
DB2 Performance Monitor for OS/390

Data Collector Application Programming
Interface Guide
Version 6

SC26-9173-00

IBM

Note
Before using this information and the product it supports, be sure to read the information in “Appendix C. Notices” on
page 109.

First Edition, April 2000

This edition applies to Version 6 of IBM DATABASE 2™ Performance Monitor for OS/390®, a feature of IBM
DATABASE 2 Universal Database Server for OS/390 Version 6 (5645-DB2), and to all subsequent releases and
modifications until otherwise indicated in subsequent editions.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v
Who Should Read This Book v
How to Use This Book v
Availability of the Data Collector API vi
Applicability of the Data Collector API vi

Chapter 1. Overview of Elements and
Concepts 1
The DB2 PM Data Collector 1
The Workstation Application 2
The Data Collector API Functions 2
The Connection Concept 3
The User Concept 4
The Security Concept 5

Logon with a Password. 5
Logon with a PassTicket 5

How the Components Interact 6
Establishing and Terminating a User Session. . . 6
Disconnecting and Reconnecting while Preserving
a User Session 7

Chapter 2. Considerations for Using the
Data Collector API 9
Workstation Memory Handling 9
Code Page Conversions. 9
Preparations for Using PassTickets. 10
Common Return Codes and Reason Codes 10
Compiler Considerations 12
Linking the DB2 PM API Library on Windows NT 12
Using the DB2 PM API Trace Facility 14

Chapter 3. The Data Collector API
Functions 15
Maintaining a TCP/IP Connection to the Data
Collector 15

Connect to Data Collector 15
Disconnect from Data Collector. 17

Maintaining a User Session to the Data Collector . . 18
Log On to Data Collector 19
Generate RACF PassTicket 21
Get Data Collector Information 22
Log Off from Data Collector 27

Getting DB2 Performance Data 29
Introduction to Counters and Snapshot Stores . . 29
Working with Returned Data 37
Snapshot Processing - Initialize Snapshot Store 42
Snapshot Processing - Query Snapshot Stores . . 44
Snapshot Processing - Get Snapshot Data . . . 46
Snapshot Processing - Reset Interval Data . . . 51
Snapshot Processing - Get History Contents . . 54

Snapshot Processing - Release Snapshot Store . . 56
History Processing - Get History Data 57

Processing DB2 Exception Events 60
Introduction to Exception Processing 60
Retrieve Event Exception Log 61
Retrieve Event Exception Details 67
Start Exception Processing 75
Get Exception Processing Status 77
Fetch Exceptions. 79
Stop Exception Processing 82

Executing DB2 Commands 83
Execute DB2 Command 83

Saving and Retrieving User Data 85
Save User Data 86
Get User Data 87

Parsing Data 88
Introduction to Parsing 88
Get Token 91
Get Token Value 91
Skip Token 92
Test Token 93
Delete Counter 93

Converting and Adjusting Dates and Times. . . . 94
Introduction to Date and Time Functions . . . 94
Convert Store Clock Format to time_t Format . . 95
Convert time_t Format to Store Clock Format . . 97
Add and Subtract in Store Clock Format. . . . 99

Miscellaneous API Functions 99
Hash Table Functions. 100
Memory Releasing Function 100
Qualifier Functions 101

Appendix A. Field Table Summary . . 103

Appendix B. Sample Traces 107
Sample Connection Trace 107
Sample Command Trace. 107
Sample Data Trace. 108

Appendix C. Notices 109
Trademarks 110

Bibliography 113

Index 115

Readers’ Comments — We’d Like to
Hear from You 119

© Copyright IBM Corp. 2000 iii

iv DB2 PM for OS/390: Data Collector API Guide

Preface

This book describes the Data Collector Application Programming Interface of IBM®

DATABASE 2 Performance Monitor for OS/390 Version 6 and its use.

IBM DATABASE 2 Performance Monitor for OS/390 (DB2 PM) is the performance
analysis tool to monitor and tune DB2® systems and DB2 applications. It is one of
the optional features that complement IBM DATABASE 2 for OS/390 (DB2).

DB2 PM provides the host processor-based MVS ISPF Online Monitor and the
Workstation Online Monitor to interactively monitor DB2 performance, and to
execute DB2 commands. DB2 PM also provides a batch facility to generate
performance reports.

New with DB2 PM Version 6 (as program temporary fix) is the DB2 PM Data
Collector Application Programming Interface (API). It provides a programming
interface to DB2 performance data. Workstation-based application programs can
use this interface to connect to the host-resident DB2 PM Data Collector through
TCP/IP to access DB2 performance data in real time or from the Data Collector’s
own history data set.

The DB2 PM Data Collector API allows programmers to develop their own
customized application programs.

All DB2 PM Data Collector API functions can be accessed using calls from C or
C++ programs or any other programming language that supports C function calls.

Who Should Read This Book
This book is for system and application programmers who want to design and
implement workstation application programs that take advantage of the API to
gain access to DB2 performance data.

It is assumed that the reader is familiar with the DB2 PM Online Monitor functions
and the C programming language.

How to Use This Book
Read “Chapter 1. Overview of Elements and Concepts” on page 1 to gain an
understanding of the elements and concepts of the DB2 PM API and how these
elements interact with each other. This knowledge helps to decide whether the use
of the API is adequate to solve your task. This knowledge is also required to
effectively use the API functions.

“Chapter 3. The Data Collector API Functions” on page 15 describes the Data
Collector API functions, its calling conventions, and its parameters, and gives code
examples for an application program. Functions with similar objectives are
grouped together; every group begins with a comprehensive description of the
concepts of which you should be aware. Use this information when you apply
these functions to your application program.

© Copyright IBM Corp. 2000 v

Availability of the Data Collector API
The DB2 PM Data Collector API is available for DB2 PM Version 6 as PTF, as a
recommended maintenance level for Version 6. Future versions of DB2 PM might
provide enhanced versions of the API as an integral part of DB2 PM.

Applicability of the Data Collector API
The DB2 PM Data Collector API is applicable with:
v IBM DATABASE 2 Universal Database Server for OS/390 (DB2 UDB for OS/390)

Version 6, program number 5645-DB2
v IBM DATABASE 2 Server for OS/390 (DB2 for OS/390) Version 5, program

number 5655-DB2
v IBM DATABASE 2 for MVS™/ESA (DB2 MVS/ESA) Version 4, program number

5695-DB2

or any higher version.

DB2 PM provides the necessary workstation development kit and workstation
run-time environment as either Dynamic Link Library or Shared Library for the
following operating system platforms:

Table 1. Supported Operating Systems

Operating System Library

IBM OS/390 Version 2.7, or higher Shared library

IBM AIX® Version 4.3, or higher Shared library

Microsoft® Windows® NT 4.0 Dynamic link library

Sun Solaris 5.6, or higher (32 bit)

Sun Solaris 5.7, or higher (64 bit)

Shared library

Shared library

Linux Version 2.2, or higher, on Intel x86 Shared library

DB2 PM Installation and Customization describes how to install the DB2 PM API on
a workstation. You may want to copy or use the DB2 PM API as often as required,
provided you hold a valid DB2 PM license.

The workstation requires TCP/IP to be installed, either as part of the operating
system, or as a separate licensed program. The Data Collector requires IBM
TCP/IP Version 3 Release 2 for MVS/ESA to be installed on the host processor.
These requirements are specific to the use and operation of the DB2 PM API. The
general prerequisites for DB2 PM are to be applied.

vi DB2 PM for OS/390: Data Collector API Guide

Chapter 1. Overview of Elements and Concepts

A DB2 subsystem running on the OS/390 operating system generates and collects
data about its own performance, but does not provide facilities to evaluate and
report about its performance. Companies with a distinctive need to evaluate the
performance of DB2 can use the DB2 Performance Monitor (DB2 PM) feature. DB2
PM provides interactive and batch-oriented facilities to monitor the DB2
performance and generate reports about it.

However, sometimes you might want to use customized applications that are
external to DB2 and DB2 PM and which need access to DB2 performance data. For
example, a company uses several database systems from different suppliers. Every
of these database systems has an own user interface to performance-related data,
which generates increased complexity and requires specialized skill. The solution is
an application program that monitors performance aspects of all these database
systems and provides the results in a common user interface to your support
personal. Then, the application would need real-time access to performance data of
every of these database systems.

The DB2 PM Data Collector Application Programming Interface (API) provides a
structured set of functions that you can use in an application program to process
DB2 performance data in real time. Thus, the API does not require the DB2 PM
Online Monitor or DB2 PM Batch.

The use of the API at application development time and at application run time
involves several elements of DB2 PM and DB2 as well as connectivity aspects. The
remaining part of this chapter gives an overview of the involved elements,
explains the user and connection concept, and describes how they work together.

The DB2 PM Data Collector
The DB2 PM Data Collector is the host component of the DB2 PM API. It provides
an access path from a client application program to DB2 internal performance data.

The Data Collector resides in an OS/390 address space. It needs to run as an
OS/390 started task before any client application can connect to it. Once started,
the Data Collector takes the role of a server.

Upon startup of the Data Collector, TCP/IP is also started on the host. This allows
client application programs to connect to the Data Collector through TCP/IP when
required. The Data Collector is capable of serving up to 500 logged-on applications,
respectively users, concurrently.

After an application has established a TCP/IP connection to the Data Collector, the
Data Collector is ready to accept a logon request from a client application. During
logon the application identifies itself to the Data Collector.

The Data Collector does not require an application to remain connected after a
successful logon. Users can disconnect from and reconnect to the Data Collector
from varying places at any time and still remain logged on.

© Copyright IBM Corp. 2000 1

The Workstation Application
The application can reside on workstations that run one of the supported operating
systems listed in Table 1 on page vi. You need the corresponding DB2 PM API
installed on these workstations to develop, test, and run an application. The DB2
PM API support contains all files and libraries required to use the API.

The application can be written in any programming language that supports the C
language calling conventions required to call the API functions.

The application on a workstation communicates with the Data Collector by using
TCP/IP. The workstation needs to have TCP/IP support available either as part of
the operating system or as a separate licensed program. TCP/IP is not apparent to
the application. When it connects to the Data Collector, by calling the
corresponding API function, the underlying operating system services are used to
establish a TCP/IP connection to the Data Collector.

The application controls the connection to the Data Collector. After a successful
connection and a successful logon, a user session is established. During this session
the application calls any number of API functions to describe the data it wants to
access or to be returned. At the end it closes the user session with the Data
Collector and terminates the connection to it. This frees all Data Collector resources
that the application has occupied.

The Data Collector API Functions
The DB2 PM API gives an application program access to DB2 performance data.
Hence, the majority of all API functions is related to DB2 performance data. In
addition, an API function is available to execute DB2 commands. The remaining
functions maintain TCP/IP connections and user sessions between the application
and the Data Collector.

An application using the API has access to the following types of data and can
perform the following functions:
v Access to DB2 performance data

The application can request statistics information on a DB2 subsystem level and
on a thread level. It can query DB2 system parameters, for example, installation
parameters, or VSAM catalog information.

v Access to DB2 event exceptions
The Data Collector logs the most recent DB2 exceptions in an exception log. The
application can retrieve up to 500 of these recent exception log records and
process them individually. The DB2 PM API also supports a synchronous
notification of DB2 exceptions. Once set up, the application is notified about DB2
event exceptions when they occur.

v Execution of DB2 commands
The DB2 PM API supports the execution of DB2 commands from within the
application. The Data Collector transfers the commands to DB2 and delivers the
response data to the application. Provided that a logged-on user has sufficient
DB2 privileges, all DB2 commands can be executed, except the application
cannot start or stop a DB2 subsystem.

v Access to user data in the Data Collector
The application can save user-specific data in the Data Collector and retrieve this
data at any point in time. This allows you to develop applications that support
mobile users. Users of the application can disconnect from the Data Collector

2 DB2 PM for OS/390: Data Collector API Guide

(while remaining logged on) at one location and reconnect to it from another
location. The Data Collector serves as an interim storage for user-specific data
that need to be kept in the meantime.

v Parser functions are available for extracting relevant data from Data Collector
responses. These functions are helpful in cases where API functions return
complex and varying data structures. The parsing functions also check returned
data streams for correctness, and convert data between the host processor format
and the workstation format.

v Time conversion functions convert host date and time formats and workstation
date and time formats. Arithmetic functions simplify time zone adjustments.

