafter in SQL
statements. A user-defined function can be either an
external function or a sourced function. Contrast with
built-in function.

V
variant function.  See not-deterministic function.

  Glossary 321



  
 

322 Release Planning Guide  



  
 

 Bibliography

DB2 Universal Database Server for OS/390 Version
6 Product Libraries:

DB2 Universal Database for OS/390

� DB2 Administration Guide, SC26-9003

� DB2 Application Programming and SQL Guide,
SC26-9004

� DB2 Application Programming Guide and Reference
for Java, SC26-9018

� DB2 ODBC Guide and Reference, SC26-9005

� DB2 Command Reference, SC26-9006

� DB2 Data Sharing: Planning and Administration,
SC26-9007

� DB2 Data Sharing Quick Reference Card,
SX26-3843

� DB2 Diagnosis Guide and Reference, LY36-3736

� DB2 Diagnostic Quick Reference Card, LY36-3737

� DB2 Image, Audio, and Video Extenders
Administration and Programming, SC26-9650

� DB2 Installation Guide, GC26-9008

� DB2 Licensed Program Specifications, GC26-9009

� DB2 Messages and Codes, GC26-9011

� DB2 Master Index, SC26-9010

� DB2 Reference for Remote DRDA Requesters and
Servers, SC26-9012

� DB2 Reference Summary, SX26-3844

� DB2 Release Planning Guide, SC26-9013

� DB2 SQL Reference, SC26-9014

� DB2 Text Extender Administration and
Programming, SC26-9651

� DB2 Utility Guide and Reference, SC26-9015

� DB2 What's New? GC26-9017

� DB2 Program Directory, GI10-8182

DB2 Administration Tool

� DB2 Administration Tool for OS/390 User's Guide,
SC26-9847

DB2 Buffer Pool Tool

� DB2 Buffer Pool Tool for OS/390 User's Guide and
Reference, SC26-9306

DB2 DataPropagator

� DB2 Replication Guide and Reference, SC26-9642

Net.Data for OS/390

The following books are available at
# http://www.ibm.com/software/net.data/library.html:

� Net.Data Library: Administration and Programming
Guide for OS/390

� Net.Data Library: Language Environment Interface
Reference

� Net.Data Library: Messages and Codes
� Net.Data Library: Reference

DB2 PM for OS/390

� DB2 PM for OS/390 Batch User's Guide,
SC26-9167

� DB2 PM for OS/390 Command Reference,
SC26-9166

� DB2 PM for OS/390 General Information,
GC26-9172

� DB2 PM for OS/390 Installation and Customization,
SC26-9171

� DB2 PM for OS/390 Messages, SC26-9169

� DB2 PM for OS/390 Online Monitor User's Guide,
SC26-9168

� DB2 PM for OS/390 Report Reference Volume 1,
SC26-9164

� DB2 PM for OS/390 Report Reference Volume 2,
SC26-9165

� DB2 PM for OS/390 Using the Workstation Online
Monitor, SC26-9170

� DB2 PM for OS/390 Program Directory, GI10-8183

Query Management Facility

� Query Management Facility: Developing QMF
Applications, SC26-9579

� Query Management Facility: Getting Started with
QMF on Windows, SC26-9582

� Query Management Facility: High Peformance
Option User's Guide for OS/390, SC26-9581

� Query Management Facility: Installing and
Managing QMF on OS/390, GC26-9575

� Query Management Facility: Installing and
Managing QMF on Windows, GC26-9583

� Query Management Facility: Introducing QMF,
GC26-9576

� Query Management Facility: Messages and Codes,
GC26-9580

� Query Management Facility: Reference, SC26-9577
� Query Management Facility: Using QMF,

SC26-9578

 Copyright IBM Corp. 1999  323



  
 

Ada/370

� IBM Ada/370 Language Reference, SC09-1297
� IBM Ada/370 Programmer's Guide, SC09-1414
� IBM Ada/370 SQL Module Processor for DB2

Database Manager User's Guide, SC09-1450

APL2

� APL2 Programming Guide, SH21-1072
� APL2 Programming: Language Reference,

SH21-1061
� APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

AS/400

� DB2 for OS/400 SQL Programming, SC41-4611
� DB2 for OS/400 SQL Reference, SC41-4612

BASIC

�  IBM BASIC/MVS Language Reference, GC26-4026
�  IBM BASIC/MVS Programming Guide, SC26-4027

BookManager READ/MVS

�  BookManager READ/MVS V1R3: Installation
Planning & Customization, SC38-2035

C/370

� IBM SAA AD/Cycle C/370 Programming Guide,
SC09-1841

� IBM SAA AD/Cycle C/370 Programming Guide for
Language Environment/370, SC09-1840

� IBM SAA AD/Cycle C/370 User's Guide,
SC09-1763

� SAA CPI C Reference, SC09-1308

Character Data Representation Architecture

� Character Data Representation Architecture
Overview, GC09-2207

� Character Data Representation Architecture
Reference and Registry, SC09-2190

CICS/ESA

� CICS/ESA Application Programming Guide,
SC33-1169

� CICS for MVS/ESA Application Programming
Reference, SC33-1170

� CICS for MVS/ESA CICS-RACF Security Guide,
SC33-1185

� CICS for MVS/ESA CICS-Supplied Transactions,
SC33-1168

� CICS for MVS/ESA Customization Guide,
SC33-1165

� CICS for MVS/ESA Data Areas, LY33-6083
� CICS for MVS/ESA Installation Guide, SC33-1163
� CICS for MVS/ESA Intercommunication Guide,

SC33-1181

� CICS for MVS/ESA Messages and Codes,
GC33-1177

� CICS for MVS/ESA Operations and Utilities Guide,
SC33-1167

� CICS/ESA Performance Guide, SC33-1183
� CICS/ESA Problem Determination Guide,

SC33-1176
� CICS for MVS/ESA Resource Definition Guide,

SC33-1166
� CICS for MVS/ESA System Definition Guide,

SC33-1164
� CICS for MVS/ESA System Programming

Reference, GC33-1171

CICS/MVS

� CICS/MVS Application Programmer's Reference,
SC33-0512

� CICS/MVS Facilities and Planning Guide,
SC33-0504

� CICS/MVS Installation Guide, SC33-0506
� CICS/MVS Operations Guide, SC33-0510
� CICS/MVS Problem Determination Guide,

SC33-0516
� CICS/MVS Resource Definition (Macro), SC33-0509
� CICS/MVS Resource Definition (Online), SC33-0508

IBM C/C++ for MVS/ESA

� IBM C/C++ for MVS/ESA Library Reference,
SC09-1995

� IBM C/C++ for MVS/ESA Programming Guide,
SC09-1994

IBM COBOL

� IBM COBOL Language Reference, SC26-4769
� IBM COBOL for MVS & VM Programming Guide,

SC26-4767

Conversion Guide

� IMS-DB and DB2 Migration and Coexistence Guide,
GH21-1083

Cooperative Development Environment

� CoOperative Development Environment/370: Debug
Tool, SC09-1623

Data Extract (DXT)

