
DB2 for OS/390

Application Programming
Guide and Reference
FOR JAVA

™

Version 5

SC26-9547-02

���

DB2 for OS/390

Application Programming
Guide and Reference
FOR JAVA

™

Version 5

SC26-9547-02

���

First Edition (October 1998)

This edition applies to Version 5 of IBM DATABASE 2 Server for OS/390 (DB2 for OS/390), 5655-DB2, and to any
subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level
of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed
version by vertical bars. Additional changes made to this softcopy version of the manual since the hardcopy manual
was published are indicated by the hash (#) symbol in the left-hand margin.

© Copyright International Business Machines Corporation 1998. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the
general information under “Notices” on page 99.

Contents

Chapter 1. Introduction . 1
Who should read this book . 1
How this book is organized . 1
Other books you might need. 2
Product terminology and citations 2
How to read the syntax diagrams 2
How to use the DB2 library . 4
How to send your comments 7
Summary of changes to this book 7

Chapter 2. JDBC application support 9
What is JDBC? . 9

JDBC background information 9
Advantages of using DB2 JDBC 9

DB2’s JDBC implementation 10
How does it work? . 10
Identifying a target data source 11
Connecting to a data source 11
DB2 for OS/390 SQLJ/JDBC driver 12
JDBC API . 12

Running a JDBC application 12
Getting started . 13

Chapter 3. Writing SQLJ programs for DB2 for OS/390 17
Executing SQL statements in an SQLJ program 18

Including SQL statements in an SQLJ program 18
Using Java variables and expressions as host expressions 18
Including comments . 19
Handling SQL errors and warnings 19

Including code to access SQLJ support 20
Connecting to a data source 20
Using result set iterators to retrieve rows from a result table 22

Using positioned iterators 24
Using named iterators . 25
Using iterators for positioned UPDATE and DELETE operations 26
Using JDBC result sets in SQLJ applications 28

Controlling the execution of SQL statements 30
Retrieving multiple result sets from a stored procedure 30
Setting the isolation level for a transaction. 32
Setting the read-only mode for a transaction 32
An SQLJ sample program . 32
Running SQLJ programs . 34
Diagnosing SQLJ problems 34

Formatting trace data. 35
Running diagnosis utilities 36

Chapter 4. SQLJ statement reference 37

© Copyright IBM Corp. 1998 iii

##

##

##
##
##

Common elements . 38
host-expression . 38
implements-clause . 39
with-clause . 40

connection-declaration-clause 42
Syntax . 42
Description . 42
Usage notes . 42

iterator-declaration-clause . 43
Syntax . 43
Description . 43
Usage notes . 44

executable-clause . 45
Syntax . 45
Usage notes . 45

context-clause . 45
Syntax . 45
Description . 45
Usage notes . 46

statement-clause . 46
Syntax . 46
Description . 46
Usage notes . 47

assignment-clause . 47
Syntax . 47
Description . 47
Usage notes . 48

iterator-conversion-clause . 48
Syntax . 48
Description . 48
Usage notes . 48

SET-TRANSACTION-clause 49
Syntax . 49
Description . 49
Usage notes . 49

Chapter 5. Creating Java stored procedures 51
Defining your Java stored procedure to DB2 51
Writing a Java stored procedure 53

Differences between Java stored procedures and Java programs 53
Differences between Java stored procedures and other stored procedures . . . 54
Writing a Java stored procedure to return result sets 54

Running a stored procedure 55
The stored procedures address space for Java stored procedures 56
Setting environmental variables for Java stored procedures 57

Testing a Java stored procedure 58

Chapter 6. Preparing Java programs 59
Steps in the SQLJ program preparation process. 59

Translating and compiling SQLJ source code 60

iv DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##

Customizing a serialized profile 62
Binding a plan for an SQLJ program. 64
Customizing SQLJ and JDBC to work together 65

Preparing compiled Java stored procedures for execution 65
Preparing compiled Java stored procedures with no SQLJ statements 65
Preparing compiled Java stored procedures with SQLJ statements 65
Using VisualAge for Java to prepare a compiled Java stored procedure 66

Preparing your applications with VisualAge for Java 67
Installing and accessing SQLJ/JDBC DLLs for VisualAge for Java support . . . 67
Accessing SQLJ and JDBC profiles and the run-time properties file under

VisualAge for Java. 69
Building an SQLJ or JDBC program under VisualAge for Java 71

Chapter 7. JDBC and SQLJ administration. 79
Installing JDBC and SQLJ . 79

Step 1: Copy and edit the SMP/E jobs 79
Step 2: Run the allocate job: DSNTJJAE 80
Optional Step: Allocate HFS data set 80
Step 3: Create Hierarchical File System (HFS) structure 80
Step 4: Run the receive Job: DSNTJJRC 81
Step 5: Run the apply job: DSNTJJAP 81
Step 6: Run the accept job: DSNTJJAC 81
Step 7: Run the SQLJ allocate jobs 81
Step 8: Install SQLJ modules 81

Customizing the JDBC run-time environment 81
Customizing the cursor properties file 81
Creating a JDBC profile . 82
Binding the DBRMs . 83

Configuring JDBC and SQLJ 83
Environmental variables . 84
Parameters in the SQLJ/JDBC run-time properties file 85

JDBC and SQLJ security model 87
How are authorization IDs established? 87
DB2 attachment types . 87

JDBC and SQLJ multiple OS/390 context support 88
Connecting when multiple OS/390 context support is not enabled 88
Connecting when multiple OS/390 context support is enabled 89
Enabling multiple OS/390 context support 89
Multiple context performance 90
Connection sharing . 90

Appendix A. Selected sqlj.runtime classes and interfaces 91
sqlj.runtime.ExecutionContext class 91
sqlj.runtime.ConnectionContext interface 92
sqlj.runtime.ForUpdate interface 92
sqlj.runtime.NamedIterator interface 93
sqlj.runtime.PositionedIterator interface 93
sqlj.runtime.ResultSetIterator interface 93

Appendix B. Special considerations for CICS applications 95

Contents v

##

##
##
#
##
##

##
##
##
##

##
##

##

##

##

Choosing parameter values for the SQLJ/JDBC run-time properties file 95
Choosing parameter values for the db2genJDBC utility 95
Choosing the number of cursors for JDBC result sets 96
Setting environment variables for the CICS environment 96
Choosing VisualAge for Java bind parameters for better performance. 96
Connecting to DB2 in the CICS environment 97
Commit and rollback processing in CICS SQLJ and JDBC applications 97
Abnormal terminations in the CICS attachment facility 97
Running traces in a CICS environment 97

Notices . 99
Programming interface information 100
Trademarks . 101

Glossary . 103

Bibliography . 119

Index . 127

vi DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

##
##
##
##
##
##
##
##
##

Chapter 1. Introduction

This book describes DB2 for OS/390 Java™ Edition, a feature of DB2 for OS/390 that
lets you access relational databases from Java application programs.

Who should read this book
This book is for DB2 application developers who are familiar with Structured Query
Language (SQL) and who know the Java programming language.

How this book is organized
This book is organized as follows:

v “Chapter 1. Introduction” describes this book and gives general information about
Version 5 of DB2 for OS/390.

v “Chapter 2. JDBC application support” on page 9 describes the DB2 for OS/390
implementation of JDBC.

v “Chapter 3. Writing SQLJ programs for DB2 for OS/390” on page 17 introduces SQLJ
and describes the basic elements of an SQLJ application program.

v “Chapter 4. SQLJ statement reference” on page 37 gives the syntax and a
description of each SQLJ clause.

v “Chapter 5. Creating Java stored procedures” on page 51 describes how to write
Java stored procedures.

v “Chapter 6. Preparing Java programs” on page 59 describes how to prepare SQLJ
and JDBC programs to run in a JVM or under VisualAge for Java, and how to
prepare Java stored procedures to run under VisualAge for Java.

v “Chapter 7. JDBC and SQLJ administration” on page 79 discusses the following
topics that are related to JDBC and SQLJ administration on DB2 for OS/390:
– How to install JDBC and SQLJ
– How JDBC and SQLJ authorization works
– How JDBC and SQLJ multiple OS/390 context support works

v The appendixes provide the following information:

– “Appendix A. Selected sqlj.runtime classes and interfaces” on page 91 contains
information on the methods of the sqlj.runtime package that you can call in your
SQLJ programs.

– “Appendix B. Special considerations for CICS applications” on page 95 contains
information for users who write JDBC and SQLJ programs for the CICS
environment.

Located after the appendixes are:
v Legal notices
v A glossary of terms and abbreviations used in the book
v A bibliography of other books that might be useful
v An index

© Copyright IBM Corp. 1998 1

#
#
#

#
#
#

Other books you might need
This book describes Java interfaces to DB2, rather than the Java programming
language itself. For information on the OS/390 implementation of the Java language,
see the Web site for Java for OS/390:

http://www.s390.ibm.com/java

This book does not include detailed information about the JDBCTM API. You can find
that information at:

http://java.sun.com/products.jdbc.

DB2 for OS/390 is one of several IBM relational database management systems. Each
of these systems understands its own variety of SQL. This book discusses only the
variety that is used by DB2 for OS/390. Other IBM books describe the other varieties.
For a list of these books, see “Bibliography” on page 119.

If DB2 for OS/390 is the only product you plan to use, you should also refer to SQL
Reference, which is an encyclopedic reference to the syntax and semantics of every
SQL statement in DB2 for OS/390. For SQL fundamentals and concepts, see Chapter 2
of SQL Reference.

If you intend to develop applications that adhere to the definition of IBM SQL, see IBM
SQL Reference for more information.

Product terminology and citations
In this book, DB2 Server for OS/390 is referred to as "DB2 for OS/390." In cases where
the context makes the meaning clear, DB2 for OS/390 is referred to as "DB2." When
this book refers to other books in this library, a short title is used. (For example, "See
SQL Reference" is a citation to IBM DATABASE 2 Server for OS/390 SQL Reference.)

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

MVS Represents the MVS/Enterprise Systems Architecture (MVS/ESA) element of
OS/390.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book:

v Read the syntax diagrams from left to right, from top to bottom, following the path of
the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

2 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the remaining
choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

Chapter 1. Introduction 3

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the stack.

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly as
shown. Variables appear in all lowercase letters (for example, column-name). They
represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

How to use the DB2 library
Titles of books in the library begin with DB2 for OS/390 Version 5. However, references
from one book in the library to another are shortened and do not include the product
name, version, and release. Instead, they point directly to the section that holds the
information. For a complete list of books in the library, and the sections in each book,
see the bibliography at the back of this book.

Throughout the library, the DB2 for OS/390 licensed program and a particular DB2 for
MVS/ESA subsystem are each referred to as “DB2”. In each case, the context makes
the meaning clear.

The most rewarding task associated with a database management system is asking
questions of it and getting answers, the task called end use. Other tasks are also
necessary—defining the parameters of the system, putting the data in place, and so on.
The tasks associated with DB2 are grouped into the following major categories (but
supplemental information relating to all of the below tasks for new releases of DB2 can
be found in Release Guide):

Installation: If you are involved with DB2 only to install the system, Installation Guide
might be all you need.

If you will be using data sharing then you also need Data Sharing: Planning and
Administration, which describes installation considerations for data sharing.

End use: End users issue SQL statements to retrieve data. They can also insert,
update, or delete data, with SQL statements. They might need an introduction to SQL,
detailed instructions for using SPUFI, and an alphabetized reference to the types of
SQL statements. This information is found in Application Programming and SQL Guide
and SQL Reference.

End users can also issue SQL statements through the Query Management Facility
(QMF) or some other program, and the library for that program might provide all the

4 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

instruction or reference material they need. For a list of some of the titles in the QMF
library, see the bibliography at the end of this book.

Application Programming: Some users access DB2 without knowing it, using
programs that contain SQL statements. DB2 application programmers write those
programs. Because they write SQL statements, they need Application Programming and
SQL Guide, SQL Reference, and Call Level Interface Guide and Reference just as end
users do.

Application programmers also need instructions on many other topics:

v How to transfer data between DB2 and a host program—written in COBOL, C, or
FORTRAN, for example

v How to prepare to compile a program that embeds SQL statements

v How to process data from two systems simultaneously, say DB2 and IMS or DB2
and CICS

v How to write distributed applications across platforms

v How to write applications that use DB2 Call Level Interface to access DB2 servers

v How to write applications that use Open Database Connectivity (ODBC) to access
DB2 servers

v How to write applications in the Java programming language to access DB2 servers

The material needed for writing a host program containing SQL is in Application
Programming and SQL Guide and Application Programming Guide and Reference for
Java. The material needed for writing applications that use DB2 Call Level Interface or
ODBC to access DB2 servers is in Call Level Interface Guide and Reference.

For handling errors, see Messages and Codes.

Information about writing applications across platforms can be found in Distributed
Relational Database Architecture: Application Programming Guide.

System and Database Administration: Administration covers almost everything else.
Administration Guide divides those tasks among the following sections:

v Section 2 (Volume 1) of Administration Guide discusses the decisions that must be
made when designing a database and tells how to bring the design into being by
creating DB2 objects, loading data, and adjusting to changes.

v Section 3 (Volume 1) of Administration Guide describes ways of controlling access to
the DB2 system and to data within DB2, to audit aspects of DB2 usage, and to
answer other security and auditing concerns.

v Section 4 (Volume 1) of Administration Guide describes the steps in normal
day-to-day operation and discusses the steps one should take to prepare for
recovery in the event of some failure.

v Section 5 (Volume 2) of Administration Guide explains how to monitor the
performance of the DB2 system and its parts. It also lists things that can be done to
make some parts run faster.

Chapter 1. Introduction 5

In addition, the appendixes in Administration Guide contain valuable information on DB2
sample tables, National Language Support (NLS), writing exit routines, interpreting DB2
trace output, and character conversion for distributed data.

If you are involved with DB2 only to design the database, or plan operational
procedures, you need Administration Guide. If you also want to carry out your own
plans by creating DB2 objects, granting privileges, running utility jobs, and so on, then
you also need:

v SQL Reference, which describes the SQL statements you use to create, alter, and
drop objects and grant and revoke privileges

v Utility Guide and Reference, which explains how to run utilities

v Command Reference, which explains how to run commands

If you will be using data sharing, then you need Data Sharing: Planning and
Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in
Messages and Codes, which lists messages and codes issued by DB2, with
explanations and suggested responses.

Diagnosis: Diagnosticians detect and describe errors in the DB2 program. They might
also recommend or apply a remedy. The documentation for this task is in Diagnosis
Guide and Reference and Messages and Codes.

6 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

How to send your comments
Your feedback helps IBM to provide quality information. Please send any comments
that you have about this book or other DB2 for OS/390 documentation. You can use
any of the following methods to provide comments:

v Send your comments from the Web. Visit the Web site at:

http://www.software.ibm.com/data/db2/os390/

The Web site has a feedback page that you can use to enter and send comments.

v Send your comments by electronic mail. Use one of the following IDs:

– IBMMail: USIBMXFC@IBMMAIL

– IBMlink: DB2PUBS@STLVM27

– Internet: DB2PUBS@VNET.IBM.COM

Be sure to include the name of the product, the version number of the product, and
the name and part number of the book (if applicable). If you are commenting on
specific text, please include the location of the text (for example, a chapter and
section title, a table number, a page number, or a help topic title).

v Complete the readers’ comment form at the back of the book and return it by mail,
by fax (800-426-7773 for the United States and Canada), or by giving it to an IBM
representative.

Summary of changes to this book
The principle changes to this book are:

v Chapter 5. Creating Java stored procedures contains information on writing and
running Java stored procedures.

v Preparing your applications with VisualAge for Java contains information on
preparing programs for execution under VisualAge for Java.

v Appendix B. Special considerations for CICS applications contains information on
running JDBC and SQLJ programs in the CICS environment.

Chapter 1. Introduction 7

#

#

#
#

#
#

#
#

8 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Chapter 2. JDBC application support

This chapter explains DB2 for OS/390’s support for applications using JavaSoftTM

JDBCTM interfaces to access DB2 data. It provides an overview that explains what
JDBC is, more detailed information about DB2 for OS/390’s implementation of JDBC,
and guidelines for writing a JDBC program.

What is JDBC?
JDBC is a Java application programming interface (API) that Java applications use to
access any relational database. DB2 for OS/390’s support for JDBC enables you to
write Java applications that access local DB2 data or remote relational data on a server
that supports DRDA. DB2 for OS/390 is fully compliant with the JavaSoft JDBC 1.2
specification.

JDBC background information
To understand JDBC, knowing about its purpose and background is helpful. Sun
Microsystem’sTM JavaSoft developed the specifications for a set of APIs that allow Java
applications to access relational data. The purpose of the APIs is to provide a generic
interface for writing platform-independent applications that can access any SQL
database. The APIs are defined within 16 classes that support basic SQL functionality
for connecting to a database, executing SQL statements, and processing results.
Together, these interfaces and classes represent the JDBC capabilities by which a Java
application can access relational data.

Advantages of using DB2 JDBC
DB2 JDBC offers a number of advantages for accessing DB2 data:

v JDBC combines the benefit of running your applications in an OS/390 environment
with the portability and ease of writing Java applications. Using the Java language,
you can write an application on any platform and execute it on any platform to which
the Java Development Kit (JDK) is ported.

v JDBC combines the benefit of running your applications in an OS/390 environment
with the portability and ease of writing Java applications.

v The ability to develop an application once and execute it anywhere offers the
potential benefits of reduced development, maintenance, and systems management
costs, and flexibility in supporting diverse hardware and software configurations.

v The JDBC interface offers the ability to change between drivers and access a variety
of databases without recoding your Java program.

v JDBC applications do not require precompiles.

© Copyright IBM Corp. 1998 9

#

#
#

DB2’s JDBC implementation
DB2 for OS/390 is fully compliant with the JavaSoft JDBC 1.2 specification: JDBC: A
Java SQL API. You can download the specification from the JDBC Web site:
http://java.sun.com/products/jdbc. You should familiarize yourself with the specification
to understand how to use the JDBC APIs. Documentation that includes detailed
information about each of the JDBC API interfaces, classes, and exceptions is also
available at this Web site.

DB2 for OS/390 requires the JDK for OS/390 (Version 1.1.6 or higher). The contents of
the JDK include a Java compiler, Java Virtual Machine (JVM), and Java Debugger. You
can learn more about the JDK from the Java for OS/390 Web site:
http://www.ibm.com/s390/java.

How does it work?
Figure 1 shows how a Java application connects to the DB2 for OS/390 SQLJ/JDBC
driver.

A Java application executes under the JVM. The Java application first loads the JDBC
driver (by invoking the Class.forName()method), in this case the DB2 for OS/390
SQLJ/JDBC driver, and subsequently connects to the local DB2 subsystem or a remote
DRDA application server (by invoking the DriverManager.getConnection method,
described in “Getting started” on page 13).

Figure 1. Java application flow

10 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#

#

Identifying a target data source

The Java application identifies the target data source it wants to connect to by passing
a database Uniform Resource Locator (URL) to the DriverManager.

The basic structure for the URL is:

jdbc:<subprotocol>:<subname>

Specify either of the following URL values for a DB2 for OS/390 data source:

jdbc:db2os390:<location-name>
jdbc:db2os390sqlj:<location-name>

Each format results in the same behavior. Both subprotocols are provided for
compatibility with existing DB2 for OS/390 JDBC applications.

If location-name is not the local site, location-name must be defined in the
SYSIBM.LOCATIONS catalog table. If location-name is the local site, location-name
must have been specified in field DB2 LOCATION NAME of the DISTRIBUTED DATA
FACILITY panel during DB2 installation.

In addition to the URL values shown above for a DB2 for OS/390 data source, there are
two URL values that have special meaning for the DB2 for OS/390 SQLJ/JDBC driver.

v If a URL value does not specify a location-name, for example, ″jdbc:db2os390:″, you
will be connected to the local DB2 site. This format of the URL value is a DB2 for
OS/390 defined extension. By using this URL value, a DB2 for OS/390 JDBC
application does not need to know the location-name of the local DB2 subsystem that
the driver is using.

v The SQLJ specification defines the following URL:

jdbc:default:connection

When you use this URL value, your application is connected to the local DB2 site.

Connecting to a data source
When the application attempts a connection to a data source, it requests a
java.sql.Connection implementation from the DriverManager (part of the java.sql
package). The DriverManager searches all of the registered java.sql.Driver
implementations for a driver that is capable of accepting the database URL. It then
invokes the first JDBC driver that supports the subprotocol that is specified in the URL
(and is registered with the DriverManager).

In this case, the DB2 for OS/390 SQLJ/JDBC driver (which is registered with the
DriverManager) accepts the URL, and returns a java.sql.Connection implementation
that represents the database connection.

Chapter 2. JDBC application support 11

#

#
#

#
#

#
#

#
#
#
#
#

#

#

#

#

DB2 for OS/390 SQLJ/JDBC driver
The DB2 for OS/390 SQLJ/JDBC driver is implemented as a type 2 driver, one of four
types of JDBC drivers defined by JavaSoft. The type 2 driver translates JDBC calls into
calls to a DB2 language interface module.

Several packages are included with the DB2 for OS/390 SQLJ/JDBC driver. These
packages represent the DB2 for OS/390 implementation of the java.sql JDBC API. The
driver packages include all of the JDBC classes, interfaces, and exceptions that comply
with the JDBC 1.2 specification.

The DB2 for OS/390 SQLJ/JDBC driver is available under two different Java class
names. The preferred driver name is:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

However, to maintain compatibility with existing DB2 for OS/390 JDBC applications, the
following driver name is also supported:

ibm.sql.DB2Driver

The ibm.sql.DB2Driver class will automatically forward all driver API calls to the
COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver.

JDBC API
The JDBC API consists of the abstract Java interfaces that an application program uses
to access databases, execute SQL statements, and process the results. Like ODBC,
JDBC is a dynamic SQL interface. Writing a JDBC application is similar to writing a C
application using ODBC to access a database. The four main interfaces that perform
these functions are:

v The DriverManager class loads drivers and creates database connections.

v The Connection interface supports the connection to a specific database.

v The Statement interface supports all SQL statement execution. This interface has two
underlying interfaces:

– The PreparedStatement interface supports any SQL statement containing input
parameter markers.

– The CallableStatement interface supports the invocation of a stored procedure
and allows the application to retrieve output parameters.

v The ResultSet interface provides access to the results that a query generates. The
ResultSet interface is similar to the cursor that is used in SQL applications in other
languages.

Running a JDBC application
When you create a Java application that uses the JDBC interfaces, you import the
java.sql package and invoke methods according to the JDBC specification.

12 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#

#
#
#
#

#
#

#

#
#

#

#
#

Getting started
When you begin coding your program, use the sample program, sample01.java shown
in Figure 2 on page 14, as a guide. The sample JDBC application code is located in a
samples subdirectory. Assuming the driver is installed in /usr/lpp/db2, the samples
subdirectory is:

/usr/lpp/db2/db2510/samples

Chapter 2. JDBC application support 13

// NAME = sample01.java
//
// DESCRIPTIVE NAME = JDBC sample01 application
//
// DB2 JDBC sample01.java application:
//
// (a) Load the DB2 for OS/390 JDBC Driver
// (b) Create Connection instance
// (c) Create a Statement instance
// (d) Execute a Query and generate a ResultSet instance
// (e) Print column 1 (table name) to system.out
// (f) Close the ResultSet
// (g) Close the Statement
// (h) Close the Connection
//

�1�import java.sql.*;

public class sample01 {

static {
try {

// register the DB2 for OS/390 SQLJ/JDBC driver with DriverManager
�2� Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");

} catch (ClassNotFoundException e) {
e.printStackTrace();

}
}

public static void main(String args[]) {

String URLprefix = "jdbc:db2os390sqlj:";
String url;
try {

System.out.println("**** JDBC Entry within class sample01.");

// If an alternate URL is passed, then use it
if (args.length > 0)

url = new String(URLprefix + args[0]);
else

url = new String(URLprefix); //else use "local" DB2 location

�3� // Create the connection
Connection con = DriverManager.getConnection (url);
System.out.println("**** JDBC Connection to DB2 for OS/390.");

�4� // Create the Statement
Statement stmt = con.createStatement();
System.out.println("**** JDBC Statement Created");

Figure 2. Sample Java application (Part 1 of 2)

14 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Notes to Figure 2 on page 14:

�1� The first statement imports the appropriate Java package, java.sql.
�2� The Class.forName method loads the appropriate JDBC driver, in this case, DB2 for

OS/390 SQLJ/JDBC driver (COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver) and registers
it with the DriverManager.

�3� The getConnection method creates a Connection instance to connect to the database,
specifying the location with a URL and using the DB2 subprotocol (as defined in the
JDBC specification and explained in “Connecting to a data source” on page 11). You
must modify the URL in the sample01.java application to match the location name of
your local DB2 for OS/390.

�4� The createStatement method creates a Statement instance.
�5� The executeQuery method executes a query and generates a ResultSet instance.
�6� The next() method on the ResultSet instance advances the iterator to successive rows

of the result set. For each row, the getString method is called to retrieve column 1.

�5� // Execute a Query and generate a ResultSet instance
// The Query is a Select from SYSIBM.SYSTABLES
ResultSet rs = stmt.executeQuery("SELECT NAME FROM SYSIBM.SYSTABLES");
System.out.println("**** JDBC Result Set Created");

�6� // Print all of the table names to sysout
while (rs.next()) {

String s = rs.getString(1);
System.out.println("Table NAME = " + s);

}
System.out.println("**** JDBC Result Set output completed");

�7� // Close the resultset
rs.close();

�8� // Close the statement
stmt.close();
System.out.println("**** JDBC Statement Closed");

�9� // Close the connection
con.close();
System.out.println("**** JDBC Disconnect from DB2 for OS/390.");

System.out.println("**** JDBC Exit from class sample01 - no Errors.");

} catch(SQLException sqle) {

System.out.println ("SQLException: " + sqle + ". SQLSTATE=" +
sqle.getSQLState() + " SQLCODE=" + sqle.getErrorCode());

sqle.printStackTrace();
} catch(Exception e) {

System.out.println ("Exception: " + e);
e.printStackTrace();

}

}
}

Figure 2. Sample Java application (Part 2 of 2)

Chapter 2. JDBC application support 15

#

�7� close() closes the result set.
�8� close() closes the statement and frees all resources associated with the statement.
�9� close() closes the connection and frees all resources associated with the connection.

After coding your program, compile it as you would any other Java program. No
precompile or bind steps are required to run a Java program.

16 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

##
##
##

Chapter 3. Writing SQLJ programs for DB2 for OS/390

SQLJ provides support for embedded static SQL in Java applications and servlets.
SQLJ was initially developed by Oracle, Tandem, and IBM to complement the dynamic
SQL JDBC model with a static SQL model.

In general, Java applications use JDBC for dynamic SQL and SQLJ for static SQL.
However, because SQLJ includes JDBC 1.2, an application program can create a JDBC
connection and then use that connection to execute dynamic SQL statements through
JDBC and embedded static SQL statements through SQLJ.

The SQLJ specification consists of three parts:

v Database Languages – SQL – Part 10: Object Language Bindings (SQL/OLB) is
also known as SQLJ Part 0. It was approved by ANSI in 1998, and it specifies the
SQLJ language syntax and semantics for embedded SQL statements in a Java
application.

v Database Languages – SQLJ – Part 1: SQL Routines using the Java™

Programming Language was approved by ANSI in 1999, and it specifies extensions
that define:
– Installation of Java classes in an SQL database
– Invocation of static methods as stored procedures

v Database Languages – SQLJ – Part 2: SQL Types using the Java™

Programming Language is under development. It specifies extensions for accessing
Java classes as SQL user-defined types.

The DB2 for OS/390 implementation of SQLJ includes support for the following portions
of the specification:

v Part 0

v The ability to invoke a Java static method as a stored procedure, which is in Part 1

Some of the major differences between SQLJ and JDBC are:

v SQLJ follows the static SQL model, and JDBC follows the dynamic SQL model.

v SQLJ source programs are smaller than equivalent JDBC programs, because certain
code that the programmer must include in JDBC programs is generated automatically
by SQLJ.

v SQLJ can do data type checking during the program preparation process to
determine whether table columns are compatible with Java host expressions. JDBC
passes values to and from SQL tables without compile-time data type checking.

v In SQLJ programs, you can embed Java host expressions in SQL statements. JDBC
requires a separate call statement for each bind variable and specifies the binding by
position number.

v SQLJ provides the advantages of static SQL authorization checking. With SQLJ, the
authorization ID under which SQL statements execute is the plan or package owner.
DB2 checks table privileges at bind time. Because JDBC uses dynamic SQL, the
authorization ID under which SQL statements execute is not known until run time, so
no authorization checking of table privileges can occur until run time.

© Copyright IBM Corp. 1998 17

This chapter and the following two chapters explain DB2 for OS/390 support for SQLJ.
This chapter gives you the information that you need to write SQLJ programs that run
on DB2 for OS/390. Subsequent chapters describe how to prepare SQLJ programs for
execution and provide detailed syntax for the components of SQLJ.

The following topics are discussed in this chapter:
v “Executing SQL statements in an SQLJ program”
v “Including code to access SQLJ support” on page 20
v “Connecting to a data source” on page 20
v “Using result set iterators to retrieve rows from a result table” on page 22
v “Controlling the execution of SQL statements” on page 30
v “Retrieving multiple result sets from a stored procedure” on page 30
v “Setting the isolation level for a transaction” on page 32
v “Setting the read-only mode for a transaction” on page 32
v “An SQLJ sample program” on page 32
v “Running SQLJ programs” on page 34
v “Diagnosing SQLJ problems” on page 34

Executing SQL statements in an SQLJ program
This section discusses the following basic information about writing an SQLJ program:
v How to include SQL statements, host variables, and comments in the program
v Which SQL statements are valid in an SQLJ program
v How to do error handling

Including SQL statements in an SQLJ program
In an SQLJ program, all statements that are used for database access are in SQLJ
clauses. SQLJ clauses that contain SQL statements are called executable clauses. An
executable clause begins with the characters #sql and contains an SQL statement that
is enclosed in curly brackets. The SQL statement itself has no terminating character. An
example of an executable clause is:

#sql {DELETE FROM EMP};

“executable-clause” on page 45 contains a list of the SQL statements that you can
include in an SQLJ program. An executable clause can appear anywhere in a program
that a Java statement can appear.