DB2 performance data that is accessible through the Data Collector API is raw DB2
instrumentation data and data that the Data Collector derives from raw DB2
instrumentation data. The information about the data fields is provided in a
separate text file that accompanies the DB2 PM API. “Appendix A. Field Table
Summary” on page 103 describes how the data in the flat file is organized and
shows a short sample of the field table.

“Getting DB2 Performance Data” on page 29 gives a comprehensive introduction to
the Data Collector counter concepts, snapshot and history processing, the snapshot
store concept, and shows how data can be filtered to reduce the amount of
available performance data. The knowledge about these concepts is required to
effectively use the API functions that deal with performance data.

Note that the Data Collector can be customized during its installation and DB2 PM
user exit routines may be active. User exit routines allow user-written routines to
perform customized processing. This may limit the access of the application to
some counters, regardless of the fact that they are listed in the field table.

The Connection Concept
The communication between the application and the Data Collector happens
through TCP/IP. The application uses the pmConnect() function to open a TCP/IP
connection to the Data Collector. Several connections can be opened, if required.
The maximum number of connections is specified as a start parameter of the Data
Collector itself.

Once a communication path to the Data Collector is established, it is uniquely
identified by an identifier, called a handle. All subsequent API functions use this
handle to identify the physical connection path to the Data Collector they want to
use. If several connections are opened, different handles are used to distinguish
among the connections.

Users logging on to the Data Collector are identified by a work profile. All
subsequent API functions use this work profile to assign a function to a user.

This way, connections to the Data Collector are completely separated from users of
the Data Collector. The application can use every opened TCP/IP connection to
issue requests to the Data Collector for every user. Vice versa, the application can
use a single TCP/IP connection also for several users.

Connections to the Data Collector are required when the application actually needs
to communicate with it. Users who are already logged on to the Data Collector
remain logged on even when no connection is opened. This allows you to write
applications where users can disconnect at one work place (the application calls

Chapter 1. Overview of Elements and Concepts 3

the pmDisconnect() function) and reconnect from another work place (the
application calls the pmConnect() function).

The User Concept
The workstation application must identify its users to successfully log on to the
Data Collector. The Data Collector, when receiving a logon request, always uses the
System Authorization Facility (SAF), and the IBM Resource Access Control Facility
(RACF) or any other security system, to verify a user’s authorization.

The terms “SAF user” and “SAF group” are used in this book in accordance with
their definitions in the RACF® literature. See the appropriate manuals, if required.

The DB2 PM API requires you to define a “user” in terms of a work profile. A
work profile is a character string that contains the following information:
v SAF user ID

The user ID of a DB2 PM user as known to RACF. This information is always
required to identify a user logging on to the Data Collector.

v SAF group ID
The group identifier an SAF user is associated to in RACF. This field is optional,
but if it is used it must specify a valid SAF group ID.

v Profile ID
An optional field that the application can use as required. For example, you can
use it to specify subusers of an SAF user ID. To simplify matters in this book,
this field is used to specify a subuser.

Once the application has specified a user by means of a work profile, this
information is used as parameter workProfile of the pmLogOn() function. The
Data Collector manages the authorization of the SAF user ID and, if specified, the
SAF group ID.

After a user is authorized to request services from the Data Collector, all
subsequent requests are identified by a user’s work profile. For security reasons,
every combination of an SAF user ID and an SAF group ID requires authorization.

Subusers, if specified in the Profile ID field, do not need separate authorization.
Upon proper authorization of an SAF user ID and SAF group ID combination, all
subusers are implicitly authorized.

Every user specified by a unique work profile must log on and off individually.
This ensures that all resources used by a user in the Data Collector are released
when the user logs off.

The combination of the connection concept and the user concept ensures that every
request to the Data Collector is identified by:
v A handle, which specifies the connection path
v A work profile, which specifies a user.

To preserve security, the application must request authentification of a user on
every connection path the user wants to use.

4 DB2 PM for OS/390: Data Collector API Guide

The Security Concept
The DB2 PM Data Collector is one of many OS/390 system resources that client
applications might want to access. Access to OS/390 system resources is usually
controlled by an OS/390 security server, for example, by RACF. This requires that
every potential application and every potential user is known by RACF. Access to
a resource is given if an application or user is successfully identified by the
security server and sufficient authority is given.

Further, the communication between the application and the Data Collector
happens through TCP/IP, which does not provide any security mechanism that
prevents hostile intrusion. All data is transferred as plain text. Everyone who
knows the IP address and port number can connect to the Data Collector.

The Data Collector API supports two levels of security implementations. Both
levels build on how the application logs on to the Data Collector. Once the
application has successfully logged on, all further API function calls are bound to
this logon.

Logon with a Password
The application is granted access to the Data Collector when it identifies itself by a
correct user identification and password. The pmLogOn() function passes both
parameters, the user ID and the password, over to the Data Collector for
authorization. The Data Collector then requests the OS/390 Security Server (RACF)
to verify the user identity. If the authorization succeeds, a user is successfully
logged on, and the application can call further API functions as required.

This method provides only limited protection. The password is transmitted as
plain text to the Data Collector. You should only consider this method if the
application runs inside a secure and protected TCP/IP network.

Logon with a PassTicket
For enhanced security you can implement a logon process that uses an encrypted
password, called a PassTicket (a RACF term). A PassTicket has two properties that
make it difficult to be misused:
1. It remains valid for only 10 minutes. Once you have generated a PassTicket, it

should be used as parameter of the pmLogOn() function within the next 10
minutes, otherwise it becomes unusable.

2. It can be used only once. For every logon the application must generate a new
PassTicket.

The pmGenPassticket() function generates a PassTicket. The algorithm to generate
a PassTicket uses:
1. The hardware clock of the host processor where the Data Collector resides.
2. The user ID for which the application requests authorization by the OS/390

Security Server (RACF).
3. A fixed application name and a secure signon key that are known in the

OS/390 Security Server.
A copy of the secure signon key must reside on the workstation to enable the
pmGenPassticket() function to access it. You should use any of the operating
system functions to protect or hide it, or use an access control device connected
to the workstation (like a smart card reader) to make it available during the
logon process.

Chapter 1. Overview of Elements and Concepts 5

After the pmGenPassticket() function has generated a PassTicket, the application
uses it as a logon parameter of the pmLogOn() function.

How the Components Interact
This section briefly describes scenarios how an application program interacts with
the Data Collector and which API functions are involved in this process. The
timely order is pointed out, and the previously introduced components and their
actions are explained.
v The first scenario describes how an application program establishes and

terminates a user session with the Data Collector.
v The second scenario describes how an application program disconnects and

reconnects a mobile user and maintains the user session with the Data Collector.
This scenario deploys the independence between connections and user sessions.

For these scenarios it is assumed that the Data Collector is started and can be
reached by client applications through a TCP/IP connection. If it is not started, any
attempt to connect to it fails. Further, it is assumed that the workstation is properly
set up and that its TCP/IP services are available.

Establishing and Terminating a User Session
1. The application must establish a TCP/IP connection to the Data Collector

before any other API function can be called. To do this, the application calls the
pmConnect() function and passes along some parameters, for example, the
TCP/IP port where the Data Collector is listening, and the host name where
DB2 is installed. Assumed the Data Collector can be reached successfully and
the host name can be resolved to a valid IP address, a TCP/IP connection
between the application and the Data Collector is then opened.

2. The API returns a unique handle, which identifies this connection path.
Subsequent requests to the Data Collector use this handle to identify the
communication path.
If the Data Collector or DB2 is not available, the pmConnect() function returns
the appropriate return code, which the application can evaluate.

3. Next, the application program needs to log on. The Data Collector authenticates
the application and verifies the authorization of the user, or group, or subuser,
logging on. The logon process passes security-sensitive information to the Data
Collector. Therefore, the API provides two alternatives:
v The less secure logon calls the pmLogOn() function and passes along

parameters that identify the user or group or subuser, together with a
password.

v The secure logon generates an encrypted password first, using the
pmGenPassticket() function. Thereafter, the pmLogOn() function uses the
encrypted password as a logon parameter.

The work profile that was used to log on to the Data Collector is used for all
subsequent function calls to associate Data Collector requests with a user.

4. After a successful logon, it is recommended that the application gets some
information about the Data Collector to ensure that it is functionally compatible
with the Data Collector version installed on the host processor. It calls the
pmGetInfo() function and performs the necessary checks.
A user session is now established. The application can proceed according to its
purpose.

6 DB2 PM for OS/390: Data Collector API Guide

5. If no more tasks are to be executed, the application starts the termination step.
It calls the pmLogOff() function to log off from the Data Collector, which
releases all snapshot stores in the Data Collector and frees all resources.

6. The application drops the TCP/IP connection to the Data Collector with a
pmDisconnect() function call.

Disconnecting and Reconnecting while Preserving a User
Session

1. An application is already connected to the Data Collector; the connection is
identified by a handle. A user is logged on and identified by a work profile.
The application continuously monitors a DB2 process. When the application
recognizes a user interaction that shows that the user wants to disconnect from
the Data Collector but wants to remain logged on, it stops gathering and
monitoring data.

2. The application calls the pmSaveUserData() function to save user-specific data
in the Data Collector. This data can include everything that is required for a
later reconnect to the Data Collector, for example, the current workstation
settings, or parameters the application was using while monitoring the DB2
process.
If the application runs on a portable PC, it could also save this data on the PC’s
local disk.

3. The application calls the pmDisconnect() function, with the previously used
handle as parameter. This drops the specified TCP/IP connection to the Data
Collector.

4. The application can now close down. The connection is dropped. The user is
still logged on to the Data Collector.

5. When the application is started again (from another workstation), and the user
wants to continue monitoring the DB2 process, the application reconnects to the
Data Collector with the pmConnect() function. The new connection is identified
by a different handle.

6. Even so the user is still logged on to the Data Collector, the application now
has to issue a new pmLogOn() function call. This allows the Data Collector to
authenticate the application and to verify the authorization of the user logging
on. Because the user is still logged on, the Data Collector returns a warning
that the user is already logged on — which is a normal response here.

7. After the logon, the application retrieves the previously saved user-specific data
from the Data Collector with the pmGetUserData() function. It uses this data to
reconstruct the previous state, for example, the workstation’s settings, or the
parameters used.

8. The application is now ready to continue the monitoring process. Subsequent
function calls to the Data Collector use the new handle to identify the
connection path, and the same work profile to identify the user.

Chapter 1. Overview of Elements and Concepts 7

8 DB2 PM for OS/390: Data Collector API Guide

Chapter 2. Considerations for Using the Data Collector API

The DB2 PM API is delivered as a set of C programming language functions,
which can be called from the application program you are writing. This book
assumes that you write an application in the C programming language. For this
purpose the API is delivered as a dynamic link library or shared library, together
with the header files, for the operating systems listed in Table 1 on page vi.

If you write an application in a programming language other than C, consult the
appropriate programming manuals about making mixed-language calls.

The DB2 PM API is delivered together with header files that contain the necessary
declarations for all functions that make up the API. “Chapter 3. The Data Collector
API Functions” on page 15 provides the relevant header file name together with
every function description.