� Data Extract Version 2: General Information,
GC26-4666

� Data Extract Version 2: Planning and Administration
Guide, SC26-4631

DataPropagator NonRelational

� DataPropagator NonRelational MVS/ESA
Administration Guide, SH19-5036

� DataPropagator NonRelational MVS/ESA
Reference, SH19-5039

324 Release Planning Guide  



  
 

Data Facility Data Set Services

� Data Facility Data Set Services: User's Guide and
Reference, SC26-4388

Database Design

� DB2 Design and Development Guide, Gabrielle
Wiorkowski and David Kull, Addison Wesley, ISBN
0-20158-049-8

� Handbook of Relational Database Design, C.
Fleming and B. Von Halle, Addison Wesley, ISBN
0-20111-434-8

DataHub

� IBM DataHub General Information, GC26-4874

DB2 Connect

� DB2 Connect Enterprise Edition for OS/2 and
Windows NT: Quick Beginnings, GC09-2828

� DB2 Connect Personal Edition Quick Beginnings,
GC09-2830

� DB2 Connect User's Guide, SC09-2838

DB2 Server for VSE & VM

� DB2 Server for VM: DBS Utility, SC09-2394
� DB2 Server for VSE: DBS Utility, SC09-2395

DB2 Universal Database (UDB)

� DB2 UDB Administration Guide Volume 1: Design
and Implementation, SC09-2839

� DB2 UDB Administration Guide Volume 2:
Performance, SC09-2840

� DB2 UDB Administrative API Reference,
SC09-2841

� DB2 UDB Application Building Guide, SC09-2842
� DB2 UDB Application Development Guide,

SC09-2845
� DB2 UDB Call Level Interface Guide and

Reference, SC09-2843
� DB2 UDB SQL Getting Started, SC09-2856
� DB2 UDB SQL Reference Volume 1, SC09-2847
� DB2 UDB SQL Reference Volume 2, SC09-2848

Device Support Facilities

� Device Support Facilities User's Guide and
Reference, GC35-0033

DFSMS/MVS

� DFSMS/MVS: Access Method Services for the
Integrated Catalog, SC26-4906

� DFSMS/MVS: Access Method Services for VSAM
Catalogs, SC26-4905

� DFSMS/MVS: Administration Reference for
DFSMSdss, SC26-4929

� DFSMS/MVS: DFSMShsm Managing Your Own
Data, SH21-1077

� DFSMS/MVS: Diagnosis Reference for DFSMSdfp,
LY27-9606

� DFSMS/MVS Storage Management Library:
Implementing System-Managed Storage,
SC26–3123

� DFSMS/MVS: Macro Instructions for Data Sets,
SC26-4913

� DFSMS/MVS: Managing Catalogs, SC26-4914
� DFSMS/MVS: Program Management, SC26-4916
� DFSMS/MVS: Storage Administration Reference for

DFSMSdfp, SC26-4920
� DFSMS/MVS: Using Advanced Services,

SC26-4921
� DFSMS/MVS: Utilities, SC26-4926
� MVS/DFP: Using Data Sets, SC26-4749

DFSORT

� DFSORT Application Programming: Guide,
SC33-4035

Distributed Relational Database

� Data Stream and OPA Reference, SC31-6806
� IBM SQL Reference, SC26-8416
� Open Group Technical Standard (the Open Group

presently makes the following books available
through its Web site at http://www.opengroup.org):

– DRDA Volume 1: Distributed Relational
Database Architecture (DRDA), ISBN
1-85912-295-7

# – DRDA Version 2 Volume 2: Formatted Data
# Object Content Architecture, available only on
# Web

– DRDA Volume 3: Distributed Database
Management (DDM) Architecture, ISBN
1-85912-206-X

Domain Name System

� DNS and BIND, Third Edition, Paul Albitz and
Cricket Liu, O'Reilly, SR23-8771

Education

� IBM Dictionary of Computing, McGraw-Hill, ISBN
0-07031-489-6

� 1999 IBM All-in-One Education and Training
Catalog, GR23-8105

Enterprise System/9000 and Enterprise System/3090

� Enterprise System/9000 and Enterprise
System/3090 Processor Resource/System Manager
Planning Guide, GA22-7123

High Level Assembler

� High Level Assembler for MVS and VM and VSE
Language Reference, SC26-4940

� High Level Assembler for MVS and VM and VSE
Programmer's Guide, SC26-4941

  Bibliography 325



  
 

Parallel Sysplex Library

� OS/390 Parallel Sysplex Application Migration,
GC28-1863

� System/390 MVS Sysplex Hardware and Software
Migration, GC28-1862

� OS/390 Parallel Sysplex Overview: An Introduction
to Data Sharing and Parallelism, GC28-1860

� OS/390 Parallel Sysplex Systems Management,
GC28-1861

� OS/390 Parallel Sysplex Test Report, GC28-1963
� System/390 9672/9674 System Overview,

GA22-7148

ICSF/MVS

� ICSF/MVS General Information, GC23-0093

IMS/ESA

� IMS Batch Terminal Simulator General Information,
GH20-5522

� IMS/ESA Administration Guide: System, SC26-8013
� IMS/ESA Administration Guide: Transaction

Manager, SC26-8731
� IMS/ESA Application Programming: Database

Manager, SC26-8727
� IMS/ESA Application Programming: Design Guide,

SC26-8016
� IMS/ESA Application Programming: Transaction

Manager, SC26-8729
� IMS/ESA Customization Guide, SC26-8020
� IMS/ESA Installation Volume 1: Installation and

Verification, SC26-8023
� IMS/ESA Installation Volume 2: System Definition

and Tailoring, SC26-8024
� IMS/ESA Messages and Codes, SC26-8028
� IMS/ESA Operator's Reference, SC26-8030
� IMS/ESA Utilities Reference: System, SC26-8035

ISPF

� ISPF V4 Dialog Developer's Guide and Reference,
SC34-4486

� ISPF V4 Messages and Codes, SC34-4450
� ISPF V4 Planning and Customizing, SC34-4443
� ISPF V4 User's Guide, SC34-4484

Language Environment

� Debug Tool User's Guide and Reference,
SC09-2137

National Language Support

� National Language Support Reference Volume 2,
SE09-8002

NetView

� NetView Installation and Administration Guide,
SC31-8043

� NetView User's Guide, SC31-8056

ODBC

� Microsoft ODBC 3.0 Programmer's Reference and
SDK Guide, Microsoft Press, ISBN 1-55615-658-8

OS/390

� OS/390 C/C++ Programming Guide, SC09-2362
� OS/390 C/C++ Run-Time Library Reference,

SC28-1663
� OS/390 C/C++ User's Guide, SC09-2361
� OS/390 eNetwork Communications Server: IP

Configuration, SC31-8513
� OS/390 Hardware Configuration Definition Planning,

GC28-1750
� OS/390 Information Roadmap, GC28-1727
� OS/390 Introduction and Release Guide,