Using Java variables and expressions as host expressions
To pass data between a Java application program and DB2, use host expressions. A
Java host expression is a Java simple identifier or complex expression, preceded by a
colon. The result of a complex expression must be a single value. An array element is
considered to be a complex expression. A complex expression must be surrounded by
parentheses. When you use a host expression as a parameter in a stored procedure
call, you can follow the colon with the IN, OUT, or INOUT parameter, which indicates
whether the host expression is intended for input, output, or both. The IN, OUT, or
INOUT value must agree with the value you specify in the stored procedure definition in
catalog table SYSIBM.SYSPROCEDURES.

18 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#

#
#

The following SQLJ clause uses a host expression that is a simple Java variable named
empname:

#sql {SELECT LASTNAME INTO :empname FROM EMP WHERE EMPNO='000010'};

The following SQLJ clause calls stored procedure A and uses a simple Java variable
named EMPNO as an input or output parameter:

#sql {CALL A (:INOUT EMPNO)};

SQLJ evaluates host expressions from left to right before DB2 processes the SQL
statements that contain them. For example, suppose that the value of i is 1 before the
following SQL clause is executed:

#sql {SET :(z[i++]) = :(x[i++]) + :(y[i++])};

The array index that determines the location in array z is 1. The array index that
determines the location in array x is 2. The array index that determines the location in
array y is 3. The value of i in the Java space is now 4. The statement is then executed.
After statement execution, the output value is assigned to z[1].

In an executable clause, host expressions, which are Java tokens, are case sensitive.

Including comments
To include comments in an SQLJ program, use either Java comments or SQL
comments.

v Java comments are denoted by /* */ or //. You can include Java comments outside
SQLJ clauses, wherever the Java language permits them. Within an SQLJ clause,
use Java comments in host expressions.

v SQL comments are denoted by * at the beginning of a line or -- anywhere on a line
in an SQL statement. You can use SQL comments in executable clauses, anywhere
except in host expressions.

Handling SQL errors and warnings
SQLJ clauses use the JDBC class java.sql.SQLException for error handling. SQLJ
generates an SQLException when an SQL statement returns a negative SQLCODE.
You can use the getErrorCode method to retrieve SQLCODEs and the getSQLState
method to retrieve SQLSTATEs.

To handle SQL errors in your SQLJ application, import the java.sql.SQLException
class, and use the Java error handling try/catch blocks to modify program flow when
an SQL error occurs. For example:

try {
#sql {SELECT LASTNAME INTO :empname

FROM EMP WHERE EMPNO='000010'};
}
catch(SQLException e) {

System.out.println("SQLCODE returned: " + e.getErrorCode());
}

Chapter 3. Writing SQLJ programs for DB2 for OS/390 19

DB2 warnings do not throw SQLExceptions. To handle DB2 warnings, you need to
import the java.sql.SQLWarning class. To check for a DB2 warning, invoke the
getWarnings method after you execute an SQL clause. getWarnings returns the first
warning code that an SQL statement generates. Subsequent SQL warning codes are
chained to the first SQL warning code.

Before you can execute getWarnings for an SQL clause, you need to set up an
execution context for that SQL clause. See “Controlling the execution of SQL
statements” on page 30 for information on how to set up an execution context. The
following example demonstrates how to retrieve an SQL warning code for an SQL
clause with execution context ExecCtx:

SQLWarning SQLWarn;
#sql [ExecCtx] {SELECT LASTNAME INTO :empname

FROM EMP WHERE EMPNO='000010'};
if (SQLWarn = ExecCtx.getWarnings() != null) then
System.out.println("SQLWarning " + SQLWarn);

Including code to access SQLJ support
Before you can execute any SQLJ clauses in your application program, you must
include code to accomplish these tasks:
v Import the Java packages for SQLJ run-time support and the JDBC interfaces that

are used by SQLJ.
v Load the DB2 for OS/390 SQLJ/JDBC driver, which is the SQLJ implementation of

JDBC 1.2 function.

To import the Java packages for SQLJ and JDBC, include these lines in your
application program:

import sqlj.runtime.*; // SQLJ runtime support
import java.sql.*; // JDBC interfaces

To load the DB2 for OS/390 SQLJ/JDBC driver and register it with the DriverManager,
invoke method Class.forName with an argument of
COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver. For example:

try {
Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");

}
catch (ClassNotFoundException e) {

e.printStackTrace();
}

Connecting to a data source
In an SQLJ application, as in any other DB2 application, you must be connected to a
data source before you can execute SQL statements. A data source in DB2 for OS/390
is a DB2 location name.

To execute an SQL statement at a data source, use one of the following methods:

v Use an explicit connection.

20 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Specify a connection context, enclosed in square brackets, at the beginning of the
execution clause that contains the SQL statement. For example, the following SQL
clause executes an UPDATE statement at the data source that is associated with
connection context myconn:

#sql [myconn] {UPDATE DEPT SET MGRNO=:hvmgr WHERE DEPTNO=:hvdeptno};

v Use a default connection.

When you specify an execution clause without a connection context, SQLJ uses the
default context to access a data source. If you create a connection context object for
accessing a remote data source, you can use the setDefaultContext method to install
that connection context object as the default connection. If you do not use
setDefaultContext to override the default connection is to the local DB2 subsystem.

A connection context is an instance of a connection context class. To define the
connection context class and set up the connection context, use one of the following
methods before you specify the connection context in any SQL statements:

v Connection method 1:

1. Execute a type of SQLJ clause called a connection declaration clause to
generate a connection context class.

2. Invoke the constructor for the connection context class with the following
arguments:

– A string that specifies the location name that is associated with the data
source. That argument has the form:

jdbc:db2os390sqlj:location-name

If location-name is not the local site, location-name must be defined in the
SYSIBM.LOCATIONS DB2 catalog table. If location-name is the local site,
location-name must have been specified in field DB2 LOCATION NAME of the
DISTRIBUTED DATA FACILITY panel during DB2 installation.

– A boolean that specifies whether autoCommit is on or off for the connection.

For example, suppose that you want to use the first method to set up connection
context myconn to access data at a data source that is associated with location
NEWYORK. For this connection, you want autoCommit to be off. First, execute a
connection declaration clause to generate a connection context class:

#sql context Ctx;

Then invoke the constructor for generated class Ctx with arguments
jdbc:db2os390sqlj:NEWYORK and false:

Ctx myconn=new Ctx("jdbc:db2os390sqlj:NEWYORK",false);

v Connection method 2:

1. Execute a connection declaration clause to generate a connection context class.

2. Invoke the JDBC java.sql.DriverManager.getConnection method. The argument
for java.sql.DriverManager.getConnection is a string that specifies the location
name that is associated with the data source. That argument has the form:

jdbc:db2os390sqlj:location-name

Chapter 3. Writing SQLJ programs for DB2 for OS/390 21

If location-name is not the local site, location-name must be defined in
SYSIBM.LOCATIONS. If location-name is the local site, location-name must have
been specified in field DB2 LOCATION NAME of the DISTRIBUTED DATA
FACILITY panel during DB2 installation. The invocation returns an instance of
class Connection, which represents a JDBC connection to the data source.

3. For environments other than the CICS environment, the default state of
autoCommit for a JDBC connection is on. To disable autoCommit, invoke the
setAutoCommit method with an argument of false.

4. Invoke the constructor for the connection context class. For the argument of the
constructor, use the JDBC connection that results from invoking
java.sql.DriverManager.getConnection.

To use the second method to set up connection context myconn to access data at
the data source associated with location NEWYORK with autoCommit off, first
execute a connection declaration clause to generate a connection context class:

#sql context Ctx;

Then invoke java.sql.Driver.getConnection with the argument
jdbc:db2os390sqlj:NEWYORK:

Connection jdbccon=DriverManager.getConnection("jdbc:db2os390sqlj:NEWYORK");

Next, to set autoCommit off for the connection, invoke setAutoCommit with an
argument false:

jdbccon.setAutoCommit(false);

Finally, invoke the constructor for class Ctx using the JDBC connection as the
argument:

Ctx myconn=new Ctx(jdbccon);

SQLJ uses the JDBC java.sql.Connection class to connect to data sources. Your
application can invoke any method in the java.sql.Connection class.

Using result set iterators to retrieve rows from a result table
In DB2 application programs that are written in traditional host languages, you use a
cursor to retrieve individual rows from the result table that is generated by a SELECT
statement. The SQLJ equivalent of a cursor is a result set iterator. A result set iterator is
a Java object that you use to retrieve rows from a result table. Unlike a cursor, a result
set iterator can be passed as a parameter to a method.

You define a result set iterator using an iterator declaration clause. The iterator
declaration clause specifies the following information:

v A list of Java data types

v Information for a Java class declaration, such as whether the iterator is public or
static

v A set of attributes, such as whether the iterator is holdable, or whether its columns
can be updated

22 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#

The data type declarations represent columns in the result table and are referred to as
columns of the result set iterator. Table 1 shows each Java data type that you can
specify in a result set iterator declaration and the equivalent SQL data type.

Table 1. Equivalent Java and SQL data types

Java data type SQL data type

java.lang.String CHAR, VARCHAR, GRAPHIC, VARGRAPHIC

java.math.BigDecimal NUMERIC, INTEGER, DECIMAL, SMALLINT,
FLOAT, REAL, DOUBLE

Boolean INTEGER, SMALLINT

int, Integer SMALLINT, INTEGER, DECIMAL, NUMERIC,
FLOAT, DOUBLE

float, Float SMALLINT, INTEGER, DECIMAL, NUMERIC,
FLOAT, DOUBLE

double, Double SMALLINT, INTEGER, DECIMAL, DECIMAL,
NUMERIC, FLOAT, DOUBLE

byte[]1 CHAR FOR BIT DATA, VARCHAR FOR BIT
DATA

java.sql.Date2 DATE

java.sql.Time2 TIME

java.sql.Timestamp2 TIMESTAMP

Notes to Table 1:

1. Because this data type is equivalent to a DB2 data type with a subtype of BIT,
SQLJ performs no conversion for data of this type.

2. This class is part of the JDBC API.

If you declare an iterator without the public modifier, you can declare and use the
iterator in the same file. If you declare the iterator as public, you can declare and use
the iterator in one of the following ways:

v Declare the iterator in one file, and use it in a different file. The name of the file in
which you declare the iterator must match the iterator name.

v Declare and use the iterator in the same file. If you do this, you need to declare the
iterator with the public and static modifiers, and declare the iterator in the class that
uses it.

Examples in this chapter that use a public iterator declare the iterator in a different file
from the file in which it is used.

The two types of result set iterators are positioned iterators and named iterators. The
type of result set iterator that you choose depends on the way that you plan to use that
result set iterator. The following sections explain how to use each type of iterator.

Chapter 3. Writing SQLJ programs for DB2 for OS/390 23

##

##
#

#
#
#

#
#

#
#
#

#
#

Using positioned iterators
For a positioned iterator, the columns of the result set iterator correspond to the
columns of the result table, in left-to-right order. For example, if an iterator declaration
clause has two data type declarations, the first data type declaration corresponds to the
first column in the result table, and the second data type declaration corresponds to the
second column in the result table. You declare positioned iterators to execute FETCH
statements.

For example, the following iterator declaration clause defines a positioned iterator
named ByPos with two columns. The first column is of type String, and the second
column is of type Date.

#sql iterator ByPos(String,Date);

When SQLJ encounters an iterator declaration clause for a positioned iterator, it
generates a positioned iterator class with the name that you specify in the iterator
declaration clause. You can then declare an object of the positioned iterator class to
retrieve rows from a result table.

For example, suppose that you want to retrieve rows from a result table that contains
the values of the LASTNAME and HIREDATE columns from the DB2 sample employee
table. Figure 3 shows how you can declare an iterator named ByPos and use an object
of the generated class ByPos to retrieve those rows.

Notes to Figure 3:

�1� This SQLJ clause executes the SELECT statement, constructs an iterator object that
contains the result table for the SELECT statement, and assigns the iterator object to
variable positer.

�2� The DB2 for OS/390 customizer can validate that the iterator types is compatible with
the SQL data type of the corresponding column.

{
#sql iterator ByPos(String,Date);

// Declare positioned iterator class ByPos
ByPos positer; // Declare object of ByPos class
String name = null;
Date hrdate;

�1� #sql positer = { SELECT LASTNAME, HIREDATE FROM EMP };
�2� #sql { FETCH :positer INTO :name, :hrdate };

// Retrieve the first row
�3� while (!positer.endFetch())

{ System.out.println(name + " was hired in " +
hrdate);

#sql { FETCH :positer INTO :name, :hrdate };
// Retrieve the rest of the rows

}
}

Figure 3. Retrieving rows using a positioned iterator

24 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

�3� Method endFetch(), which is a method of the generated iterator class ByPos, returns a
value of true when all rows have been retrieved from the iterator. The first FETCH
statement needs to be executed before endFetch() is called.

Using named iterators
Using named iterators is an alternative way to select rows from a result table. When
you declare a named iterator for a query, you specify names for each of the iterator
columns. Those names must match the names of columns in the result table for the
query. An iterator column name and a result table column name that differ only in case
are considered to be matching names.

When SQLJ encounters a named iterator declaration, it generates a named iterator
class with the same name that you use in the iterator declaration clause. In the named
iterator class, SQLJ generates an accessor method for each column name in the
iterator declaration clause. The accessor method name is the same name as the
column name in the iterator declaration clause. The data type that is returned by the
accessor method is the same as the data type of the corresponding column in the
iterator declaration clause.

When you execute an SQL clause that has a named iterator, SQLJ matches the name
of each iterator column to the name of a column in the result table.

The following iterator declaration clause defines the named iterator ByName, which has
two columns. The first column of the iterator is named LastName and is of type String.
The second column is named HireDate and is of type Date.

#sql iterator ByName(String LastName, Date HireDate);

To use a named iterator, you use an SQLJ assignment clause to assign the result table
from a SELECT statement to an instance of a named iterator class. Then you use the
accessor methods to retrieve the data from the iterator.

Figure 4 shows how you can use a named iterator to retrieve rows from a result table
that contains the values of the LASTNAME and HIREDATE columns of the employee
table.

{
�1� #sql iterator ByName(String LastName, Date HireDate);

ByName nameiter; // Declare object of ByName class
�2� #sql nameiter={SELECT LASTNAME, HIREDATE FROM EMP};
�3� while (nameiter.next())

{
System.out.println(nameiter.LastName() + " was hired on "

+ nameiter.HireDate());
}

}

Figure 4. Retrieving rows using a named iterator

Chapter 3. Writing SQLJ programs for DB2 for OS/390 25

Notes to Figure 4 on page 25:

�1� This SQLJ clause creates the named iterator class ByName, which has accessor
methods LastName() and HireDate() that return the data from result table columns
LASTNAME and HIREDATE.

�2� This SQLJ clause executes the SELECT statement, constructs an iterator object that
contains the result table for the SELECT statement, and assigns the iterator object to
variable nameiter.

�3� next(), which is a method of the generated class ByName, advances the iterator to
successive rows of the result set. next returns a value of true when a next row is
available, and a value of false when all rows have been fetched from the iterator.

The column names for named iterators must be valid Java identifiers. The column
names must also match the column names in the result table from which the iterator
retrieves rows. If a SELECT statement that uses a named iterator selects data from
columns with names that are not valid Java identifiers, you need to use SQL AS
clauses in the SELECT statement to give the columns of the result table acceptable
names.

For example, suppose you want to use a named iterator to retrieve the rows that are
specified by this SELECT statement:

SELECT PUBLIC FROM GOODTABLE

The iterator column name must match the column name of the result table, but you
cannot specify an iterator column name of PUBLIC because PUBLIC is a reserved Java
keyword. You must therefore use an AS clause to rename PUBLIC to a valid Java
identifier in the result table. For example:

SELECT PUBLIC AS IS_PUBLIC FROM GOODTABLE

You can then declare a named iterator with a column name that is a valid Java identifier
and matches the column name of the result table:

#sql iterator ByName(String IS_PUBLIC);
ByName nameiter;
#sql nameiter={SELECT PUBLIC AS IS_PUBLIC FROM GOODTABLE};

Using iterators for positioned UPDATE and DELETE operations
When you declare an iterator for a positioned UPDATE or DELETE statement, you must
use an SQLJ implements clause to implement the sqlj.runtime.ForUpdate interface.
You must also declare the iterator as public. For example, suppose that you declare the
iterator ByPos for use in a positioned DELETE statement. The declaration looks like
this:

#sql public iterator ByPos(String) implements sqlj.runtime.ForUpdate
with(updateColumns="EmpNo");

Because you declare the iterator as public but not static, you need to use the iterator in
a different source file. To use the iterator:
1. Import the generated iterator class.
2. Declare an instance of the generated iterator class.

26 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

3. Assign the SELECT statement for the positioned UPDATE or DELETE to the iterator
instance.

4. Execute positioned UPDATE or DELETE statements using the iterator.

After the iterator is created, any SQLJ source file that has addressability to the iterator
and imports the generated class can retrieve data and execute positioned UPDATE or
DELETE statements using the iterator. The authorization ID under which a positioned
UPDATE or DELETE statement executes is the authorization ID under which the DB2
package that contains the UPDATE or DELETE executes.

For example, suppose that you declare iterator UpdByName like this in
UpdByName.sqlj:

#sql public iterator UpdByName(String EMPNO, BigDecimal SALARY)
implements sqlj.runtime.ForUpdate
with(updateColumns="SALARY");

To use UpdByName for a positioned UPDATE in another file, execute statements like
those in Figure 5.

Notes to Figure 5:

�1� This statement imports named iterator class UpdByName, which was created by the
iterator declaration clause for UpdByName in UpdByName.sqlj. The import command is
not needed if UpdByName is in the same package as the Java source file that
references it.

�2� This SQLJ clause executes the SELECT statement, constructs an iterator object that
contains the result table for the SELECT statement, and assigns the iterator object to
variable upditer.

�3� This statement positions the iterator to the next row to be updated.
�4� This SQLJ clause performs the positioned UPDATE.

�1� import UpdByName;
{

UpdByName upditer; // Declare object of UpdByName class
String enum;

�2� #sql upditer = { SELECT EMPNO, SALARY FROM EMP
WHERE WORKDEPT='D11'};

�3� while (upditer.next())
{

enum = upditer.EmpNo(); // Get value from result table
�4� #sql { UPDATE EMP SET SALARY=SALARY*1.05 WHERE CURRENT OF :upditer };

// Update row where cursor is positioned
System.out.println("Updating row for " + enum);

}
#sql {COMMIT}; // Commit the changes

}

Figure 5. Updating rows using a positioned iterator

Chapter 3. Writing SQLJ programs for DB2 for OS/390 27

Using JDBC result sets in SQLJ applications
You can combine SQLJ clauses and JDBC calls in a single program to take advantage
of the flexibility of JDBC and the type checking of SQLJ. To do this effectively, you need
to be able to use SQLJ iterators to retrieve data from JDBC result sets or generate
JDBC result sets from SQLJ iterators.

Retrieving JDBC result sets using SQLJ iterators
Use the iterator conversion statement to manipulate a JDBC result set as an SQLJ
iterator. The general form of an iterator conversion statement is:

#sql iterator={CAST :result-set};

Before you can successfully cast a result set to an iterator, the iterator must conform to
the following rules:

v If the iterator is a positioned iterator, the number of columns in the result set must
match the number of columns in the iterator. In addition, the data type of each
column in the result set must match the data type of the corresponding column in the
iterator.

v If the iterator is a named iterator, the name of each accessor method must match the
name of a column in the result set. In addition, the data type of the object that an
accessor method returns must match the data type of the corresponding column in
the result set.

When you close an iterator that is generated from a result set, you also close the result
set.

The code in Figure 6 builds and executes a query using a JDBC call, executes an
iterator conversion statement to convert the JDBC result set to an SQLJ iterator, and
retrieves rows from the result table using the iterator.

public void hireDates(Connection conn, String whereClause)
{

�1� #sql iterator ByName(String LastName, Date HireDate);
ByName nameiter; // Declare object of ByName class

�2� PreparedStatement stmt = conn.prepareStatement();
String query = "SELECT LASTNAME, HIREDATE FROM EMP";
query+=whereClause; // Build the query

�3� ResultSet rs = stmt.executeQuery(query);
�4� #sql nameiter = {CAST :rs};

while (nameiter.next())
{

System.out.println(nameiter.LastName() + " was hired on "
+ nameiter.HireDate());

}
�5� nameiter.close();

stmt.close();
}

Figure 6. Converting a JDBC result set to an SQLJ iterator

28 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#
#
#

#
#
#

#

#
#

#
#
#
#

#
#
#
#

#
#

#
#
#
#

Notes to Figure 6 on page 28:

�1� This SQLJ clause creates the named iterator class ByName, which has accessor
methods LastName() and HireDate() that return the data from result table columns
LASTNAME and HIREDATE.

�2� This statement and the following two statements build and prepare a query for dynamic
execution using JDBC.

�3� This JDBC statement executes the SELECT statement and assigns the result table to
result set rs.

�4� This iterator conversion clause converts the JDBC result set RS to SQLJ iterator
nameiter, and the following statements use nameiter to retrieve values from the result
table.

�5� The close() method closes the SQLJ iterator and JDBC result set rs.

Generating JDBC result sets from SQLJ iterators
Use the getResultSet method to generate a JDBC result set from an SQLJ iterator.
Every SQLJ iterator has a getResultSet method. After you convert an iterator to a result
set, you need to fetch rows using only the result set.

The code in Figure 7 generates a positioned iterator for a query, converts the iterator to
a result set, and uses JDBC methods to fetch rows from the table.

Notes to Figure 7:

�1� This SQLJ clause executes the SELECT statement, constructs an iterator object that
contains the result table for the SELECT statement, and assigns the iterator object to
variable unTyped.

�2� The getResultSet() method converts iterator unTyped to result set rs.
�3� The JDBC getString() and getDate() methods retrieve values from the result set. The

next() method moves the cursor to the next row in the result set.
�4� The close() method closes the SQLJ iterator.

{
sqlj.runtime.ResultSetIterator unTyped;

�1� #sql unTyped = { SELECT LASTNAME, HIREDATE FROM EMP };
�2� ResultSet rs = unTyped.getResultSet();
�3� while (rs.next())

{ System.out.println(rs.getString(1) + " was hired in " +
rs.getDate(2));

}
�4� unTyped.close();

}

Figure 7. Converting an SQLJ iterator to a JDBC result set

Chapter 3. Writing SQLJ programs for DB2 for OS/390 29

#

###
#
#
##
#
##
#
##
#
#
##
#

#
#
#
#

#
#
#

#

###
#
#
##
##
#
##
#

Controlling the execution of SQL statements
You can use selected methods of the SQLJ ExecutionContext class to query and
modify the characteristics of SQL statements during execution. “Appendix A. Selected
sqlj.runtime classes and interfaces” on page 91 describes those methods.

To execute ExecutionContext methods for an SQL statement, you must create an
execution context and associate that execution context with the SQL statement.

To create an execution context, invoke the constructor for ExecutionContext and assign
the result to a variable of type ExecutionContext. For example:

ExecutionContext ExecCtx=new ExecutionContext();

To associate an execution context with an SQL statement, specify the name of the
execution context, enclosed in square brackets, at the beginning of the execution
clause that contains the SQL statement. For example:

#sql [ExecCtx] {DELETE FROM EMP WHERE SALARY > 10000};

You can associate a different execution context with each SQL statement. If you also
use an explicit connection context for an SQL statement, specify the connection
context, followed by the execution context in the execution clause for the SQL
statement. For example:

#sql [ConnCtx, ExecCtx] {DELETE FROM EMP WHERE SALARY > 10000};

If you do not specify an execution context for an execution clause, SQLJ uses the
execution context that is associated with the connection context for the execution
clause.

After you associate an execution context with an SQL statement, you can execute
ExecutionContext methods for that SQL statement. For example, you can use method
getUpdateCount to count the number of rows that are deleted by a DELETE statement:

#sql [ConnCtx, ExecCtx] {DELETE FROM EMP WHERE SALARY > 10000};
System.out.println("Deleted " + ExecCtx.getUpdateCount() + " rows");

Retrieving multiple result sets from a stored procedure
Some stored procedures return one or more result sets to the calling program. To
retrieve the rows from those result sets, you execute these steps:

v Create an execution context that is used to retrieve the result set from the stored
procedure.

If you plan to cast the result set from the stored procedure to an SQLJ iterator,
create a second execution context for that purpose. You cannot use the same
execution context to retrieve a result set and to cast that result set to an iterator.

v Associate the execution context with the CALL statement for the stored procedure.

v For each result set:

– Use the ExecutionContext method getNextResultSet to retrieve the result set.

– Use an iterator or JDBC ResultSet to retrieve the rows from the result set.

30 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#

#

#
#

#
#

#
#
#

#

#

#

#

Each call to getNextResultSet closes the previous result set and advances to the next
result set. Result sets are returned to the calling program in the same order that their
cursors are opened in the stored procedure. When there are no more result sets to
retrieve, getNextResultSet returns a null value.

The code in Figure 8 calls a stored procedure that returns multiple result sets. For this
example, it is assumed that the caller does not know the number of result sets to be
returned or the contents of those result sets.

Notes to Figure 8:

�1� This statement and the following three statements set the connection context for the
program that calls the stored procedure.

�2� MULTRSSP is a stored procedure that returns multiple result sets.
�3� This statement gets the execution context from the connection that is used to call the

stored procedure.
�4� Result set rs is used to retrieve rows from each result set that is returned from the

stored procedure.
�5� Each invocation of the getNextResultSet method returns a result set from the stored

procedure. When there are no more result sets to retrieve, getNextResultSet returns
null.

�6� Because the caller does not know the contents of the result sets that are returned from
the stored procedure, JDBC ResultSetMetaData methods are used to obtain this
information.

�7� The statements in this loop retrieve rows from a result set and print out the contents of
each column.

�1� #sql context ConnCtx;
Connection Connjdbc=

DriverManager.getConnection("jdbc:db2os390sqlj:SANJOSE");
Connjdbc.setAutoCommit(false);
ConnCtx myconn=new ConnCtx(Connjdbc);

�2� #sql [myconn] {CALL MULTRSSP()};
�3� ExecutionContext ExecCtx=myconn.getExecutionContext();
�4� ResultSet rs;
�5� while ((rs = ExecCtx.getNextResultSet()) != null)

{
�6� ResultSetMetaData rsmeta=rs.getMetaData();

int numcols=rsmeta.getColumnCount();
�7� while (rs.next())

{
for (int i=1; i<=numcols; i++)
{

String colval=rs.getString(i);
System.out.println("Column " + i + "value is " + colval);

}
}
rs.close();

}

Figure 8. Retrieving multiple result sets from a stored procedure

Chapter 3. Writing SQLJ programs for DB2 for OS/390 31

#
#
#
#

#
#
#
#

#

###
#
##
##
#
##
#
##
#
#
##
#
#
##
#
#

Setting the isolation level for a transaction
To set the isolation level for a unit of work within an SQLJ program, use the SET
TRANSACTION ISOLATION LEVEL clause. Table 2 shows the values that you can
specify in the SET TRANSACTION ISOLATION LEVEL clause and their DB2 for
OS/390 equivalents.

Table 2. Equivalent SQLJ and DB2 isolation levels

SET TRANSACTION value DB2 for OS/390 isolation level

READ COMMITTED Cursor stability

READ UNCOMMITTED Uncommitted read

REPEATABLE READ Read stability

SERIALIZABLE Repeatable read

You can set the isolation level only at the beginning of a transaction.

Setting the read-only mode for a transaction
To set the read-only mode for a unit of work within an SQLJ program, use the SET
TRANSACTION READ ONLY or SET TRANSACTION READ WRITE clause. SET
TRANSACTION READ ONLY puts a connection into read-only mode so that DB2 can
optimize execution of SQL statements for read-only access. If you execute SET
TRANSACTION READ WRITE, DB2 does not optimize for read-only access.

You can set the read-only mode only at the beginning of a transaction.

An SQLJ sample program
Figure 9 on page 33 contains an example of an SQLJ program that prints the names
and salaries of employees with salaries that exceed the average for the company. The
program uses the DB2 sample employee table.

32 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#
#
#
#

##

##

##

##

##

##
#

#

#

#
#
#
#
#

#

Notes to Figure 9:

�1� The first two statements import the JDBC and SQLJ packages that are used by SQLJ.
�2� This connection declaration clause declares connection context HSCtx, which will be

used to connect to location SANJOSE. When you prepare the application program,
SQLJ generates a class named HSCtx. You must therefore ensure that HSCtx is a valid
Java class name that is unique within its scope.

�3� This iterator declaration clause declares named iterator HSByName, which will be used
to select rows from the employee table. When you prepare the application program,
SQLJ generates a class named HSByName. You must therefore ensure that
HSByName is a valid Java class name that is unique within its scope.

�1� import sqlj.runtime.*;
import java.sql.*;
import java.math.*;

�2� #sql context HSCtx;
�3� #sql iterator HSByName(String LastName, BigDecimal Salary);

public class HighSalary
{

public static void main (String[] args) // Main entry point
throws SQLException

{
try {

�4� Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");
}
catch (ClassNotFoundException e) {

e.printStackTrace();
}

�5� Connection HSjdbccon=
DriverManager.getConnection("jdbc:db2os390sqlj:SANJOSE");

HSjdbccon.setAutoCommit(false);
HSCtx myconn=new HSCtx(HSjdbccon);
BigDecimal AvgSal;
#sql [myconn] {SELECT AVG(SALARY) INTO :AvgSal FROM EMP};
printSalary(AvgSal,myconn);
HSjdbccon.close();

}
static void printSalary(BigDecimal AvgSalary, HSCtx hsconn)

throws SQLException // Method to get high salaries
{

�6� HSByName nameiter;
�7� #sql [hsconn] nameiter =

{SELECT LASTNAME, SALARY FROM EMP
WHERE SALARY >= :AvgSalary
ORDER BY SALARY DESC};

�8� while (nameiter.next())
�9� System.out.println(nameiter.LastName() + " " +

nameiter.Salary());
�10� nameiter.close();

}
}

Figure 9. SQLJ sample program

Chapter 3. Writing SQLJ programs for DB2 for OS/390 33

�4� The Class.ForName method loads the DB2 for OS/390 SQLJ JDBC driver and registers it
with the DriverManager.