In “Chapter 3. The Data Collector API Functions” on page 15 parameters are either
marked as input or as output parameters. Input parameter values are send to the
Data Collector; output parameter values are returned by the Data Collector to the
application in response to a function call.

Note that all API function names are case sensitive.

Workstation Memory Handling
Whenever the application program calls an API function, the Data Collector
returns data to it. Most functions allocate the necessary data space in the
workstation’s memory to store the returned data. The Data Collector itself does not
provide data space that you can use for this purpose. An exception is the 1-MB
buffer in the Data Collector that is intended to store user-specific data. See “Saving
and Retrieving User Data” on page 85 for details.

The application is responsible to release allocated memory when the data space is
no longer needed. The API provides two functions to release memory when
required: the pmFreeMem() function, and the freeHashTable() function, which
releases memory that is allocated to store data of variable length in hash tables.

Code Page Conversions
The Data Collector and the workstation applications may use different standards to
represent data. The Data Collector uses EBCDIC (Extended Binary-Coded Decimal
Interchange Code). Most workstation applications usually use ASCII (American
National Standard Code for Information Interchange); however, some use EBCDIC.

Further, both sides may use different code pages to accommodate for different
national languages. Code pages specify how the EBCDIC and ASCII codes are
presented for a specific language.

When the application exchanges data with the Data Collector, it automatically
converts the data between ASCII and EBCDIC (if the workstation uses ASCII), and
it converts text data according to the code pages in use. This conversion is

© Copyright IBM Corp. 2000 9

transparent to the application, however, the code page used on the workstation
must be specified with the pmConnect() function.1

Preparations for Using PassTickets
If the application uses the pmGenPassticket() function to generate encrypted
passwords, ensure that the OS/390 Security Server (RACF) is properly prepared.

Log on to the OS/390 system as a TSO/E user and execute the following RACF
commands to create a profile for DB2 PM. You may need sufficient authority to
issue these commands.
1. SETROPTS CLASSACT(PTKTDATA)

2. SETROPTS RACLIST(PTKTDATA)

3. RDEFINE PTKTDATA MVSDB2PM SSIGNON(KEYMASKED(key_value))
UACC(NONE)

This command defines the application name MVSDB2PM to the OS/390 Security
Server (RACF) and associates a secure signon key (key_value) with the name of
the application. key_value is 16 characters long and can contain numeric (0-9)
and alphabetic (A-Z) characters.

Note: The application name must be set to MVSDB2PM.

After you have set up the profile for DB2 PM, the application can call the
pmGenPassticket() function to generate a PassTicket. pmGenPassticket() uses
MVSDB2PM as its application parameter, and key_value as its secureSignonKey
parameter. See “Generate RACF PassTicket” on page 21 for more details.

Common Return Codes and Reason Codes
All DB2 PM API functions complete with a combination of a return code and a
reason code.

The DB2 PM API knows the following return codes:

Table 2. Common DB2 PM API Return Codes

Return Code2 (Hex) Description

0 The function completed successfully.

4 The Data Collector returned a warning.

Depending on the reason code, output data might have been
returned.

8 The Data Collector returned an error.

The function did not complete successfully. No output data
is returned.

PM _ CONNECTION
ERROR

The DB2 PM API detected a connection error. The function
did not complete successfully. Depending on the reason
code, the application may still be connected to the Data
Collector.

1. Internally, the pmConnect() function sends the workstation’s code page number to the Data Collector. The Data Collector, which
“knows” already the host’s code page number, builds a conversion table from both code pages, which is then returned to the
workstation. The conversion table is stored internally and ensures correct conversions of outgoing and incoming data.

10 DB2 PM for OS/390: Data Collector API Guide

Table 2. Common DB2 PM API Return Codes (continued)

Return Code2 (Hex) Description

PM _ API ERROR The DB2 PM API detected an error. The function did not
complete successfully.

PM _ API WARNING The DB2 PM API detected a warning. The function
completed.

The following DB2 PM API reason codes are universally valid for all API functions
and are not repeated with the individual function descriptions:

Return Code2 (Hex) Reason Code2 (Hex) Description

8 1F The client application has called a DB2 PM
API function without being logged on to
the Data Collector.

8 43 The DB2 subsystem is not started, or it
cannot be communicated with.

8 1552 Buffer shortage. The Data Collector has
reached the maximum number of API
function calls it can serve simultaneously.
Try again later, or increase the number of
session buffers at Data Collector startup.

PM _ CONNECTION
ERROR

PM _ NETWORK
DOWN

The network is down. Check the network
connection.

PM _ CONNECTION
ERROR

PM _ TIMEOUT The network operation was canceled
because of a timeout. The network traffic is
probably slow, or the host IP address is
wrong.

PM _ CONNECTION
ERROR

PM _ HOST
UNREACHABLE

The specified host is unreachable. Check the
specified IP address and the network route.

PM _ CONNECTION
ERROR

PM _ HOSTDOWN The specified host is down. Try later.

PM _ CONNECTION
ERROR

PM _ WINSOCK _
NOT READY

Only Windows NT: The network service is
not started. Check the network settings.

PM _ CONNECTION
ERROR

PM _ SOCKET
DESCR _ INVALID

The specified socket descriptor is not valid.

PM _ CONNECTION
ERROR

PM _ SOCKET NOT
CONNECTED

The specified socket is disconnected. You
have to connect first. (Not applicable for
Sun Solaris, Linux, and OS/390).

PM _ CONNECTION
ERROR

PM _ CONNECTION
_ ABORTED

The Data Collector is no longer reachable. It
may be stopped, or the connection to it may
be terminated.

PM _ CONNECTION
ERROR

PM _ UNEXPECTED
_ EOF

The Data Collector sent incomplete data.
Check the OS/390 system log for messages
from the Data Collector. The connection
may not be usable.

2. Note that return codes and reason codes are single-word text strings. The strings have no intervening space characters. The
underscore characters (_) are part of the strings. If the text strings appear as broken strings on some output media, this is because
of the limited presentation space available.

Chapter 2. Considerations for Using the Data Collector API 11

All function-specific reason codes are listed and explained with the respective
functions. See “Chapter 3. The Data Collector API Functions” on page 15.

Compiler Considerations
To compile your C program use any C or C++ compiler compatible to the
operating system platform on which you are working. For example, you can use
IBM VisualAge® C++ for Windows NT, or Microsoft Visual C++.

For IBM VisualAge C++ use compiler option /Su4 to use four bytes for
enumerations instead of the SAA default setting.

For Visual C++ 6.0 use the default compiler settings.

Linking the DB2 PM API Library on Windows NT
If you plan to run the application on Windows NT, it is highly recommended that
you resolve entry points in the DGOKAPI.DLL library dynamically. This prevents
problems that might occur with some compilers.

This is not required for the other supported operating systems because their DLLs
support dynamic entry point resolving.

The following example shows how to do this for Microsoft Windows NT 4.0:
/**/
/* Example how to resolve entry points of C-API functions dynamically */
/* on Windows NT 4.0. */
/**/

#include <windows.h>
#include <stdio.h>
#include "pmConnect.h"
#include "pmGenPassticket.h"
#include "pmLogOnOff.h"

/* Type definitions for dynamically loaded functions used in this */
/* program. See corresponding C-API header files for parameters. */
typedef pmReturnCodes __cdecl ppmConnect(char *, char *, unsigned int, pmHost *);
typedef pmReturnCodes __cdecl ppmDisconnect(pmHost *);
typedef pmReturnCodes __cdecl ppmGenPassticket(pmHost *, char *, char *, char *, char *);
typedef pmReturnCodes __cdecl ppmLogon(pmHost *, char *, char *);
typedef pmReturnCodes __cdecl ppmLogoff(pmHost *, char *);

/* Name and handle of DB2 PM C-API DLL */
char *dllName = "DGOKAPI.DLL";
HINSTANCE dllHandle = NULL;

/* Function pointers for all dynamically loaded functions */
ppmConnect *fnConnect = NULL;
ppmDisconnect *fnDisconnect = NULL;
ppmGenPassticket *fnGenPassticket = NULL;
ppmLogon *fnLogon = NULL;
ppmLogoff *fnLogoff = NULL;

/* Function prototypes for helper functions */
FARPROC LoadFunction(char *funcName);
void LoadAPI(void);
void UnloadAPI(void);

int main(void)
{

12 DB2 PM for OS/390: Data Collector API Guide

pmHost myHandle;
pmReturnCodes error;
char passticket[8[;
char *workprofile = "PMUSER GROUPID PROFILEID TERMINALID ";

/* Load DB2 PM C-API functions */
LoadAPI();

/* Connect to the data collector at IP address 10.0.0.1 */
/* at port 4711 using workstation codepage 850. */
error = (*fnConnect)("10.0.0.1", "4711", 850, &myHandle);

/* Create a passticket for user PMUSER for application */
/* MVSDB2PM using the secure signon key E001033FAF00007B */
error = (*fnGenPassticket)(&myHandle, "PMUSER", "MVSDB2PM",

"E001033FAF00007B", passticket);

/* Logon to DB2 PM Data Collector using the workprofile */
error = (*fnLogon)(&myHandle, workprofile, passticket);

/* Execute other DB2 PM commands */
/* ... */

/* Logoff from DB2 PM Data Collector */
error = (*fnLogoff)(&myHandle, workprofile);

/* Disconnect from Data Collector */
error = (*fnDisconnect)(&myHandle);

/* Free DB2PM C-API DLL */
UnloadAPI();
return(0);

}

/* Load the DB2 PM DLL if necessary and resolve a single */
/* entry point for the specified function name. */
FARPROC LoadFunction(char *funcName)
{
FARPROC pfn=NULL;

/* Load DLL if necessary */
if (dllHandle == NULL)
dllHandle = LoadLibrary(dllName);

if (!dllHandle)
{
fprintf(stderr,

"Error loading DB2 PM C-API DLL! Program terminated!\n");
fflush(stderr);
exit(-1);

}
else
{
/* Get entry point for the specified function */
pfn = GetProcAddress(dllHandle, funcName);
if (!pfn)
{
fprintf(stderr,

"Error loading function %s from DB2 PM C-API DLL!\n",
funcName);

fprintf(stderr, "Program terminated!\n");
fflush(stderr);
exit(-1);

}
}

Chapter 2. Considerations for Using the Data Collector API 13

return pfn;
}

/* Load all functions used in this program from DB2 PM C-API DLL */
void LoadAPI(void)
{
fnConnect = (ppmConnect *) LoadFunction("pmConnect");
fnDisconnect = (ppmDisconnect *) LoadFunction("pmDisconnect");
fnGenPassticket = (ppmGenPassticket *) LoadFunction("pmGenPassticket");
fnLogon = (ppmLogon *) LoadFunction("pmLogon");
fnLogoff = (ppmLogoff *) LoadFunction("pmLogoff");

}

/* Unload DB2 PM C-API DLL */
void UnloadAPI(void)
{
FreeLibrary(dllHandle);

}

Using the DB2 PM API Trace Facility
If you need to diagnose what happens when the application communicates with
the Data Collector, you can activate the DB2 PM API trace facility. You can choose
to let the trace facility record connection information, commands transferred, and
data transferred. By default, the trace facility displays the required information.
Alternatively, you can redirect this information to files for later analysis.