GC28-1725
� OS/390 JES2 Initialization and Tuning Guide,

SC28-1791
� OS/390 JES3 Initialization and Tuning Guide,

SC28-1802
� OS/390 Language Environment for OS/390 & VM

Concepts Guide, GC28-1945
� OS/390 Language Environment for OS/390 & VM

Customization, SC28-1941
� OS/390 Language Environment for OS/390 & VM

Debugging Guide, SC28-1942
� OS/390 Language Environment for OS/390 & VM

Programming Guide, SC28-1939
� OS/390 Language Environment for OS/390 & VM

Programming Reference, SC28-1940
� OS/390 MVS Diagnosis: Procedures, LY28-1082
� OS/390 MVS Diagnosis: Reference, SY28-1084
� OS/390 MVS Diagnosis: Tools and Service Aids,

LY28-1085
� OS/390 MVS Initialization and Tuning Guide,

SC28-1751
� OS/390 MVS Initialization and Tuning Reference,

SC28-1752
� OS/390 MVS Installation Exits, SC28-1753
� OS/390 MVS JCL Reference, GC28-1757
� OS/390 MVS JCL User's Guide, GC28-1758
� OS/390 MVS Planning: Global Resource

Serialization, GC28-1759
� OS/390 MVS Planning: Operations, GC28-1760
� OS/390 MVS Planning: Workload Management,

GC28-1761
� OS/390 MVS Programming: Assembler Services

Guide, GC28-1762
� OS/390 MVS Programming: Assembler Services

Reference, GC28-1910
� OS/390 MVS Programming: Authorized Assembler

Services Guide, GC28-1763
� OS/390 MVS Programming: Authorized Assembler

Services Reference, Volumes 1-4, GC28-1764,
GC28-1765, GC28-1766, GC28-1767

� OS/390 MVS Programming: Callable Services for
High-Level Languages, GC28-1768

� OS/390 MVS Programming: Extended
Addressability Guide, GC28-1769

326 Release Planning Guide  



  
 

� OS/390 MVS Programming: Sysplex Services
Guide, GC28-1771

� OS/390 MVS Programming: Sysplex Services
Reference, GC28-1772

� OS/390 MVS Programming: Workload Management
Services, GC28-1773

� OS/390 MVS Routing and Descriptor Codes,
GC28-1778

� OS/390 MVS Setting Up a Sysplex, GC28-1779
� OS/390 MVS System Codes, GC28-1780
� OS/390 MVS System Commands, GC28-1781
� OS/390 MVS System Messages Volume 1,

GC28-1784
� OS/390 MVS System Messages Volume 2,

GC28-1785
� OS/390 MVS System Messages Volume 3,

GC28-1786
� OS/390 MVS System Messages Volume 4,

GC28-1787
� OS/390 MVS System Messages Volume 5,

GC28-1788
� OS/390 MVS Using the Subsystem Interface,

SC28-1789
� OS/390 Security Server (RACF) Auditor's Guide,

SC28-1916
� OS/390 Security Server (RACF) Command

Language Reference, SC28-1919
� OS/390 Security Server (RACF) General User's

Guide, SC28-1917
� OS/390 Security Server (RACF) Introduction,

GC28-1912
� OS/390 Security Server (RACF) Macros and

Interfaces, SK2T-6700 (OS/390 Collection Kit ),
SK27-2180 (OS/390 Security Server Information
Package )

� OS/390 Security Server (RACF) Security
Administrator's Guide, SC28-1915

� OS/390 Security Server (RACF) System
Programmer's Guide, SC28-1913

� OS/390 SMP/E Reference, SC28-1806
� OS/390 SMP/E User's Guide, SC28-1740
� OS/390 RMF User's Guide, SC28-1949
� OS/390 TSO/E CLISTS, SC28-1973
� OS/390 TSO/E Command Reference, SC28-1969
� OS/390 TSO/E Customization, SC28-1965
� OS/390 TSO/E Messages, GC28-1978
� OS/390 TSO/E Programming Guide, SC28-1970
� OS/390 TSO/E Programming Services, SC28-1971
� OS/390 TSO/E User's Guide, SC28-1968
� OS/390 DCE Administration Guide, SC28-1584
� OS/390 DCE Introduction, GC28-1581
� OS/390 DCE Messages and Codes, SC28-1591
� OS/390 UNIX System Services Command

Reference, SC28-1892
� OS/390 UNIX System Services Planning,

SC28-1890
� OS/390 UNIX System Services User's Guide,

SC28-1891
� OS/390 UNIX System Services Programming:

Assembler Callable Services Reference, SC28-1899

j

PL/I for MVS & VM

� IBM PL/I MVS & VM Language Reference,
SC26-3114

� IBM PL/I MVS & VM Programming Guide,
SC26-3113

OS PL/I

� OS PL/I Programming Language Reference,
SC26-4308

� OS PL/I Programming Guide, SC26-4307

Prolog

� IBM SAA AD/Cycle Prolog/MVS & VM
Programmer's Guide, SH19-6892

Remote Recovery Data Facility

� Remote Recovery Data Facility Program Description
and Operations, LY37-3710

Storage Management

� DFSMS/MVS Storage Management Library:
Implementing System-Managed Storage,
SC26-3123

� MVS/ESA Storage Management Library: Leading a
Storage Administration Group, SC26-3126

� MVS/ESA Storage Management Library: Managing
Data, SC26-3124

� MVS/ESA Storage Management Library: Managing
Storage Groups, SC26-3125

� MVS Storage Management Library: Storage
Management Subsystem Migration Planning Guide,
SC26-4659

System/370 and System/390

� ESA/370 Principles of Operation, SA22-7200
� ESA/390 Principles of Operation, SA22-7201
� System/390 MVS Sysplex Hardware and Software

Migration, GC28-1210

System Network Architecture (SNA)

� SNA Formats, GA27-3136
� SNA LU 6.2 Peer Protocols Reference, SC31-6808
� SNA Transaction Programmer's Reference Manual

for LU Type 6.2, GC30-3084
� SNA/Management Services Alert Implementation

Guide, GC31-6809

TCP/IP

� IBM TCP/IP for MVS: Customization &
Administration Guide, SC31-7134

� IBM TCP/IP for MVS: Diagnosis Guide, LY43-0105
� IBM TCP/IP for MVS: Messages and Codes,

SC31-7132

  Bibliography 327



  
 

� IBM TCP/IP for MVS: Planning and Migration
Guide, SC31-7189

VS COBOL II

� VS COBOL II Application Programming Guide for
MVS and CMS, SC26-4045

� VS COBOL II Application Programming: Language
Reference, GC26-4047

� VS COBOL II Installation and Customization for
MVS, SC26-4048

VS FORTRAN

� VS FORTRAN Version 2: Language and Library
Reference, SC26-4221

� VS FORTRAN Version 2: Programming Guide for
CMS and MVS, SC26-4222

VTAM

� Planning for NetView, NCP, and VTAM, SC31-8063
� VTAM for MVS/ESA Diagnosis, LY43-0069
� VTAM for MVS/ESA Messages and Codes,