�5� This statement and the two statements that follow it set up the connection to the data
source at location SANJOSE and set autoCommit for the connection to off. Executable
clauses that specify the connection instance myconn will be executed at location
SANJOSE.

�6� This statement declares nameiter as an instance of the named iterator class
HSByName.

�7� This assignment clause executes the SELECT statement, constructs an iterator object
that contains the result table for the SELECT statement, and assigns the iterator object
to variable nameiter.

�8� next, which is a method of the generated class HSByName, advances the iterator to
successive rows of the result set. next returns a value of true when a next row is
available and a value of false when all rows have been fetched from the iterator.

�9� Accessor methods nameiter.LastName and nameiter.Salary retrieve the values of the
LASTNAME and SALARY column from the current row of the result table.

�10� close, which is a method of generated iterator class HSByName, closes the iterator to
free any database resources that the iterator holds.

Running SQLJ programs
After you have set the environmental variables discussed in “Configuring JDBC and
SQLJ” on page 83 and prepared your program for execution, your program is ready to
run.

To ensure that the program can find all the files that it needs:

v Put the serialized profiles for the program in the same directory as the class files for
the program.

v Include class files that are used by the program in the CLASSPATH.

To run your SQLJ program, execute the java command from the OS/390 OpenEdition
command line:

java program-name

Diagnosing SQLJ problems
SQLJ programs can generate two types of errors:

v Recoverable errors

SQLJ reports recoverable SQL errors through the JDBC java.sql.SQLException
class. You can use methods getErrorCode and getSQLState to retrieve SQLCODEs
and SQLSTATEs. See “Handling SQL errors and warnings” on page 19 for
information on how to write your application program to retrieve SQLCODEs and
SQLSTATEs.

All SQLSTATEs except FFFFF are documented in Section 2 of Messages and
Codes. FFFFF is a special SQLSTATE that indicates an internal error in the
SQLJ/JDBC driver.

v Non-recoverable errors

34 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

These errors do not throw an SQLException, or the application cannot catch the
exception.

To diagnose recoverable errors that generate SQLSTATE FFFFF or repeatable,
non-recoverable errors, you can collect trace data and run three utilities that generate
additional diagnostic information. You should run the trace and diagnostic utilities only
under the direction of your IBM service representative.

Formatting trace data
Before you can format SQLJ trace data, you must set several environmental variables.
You must also set several parameters in the run-time properties file that you name in
environmental variable DB2SQLJPROPERTIES. “Configuring JDBC and SQLJ” on
page 83 describes these variables and parameters.

In the CICS environment, configuring for traces is somewhat different than in other
environments. See “Appendix B. Special considerations for CICS applications” on
page 95 for information on tracing in the CICS environment.

When you set the parameter DB2SQLJ_TRACE_FILENAME in the run-time properties
file, you enable SQLJ/JDBC tracing. The SQLJ/JDBC driver generates two trace files:

v One trace file has a proprietary, binary format and must be formatted using the
db2sqljtrace command. The name of that trace file is trace-file, where trace-file is
the value to which you set DB2SQLJ_TRACE_FILENAME.

v The other trace file contains readable text, which requires no additional formatting.
The name of that trace file is trace-file.JTRACE.

If your IBM service representative requests a DB2 SQLJ/JDBC trace, you need to
format trace-file using db2sqljtrace. Send the db2sqljtrace output and
trace-file.JTRACE to IBM.

The db2sqljtrace command writes the formatted data to stdout. The format of
db2sqljtrace is:

�� db2sqljtrace fmt
flw

input-file-name ��

The meanings of the parameters are:

fmt
Specifies that the output trace file is to contain a record of each time a function is
entered or exited before the failure occurs.

flw Specifies that the output trace file is to contain the function flow before the failure
occurs.

input-file-name
Specifies the name of the file from which db2sqljtrace is to read the unformatted
trace data. This name is the name you specified for environmental variable
DB2SQLJ_TRACE_FILENAME.

Chapter 3. Writing SQLJ programs for DB2 for OS/390 35

#
#
#
#

#
#
#

#
#

#
#
#

#
#

#
#
#

Running diagnosis utilities
If an SQLJ application program receives a recoverable, internal error (SQLSTATE
FFFFF) or a repeatable, non-recoverable error, run diagnosis utilities profp, profdb, and
db2profp, which are provided with SQLJ, to obtain additional information about the
error.

The profp utility captures information about each SQLJ clause in a serialized profile.
The format of the profdb utility is:

�� profp serialized-profile-name ��

Run the profp utility on the serialized profile for the connection in which the error
occurs. If an exception is thrown, a Java stack trace is generated. You can determine
which serialized profile was in use when the exception was thrown from the stack trace.

The db2profp utility captures information about each SQLJ clause in a customized
serialized profile. A customized serialized profile is a serialized profile on which the DB2
for OS/390 SQLJ customizer has been run. The format of the db2profp utility is:

�� db2profp customized-serialized-profile-name ��

Run the db2profp utility on the customized serialized profile for the connection in which
the error occurs.

The profdb utility customizes serialized profiles so that SQLJ captures extra information
about run-time calls. The syntax of the profdb utility is:

�� profdb � serialized-profile-name ��

Run the profdb utility on every serialized profile that is associated with the SQLJ
application program that received the internal error. After you run profdb, rerun the
application program to gather the diagnostic information.

36 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Chapter 4. SQLJ statement reference

The SQL statements in your SQLJ program are in SQLJ clauses. The general syntax of
an SQLJ clause is:

�� #sql connection-declaration-clause
iterator-declaration-clause
executable-clause

; ��

This chapter describes each of the three clauses that can appear in an SQLJ clause
and the elements that you can include in each of those clauses. Elements that are
subcomponents of several other elements are discussed first.

For more information and examples of using the clauses described in this chapter, see
“Chapter 3. Writing SQLJ programs for DB2 for OS/390” on page 17.

© Copyright IBM Corp. 1998 37

Common elements
This section describes the elements that are common to several SQLJ clauses.

host-expression
A host expression is a Java variable or expression that is referenced by SQLJ clauses
in an SQLJ application program.

Syntax

�� : simple-variable
IN (complex-expression)
OUT
INOUT

��

Description
: Indicates that the variable or expression that follows is a host expression. The

colon must immediately precede the variable or expression.

IN|OUT|INOUT
For a host expression that is used as a parameter in a stored procedure call,
identifies whether the parameter provides data to the stored procedure (IN),
retrieves data from the stored procedure (OUT), or does both (INOUT). This is an
optional parameter.

simple-variable
Specifies a Java unqualified identifier.

complex-expression
Specifies a Java expression that results in a single value.

Usage notes
v A complex expression must be enclosed in parentheses.

v ANSI/ISO rules govern where a host expression can appear in a static SQL
statement.

v The string __sJT_ is a reserved prefix for variable names that are generated by
SQLJ. Do not begin the following types of names with __sJT_:

– Host expression names

– Java variable names that are declared in blocks that include executable SQL
statements

– Names of parameters for methods that contain executable SQL statements

– Names of fields in classes that contain executable SQL statements, or in classes
with subclasses or enclosed classes that contain executable SQL statements

v The string _SJ is a reserved suffix for resource files and classes that are generated
by SQLJ. Avoid using the string _SJ in class names and input source file names.

38 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

implements-clause
The implements clause derives one or more classes from a Java interface.

Syntax

�� implements �

,

interface-element ��

interface-element:

�� sqlj.runtime.ForUpdate
user-specified-interface-class

��

Description
interface-element

Specifies a user-defined Java interface, or the SQLJ interface
sqlj.runtime.ForUpdate.

You must implement sqlj.runtime.ForUpdate when you declare an iterator for a
positioned UPDATE or positioned DELETE operation. See “Using iterators for
positioned UPDATE and DELETE operations” on page 26 for information on
performing a positioned UPDATE or positioned DELETE operation in SQLJ.

Chapter 4. SQLJ statement reference 39

with-clause
The with clause specifies a set of one or more attributes for an iterator or a connection
context.

Syntax

�� with �

,

(with-element) ��

with-element:

��

�

holdability= true
false

returnability= true
false

,

updateColumns= " column-name "
Java-ID=Java-constant-expression

��

Description
holdability

Specifies whether an iterator keeps its position in a table after a COMMIT is
executed. The value for holdability must be true or false.

returnability
Specifies whether an iterator can return result sets from a stored procedure call.
The value for returnability must be true or false.

updateColumns
Specifies the columns that are to be modified when the iterator is used for a
positioned UPDATE statement. The value for updateColumns must be a literal
string that contains the column names, separated by commas.

column-name
Specifies a column of the result table that is to be updated using the iterator.

Java-ID
Specifies a Java variable that identifies a user-defined attribute of an iterator or
connection context. The value of Java-constant-expression is also user-defined.

Usage notes
v The value on the left side of a with element must be unique within its with clause.

v For a connection declaration clause, only user-defined attributes
(Java-ID=Java-constant-expression) can be specified in a with clause.

40 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#

##

#

#

v If you specify updateColumns in a with element of an iterator declaration clause, the
iterator declaration clause must also contain an implements clause that specifies the
sqlj.runtime.ForUpdate interface.

Chapter 4. SQLJ statement reference 41

connection-declaration-clause
The connection declaration clause declares a connection to a data source in an SQLJ
application program.

Syntax

��
Java-modifiers

context Java-class-name
implements-clause

�

�
with-clause

��

Description
Java-modifiers

Specifies modifiers that are valid for Java class declarations, such as static, public,
private, or protected.

Java-class-name
Specifies a valid Java identifier. During the program preparation process, SQLJ
generates a connection context class whose name is this identifier.

implements-clause
See “implements-clause” on page 39 for a description of this clause. In a
connection declaration clause, the interface class to which the implements clause
refers must be a user-defined interface class.

with-clause
See “with-clause” on page 40 for a description of this clause. In a connection
declaration clause, all attributes in a with clause must be user defined.

Usage notes
v SQLJ generates a connection class declaration for each connection declaration

clause you specify. SQLJ data source connections are objects of those generated
connection classes.

v You can specify a connection declaration clause anywhere that a Java class
definition can appear in a Java program.

42 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

iterator-declaration-clause
An iterator declaration clause declares a positioned iterator class or a named iterator
class in an SQLJ application program. An iterator contains the result table from a query.
SQLJ generates an iterator class for each iterator declaration clause you specify. An
iterator is an object of an iterator class.

An iterator declaration clause has a form for a positioned iterator and a form for a
named iterator. The two kinds of iterators are distinct and incompatible Java types that
are implemented with different interfaces. See “Using result set iterators to retrieve rows
from a result table” on page 22 for information on how to use each type of iterator.

Syntax

��
Java-modifiers

iterator Java-class-name
implements-clause

�

�
with-clause

(positioned-iterator-column-declarations)
named-iterator-column-declarations

��

positioned-iterator-column declarations:

�� �

,

Java-data-type ��

named-iterator-column-declarations:

�� �

,

Java-data-type Java-ID ��

Description
Java-modifiers

Any modifiers that are valid for Java class declarations, such as static, public,
private, or protected.

Java-class-name
Any valid Java identifier. During the program preparation process, SQLJ generates
an iterator class whose name is this identifier.

implements-clause
See “implements-clause” on page 39 for a description of this clause. For an iterator

Chapter 4. SQLJ statement reference 43

declaration clause that declares an iterator for a positioned UPDATE or positioned
DELETE operation, the implements clause must specify interface
sqlj.runtime.ForUpdate.

with-clause
See “with-clause” on page 40 for a description of this clause.

positioned-iterator-column-declarations
Specifies a list of Java data types, which are the data types of the columns in the
positioned iterator. The data types in the list must be separated by commas. The
order of the data types in the positioned iterator declaration is the same as the
order of the columns in the result table. The data types of the columns in the
iterator must be compatible with the data types of the columns in the result table.
See Table 1 on page 23 for a list of compatible data types. A positioned iterator can
be used only for FETCH statements.

named-iterator-column-declarations
Specifies a list of Java data types and Java identifiers, which are the data types
and names of the columns in the named iterator. Pairs of data types and names
must be separated by commas. The name of a column in the iterator must match,
except for case, the name of a column in the result table. The data types of the
columns in the iterator must be compatible with the data types of the columns in
the result table. See Table 1 on page 23 for a list of compatible data types. A
named iterator cannot be used for a FETCH statement.

Usage notes
v An iterator declaration clause can appear anywhere in a Java program that a Java

class declaration can appear.

v When a named iterator declaration contains more than one pair of Java data types
and Java IDs, all Java IDs within the list must be unique.

44 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

executable-clause
An executable clause contains an SQL statement or an assignment statement. An
assignment statement assigns the result of an SQL operation to a Java variable.

This section first describes the executable clause in general. The next two sections
describe each of the components of an executable clause.

Syntax

��
context-clause

statement-clause
assignment-clause

��

Usage notes
v An executable clause can appear anywhere in a Java program that a Java statement

can appear.

v SQLJ reports negative SQL codes from executable clauses through class
java.sql.SQLException.

If SQLJ raises a run-time exception during the execution of an executable clause, the
value of any host expression of type OUT or INOUT is undefined.

context-clause
A context clause specifies a connection context or an execution context. You use a
connection context to connect to a data source. You use an execution context to
monitor and modify SQL statement execution. See “Connecting to a data source” on
page 20 for information on using a connection context. See “Controlling the execution of
SQL statements” on page 30 for information on using an execution context.

Syntax

�� [connection-context]
execution-context
connection-context , execution context

��

Description
connection-context

Specifies a valid Java identifier that is declared earlier in the SQLJ program. That
identifier must be declared as an instance of the connection context class that
SQLJ generates for a connection declaration clause.

execution-context
Specifies a valid Java identifier that is declared earlier in the SQLJ program. That
identifier must be declared as an instance of class
sqlj.runtime.ExecutionContext.

Chapter 4. SQLJ statement reference 45

Usage notes
v If you do not specify a connection context in an executable clause, SQLJ uses the

default connection context.

v If you do not specify an execution context, SQLJ obtains the execution context from
the connection context of the statement.

statement-clause
A statement clause contains an SQL statement or a SET TRANSACTION clause. All
SQL statements are described in Chapter 6 of SQL Reference. The SET
TRANSACTION clause is described in “SET-TRANSACTION-clause” on page 49.

Syntax

�� { SQL-statement }
SET-TRANSACTION-clause

��

Description
SQL-statement

You can include the statements in Table 3 in a statement clause.

SET-TRANSACTION-clause
Sets the isolation level for SQL statements in the program and the access mode for
the connection. The SET TRANSACTION clause is equivalent to the SET
TRANSACTION statement, which is described in the ANSI/ISO SQL standard of
1992 and is supported in some implementations of SQL. See
“SET-TRANSACTION-clause” on page 49 for more information.

Table 3. Valid SQL statements in an SQLJ statement clause
ALTER DATABASE
ALTER INDEX
ALTER STOGROUP
ALTER TABLE
ALTER TABLESPACE
CALL
COMMIT
CREATE ALIAS
CREATE DATABASE
CREATE GLOBAL TEMPORARY TABLE
CREATE INDEX
CREATE STOGROUP
CREATE SYNONYM
CREATE TABLE
CREATE TABLESPACE
CREATE VIEW
DELETE
DROP ALIAS

46 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Table 3. Valid SQL statements in an SQLJ statement clause (continued)
DROP DATABASE
DROP INDEX
DROP PACKAGE
DROP STOGROUP
DROP SYNONYM
DROP TABLE
DROP TABLESPACE
DROP VIEW
EXPLAIN
FETCH
GRANT
INSERT
LOCK TABLE
RENAME
REVOKE
ROLLBACK
SELECT
SET CURRENT DEGREE
SET CURRENT LOCALE LC_CTYPE
SET CURRENT PRECISION
SET CURRENT RULES
SET CURRENT SQLID
UPDATE

Usage notes
v SQLJ supports both positioned and searched DELETE and UPDATE operations.

v For a FETCH statement, a positioned DELETE statement, or a positioned UPDATE
statement, you must use an iterator to obtain rows from a result table. See “Using
result set iterators to retrieve rows from a result table” on page 22 for more
information on iterators.

assignment-clause
The assignment clause assigns the result table from a SELECT statement to an iterator.

Syntax

�� Java-ID= { subselect }
iterator-conversion-clause

��

Description
Java-ID

Identifies an iterator that was declared previously as an instance of an iterator
class.

Chapter 4. SQLJ statement reference 47

#
#

subselect
Generates a result table. The syntax of the subselect is defined in Chapter 5 of
SQL Reference.

iterator-conversion-clause
See “iterator-conversion-clause” for a description of this clause.

Usage notes
v If the iterator is a positioned iterator, the number of columns in the result set must

match the number of columns in the iterator. In addition, the data type of each
column in the result set must match the data type of the corresponding column in the
iterator.

v If the iterator is a named iterator, the name of each accessor method must match the
name of a column in the result set. In addition, the data type of the object that an
accessor method returns must match the data type of the corresponding column in
the result set.

v You can put an assignment clause anywhere in a Java program that a Java
assignment statement can appear. However, you cannot put an assignment clause
where a Java assignment expression can appear. For example, you cannot specify
an assignment clause in the control list of a for statement.

iterator-conversion-clause
The iterator conversion clause converts a JDBC result set to an iterator.

Syntax

�� CAST host-expression ��

Description
host-expression

Identifies the JDBC result set that is to be converted to an SQLJ iterator.

Usage notes
v If the iterator is a positioned iterator, the number of columns in the result set must

match the number of columns in the iterator. In addition, the data type of each
column in the result set must match the data type of the corresponding column in the
iterator.

v If the iterator is a named iterator, the name of each accessor method must match the
name of a column in the result set. In addition, the data type of the object that an
accessor method returns must match the data type of the corresponding column in
the result set.

v When an iterator that is generated through the iterator conversion clause is closed,
the result set from which the iterator is generated is also closed.

48 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#

#

#

#########

#

#

#
#

#
#
#
#
#

#
#
#
#

#
#

SET-TRANSACTION-clause
The SET TRANSACTION clause performs one of the following functions:

v Sets the isolation level for the current unit of work. For a detailed discussion of
isolation levels, see Section 5 (Volume 2) of Administration Guide.

v Sets or disables read-only mode for a connection.

Syntax

�� SET TRANSACTION ISOLATION LEVEL READ COMMITTED
READ UNCOMMITTED
REPEATABLE READ
SERIALIZABLE

READ ONLY
READ WRITE

��

Description
ISOLATION LEVEL

Specifies one of the following DB2 for OS/390 isolation levels:

READ COMMITTED
Specifies that the current DB2 isolation level is cursor stability.

READ UNCOMMITTED
Specifies that the current DB2 isolation level is uncommitted read.

REPEATABLE READ
Specifies that the current DB2 isolation level is read stability.

SERIALIZABLE
Specifies that the current DB2 isolation level is repeatable read.

READ ONLY
Set the connection object to read-only mode. Executing SET TRANSACTION READ
ONLY; is equivalent to invoking the JDBC method connection.setReadOnly(true);.

READ WRITE
Set the connection object to read-write mode. Executing SET TRANSACTION READ
WRITE; is equivalent to invoking the JDBC method
connection.setReadOnly(false);.

Usage notes
You can execute SET TRANSACTION only at the beginning of a transaction.

Chapter 4. SQLJ statement reference 49

#
#

#

#
#

#

#

#######################################

#

#

#
#

#
#

#
#

#
#

#
#

#
#
#

#
#
#
#

#
#

50 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Chapter 5. Creating Java stored procedures

A stored procedure is a program that can contain SQL statements and is called by a
client program using the SQL CALL statement. A Java stored procedure is a Java
program that has the following additional characteristics:

v The SQL statements are in SQLJ clauses or JDBC method invocations, or both.

v The stored procedure is a compiled Java program.

The program preparation process converts the Java bytecodes into Java program
objects that can run in the DB2 environment. Those Java program objects reside in
an OS/390 PDSE.

This chapter contains information that is specific to defining and writing Java stored
procedures. For general information on stored procedures, see Section 6 of Application
Programming and SQL Guide. For information on preparing Java stored procedures for
execution, see “Preparing compiled Java stored procedures for execution” on page 65.

This chapter covers the following topics:
v “Defining your Java stored procedure to DB2”
v “Writing a Java stored procedure” on page 53
v “Running a stored procedure” on page 55
v “Testing a Java stored procedure” on page 58

Defining your Java stored procedure to DB2
Before a stored procedure can run, you must define it to DB2. To do that, insert a row
into catalog table SYSIBM.SYSPROCEDURES. To alter the definition, update the
SYSIBM.SYSPROCEDURES row.

A Java stored procedure definition is much like the definition for any other stored
procedure. However, the following SYSIBM.SYSPROCEDURES columns have different
meanings for Java stored procedures.

LOADMOD
Specifies the program that runs when the procedure name is specified in a CALL
statement.

For a Java stored procedure, this column is not used.

LANGUAGE
Specifies the application programming language in which the stored procedure is
written.

For a compiled Java stored procedure, the value of this column is COMPJAVA.

LINKAGE
Identifies the linkage convention that is used to pass parameters to the stored
procedure.

For a Java stored procedure, the only value that is valid is N, which indicates the
SIMPLE WITH NULLS linkage convention.

© Copyright IBM Corp. 1998 51

#

#

#
#
#

#

#

#
#
#

#
#
#
#

#
#
#
#
#

#
#

#
#
#

#
#
#

#
#
#

#

#
#
#

#

#
#
#

#
#

WLM_ENV
Identifies the MVS workload manager (WLM) environment in which the stored
procedure is to run when the DB2 stored procedure address space is
WLM-established.

A Java stored procedure must run in a WLM-established address space, so the
value of this column must not be blank.

PGM_TYPE
Specifies whether the stored procedure runs as a main routine or a subroutine.

This parameter value must be S, which indicates that the program runs as a
subroutine. However, you can write a Java stored procedure as a main method.

RUNOPTS
For a compiled Java stored procedure, specifies the name of the Java executable
code for the stored procedure, in the format class-name.method-name.

If the class is defined in a package, the format is package-name.class-
name.method-name.

For information on using the hpj command to prepare a Java stored procedure for
execution, see “Preparing compiled Java stored procedures for execution” on
page 65.

EXTERNAL_SECURITY
Indicates whether DB2 establishes a RACF environment when the stored
procedure is called. The values of the EXTERNAL_SECURITY column are the
same for a Java stored procedure as for any other stored procedure. However, the
value of the EXTERNAL_SECURITY column determines the authorization ID that
must have authority to access to OS/390 UNIX System Services. The values of
EXTERNAL_SECURITY, and the IDs that must have access to OS/390 UNIX
System Services are:

N The user ID that is defined for the stored procedures address space in the
RACF started-procedure table.

Y The invoker of the stored procedure.

For a complete explanation of the parameters in a SYSIBM.SYSPROCEDURES, see
Section 6 of Application Programming and SQL Guide.

Example: Defining a Java stored procedure: Suppose that you have written and
prepared a stored procedure that has these characteristics:

Procedure name S1SAL
Parameters DECIMAL(10,2) INOUT
Language Compiled Java
Collection ID for the stored procedure package DSNJDBC
Java executable name s1.s1Sal.getSals
WLM environment name WLMENV1
Maximum number of result sets returned 1

52 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#
#

#
#

#
#

#
#

#
#
#

#
#

#
#
#

#
#
#
#
#
#
#
#

##
#

##

#
#

#
#

###
##
##
##
##
##
##
#

This INSERT statement defines the stored procedure to DB2:

INSERT INTO SYSIBM.SYSPROCEDURES
(PROCEDURE, AUTHID, LUNAME, LOADMOD, LINKAGE, COLLID,
LANGUAGE, ASUTIME, STAYRESIDENT, IBMREQD, RUNOPTS,
PARMLIST,RESULT_SETS,WLM_ENV,
PGM_TYPE,EXTERNAL_SECURITY,COMMIT_ON_RETURN)

VALUES('S1SAL', ' ', ' ', 'S1SAL', 'N', 'DSNJDBC',
'COMPJAVA', 0, ' ', 'N', 's1.s1Sal.getSals',

'DECIMAL(10,2) INOUT', 1, 'WLMENV1',
'S', 'N', 'N');

Example: Altering a stored procedure definition: Suppose that you have made the
following modifications to stored procedure S1SAL:

Java executable name s2.s1Sal.getSals
Maximum number of result sets returned 3

This UPDATE statement makes the changes to the definition of S1SAL:

UPDATE SYSIBM.SYSPROCEDURES
SET RUNOPTS='s2.s1Sal.getSals', RESULT_SETS=3
WHERE PROCEDURE='GETSAL' AND AUTHID=' ' AND LUNAME=' ';

Writing a Java stored procedure
A Java stored procedure is a JDBC or SQLJ application program that runs in a stored
procedures address space. A Java stored procedure is much like any other Java
program and follows the same rules as stored procedures in other languages. It
receives input parameters, executes Java statements, optionally executes SQLJ
clauses, JDBC methods, or a combination of both, and returns output parameters.

Differences between Java stored procedures and Java programs
A Java stored procedure differs from a Java program in the following ways:

v A Java stored procedure does not establish its own connection to the local data
source. Instead, the stored procedure uses the default RRS connection to the data
source that processes the CALL statement. If you want to execute SQLJ clauses or
JDBC methods at another location, use the same methods to connect to those
locations as you do in SQLJ or JDBC application programs.

v A Java stored procedure must be declared as static and public.

v As in other stored procedures, you cannot include the following SQL statements in a
Java stored procedure:
– CALL
– COMMIT
– CONNECT
– RELEASE
– SET CONNECTION
– SET CURRENT SQLID

Chapter 5. Creating Java stored procedures 53

#

#
#
#
#
#
#
#
#
#

#
#

###
##
#

#

#
#
#

#
#

#
#
#
#
#

#
#

#
#
#
#
#

#

#
#
#
#
#
#
#
#

Differences between Java stored procedures and other stored procedures
A Java stored procedure differs from stored procedures that are written in other
languages in the following ways:

v A Java stored procedure must use the SIMPLE WITH NULLS linkage convention.
You can pass null values in parameters with corresponding Java variables that permit
nulls. However, you cannot pass nulls in parameters that correspond to Java native
types, which cannot be assigned null values.

v Java main programs must have a signature of String array. If your Java stored
procedure is a main program, it must be possible to map all the parameters to Java
variables of type java.lang.String.

v You cannot make IFI calls in Java stored procedures.

v Specifying the with returnability clause in an SQLJ iterator declaration clause,
which is the equivalent of specifying the WITH RETURN clause on the DECLARE
CURSOR statement in other languages, is not enough to cause result sets to be
returned from a stored procedure. See “Writing a Java stored procedure to return
result sets” for information on how to cause a stored procedure to return result sets.

v The mappings between data types for stored procedure parameters and host data
types follow the rules for mappings between SQL and SQLJ data types shown in
Table 1 on page 23.

Writing a Java stored procedure to return result sets
Your stored procedure can return multiple query result sets to a DRDA client if the
following conditions are satisfied:

v The client supports the DRDA code points used to return query result sets.

v The value of RESULT_SETS in the stored procedure definition is greater than 0.

For each result set you want to be returned, your Java stored procedure must:

v Include an object of type ResultSet in the parameter list for the stored procedure
method but not in the parameter list of the stored procedure definition.

v Execute a SELECT statement to obtain the contents of the result set.

v Retrieve any rows that you do not want to return to the client.

v Assign the contents of the result set to the ResultSet object that is in the parameter
list.

DB2 does not return result sets for result sets that are closed before the stored
procedure terminates.

Figure 10 on page 55 shows an example of a Java stored procedure that uses an SQLJ
iterator to retrieve a result set.

54 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#

#
#
#
#

#
#
#

#

#
#
#
#
#

#
#
#

#
#
#

#

#

#

#
#

#

#

#
#

#
#

#
#
#

Notes to Figure 10:

�1� This SQLJ clause declares the iterator named NameSal, which is used to retrieve the
rows that will be returned to the stored procedure caller in a result set.

�2� The declaration for the stored procedure method contains declarations for a single
passed parameter, followed by the declaration for the result set object.

�3� This SQLJ clause executes the SELECT to obtain the rows for the result set, constructs
an iterator object that contains those rows, and assigns the iterator object to variable
iter1.

�4� This SQLJ clause retrieves a value into the parameter that is returned to the stored
procedure caller.

�5� This statement uses the GetResultSet method to assign the contents of the iterator to
the result set that is returned to the caller.

Running a stored procedure
Like other stored procedures, Java stored procedures run under Language Environment
and in a stored procedures address space. They are invoked when a client program
executes the SQL CALL statement. A Java stored procedure always runs as a
subprogram.

package s1;

import sqlj.runtime.*;
import java.sql.*;
import java.math.*;

�1� #sql iterator NameSal(String LastName, BigDecimal Salary);
public class s1Sal
{

�2� public static void GetSals(BigDecimal[] AvgSalParm, ResultSet[] rs)
throws SQLException

{
NameSal iter1;
try
{

�3� #sql iter1 = {SELECT LASTNAME, SALARY FROM EMP
WHERE SALARY>0 ORDER BY SALARY DESC};

�4� #sql {SELECT AVG(SALARY) INTO :(AvgSalParm[0]) FROM EMP};
}
catch (SQLException e)
{

System.out.println("SQLCODE returned: " + e.getErrorCode());
throw(e);

}
�5� rs[0] = iter1.getResultSet();

}
}

Figure 10. Java stored procedure that returns a result set

Chapter 5. Creating Java stored procedures 55

#

###
#
##
#
##
#
#
##
#
##
#
#

#
#

#
#
#
#

Running Java stored procedures requires the Enterprise ToolKit for OS/390 (ET/390),
which is part of VisualAge® for Java, Enterprise Edition for OS/390.