You activate the trace facility by adding the following environment variables to the
operating system and by setting them to ON.
v The PM_CONNECTION environment variable controls tracing of connection

information. By default, the trace data is written to STDOUT, which is usually
the workstation’s screen. If you want to capture the information in a file, add the
environment variable PM_CONNECTION_FILE to the operating system and set
its value to a file name.

v The PM_COMMAND environment variable controls tracing of DB2 PM
commands. By default, the trace data is written to STDOUT, which is usually the
workstation’s screen. If you want to capture the information in a file, add the
environment variable PM_COMMAND_FILE to the operating system and set its
value to a file name.

v The PM_DATA environment variable controls tracing of DB2 PM API data that
is transferred between the application and the Data Collector. By default, this
data is written to STDERR, which is usually the workstation’s screen. If you
want to capture the information in a file, add the environment variable
PM_DATA_FILE to the operating system and set its value to a file name. Note
that this data is shown as binary data.

For information about adding, setting, resetting, or removing environment
variables see the operating system manuals.

The output files created by the trace facility are not erased from the workstation’s
hard disk. Subsequent trace data is appended to existing files. Make sure that you
remove the environment variables when no longer required.3

“Appendix B. Sample Traces” on page 107 shows a sample of a connection trace, a
command trace, and a data trace.

3. In the current version of the DB2 PM API only the existence of the environment variables is checked.

14 DB2 PM for OS/390: Data Collector API Guide

Chapter 3. The Data Collector API Functions

Maintaining a TCP/IP Connection to the Data Collector
The DB2 PM API uses TCP/IP to communicate with the Data Collector. Your
application needs a direct network connection to the Data Collector and a
configured and running TCP/IP environment on your workstation. The API does
not support connections through proxy servers.

The following functions connect your application to the Data Collector by
establishing a TCP/IP connection between your workstation and the Data
Collector, or disconnect both. These are always the first and last steps your
application must perform when it needs to communicate with the Data Collector.

The next step after a successful connection is to log on to the Data Collector, as
described in “Log On to Data Collector” on page 19.

Notes:

1. A user remains logged on to the Data Collector, regardless of the connection
state. An application can disconnect from and reconnect to the Data Collector
without changing a user’s status in the Data Collector. However, after a
reconnect the application must issue a pmLogOn() function call to allow the
Data Collector to verify the user’s authorization. See also “Log On to Data
Collector” on page 19.

2. A handle, once established with the pmConnect() function, identifies a unique
TCP/IP connection to the Data Collector. It is used with subsequent function
calls to identify this TCP/IP connection. It remains available until the
connection is terminated with a pmDisconnect() function call.

Connect to Data Collector

Function Call
pmReturnCodes pmConnect (char* host,

char* servicePort,
unsigned int codePage,
pmHost* handle)

Header File
pmConnect.h

Description
This function opens a TCP/IP connection to a Data Collector and returns
parameter handle, which identifies the opened TCP/IP connection. Subsequent
function calls that communicate with the Data Collector use this handle to identify
this connection. If several pmConnect() function calls are made, every connection
gets a unique handle.

Before the connection is confirmed by a return code of 0, the API loads an internal
conversion table and a copy of the field table from the Data Collector to the
workstation’s memory. The conversion table ensures correct EBCDIC to ASCII (and
ASCII to EBCDIC) conversions and code page conversions (see “Code Page
Conversions” on page 9). The field table contains a list of all DB2 PM counters that

© Copyright IBM Corp. 2000 15

the Data Collector supports. The field table is used internally to validate the
counters you specify with the API functions. This operation is not apparent to your
application.

Note that every pmConnect() function call causes a download of a conversion
table and a field table. This is because the connections could be done to different
Data Collectors, whereby each Data Collector could use different code pages and
field tables.

Parameters
1. host (input)

The host where DB2 is installed. The host processor is identified by either:
v The name of the host as specified in the local hosts file. The local hosts file

contains the mappings of the IP addresses to host names.
v The name of the host, as registered in the Domain Name System server.
v The IP address of the host, in dotted-decimal form.

2. servicePort (input)
The TCP/IP port where the Data Collector is listening. The port is specified as
either:
v A decimal number between 1024 and 65535, as string.
v The service name, as registered in the local services file.4 The local services file

contains port numbers for well-known services as defined by # RFC 1060
(Assigned Numbers). This is an alias for the decimal port number.

3. codePage (input)
The number of the code page (ASCII or EBCDIC) used by the application
program. All strings sent to or received from the Data Collector are converted
between the host code page and this code page.

4. handle (output)
A platform-independent handle that identifies this TCP/IP connection to the
Data Collector. The application must provide the memory area for this handle.

Example
#include "pmConnect.h"

pmHost myHandle;

// connect to data collector
error = pmConnect("10.0.0.1", "5000", 850, &myHandle);
if(error.returnCode)
{
printf("Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 7 DB2 BIND outstanding. The Data Collector
needs BIND against DB2. See IBM DB2
Performance Monitor for OS/390 Version 6
Installation and Customization for how to
execute PM BIND.

4. You can find this file, for example on Windows NT, in directory C:\WINNT\SYSTEM32\DRIVERS\ETC.

16 DB2 PM for OS/390: Data Collector API Guide

Return Code2 (Hex) Reason Code2 (Hex) Description

PM _ APIERROR PM _ CODEPAGE _
ERROR

The specified code page could not be found
or is not valid.

PM _ CONNECTION
ERROR

PM _ PORTNUMBER
_ TOOHIGH

The specified port number is out of range.
It must be between 1 024 and 65 535.

PM _ CONNECTION
ERROR

PM _ SERVICE _
UNKNOWN

The specified service name could not be
found in the local services file.

PM _ CONNECTION
ERROR

PM _ HOST _
NOTFOUND

The specified host name could not be
resolved. It is not known by your Domain
Name System server and your local hosts
file.

PM _ CONNECTION
ERROR

PM _ WINSOCK _
VERNOTFOUND1

Only Windows NT: The required Winsock
version could not be found. Install Winsock
V. 1.1 or higher.

PM _ CONNECTION
ERROR

PM _ WINSOCK _
VERNOTFOUND2

Only Windows NT: The required Winsock
version could not be found. Install Winsock
V. 1.1 or higher.

PM _ CONNECTION
ERROR

PM _ DCNOT
AVAILABLE

The Data Collector is not started or the
specified host port is wrong.

PM _ APIWARNING PM _ USING _
DEFAULT _
CODEPAGE

The specified code page could not be
loaded from the Data Collector. Using
default code page ASCII 850.

PM _ APIWARNING PM _ FIELDTABLE _
UNEXPECTEDEOF

The Data Collector returned an incorrect or
incomplete list of supported DB2 PM
counters. Some DB2 PM counters may be
missing and cause some functions to fail.
Check the trace for more details.

PM _ APIERROR PM _ FIELDTABLE _
ERROR

The list of supported counters could not be
loaded from the Data Collector. See the
trace data and the Data Collector system
log for more details. It is not possible to
execute DB2 PM functions before the
pmConnect() function succeeds. Retry.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Disconnect from Data Collector

Function Call
pmReturnCodes pmDisconnect(pmHost* handle)

Header File
pmConnect.h

Description
This function terminates the TCP/IP connection to the Data Collector that is
identified by parameter handle.

Other TCP/IP connections, if any, remain open. Users logged on to the Data
Collector remain logged on.

Chapter 3. The Data Collector API Functions 17

The code page and the field table that were downloaded when this connection
(identified by parameter handle) was established are removed from the
workstation’s memory. Other code pages and field tables that are associated with a
different handle remain in memory.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
terminated. The handle was set by the pmConnect() function.
This handle becomes unusable for other function calls after this function is
called.

Example
#include "pmConnect.h"

pmHost myHandle;
pmReturnCodes error;
...

// connect to data collector
error = pmConnect("10.0.0.1", "4711", 850, &myHandle);
if(error.returnCode)
{
printf("Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

// do DB2 PM commands
...

// disconnect
error = pmDisconnect(&myHandle);
if(error.returnCode)
{
printf("Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

Return Codes and Reason Codes
No specific return codes.

Maintaining a User Session to the Data Collector
These functions are used to log on users to the Data Collector or log off from it, to
generate encrypted passwords for use during the logon, and to gather version
information from the Data Collector to verify its compatibility with the API.

You use these functions after connections to the Data Collector are made, or when
tasks associated to a user are completed and the Data Collector resources are to be
released.

Note:
v Every work profile specifying an individual SAF user ID and SAF group ID

combination must be authorized during logon.
v Work profiles that specify subusers of an already authorized SAF user ID and

SAF group ID combination do not need explicit authentication.
v Every work profile must be authorized on every TCP/IP connection it uses.
v Every work profile allocates resources in the Data Collector. To release these

resources, log off individual users if no longer required.

18 DB2 PM for OS/390: Data Collector API Guide

v The DB2 PM API does not limit the number of subusers per SAF user.
v After the first successful connection and logon to the Data Collector, call the

pmGetInfo() function to allow the Data Collector to detect and report a potential
version mismatch to the API.

Log On to Data Collector

Function Call
pmReturnCodes pmLogOn (pmHost* handle,

char* workProfile,
char* identification)

Header File
pmLogOnOff.h

Description
This function logs on an SAF user to the Data Collector. It is required before the
application can call any other function for this user and all subusers.

If the application logs on a user (with an identical work profile) a second time,
without intermediate logoff, the Data Collector returns a warning message (“user
already logged on”).

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A 48-character string representing the work profile that identifies a user’s
working environment. It contains the following fields:
v SAF User ID: 8-character field; content left aligned; padded with blanks, if

required. This field is required.
The user ID of the DB2 PM user.

v SAF Group ID: 8-character field; content left aligned; padded with blanks, if
required. This field is optional and must be filled with blanks, if not used.
The group ID of the DB2 PM user.

v Profile ID: 16-character field; content left aligned; padded with blanks, if
required. This field is optional and must be filled with blanks, if not used.
Only alphanumeric characters in the range from A to Z and 0 to 9 are
allowed to specify an SAF group ID.
An application-specific or user-specific field that can be used, for example, to
specify subusers.
This field is not used to authenticate subusers; only the SAF user is
authenticated.

v Terminal ID: 16-character field. Reserved. Fill this field with blanks.
3. identification (input)

This character string represents the password, or the PassTicket generated by
pmGenPassticket(). The OS/390 Security Server (RACF) uses this string to
authenticate the SAF user. The character string must be 1 to 8 characters long.
If the OS/390 Security Server (RACF) is used, identification must be a RACF
password or a RACF PassTicket.

Chapter 3. The Data Collector API Functions 19

Note: Be aware about the limited security when using a password with the
identification parameter. Use a PassTicket, if possible. Refer to “The
Security Concept” on page 5.

Example
#include "pmConnect.h"
#include "pmLogOnOff.h"

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
// <-UID -><-GID -><- Profile ID -><-Terminal ID->

// connect to data collector
...

// log on with password
error = pmLogOn(&myHandle, workProfile, "TEST");
if(error.returnCode)
{
printf("Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

Return Codes and Reason Codes

Return Code (Hex) Reason Code (Hex) Description

4 5 Information: Logon is successful. The SAF
user is already logged on to the Data
Collector through a different connection.

8 1 Internal Data Collector error.

8 2 Authorization verification failed. Check the
OS/390 system log for messages from the
Data Collector.

8 16 Internal Data Collector error.

8 17 Maximum number of 500 users reached.

8 1C Internal Data Collector error.

8 22 Internal Data Collector error.

8 44 Logon request failed. CAF Connect error.
Verify your DB2 permissions. Check the
OS/390 system log for more information.

8 45 Logon request failed. CAF Open error.
Verify your DB2 permissions. Check the
OS/390 system log for more information.

8 49 Session Limit exceeded. The maximum
number of TCP/IP sessions, which was
specified as Data Collector startup
parameter, was exceeded.

8 1551 After successful client logon, the Data
Collector received a second logon request.

See also “Common Return Codes and Reason Codes” on page 10, if required.