SC31-6546
� VTAM for MVS/ESA Network Implementation Guide,

SC31-6548
� VTAM for MVS/ESA Operation, SC31-6549
� VTAM for MVS/ESA Programming, SC31-6550
� VTAM for MVS/ESA Programming for LU 6.2,

SC31-6551
� VTAM for MVS/ESA Resource Definition Reference,

SC31-6552

328 Release Planning Guide  



  
 

 Index

Numerics
16-TB table space

IFCIDs 295
8-KB and 16-KB page size

IFCIDs 295

A
access path

direct row access 53
hints 59

active log
IFCID indicating impending shortage 85

advisory restart-pending status 27
ALTER COLUMN clause

ALTER TABLE statement 24
ALTER TABLE statement 24
APAR, Version 5

PQ01040 86
PQ04053 64
PQ06465 89
PQ07327 88
PQ08342 90
PQ09901 118
PQ09947 85
PQ10633 230
PQ12126 88
PQ12390 87, 88
PQ14255 91
PQ15670 41
PQ15854 64
PQ17797 43
PQ18543 15
PQ18710 36
PQ18941 34
PQ19077 34
PQ19897 34
PQ20032 34
PQ21014 42
PQ25091 97

application program
object extensions 123

APPLNAME column
DSN_STATEMNT_TABLE 80

archive log
data set

support for multi-volume 98
ARCHLOG

option of REPORT utility 268
ASUTIME column

resource limit specification table (RLST) 76

automatic
restart function of MVS

IRLM 89
AUXERROR

option of CHECK DATA utility 262
auxiliary storage 301
auxiliary table

LOCK TABLE statement 140
availability

improvements in Version 6 19

B
backout processing

postponing 26
backup and recovery enhancements 30
BLOB (binary large object)

option of LOAD utility 264
buffer pool

defaults 83
tuning 61

C
CALL statement

SQL procedure 113
CASE statement

SQL procedure 113
casting

in user-defined function invocation 199
ROWID data type 70

catalog tables
columns

summary of changes 286
indexes

new 288
revised 290

new tables 285
catalog, shadow 119
CD-ROM, books on 6
CHANGELIMIT

option of COPY utility 262
character conversion 95
CHECK DATA utility

description 262
CHECK LOB utility

description 261
CHECKPAGE

option of COPY utility 262
checkpoint

frequency
changing dynamically 24

 Copyright IBM Corp. 1999  329



  
 

checkpoint (continued)
group buffer pool

enhancement in Version 6 50
CLISCHEMA keyword 118
CLOB (character large object)

option of LOAD utility 264
cluster ratio

enhancement 42
coexistence

considerations for specific capabilities 245
data sharing environment 244
distributed data environment 244

cold start
postponed abort URs 28

COLLID column
DSN_STATEMNT_TABLE 80

column
altering length 23

commands
changes in Version 6 253

compound statement
SQL procedure 114

conditional restart
postponed abort URs 28

connection
displaying

group buffer pool 49
COPY utility

description 262
parallelism 31
specifying a list 31

cost category 82
COST_CATEGORY column

of DSN_STATEMNT_TABLE 80
COST_CATEGORY_B column of RLST 77
CREATE DISTINCT TYPE, description 202
CURRENTFUNCTIONPATH keyword 118

D
DASD requirement 301
DATA

option of REPAIR utility 267
data communications devices 302
data set

statistics 84
data sets and device types 301
data sharing

enhancements 43
environment, coexistence 244
IFCIDs 295

data space
EDM pool 17
LOB materialization 132

data type
ROWID 67

DB2 Administration Tool 231
DB2 books online 6
DB2 Buffer Pool Tool 231
DB2 DataPropagator Relational 230
DB2 Estimator 229
DB2 Extenders 225
DB2 Installer 228
DB2 ODBC

enhancements in Version 6 118
DB2 Performance Monitor (PM) 230
DB2 Stored Procedures Builder 228
DB2 UDB Control Center 227
DB2 Visual Explain 228
DB2I defaults 91
DBCLOB (double-byte large character)

option of LOAD utility 264
DBINFO structure

user-defined function 164
DDF inactive connection

IFCIDs 295
DEFAULT clause

INSERT statement 70
deferred write threshold (DWQT)

recommendation for LOBs 136
DESCRIBE INPUT statement 119
determining when to reorganize data

REORG utility 96
direct row access 53
DISCARD

option of REORG TABLESPACE utility 266
DISCARD option

REORG utility 34
DISCARDDN

option of REORG TABLESPACE utility 266
option of REORG utility 34

discarding records
REORG utility 33

DISCONNECT IRLM
field of panel DSNTIPJ 87

DISPLAY DATABASE command
enhancements in Version 6 97

DISPLAY GROUPBUFFERPOOL command
summary report example 49

distinct type
assignments 206
comparing 205
creating 202
description 202
IFCIDs 295
with UNION 208

distributed data
environment, coexistence 244
moving from DB2 private protocol access to DRDA

access 106
DRAIN

option of REORG INDEX utility 265

330 Release Planning Guide  



  
 

DRAIN (continued)
option of REORG TABLESPACE utility 266

DRDA support
three-part names 103

IFCIDs 295
DSMAX

maximum number of open data sets 15
DSN_FUNCTION_TABLE 197
DSN_STATEMNT_TABLE table

column descriptions 80
DSN1COMP utility

description 262
DSN1COPY utility

description 262
DSN1PRNT utility

description 263
DSNACCAV stored procedure 251
DSNACCQC stored procedure 251
DSNTEJ1L sample program 91
DSNTEP2 sample program

available in object form 91
DSNTIJSG job

installation 74
DSNTPSMP stored procedure 251
DSSIZE

option of DSN1COMP utility 262
option of DSN1COPY utility 263
option of DSN1PRNT utility 263

DUMP
statement of REPAIR utility

description 267
DUPLEX option of CFRM policy 45
duplexed group buffer pools 43

See also 'group buffer pool, duplexing'
dynamic SQL enhancements

IFCIDs 295

E
EDM pool

in a data space 17
EDMPOOL DATA SPACE SIZE field of panel

DSNTIPC 17
enhancements

user productivity 91
escalation, lock

message 84
estimating

statement's cost 79
EXCLUSIVE

lock mode
LOB 138

EXPLAIN
description of PLAN_TABLE 293
estimating a statement's cost 79

EXPLAIN_TIME column
DSN_STATEMNT_TABLE 80

F
failure scenario

duplexed group buffer pool 49
fallback

automatic rebind 247
description 247
frozen objects 247
preparation 247
release incompatibilities 249

fast log apply
description 29

features, DB2 for OS/390 227
FLOAT

option of LOAD utility 264
frozen objects 247
FULLCOPY

option of DSN1COPY utility 263
option of DSN1PRNT utility 263

function level of IRLM 85
function resolution 193

user-defined function 193
functions

built-in, description 67
with distinct types 204

G
GENERATED clause

of CREATE and ALTER TABLE 68
GET DIAGNOSTICS statement

SQL procedure 113
GOTO statement

SQL procedure 113
governor (resource limit facility)

combining reactive and predictive modes 78
predictive

description 72
example 74

group buffer pool
caching options in Version 6 51
checkpoint

enhancement in Version 6 50
duplexing

description 43
IFCIDs 295
performance 46
starting 45
stopping 45
summary of failure scenarios 49