The stored procedures address space for Java stored procedures
A Java stored procedure must run in a WLM-established stored procedures address
space. The startup procedure for Java stored procedures requires extra DD statements
that other stored procedures do not need. Figure 11 shows an example of a startup
procedure for an address space in which Java stored procedures can run.

Notes to Figure 11:

�1� This DD statement specifies the PDSE that contains the Java program objects for
compiled Java stored procedures.

�2� This DD statement specifies the PDSE that contains Java program objects for Java
classes that are referenced by the stored procedure.

�3� This DD statement and the following DD statement specify the PDSEs that contains the
VisualAge for Java compiler and run-time library.

�4� JAVAENV specifies a data set that contains environmental variables that specify system
properties for the ET/390 Java execution environment. See “Setting environmental
variables for Java stored procedures” on page 57 for more information.

�5� JSPDEBUG specifies a data set into which DB2 puts information that you can use to
debug your stored procedure.

If you specify SYSOUT=A in the JSPDEBUG DD statement, the debug information is
written to your SYSOUT data set. If you specify a data set name, you also need to
specify the MSGFILE(ddname) run-time option in your JAVAENV data set. Specify
JSPDEBUG for ddname to direct all diagnostic output to the JSPDEBUG data set. If you
do not redirect standard output, println statements in your stored procedure program
write text to the JSPDEBUG data set.

//DSNWLM PROC RGN=0K,APPLENV=WLMCJAV,DB2SSN=DSN,NUMTCB=1
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM='&DB2SSN,&NUMTCB,&APPLENV'
//STEPLIB DD DISP=SHR,DSN=DSN510.RUNLIB.LOAD

�1� // DD DISP=SHR,DSN=USER.HPJSP.PDSE
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSN510.SDSNEXIT
// DD DISP=SHR,DSN=DSN510.SDSNLOAD

�2� // DD DISP=SHR,DSN=HPJ.SQLJ,DISP=SHR
�3� // DD DISP=SHR,DSN=HPJ.SHPJMOD

// DD DISP=SHR,DSN=HPJ.SHPOMOD
// DD DISP=SHR,DSN=VAJAVA.V2R0M0.SHPOMOD

�4� //JAVAENV DD DISP=SHR,DSN=WLMCJAV.JSPENV
�5� //JSPDEBUG DD SYSOUT=A

//CEEDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

Figure 11. Startup procedure for a WLM address space in which DSNTPSMP runs

56 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#
#
#
#
#
#

#

###
#
##
#
##
#
##
#
#
##
#

#
#
#
#
#
#
#

Setting environmental variables for Java stored procedures
The JAVAENV DD statement in the startup procedure for your Java stored procedures
address space specifies a data set that contains environmental variables for the ET/390
Java execution environment. If the default values are not appropriate, you need to set
the following environmental variables in the JAVAENV data set:

CLASSPATH
Modify CLASSPATH to include the following HFS directories:

v The directories that contain the external links to the compiled java stored
procedures that run in the WLM-established stored procedures address space

v The directory in which the ET/390 links are defined ($IBMHPJ_HOME/lib)

For example:

CLASSPATH=.:/u/sysadm/links:/usr/lpp/hpj/lib

LIBPATH and LD_LIBRARY_PATH
Modify LIBPATH and LD_LIBRARY_PATH to include the following HFS directories:

v The path for the ET/390 code ($IBMHPJ_HOME/lib)

v The path for the SQLJ/JDBC driver code, if the stored procedures contain SQL

For example:

LIBPATH=/u/sysadm/links:/usr/lpp/hpj/lib:/u/hpjsp/lib
LD_LIBRARY_PATH=/u/sysadm/links:/usr/lpp/hpj/lib:/u/hpjsp/lib

LANG
Modify LANG to change the locale to use for the locale categories when neither the
LC_ALL environment variable nor the individual locale environment variables
specify locale information. For example:

LANG="En_US.IBM-037"

LC_ALL
Modify LC_ALL to change the locale to be used to override any values for locale
categories specified by the settings of the LANG environment variable or any
individual locale environmental variables. For example:

LC_ALL="S370"

LC_CTYPE
Modify LC_CTYPE to change the locale for character classification, case
conversion, and other character attributes. This value should match the DB2 for
OS/390 installation default. For example:

LC_CTYPE="En_US.IBM-037"

MSGFILE
Specify MSGFILE to direct diagnostic output to a data set other than the SYSOUT
data set. If you specify a data set name in the JSPDEBUG statement, you need to
specify MSGFILE=(JSPDEBUG). The default is
MSGFILE=((SYSOUT,FBA,121,0,NOENQ),OVR).

TZ Modify TZ to change the local timezone. For example:

TZ="PST08"

Chapter 5. Creating Java stored procedures 57

#
#
#
#
#

#
#

#
#

#

#

#

#
#

#

#

#

#
#

#
#
#
#

#

#
#
#
#

#

#
#
#
#

#

#
#
#
#
#

##

#

The default is GMT.

This following example shows the contents of a JAVAENV data set.

ENVAR("CLASSPATH=.:/u/sysadm/links:/usr/lpp/hpj/lib",
"TZ=PST08",
"LIBPATH=/u/sysadm/links:/usr/lpp/hpj/lib:/u/hpjsp/lib",
"LD_LIBRARY_PATH=/u/sysadm/links:/usr/lpp/hpj/lib:/u/hpjsp/lib"),
MSGFILE(JSPDEBUG)

For information on environmental variables that are related to locales, see OS/390
C/C++ Programming Guide.

Testing a Java stored procedure
To help you debug your Java stored procedures, include a JSPDEBUG DD statement in
your WLM startup procedure. This DD statement specifies a data set to which DB2
writes debug information as stored procedures execute.

58 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#

#

#
#
#
#
#

#
#

#
#

#
#
#

Chapter 6. Preparing Java programs

DB2 for OS/390 Java programs run in the OS/390 OpenEdition environment. These
applications can run in a JVM or under VisualAge for Java. This chapter explains how
to prepare SQLJ programs and Java stored procedures. The following topics are
discussed:
v “Steps in the SQLJ program preparation process”
v “Preparing compiled Java stored procedures for execution” on page 65
v “Preparing your applications with VisualAge for Java” on page 67

Steps in the SQLJ program preparation process
After you write an SQLJ application, you must generate an executable form of the
application, which involves:
1. Translating the source code to produce modified Java source code and serialized

profiles
2. Compiling the modified Java source code to produce Java bytecodes
3. Customizing the serialized profiles to produce DBRMs
4. Binding the DBRMs into packages and binding the packages into a plan, or binding

the DBRMs directly into a plan

Figure 12 on page 60 shows the steps of the program preparation process.

© Copyright IBM Corp. 1998 59

#
#

#

This section discusses each of those steps.

Translating and compiling SQLJ source code
The first steps in preparing an executable SQLJ program are to use the SQLJ translator
to generate a Java source program, compile the Java source program, and produce
zero or more serialized profiles. Executing the sqlj command from the OpenEdition
command line invokes the DB2 for OS/390 SQLJ translator. The SQLJ translator runs
without connecting to DB2.

Figure 12. The SQLJ program preparation process

60 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Syntax

�� sqlj
-help -dir=directory -props=properties-file

�

�
all

-warn= none
verbose
nonverbose
portable
nonportable

file-list ��

Parameter descriptions
-help

Specifies that the SQLJ translator describes each of the options that the translator
supports. If any other options are specified with -help, they are ignored.

-dir=directory
Specifies the name of the directory into which SQLJ puts output from the translator.
This output consists of Java source files and serialized profile files. The default
directory is the current directory.

The translator uses the directory structure of the SQLJ source files when it puts the
generated files in directories. For example, suppose that you want the translator to
process two files:
v file1.sqlj, which is not in a Java package
v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -dir=/src when you invoke the
translator. Then the translator puts the serialized profiles and Java source file for
file1.sqlj in directory /src and puts the serialized profiles and Java source file for
file2.sqlj in directory /src/sqlj/test.

-props=properties-file
Specifies the name of a file from which the SQLJ translator is to obtain a list of
options.

-warn=warning-level
Specifies the types of messages that the SQLJ translator is to return. The
meanings of the warning levels are:

all The translator displays all warnings and informational messages. This is the
default.

none
The translator displays no warnings or informational messages.

verbose
The translator displays informational messages about the semantic analysis
process.

Chapter 6. Preparing Java programs 61

nonverbose
The translator displays no informational messages about the semantic analysis
process.

portable
The translator displays warning messages about the portability of SQLJ
clauses.

nonportable
The translator displays no warning messages about the portability of SQLJ
clauses.

file-list
Specifies a list of SQLJ source files to be translated. This is a required parameter.
All SQLJ source file names must have the extension .sqlj.

Output from the SQLJ translator
For each source file, program-name.sqlj, the SQLJ translator produces the following
files:
v The modified source program

The modified source file is named program-name.java.
v A serialized profile file for each connection declaration clause in the program, and

one serialized profile for the default context, if it is used

A serialized profile file is named program-name_SJProfilen.ser, where n is 0 for the
first serialized profile generated for the program, 1 for the second serialized profile
generated, and so on.

You must run the SQLJ customizer on each serialized profile file to produce a
standard DB2 for OS/390 DBRM. See “Customizing a serialized profile” for
information on how to customize a serialized profile.

Customizing a serialized profile
After you use the SQLJ translator to generate serialized profiles for an SQLJ program,
customize each serialized profile to produce a standard DB2 for OS/390 DBRM and a
serialized profile that is customized for DB2 for OS/390. Executing the db2profc on the
OpenEdition command line customizes a serialized profile. The customizer can run with
or without connecting to DB2. Connecting to DB2 provides better mapping of Java data
types to DB2 data types.

Syntax

�� db2profc
-help -version ISO

-date= USA
EUR
JIS

ISO
-time= USA

EUR
JIS

ALL
-sql= DB2

�

�
-online=location-name

-inform = YES -validate=CUSTOMIZE
-inform = NO -validate=RUN

-schema=authorization-ID

�

62 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

� -pgmname=DBRM-member-name serialized-profile-name ��

Parameter descriptions
-help

Specifies that the SQLJ customizer describes each of the options that the
customizer supports. If any other options are specified with -help, they are ignored.

-version
Specifies that the SQLJ customizer returns the version of the SQLJ customizer. If
any other options are specified with -version, they are ignored.

-date=ISO|USA|EUR|JIS
Specifies that date values that you retrieve from an SQL table should always be in
a particular format, regardless of the format that is specified as the location default.
For a description of these formats, see Chapter 3 of SQL Reference. The default is
ISO.

-time=ISO|USA|EUR|JIS
Specifies that time values that you retrieve from an SQL table should always be in
a particular format, regardless of the format that is specified as the location default.
For a description of these formats, see Chapter 3 of SQL Reference. The default is
ISO.

-sql=ALL|DB2
Indicates whether the source program contains SQL statements other than those
that DB2 for OS/390 recognizes.

ALL, which is the default, indicates that the SQL statements in the program are not
necessarily for DB2 for OS/390. Use ALL for application programs whose SQL
statements must execute on a server other that DB2 for OS/390.

DB2 indicates that the SQLJ customizer should interpret SQL statements and check
syntax for use by DB2 for OS/390. Use DB2 when the application server is DB2 for
OS/390.

-online=location-name
Specifies that the SQLJ customizer does online checking of data types in the SQLJ
program. location-name is the location name that corresponds to a DB2 subsystem
to which the SQLJ customizer connects to do online checking. The name of the
DB2 subsystem is specified in the DB2SQLJSSID keyword in the SQLJ run-time
properties file.

Before you can do online checking your SQLJ/JDBC environment must include a
JDBC profile. See “Creating a JDBC profile” on page 82 for information.

Online checking is optional. However, to get the best mapping of Java data types
to DB2 data types, it is recommended that you request online checking.

-schema=authorization-ID
Specifies the authorization ID that the SQLJ customizer uses to qualify unqualified
DB2 object names in the SQLJ program during online checking.

Chapter 6. Preparing Java programs 63

#
#
#
#
#
#

#
#

#
#

#
#
#

-inform=YES|NO
Indicates whether informational messages are generated when online checking is
bypassed. The default is YES.

-validate=CUSTOMIZE|RUN
Indicates whether customization terminates when online checking detects errors in
the application. CUSTOMIZE causes customization to terminate when online
checking detects errors. RUN causes customization to continue when online
checking detects errors. RUN should be used if tables that are used by the
application do not exist at customization time. The default is CUSTOMIZE.

-pgmname=DBRM-name
Specifies the common part of the names for the four DBRMs that the SQLJ
customizer generates. DBRM-name must be seven or fewer characters in length
and must conform to the rules for naming members of MVS partitioned data sets.
See “Binding a plan for an SQLJ program” for information on how to bind each of
the DBRMs.

serialized-profile-name
Specifies the name of the serialized profile that is to be customized. Serialized
profiles are generated by the SQLJ translator and have names of the form

program-name_SJProfilen.ser

program-name is the name of the SQLJ source program, without the extension
.sqlj. n is an integer between 0 and m-1, where m is the number of serialized
profiles that the SQLJ translator generated from the SQLJ source program.

Output from the SQLJ customizer
When the SQLJ customizer runs, it creates a DBRM and a modified serialized profile.

Binding a plan for an SQLJ program
After you have customized the serialized profiles for your SQLJ application program,
you must bind the DBRMs that are produced by the SQLJ customizer. You can bind the
DBRMs directly into a plan or bind the DBRMs into packages and then bind the
packages into a plan.

The SQLJ customizer produces four DBRMs, one for each DB2 isolation level with
which the application can run. Table 4 shows the name of each DBRM and the isolation
level that you need to specify when you bind that DBRM.

Table 4. SQLJ DBRMs and their isolation levels

DBRM name Bind with isolation level

DBRM-name1 Uncommitted read (UR)

DBRM-name2 Cursor stability (CS)

DBRM-name3 Read stability (RS)

DBRM-name4 Repeatable read (RR)

64 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#

#
#
#
#
#
#

#

For more information on binding packages and plans, see Chapter 2 of Command
Reference.

Customizing SQLJ and JDBC to work together
With interoperability established, a Java application can contain both static and dynamic
SQL. The application can execute SQLJ clauses and invoke JDBC methods.

Complete the following steps to establish interoperability:

v When you bind a plan for SQLJ, include JDBC packages in the PKLIST of that SQLJ
plan. The default names of the JDBC packages are:
– DSNJDBC.DSNJDBC1
– DSNJDBC.DSNJDBC2
– DSNJDBC.DSNJDBC3
– DSNJDBC.DSNJDBC4

v Make sure that the JDBC profile is accessible in a directory specified in the
CLASSPATH environmental variable. “Creating a JDBC profile” on page 82 explains
how to create the JDBC profile.

Preparing compiled Java stored procedures for execution
Preparing a compiled Java stored procedure for execution is similar to preparing any
other DB2 Java application, except that there is one extra step: You need to use the
VisualAge for Java hpj command to convert your stored procedure program to a Java
DLL.

This section outlines the program preparation steps for Java stored procedures. See
“Steps in the SQLJ program preparation process” on page 59 for information on
program preparation steps that are common to all Java programs. See “Preparing your
applications with VisualAge for Java” on page 67 for information about preparing
programs to run under VisualAge for Java.

Preparing compiled Java stored procedures with no SQLJ statements
If the program contains only JDBC methods or no SQL statements, the program
preparation process includes these steps:

1. Compile the Java program using the javac command to produce Java bytecodes.

2. Use the VisualAge for Java hpj command to bind the Java bytecode file for the
stored procedure and for any packages that are used by the stored procedure into
Java DLLs in PDSEs.

Preparing compiled Java stored procedures with SQLJ statements
If the program contains SQLJ clauses, the program preparation process includes these
steps:

1. Translate the source code using the sqlj command to produce modified Java
source code and serialized profiles.

2. Customize the serialized profiles using the db2profc command to produce DBRMs.

3. Compile the Java program using the javac command to produce Java bytecodes.

Chapter 6. Preparing Java programs 65

#
#
#

#

#
#
#
#
#
#

#
#
#

#

4. Use the VisualAge for Java hpj command to bind the Java bytecode file for the
stored procedure and for any packages that are used by the stored procedure into
Java DLLs in PDSEs.

5. Bind the DBRMs into packages and plans, or directly into plans, using the DB2 BIND
command.

Using VisualAge for Java to prepare a compiled Java stored procedure
To convert Java bytecodes into a compiled Java program that runs as a stored
procedure, you need to execute the hpj command under OS/390 UNIX System
Services. You need to specify hpj options that create the Java DLLs in a PDSE and
create an external link to the DLLs.

The input to the hpj command needs to include all classes that are used by the stored
procedure. Those classes include:

v The class for the stored procedure program

v Generated classes for any iterators that are used by the stored procedure

v Internal classes that are generated by the SQLJ translator

See “Preparing your applications with VisualAge for Java” on page 67 for more
information on executing the hpj command.

Example: Create an executable Java stored procedure: Suppose that you have
written the Java stored procedure shown in Figure 10 on page 55 and stored the source
code in a file named s1sal.sqlj. Prepare the stored procedure for execution.

The steps that you need to perform are:

1. Run the sqlj command to produce Java bytecodes and a serialized profile:

sqlj s1/s1Sal.sqlj

2. Run the db2profc command to produce DBRM S1SAL from serialized profile
s1Sal_SJProfile0.ser in path s1:

db2profc -pgmname=S1SAL s1/s1Sal_SJProfile0.ser

3. Run the hpj command to convert the Java bytecodes that were produced by the
SQLJ translator into a compiled Java program that runs as a stored procedure.
Include the following input files:

s1/s1Sal
The class for the stored procedure program

s1/NameSal
The generated class for iterator NameSal, which is used by the program

s1/s1Sal_SJProfileKeys
An internal class that is generated by the SQLJ translator

Save the link-edit information in a file called s1.map.

66 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

hpj -o="//'HPJSP.PDSE1(S1)'" -alias=s1.jll -O \
-classpath=.:/usr/lpp/hpj/lib/classes.zip -jll -nofollow \
-t=/u/sysadm/links s1/s1Sal s1/NameSal \
s1/s1Sal_SJProfileKeys > s1.map

This example uses three options that are useful but not required for compiled Java
stored procedures:

-O Specifies that hpj produces optimized code.

-classpath
Overrides the default classpath.

-nofollow
Specifies that referenced classes are not bound into the Java DLL for the stored
procedure.

Preparing your applications with VisualAge for Java
If you want to run your JDBC and SQLJ applications as compiled Java applications, you
need to install VisualAge for Java, Enterprise Edition for OS/390 and use the Enterprise
Toolkit for OS/390. This appendix explains how to customize the SQLJ/JDBC driver to
work with VisualAge for Java and how to prepare JDBC and SQLJ applications for
execution under VisualAge for Java. See the documentation that is distributed with
VisualAge for Java and the following web sites for detailed information on how to install
and use VisualAge for Java and how to prepare and run VisualAge for Java programs.

VisualAge for Java web site:
www.ibm.com/software/ad/vajava

VisualAge Developer Domain web site:
www.ibm.com/software/ad/vadd

Installing and accessing SQLJ/JDBC DLLs for VisualAge for Java support
After you install SQLJ, JDBC, and VisualAge for Java, you need to install two DLLs that
make SQLJ and JDBC work with VisualAge for Java. This section explains how to
install those DLLs and how your applications can access them.

To help you install the DLLs, use the installVAJDLLs script, which is located in the root
installation directory for SQLJ and JDBC support.

Install DLLs that support VisualAge for Java
To make SQLJ and JDBC work with VisualAge for Java, you need the following DLLs:

v DSNAQDLL

This is the native C/C⁺⁺ DLL for VisualAge for Java. The SQLJ/JDBC driver loads
this DLL when an SQLJ or JDBC application is running in a VisualAge for Java
environment.

For SQLJ and JDBC applications that do not support HFS file access, such as CICS
applications, an alias named libdb2os390vaj.so is required. The installVAJDLLs
script creates this alias.

Chapter 6. Preparing Java programs 67

#

#
#
#
#
#
#
#

#
#

#
#

#
#
#
#

#
#

#
#

#

#
#
#

#
#
#

For SQLJ and JDBC applications that require HFS file access for DLL resolution,
such as compiled Java stored procedures, an external link to the PDSE member that
contains DSNAQDLL is required. The installVAJDLLs script also creates this external
link.

v DSNAQJLL

This DLL provides Java run-time classes for the SQLJ/JDBC driver.

For SQLJ and JDBC applications that do not support HFS file access, such as CICS
applications, three aliases for DSNAQJLL are required. Those aliases are named
sqlj.jll, ibm/sql.jll, and COM/ibm/db2os390/sqlj.jll. The installVAJDLLs script
creates the aliases.

For SQLJ and JDBC applications that require HFS file access for DLL resolution,
such as compiled Java stored procedures, an external link to the PDSE member that
contains DSNAQJLL is required. The installVAJDLLs script also creates that external
link.

To install the DLLs, follow these steps:

1. Create a PDSE for the DLLs.

The PDSE needs to have a primary extent of at least 25 cylinders and secondary
extents of at least five cylinders of DASD.

2. Customize and run the installVAJDLLs script to install the DLLs in your PDSE. See
the prolog of installVAJDLLs for information on how to customize it.

Accessing DLLs for VisualAge for Java support at run time
The way in which you access the DLLs that let SQLJ and JDBC work with VisualAge
for Java depends on whether your applications run in the CICS environment.

Accessing the DLLs outside of the CICS environment: For applications that do not
run under CICS, you need to make the following modifications to your LIBPATH,
STEPLIB, and CLASSPATH concatenations so that the applications can access the
DLLs for VisualAge for Java support:

LIBPATH
Include the directory that contains the external link to the DSNAQDLL DLL.

STEPLIB
Include the PDSE that contains the DSNAQDLL and DSNAQJLL DLLs.

CLASSPATH
Include the directory that contains the external link to the DSNAQJLL DLL.

Accessing the DLLs in the CICS environment: For applications that run under
CICS, you do not modify the STEPLIB, CLASSPATH, or LIBPATH concatenations.
Instead, you perform the following steps:

1. Include the PDSE that contains the DSNAQDLL and DSNAQJLL DLLs in the
DFHRPL concatenation.

2. Define the DSNAQDLL and DSNAQJLL DLLs to CICS as as programs. For
example, you might use statements like these to define DSNAQDLL and
DSNAQJLL to CICS and add them to a CICS group named JDBCSQLJ:

68 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#
#

#

#

#
#
#
#

#
#
#
#

#

#

#
#

#
#

#
#
#

#
#
#
#

#
#

#
#

#
#

#
#
#

#
#

#
#
#

DEFINE PROGRAM(DSNAQDLL)
DESCRIPTION(JDBC AND SQLJ NATIVE RUNTIME)
EXECKEY(CICS)
GROUP(JDBCSQLJ)

DEFINE PROGRAM(DSNAQJLL)
DESCRIPTION(JDBC AND SQLJ JAVA RUNTIME)
EXECKEY(CICS)
GROUP(JDBCSQLJ)

Accessing SQLJ and JDBC profiles and the run-time properties file under
VisualAge for Java

JDBC and SQLJ support includes the JDBC profile and the SQLJ/JDBC run-time
properties file, which all of your SQLJ and JDBC applications need to access. In
addition, SQLJ applications must access their SQLJ profiles. When you run your
applications under VisualAge for Java, you can use one of two techniques to access
these files. The technique that you use depends on whether you are using HFS file
access:

v Technique 1 (for VisualAge for Java applications that support HFS file access only):

Include the directory that contains the JDBC profile or SQLJ profiles in your
CLASSPATH concatenation. Include the directory that contains the run-time
properties file in your DB2SQLJPROPERTIES environment variable.

v Technique 2 (for any VisualAge for Java applications):

Using VisualAge for Java, bind the file as a Java resource file. In VisualAge for Java,
a resource file is defined as a non-code file that you can refer to from your Java
program.

CICS applications do not support HFS file access, so you must use this technique for
CICS applications.

The following sections explain how to bind your profiles and run-time properties file as
resource files and how to access those resource files at run time.

Binding the JDBC and SQLJ profiles as VisualAge for Java
resource files
You can bind the JDBC and SQLJ profiles as resource files in one of two ways:

v Bind the profile into individual application executables.

This is the preferred technique for SQLJ profiles because an SQLJ profile is
generally associated with a single application.

v Bind the profile into its own Java DLL.

This is the preferred technique for JDBC profiles because a JDBC profile is generally
associated with many or all applications.

If one profile works with all your applications, you can bind the profile with the
SQLJ/JDBC driver.

If one profile works for some, but not all, applications, you can bind each version of
the profile into its own Java DLL, and make each DLL visible to only those
applications with which it works.

Chapter 6. Preparing Java programs 69

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#

#

#
#
#

#

#
#
#

#
#

#
#

#
#
#

#

#
#

#

#
#

#
#

#
#
#

You can include several instances of a resource file in a single Java DLL. To distinguish
between the instances of the resource, you give them different names. At run time, you
need to set the appropriate environment variable or run-time properties file parameter to
specify the correct resource name. Because CICS VisualAge for Java applications do
not use the SQLJ/JDBC environment variables, you cannot rename the SQLJ/JDBC
run-time properties file for CICS applications. This means that for CICS applications,
you can have only one copy of the SQLJ/JDBC run-time properties file in a Java DLL.
For more information on CICS restrictions, see “Appendix B. Special considerations for
CICS applications” on page 95.

Follow these steps to bind a profile as a resource file:

1. Use the jar tool to create a Jar file that contains the JDBC profile.

An example of invoking the jar tool is:

jar -Mcv0f jdbcprofile.jar DSNJDBC_JDBCProfile.ser

Always specify the -M option when you create a Jar file from a resource file. The -M
option prevents the creation of a manifest.

2. Use the hpj command to bind the profile.

Include the -resource and -t options when you execute the hpj command so that hpj
processes the profile as a resource file and creates the appropriate links for it. See
“Building an SQLJ or JDBC program under VisualAge for Java” on page 71 for more
information on these options.

Accessing a JDBC or SQLJ profile as a resource file at run time
The way in which you access a JDBC or SQLJ profile in VisualAge for Java
applications depends on whether the applications run in a CICS environment.

Accessing the profile outside of the CICS environment: For applications that do
not run under CICS, you need to make the following modifications to your STEPLIB and
CLASSPATH concatenations so that the applications can access the profiles:

STEPLIB
If the executable or DLL that contains the profile is a PDSE member, include the
PDSE that contains the member.

CLASSPATH
Include the directory that contains the external link to the profile.

Accessing the profile in the CICS environment: For applications that run under
CICS, perform the following steps:

1. Include the PDSE that contains the profile in the DFHRPL concatenation.

2. Define the executable or DLL that contains the profile to CICS as a program.

Binding the SQLJ/JDBC run-time properties file as a VisualAge for
Java resource file
Follow these steps to bind the run-time properties file as a resource file:

1. Convert the run-time properties file to ASCII.

70 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#
#
#
#
#
#
#

#

#

#

#

#
#

#

#
#
#
#

#
#
#

#
#
#

#
#
#

#
#

#
#

#

#

#
#
#

#

Use the OS/390 C/C⁺⁺ iconv utility or the OS/390 UNIX System Services iconv
shell utility to do this. For example, to convert an EBCDIC run-time properties file
named db2sqljjdbc.properties.ebcdic to an ASCII file named db2sqljjdbc.properties,
execute a command like this:

iconv -f ibm-1047 -t utf-8 db2sqljjdbc.properties.ebcdic > db2sqljjdbc.properties

2. Create a Jar file that contains the converted run-time properties file.

3. Bind the Jar file into an application executable or into its own DLL.

Binding the run-time properties file into a DLL is usually the best approach for CICS
applications. If all CICS applications that run in the same address space use the
same set of properties, those applications can access the same DLL. For Java
stored procedures, which might need different run-time properties than the default
properties, accessing a DLL that contains the run-time properties file is also most
practical.

Accessing the SQLJ/JDBC run-time properties file as a resource
file at run time
The way in which you access the SQLJ/JDBC run-time properties file in VisualAge for
Java applications depends on whether the applications run in a CICS environment.

Accessing the run-time properties file outside of the CICS environment: For
applications that do not run under CICS, you need to make the following modifications
to your STEPLIB and CLASSPATH concatenations so that the applications can access
the run-time properties file:

STEPLIB
If the executable or DLL that contains the run-time properties file is a PDSE
member, include the PDSE that contains the member.

CLASSPATH
Include the directory that contains the external link to the run-time properties file.

Accessing the run-time properties file in the CICS environment: For applications
that run under CICS, perform the following steps:

1. Include the PDSE that contains the run-time properties file in the DFHRPL
concatenation.

2. Define the executable or DLL that contains the run-time properties file to CICS as a
program.

Building an SQLJ or JDBC program under VisualAge for Java
With VisualAge for Java, you can prepare an SQLJ or JDBC program for execution as
a Java executable or as a Java DLL. In general, you build executables for stand-alone
programs. You build Java DLLs when the source code contains either of the following
items:
v Supporting class packages for executables
v Compiled Java stored procedures

A Java executable must have at least one class that contains a main method. A Java
DLL does not need to contain a main method.

Chapter 6. Preparing Java programs 71

#
#
#
#

#

#

#

#
#
#
#
#
#

#
#
#
#

#
#
#
#

#
#
#

#
#

#
#

#
#

#
#

#
#
#
#
#
#
#

#
#

Follow these steps to build an SQLJ or JDBC program for execution under VisualAge
for Java:

1. For an SQLJ program, translate the source code using the sqlj command to
produce modified Java source code and serialized profiles.

2. For an SQLJ program, customize the serialized profiles using the db2profc
command to produce DBRMs.

3. Compile the Java program using the javac command to produce Java bytecodes.

4. Create Jar files for any Java resource files that you want to bind with the
application, such as SQLJ profiles and the JDBC profile.

5. Use the VisualAge for Java hpj command to bind the Java bytecode files for the
program.

6. If the output from the hpj command is a Java DLL in an HFS file, create HFS links
for all packages in the DLL.

7. For an SQLJ program, use the DB2 BIND command to bind the DBRMs into
packages and plans, or directly into plans, using the DB2 BIND command.