20 DB2 PM for OS/390: Data Collector API Guide

Generate RACF PassTicket

Function Call
pmReturnCodes pmGenPassticket (pmHost *handle,

char *userID,
char *application,
char *secureSignonKey,
char *passticket)

Header File
pmGenPassticket.h

Description
This function generates a RACF PassTicket. Use it after a pmConnect() and before
a pmLogOn() function call. You can use a PassTicket only once. Once generated, it
remains usable for 10 minutes.

PassTickets are unique. The Data Collector ensures that no identical PassTickets
can be build.

Note: Note that the letter T is in uppercase in the RACF term “PassTicket”. As a
function call you must spell it “pmPassticket” with a lowercase t because
function names are case sensitive.

The use of the pmGenPassticket() function requires that:
v The OS/390 Security Server (RACF) is set up up recognize the name of the

application using the pmGenPassticket() function. Also, a secure signon key
must be associated with the application name. See “Preparations for Using
PassTickets” on page 10 for details.

v The application can access the secure signon key on the workstation. For
information on how to define a secure signon key and the RACF PassTicket
mechanism see OS/390 Security Server (RACF) - Introduction.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. userID (input)
The RACF user ID. It must be 1 to 8 characters long.

3. application (input)
The name of the application as specified in the OS/390 Security Server (RACF).
Use MVSDB2PM as the application name. This name is required for
pmGenPassticket().

4. secureSignonKey (input)
The secure signon key associated with the name of the application in RACF.
This key must be 16 characters long.

5. passticket (output)
An 8-character string storing the generated PassTicket.

Example
#include "pmConnect.h"
#include "pmLogOnOff.h"
#include "pmGenPassticket.h"

Chapter 3. The Data Collector API Functions 21

pmHost myHandle;
char passticket[9];
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";

// connect to data collector
...

// generate passticket
error = pmGenPassticket(&myHandle, "PMUSER", "MVSDB2PM",

"E001033FAF00007B", passticket);
if(error.returnCode)
...

// log on with password
error = pmLogOn(&myHandle, workProfile, passticket);
if(error.returnCode)
{
printf("Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 1 Internal Data Collector error.

8 11 Internal Data Collector error.

8 1B Internal Data Collector error.

8 22 Internal Data Collector error.

PM _ APIERROR PM _ DATASTREAM
_ INVALID

Received data stream not valid. Counter not
found, or end of data reached before
expected.

PM _ APIWARNING PM _ OLD _ DC The Data Collector is not up to date. The
Data Collector interface changed
meanwhile. Therefore some API functions
might fail. Install the latest Data Collector
PTF.

PM _ APIERROR PM _ INCORRECT _
PARAMETER

One of the specified parameters is incorrect.
Check for correct length of the parameters.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Get Data Collector Information

Function Call
pmReturnCodes pmGetInfo (pmHost* handle,

char* workProfile,
pmHashTable result)

Header File
pmGetInfo.h

Description
This function requests the Data Collector to return information about itself, about
the DB2 PM API in use, and various other information, including:
v DB2 version number and release number
v Data Collector version number and release number
v DB2 PM API version number and release number

22 DB2 PM for OS/390: Data Collector API Guide

v Trial period status
v Time information
v Information about users logged on to the Data Collector.

This function also verifies whether the Data Collector release is sufficient for the
DB2 PM API release on the workstation. If it is not, the Data Collector returns a
warning, and some API functions might fail. Therefore, it should be used after a
successful connection to the Data Collector to allow the Data Collector to return a
warning, if necessary. Notice that this function does not detect a down-level DB2
PM API.

You can use this function before any user is logged on to the Data Collector. This
allows, for example, to check whether a specified user is logged on.

This function requires that the output data area is initialized with the
clearHashTable() function.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.
If you want to issue this function before a user is logged on to the Data
Collector, or if you do not want to associate a work profile to this function call,
specify NULL.

3. info (output)
Pointer to the output data area. See “Working with Returned Data” on page 37
for how to retrieve individual counter values. Use the freeHashTable() function
to release the memory area, if the output data is no longer needed.

5. For practical reasons within the scope of this guide universal time (UT) is used synonymously with coordinated universal time
(UTC) and Greenwich mean time (GMT).

6. APPC sessions with the Data Collector may be started from another program. Therefore, the information is returned as well.

7. The information is returned here because Collect Report Data might be managed in the Data Collector from the DB2 PM
Workstation Online Monitor for this SAF user ID and SAF group ID combination.

Chapter 3. The Data Collector API Functions 23

result REPDCINF Groups all Data Collector information counters.

QR4TID Time difference between the local time of the host
processor and the universal time (UT).5 Because
DB2 and the Data Collector use universal time
(UT) internally, this time difference must be used
to adjust counter values that represent date and
time information back to local times. See
“Converting and Adjusting Dates and Times” on
page 94 for details.

QR4DB2 DB2 version

QR4PM Data Collector version

QR4PMI Data Collector release

QR4TBS DB2 PM license status and the installation status,
as follows:

v PAYED indicates that the DB2 PM installation is a
licensed version.

v TRIAL indicates that the DB2 PM installation is a
trial version.

v RESTRICTED indicates that the trial period is
exceeded.

v INSTALLERROR indicates that the DB2 PM Buy
feature is not installed correctly.

QR4TBD Number of days left until the trial period expires.
If the trial period has expired, this value is 0.

QR4TIME Current host processor time, expressed as
universal time (UT).

QR4APIV DB2 PM API version

QR4APIR DB2 PM API release

REPUIDS Groups user information. Contains one repeating
block per SAF user ID and SAF group ID
combination.

QR4UID The SAF user ID

QR4GID The SAF group ID

QR4SEA Number of open APPC sessions
with the Data Collector for this
SAF user ID and SAF group ID
combination.6

QR4SET Number of open TCP/IP sessions
with the Data Collector for this
SAF user ID and SAF group ID
combination.

QR4CRDT Collect Report Data status.7

QR4CRDR Collect Report Data status.7

QR4CRDP Collect Report Data status.7

Example
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "pmConnect.h"

24 DB2 PM for OS/390: Data Collector API Guide

#include "pmGetInfo.h"
#include "pmTrace.h"

void printCounter(pmHashTable table, char *name);

int main(void)
{
pmHost myHandle;
pmReturnCodes error;
char *workprofile = "PMUSER GROUPID PROFILEID TERMINALID ";
pmHashTable result;
pmCounter* aCounter;
pmCursor aCursor;
pmHashTable* DCInfo;
pmHashTable* UserInfo;
time_t time;

/* connect to data collector */
error = pmConnect("10.0.0.1", "4711", 850, &myHandle);
if(error.returnCode)
{
printf("pmConnect - Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

/* prepare result area */
clearHashTable(&result);

/* get information about data collector and API */
error = pmGetInfo(&myHandle, workprofile, result);

/* check for sufficient data collector release */
if(error.returnCode == PM_APIWARNING && error.reasonCode == PM_OLD_DC)
{
printf("Be aware that you are using an old DC version.\n");
printf("Some API functions might fail!\n");
error.returnCode = 0;

}

if(error.returnCode)
{
printf("pmGetInfo - Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}
else
{
/* first locate repeating block for DC info */
aCounter = pmGetCounter(result, "REPDCINF");
if(aCounter != NULL)
{
/* access general info */
aCursor = initCursor(*aCounter);
DCInfo = getRepBlockItem(aCursor);
printf("Time difference: "); printCounter(*DCInfo, "QR4TID");
printf("DB2 Version: "); printCounter(*DCInfo, "QR4DB2");
printf("PM Version: "); printCounter(*DCInfo, "QR4PM");
printf("PM Version (internal): "); printCounter(*DCInfo, "QR4PMI");
printf("Time Bomb Status: "); printCounter(*DCInfo, "QR4TBS");
printf("Time Bomb Days Left: "); printCounter(*DCInfo, "QR4TBD");
printf("Time at host: "); printCounter(*DCInfo, "QR4TIME");

/* get the logged on users block */
aCounter = pmGetCounter(*DCInfo, "REPUIDS");
if(aCounter != NULL)
{
aCursor = initCursor(*aCounter);
while(!endOfBlock(aCursor))

Chapter 3. The Data Collector API Functions 25

{
UserInfo = getRepBlockItem(aCursor);

printf(" UserID: "); printCounter(*UserInfo, "QR4UID");
printf(" Group ID: "); printCounter(*UserInfo, "QR4GID");
printf(" APPC sessions: "); printCounter(*UserInfo, "QR4SEA");
printf(" TCP/IP sessions: "); printCounter(*UserInfo, "QR4SET");
printf(" Trace collectors total: "); printCounter(*UserInfo, "QR4CRDT");
printf(" Trace collectors running: "); printCounter(*UserInfo, "QR4CRDR");
printf(" Trace collectors pending: "); printCounter(*UserInfo, "QR4CRDP");

setToNext(&aCursor);
}

}
}
/* free memory for DC info */
freeHashTable(result);

}

/* disconnect */
error = pmDisconnect(&myHandle);
if(error.returnCode)
{
printf("pmDisconnect - Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

return(0);
}

void printCounter(pmHashTable table, char *name)
{
pmCounter *aCounter = pmGetCounter (table, name);
time_t t;
char *asHex;
unsigned int helpI;
unsigned short helpS;

if(aCounter != NULL) /* if not contained */
/* NULL is returned */

{
/* check if value is provided by Data Collector */
switch(aCounter->attribute)
{
case VALUE:

/* print counter value */
if(aCounter->type == PMINT)
{
helpI = *((unsigned int*)aCounter->value);
printf("%d\n", helpI);

}
else if(aCounter->type == PMSHORT)
{
helpS = *((unsigned short*)aCounter->value);
printf("%d\n", helpS);

}
else if(aCounter->type == PMSTRING || aCounter->type == PMVARCHAR)
printf("%s\n", aCounter->value);

else if(aCounter->type == PMTIME)
{
printf"PMTIME(%d bytes)\n",aCounter->length);

}
else if(aCounter->type == PMDATE)
{
tod2time(aCounter->value, &t);
printf("%s", asctime(gmtime(&t)));

26 DB2 PM for OS/390: Data Collector API Guide

}
else if(aCounter->type == PMBIN)
{
printf("PMBIN(%d bytes)\n", aCounter->length);

}
else
printf("invalid type!\n");

break;
case NC:

printf("n/c\n");
break;

case NP:
printf("n/p\n");
break;

case NA:
printf("n/a\n");
break;

default:
/* error */
printf("invalid attribute!\n");
break;

}
}
else
{
printf("not returned!\n");

}
}

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 1 Internal Data Collector error.

8 11 Internal Data Collector error.

8 1B Internal Data Collector error.

8 22 Internal Data Collector error.

PM _ APIERROR PM _ DATASTREAM
_ INVALID

Received data stream not valid. Counter not
found, or end of data reached before
expected.

PM _ APIWARNING PM _ OLD _ DC The Data Collector is not up to date. The
Data Collector interface changed
meanwhile. Therefore some API functions
might fail. Install the latest Data Collector
PTF.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Log Off from Data Collector

Function Call
pmReturnCodes pmLogOff (pmHost* handle,

char* workProfile)

Header File
pmLogOnOff.h

Description
This function logs off an SAF user or an individual subuser from the Data
Collector. It stops exception processing and clears all snapshot stores and
user-specific data in the Data Collector for the specified user.

Chapter 3. The Data Collector API Functions 27

You can use this function to log off an SAF user and all of its subusers, or
individual subusers only.

If an individual subuser is logged off, the logoff applies to all active TCP/IP
connections.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed.
If you want to log off an SAF user and all associated subusers, fill the Profile
ID field in workProfile with blanks.
If you want to log off an individual subuser, identify the subuser in the Profile
ID field in workProfile.

Example
#include "pmConnect.h"
#include "pmLogOnOff.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
char safUserProfile[] = "PMUSER ";

// connect to data collector
...