GROUP_MEMBER column
DSN_STATEMNT_TABLE 80

  Index 331



  
 

H
hardware requirements

auxiliary storage 301
data communications devices 302
function-dependent 302

hints, optimization 59
host variable

ROWID data type 71

I
ICOPY (informational copy) pending status 30
identity column

ROWID column, contrasted with 93
identity columns 91
IF statement

SQL procedure 113
IFCID (instrumentation facility component identifier)

0199 84
0330 85
16-TB table space 295
8-KB and 16-KB page size 295
active log shortage 295
buffer pool data set statistics 295
data sharing 295
DDF inactive connection 295
distinct type 295
DRDA support for three-part names 295
dynamic SQL enhancements 295
group buffer pool duplexing 295
inline statistics 295
LOB (large object) 295
optimization hints 295
parallel index build and REORG 295
parallelism for COPY and RECOVER 295
predictive governor 295
ROWID 295
stored procedure 295
trigger 295
user-defined function 295

IN
predicate 94

INCLUDE statement
COBOL program 94

INDEX
option of COPY utility 262
option of REPORT utility 268

INDEXSPACE
option of COPY utility 262
option of RECOVER utility 265
option of REPORT utility 268

INDREFLIMIT
option of REORG TABLESPACE utility 266

inline statistics collection
IFCIDs 295

inline statistics collection (continued)
LOAD utility 33
REBUILD INDEX utility 33
REORG utility 33

INSERT statement 94
inserting

into a ROWID column 70
installation panel changes 250
INTENT EXCLUSIVE lock mode 139
INTENT SHARE lock mode 139

LOB table space 139
IRLM (internal resource lock manager)

automatic restart 89
automatic restart manager 89
coexistence 85
command to display storage use 88
display storage use 88
function level 85
NODISCON value of SCOPE option 86
stopping and deregistering from ARM 89
storage enhancements 87
summary of enhancements 85

J
Java support 101
JDBC support 102
join operation

star join 38
star schema 38

L
LARGE

option of DSN1COMP utility 262
option of DSN1COPY utility 263
option of DSN1PRNT utility 263

LEAFDISTLIMIT
option of REORG INDEX utility 265

LEAVE statement
SQL procedure 113

library
online 6

LIMITKEY value
changing 24

LOAD utility
description 263

LOB (large object)
data space 132
declaring host variables 127
declaring LOB locators 127
description 124
IFCIDs 295
locator 132
lock duration 139
LOCK TABLE statement 140

332 Release Planning Guide  



  
 

LOB (large object) (continued)
lock, description 136
locking 136
LOCKSIZE clause of CREATE or ALTER

TABLESPACE 141
materialization 132
modes of LOB locks 138
modes of table space locks 139
option of DSN1COPY utility 263
option of DSN1PRNT utility 263
recommendations for buffer pool DWQT

threshold 136
with indicator variables 135

lock
duration

LOBs 139
escalation

message 84
LOB locks 136
LOB table space

LOCKSIZE clause 141
LOCK TABLE statement

effect on auxiliary tables 140
LOCKSIZE clause

effect of options
LOB table spaces 141

log
apply processing 29
IFCID indicating impending shortage 85
option of CHECK DATA utility 262

LOGLOAD subsystem parameter
changing via SET LOG command 24

LOOP statement
SQL procedure 113

M
maintenance level for selected enhancements 237
MAP

option of REPAIR utility 267
materialization

LOBs 132
MAXCSA option of IRLMPROC

changing dynamically 88
maximum

number of tables in a view 94
message by identifier

DSNB508I 17
DSNI031I 85
DSNT736I 97
DSNV435I 28
DXR100I 88
DXR175E 88

migration considerations 233
private protocol not enhanced 234
remove data set passwords 233

migration considerations (continued)
remove shared read-only data 233
remove views on two catalog tables 234
type 2 indexes required 233

MODIFY irlmproc,ABEND command of MVS
NODUMP option for stopping IRLM 89

MODIFY irlmproc,DIAG,DELAY command of MVS
description 90

MODIFY irlmproc,SET,TRACE command of MVS
description 89

MODIFY irlmproc,STATUS command of MVS
example showing IRLM storage use 88

N
Net.Data for OS/390 229
NOAUXCHKP

option of REPAIR utility 267
NOAUXWARN

option of REPAIR utility 267
NOCHECKPEND

option of REPAIR utility 267
NOCOPYPEND

option of LOAD utility 264
option of REPAIR utility 267

NODISCON value of IRLM SCOPE option 86
NOPAD

option of REORG TABLESPACE utility 266
notices, legal 313

O
ODBC

enhancements in Version 6 118
shadow catalog 119

OFFPOSLIMIT
option of REORG TABLESPACE utility 266

ON clause
joining tables

enhancements in Version 6 94
online books 6
optical storage 301
optimization hints 59

IFCIDs 295
optional features, DB2 for OS/390 227

P
package

RLFPKG column of RLST 77
PAGE

option of REPAIR utility 267
page size

choosing 58
PAGESIZE

option of DSN1COMP utility 262

  Index 333



  
 

PAGESIZE (continued)
option of DSN1COPY utility 263
option of DSN1PRNT utility 263

PARALLEL
option of COPY utility 262, 265

parallel index build
IFCIDs 295
LOAD utility 32
REBUILD INDEX utility 32
REORG TABLESPACE utility 32

parallelism
COPY and RECOVER utilities 31
IFCIDs, for COPY and RECOVER 295

parameter marker
casting 199
descriptions 118

PART
option of REORG TABLESPACE utility 266
option of REPAIR utility 267

partitioning index
using ROWID as partitioning key 69

pending status
check pending 30
informational COPY pending (ICOPY) 30

performance
improvements in Version 6 19
query enhancements 35

PLAN_TABLE
format 293

pool
type 2 inactive threads 120

predictive governing
combined with reactive governing 78
description 72
example 74
IFCIDs 295
in a distributed environment 79
with DEFER(PREPARE) 79
writing an application for 79

priced features, DB2 for OS/390 227
PRIMARY_ACCESSTYPE column of

PLAN_TABLE 53
PROGNAME column

DSN_STATEMNT_TABLE 80
program requirements

function-dependent 303
operating systems 303
optional 305

PUNCHDDN
option of REORG TABLESPACE utility 266

Q
Query Management Facility (QMF) 229
QUERYNO column

DSN_STATEMNT_TABLE 80

QUIESCE utility
description 264

R
REBUILD INDEX utility

description 261
RECOVER POSTPONED command

description 27
RECOVER utility

description 264
parallelism 31

release coexistence 244
release incompatibilities 237
release level for selected enhancements 237
REORG INDEX utility

description 265
REORG utility

determining when to run 96
REPAIR utility

description 266
DUMP statement 267
SET INDEX statement 267
SET TABLESPACE statement 267