Steps 1, 2, 3, and 7 are common to all Java applications. They are discussed in
“Chapter 6. Preparing Java programs” on page 59. “Binding the JDBC and SQLJ
profiles as VisualAge for Java resource files” on page 69 discusses step 4. This section
discusses steps 5 and 6.

Binding an SQLJ or JDBC program for VisualAge for Java
Use the VisualAge for Java hpj command to bind a Java program into a Java
executable or DLL. The VisualAge for Java documentation contains a complete
explanation of the hpj command. The following options are commonly used for SQLJ
and JDBC applications:

-jll Indicates that the output from the hpj invocation is a Java DLL.

-exe
Indicates that the output from the hpj invocation is a Java executable.

-nofollow
Indicates that hpj should bind the Java executable using only the classes that are
in the input list. No referenced classes are automatically included.

-resource
Indicates that when hpj binds the Java executable or DLL, it does the following
things with Java resource files that it finds in input Jar or zip files:

v Binds the resource files into the Java executable or DLL

v If the output from the hpj command is a PDSE member, creates aliases for the
resource files.

-alias=alias-name
Indicates that when hpj binds a Java DLL or executable and puts it in a PDSE, hpj
creates an alias for the PDSE member. If you also specify the -t option, hpj creates
an HFS external link that matches the alias name.

You must specify the -alias option when you bind Java DLLs into PDSE members.
At run time, VisualAge for Java uses the alias name to find the DLL.

72 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#
#

#
#

#

#
#

#
#

#
#

#
#

#
#
#
#

#
#
#
#
#

##

#
#

#
#
#

#
#
#

#

#
#

#
#
#
#

#
#

alias-name is the Java package name with a .jll extension. For example, if you
build a Java DLL from a package named a.b.c, you specify -alias=a/b/c.jll.

Java DLLs for compiled Java stored procedures and CICS applications must reside
in PDSE members. Therefore, you need to use the -alias option when you bind
stored procedures and CICS applications.

-o=output-file-name
Specifies the output file name. The format of the file name indicates whether the
file is an HFS file or a PDS member name. For an HFS file, specify only the
qualified or unqualified file name. For a PDSE member, specify the name in the
format "//'data-set-name(member-name)'". For example, if you want to create
member S1 in data set HPJSP.PDSE1, the -o parameter that you specify is
-o="//'HPJSP.PDSE1(S1)'".

-t=directory-name
Creates links that are required to access Java DLLs in PDSEs or to access
resource files. hpj creates the links in directory-name.

Use the -t option with the -alias option when you create Java DLLs in PDSE
members, and the applications that access the DLLs use HFS file access. The
links that hpj creates for DLLs in PDSE members are HFS external links.

Use the -t option with the -resource option to create links for resource files. The
links that hpj creates are HFS symbolic links if the resources are bound into an
HFS file. The links are HFS external links if the resources are bound into a PDSE
member.

Before you run an application that uses the links, you need to put directory-name in
your CLASSPATH concatenation.

Do not use the -t option for CICS applications, which do not use HFS file access.

Use the -t option for compiled Java stored procedures.

Example: Using hpj to create an SQLJ executable: Suppose that you have
completed the first three steps in the SQLJ program preparation process, and you want
your SQLJ program to run under VisualAge for Java. This example creates an Java
application executable that also contains the JDBC profile, the SQLJ profile, and the
run-time properties file. The example uses the following data sets:

a.b.c
The package that contains all classes for the application. The corresponding
relative directory structure for the classes is a/b/c.

App1.class
The application class that contains the main method.

App1Conn.class
The SQLJ connection context that the application uses.

App1Iter.class
The SQLJ iterator that the application uses.

App1_SJProfileKeys.class
An internal class that the SQLJ translator creates.

Chapter 6. Preparing Java programs 73

#
#

#
#
#

#
#
#
#
#
#
#

#
#
#

#
#
#

#
#
#
#

#
#

#

#

#
#
#
#
#

#
#
#

#
#

#
#

#
#

#
#

App1_SJProfile0.ser
The SQLJ profile that the SQLJ translator creates.

DSNJDBC_JDBCProfile.ser
The JDBC profile. This file is not in the same path as the application classes.

db2sqljjdbc.properties.ebcdic
The run-time properties file, in EBCDIC format. This file is not in the same path as
the application classes.

The first step that you need to perform is to create the run-time properties file in ASCII
format. To do that, execute the iconv utility:

iconv -f ibm-1047 -t utf-8 db2sqljjdbc.properties.ebcdic > db2sqljjdbc.properties

The ASCII run-time properties file is now in file db2sqljjdbc.properties.

Next, run the jar tool to create Jar files for the Java resource files. As is required for
VisualAge for Java, specify the -M option so that you do not include a manifest in any
of the Jar files.

jar -Mcv0f sqljprofile.jar a/b/c/App1_SJProfile0.ser
jar -Mcv0f jdbcprofile.jar DSNJDBC_JDBCProfile.ser
jar -Mcv0f properties.jar db2sqljjdbc.properties

The Jar file for the SQLJ profile needs to be in the HFS directory structure at the same
level as the package.

Next, include the directory path that contains a/b/c in your CLASSPATH concatenation.
Then you do not need to refer to files by their full path name when you execute the hpj
command. For example, suppose that the full path name for App1.class is
/usr/myname/project1/a/b/c/App1.class. If you put /usr/myname/project1 in the
CLASSPATH, you can refer to /usr/myname/project1/a/b/c/App1.class as
a.b.c.App1.class.

Now you are ready to use the hpj command to create the executable:

hpj -o app1.exe -exe -nofollow \
a.b.c.App1 \
a.b.c.App1Conn \
a.b.c.App1Iter \
a.b.c.App1_SJProfileKeys \
-resource \
sqljprofile.jar jdbcprofile.jar properties.jar \

-t /usr/lpp/db2510/vajlinks

The meanings of the parameters in the hpj invocation are:

a.b.c.App1, a.b.c.App1Conn,
a.b.c.App1Iter,
a.b.c.App1_SJProfileKeys,
sqljprofile.jar, jdbcprofile.jar,
properties.jar

The input files. Input files can appear anywhere within the
command string. In this example, the Jar files are separated
from the other input files to emphasize that they are resources.

74 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#
#

#
#
#

#
#

#

#

#
#
#

#
#
#

#
#

#
#
#
#
#
#

#

#
#
#
#
#
#
#
#

#

##
#
#
#
#

#
#
#

-exe Indicates that the output file is a Java executable.

-o app1.exe Indicates the name and format of the output file. The format of
the file name indicates that the output is an HFS file.

-nofollow Indicates that hpj should bind the Java executable using only the
classes that are in the input list and the JDK classes.

-resource Indicates that when hpj binds the Java executable, it binds the
three resource files into the executable.

-t /usr/lpp/db2510/vajlinks Causes hpj to create symbolic links for the three resource files
that are included in the DLL. hpj creates the links in the
/usr/lpp/db2510/vajlinks directory.

Example: Using hpj to create a Java DLL: Suppose that you have completed the first
three steps in the SQLJ program preparation process on each of two Java classes. The
classes are bound into two different packages. This example creates a Java DLL that
contains those two packages. The example also creates symbolic links for the
packages that are in the DLL. The example uses the following data sets:

a.b.c
The package that contains all classes for application App1. The corresponding
relative directory structure for the classes is a/b/c.

x.y.z
The package that contains all classes for application App2. The corresponding
relative directory structure for the classes is x/y/z.

App1.class
The application class for application App1.

App2.class
The application class for application App2.

App1Conn.class
The SQLJ connection context that the App1 uses.

App2Conn.class
The SQLJ connection context that the App2 uses.

App2Iter.class
The SQLJ iterator that the App1 uses.

App2Iter.class
The SQLJ iterator that App2 uses.

App1_SJProfileKeys.class
An internal class that the SQLJ translator creates for App1.

App2_SJProfileKeys.class
An internal class that the SQLJ translator creates for App2.

App1_SJProfile0.ser
The SQLJ profile that the SQLJ translator creates for App1.

App2_SJProfile0.ser
The SQLJ profile that the SQLJ translator creates for App2.

Chapter 6. Preparing Java programs 75

##

##
#

##
#

##
#

##
#
#
#

#
#
#
#
#

#
#
#

#
#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

DSNJDBC_JDBCProfile.ser
The JDBC profile. This file is not in the same path as the application classes.

db2sqljjdbc.properties.ebcdic
The run-time properties file, in EBCDIC format. This file is not in the same path as
the application classes.

The first step that you need to perform is to create the run-time properties file in ASCII
format. To do that, execute the iconv utility:

iconv -f ibm-1047 -t utf-8 db2sqljjdbc.properties.ebcdic > db2sqljjdbc.properties

The ASCII run-time properties file is now in file db2sqljjdbc.properties.

Next, run the jar tool to create Jar files for the Java resource files. Include both of the
SQLJ profiles in the same Jar file. As is required for VisualAge for Java, specify the -M
option so that you do not include a manifest in any of the Jar files.

jar -Mcv0f sqljprofile.jar a/b/c/App1_SJProfile0.ser x/y/z/App2_SJProfile0.ser
jar -Mcv0f jdbcprofile.jar DSNJDBC_JDBCProfile.ser
jar -Mcv0f properties.jar db2sqljjdbc.properties

Now you are ready to use the hpj command to create the Java DLL:

hpj -o allApps.jll -jll -nofollow \
a.b.c.App1 \
a.b.c.App1Conn \
a.b.c.App1Iter \
a.b.c.App1_SJProfileKeys \
x.y.z.App2 \
x.y.z.App2Conn \
x.y.z.App2Iter \
x.y.z.App2_SJProfileKeys \
-resource \
sqljprofile.jar jdbcprofile.jar properties.jar \
-t /usr/lpp/db2510/vajlinks

The meanings of the parameters in the hpj invocation are:

a.b.c.App1, a.b.c.App1Conn,
a.b.c.App1Iter,
a.b.c.App1_SJProfileKeys,
x.y.z.App2, x.y.z.App2Conn,
x.y.z.App2Iter,
x.y.z.App2_SJProfileKeys,
sqljprofile.jar, jdbcprofile.jar,
properties.jar

The input files. Input files can appear anywhere within the
command string. In this example, the Jar files are separated
from the other input files to emphasize that they are resources.

-jll Indicates that the output file is a Java DLL.

-o allApps.jll Indicates the name and format of the output file. The format of
the file name indicates that the output is an HFS file.

-nofollow Indicates that hpj should bind the Java executable using only the
classes that are in the input list and the JDK classes.

76 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#
#
#

#
#

#

#

#
#
#

#
#
#

#

#
#
#
#
#
#
#
#
#
#
#
#

#

##
#
#
#
#
#
#
#

#
#
#

##

##
#

##
#

-resource Indicates that when hpj binds the Java DLL, it binds the four
resource files into the DLL.

-t /usr/lpp/db2510/vajlinks Causes hpj to create symbolic links for the four resource files
that are included in the DLL. hpj creates the links in the
/usr/lpp/db2510/vajlinks directory.

Creating symbolic links for packages in a Java DLL
When an application that runs under VisualAge for Java references a class that is not in
the Java DLL or executable that is running, that reference is called a nonlocal
reference. VisualAge for Java needs to be able to associate a nonlocal reference with a
Java DLL. Unless the package that contains the referenced class is in the set of
directories that VisualAge for Java searches by default, VisualAge for Java needs a link
to find the DLL.

When you bind a Java DLL into a PDSE member, you can specify the -t and -alias
options to make hpj automatically create a link between a package name and the PDSE
member that contains the DLL. However, if the Java DLL is in an HFS file, you need to
create the link between the package name and the HFS file yourself. You use the HFS
ln command to create the link.

Example: Creating a symbolic link for a Java DLL: In the previous example, the
Java DLL that you create contains two packages: a.b.c and x.y.z. By default, when
VisualAge for Java looks for a method in a.b.c, it looks for the method in DLL files with
one of these relative path names:

a/b/c.jll
a/b.jll
a.jll

Similarly, when VisualAge for Java looks for a method in x.y.z, it looks for the method
in DLL files with one of these relative path names:

x/y/z.jll
x/y.jll
x.jll

Because the real DLL that contains the packages is called allApps.jll, you need to
create symbolic links from at least one of the DLL names that VisualAge for Java looks
for to the real DLL name.

Suppose that you created allApps.jll in directory /usr/myname/project1/jlls. Use OS/390
UNIX System Services commands similar to these to create symbolic links from the
names a/b/c.jll and x/y/z.jll, where VisualAge for Java looks for methods, to
/usr/myname/project1/jlls/allApps.jll, where the methods really are:

cd /usr/lpp/db2x10/vajlinks
mkdir a
cd a
mkdir b
cd b
ln -s /usr/myname/project1/jlls/allApps.jll c.jll
cd /usr/lpp/db2x10/vajlinks

Chapter 6. Preparing Java programs 77

##
#

##
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#

#
#
#
#

#
#
#

#
#

#
#
#

#
#
#

#
#
#
#

#
#
#
#
#
#
#

mkdir x
cd x
mkdir y
cd y
ln -s /usr/myname/project1/jlls/allApps.jll z.jll

78 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#
#
#

Chapter 7. JDBC and SQLJ administration

This chapter contains the following topics about the administration of JDBC and SQLJ:

v “Installing JDBC and SQLJ”

v “Customizing the JDBC run-time environment” on page 81

v “Configuring JDBC and SQLJ” on page 83

v “JDBC and SQLJ security model” on page 87

v “JDBC and SQLJ multiple OS/390 context support” on page 88

Installing JDBC and SQLJ
The steps in this section describe the SMP/E jobs you need to edit and run to install
DB2 JDBC and SQLJ. Customize these jobs to specify data set names for your DB2
installation and SMP/E data sets. Refer to the header notes in each job and to Section
2 of Installation Guide for details.

All steps, except for those noted differently, are for both JDBC and SQLJ installation.

Step 1: Copy and edit the SMP/E jobs
Use this sample JCL to invoke the MVS utility IEBCOPY to copy the SMP/E jobs to
DASD.

Define the italicized variables in the JCL as follows:

tunit
The unit value matching the product tape or cartridge.

jcl-library-name
The name of the data set where the sample jobs are to reside.

dasdvol
The volume serial of the DASD device where the data set is to reside.

//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//IN DD DSN=IBM.JDB5512.F2,UNIT=tunit,VOL=SER=DB5512,
// LABEL=(3,SL),DISP=(OLD,KEEP)
//OUT DD DSNAME=jcl-library-name,
// DISP=(NEW,CATLG,DELETE),
// VOL=SER=dasdvol,UNIT=dunit,
// DCB=*.STEP1.IN,SPACE=(TRK,(1,1,2))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD *

COPY INDD=IN,OUTDD=OUT
/*

Figure 13. Sample JCL to copy SMP/E jobs to DASD

© Copyright IBM Corp. 1998 79

#

#

#

dunit
The DASD unit type of the volume.

Step 2: Run the allocate job: DSNTJJAE
DSNTJJAE allocates the necessary MVS data sets and creates DDDEF entries in
target and distribution libraries.

Optional Step: Allocate HFS data set
If you prefer to install DB2 JDBC and SQLJ in a separate HFS data set, rather than the
root file system, use the following sample JCL to allocate an HFS data set:

Define the italicized variables in the JCL as follows:

db2hlq
The high-level data set qualifier that is used for this DB2.

dasdvol
The volume serial of the DASD device where the data set is to reside.

dunit
The DASD unit type of the volume.

storclas
An appropriate SMS storage class that is defined on your system.

Step 3: Create Hierarchical File System (HFS) structure
Use the TSO MKDIR command to create the DB2 installation directory in your HFS:

TSO MKDIR '/usr/lpp/db2' MODE(7 5 5)

The spaces in ’MODE(7 5 5)’ are important.

Optional: If you installed DB2 JDBC and SQLJ into a separate HFS data set, mount
the new HFS data set created on the DB2 JDBC and SQLJ HFS install mountpoint. The
following command must be on one line:

TSO MOUNT FILESYSTEM('db2hlq.SDSNHFS') MOUNTPOINT('/usr/lpp/db2') TYPE(HFS)

//ALLOCHFS EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//*
//* NOTE: THIS HFS DATA SET MUST BE DFSMS MANAGED
//*
//SDSNHFS DD DSN=db2hlq.SDSNHFS,
// DISP=(NEW,CATLG,DELETE),
// VOL=SER=dasdvol,UNIT=dunit,
// SPACE=(CYL,(5,1,1))
// DSNTYPE=HFS,STORCLAS=storclas
//*

Figure 14. Sample JCL to allocate an HFS data set

80 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

db2hlq is the high-level data set qualifier that is used in the preceding optional step.

After mounting the new HFS data set, you must apply the directory permission bits
again by using the following TSO command:

TSO OSHELL chmod 755 /usr/lpp/db2

You can now run the sample REXX exec, DSNISMKD, to create the HFS structure. To
run DSNISMKD, you must have write authority for the DB2 for OS/390 JDBC
installation directory, /usr/lpp/db2.

Step 4: Run the receive Job: DSNTJJRC
DSNTJJRC invokes SMP/E to receive the FMIDs for DB2 JDBC and SQLJ into the
SMP/E control data sets.

Step 5: Run the apply job: DSNTJJAP
DSNTJJAP invokes SMP/E to apply the FMIDs for DB2 JDBC and SQLJ to the DB2
target libraries.

Step 6: Run the accept job: DSNTJJAC
DSNTJJAC invokes SMP/E to accept the FMIDs for DB2 JDBC and SQLJ into the DB2
distribution libraries.

Step 7: Run the SQLJ allocate jobs
Follow the instructions in APAR PQ18939 to create DDDEF entries in target libraries
and allocate the HFS directories for SQLJ installation.

Step 8: Install SQLJ modules
Receive, apply, and accept APAR PQ19814 to install the modules that constitute DB2
for OS/390 SQLJ.

Customizing the JDBC run-time environment
This section describes the steps required to customize the JDBC runtime environment:

1. Optionally, customize the cursor properties file to identify required JDBC resources.

2. Run the db2genJDBC utility to create a JDBC profile and generate DBRMs.

3. Bind the DBRMs into packages and include those packages in the plan that
supports JDBC and SQLJ.

4. Set environmental variables for JDBC and SQLJ in the run-time properties file,
described in “Configuring JDBC and SQLJ” on page 83.

Customizing the cursor properties file
JDBC result sets require a valid DB2 cursor. You can customize the cursor properties
file to modify the number of DB2 cursors available for JDBC and to control cursor
names. The default cursor properties file defines 125 cursors with hold and 125 cursors
without hold.

Chapter 7. JDBC and SQLJ administration 81

#
#

#

#
#
#

#

#

#

#

#
#

#
#

#
#
#
#
#

For CICS applications, you should not use the default value. See “Appendix B. Special
considerations for CICS applications” on page 95 for more information.

To customize the cursor properties file, specify the file in the -cursors option of the
db2genJDBC utility (described in “Creating a JDBC profile”), and define an entry for
each JDBC cursor.

Syntax

�� cursor= cursorname
nohold

hold
��

Parameter descriptions
cursorname

Specifies the cursor name. This name must be 18 or fewer characters in length.

hold|nohold
Specifes hold attribute for the cursor. If a hold attribute is not specified, the cursor
is assigned the nohold attribute. The default is nohold.

For example:

cursor=SAMPLECURSORA:hold
cursor=SAMPLECURSORB:nohold

Creating a JDBC profile
To create a JDBC profile, execute the db2genJDBC utility. This profile contains the
JDBC program properties used at run-time.

Syntax

�� db2genJDBC
DSNJDBC

- pgmname= program-name
150

- statements= integer

�

�
db2jdbc.cursors

- cursors= cursor-properties-file
5

- calls= integer

��

Parameter descriptions
-pgmname

Specifies the JDBC program name. This name must be seven or fewer characters
in length. The default is DSNJDBC.

82 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#
#
#

#

###################

#

#

#
#

#
#
#

#

#
#

#
#
#

#

###################################
#

#
###################################

#

#

#
#
#

-statements
Specifes the number of sections to reserve in the DBRMs for JDBC statements and
prepared statements for non-result set processing. The default is 150.

For CICS applications, you should not use the default value. See “Appendix B.
Special considerations for CICS applications” on page 95 for more information.

-cursors
Specifies the name of the cursor properties file, described in “Customizing the
cursor properties file” on page 81. The default is db2jdbc.cursors.

The cursor properties file must be located in a directory specified in the
CLASSPATH environmental variable, described in “Configuring JDBC and SQLJ”.

-calls
Specifes the number of sections to reserve in the DBRMs for JDBC callable
statements for non-result set processing. The default is 5.

Output
The db2genJDBC utility creates four DBRMs and a JDBC serialized profile.

The JDBC profile name is in the following format:

program name_JDBCProfile.ser

Binding the DBRMs
After you create the serialized profile for your JDBC program, you must bind the
DBRMs into packages and include them in the plan that the SQLJ application accesses
at run time. This step is necessary for SQLJ applications to interoperate with JDBC.
There is one DBRM for each transaction isolation level. The DBRM names and isolation
levels are as follows:

v program-name1: Bind with transaction isolation level = UR

v program-name2: Bind with transaction isolation level = CS

v program-name3: Bind with transaction isolation level = RS

v program-name4: Bind with transaction isolation level = RR

For more information about SQLJ and JDBC interoperability, see “Customizing SQLJ
and JDBC to work together” on page 65. For information on binding packages and
plans, see Chapter 2 of Command Reference.

Configuring JDBC and SQLJ
After you install JDBC and SQLJ, and before you prepare and run JDBC and SQLJ
programs, you need to provide information about your environment. You do that by
setting environmental variables and by specifying parameters in a file called the SQLJ
run-time properties file.

For the CICS environment, the settings for some of the environmental variables and
run-time properties parameters are different than for other environments. See
“Appendix B. Special considerations for CICS applications” on page 95 for information
that is specific to CICS.

Chapter 7. JDBC and SQLJ administration 83

#
#
#

#
#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#
#
#

#

#

#

#

#
#
#

#
#
#
#

Environmental variables
The environmental variables that you must set are:

STEPLIB
Modify STEPLIB to include the SDSNEXIT and SDSNLOAD data sets. For example:

export STEPLIB=DSN510.SDSNEXIT:DSN510.SDSNLOAD:$STEPLIB

PATH
Modify PATH to include the directory that contains the shell scripts that invoke
JDBC and SQLJ program preparation and debugging functions. If JDBC and SQLJ
are installed in /usr/lpp/db2, modify PATH as follows:

export PATH=/usr/lpp/db2/db2510/bin:$PATH

LIBPATH and LD_LIBRARY_PATH
The DB2 for OS/390 SQLJ/JDBC driver contains several dynamic load libraries
(DLLs).

Modify LIBPATH and LD_LIBRARY_PATH to include the directory that contains
those DLLs. If SQLJ and JDBC are installed in /usr/lpp/db2, modify LIBPATH and
LD_LIBRARY_PATH, respectively, as follows:

export LIBPATH=/usr:/usr/lib:/usr/lpp/db2/db2510/lib:$LIBPATH

export LD_LIBRARY_PATH=/usr/lpp/db2/db2510/lib:$LD_LIBRARY_PATH

CLASSPATH
Modify CLASSPATH to include one of the following class files:

db2sqljclasses.zip
Contains all of the classes necessary to prepare and run JDBC and SQLJ
programs. Assuming that JDBC and SQLJ are installed in /usr/lpp/db2,
modify CLASSPATH as follows:

export CLASSPATH=/usr/lpp/db2/db2510/classes/db2sqljclasses.zip:$CLASSPATH

db2sqljruntime.zip
Contains only the classes that are needed to run JDBC and SQLJ programs.
This file is smaller than the db2sqljclasses.zip file, which contains files for
program preparation and execution. Specify this class file only if you do not
plan to prepare SQLJ programs on your system. Assuming that JDBC and
SQLJ are installed in /usr/lpp/db2, modify CLASSPATH as follows:

export CLASSPATH=/usr/lpp/db2/db2510/classes/db2sqljruntime.zip:$CLASSPATH

db2jdbcclasses.zip
The db2jdbcclasses.zip file is provided to maintain compatibility with existing
DB2 for OS/390 JDBC applications. The contents of db2jdbcclasses.zip are
equivalent to the contents of db2sqljruntime.zip

DB2SQLJPROPERTIES
Specifies the fully-qualified name of the run-time properties file for the DB2 for
OS/390 SQLJ/JDBC driver. The run-time properties file contains various entries of
the form parameter=value that specify program preparation and run-time options
that the DB2 for OS/390 SQLJ/JDBC driver uses. The run-time properties file is

84 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#

#
#

#

#
#
#
#

#

#
#
#

#
#
#

#

#

#
#

#
#
#
#

#

#
#
#
#
#
#

#

#
#
#
#

#
#
#
#
#

read when the driver is loaded. If you do not set the DB2SQLJPROPERTIES
environmental variable, the DB2 for OS/390 SQLJ/JDBC driver uses the default
name ./db2sqljjdbc.properties.

For example, to use a run-time properties file named db2sqljjdbc.properties that
is in the /usr/lpp/db2/db2610/classes directory, specify:

export DB2SQLJPROPERTIES=/usr/lpp/db2/db2610/classes/db2sqljjdbc.properties

If you use Java stored procedures, you need to set additional environmental variables
in a JAVAENV data set. See “Setting environmental variables for Java stored
procedures” on page 57 for more information.

Parameters in the SQLJ/JDBC run-time properties file
The parameters that you can set in the run-time properties file for the DB2 for OS/390
SQLJ/JDBC driver are:

DB2SQLJDBRMLIB
Specifies the fully-qualified name of the MVS partitioned data set into which
DBRMs are placed. DBRMs are generated by the creation of a JDBC profile and
the customization step of the SQLJ program preparation process. For example:

DB2SQLJDBRMLIB=USER.DBRMLIB.DATA

The default DBRM data set name is prefix.DBRMLIB.DATA, where prefix is the
high-level qualifier that was specified in the TSO profile for the user. prefix is
usually the user's TSO user ID.

See “Creating a JDBC profile” on page 82 and “Customizing a serialized profile” on
page 62 for more information on serialized profile customization.

DB2SQLJPLANNAME
Specifies the name of the plan that is associated with a JDBC or an SQLJ
application. The plan is created by the DB2 for OS/390 bind process. For example:

DB2SQLJPLANNAME=SQLJPLAN

The default name is DSNJDBC.

DB2SQLJJDBCPROGRAM
Specifies the name of a JDBC connected profile that is used by the DB2 for
OS/390 SQLJ/JDBC driver. For example:

DB2SQLJJDBCPROGRAM=CONNPROF

The default connected profile name is DSNJDBC.

See “Creating a JDBC profile” on page 82 for information on creating a JDBC
connected profile.

DB2SQLJSSID
Specifies the name of the DB2 subsystem to which a JDBC or an SQLJ application
connects. For example:

DB2SQLJSSID=DSN

Chapter 7. JDBC and SQLJ administration 85

#
#
#

#
#

#

#
#
#

#
#

#
#
#
#

#

#
#
#

#
#

#
#
#

#

#

#
#
#

#

#

#
#

#
#
#

#

The default is the subsystem name that was specified during installation of the
local DB2 subsystem.

DB2SQLJATTACHTYPE
Specifies the attachment facility that a JDBC or an SQLJ application program uses
to connect to DB2. The value can be CAF or RRSAF. For example:

DB2SQLJATTACHTYPE=RRSAF

The default is RRSAF.

DB2SQLJMULTICONTEXT
Specifies whether each connection in an application is independent of other
connections in the application, and each connection is a separate unit of work, with
its own commit scope. The value can be YES or NO. For example:

DB2SQLJMULTICONTEXT=NO

The default is YES.

For DB2SQLJMULTICONTEXT=YES to be in effect, the following conditions must
be met:
v The OS/390 system is OS/390 Version 2 Release 5 or later.
v The value of parameter DB2SQLJATTACHTYPE is RRSAF.

If these conditions are not met, SQLJ operates as if
DB2SQLJMULTICONTEXT=NO.

See “JDBC and SQLJ multiple OS/390 context support” on page 88 for more
information on multiple OS/390 context support.

DB2CURSORHOLD
For JDBC, specifies the effect of a commit operation on open DB2 cursors
(ResultSets). The value can be YES or NO. A value of YES means that cursors are
not destroyed when the transaction is committed. A value of NO means that
cursors are destroyed when the transaction is committed. For example:

DB2CURSORHOLD=NO

The default is YES.

This parameter does not affect cursors in a transaction that is rolled back. All
cursors are destroyed when a transaction is rolled back.

DB2SQLJ_TRACE_FILENAME
Enables the SQLJ/JDBC trace and specifies the names of the trace files to which
the trace is written. This parameter is required for collecting trace data. For
example, specifying the following setting for DB2SQLJ_TRACE_FILENAME
enables the SQLJ/JDBC trace to two files named /tmp/jdbctrace and
/tmp/jdbctrace.JTRACE:

DB2SQLJ_TRACE_FILENAME=/tmp/jdbctrace

See “Formatting trace data” on page 35 for more information on the SQLJ/JDBC
trace.

86 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#
#
#

#

#

#
#
#
#

#

#

#
#
#
#

#
#

#
#

#
#
#
#
#

#

#

#
#

#
#
#
#
#
#

#

#
#

DB2SQLJ_TRACE_BUFFERSIZE
Specifies the size of the trace buffer in virtual storage in kilobytes. SQLJ rounds the
number that you specify down to a multiple of 64 KB. The default is 256 KB. This is
an optional parameter. For example:

DB2SQLJ_TRACE_BUFFERSIZE=1024

DB2SQLJ_TRACE_WRAP
Enables or disables wrapping of the SQLJ trace. DB2J_TRACE_WRAP can have
one of the following values:

1 Wrap the trace

0 Do not wrap the trace

The default is 1. This parameter is optional. For example:

DB2SQLJ_TRACE_WRAP=0

You should set the parameters for diagnostic traces (DB2SQLJ_TRACE_FILENAME,
DB2SQLJ_TRACE_BUFFERSIZE, and DB2SQLJ_TRACE_WRAP) only under the direction of your
IBM service representative. See “Formatting trace data” on page 35 for information on
formatting trace data.