// log on with password
...

// log off from data collector for subuser DB2PM of user PMUSER
error = pmLogOff(&myHandle, workProfile);

// log off from data collector for user PMUSER and all subusers
error = pmLogOff(&myHandle, safUserProfile);

Return Codes and Reason Codes

Return Code (Hex) Reason Code (Hex) Description

4 4 Logoff already running for the user
specified by the work profile.

8 1 Internal Data Collector error.

8 11 Internal Data Collector error.

8 1F User not logged on, or SAF user ID or SAF
group ID not found.

8 22 Internal Data Collector error.

8 155E Subuser not logged on.

See also “Common Return Codes and Reason Codes” on page 10, if required.

28 DB2 PM for OS/390: Data Collector API Guide

Getting DB2 Performance Data
This section introduces the concept of snapshot processing and history processing,
explains how to interpret returned data, and describes the API functions relevant
to DB2 performance data.

Introduction to Counters and Snapshot Stores
The functions described in this chapter are the core DB2 PM API functions. With
these functions the application accesses DB2 statistics data on a subsystem level or
on a thread level and DB2 system parameter values.

DB2 performance data are available through the Data Collector from two sources:
v From real-time DB2 instrumentation data. Whenever the application requests

data, it gets a snapshot of the present state of the DB2 subsystem performance.
v From the history data set where the Data Collector continuously records

snapshots of DB2 performance data. This gives the application access to older
performance snapshots.

The Data Collector provides counter arrangements that ease the application’s job to
deal with DB2 performance data. The following sections describe the DB2 PM
counter concepts. A thorough understanding of these concepts is required to
effectively use these API functions.

DB2 PM Counters
DB2 PM counters are the core element of these functions. Counters are data fields
that contain DB2 performance data. All fields listed in the field table represent
counters.

Counters can contain various information:
v Numeric information, for example, the number of specific DB2 events that

occurred, or the length of a data field.
v Alphabetic information, for example, a text string that represents the status of an

activity.

Depending on the content of a counter, every counter is associated with a data
type. For example, if a counter holds a time stamp of an event, it is associated with
a data type of ″TIME″. The field table lists the data type with all counters.

The application addresses counters by names. Even if the field table lists counters
by identifiers, there is no need to address a counter by its identifier.

Counters reside in the Data Collector. The Data Collector ensures that the counters
are updated with actual DB2 instrumentation data. The application usually
examines the counter values for further processing. It does not change counter
values.

Counters have different operational behavior:
v Some counters count DB2 activities that occurred since the DB2 subsystem

started, for example, the number of checkpoints that DB2 took since startup.
v Some counters hold high water marks, for example, to show the greatest amount

of storage that is allocated to a process since it was started. They do not actually
count. They might not even change.

v Some counters hold percentage values, for example, to indicate the latest usage
of a DB2 buffer pool.

Chapter 3. The Data Collector API Functions 29

All are generally called counters in this context.

Snapshot Stores
You are rarely interested in a single counter or all available counters. Depending
on the task the application wants to perform, you are interested in a defined subset
of the available counters. The group of counters you are interested in is called a
counter store. Because these counters contain data from a snapshot of performance
data, the store is called a snapshot store. The performance-related API functions use
this snapshot store when they request new counter values (take a snapshot) from
the Data Collector. Snapshot stores also limit the amount of central storage
resources that need to be allocated in the Data Collector.

When you specify the content of a snapshot store, you can mix any of the counters
listed in the field table, regardless of the purpose of a counter. You can specify
several snapshot stores in the application. Once a snapshot store is initialized, it is
given a unique identifier number. The identifier serves as a reference for other
functions that work with the same snapshot store.

Qualifying Counters: After you have decided which counters you want to
include in a snapshot store, you can apply criteria to these counters. The Data
Collector returns counter values only if these criteria are met. The process of
specifying the criteria is called qualifying. “How Qualifying Works” on page 35
shows a comprehensive example.

Counters are qualified when a snapshot store is initialized. After you have decided
which counters to include in a snapshot store, and which qualification criteria to
apply to them, the definition of a snapshot store cannot be changed. The definition
remains unchanged until the snapshot store is released, or until the user owning
this snapshot store is logged off from the Data Collector.

Getting and Viewing Counter Values: Snapshot stores in the Data Collector can
be used in two different modes:
v The GET mode causes the Data Collector to refresh the contents of the counters

in a snapshot store with DB2 instrumentation data before it returns the counter
values to the application.
You use the GET mode, for example, to frequently scan the contents of a set of
counters that make up this snapshot store.

v The VIEW mode causes the Data Collector to return the contents of the counters
in a snapshot store without refreshing them with DB2 instrumentation data.
Before useful data can be retrieved in VIEW mode, the counters in this snapshot
store must have been refreshed with DB2 instrumentation data at least once.
You use the View mode, for example, if you need to access counter values that
were taken at a certain point in time multiple times.

Both modes are used in combination with the two-buffer concept described next.

The mode is controlled by parameter mode of the pmGetSnapshot() function. You
can see the GET and VIEW modes also as a keyword-controlled toggle flag that
controls whether the snapshot store is refreshed before its content is returned to
the application.

Buffers are Associated with Counters: Whenever the application deals with
counters that represent DB2 performance data, it also deals with time. The
application often compares the value of a counter at two given points in time. To

30 DB2 PM for OS/390: Data Collector API Guide

ease your programming effort a snapshot store supports simple calculations. This
is accomplished by associating two buffers with each counter in a snapshot store.
v The buffer called Latest always contains the most recent counter value.

In GET mode this is the newest DB2 instrumentation data (counter values are
refreshed before the results are returned).
In VIEW mode this is the last value that was stored while in GET mode (counter
values are not refreshed in VIEW mode).

v The buffer called Stored serves as a reference value for the calculations
described next. It can contain:
– A previous value of buffer Latest to serve as a moving reference value.
– The most recent value of buffer Latest to serve as a fixed reference value (set

by the pmReset() function).

Buffers are Used for Interval Processing and Delta Processing: The two-buffer
concept enables time-based processing of counter values in different ways. In the
simplest way the content of buffer Latest can be requested for further processing
without reference to buffer Stored.
v Buffer Stored can be set as a fixed reference point (by the pmReset() function)

and subsequent pmGetSnapshot() functions return the cumulative differences
between the content of buffer Stored and the content of buffer Latest. This is
called interval processing.
In GET mode the cumulative difference increases (supposed that the refreshed
counter value in buffer Latest increases).
In VIEW mode the cumulative difference remains unchanged (because no
counter is refreshed).

v Buffer Stored can be set as a moving reference point. Each time a
pmGetSnapshot() function is called in GET mode it:
1. Copies the current content of buffer Latest to buffer Stored

2. Refreshes the buffer Latest with the latest DB2 instrumentation data counter
value

3. Returns the difference between both buffer contents.

This is called delta processing.

In VIEW mode the difference remains unchanged because no counter is
refreshed.

Again, parameter mode of the pmGetSnapshot() function controls whether you
want to request buffer Latest, perform interval processing, or perform delta
processing with a snapshot store. The keywords are LATEST, INTERVAL, and
DELTA.

More about interval and delta processing is described in “Working with Snapshot
Stores” on page 33.

Possible Modes to Control the Snapshot Store Operation: pmGetSnapshot() is
the function that requests counter values from a snapshot store. It uses the
described modes and buffers. Parameter mode of pmGetSnapshot() controls:
v Whether the contents of counters are requested in GET mode or VIEW mode.
v Which result the function returns (buffer Latest, the interval result, or the delta

result).

Chapter 3. The Data Collector API Functions 31

The following list shows valid mode parameters of the pmGetSnapshot() function
and summarizes their counter operations. You must specify one of these modes
with each function call.

Note that the described activities affect all qualified counters in a snapshot store.
v GET_LATEST

1. Does not copy the content of buffer Latest to buffer Stored.
2. Refreshes buffer Latest with performance data.
3. Returns the content of buffer Latest.

v VIEW_LATEST

1. Does not copy the content of buffer Latest to buffer Stored.
2. Does not refresh buffer Latest with performance data.
3. Returns the content of buffer Latest.

v GET_INTERVAL

1. Leaves the buffer Stored unchanged.
2. Refreshes buffer Latest with performance data
3. Calculates the difference between the values in buffers Latest and Stored.
4. Returns the difference.

This mode should be applied only to statistics counters.
v VIEW_INTERVAL

1. Leaves the buffer Stored unchanged.
2. Does not refresh buffer Latest with performance data.
3. Calculates the difference between the values in buffers Latest and Stored.
4. Returns the difference.

This mode should be applied only to statistics counters.8

v GET_DELTA

1. Copies the content of buffer Latest to buffer Stored.
2. Refreshes buffer Latest with performance data.
3. Calculates the difference between the values in buffers Latest and Stored.
4. Returns the difference.

This mode should be applied only to statistics counters.8

v VIEW_DELTA

1. Leaves the buffer Stored unchanged.
2. Does not refresh buffer Latest with performance data.
3. Calculates the difference between the values in buffers Latest and Stored.
4. Returns the difference.

This mode should be applied only to statistics counters.8

You need to specify one of these keywords as mode parameter of the
pmGetSnapshot() function. Additional keywords (described next) allow you to
refine the operation of a snapshot store. Valid combinations of mode parameters
are described in “Snapshot Processing - Get Snapshot Data” on page 46.

Mode to Control the Data Source: Snapshot stores can get their data either from
DB2 as real-time performance data, or from the history data set, which contains

8. If this mode is applied to other counter types, no calculations are performed and the content of buffer Latest is returned.

32 DB2 PM for OS/390: Data Collector API Guide

snapshots of DB2 performance data that were taken previously. If you use a
snapshot store in GET mode (performance data is refreshed before it is returned to
the application), you can choose whether you want it refreshed with actual DB2
performance data, or with data from a snapshot of the history data set. In the latter
case, the snapshot to be used is identified by its time stamp.

You can control whether data should be taken from the history data set by adding
the GET_HISTORY keyword to the mode parameter of the pmGetSnapshot()
function. GET_HISTORY works as a flag. If specified as an additional mode
parameter, data is taken from the history data set. If it is not specified, data is
taken from actual DB2 performance data.

The GET_HISTORY keyword has no effect if you use a snapshot store in VIEW mode,
because in VIEW mode the contents of the counters in a snapshot store are not
refreshed.

Mode to Retrieve Counters about Locked Resources: The mode parameter of
pmGetSnapshot() also allows you to retrieve counter values about locked
resources (IFCID 150). You can specify mode GET_LOCKEDRESOURCES together with
modes GET_LATEST or VIEW_LATEST. You can also combine this with mode
GET_HISTORY to control whether actual DB2 performance data or data from a
selected snapshot from the history data set should be taken.

If specified together with GET_LATEST, buffer Latest is refreshed with latest
performance data (or data from the history data set), and the content of buffer
Latest is returned.

If specified together with VIEW_LATEST, buffer Latest is not refreshed, and the
content of buffer Latest is returned. Use this combination if you want to access the
counter values more than once, without having them changed.

Mode to Summarize Thread Counter Values: The mode parameter of
pmGetSnapshot() also allows you to summarize thread counter values. If you
specify GET_SUMMARY as an additional keyword, the pmGetSnapshot()function
returns the sum of the requested counter values. Generally, this mode is applicable
only to thread counters. If unsupported thread counters are specified, they are
ignored.

You can specify GET_SUMMARY together with the modes listed in “Possible Modes to
Control the Snapshot Store Operation” on page 31. You can also combine this mode
with mode GET_HISTORY to control whether actual DB2 performance data or data
from a selected snapshot from the history data set should be taken.

Working with Snapshot Stores
This section gets together the elements around counters and snapshot processing,
and gives some practical examples.