REPEAT statement
SQL procedure 113

REPORT utility
description 267

REPORTONLY
option of REORG INDEX utility 265
option of REORG TABLESPACE utility 266

reports
summary report

DISPLAY GROUPBUFFERPOOL command 49
requirements for DB2 for OS/390

hardware 301
program 303
virtual storage 307

resource limit facility (governor)
writing an application for predictive governing 79

restart
backward log recovery

postponing 26
restart-pending status 27
RETAINED LOCK TIMEOUT option of installation panel

DSNTIPI 52
RETLWAIT subsystem parameter 52
REUSE

option of LOAD utility 264
option of RECOVER 265
option of REORG INDEX utility 265
option of REORG TABLESPACE utility 266
option, usage 34

RLFASUERR column of RLST 77
RLFASUWARN column of RLST 77

334 Release Planning Guide  



  
 

RLST (resource limit specification table)
columns 75
creating 74

routine authorization cache 64
ROWID

coding example 55
data type, description 67
IFCIDs 295
option of LOAD utility 264
option of REPAIR utility 267

ROWID column
identity column, contrasted with 93

RRSAF (Recoverable Resource Manager Services
attachment facility)

transactions
using global transactions 64

RUNSTATS utility
description 268

S
savepoints 93
SCOPE

option of CHECK DATA utility 262
SCOPE option

IRLMPROC, NODISCON value 86
scratchpad

user-defined function 161
secondary structure

characteristics 45
SELECT INTO statement 94
serviceability enhancements for IRLM 89
SET Assignment statement 94
SET clause

UPDATE statement 94
SET INDEX statement of REPAIR utility 267
SET TABLESPACE statement of REPAIR utility 267
SETXCF STOP, REBUILD command of MVS

revert to simplex mode 46
shadow catalog 119
SHARE

INTENT EXCLUSIVE lock mode 139
lock mode

LOB 138
simplex mode of group buffer pool

reverting 46
SMF (System Management Facility)

type 72 records 84
softcopy publications 6
SORTKEYS

option of LOAD utility 264
option of REORG TABLESPACE utility 266

SQL (Structured Query Language)
coding

object extensions 123
extensions 94

SQL procedure
stored procedure 113

SQL procedure statement
CALL statement 113
CASE statement 113
compound statement 114
GET DIAGNOSTICS statement 113
GOTO statement 113
IF statement 113
LEAVE statement 113
LOOP statement 113
REPEAT statement 113
SQL statement 114
WHILE statement 113

SQL statement
SQL procedure 114

SQL statements
changes in Version 6 269
DESCRIBE INPUT 119

SQLCODE
-101 238
+495 79

SQLDA 94
SQLDescribeParam(), API 118
SQLGetLength(), API 118
SQLGetPosition(), API 118
SQLGetSubString(), API 118
SQLJ support 101
star schema 38
statement table

column descriptions 80
statistics

data set 84
option of LOAD utility 264
option of REORG INDEX utility 265
option of REORG TABLESPACE utility 266
temporary tables 42

STATISTICS option
LOAD utility 33
REBUILD INDEX utility 33
REORG utility 33

STMT_TYPE column
DSN_STATEMNT_TABLE 80

STOP DATABASE command
enhancements in Version 6 97

stopping
IRLM 89

storage
EDM pool

data space 17
IRLM (internal resource lock manager)

command to display 88
requirements

real 301
virtual 307

  Index 335



  
 

stored procedure
IFCIDs 295
invoking from a trigger 218
multiple versions 119
routine authorization cache 64
SQL procedure 113

summary report
example of DISPLAY GROUPBUFFERPOOL

command 49
syntax diagrams, how to read 2
SYSIBM.SYSPROCEDURES catalog table

migration considerations 241

T
tables

maximum number in a view 94
TABLESPACESET

option of QUIESCE utility 264
temporary table

statistics 42
thread

distributed
pooling of inactive threads 120

TIMEOUT
option of REORG INDEX utility 265
option of REORG TABLESPACE utility 266

trace
controlling

IRLM trace buffer storage 89
diagnostic

IRLM 89
transaction

IMS
using global transactions 64

transition table
trigger 215

transition variable
trigger 215

trigger
activation order 220
cascading 219
coding 213
description 211
example 212
IFCIDs 295
interaction with constraints 221
overview 212
parts of 213
transition table 215
transition variable 215

Try and Buy program 227
type 2 inactive threads 120

U
unit of recovery

in-abort
postponing processing 26

UNLOAD
option of REORG TABLESPACE utility 266

UNLOAD EXTERNAL option
REORG utility 34

unloading data
REORG utility 33

UPDATE statement 94
UR (uncommitted read)

effect on reading LOBs 137
user-defined function

abnormal termination 200
accessing transition tables 182
assembler parameter conventions 167
assembler table locators 183
C or C++ table locators 185
C parameter conventions 168
casting arguments 199
COBOL parameter conventions 174
COBOL table locators 186
data type promotion 196
DBINFO structure 164
definer 144
defining 146
description 143
DSN_FUNCTION_TABLE 197
example 144
example of definition 148
function resolution 193
host data types 153
IFCIDs 295
implementer 144
implementing 150
invocation syntax 193
invoker 144
invoking 192
invoking from a predicate 200
invoking from a trigger 218
main program 151
overview 144
parallelism considerations 151
parameter conventions 153
PL/I parameter conventions 178
PL/I table locators 187
preparing 188
restrictions 150, 151
routine authorization cache 64
scratchpad 161
setting result values 159
simplifying function resolution 196
subprogram 151
testing 190

336 Release Planning Guide  



  
 

user-defined function (continued)
use of scratchpad 181
use of special registers 179

utilities
changes in Version 6 261
CHECK DATA 262
CHECK LOB 261
COPY 262
DSN1COMP 262
DSN1COPY 262
DSN1PRNT 263
LOAD 263
performance improvements 29
QUIESCE 264
REBUILD INDEX 261
RECOVER 264
REORG INDEX 265
REPAIR 266
REPORT 267
RUNSTATS 268

V
VALUES clause

INSERT statement 94
VALUES INTO statement 94
VDWQT option of ALTER BUFFERPOOL

command 62
VERSION

option of REPAIR utility 267
vertical deferred write threshold (VDWQT) 62

W
wait time

accounting class 3 84
SMF type 72 records 84

WHILE statement
SQL procedure 113

  Index 337



How to send your comments

DB2 Universal Database for OS/390
Release Planning Guide
Version 6

Publication No. SC26-9013-02

Your feedback helps IBM to provide quality information. Please send any comments that
you have about this book or other DB2 for OS/390 documentation. You can use any of the
following methods to provide comments.

� Send your comments by e-mail to db2pubs@vnet.ibm.com and include the name of the
product, the version number of the product the number of the book. If you are
commenting on specific text, please list the location of the text (for example, a chapter
and section title, page number, or a help topic title).