JDBC and SQLJ security model
This section describes the JDBC and SQLJ security model. It explains how
authorization IDs are determined and the use of attachment facilities.

How are authorization IDs established?
An important difference between JDBC and SQLJ on OS/390 and on other operating
systems is the manner in which the database authorization ID is determined.

On operating systems other than OS/390, the user ID and password that are passed as
parameters on the java.sql.Connection constructor determine the authorization ID that
the database uses.

In contrast, the security environment created by the OS/390 Security Server (RACF
ACEE) determines the DB2 for OS/390 authorization ID that is used for a thread. A user
ID and password is not specified for an SQLJ connection context or a JDBC
connection.

It is important to note that DB2 does not create the security environment. The
application or server that provides the point of entry into the OS/390 system (i.e. TSO
logon, Telnet logon, Web Server, etc.) typically creates the security environment.

DB2 attachment types
The security environment (the RACF ACEE) that DB2 uses to establish the DB2
authorization IDs is dependent on which DB2 attachment type you use. JDBC and
SQLJ use a DB2 attachment facility to communicate with DB2. They use the call
attachment facility (CAF), the RRS attachment facility (RRSAF), or the CICS attachment
facility.

Chapter 7. JDBC and SQLJ administration 87

#
#
#
#

#

#
#
#

##

##

#

#

#

#
#
#

All attachment types support multithreading, that is, multiple, concurrent threads (TCBs)
that execute within a single process (address space). In a multithreading environment,
each process and thread can have its own unique security environment. The DB2
attachment facility that you select determines which security environment DB2 uses to
verify the DB2 authorization IDs.

See “Appendix B. Special considerations for CICS applications” on page 95 for
information on using the CICS attachment facility.

Using the call attachment facility
The DB2 call attachment facility (CAF) supports multithreading, single authorization ID
applications. As such, the DB2 CAF always uses the process (address space) level
security environment, even if a thread level security environment is present. Therefore,
all threads that run within a single process are execute using the same DB2
authorization ID.

Using the RRS attachment facility
In contrast to the DB2 call attachment facility, the DB2 RRS attachment facility (RRSAF)
supports multithreading, and applications can run under multiple authorization IDs. If
you use the RRSAF, DB2 uses a task-level security environment, if present, to establish
the DB2 authorization IDs.

JDBC and SQLJ multiple OS/390 context support
An OS/390 context includes the application’s logical connection to the data source and
the associated internal DB2 connection information that lets the application direct its
operations to a data source. For JDBC or SQLJ applications, a context is equivalent to
a DB2 thread.

Connecting when multiple OS/390 context support is not enabled
A context is always established when a Java thread creates its first
java.sql.Connection object. If support for multiple contexts is not enabled, then
subsequent java.sql.Connection objects created by a Java thread share that single
context. Although multiple connections can share a single context, only one connection
can have an active transaction at any time. If there is an active transaction on a
connection, a COMMIT or ROLLBACK must be issued before the Java thread can use
or create another connection object.

Without multiple context support:

v There can be one or more Java threads, any of which can issue JDBC or SQLJ
calls.

v All java.sql.Connection objects must be explicitly closed by the application Java
thread that created the connection object.

v Multiple java.sql.Connection objects can be created by a single Java thread if the
application uses the connections serially. The application must not create or use a
different connection object on the Java thread if the current connection is not on a
transaction boundary. Multiple connections cannot create concurrent units of work.

88 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#

#
#

#
#
#
#

v When more than one connection is opened, those connections are associated with
the same DB2 thread. Returning from the current connection to a previous
connection might not return you to the DB2 location that the previous connection was
originally associated with. Previous connections become associated with the location
of the most recently created connection.

v A Java thread can use a java.sql.Connection object only when the Java thread
creates the java.sql.Connection object.

v WebSphereTM Application Server connection pooling using the
″com.ibm.servlet.connmgr″ package is not possible.

Connecting when multiple OS/390 context support is enabled
With multiple OS/390 context support enabled, each java.sql.Connection object results
in the creation of a unique context (DB2 thread) for that connection. Under this model, a
single Java thread (TCB) can have multiple, concurrent connections, each with its own
independent transaction. The DB2 JDBC and SQLJ multiple context support requires:

v Use of the DB2 RRSAF attachment facility

v OS/390 Unauthorized Context Services, available in OS/390 Version 2, Release 5 or
higher

With multiple OS/390 context support:

v There can be one or more Java threads, any of which can issue JDBC or SQLJ
calls.

v The Java threads can create multiple java.sql.Connection objects (and derived
objects), each of which:

– Can exist concurrently with other java.sql.Connection objects.

– Has its own transaction scope that is independent from all other
java.sql.Connections.

– Does not need to be on a transaction boundary for a Java thread to create or use
different connections.

v The java.sql.Connection objects can be shared between Java threads. However,
the actions of one Java thread on a given connection object are also visible to all of
the Java threads using that connection. Also, the JDBC/SQLJ application is
responsible for ensuring proper serialization when sharing connection objects
between threads.

v Although it is recommended that all java.sql.Statement and java.sql.Connection
objects be explicitly closed by the application, it is not required.

v WebSphere Application Server connection pooling using the
com.ibm.servlet.connmgr package is supported for JDBC connections only.

For information about using JDBC connections for SQLJ operations, see “Customizing
SQLJ and JDBC to work together” on page 65.

Enabling multiple OS/390 context support
The DB2SQLJMULTICONTEXT parameter in the run-time properties file enables
multiple context support. See “Configuring JDBC and SQLJ” on page 83 for information
about setting the DB2SQLJMULTICONTEXT parameter.

Chapter 7. JDBC and SQLJ administration 89

#
#
#
#
#

#
#

#
#

#
#

#
#
#
#

Multiple context performance
Setting the DB2SQLJMULTICONTEXT parameter to YES enhances SQLJ and JDBC
performance if the operating system is OS/390 Release 6 or higher and OS/390 APAR
OW41492 is applied.

Connection sharing
Connection sharing occurs whenever a Java thread (TCB) attempts to use a
java.sql.Connection object, or any object derived from a connection, that the Java
thread did not create.

One application of connection sharing is for cleanup of connection objects. Under the
Java Virtual Machine (JVM) on OS/390, cleanup of connection objects is usually
performed by a JVM finalizer thread, rather than the Java thread that created the
object.

Connection sharing is supported only in a multiple context environment.

90 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#
#

#
#
#
#

Appendix A. Selected sqlj.runtime classes and interfaces

The sqlj.runtime package defines the run-time classes and interfaces that SQLJ uses.
This appendix describes:

v Each class of sqlj.runtime that contains methods that you can invoke in your SQLJ
application programs

v Each of the interfaces that you might need to implement in your SQLJ application
programs

sqlj.runtime.ExecutionContext class
The sqlj.runtime.ExecutionContext class is defined for execution contexts. You can
use an execution context to control the execution of SQL statements. After you declare
an execution context and create an instance of that execution context, you can use the
following methods.

getMaxFieldSize
Format:

public int getMaxFieldSize()

Returns the maximum number of bytes that are returned for any character column
in queries that use the given execution context. A value of 0 means that the
maximum number of bytes is unlimited.

getMaxRows
Format:

public int getMaxRows()

Returns the maximum number of rows that are returned for any query that uses the
given execution context. A value of 0 means that the maximum number of rows is
unlimited.

getNextResultSet
Format:

public ResultSet getNextResultSet()

After a stored procedure call, returns a result set from the stored procedure. Each
call to getNextResultSet closes the result set that was retrieved by the previous
call. A value of null means that there are no more result sets to be returned.

getUpdateCount
Format:

public abstract int getUpdateCount() throws SQLException

Returns the number of rows that were updated by the last SQL operation that was
executed using this context.

getWarnings
Format:

© Copyright IBM Corp. 1998 91

#
#

#

#
#
#

public SQLWarning getWarnings()

Returns the first warning that was reported by the last SQL operation that was
executed using this context. Subsequent warnings are chained to the first warning.

Use this method to retrieve positive SQLCODEs.

setMaxFieldSize
Format:

public void setMaxFieldSize(int max)

Specifies the maximum number of bytes that are returned for any character column
in queries that use the given execution context. The default is 0, which means that
the maximum number of bytes is unlimited.

setMaxRows
Format:

public void setMaxRows(int max)

Specifies the maximum number of rows that are returned for any query that uses
the given execution context. The default is 0, which means that the maximum
number of rows returned is unlimited.

sqlj.runtime.ConnectionContext interface
sqlj.runtime.ConnectionContext is an interface that SQLJ implements when you
execute a connection declaration clause and thereby create a connection context class.

Suppose that you declare a connection named Ctx. You can then use the following
methods to determine or change the default context.

getDefaultContext
Format:

public static Ctx getDefaultContext()

Returns the default connection context object for the Ctx class.

SetDefaultContext
Format:

public static void Ctx setDefaultContext(Ctx default-context)

Sets the default connection context object for the Ctx class.

sqlj.runtime.ForUpdate interface
Implement the sqlj.runtime.ForUpdate interface for positioned UPDATE or DELETE
operations. You implement sqlj.runtime.ForUpdate in an SQLJ iterator declaration
clause. For positioned UPDATE and DELETE operations, you must declare an iterator
in one source file and use the iterator in a different source file. See “Using iterators for
positioned UPDATE and DELETE operations” on page 26 for more information.

92 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#

#
#

#
#

#
#

#

#

#
#

#

#

#

sqlj.runtime.NamedIterator interface
sqlj.runtime.NamedIterator is an interface that SQLJ implements when you declare a
named iterator. When you declare an instance of a named iterator, SQLJ creates an
accessor method for each column in the expected result table. An accessor method
returns the data from its column of the result table. The name of an accessor method
matches the name of the corresponding column in the named iterator.

In addition to the accessor methods, SQLJ generates the following methods that you
can invoke in your SQLJ application.

close
Format:

public abstract void close() throws SQLException

Releases database resources that the iterator uses.

isClosed
Format:

public abstract boolean isClosed() throws SQLException

Returns a value of true if the close method has been invoked.

next
Format:

public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before an instance of the next method is
invoked for the first time, the iterator is positioned before the first row of the result
table. next returns a value of true when a next row is available and false when all
rows have been retrieved.

sqlj.runtime.PositionedIterator interface
sqlj.runtime.PositionedIterator is an interface that SQLJ implements when you
declare a positioned iterator. After you declare and create an instance of a positioned
iterator, you can use the following method.

endFetch
Format:

public abstract boolean endFetch() throws SQLException

Returns a value of true if the iterator is not positioned on a row.

sqlj.runtime.ResultSetIterator interface
sqlj.runtime.ResultSetIterator is an interface that SQLJ implements when you
declare an iterator. After you declare and create an instance of an iterator, you can use
the following methods.

Appendix A. Selected sqlj.runtime classes and interfaces 93

#

#
#
#

clearWarnings
Format:

public abstract void clearWarnings() throws SQLException

Returns null until a new warning is reported for this iterator.

close
Format:

public abstract void close() throws SQLException

Releases database resources that the iterator uses.

getResultSet
Format:

public abstract ResultSet getResultSet() throws SQLException

Returns a JDBC result set representation of an SQLJ iterator.

getWarnings
Format:

public abstract SQLWarning getWarnings() throws SQLException

Returns the first warning that is reported by calls on this iterator. Subsequent
iterator warnings are be chained to this SQLWarning. The warning chain is
automatically cleared each time a new row is read.

isClosed
Format:

public abstract boolean isClosed() throws SQLException

Returns a value of true if the close method has been invoked.

next
Format:

public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before an instance of the next method is
invoked for the first time, the iterator is positioned before the first row of the result
table. next returns a value of true when a next row is available and false when all
rows have been retrieved.

94 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#

#

#
#

#

#

#
#

#

#

#
#

#

#
#
#

#
#

#

#

#
#

#

#
#
#
#

Appendix B. Special considerations for CICS applications

In general, writing and running JDBC and SQLJ applications for a CICS environment is
similar to writing and running any other JDBC and SQLJ applications. However, there
are some important differences. This appendix outlines those differences and explains
what you need to do about them.

Choosing parameter values for the SQLJ/JDBC run-time properties file
Some parameters in the SQLJ/JDBC run-time properties file have different meanings in
the CICS environment from other environments. Those parameters are:

DB2SQLJPLANNAME
This parameter is not used in a CICS environment. Specify the name of the plan
that is associated with the SQLJ or JDBC application in one of the following places:
v The PLAN parameter of the DB2CONN definition
v The PLAN parameter of the DB2ENTRY definition
v The CPRMPLAN parameter of a dynamic plan exit

DB2SQLJ_TRACE_FILENAME
For the JVM environment, you can specify a fully-qualified path name or an
unqualified file name. If you specify an unqualified file name, the file is allocated in
the directory path that is specified by the CICS JVM environment variable
CICS_HOME.

For the VisualAge for Java environment, you need to specify a fully-qualified path
name.

If you want to use the same properties file for both environments, specify a
fully-qualified path name.

DB2SQLJSSID
This parameter is not used in a CICS environment.

DB2SQLJATTACHTYPE
This parameter is not used in a CICS environment.

DB2SQLJMULTICONTEXT
This parameter is not used in a CICS environment. You cannot enable OS/390
multiple context support in the CICS environment. Each CICS Java application can
have a maximum of one connection.

Choosing parameter values for the db2genJDBC utility
The db2genJDBC creates a JDBC profile. The default value for the
statementsparameters is not appropriate for CICS applications. The default value
generates a large JDBC profile. For VisualAge for Java SQLJ or JDBC applications that
run in a CICS environment, large JDBC profiles can degrade performance.

© Copyright IBM Corp. 1998 95

#

#

#
#
#
#

#
#

#
#

#
#
#
#
#
#

#
#
#
#
#

#
#

#
#

#
#

#
#

#
#
#
#

#
#

#
#
#
#

Choose a value for the statements parameter that is lower than the default of 150. The
default value produces more sections than are necessary for typical CICS applications.
A larger number of sections results in a larger JDBC profile size. A value of 10 should
be adequate for most CICs applications.

Choosing the number of cursors for JDBC result sets
The cursor properties file describes the DB2 cursors that the SQLJ/JDBC driver uses to
process JDBC result sets. The default cursor properties file, db2jdbc.cursors, defines
125 cursors with hold and 125 cursors without hold. This number of cursors is too large
for CICS applications, and it results in a JDBC profile size that is large enough to
degrade performance.

Specifying five cursors with hold and five cursors without hold should be should be
adequate for most CICS applications.

Setting environment variables for the CICS environment
For SQLJ or JDBC applications in a CICS environment, the way that you specify
configuration information differs depending on whether you run in the JVM environment
or the VisualAge for Java environment.

For CICS Java programs that run in the JVM environment, you specify the environment
variables that are listed in “Configuring JDBC and SQLJ” on page 83 in the DFHJVM
member of the SDFHENV data set.

For CICS Java programs that run in the VisualAge for Java environment, the
environment variables that are listed in “Configuring JDBC and SQLJ” on page 83 are
not used. Put DB2 code in a PDSE that you specify in the CICS DFHRPL
concatenation. If you use an SQLJ/JDBC run-time properties file other than the default
file, bind the properties file into its own DLL in a PDSE, and include the name of that
PDSE in the CICS DFHRPL concatenation. Because you cannot use an environment
variable to name the run-time properties file, you must use the default name for the file:
db2sqljjdbc.properties. See “Preparing your applications with VisualAge for Java” on
page 67 for more information on binding the run-time properties file.

Choosing VisualAge for Java bind parameters for better performance
To improve performance of an SQLJ or JDBC program that runs in the CICS and
VisualAge for Java environment, specify this parameter when you execute the hpj
command:

-lerunopts="(envar('IBMHPJ_OPTS=-Xskipgc'))"

This parameter causes Language Environment to turn off Java garbage collection
routines at run time. For more information on recommended hpj options for CICS, see
CICS Application Programming Guide.

96 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#
#

#
#

#
#
#
#
#

#
#

#
#

#
#
#

#
#
#

#
#
#
#
#
#
#
#
#

#
#

#
#
#

#

#
#
#

Connecting to DB2 in the CICS environment

For SQLJ or JDBC applications in a CICS environment, the connection to DB2 is
always through the CICS attachment facility. Unlike SQLJ and JDBC applications that
use other attachment facilities, SQLJ and JDBC applications that use the CICS
attachment facility can create only one JDBC java.sql.Connection object within a unit
of work. That java.sql.Connection object is associated with the CICS unit of work.
CICS coordinates all DB2 updates within the unit of work.

In CICS DB2 programs that are written in languages other than Java, calling
applications and called applications can share a DB2 thread. JDBC does not allow
several applications to share a java.sql.Connection object, which, in the CICS
environment, means that calling applications and called applications cannot share a
DB2 thread. Therefore, if a CICS application is doing DB2 work, and that application
calls an SQLJ or JDBC application, the calling application needs to commit all updates
before calling the SQLJ or JDBC application.

The CICS attachment facility supports multithreading. Multiple Java threads are
supported for a single CICS application. However, only the Java thread for the main
application is associated with the DB2 attachment. JDBC and SQLJ processing is not
supported for Java child threads.

In a CICS SQLJ or JDBC application, you need to explicitly close the
java.sql.Connection before the program ends. This ensures that work done on the
java.sql.Connection object is committed and that the java.sql.Connection object is
available for use by another application.

Commit and rollback processing in CICS SQLJ and JDBC applications
In a CICS environment, the default state of autoCommit for a JDBC connection is off.

You can use JDBC and SQLJ commit and rollback processing in your CICS
applications. The SQLJ/JDBC driver translates commit and rollback statements to CICS
syncpoint calls. The scope of those calls is the entire CICS transaction.

Abnormal terminations in the CICS attachment facility
Abends in code that is called by the SQLJ/JDBC driver, such as abends in the CICS
attachment facility, do not generate exceptions in SQLJ or JDBC programs.

A CICS attachment facility abend causes a rollback to the last syncpoint.

Running traces in a CICS environment
When you trace a JDBC or SQLJ CICS application, the trace output goes to different
locations, depending on whether the application runs in a JVM or under VisualAge for
Java.

v The program runs in a JVM

Appendix B. Special considerations for CICS applications 97

#
#

#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#

#
#
#
#

#
#

#

#
#
#

#
#

#
#

#

#
#

#
#
#

#

The output goes to trace-file (the binary trace) and trace-file.JTRACE (the readable
trace), as described in “Formatting trace data” on page 35.

v The program runs in the ET/390 Java execution environment

The trace data that is in a proprietary, binary format goes to trace-file, as described
in “Formatting trace data” on page 35. The readable trace data is routed by
Language Environment to the CICS transient data destination CESE.

98 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#

#

#
#
#

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The
materials at those Web sites are not part of the materials for this IBM product and use
of those Web sites is at your own risk.

© Copyright IBM Corp. 1998 99

#

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which
the sample programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

Programming interface information
This book is intended to help the customer write applications that use Java to access
IBM DB2 for OS/390 servers. This book documents General-use Programming Interface
and Associated Guidance Information provided by DATABASE 2 for OS/390 (DB2 for
OS/390).

General-use programming interfaces allow the customer to write programs that obtain
the services of DB2 for OS/390.

100 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Trademarks
The following terms are trademarks of the International Business Machines Corporation
in the United States, or other countries, or both:

AIX
BookManager
C++/MVS
CICS
CICS/ESA
CICS/MVS
DATABASE 2
DB2
DB2/2
DB2/6000
DFSMS
DFSMShsm
Distributed Relational

Database Architecture
DRDA

IBM
IMS
IMS/ESA
Language Environment
MVS
MVS/ESA
OS/2
OS/390
OS/400
Parallel Sysplex
QMF
RACF
SQL/DS
VTAM
WebSphere

Other company, product, and service names may be trademarks or service marks of
others.

Java and all Java-based trademarks and logos are trademarks or registered
Trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 101

102 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Glossary

The following terms and abbreviations are defined
as they are used in the DB2 library. If you do not
find the term you are looking for, refer to the index
or to Dictionary of Computing.

A

abend. Abnormal end of task.

abend reason code. A 4-byte hexadecimal code
that uniquely identifies a problem with DB2. A
complete list of DB2 abend reason codes and
their explanations is contained in Messages and
Codes.

abnormal end of task (abend). Termination of a
task, a job, or a subsystem because of an error
condition that cannot be resolved during execution
by recovery facilities.

access path. The path used to get to data
specified in SQL statements. An access path can
involve an index or a sequential search.

address space. A range of virtual storage pages
identified by a number (ASID) and a collection of
segment and page tables which map the virtual
pages to real pages of the computer’s memory.

address space connection. The result of
connecting an allied address space to DB2. Each
address space containing a task connected to
DB2 has exactly one address space connection,
even though more than one task control block
(TCB) can be present. See allied address space
and task control block.

alias. An alternate name that can be used in
SQL statements to refer to a table or view in the
same or a remote DB2 subsystem.

allied address space. An area of storage
external to DB2 that is connected to DB2 and is
therefore capable of requesting DB2 services.

allied thread. A thread originating at the local
DB2 subsystem that may access data at a remote
DB2 subsystem.

ambiguous cursor. A database cursor that is
not defined with either the clauses FOR FETCH
ONLY or FOR UPDATE OF, is not defined on a
read-only result table, is not the target of a
WHERE CURRENT clause on an SQL UPDATE
or DELETE statement, and is in a plan or package
that contains SQL statements PREPARE or
EXECUTE IMMEDIATE.

API. Application programming interface.

application. A program or set of programs that
perform a task; for example, a payroll application.

application plan. The control structure produced
during the bind process and used by DB2 to
process SQL statements encountered during
statement execution.

application process. The unit to which
resources and locks are allocated. An application
process involves the execution of one or more
programs.

application program interface (API). A
functional interface supplied by the operating
system or by a separately orderable licensed
program that allows an application program written
in a high-level language to use specific data or
functions of the operating system or licensed
program.

application requester (AR). See requester.

application server. See server.

AR. application requester. See requester.

AS. Application server. See server.

ASCII. An encoding scheme used to represent
strings in many environments, typically on PCs
and workstations. Contrast with EBCDIC.

attribute. A characteristic of an entity. For
example, in database design, the phone number
of an employee is one of that employee’s
attributes.

© Copyright IBM Corp. 1998 103

authorization ID. A string that can be verified for
connection to DB2 and to which a set of privileges
are allowed. It can represent an individual, an
organizational group, or a function, but DB2 does
not determine this representation.

B

base table. A table created by the SQL CREATE
TABLE statement that is used to hold persistent
data. Contrast with result table and temporary
table.

binary integer. A basic data type that can be
further classified as small integer or large integer.

bind. The process by which the output from the
DB2 precompiler is converted to a usable control
structure called a package or an application plan.
During the process, access paths to the data are
selected and some authorization checking is
performed.

automatic bind. (More correctly automatic
rebind). A process by which SQL statements
are bound automatically (without a user issuing
a BIND command) when an application
process begins execution and the bound
application plan or package it requires is not
valid.
dynamic bind. A process by which SQL
statements are bound as they are entered.
incremental bind. A process by which SQL
statements are bound during the execution of
an application process, because they could not
be bound during the bind process, and
VALIDATE(RUN) was specified.
static bind. A process by which SQL
statements are bound after they have been
precompiled. All static SQL statements are
prepared for execution at the same time.
Contrast with dynamic bind.

bit data. Data that is not associated with a
coded character set.

BMP. Batch Message Processing (IMS).

built-in function. Scalar function or column
function.

C

CAF. Call attachment facility.

call attachment facility (CAF). A DB2
attachment facility for application programs
running in TSO or MVS batch. The CAF is an
alternative to the DSN command processor and
allows greater control over the execution
environment.

catalog. In DB2, a collection of tables that
contains descriptions of objects such as tables,
views, and indexes.

catalog table. Any table in the DB2 catalog.

CCSID. Coded character set identifier.

CDB. See communications database.

CDRA. Character data representation
architecture.

central processor (CP). The part of the
computer that contains the sequencing and
processing facilities for instruction execution, initial
program load, and other machine operations.

character data representation architecture
(CDRA). An architecture used to achieve
consistent representation, processing, and
interchange of string data.

character set. A defined set of characters.

character string. A sequence of bytes
representing bit data, single-byte characters, or a
mixture of single and double-byte characters.

check clause. An extension to the SQL
CREATE TABLE and SQL ALTER TABLE
statements that specifies a table check constraint.

check constraint. See table check constraint.

check integrity. The condition that exists when
each row in a table conforms to the table check
constraints defined on that table. Maintaining
check integrity requires enforcing table check
constraints on operations that add or change data.

104 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

check pending. A state of a table space or
partition that prevents its use by some utilities and
some SQL statements, because it can contain
rows that violate referential constraints, table
check constraints, or both.

CICS. Represents (in this publication) CICS/MVS
and CICS/ESA.

CICS/MVS: Customer Information Control
System/Multiple Virtual Storage.
CICS/ESA: Customer Information Control
System/Enterprise Systems Architecture.

CICS attachment facility. A DB2 subcomponent
that uses the MVS Subsystem Interface (SSI) and
cross storage linkage to process requests from
CICS to DB2 and to coordinate resource
commitment.

clause. In SQL, a distinct part of a statement,
such as a SELECT clause or a WHERE clause.

client. See requester.

CLIST. Command list. A language for performing
TSO tasks.

clustering index. An index that determines how
rows are physically ordered in a table space.

coded character set. A set of unambiguous
rules that establish a character set and the
one-to-one relationships between the characters
of the set and their coded representations.

coded character set identifier (CCSID). A
16-bit number that uniquely identifies a coded
representation of graphic characters. It designates
an encoding scheme identifier and one or more
pairs consisting of a character set identifier and an
associated code page identifier.

code page. A set of assignments of characters
to code points.

code point. In CDRA, a unique bit pattern that
represents a character in a code page.

collection. A group of packages that have the
same qualifier.

column function. An SQL operation that derives
its result from a collection of values across one or
more rows. Contrast with scalar function.

command. A DB2 operator command or a DSN
subcommand. Distinct from an SQL statement.

commit. The operation that ends a unit of work
by releasing locks so that the database changes
made by that unit of work can be perceived by
other processes.

commit point. A point in time when data is
considered consistent.

committed phase. The second phase of the
multi-site update process that requests all
participants to commit the effects of the logical
unit of work.

communications database (CDB). A set of
tables in the DB2 catalog that are used to
establish conversations with remote database
management systems.

comparison operator. A token (such as =, >, <)
used to specify a relationship between two values.

composite key. An ordered set of key columns
of the same table.

concurrency. The shared use of resources by
more than one application process at the same
time.

connection. The existence of a communication
path between two partner LUs that allows
information to be exchanged (for example, two
DB2s connected and communicating by way of a
conversation).

connection context. In SQLJ, a Java object that
represents a connection to a data source.

connection declaration clause. In SQLJ, a
statement that declares a connection to a data
source.

consistency token. A timestamp used to
generate the version identifier for an application.
See also version.

Glossary 105

constant. A language element that specifies an
unchanging value. Constants are classified as
string constants or numeric constants. Contrast
with variable.

constraint. A rule that limits the values that can
be inserted, deleted, or updated in a table. See
referential constraint, uniqueness constraint, and
table check constraint.

correlated subquery. A subquery (part of a
WHERE or HAVING clause) applied to a row or
group of rows of a table or view named in an
outer sub-SELECT statement.

correlation name. An identifier that designates a
table, a view, or individual rows of a table or view
within a single SQL statement. It can be defined in
any FROM clause or in the first clause of an
UPDATE or DELETE statement.

CP. See central processor (CP).

current data. Data within a host structure that is
current with (identical to) the data within the base
table.

cursor stability (CS). The isolation level that
provides maximum concurrency without the ability
to read uncommitted data. With cursor stability, a
unit of work holds locks only on its uncommitted
changes and on the current row of each of its
cursors.

D

DASD. Direct access storage device.

database. A collection of tables, or a collection
of table spaces and index spaces.

database access thread. A thread accessing
data at the local subsystem on behalf of a remote
subsystem.

database administrator (DBA). An individual
responsible for the design, development,
operation, safeguarding, maintenance, and use of
a database.

database descriptor (DBD). An internal
representation of DB2 database definition which

reflects the data definition found in the DB2
catalog. The objects defined in a database
descriptor are table spaces, tables, indexes, index
spaces, and relationships.

database management system (DBMS). A
software system that controls the creation,
organization, and modification of a database and
access to the data stored within it.

database request module (DBRM). A data set
member created by the DB2 precompiler that
contains information about SQL statements.
DBRMs are used in the bind process.

DATABASE 2 Interactive (DB2I). The DB2
facility that provides for the execution of SQL
statements, DB2 (operator) commands,
programmer commands, and utility invocation.

data currency. The state in which data retrieved
into a host variable in your program is a copy of
data in the base table.

data definition name (DD name). The name of
a data definition (DD) statement that corresponds
to a data control block containing the same name.

Data Language/I (DL/I). The IMS data
manipulation language; a common high-level
interface between a user application and IMS.

data partition. A VSAM data set that is
contained within a partitioned table space.

data sharing. The ability of two or more DB2
subsystems to directly access and change a
single set of data.

data sharing group. A collection of one or more
DB2 subsystems that directly access and change
the same data while maintaining data integrity.

data sharing member. A DB2 subsystem
assigned by XCF services to a data sharing
group.

data type. An attribute of columns, literals, host
variables, special registers, and the results of
functions and expressions.

106 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

date. A three-part value that designates a day,
month, and year.

date duration. A decimal integer that represents
a number of years, months, and days.

datetime value. A value of the data type DATE,
TIME, or TIMESTAMP.

DBA. Database administrator.

DBCS. Double-byte character set.

DBD. Database descriptor.

DBMS. Database management system.

DBRM. Database request module.

DB2 catalog. Tables maintained by DB2 that
contain descriptions of DB2 objects such as
tables, views, and indexes.

DB2 command. An instruction to the DB2
subsystem allowing a user to start or stop DB2, to
display information on current users, to start or
stop databases, to display information on the
status of databases, and so on.