Functions Involved: The pmInitializeStore() function creates a snapshot store.
You specify the counters that this snapshot store should contain, and you can
specify a qualifier list to apply criteria to these counters.

The pmGetSnapshot() function request counter information from the Data
Collector. Its mode parameter controls whether you want to only view the contents
of the counters, or have the Data Collector to refresh them before the results are
returned. Optionally, it controls whether you want the refresh to be done from a

Chapter 3. The Data Collector API Functions 33

selected snapshot of the history data set. Parameter mode also controls which
calculations you want the Data Collector to perform.

The pmReset() function sets a reference point that subsequent pmGetSnapshot()
function calls in mode GET_INTERVAL use to calculate time differences.

The pmQueryStores() function queries which snapshot stores are active. You can
use it, for example, if you want to know when a snapshot store was refreshed with
actual DB2 performance data for the last time.

The pmGetHistoryContents() function retrieves a list of snapshots from the history
data set. The list can include all snapshots, or a specified subset of snapshots, and
includes the IFCIDs and time stamps of the selected snapshots. Use this function to
identify a snapshot that you want to use with the pmGetSnapshot() function in
GET_HISTORY mode for a refresh. The snapshot is identified by its time stamp.

The pmReleaseStore() function releases a previously created snapshot store.

Counter Arithmetic: You could use snapshot stores to return their counter values
and let the application execute any arithmetic required. To ease your programming
effort you can also direct the pmGetSnapshot() function to perform some simple
calculations and to return the result of this calculation.
v Delta processing

If you want to know the difference between the content of a counter at two
points in time, use the pmGetSnapshot() function in mode GET_DELTA.
Whenever the function is called, the difference between the content of buffer
Latest and buffer Stored is calculated, and the result is returned.
Example: You want to periodically examine database read access that was
delayed because of unavailable system resources. The corresponding DB2
counter increments with each event since the DB2 subsystem is started. The
latest counter value is 1 200. The application calls the pmGetSnapshot() function
in mode GET_DELTA every five minutes. Assuming that the next absolute counter
values are 1 205, 1 212, and 1 220, the function returns values of 5, 7, and 8 each
time it is called.

v Interval processing
If you want to know the accumulated difference between the content of a counter
at two points in time, use the pmGetSnapshot() function in mode GET_INTERVAL
in combination with the pmReset() function.
First, issue a pmReset() function call. This refreshes the buffer Stored with the
latest performance data (either real-time performance data, or data from the
history data set). The content of this buffer then serves as a reference value for
the following calculations.
Next, with every subsequent pmGetSnapshot() function call in mode
GET_INTERVAL the difference between the content of buffer Stored and buffer
Latest is calculated, and the result is returned.
Example: You want to know how the number of successful Create Thread
requests develops between 8:00 a.m. and 9:00 a.m., in intervals of 60 seconds. At
8:00 a.m. the application issues a pmReset() function call, which copies the latest
counter value of 500 to buffer Stored as a reference value. Then the application
calls the pmGetSnapshot() function every 60 seconds. Assuming that the next
four absolute counter values are 550, 600, 660, and 750, subsequent
pmGetSnapshot() function calls return values of 50, 100, 160, and 250.

34 DB2 PM for OS/390: Data Collector API Guide

Interval Processing with Mixed Data Sources: Interval processing requires that
you use the pmReset() function to set a fixed reference point before you use the
pmGetSnapshot() function. If you want the latter function to use a snapshot from
the history data set, you use the GET_HISTORY keyword as a mode parameter.

The pmReset() function has its own mode parameter to control the data source. If
set to GET_DB2, actual DB2 performance data is used. If set to GET_HISTORY, a
selected snapshot from the history data set is used to set a fixed reference point for
interval processing.

For interval processing you can use any combination of data sources for the
pmReset() and pmGetSnapshot() function. However, the snapshot used to set the
reference point with the pmReset() function should be older than the oldest
expected snapshot from a pmGetSnapshot() function call. Meaningful
combinations are:
v Both, the pmReset() and the pmGetSnapshot() function, use real-time DB2

performance data. If both functions are called in the proper sequence, the
reference point is older.

v Both, the pmReset() and the pmGetSnapshot() function, use snapshot data from
the history data set. Your application needs to ensure that pmGetSnapshot()
does not select a snapshot that is older than the one selected for pmReset().

v The pmReset() function uses a snapshot from the history data set to set the
reference point, and the pmGetSnapshot() function uses real-time DB2
performance data. Here, the reference point is always older.

How Qualifying Works: Qualifying allows you to apply criteria to counter stores.
This frees the application from filtering counter values in which you are not
interested.

You specify the criteria for a snapshot store by setting up a qualifier list, which
contains one or more list entries. Each list entry specifies one criteria.

The qualifier list is applied to a snapshot store at the time the store is initialized
with the pmInitializeStore() function. Qualification criteria cannot be changed after
the store is initialized. If subsequent pmGetSnapshot() function calls request data,
only those data is returned that matches all criteria.

A qualifier list can also be applied to the pmGetHistory() function. This function
retrieves snapshot data from the Data Collector’s history data set. If a qualifier list
is applied, only those data is retrieved that matches all criteria.

An entry in the qualifier list uses a qualification ID that defines the type of criteria
you can specify. The field table shows the available qualification IDs in section
“Qualification IDs”. Each qualification ID gets a value assigned that specifies the
criteria value.

For example, you use the qualification ID WQALPLAN if you want to specify a
thread by its plan name. You assign this qualification ID a value of DGOPMDC. If
this is an entry in the qualifier list used when you initialize a snapshot store, only
counter values are returned from thread with plan name DGOPMDC.

The following example shows how a qualifier list is created. First, the qualifier list
is initialized using the initQualifierList() function. Then, the addQualifier()
function is used to add two list entries. The third and fourth parameter of the
addQualifier() function represent the qualification ID and the corresponding value.

Chapter 3. The Data Collector API Functions 35

#include "pmGetStatThread.h"
#include "pmTypes.h" // for pmReturnCodes

// the qualifier list
pmQualifierList qualifier;
pmReturnCodes error;
unsigned char[] lvw = {0x00,0x01,0x02};

// initialize qualifier list
(&qualifier);

// for each qualifier add counter name and value
// o value must be exactly in size like counter length specified
// in Field Table
// o functions returns [PM_APIERROR/PM_COUNTERTYPE_NOT_ALLOWED]
// if counter type is not allowed
// o functions returns [PM_APIERROR/PM_COUNTER_TOO_LONG] if
// counter is string and string longer than length in Field Table
// o function returns [PM_APIERROR/PM_UNKNOWN_COUNTER] if counter name
// is unknown
error = addQualifier(&myHandle, &qualifier,"WQALPLAN","DGOPMDC");

error = addQualifier(&myHandle, &qualifier,"WQALLUWI",lvw);

Note that qualification IDs of type VARCHAR are not supported. See the column
“Field Types” in the field table for applicable types.

See “Miscellaneous API Functions” on page 99 for details about the
initQualifierList() and addQualifier() functions.

More information about qualification can be found in the DB2 for OS/390
Administration Guide. It includes a section about “Programming for the
Instrumentation Facility Interface (IFI)”.

Working with the History Data Set
A history data set is a collection of performance snapshots that the Data Collector
collects when it is operating. You use the pmGetHistory() function to retrieve
stored snapshots from the history data set. As with snapshot processing, you can
specify the counters for which you want to retrieve data, and you can qualify the
counters to apply criteria.

If the application accesses performance data in a history data set, you should bear
in mind the characteristics of a history data set and the method to access
individual snapshots.

Characteristics of a History Data Set: Several parameters about the history data
set are specified as Data Collector startup parameters. The following parameters
influence the content and amount of snapshot data:
v The size of the history data set. The data set is used as a wrap-around data set.

When new snapshots are added, the oldest snapshots disappear after the data
set space fills up.

v The content of the data set. Generally, thread counters, statistic counters, and
DB2 system parameters are saved in the data set. However, only snapshots of
IFCIDs that are specified as Data Collector startup parameters and qualified
thread data are written to the data set.

v The frequency at which snapshots are taken and written to the data set.

Therefore, you may not find all counters in the data set. If necessary, you need to
change relevant Data Collector startup parameters. See the IBM DB2 Performance
Monitor for OS/390 Command Reference for more details.

36 DB2 PM for OS/390: Data Collector API Guide

Function Involved: The pmGetHistory() function retrieves a stored snapshot from
the history data set. You can select snapshots in different ways:
v By specifying a point in time
v By stepping forward and backward in the history data set.

Selecting Individual Snapshots: Every snapshot recorded in the history data set
is given a time stamp when the snapshot is taken. To select individual snapshots
the application program needs to know at least the time stamp of the snapshot.
Once this snapshot is identified, the application program can step forward or
backward in the history data set. The pmGetHistory() function has two parameters
(requestTime and dir). They control the selection of an individual snapshot and
the change of direction in the history data set. The following scenarios show how
the pmGetHistory() function and both parameters are used:

The first scenario assumes that you want to start with a snapshot record that is
younger than t1, which might be somewhere in the middle of the history data set:
1. The application calls the pmGetHistory() function with parameter requestTime

set to t1 and parameter dir set to TO.
This function call locates a snapshot next to (dir set to TO) time t1. The API
chooses the younger snapshot per definition.
The function returns the requested counter data, and returns the time stamp of
this snapshot.

2. Every subsequent pmGetHistory() function call takes the time stamp of a
preceding function call as a reference to locate a record adjacent to this point in
time. You select the direction (the older or the younger snapshot adjacent to
this point in time) with parameter dir set to BACK or FORWARD.
For example, assume that the first pmGetHistory() function call returned a
snapshot with a time stamp of t2. You want to locate the next older snapshot in
the history data set. Then, the application would call the next pmGetHistory()
function with parameter requestTime set to t2, and parameter dir set to BACK.

The second scenario assumes that you want to start from either the beginning or
the ending of the history data set.
v To start from the beginning (the oldest snapshot in the history data set), set

parameter requestTime to TOD_FIRST and parameter dir to FORWARD.
v To start from the end (the youngest snapshot in the history data set), set

parameter requestTime to TOD_LAST and parameter dir to BACK.

Once you have located a snapshot at either end, use the returned time stamp to
step through the history data set, as in the first scenario.

Working with Returned Data
The following functions return data streams of varying length and structure,
depending on the number and type of counters requested:
v pmGetSnapshot()

v pmGetHistory()

v pmGetHistoryContents()

v pmGetInfo()

The data stream is stored in the application’s memory, and the output parameter
result of these functions points to the output data area in memory.

Chapter 3. The Data Collector API Functions 37

Some counters return a single value when requested. For example, if you want to
examine the number of failures that resulted from an “EDM pool is full” condition,
you are interested in the value of counter QISEFAIL (field ID 2601 in the field
table). Because DB2 has only one EDM pool, the Data Collector returns only one
value for this counter.

Other counters return an unknown number of values. For example, if you want to
examine the number of requests made to read a page from the group buffer pool,
you are interested in the value of counter QBGLXD (field ID 2702 in the field
table). Because DB2 can have several active group buffer pools, the Data Collector
returns several values for this counter. (In this example you probably use an
additional counter that returns the buffer pool identifier.)

More complex, several counters represent a list of counter groups, whereby list
members also can represent counter groups, or a list of counters. For example,
counter REPSTAT contains all DB2 statistic counters (REPSTDDF, REPSTBUF,
REPSTGBF, and so on), whereby counter REPSTGBF represents a list of counters
(one counter for each active DB2 group buffer pool). These counters are called
repeating blocks and are given a data type of PMPARSEDREPBLOCK.

To hide this complexity, repeating blocks are stored in hash tables. The API
provides several supporting functions to locate counters in hash tables by their
names and to extract counter values. See “Miscellaneous API Functions” on
page 99 for details.