� Send your comments from the Web. Visit the DB2 for OS/390 Web site at:

  http://www.ibm.com/software/db2os390

The Web site has a feedback page that you can use to send comments.

� Complete the readers' comment form at the back of the book and return it by mail, by
fax (800-426-7773 for the United States and Canada), or by giving it to an IBM
representative.



 

 Readers' Comments

DB2 Universal Database for OS/390
Release Planning Guide
Version 6

Publication No. SC26-9013-02

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �



Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-9013-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department BWE/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-9013-02



 

 



IBM

Program Number: 5645-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9O13-O2


	Contents
	Chapter 1.  Introduction to this book and the DB2® for OS/390® library
	Who should read this book
	How this book is organized
	Product terminology and citations
	How to read the syntax diagrams
	How to use the DB2 library
	How to obtain DB2 information
	DB2 on the Web
	DB2 publications
	BookManager® format
	PDF format
	CD-ROMs

	DB2 education
	How to order the DB2 library

	Summary of changes to DB2 UDB for OS/390 Version 6
	Capacity improvements
	Performance and availability
	Data sharing enhancements
	User productivity
	Network computing
	Object-relational extensions and active data
	More function
	Features of DB2 for OS/390
	Migration considerations


	Chapter 2.  Capacity improvements
	16-terabyte tables
	Terminology changes
	Page set types and new storage limits
	Creating EA-enabled table spaces and index spaces
	Changes to utilities
	Catalog changes

	Many more open data sets
	Larger secondary quantity value
	More pieces for nonpartitioning indexes
	Increased total number of extents
	Buffer pools in data spaces
	Total storage in the ssnmDBM1 address space
	Advantages of data spaces


	Dynamic statement cache in a data space

	Chapter 3.  Improved performance and availability
	Rebalancing data in a partitioned table space
	Why rebalance data?
	The process: ALTER INDEX then REORG
	REORG-pending status
	REORG-pending and the last partition
	Removing REORG-pending status

	Recovery guidelines
	Point-in-time recovery scenarios


	Altering variable length columns
	Changing the limit key value
	Immediate index access

	Dynamically change checkpoint frequency
	Why change the checkpoint frequency?
	Using the SET LOG command
	Displaying the current LOGLOAD value

	Faster restart and recovery
	Postponing backout processing at restart
	Enabling postponed backout processing
	How much processing is done at restart?
	Restart-pending and advisory restart-pending statuses
	Resolving postponed units of recovery

	Fast log apply
	Faster log read

	Faster, more parallel utilities
	Faster backup and recovery
	Backup and recover indexes using image copies
	Copying a list of objects
	Copying and recovering in parallel

	Parallel index build
	Faster index creation and rebuild
	Performance test results for LOAD, REORG, and REBUILD INDEX utilities

	Inline statistics
	STATISTICS keyword
	Benefits of inline statistics

	Faster discard and unload during REORG
	Discarding rows during REORG TABLESPACE
	Unloading data during REORG

	Decreased elapsed and processor time for online REORG
	Avoid delete and redefine of data sets

	Query performance and optimization enhancements
	Query parallelism enhancements
	Parallelism for nonpartitioned tables
	Improved workload balancing in a Parallel Sysplex
	More opportunities for parallelism

	Improvements to join processing
	Faster outer joins
	Faster join processing when joining columns of different lengths
	Enhanced Cartesian join
	Star schema (star join)

	Other query optimization enhancements

	Data sharing enhancements
	Continuous availability with group buffer pool duplexing
	How duplexing works
	Starting and stopping duplexing for a group buffer pool
	Performance aspects of duplexing
	Monitoring duplexed group buffer pools
	Summary of failure scenarios for duplexed group buffer pools
	Requirements for duplexing

	Faster checkpointing of group buffer pools
	Reduced P-lock overhead
	More caching options
	GBPCACHE SYSTEM (for LOBs)
	GBPCACHE NONE ("no caching" option)
	More flexible option to wait for retained locks


	More performance and availability improvements
	Direct row access
	Predicates that qualify for direct row access
	Reverting to ACCESSTYPE
	Direct row access and other access methods
	Example: Coding with row IDs for direct row access

	Declared temporary tables
	Increased flexibility with 8-KB and 16-KB page sizes
	New buffer pool names
	Recommendations for choosing a page size

	Preserving a prior access path
	Use the new version PLAN_TABLE
	Enabling optimization hints
	Creating the hint
	Setting the special register
	Rebinding

	More buffer pool tuning options
	Choosing a page-stealing method
	Specifying VDWQT as an absolute number of pages

	Control of space map copy maintenance
	Reduced DBD logging for CREATE, ALTER, DROP
	Improved performance for DROP
	Larger log buffer sizes
	Authorization caching for stored procedures and user-defined functions
	More flexibility when altering space allocations
	Deferred allocation of data sets
	More command concurrency
	Increased concurrency for RRSAF and IMS transactions


	Chapter 4.  User productivity
	Built-in function extensions
	New ROWID data type
	Characteristics of the ROWID data type
	Defining a ROWID column
	GENERATED ALWAYS
	GENERATED BY DEFAULT

	Using a ROWID column as the partitioning key
	Casting to a ROWID
	Inserting into a ROWID column
	Declaring host variables for ROWID columns

	DB2 REXX Language Support
	More flexibility and control
	Predictive governing
	Overview of predictive governing process
	Creating an RLST
	Descriptions of the RLST columns
	Combining reactive and predictive governing
	Writing an application to handle predictive governing

	Statement cost estimation
	Creating a statement table
	Populating and maintaining a statement table
	Retrieving rows from a statement table
	Understanding the implications of cost categories

	Set default buffer pools
	More information available for monitoring DB2
	Wait times reported more clearly
	Data set I/O statistics in a trace
	Message for lock escalation
	New IFCID for active log shortage
	Easier monitoring of data sharing groups


	IRLM enhancements
	Display IRLM coexistence information
	IRLM function levels
	Command to display function levels

	Option to prevent disconnecting IRLM on DB2 shutdown
	How to specify the new option
	Change to AUTO START field of DSNTIPI

	More control over IRLM storage
	Warning when storage exceeds limits
	Dynamically change MAXCSA
	Better display of IRLM storage use

	Support for automatic restart manager
	Creating the automatic restart policy
	Stopping and deregistering IRLM

	Improved serviceability
	Dynamically control number of trace buffers
	Prevent unnecessary dumps
	IRLM ID in messages


	More user productivity enhancements
	DSNTEP2 available in object form
	Customized DB2I defaults can be migrated
	Numeric data type extensions for identity columns
	Savepoints to undo selected changes
	More tables allowed in SQL statements
	SQL extensions
	More character conversions
	Utility usability and functionality enhancements
	Determining when to run REORG
	Easier to quiesce related table spaces
	REPAIR function and usability
	Easier to LOAD test tables and read-only tables
	Improved statistics collection

	Enhanced database commands
	Improved DSNT736I message content
	Specifying pattern-matching characters within object names
	Limiting DISPLAY DATABASE output