DB2I. DATABASE 2 Interactive.

DB2 private protocol access. A method of
accessing distributed data by which you can direct
a query to another DB2 system by using an alias
or a three-part name to identify the DB2
subsystems at which the statements are executed.
Contrast with DRDA access.

DB2 private protocol connection. A DB2
private connection of the application process. See
also private connection.

DCLGEN. Declarations generator.

DDF. Distributed data facility.

DD name. Data definition name.

deadlock. Unresolvable contention for the use of
a resource such as a table or an index.

declarations generator (DCLGEN). A
subcomponent of DB2 that generates SQL table

declarations and COBOL, C, or PL/I data structure
declarations that conform to the table. The
declarations are generated from DB2 system
catalog information. DCLGEN is also a DSN
subcommand.

default value. A predetermined value, attribute,
or option that is assumed when no other is
explicitly specified.

degree of parallelism. The number of
concurrently executed operations that are initiated
to process a query.

delimited identifier. A sequence of characters
enclosed within quotation marks ("). The sequence
must consist of a letter followed by zero or more
characters, each of which is a letter, digit, or the
underscore character (_).

delimiter token. A string constant, a delimited
identifier, an operator symbol, or any of the special
characters shown in syntax diagrams.

dependent. An object (row, table, or table space)
is a dependent if it has at least one parent. The
object is also said to be a dependent (row, table,
or table space) of its parent. See parent row,
parent table, parent table space.

direct access storage device (DASD). A device
in which access time is independent of the
location of the data.

distributed data facility (DDF). A set of DB2
components through which DB2 communicates
with another RDBMS.

distributed relational database architecture
(DRDA). A connection protocol for distributed
relational database processing that is used by
IBM’s relational database products. DRDA
includes protocols for communication between an
application and a remote relational database
management system, and for communication
between relational database management
systems.

DL/I. Data Language/I. The IMS data
manipulation language; a common high-level
interface between a user application and IMS.

Glossary 107

double-byte character set (DBCS). A set of
characters used by national languages such as
Japanese and Chinese that have more symbols
than can be represented by a single byte. Each
character is two bytes in length, and therefore
requires special hardware to be displayed or
printed.

drain. To acquire a locked resource by quiescing
access to that object.

drain lock. A lock on a claim class which
prevents a claim from occurring.

DRDA. Distributed relational database
architecture.

DRDA access. A method of accessing
distributed data by which you can explicitly
connect to another location, using an SQL
statement, to execute packages that have been
previously bound at that location. The SQL
CONNECT statement is used to identify
application servers, and SQL statements are
executed using packages that were previously
bound at those servers. Contrast with DB2 private
protocol access.

DSN. (1) The default DB2 subsystem name. (2)
The name of the TSO command processor of
DB2. (3) The first three characters of DB2 module
and macro names.

duration. A number that represents an interval of
time. See date duration, labeled duration, and time
duration.

dynamic SQL. SQL statements that are
prepared and executed within an application
program while the program is executing. In
dynamic SQL, the SQL source is contained in host
language variables rather than being coded into
the application program. The SQL statement can
change several times during the application
program’s execution.

E

EBCDIC. Extended binary coded decimal
interchange code. An encoding scheme used to

represent character data in the MVS, VM, VSE,
and OS/400 environments. Contrast with ASCII.

embedded SQL. SQL statements coded within
an application program. See static SQL.

equi-join. A join operation in which the
join-condition has the form expression =
expression.

escape character. The symbol used to enclose
an SQL delimited identifier. The escape character
is the quotation mark (″), except in COBOL
applications, where the symbol (either a quotation
mark or an apostrophe) can be assigned by the
user.

EUR. IBM European Standards.

execution context. In SQLJ, a Java object that
can be used to control the execution of SQL
statements.

explicit hierarchical locking. Locking used to
make the parent/child relationship between
resources known to IRLM. This is done to avoid
global locking overhead when no inter-DB2
interest exists on a resource.

expression. An operand or a collection of
operators and operands that yields a single value.

F

false global lock contention. A contention
indication from the coupling facility when multiple
lock names are hashed to the same indicator and
when there is no real contention.

fixed-length string. A character or graphic string
whose length is specified and cannot be changed.
Contrast with varying-length string.

foreign key. A key that is specified in the
definition of a referential constraint. Because of
the foreign key, the table is a dependent table.
The key must have the same number of columns,
with the same descriptions, as the primary key of
the parent table.

108 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

full outer join. The result of a join operation that
includes the matched rows of both tables being
joined and preserves the unmatched rows of both
tables. See also join.

function. A scalar function or column function.
Same as built-in function.

G

global lock. A lock that provides both intra-DB2
concurrency control and inter-DB2 concurrency
control, that is, the scope of the lock is across all
the DB2s of a data sharing group.

global lock contention. Conflicts on locking
requests between different DB2 members of a
data sharing group regarding attempts to serialize
shared resources.

graphic string. A sequence of DBCS characters.

gross lock. The shared, update, or exclusive
mode locks on a table, partition, or table space.

group name. The MVS XCF identifier for a data
sharing group.

group restart. A restart of at least one member
of a data sharing group after either locks or the
shared communications area have been lost.

H

help panel. A screen of information presenting
tutorial text to assist a user at the terminal.

host expression. A Java variable or expression
that is referenced by SQL clauses in an SQLJ
application program.

host identifier. A name declared in the host
program.

host language. A programming language in
which you can embed SQL statements.

host program. An application program written in
a host language that contains embedded SQL
statements.

host structure. In an application program, a
structure referenced by embedded SQL
statements.

host variable. In an application program, an
application variable referenced by embedded SQL
statements.

I

IFP. IMS Fast Path.

IMS. Information Management System.

IMS attachment facility. A DB2 subcomponent
that uses MVS Subsystem Interface (SSI)
protocols and cross-memory linkage to process
requests from IMS to DB2 and to coordinate
resource commitment.

index. A set of pointers that are logically ordered
by the values of a key. Indexes can provide faster
access to data and can enforce uniqueness on
the rows in a table.

index key. The set of columns in a table used to
determine the order of index entries.

index partition. A VSAM data set that is
contained within a partitioned index space.

index space. A page set used to store the
entries of one index.

indicator variable. A variable used to represent
the null value in an application program. If the
value for the selected column is null, a negative
value is placed in the indicator variable.

indoubt. A status of a unit of recovery. If DB2
fails after it has finished its phase 1 commit
processing and before it has started phase 2, only
the commit coordinator knows if this unit of
recovery is to be committed or rolled back. At
emergency restart, if DB2 does not have the
information needed to make this decision, its unit
of recovery is indoubt until DB2 obtains this
information from the coordinator.

indoubt resolution. The process of resolving the
status of an indoubt logical unit of work to either
the committed or the rollback state.

Glossary 109

inner join. The result of a join operation that
includes only the matched rows of both tables
being joined. See also join.

Interactive System Productivity Facility
(ISPF). An IBM licensed program that provides
interactive dialog services.

internal resource lock manager (IRLM). An
MVS subsystem used by DB2 to control
communication and database locking.

inter-DB2 R/W interest. A property of data in a
table space, index, or partition that has been
opened by more than one member of a data
sharing group and that has been opened for
writing by at least one of those members.

IRLM. internal resource lock manager.

ISO. International Standards Organization.

isolation level. The degree to which a unit of
work is isolated from the updating operations of
other units of work. See also cursor stability,
repeatable read, uncommitted read, and read
stability.

ISPF/PDF. Interactive System Productivity
Facility/Program Development Facility.

iterator. In SQLJ, an object that contains the
result set of a query. An iterator is equivalent to a
cursor in other host languages.

iterator declaration clause. In SQLJ, a
statement that generates an iterator declaration
class. An iterator is an object of an iterator
declaration class.

J

Java Database Connectivity (JDBC). A Sun
Microsystems database application programming
interface (API) for Java that allows programs to
access database management systems by using
callable SQL. JDBC does not require the use of
an SQL preprocessor. In addition, JDBC provides
an architecture that lets users add modules called

database drivers, which link the application to their
choice of database management systems at run
time.

JCL. Job control language.

JDBC. Java Database Connectivity.

JIS. Japanese Industrial Standard.

join. A relational operation that allows retrieval of
data from two or more tables based on matching
column values. See also full outer join, inner join,
left outer join, outer join, right outer join, equi-join.

K

KB. Kilobyte (1024 bytes).

key. A column or an ordered collection of
columns identified in the description of a table,
index, or referential constraint.

L

labeled duration. A number that represents a
duration of years, months, days, hours, minutes,
seconds, or microseconds.

left outer join. The result of a join operation that
includes the matched rows of both tables being
joined, and preserves the unmatched rows of the
first table. See also join.

link-edit. To create a loadable computer program
using a linkage editor.

L-lock. See logical lock.

load module. A program unit that is suitable for
loading into main storage for execution. The
output of a linkage editor.

local. Refers to any object maintained by the
local DB2 subsystem. A local table, for example, is
a table maintained by the local DB2 subsystem.
Contrast with remote.

110 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

#
#
#
#
#
#
#

#
#
#

#

local lock. A lock that provides intra-DB2
concurrency control, but does not provide
inter-DB2 concurrency control; that is, its scope is
a single DB2.

local subsystem. The unique RDBMS to which
the user or application program is directly
connected (in the case of DB2, by one of the DB2
attachment facilities).

location name. The name by which DB2 refers
to a particular DB2 subsystem in a network of
subsystems. Contrast with LU name.

lock. A means of controlling concurrent events or
access to data. DB2 locking is performed by the
IRLM.

lock duration. The interval over which a DB2
lock is held.

lock escalation. The promotion of a lock from a
row or page lock to a table space lock because
the number of page locks concurrently held on a
given resource exceeds a preset limit.

locking. The process by which the integrity of
data is ensured. Locking prevents concurrent
users from accessing inconsistent data.

lock mode. A representation for the type of
access concurrently running programs can have to
a resource held by a DB2 lock.

lock object. The resource that is controlled by a
DB2 lock.

lock parent. For explicit hierarchical locking, a
lock held on a resource that has child locks that
are lower in the hierarchy; usually the table space
or partition intent locks are the parent locks.

lock promotion. The process of changing the
size or mode of a DB2 lock to a higher level.

lock size. The amount of data controlled by a
DB2 lock on table data; the value can be a row, a
page, a table, or a table space.

logical index partition. The set of all keys that
reference the same data partition.

logical lock. The lock type used by transactions
to control intra- and inter-DB2 data concurrency
between transactions.

logical unit. An access point through which an
application program accesses the SNA network in
order to communicate with another application
program.

logical unit of work (LUW). In IMS, the
processing that program performs between
synchronization points.

LU name. From logical unit name, the name by
which VTAM refers to a node in a network.
Contrast with location name.

LUW. Logical unit of work.

M

mixed data string. A character string that can
contain both single-byte and double-byte
characters.

modify locks. An L-lock or P-lock that has been
specifically requested as having the MODIFY
attribute. A list of these active locks are kept at all
times in the coupling facilitylock structure. If the
requesting DB2 fails, that DB2’s modify locks are
converted to retained locks.

MPP. Message processing program (IMS).

multi-site update. Distributed relational
database processing in which data is updated in
more than one location within a single unit of
work.

MVS. Multiple Virtual Storage.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

MVS/XA. Multiple Virtual Storage/Extended
Architecture.

N

negotiable lock. A lock whose mode can be
downgraded, by agreement among contending

Glossary 111

users, to be compatible to all. A physical lock is an
example of a negotiable lock.

nonpartitioned index. Any index that is not a
partitioned index.

NUL. In C, a single character that denotes the
end of the string.

null. A special value that indicates the absence
of information.

NUL-terminated host variable. A varying-length
host variable in which the end of the data is
indicated by the presence of a NUL terminator.

NUL terminator. In C, the value that indicates
the end of a string. For character strings, the NUL
terminator is X'00'.

O

ordinary identifier. An uppercase letter followed
by zero or more characters, each of which is an
uppercase letter, a digit, or the underscore
character. An ordinary identifier must not be a
reserved word.

ordinary token. A numeric constant, an ordinary
identifier, a host identifier, or a keyword.

outer join. The result of a join operation that
includes the matched rows of both tables being
joined and preserves some or all of the
unmatched rows of the tables being joined. See
also join.

P

package. Also application package. An object
containing a set of SQL statements that have
been bound statically and that are available for
processing.

page. A unit of storage within a table space (4KB
or 32KB) or index space (4KB). In a table space,
a page contains one or more rows of a table.

page set. A table space or index space
consisting of pages that are either 4KB or 32KB in
size. Each page set is made from a collection of
VSAM data sets.

parent row. A row whose primary key value is
the foreign key value of a dependent row.

parent table. A table whose primary key is
referenced by the foreign key of a dependent
table.

parent table space. A table space that contains
a parent table. A table space containing a
dependent of that table is a dependent table
space.

partitioned page set. A partitioned table space
or an index space. Header pages, space map
pages, data pages, and index pages reference
data only within the scope of the partition.

partitioned table space. A table space
subdivided into parts (based upon index key
range), each of which may be processed by
utilities independently.

partner logical unit. An access point in the SNA
network that is connected to the local DB2 by way
of a VTAM conversation.

PCT. Program control table (CICS).

piece. A data set of a nonpartitioned page set.

physical consistency. The state of a page that
is not in a partially changed state.

physical lock contention. Conflicting states of
the requesters for a physical lock. See negotiable
lock.

physical lock (P-lock). A lock type used only by
data sharing that is acquired by DB2 to provide
consistency of data cached in different DB2
subsystems.

plan. See application plan.

plan allocation. The process of allocating DB2
resources to a plan in preparation to execute it.

112 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

plan member. The bound copy of a DBRM
identified in the member clause.

plan name. The name of an application plan.

P-lock. See physical lock.

point of consistency. A time when all
recoverable data an application accesses is
consistent with other data. Synonymous with sync
point or commit point.

precision. In SQL, the total number of digits in a
decimal number (called the size in the C
language). In the C language, the number of digits
to the right of the decimal point (called the scale in
SQL). The DB2 library uses the SQL definitions.

precompilation. A processing of application
programs containing SQL statements that takes
place before compilation. SQL statements are
replaced with statements that are recognized by
the host language compiler. Output from this
precompilation includes source code that can be
submitted to the compiler and the database
request module (DBRM) that is input to the bind
process.

predicate. An element of a search condition that
expresses or implies a comparison operation.

prepared SQL statement. A named object that
is the executable form of an SQL statement that
has been processed by the PREPARE statement.

primary index. An index that enforces the
uniqueness of a primary key.

primary key. A unique, nonnull key that is part of
the definition of a table. A table cannot be defined
as a parent unless it has a unique key or primary
key.

private connection. A communications
connection that is specific to DB2.

Q

QMF. Query Management Facility.

R

RACF. OS/VS2 MVS Resource Access Control
Facility.

RCT. Resource control table (CICS attachment
facility).

RDB. See relational database.

RDBMS. Relational database management
system.

RDBNAM. See relational database name.

read stability (RS). An isolation level that is
similar to repeatable read but does not completely
isolate an application process from all other
concurrently executing application processes.
Under level RS, an application that issues the
same query more than once might read additional
rows, known as phantom rows, that were inserted
and committed by a concurrently executing
application process.

rebind. To create a new application plan for an
application program that has been bound
previously. If, for example, you have added an
index for a table accessed by your application,
you must rebind the application in order to take
advantage of that index.

record. The storage representation of a row or
other data.

recovery. The process of rebuilding databases
after a system failure.

referential constraint. The requirement that
nonnull values of a designated foreign key are
valid only if they equal values of the primary key
of a designated table.

referential integrity. The condition that exists
when all intended references from data in one
column of a table to data in another column of the
same or a different table are valid. Maintaining
referential integrity requires enforcing referential
constraints on all LOAD, RECOVER, INSERT,
UPDATE, and DELETE operations.

Glossary 113

relational database. A database that can be
perceived as a set of tables and manipulated in
accordance with the relational model of data.

relational database management system
(RDBMS). A relational database manager that
operates consistently across supported IBM
systems.

relational database name (RDBNAM). A unique
identifier for an RDBMS within a network. In DB2,
this must be the value in the LOCATION column
of table SYSIBM.LOCATIONS in the CDB. DB2
publications refer to the name of another RDBMS
as a LOCATION value or a location name.

remote. Refers to any object maintained by a
remote DB2 subsystem; that is, by a DB2
subsystem other than the local one. A remote
view, for instance, is a view maintained by a
remote DB2 subsystem. Contrast with local.

remote subsystem. Any RDBMS, except the
local subsystem, with which the user or application
can communicate. The subsystem need not be
remote in any physical sense, and may even
operate on the same processor under the same
MVS system.

repeatable read (RR). The isolation level that
provides maximum protection from other executing
application programs. When an application
program executes with repeatable read protection,
rows referenced by the program cannot be
changed by other programs until the program
reaches a commit point.

request commit. The vote submitted to the
prepare phase if the participant has modified data
and is prepared to commit or roll back.

requester. Also application requester (AR). The
source of a request to a remote RDBMS, the
system that requests the data.

resource control table (RCT). A construct of the
CICS attachment facility, created by site-provided
macro parameters, that defines authorization and
access attributes for transactions or transaction
groups.

resource limit facility (RLF). A portion of DB2
code that prevents dynamic manipulative SQL
statements from exceeding specified time limits.

result set. The set of rows returned to a client
application by a stored procedure.

result table. The set of rows specified by a
SELECT statement.

retained lock. A MODIFY lock that was held by
a DB2 when that DB2 failed. The lock is retained
in the coupling facility lock structure across a DB2
failure.

right outer join. The result of a join operation
that includes the matched rows of both tables
being joined and preserves the unmatched rows of
the second join operand. See also join.

RLF. Resource limit facility.

rollback. The process of restoring data changed
by SQL statements to the state at its last commit
point. All locks are freed. Contrast with commit.

row. The horizontal component of a table. A row
consists of a sequence of values, one for each
column of the table.

RRSAF. Recoverable Resource Manager
Services attachment facility. A DB2 subcomponent
that uses OS/390 Transaction Management and
Recoverable Resource Manager Services to
coordinate resource commitment between DB2
and all other resource managers that also use
OS/390 RRS in an OS/390 system.

S

scalar function. An SQL operation that
produces a single value from another value and is
expressed as a function name followed by a list of
arguments enclosed in parentheses. See also
column function.

scale. In SQL, the number of digits to the right of
the decimal point (called the precision in the C
language). The DB2 library uses the SQL
definition.

114 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

search condition. A criterion for selecting rows
from a table. A search condition consists of one or
more predicates.

sequential data set. A non-DB2 data set whose
records are organized on the basis of their
successive physical positions, such as on
magnetic tape. Several of the DB2 database
utilities require sequential data sets.

serialized profile. A Java object that contains
SQL statements and descriptions of host
variables. A serialized profile is produced by the
SQLJ translator. The SQLJ translator produces a
serialized profile for each connection context.

server. Also application server (AS). The target
for a request from a remote RDBMS, the RDBMS
that provides the data.

shared lock. A lock that prevents concurrently
executing application processes from changing
data, but not from reading data.

shift-in character. A special control character
(X'0F') used in EBCDIC systems to denote that
the following bytes represent SBCS characters.
See shift-out character.

shift-out character. A special control character
(X'0E') used in EBCDIC systems to denote that
the following bytes, up to the next shift-in control
character, represent DBCS characters.

single-precision floating point number. A
32-bit approximate representation of a real
number.

size. In the C language, the total number of
digits in a decimal number (called the precision in
SQL). The DB2 library uses the SQL definition.

source program. A set of host language
statements and SQL statements that is processed
by an SQL precompiler.

space. A sequence of one or more blank
characters.

SPUFI. SQL Processor Using File Input. A facility
of the TSO attachment subcomponent that

enables the DB2I user to execute SQL statements
without embedding them in an application
program.

SQL. Structured Query Language.

SQL authorization ID (SQL ID). The
authorization ID that is used for checking dynamic
SQL statements in some situations.

SQL communication area (SQLCA). A structure
used to provide an application program with
information about the execution of its SQL
statements.

SQL descriptor area (SQLDA). A structure that
describes input variables, output variables, or the
columns of a result table.

SQL escape character. The symbol used to
enclose an SQL delimited identifier. This symbol is
the quotation mark (″). See escape character.

SQL ID. SQL authorization ID.

SQL return code. Either SQLCODE or
SQLSTATE.

SQLCA. SQL communication area.

SQLDA. SQL descriptor area.

SQL/DS. SQL/Data System. Also known as
DB2/VSE & VM.

SQLJ. An interface for including embedded SQL
in a Java application program.

static SQL. SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is
executed). After being prepared, the SQL
statement does not change (although values of
host variables specified by the statement might
change).

storage group. A named set of DASD volumes
on which DB2 data can be stored.

stored procedure. A user-written application
program, that can be invoked through the use of
the SQL CALL statement.

Glossary 115

string. See character string or graphic string.

Structured Query Language (SQL). A
standardized language for defining and
manipulating data in a relational database.

subquery. A SELECT statement within the
WHERE or HAVING clause of another SQL
statement; a nested SQL statement.

subselect. That form of a query that does not
include ORDER BY clause, UPDATE clause, or
UNION operators.

substitution character. A unique character that
is substituted during character conversion for any
characters in the source program that do not have
a match in the target coding representation.

subsystem. A distinct instance of a RDBMS.

sync point. See commit point.

synonym. In SQL, an alternative name for a
table or view. Synonyms can only be used to refer
to objects at the subsystem in which the synonym
is defined.

system administrator. The person having the
second highest level of authority within DB2.
System administrators make decisions about how
DB2 is to be used and implement those decisions
by choosing system parameters. They monitor the
system and change its characteristics to meet
changing requirements and new data processing
goals.

system conversation. The conversation that two
DB2s must establish to process system messages
before any distributed processing can begin.

T

table. A named data object consisting of a
specific number of columns and some number of
unordered rows. Synonymous with base table or
temporary table.

table check constraint. A user-defined
constraint that specifies the values that specific
columns of a base table can contain.

table space. A page set used to store the
records in one or more tables.

task control block (TCB). A control block used
to communicate information about tasks within an
address space that are connected to DB2. An
address space can support many task
connections (as many as one per task), but only
one address space connection. See address
space connection.

TCB. MVS task control block.

temporary table. A table created by the SQL
CREATE GLOBAL TEMPORARY TABLE
statement that is used to hold temporary data.
Contrast with result table and temporary table.

thread. The DB2 structure that describes an
application’s connection, traces its progress,
processes resource functions, and delimits its
accessibility to DB2 resources and services. Most
DB2 functions execute under a thread structure.
See also allied thread and database access
thread.

three-part name. The full name of a table, view,
or alias. It consists of a location name,
authorization ID, and an object name separated
by a period.

time. A three-part value that designates a time of
day in hours, minutes, and seconds.

time duration. A decimal integer that represents
a number of hours, minutes, and seconds.

time-sharing option (TSO). Provides interactive
time sharing from remote terminals.

timestamp. A seven-part value that consists of a
date and time expressed in years, months, days,
hours, minutes, seconds, and microseconds.

transaction lock. A lock used to control
concurrent execution of SQL statements.

TSO. Time-sharing option.

TSO attachment facility. A DB2 facility
consisting of the DSN command processor and

116 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

DB2I. Applications that are not written for the
CICS or IMSenvironments can run under the TSO
attachment facility.

type 1 indexes. Indexes that were created by a
release of DB2 before DB2 Version 4 or that are
specified as type 1 indexes in Version 4. Contrast
with type 2 indexes.

type 2 indexes. A new type of indexes available
in Version 4. They differ from type 1 indexes in
several respects; for example, they are the only
indexes allowed on a table space that uses row
locks.

V

value. The smallest unit of data manipulated in
SQL.

variable. A data element that specifies a value
that can be changed. A COBOL elementary data
item is an example of a variable. Contrast with
constant.

varying-length string. A character or graphic
string whose length varies within set limits.
Contrast with fixed-length string.

version. A member of a set of similar programs,
DBRMs, or packages.

A version of a program is the source code
produced by precompiling the program. The
program version is identified by the program
name and a timestamp (consistency token).
A version of a DBRM is the DBRM produced
by precompiling a program. The DBRM version
is identified by the same program name and
timestamp as a corresponding program
version.
A version of a package is the result of
binding a DBRM within a particular database
system. The package version is identified by
the same program name and consistency
token as the DBRM.

view. An alternative representation of data from
one or more tables. A view can include all or some
of the columns contained in tables on which it is
defined.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA
network.

VSAM. Virtual storage access method.

VTAM. MVS Virtual telecommunication access
method.

Glossary 117

118 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Bibliography

DB2 for OS/390 Version 5

v Administration Guide, SC26-8957

v Application Programming and SQL Guide,
SC26-8958

v Call Level Interface Guide and Reference,
SC26-8959

v Command Reference, SC26-8960

v Data Sharing: Planning and Administration,
SC26-8961

v Data Sharing Quick Reference Card,
SX26-3841

v Diagnosis Guide and Reference, LY27-9659

v Diagnostic Quick Reference Card, LY27-9660

v Installation Guide, GC26-8970

v Application Programming Guide and Reference
for Java™, SC26-9547

v Licensed Program Specifications, GC26-8969

v Messages and Codes, GC26-8979

v Reference for Remote DRDA Requesters and
Servers, SC26-8964

v Reference Summary, SX26-3842

v Release Guide, SC26-8965

v SQL Reference, SC26-8966

v Utility Guide and Reference, SC26-8967

v What's New?, GC26-8971

v Program Directory

DB2 PM for OS/390 Version 5

v Batch User’s Guide, SC26-8991

v Command Reference, SC26-8987

v General Information, GC26-8982

v Getting Started on the Workstation, SC26-8989

v Master Index, SC26-8984

v Messages Manual, SC26-8988

v Online Monitor User’s Guide, SC26-8990

v Report Reference Volume 1, SC26-8985

v Report Reference Volume 2, SC26-8986

v Program Directory

Ada/370
v IBM Ada/370 Language Reference, SC09-1297
v IBM Ada/370 Programmer's Guide, SC09-1414
v IBM Ada/370 SQL Module Processor for DB2

Database Manager User's Guide, SC09-1450

APL2
v APL2 Programming Guide, SH21-1072
v APL2 Programming: Language Reference,

SH21-1061
v APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

AS/400
v DB2 for OS/400 SQL Programming, SC41-4611
v DB2 for OS/400 SQL Reference, SC41-4612

BASIC
v IBM BASIC/MVS Language Reference,

GC26-4026
v IBM BASIC/MVS Programming Guide,

SC26-4027

C/370
v IBM SAA AD/Cycle C/370 Programming Guide,

SC09-1356
v IBM SAA AD/Cycle C/370 Programming Guide

for Language Environment/370, SC09-1840
v IBM SAA AD/Cycle C/370 User's Guide,

SC09-1763
v SAA CPI C Reference, SC09-1308

Character Data Representation Architecture
v Character Data Representation Architecture

Overview, GC09-2207
v Character Data Representation Architecture

Reference, SC09-2190

CICS/ESA
v CICS/ESA Application Programming Guide,

SC33-1169
v CICS/ESA Application Programming Reference,

SC33-1170
v CICS/ESA CICS - RACF Security Guide,

SC33-1185
v CICS/ESA CICS-Supplied Transactions,

SC33-1168

© Copyright IBM Corp. 1998 119

#
#
#
#

v CICS/ESA Customization Guide, SC33-1165
v CICS/ESA Data Areas, LY33-6083
v CICS/ESA Installation Guide, SC33-1163
v CICS/ESA Intercommunication Guide,

SC33-1181
v CICS/ESA Messages and Codes, SC33-1177
v CICS/ESA Operations and Utilities Guide,

SC33-1167
v CICS/ESA Performance Guide, SC33-1183
v CICS/ESA Problem Determination Guide,

SC33-1176
v CICS/ESA Resource Definition Guide,

SC33-1166
v CICS/ESA System Definition Guide, SC33-1164
v CICS/ESA System Programming Reference,

GC33-1171

CICS/MVS
v CICS/MVS Application Programming Primer,

SC33-0139
v CICS/MVS Application Programmer's

Reference, SC33-0512
v CICS/MVS Facilities and Planning Guide,

SC33-0504
v CICS/MVS Installation Guide, SC33-0506
v CICS/MVS Operations Guide, SC33-0510
v CICS/MVS Problem Determination Guide,

SC33-0516
v CICS/MVS Resource Definition (Macro),

SC33-0509
v CICS/MVS Resource Definition (Online),

SC33-0508

IBM C/C++ for MVS/ESA or OS/390
v IBM C/C++ for MVS/ESA Library Reference,

SC09-1995
v IBM C/C++ for MVS/ESA Programming Guide,

SC09-1994
v IBM C/C++ for OS/390 User's Guide,

SC09-2361

IBM COBOL for MVS & VM
v IBM COBOL for MVS & VM Language

Reference, SC26-4769
v IBM COBOL for MVS & VM Programming

Guide, SC26-4767

Conversion Guides
v DBMS Conversion Guide: DATACOM/DB to

DB2, GH20-7564

v DBMS Conversion Guide: IDMS to DB2,
GH20-7562

v DBMS Conversion Guide: Model 204 to DB2 or
SQL/DS, GH20-7565

v DBMS Conversion Guide: VSAM to DB2,
GH20-7566

v IMS-DB and DB2 Migration and Coexistence
Guide, GH21-1083

Cooperative Development Environment
v CoOperative Development Environment/370:

Debug Tool, SC09-1623

DATABASE 2 for Common Servers
v DATABASE 2 Administration Guide for common

servers, S20H-4580
v DATABASE 2 Application Programming Guide

for common servers, S20H-4643
v DATABASE 2 Software Developer's Kit for AIX:

Building Your Applications, S20H-4780
v DATABASE 2 Software Developer's Kit for

OS/2: Building Your Applications, S20H-4787
v DATABASE 2 SQL Reference for common

servers, S20H-4665
v DATABASE 2 Call Level Interface Guide and

Reference for common servers, S20H-4644

Data Extract (DXT)
v Data Extract Version 2: General Information,

GC26-4666
v Data Extract Version 2: Planning and

Administration Guide, SC26-4631

DataPropagator NonRelational
v DataPropagator NonRelational MVS/ESA

Administration Guide, SH19-5036
v DataPropagator NonRelational MVS/ESA

Reference, SH19-5039

DataPropagator Relational
v DataPropagator Relational User's Guide,

SC26-3399
v IBM An Introduction to DataPropagator

Relational, GC26-3398

Data Facility Data Set Services
v Data Facility Data Set Services: User's Guide

and Reference, SC26-4125

Database Design

120 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

v DB2 Database Design and Implementation
Using DB2, SH24-6101

v DB2 Design and Development Guide, Gabrielle
Wiorkowski and David Kull, Addison Wesley

v Handbook of Relational Database Design, C.
Fleming and B Von Halle, Addison Wesley

v Principles of Database Systems, Jeffrey D.
Ullman, Computer Science Press

DataHub
v IBM DataHub General Information, GC26-4874

DB2 Universal Database
v DB2 Universal Database Administration Guide,

S10J-8157
v DB2 Universal Database API Reference,

S10J-8167
v DB2 Universal Database Application

Development Guide, SC09-2845
v DB2 Universal Database Building Applications

for UNIX Environments, S10J-8161
v DB2 Universal Database Building Applications

for Windows and OS/2 Environments,
S10J-8160

v DB2 Universal Database CLI Guide and
Reference, S10J-8159

v DB2 Universal Database SQL Reference,
S10J-8165

Device Support Facilities
v Device Support Facilities User's Guide and

Reference, GC35-0033

DFSMS/MVS
v DFSMS/MVS: Access Method Services for the

Integrated Catalog, SC26-4906
v DFSMS/MVS: Access Method Services for

VSAM Catalogs, SC26-4905
v DFSMS/MVS: Administration Reference for

DFSMSdss, SC26-4929
v DFSMS/MVS: DFSMShsm Managing Your Own

Data, SH21-1077
v DFSMS/MVS: Diagnosis Reference for

DFSMSdfp, LY27-9606
v DFSMS/MVS: Macro Instructions for Data Sets,

SC26-4913
v DFSMS/MVS: Managing Catalogs, SC26-4914
v DFSMS/MVS: Program Management,

SC26-4916

v DFSMS/MVS: Storage Administration
Reference for DFSMSdfp, SC26-4920

v DFSMS/MVS: Using Advanced Services for
Data Sets, SC26-4921

v DFSMS/MVS: Utilities, SC26-4926
v MVS/DFP: Managing Non-VSAM Data Sets,

SC26-4557

DFSORT
v DFSORT Application Programming: Guide,

SC33-4035

Distributed Relational Database
v Data Stream and OPA Reference, SC31-6806
v Distributed Relational Database Architecture:

Application Programming Guide, SC26-4773
v Distributed Relational Database Architecture:

Connectivity Guide, SC26-4783
v Distributed Relational Database Architecture:

Evaluation and Planning Guide, SC26-4650
v Distributed Relational Database Architecture:

Problem Determination Guide, SC26-4782
v Distributed Relational Database: Every

Manager's Guide, GC26-3195
v IBM SQL Reference, SC26-8416
v Open Group Technical Standard (the Open

Group presently makes the following books
available through their website at
www.opengroup.org):

– DRDA Volume 1: Distributed Relational
Database Architecture (DRDA), ISBN
1-85912-295-7

– DRDA Volume 3: Distributed Database
Management (DDM) Architecture, ISBN
1-85912-206-X

Education
v Dictionary of Computing, SC20-1699
v IBM Enterprise Systems Training Solutions

Catalog, GR28-5467

Enterprise System/9000 and Enterprise
System/3090
v Enterprise System/9000 and Enterprise

System/3090 Processor Resource/System
Manager Planning Guide, GA22-7123

FORTRAN

Bibliography 121

v VS FORTRAN Version 2: Language and Library
Reference, SC26-4221

v VS FORTRAN Version 2: Programming Guide
for CMS and MVS, SC26-4222

High Level Assembler
v High Level Assembler/MVS and VM and VSE

Language Reference, SC26-4940
v High Level Assembler/MVS and VM and VSE

Programmer's Guide, SC26-4941

Parallel Sysplex Library
v System/390 MVS Sysplex Application Migration,

GC28-1211
v System/390 MVS Sysplex Hardware and

Software Migration, GC28-1210
v System/390 MVS Sysplex Overview: An

Introduction to Data Sharing and Parallelism,
GC28-1208

v System/390 MVS Sysplex Systems
Management, GC28-1209

v System/390 MVS 9672/9674 System Overview,
GA22-7148

ICSF/MVS
v ICSF/MVS General Information, GC23-0093

IMS/ESA
v IMS Batch Terminal Simulator General

Information, GH20-5522
v IMS/ESA Administration Guide: System,

SC26-8013
v IMS/ESA Application Programming: Database

Manager, SC26-8727
v IMS/ESA Application Programming: Design

Guide, SC26-8016
v IMS/ESA Application Programming: Transaction

Manager, SC26-8729
v IMS/ESA Customization Guide, SC26-8020
v IMS/ESA Installation Volume 1: Installation and

Verification, SC26-8023
v IMS/ESA Installation Volume 2: System

Definition and Tailoring, SC26-8024
v IMS/ESA Messages and Codes, SC26-8028
v IMS/ESA Operator's Reference, SC26-8030
v IMS/ESA Utilities Reference: System,

SC26-8035

ISPF

v ISPF Version 4 Messages and Codes,
SC34-4450

v ISPF Version 4 for MVS Dialog Management
Guide, SC34-4213

v ISPF/PDF Version 4 for MVS Guide and
Reference, SC34-4258

v ISPF and ISPF/PDF Version 4 for MVS
Planning and Customization, SC34-4134

Language Environment for MVS & VM
v Language Environment for MVS & VM

Concepts Guide, GC26-4786
v Language Environment for MVS & VM

Debugging and Run-Time Messages Guide,
SC26-4829

v Language Environment for MVS & VM
Installation and Customization, SC26-4817

v Language Environment for MVS & VM
Programming Guide, SC26-4818

v Language Environment for MVS & VM
Programming Reference, SC26-3312

MVS/ESA
v MVS/ESA Analyzing Resource Measurement

Facility Monitor I and Monitor II Reference and
User's Guide, LY28-1007

v MVS/ESA Analyzing Resource Measurement
Facility Monitor III Reference and User's Guide,
LY28-1008

v MVS/ESA Application Development Reference:
Assembler Callable Services for OpenEdition
MVS, SC23-3020

v MVS/ESA Data Administration: Utilities,
SC26-4516

v MVS/ESA Diagnosis: Procedures, LY28-1844
v MVS/ESA Diagnosis: Tools and Service Aids,

LY28-1845
v MVS/ESA Initialization and Tuning Guide,

SC28-1451
v MVS/ESA Initialization and Tuning Reference,

SC28-1452
v MVS/ESA Installation Exits, SC28-1459
v MVS/ESA JCL Reference, GC28-1479
v MVS/ESA JCL User's Guide, GC28-1473
v MVS/ESA JES2 Initialization and Tuning Guide,

SC28-1453
v MVS/ESA MVS Configuration Program,

GC28-1615
v MVS/ESA Planning: Global Resource

Serialization, GC28-1450

122 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

v MVS/ESA Planning: Operations, GC28-1441
v MVS/ESA Planning: Workload Management,

GC28-1493
v MVS/ESA Programming: Assembler Services

Guide, GC28-1466
v MVS/ESA Programming: Assembler Services

Reference, GC28-1474
v MVS/ESA Programming: Authorized Assembler

Services Guide, GC28-1467
v MVS/ESA Programming: Authorized Assembler

Services Reference, Volumes 1-4, GC28-1475,
GC28-1476, GC28-1477, GC28-1478

v MVS/ESA Programming: Extended
Addressability Guide, GC28-1468

v MVS/ESA Programming: Sysplex Services
Guide, GC28-1495

v MVS/ESA Programming: Sysplex Services
Reference, GC28-1496

v MVS/ESA Programming: Workload
Management Services, GC28-1494

v MVS/ESA Routing and Descriptor Codes,
GC28-1487

v MVS/ESA Setting Up a Sysplex, GC28-1449
v MVS/ESA SPL: Application Development Guide,

GC28-1852
v MVS/ESA System Codes, GC28-1486
v MVS/ESA System Commands, GC28-1442
v MVS/ESA System Management Facilities

(SMF), GC28-1457
v MVS/ESA System Messages Volume 1,

GC28-1480
v MVS/ESA System Messages Volume 2,

GC28-1481
v MVS/ESA System Messages Volume 3,

GC28-1482
v MVS/ESA Using the Subsystem Interface,

SC28-1502

Net.Data for OS/390
v Net.Data Language Environment Guide,

http://www.ibm.com/software/net.data/docs
v Net.Data Programming Guide,

http://www.ibm.com/software/net.data/docs
v Net.Data Reference Guide,

http://www.ibm.com/software/net.data/docs

NetView
v NetView Installation and Administration Guide,

SC31-8043
v NetView User's Guide, SC31-8056

ODBC
v ODBC 2.0 Programmer's Reference and SDK

Guide, ISBN 1-55615-658-8
v Inside ODBC, ISBN 1-55615-815-7

OS/390
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Run-Time Library Reference,

SC28-1663
v OS/390 Information Roadmap, GC28-1727
v OS/390 Introduction and Release Guide,

GC28-1725
v OS/390 JES2 Initialization and Tuning Guide,

SC28-1791
v OS/390 JES3 Initialization and Tuning Guide,

SC28-1802
v OS/390 Language Environment for OS/390 &

VM Concepts Guide, GC28-1945
v OS/390 Language Environment for OS/390 &

VM Customization, SC28-1941
v OS/390 Language Environment for OS/390 &

VM Debugging Guide, SC28-1942
v OS/390 Language Environment for OS/390 &

VM Programming Guide, SC28-1939
v OS/390 Language Environment for OS/390 &

VM Programming Reference, SC28-1940
v OS/390 MVS Diagnosis: Procedures,

LY28-1082
v OS/390 MVS Diagnosis: Reference, SY28-1084
v OS/390 MVS Diagnosis: Tools and Service

Aids, LY28-1085
v OS/390 MVS Initialization and Tuning Guide,

SC28-1751
v OS/390 MVS Initialization and Tuning

Reference, SC28-1752
v OS/390 MVS Installation Exits, SC28-1753
v OS/390 MVS JCL Reference, GC28-1757
v OS/390 MVS JCL User's Guide, GC28-1758
v OS/390 MVS Planning: Global Resource

Serialization, GC28-1759
v OS/390 MVS Planning: Operations, GC28-1760
v OS/390 MVS Planning: Workload Management,

GC28-1761
v OS/390 MVS Programming: Assembler

Services Guide, GC28-1762
v OS/390 MVS Programming: Assembler

Services Reference, GC28-1910
v OS/390 MVS Programming: Authorized

Assembler Services Guide, GC28-1763

Bibliography 123

#
#
#
#
#
#

v OS/390 MVS Programming: Authorized
Assembler Services Reference, Volumes 1-4,
GC28-1764, GC28-1765, GC28-1766,
GC28-1767

v OS/390 MVS Programming: Callable Services
for High-Level Languages, GC28-1768

v OS/390 MVS Programming: Extended
Addressability Guide, GC28-1769

v OS/390 MVS Programming: Sysplex Services
Guide, GC28-1771

v OS/390 MVS Programming: Sysplex Services
Reference, GC28-1772

v OS/390 MVS Programming: Workload
Management Services, GC28-1773

v OS/390 MVS Routing and Descriptor Codes,
GC28-1778

v OS/390 MVS Setting Up a Sysplex, GC28-1779
v OS/390 MVS System Codes, GC28-1780
v OS/390 MVS System Commands, GC28-1781
v OS/390 MVS System Messages Volume 1,

GC28-1784
v OS/390 MVS System Messages Volume 2,

GC28-1785
v OS/390 MVS System Messages Volume 3,

GC28-1786
v OS/390 MVS System Messages Volume 4,

GC28-1787
v OS/390 MVS System Messages Volume 5,

GC28-1788
v OS/390 Security Server (RACF) Auditor's

Guide, SC28-1916
v OS/390 Security Server (RACF) Command

Language Reference, SC28-1919
v OS/390 Security Server (RACF) General User's

Guide, SC28-1917
v OS/390 Security Server (RACF) Security

Administrator's Guide, SC28-1915
v OS/390 Security Server (RACF) System

Programmer's Guide, SC28-1913
v OS/390 SMP/E Reference, SC28-1806
v OS/390 SMP/E User's Guide, SC28-1740
v OS/390 RMF User's Guide, SC28-1949
v OS/390 TSO/E CLISTS, SC28-1973
v OS/390 TSO/E Command Reference,

SC28-1969
v OS/390 TSO/E Customization, SC28-1965
v OS/390 TSO/E Messages, GC28-1978
v OS/390 TSO/E Programming Guide,

SC28-1970

v OS/390 TSO/E Programming Services,
SC28-1971

v OS/390 TSO/E REXX Reference, SC28-1975
v OS/390 TSO/E User's Guide, SC28-1968

OS/390 OpenEdition
v OS/390 OpenEdition DCE Administration Guide,

SC28-1584
v OS/390 OpenEdition DCE Introduction,

GC28-1581
v OS/390 R1 OE DCE Messages and Codes,

ST01-0920
v OS/390 OpenEdition Command Reference,

SC28-1892
v OS/390 OpenEdition Messages and Codes,

SC28-1908
v OS/390 OpenEdition Planning, SC28-1890
v OS/390 OpenEdition User's Guide, SC28-1891

PL/I for MVS & VM
v IBM PL/I MVS & VM Language Reference,

SC26-3114
v IBM PL/I MVS & VM Programming Guide,

SC26-3113

OS PL/I
v OS PL/I Programming Language Reference,

SC26-4308
v OS PL/I Programming Guide, SC26-4307

PROLOG
v IBM SAA AD/Cycle Prolog/MVS & VM

Programmer's Guide, SH19-6892

Query Management Facility
v Query Management Facility: Managing QMF for

MVS, SC26-8218
v Query Management Facility: Reference,

SC26-4716
v Query Management Facility: Using QMF,

SC26-8078

Remote Recovery Data Facility
v Remote Recovery Data Facility Program

Description and Operations, LY37-3710

Resource Access Control Facility (RACF)
v External Security Interface (RACROUTE) Macro

Reference for MVS and VM, GC28-1366

124 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

v Resource Access Control Facility (RACF)
Auditor's Guide, SC28-1342

v Resource Access Control Facility (RACF)
Command Language Reference, SC28-0733

v Resource Access Control Facility (RACF)
General Information Manual, GC28-0722

v Resource Access Control Facility (RACF)
General User's Guide, SC28-1341

v Resource Access Control Facility (RACF)
Security Administrator's Guide, SC28-1340

v Recource Access Control Facility (RACF)
System Programmer's Guide, SC28-1343

Storage Management
v MVS/ESA Storage Management Library:

Implementing System-Managed Storage,
SC26-3123

v MVS/ESA Storage Management Library:
Leading an Effective Storage Administration
Group, SC26-3126

v MVS/ESA Storage Management Library:
Managing Data, SC26-3124

v MVS/ESA Storage Management Library:
Managing Storage Groups, SC26-3125

v MVS Storage Management Library: Storage
Management Subsystem Migration Planning
Guide, SC26-4659

System/370 and System/390
v IBM System/370 ESA Principles of Operation,

SA22-7200
v IBM System/390 ESA Principles of Operation,

SA22-7205
v System/390 MVS Sysplex Hardware and

Software Migration, GC28-1210

System Modification Program Extended
(SMP/E)
v System Modification Program Extended

(SMP/E) Reference, SC28-1107
v System Modification Program Extended

(SMP/E) User's Guide, SC28-1302

System Network Architecture (SNA)
v SNA Formats, GA27-3136
v SNA LU 6.2 Peer Protocols Reference,

SC31-6808
v SNA Transaction Programmer's Reference

Manual for LU Type 6.2, GC30-3084

v SNA/Management Services Alert
Implementation Guide, GC31-6809

TCP/IP
v IBM TCP/IP for MVS: Customization &

Administration Guide, SC31-7134
v IBM TCP/IP for MVS: Diagnosis Guide,

LY43-0105
v IBM TCP/IP for MVS: Messages and Codes,

SC31-7132
v IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

TSO Extensions
v TSO/E CLISTS, SC28-1876
v TSO/E Command Reference, SC28-1881
v TSO/E Customization, SC28-1872
v TSO/E Messages, GC28-1885
v TSO/E Programming Guide, SC28-1874
v TSO/E Programming Services, SC28-1875
v TSO/E User's Guide, SC28-1880

VS COBOL II
v VS COBOL II Application Programming Guide

for MVS and CMS, SC26-4045
v VS COBOL II Application Programming:

Language Reference, SC26-4047
v VS COBOL II Installation and Customization for

MVS, SC26-4048

VTAM
v Planning for NetView, NCP, and VTAM,

SC31-8063
v VTAM for MVS/ESA Diagnosis, LY43-0069
v VTAM for MVS/ESA Messages and Codes,

SC31-6546
v VTAM for MVS/ESA Network Implementation

Guide, SC31-6548
v VTAM for MVS/ESA Operation, SC31-6549
v VTAM for MVS/ESA Programming, SC31-6550
v VTAM for MVS/ESA Programming for LU 6.2,

SC31-6551
v VTAM for MVS/ESA Resource Definition

Reference, SC31-6552

Bibliography 125

126 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Index

A
API

JDBC 12
application

Java, running 12
JDBC support 9
SQLJ support 17

assignment clause
SQLJ 47

attachment facilities
CAF 88
description 87
RRSAF 88

authorization IDs, establishing 87

B
binding a plan

SQLJ 64

C
CAF 88
case sensitivity

SQLJ 19
CICS

abends 97
attaching to DB2 97
autoCommit default 97
closing JDBC connection 97
db2genJDBC parameters 95
environment variables 96
number of cursors 96
run-time properties file 95
running traces 97
special considerations 95
VisualAge for Java bind parameters 96

comment
SQLJ 19

compiled Java stored procedure
program preparation 65

configuring
JDBC 83
SQLJ 83

connecting to a data source
multiple context support 88
SQLJ 20

connection declaration clause
SQLJ 42

connection object 88
connection sharing 90
context clause

SQLJ 45

creating a DBRM
SQLJ 62

customizing a serialized profile
SQLJ 62

customizing Java environment 83

D
data source

connecting 11
identifying 11

data types
equivalent Java and SQL 23

db2profc command
options 62
parameters 62

diagnosing SQLJ problems 34
diagnosis utilities

SQLJ 36
driver, JDBC 12

registering with DriverManager 20

E
environment variables

JDBC 83
SQLJ 83

error handling
SQLJ 19

executable clause
SQLJ 45

execution context 30
execution control and status

SQLJ 30
EXTERNAL_SECURITY

column of SYSIBM.SYSPROCEDURES 52

F
formatting trace data

SQLJ 34

H
HFS

data set, allocating 80
structure, creating 80

host expression
SQLJ 18, 38

hpj command
invoking the VisualAge for Java binder 66
options for compiled Java stored procedure 66

I
implements clause

SQLJ 39

© Copyright IBM Corp. 1998 127

installation
JDBC and SQLJ 79

isolation level
SQLJ 32

iterator
for positioned DELETE 26
for positioned UPDATE 26
obtaining JDBC result sets from 28

iterator conversion clause
SQLJ 48

iterator declaration clause
SQLJ 43

J
Java

equivalent SQL data types 23
Java application

customizing environment 83
running 12

java.sql.connection class
use by SQLJ 22
valid methods for SQLJ 22

Java stored procedure
defining to DB2 51
differences from Java program 53
differences from other stored procedures 54
parameters specific to 51
writing 53

Java thread 88
JDBC

advantages 9
API 12
configuring 83
description 9
driver 12
environment variables 83
implementation 10
installation 79
interoperability 65
runtime environment 81
sample program 13
security 87

L
LANGUAGE

column of SYSIBM.SYSPROCEDURES 51
LINKAGE

column of SYSIBM.SYSPROCEDURES 51
LOADMOD

column of SYSIBM.SYSPROCEDURES 51

M
methods, invoking 12
multiple context support

connecting when enabled 89
connecting when not enabled 88

multiple context support (continued)
description 88
enabling 89

multiple result sets
retrieving from a stored procedure 30

multithreading 87

N
named iterator

example 25
renaming result table columns for 26
result set iterator 25

notices, legal 99

O
OS/390 UNIX System Services

authority to access 52

P
PGM_TYPE

column of SYSIBM.SYSPROCEDURES 52
positioned iterator

example 24
result set iterator 24

problem diagnosis
SQLJ 34

program preparation
compiled Java stored procedure 65
compiled Java stored procedure with no SQLJ 65
compiled Java stored procedure with SQLJ 65
SQLJ 59
using the VisualAge for Java binder 66
VisualAge for Java DLL 75
VisualAge for Java SQLJ program 72

properties
run-time

CICS 95

R
read-only mode

SQLJ 32
result set iterator

data types in 23
definition and use in same file 23
description 22
positioned iterator 24
retrieving rows in SQLJ 22, 24, 25

retrieving rows in SQLJ
named iterator example 25
positioned iterator example 24
with named iterators 25

RRSAF 88
run-time properties file

CICS 95
running a program

SQLJ 34

128 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

RUNOPTS
column of SYSIBM.SYSPROCEDURES 52

S
sample program

JDBC 13
SQLJ 32

security
environment 87
model 87

serialized profile
customizing 62

SET TRANSACTION clause
SQLJ 49

SQL
equivalent Java data types 23

SQL statement
format in SQLJ 18
handling errors in SQLJ 19

SQLJ
assignment clause 47
basic concepts 18
binding a plan 64
case sensitivity 19
comment 19
connecting to a data source 20
connection declaration clause 42
context clause 45
creating a DBRM 62
db2profc command 62
description 17
environment variables 83
error handling 19
executable clause 18, 45
execution control and status 30
format of SQL statement 18
formatting trace data 34
host expression 18, 38
implements clause 39
importing Java packages 20
including code to access 20
installation 79
installing the run-time environment 83
interoperability 65
isolation level 32
iterator conversion clause 48
iterator declaration clause 43
loading JDBC driver 20
problem diagnosis 34
program preparation 59
read-only mode 32
result set iterator 22
running a program 34
running diagnosis utilities 34
sample program 32

SQLJ (continued)
security 87
SET TRANSACTION clause 49
statement clause 46
translating source code 60
use of java.sql.connection class 22
valid SQL statements 18
with clause 39, 40

SQLJ application
writing 18

SQLJ execution context 30
sqlj.runtime.ConnectionContext

methods called in applications 92
sqlj.runtime.ExecutionContext

methods called in applications 91
sqlj.runtime.ForUpdate

for positioned UPDATE and DELETE 92
sqlj.runtime.NamedIterator

methods called in applications 93
sqlj.runtime.PositionedIterator

methods called in applications 93
sqlj.runtime.ResultSetIterator

methods called in applications 93
statement clause

SQLJ 46
stored procedure

access to OS/390 UNIX System Services 52
Java 51
retrieving result sets 30
returning result set 54

syntax diagrams, how to read 2

T
target data source, identifying 11
thread, Java 88
translating source code

SQLJ 60

V
valid SQL statements

SQLJ 18
VisualAge for Java binder

creating compiled Java stored procedure 66

W
WebSphere 89
with clause

SQLJ 39, 40
with positioned iterators 24
with result set iterators 22
WLM_ENV

column of SYSIBM.SYSPROCEDURES 51

Index 129

130 DB2 for OS/390 V5: Application Programming Guide and Reference for Java™

Readers’ Comments — We’d Like to Hear from You

DB2 for OS/390
Application Programming
Guide and Reference
FOR JAVA

™

Version 5

Publication No. SC26-9547-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-9547-02

SC26-9547-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department W92/H3
PO BOX 49023
SAN JOSE CA
95161-9945

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9547-02

	Contents
	Chapter 1. Introduction
	Who should read this book
	How this book is organized
	Other books you might need
	Product terminology and citations
	How to read the syntax diagrams
	How to use the DB2 library
	How to send your comments
	Summary of changes to this book

	Chapter 2. JDBC application support
	What is JDBC?
	JDBC background information
	Advantages of using DB2 JDBC

	DB2's JDBC implementation
	How does it work?
	Identifying a target data source
	Connecting to a data source
	DB2 for OS/390 SQLJ/JDBC driver
	JDBC API

	Running a JDBC application
	Getting started

	Chapter 3. Writing SQLJ programs for DB2 for OS/390
	Executing SQL statements in an SQLJ program
	Including SQL statements in an SQLJ program
	Using Java variables and expressions as host expressions
	Including comments
	Handling SQL errors and warnings

	Including code to access SQLJ support
	Connecting to a data source
	Using result set iterators to retrieve rows from a result table
	Using positioned iterators
	Using named iterators
	Using iterators for positioned UPDATE and DELETE operations
	Using JDBC result sets in SQLJ applications
	Retrieving JDBC result sets using SQLJ iterators
	Generating JDBC result sets from SQLJ iterators

	Controlling the execution of SQL statements
	Retrieving multiple result sets from a stored procedure
	Setting the isolation level for a transaction
	Setting the read-only mode for a transaction
	An SQLJ sample program
	Running SQLJ programs
	Diagnosing SQLJ problems
	Formatting trace data
	Running diagnosis utilities

	Chapter 4. SQLJ statement reference
	Common elements
	host-expression
	Syntax
	Description
	Usage notes

	implements-clause
	Syntax
	Description

	with-clause
	Syntax
	Description
	Usage notes

	connection-declaration-clause
	Syntax
	Description
	Usage notes

	iterator-declaration-clause
	Syntax
	Description
	Usage notes

	executable-clause
	Syntax
	Usage notes

	context-clause
	Syntax
	Description
	Usage notes

	statement-clause
	Syntax
	Description
	Usage notes

	assignment-clause
	Syntax
	Description
	Usage notes

	iterator-conversion-clause
	Syntax
	Description
	Usage notes

	SET-TRANSACTION-clause
	Syntax
	Description
	Usage notes

	Chapter 5. Creating Java stored procedures
	Defining your Java stored procedure to DB2
	Writing a Java stored procedure
	Differences between Java stored procedures and Java programs
	Differences between Java stored procedures and other stored procedures
	Writing a Java stored procedure to return result sets

	Running a stored procedure
	The stored procedures address space for Java stored procedures
	Setting environmental variables for Java stored procedures

	Testing a Java stored procedure

	Chapter 6. Preparing Java programs
	Steps in the SQLJ program preparation process
	Translating and compiling SQLJ source code
	Syntax
	Parameter descriptions
	Output from the SQLJ translator

	Customizing a serialized profile
	Syntax
	Parameter descriptions
	Output from the SQLJ customizer

	Binding a plan for an SQLJ program
	Customizing SQLJ and JDBC to work together

	Preparing compiled Java stored procedures for execution
	Preparing compiled Java stored procedures with no SQLJ statements
	Preparing compiled Java stored procedures with SQLJ statements
	Using VisualAge for Java to prepare a compiled Java stored procedure

	Preparing your applications with VisualAge for Java
	Installing and accessing SQLJ/JDBC DLLs for VisualAge for Java support
	Install DLLs that support VisualAge for Java
	Accessing DLLs for VisualAge for Java support at run time

	Accessing SQLJ and JDBC profiles and the run-time properties file underVisualAge for Java
	Binding the JDBC and SQLJ profiles as VisualAge for Javaresource files
	Accessing a JDBC or SQLJ profile as a resource file at run time
	Binding the SQLJ/JDBC run-time properties file as a VisualAge forJava resource file
	Accessing the SQLJ/JDBC run-time properties file as a resourcefile at run time

	Building an SQLJ or JDBC program under VisualAge for Java
	Binding an SQLJ or JDBC program for VisualAge for Java
	Creating symbolic links for packages in a Java DLL

	Chapter 7. JDBC and SQLJ administration
	Installing JDBC and SQLJ
	Step 1: Copy and edit the SMP/E jobs
	Step 2: Run the allocate job: DSNTJJAE
	Optional Step: Allocate HFS data set
	Step 3: Create Hierarchical File System (HFS) structure
	Step 4: Run the receive Job: DSNTJJRC
	Step 5: Run the apply job: DSNTJJAP
	Step 6: Run the accept job: DSNTJJAC
	Step 7: Run the SQLJ allocate jobs
	Step 8: Install SQLJ modules

	Customizing the JDBC run-time environment
	Customizing the cursor properties file
	Syntax
	Parameter descriptions

	Creating a JDBC profile
	Syntax
	Parameter descriptions
	Output

	Binding the DBRMs

	Configuring JDBC and SQLJ
	Environmental variables
	Parameters in the SQLJ/JDBC run-time properties file

	JDBC and SQLJ security model
	How are authorization IDs established?
	DB2 attachment types
	Using the call attachment facility
	Using the RRS attachment facility

	JDBC and SQLJ multiple OS/390 context support
	Connecting when multiple OS/390 context support is not enabled
	Connecting when multiple OS/390 context support is enabled
	Enabling multiple OS/390 context support
	Multiple context performance
	Connection sharing

	Appendix A. Selected sqlj.runtime classes and interfaces
	sqlj.runtime.ExecutionContext class
	sqlj.runtime.ConnectionContext interface
	sqlj.runtime.ForUpdate interface
	sqlj.runtime.NamedIterator interface
	sqlj.runtime.PositionedIterator interface
	sqlj.runtime.ResultSetIterator interface

	Appendix B. Special considerations for CICS applications
	Choosing parameter values for the SQLJ/JDBC run-time properties file
	Choosing parameter values for the db2genJDBC utility
	Choosing the number of cursors for JDBC result sets
	Setting environment variables for the CICS environment
	Choosing VisualAge for Java bind parameters for better performance
	Connecting to DB2 in the CICS environment
	Commit and rollback processing in CICS SQLJ and JDBC applications
	Abnormal terminations in the CICS attachment facility
	Running traces in a CICS environment

	Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