	Support for multi-volume DASD archive log data sets
	Remote site recovery copy flexibility
	Better retention of installation values across migrations
	Better diagnostic information for commands executed through IFI


	Chapter 5.  Improved network computing
	Java enablement
	Better performance for Java applications with SQLJ
	JDBC application support

	DRDA support for three-part names
	Benefits of DRDA access
	Benefits of using three-part names for DRDA access
	Restrictions on DRDA access programs that use three-part names
	Preparing applications with three-part names to use DRDA access
	Moving from DB2 private protocol access to DRDA access
	Choosing a default database protocol

	Stored procedure enhancements
	Creating and modifying stored procedure definitions
	Changes to stored procedure security
	Changes to stored procedure invocation
	Using SQL procedures

	Improved data transfer with OPTIMIZE FOR n ROWS
	DB2 ODBC enhancements
	Faster ODBC catalog queries
	Better performance for dynamic SQL applications
	Improvements for dynamically prepared SQL statements
	DB2 database connection pooling
	Using type 2 inactive threads
	Determining if a thread can become inactive
	Enabling threads to become inactive


	Chapter 6.  Object-relational extensions and active data
	Working with large objects (LOBs)
	Introduction to defining LOBs
	Declaring LOB host variables and LOB locators
	LOB materialization
	Using LOB locators to save storage
	Deferring evaluation of a LOB expression to improve performance
	Indicator variables and LOB locators
	Valid assignments for LOB locators

	LOB system processing
	Managing buffer pools for LOBs
	Locking LOBs
	Relationship between transaction locks and LOB locks
	Hierarchy of LOB locks
	LOB lock modes
	Duration of locks
	When locks on the LOB table space are not taken
	Controlling the number of locks
	The LOCK TABLE statement
	The LOCKSIZE clause for LOB table spaces

	Recovering table spaces that contain LOBs
	Recovering to a prior point in time
	Recovering to the current point in time
	Recovering LOB pages on the logical page list
	Procedure for recovering invalid LOBs


	Creating and using user-defined functions
	Overview of user-defined function definition, implementation, and invocation
	Example of creating and using a user-defined scalar function
	User-defined function samples shipped with DB2

	Defining a user-defined function
	Components of a user-defined function definition
	Examples of user-defined function definitions

	Implementing an external user-defined function
	Writing a user-defined function

	Preparing a user-defined function for execution
	Making a user-defined function reentrant
	Determining the authorization ID for user-defined function invocation
	Preparing user-defined functions to run concurrently
	Testing a user-defined function


	Invoking a user-defined function
	Syntax for user-defined function invocation
	Ensuring that DB2 executes the intended user-defined function
	How DB2 chooses candidate functions
	How DB2 chooses the best fit among candidate functions
	How you can simplify function resolution
	Using DSN_FUNCTION_TABLE to see how DB2 resolves a function

	Casting of user-defined function arguments
	What happens when a user-defined function abnormally terminates
	Other considerations for user-defined function invocation

	Creating and using distinct types
	Introduction to distinct types
	Creating a distinct type
	Using distinct types in applications
	Invoking functions with distinct types
	Comparing distinct types
	Making assignments involving distinct types
	Using distinct types in UNION


	Combining distinct types with user-defined functions and LOBs
	Using triggers for active data
	Example of creating and using a trigger
	Parts of a trigger
	Invoking stored procedures and user-defined functions from triggers
	Passing transition tables to user-defined functions and stored procedures

	Trigger cascading
	Ordering of multiple triggers
	Interactions among triggers and referential constraints
	Creating triggers to obtain consistent results

	DB2 Extenders™

	Chapter 7.  Features of DB2 UDB Server for OS/390
	Control Center for DB2 UDB
	DB2 Stored Procedures Builder
	DB2 Installer
	DB2 Visual Explain
	DB2 Estimator
	Net.Data for OS/390
	Query Management Facility
	DataPropagator Relational
	DB2 Performance Monitor
	DB2 Buffer Pool Tool
	DB2 Administration Tool

	Chapter 8.  Planning for migration and fallback
	Migration considerations
	Type 2 indexes are required
	Data set password protection is removed
	Shared read-only data is removed
	Remove views on two catalog tables
	Private protocol function not enhanced
	More than 32 K databases are supported
	Log buffer size increased
	Consider enlarging BSDS
	Increase maximum number of data sets open
	Customized DB2I defaults can be migrated
	DB2 online help reader not used
	Stored procedures
	ALTER TABLE changes
	Utility enhancements
	Work file database size calculations
	Changes to Subsystem parameters

	Release incompatibilities
	Adjust application programs
	Examine all new and changed values for DB2I panels
	Changes to the RLST
	SYSIBM.SYSPROCEDURES no longer used
	An 'X' plan in the PLAN_TABLE
	Limit backouts with system restarts
	Changes to IFCID fields
	DISPLAY BUFFERPOOL changes
	Index changes
	ALTER INDEX syntax
	RECOVER INDEX becomes REBUILD INDEX
	Work space formulas changed for utilities
	Support for up to 150000 connections
	Change to parameter in IRLMPROC startup procedure

	Release coexistence
	Coexistence in a distributed data environment
	Coexistence in a data sharing environment
	Coexistence considerations for BIND options
	Coexistence considerations for specific capabilities


	Preparing for fallback
	Frozen objects
	Other fallback considerations

	Installation changes
	Version 6 panels
	SMP/E changes
	Changes to installation jobs
	Changes to sample jobs


	Appendix A.  Changes to commands
	New commands
	Changed commands

	Appendix B.  Changes to utilities
	New utilities
	Changed utilities
	Other utility changes

	Appendix C.  Changes to SQL
	New SQL statements
	Changed SQL statements
	New built-in functions
	Changed built-in functions
	Other SQL language changes

	Appendix D.  Catalog changes
	New catalog tables
	Changed catalog tables
	New indexes
	Revised indexes

	Appendix E.  EXPLAIN table changes
	Format of the Version 6 PLAN_TABLE
	Descriptions of new and changed columns

	Appendix F.  New and changed IFCIDs
	New IFCIDs
	Changed IFCIDs

	Appendix G.  Prerequisites of Version 6 of DB2 for OS/390
	DB2 for OS/390 Version 6 prerequisites
	Hardware requirements
	Auxiliary storage
	Data communication devices
	Function-dependent hardware requirements

	Program requirements and optional programs
	Operating system and support programs
	Function-dependent program requirements
	Optional programs

	Virtual storage requirements

	Prerequisites of features of DB2 for OS/390 Version 6
	DB2 Installer requirements
	Hardware requirements
	Program requirements

	Visual Explain requirements
	Hardware requirements
	Program requirements

	DB2 Estimator requirements
	Hardware requirements
	Program requirements

	Net.Data requirements
	QMF requirements
	Hardware requirements
	Program requirements

	DB2 Performance Monitor requirements
	Hardware requirements
	Program requirements

	Workstation-Based Analysis and Tuning
	Hardware requirements
	Program requirements



	Appendix H.  Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index