The Counter Structure
Every counter in the output data area is represented as a structure named
pmCounter:
typedef struct _counter
{
char* name; /* counter name as string */
unsigned short counterID; /* counter name as ID */
unsigned short length; /* length of value */
pmCounterType type; /* counter type, see below */
char* value; /* points to value storage */
pmCounterAttr attribute; /* indicating a valid counter value */

} pmCounter;

/* possible counter types */
typedef enum {

PMBIN='B', /* binary value, not converted */
PMSTRING='C', /* string in ASCII */
PMVARCHAR='V', /* string with variable length */
PMSHORT='S', /* small integer (2 bytes) */
PMINT='I', /* integer (4 bytes) */
PMTIME='T', /* DB2 time format */
PMDATE='D', /* DB2 date format */
PMPARSEDREPBLOCK = 'P'/* repeating block */

} pmCounterType;

typedef enum {
VALUE=0x40,
NA=0xC1,
NP=0xD7,
NC=0xC3

} pmCounterAttr;

Structure _counter aggregates six members:

38 DB2 PM for OS/390: Data Collector API Guide

1. name contains the name of the counter (which is identical with the counter you
have requested, respectively with the name of the counter as it is shown in the
field table).

2. counterID contains the identifier, as shown in column “Field ID” of the field
table.

3. length contains the length of the value member. The length is the same as shown
in column “Field Length” of the field table.
If structure member type is PMVARCHAR (which represents a string with
variable length), then member length contains the maximum length of the
string. The actual length of the string is represented by the first two bytes of
the string itself, whereas the actual length does not include this 2-byte prefix.

4. type contains the type of the counter, which is one of those defined in
pmCounterType.

5. value contains a pointer to the counter value in memory. The counter value is
valid if attribute contains VALUE. If the counter value is a character string, and
the workstation uses ASCII, the string is already converted from EBCDIC to
ASCII.

6. attribute contains an indicator showing how usable the content of member value
is:
v VALUE indicates a valid content.
v NC indicates “Not Calculated”. A calculation resulted in a division by zero.
v NP indicates “Not present”. A counter value was not set because the

corresponding DB2 function was not active. For example, if you query a
counter about the number of statements dropped from the dynamic
statement cache, and the cache is not enabled, attribute contains NP.

v NA indicates “Not Available”. A counter was not set because the counter is
not available for the installed DB2 subsystem version.

Interpreting Repeating Blocks
The example in this section shows how repeating blocks are treated and how the
individual counter values are retrieved from the result output data area.

The output data area contains a variable number of REPTHRD repeating block
items (one per active DB2 thread). The example steps through all REPTHRD
repeating block items until no further item is found.

The following table shows the hierarchy of counters within one REPTHRD
repeating block. REPTHRD contains counters, which can again represent repeating
blocks, for example, REPTHBUF. The REPTHBUF counter contains a list of
counters; one for each buffer pool.

result REPTHRD Groups all thread counters of one DB2 thread.

counter

REPTHBUF counter* Buffer pool data repeating block.

REPTHDAG counter* Distributed agent data repeating
block.

REPTHDAC counter* Distributed accounting data
repeating block.

REPTHBDS counter* Group buffer pool data repeating
block in thread record.

REPTHLCK counter* Locked resources repeating block.

Chapter 3. The Data Collector API Functions 39

The output data stream is stored in a hash table. The following demonstrates how
the hash table functions are used in the example:
pmCursor cursor = initCursor(pmGetCounter(result, "REPTHRD"));
pmHashTable item;

while(!endOfBlock(cursor))
{

item = getRepBlockItem(cursor);

// process data in this repeating block
...

setToNext(cursor);
}

Details of these functions are described in “Miscellaneous API Functions” on
page 99. With these functions you do not need to know in which sequence
individual counters appear in the data stream. The pmGetCounter() function
locates counters by their names. The initCursor() function initializes a cursor,
which is used to parse through all items of a repeating block.
#include "pmGetStatThread.h"
#include "pmHashTableList.h" // for cursor functions
#include "pmHashTable.h" // for repeating block

// counters to request
char *fields[] = {

"QWHCAID", // primary thread auth. ID
"QBACPID", // Buffer Pool name

};
// output data area
pmHashTable result;
// counter to get values from output data area
pmCounter* aCounter;
// cursor to step through threads
pmCursor cursor1;
// cursor to step through buffer pools of one thread
pmCursor cursor2;
// pointer to counters in thread repeating block
pmHashTable* threadCounters;
// pointer to counters in BP repeating block
pmHashTable* bufferPoolCounters;
// number of threads
unsigned int threadNo = 0;

// connect, logon
...

// IMPORTANT: before output data area can be filled,
// initialize it !!!
clearHashTable(&result);

// retrieve output data area in 'result'
...

printf(">> Parsing output data area and printing counters.\n\n");

// first locate the repeating block containing the active DB2 threads
// (one block item for each thread)
aCounter = pmGetCounter (result, "REPTHRD");
if(aCounter != NULL)
{
// step through all returned threads via cursor
cursor1 = initCursor (*aCounter);
while (!endOfBlock(cursor1))

40 DB2 PM for OS/390: Data Collector API Guide

{
threadNo++;

// now get access to counters of this thread
threadCounters = getRepBlockItem(cursor1);

// get first requested counter QWHCAID
aCounter = pmGetCounter (*threadCounters, "QWHCAID");
if(aCounter != NULL) // if not contained

// NULL is returned
{
// check if value is returned by Data Collector
switch(aCounter->attribute)
{
case VALUE:
// ok, DC returned value
// -> print counter value
printf(" Thread %d: QWHCAID has value %s.\n", threadNo,

(char*)aCounter->value);
break;

case NC:
case NP:
case NA:

printf(" QWHCAID not calculated, present or available.\n");
break;

default:
/* error */
exit(-1);

}
}
else
{
printf(" QWHCAID counter not returned by Data Collector!\n");

}

// now search repeating blocks contained in one thread
// (buffer pools, group buffer pools, remote locations, ...)
//-> first locate the repeating block for buffer pools
aCounter = pmGetCounter (*threadCounters, "REPTHBUF");
if(aCounter != NULL)
{
// the repeating block contains a block item for each
// active Buffer Pool
// -> step through all returned Buffer Pools
cursor2 = initCursor (*aCounter);
while (!endOfBlock(cursor2))
{
// now get access to each returned buffer pool
bufferPoolCounters = getRepBlockItem(cursor2);

aCounter = pmGetCounter (*bufferPoolCounters, "QBACPID");

if(aCounter != NULL) // if not contained
// NULL is returned

{
// check if value is returned by Data Collector
switch(aCounter->attribute)
{

case VALUE:
// print counter value
if(*(unsigned int*)aCounter->value < 80)
printf(" Buffer Pool BP%d is activated.\n",

(unsigned int)aCounter->value);
else
printf(" Buffer Pool BP32K%d is activated.\n",

Chapter 3. The Data Collector API Functions 41

(unsigned int)aCounter->value);
break;

case NC:
case NP:
case NA:
printf(" Thread does not use any Buffer Pool,");
printf(" QBACPID is set to n/p.\n");
break;

default:
// error
exit(-1);

}
}
else
{
printf("QBACPID counter not returned by Data Collector!\n");

}

// set cursor to next Buffer Pool in repeating block
setToNext(&cursor2);

}
}
else
{
printf(" QBACPID counter not returned by Data Collector!\n");

}

// set cursor to next thread in repeating block
setToNext(&cursor1);

}
}

// Free memory for output data area. This frees memory for all
// stored counters too.
freeHashTable (result);

// log off and disconnect
...

Snapshot Processing - Initialize Snapshot Store

Function Call
pmReturnCodes pmInitializeStore (pmHost* handle,

char* workProfile,
char** fields,
unsigned int counterNo,
pmQualifierList* qualifier,
char* userData,
unsigned int* id)

Header File
pmGetStatThread.h

Description
This function requests the Data Collector to create a snapshot store, to initialize it,
and to return a snapshot store identifier.

The snapshot store id is used during subsequent requests to identify the store.
Optionally, you can assign a 32-character name to the store.

42 DB2 PM for OS/390: Data Collector API Guide

The snapshot store remains active in the Data Collector. It is released by the
pmReleaseStore() function, or when the user identified by parameter workProfile
is logged off.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. fields (input)
An array of DB2 counter names that the snapshot store should include. You can
include statistics counter names and thread counter names that are listed in
column “Field Name” of the field table.
Insert the counter names as follows. Note that counter names are not
case-sensitive. Invalid counters are ignored.

char *fields[] = {
"QISEDBD", "QTMAXDS", "QTAUCHK", "QTAUSUC", "QBSTMAX",
"QBSTPID", "QBSTGET", "QBSTWFT", "QBSTWFD", "QBSTWKPD",
"QBSTWKPD", "QBSTMAX", "QBSTWKPD", "QBSTWDRP", "QBSTWBVQ",
"QBSTWFR", "QBSTWFF", "QBSTWFD", "QISEDSI", "QISEDSG",
"QISEDSC", "QXSTFND", "QXSTNFND", "QBSTWDRP", "QBSTWBVQ"

};

4. counterNo (input)
The number of counters specified with parameter fields.

5. qualifier (input)
The name of a qualifier list. The list specifies the criteria which data the Data
Collector should return. See “How Qualifying Works” on page 35, if required.

6. userData (input)
An optional user- or application-specific 32-character string that is assigned to
this snapshot store. This string is returned by the pmQueryStores() function. If
userData is not used, this parameter should be set to NULL.

7. id (output)
A snapshot store identifier generated by the Data Collector. This identifier is
required to identify this store in subsequent snapshot function calls.

Example
The following example shows how qualifiers are specified with a
pmInitializeStore() function call, if you want the pmGetSnapshot() function to
return only locked resources with suspensions.

// the qualifier list
pmQualifierList qualifier;
pmReturnCodes error;

// initialize qualifier list
initQualifierList(&qualifier);

// disable display of single and multiple held locks
// to show only locked resources with suspensions

error = addQualifier(&myHandle, &qualifier, "TLRSINGL"," ");
error = addQualifier(&myHandle, &qualifier, "TLRMULT"," ");

Chapter 3. The Data Collector API Functions 43

// initialize snapshot store with qualification
error = pmInitializeStore(&myHandle, workprofile, fields, fieldNo,

&qualifier, userinfo, &store_id);

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 1 Internal Data Collector error.

8 22 Internal Data Collector error.

8 24 Returned data is too large. Request was
canceled.

8 25 Internal Data Collector error.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 1554 Internal Data Collector error.

8 155B Internal Data Collector error.

8 155C Internal Data Collector error.

PM _ APIERROR PM _ INPUTAREA _
OVERFLOW

Too many counters qualified or requested.
Request input area overflow. Divide the
snapshot store into two or more stores.

PM _ APIERROR PM _ INPUTAREA _
OVERFLOW

Too many counters qualified or requested.
Request input area overflow. Divide the
snapshot store into two or more stores.

PM _ APIERROR PM _ INPUTAREA _
OVERFLOW

Too many counters qualified or requested.
Request input area overflow. Divide the
snapshot store into two or more stores.

PM _ APIERROR PM _ INPUTAREA _
OVERFLOW

Too many counters qualified or requested.
Request input area overflow. Divide the
snapshot store into two or more stores.

PM _ APIERROR PM _ DATASTREAM
_ INVALID

Received data stream not valid. Counter not
found, or end of data reached before
expected.

Verify that the latest DB2 PM PTF is
installed. If you cannot solve the problem,
call for IBM support.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Snapshot Processing - Query Snapshot Stores

Function Call
pmReturnCodes pmQueryStores (pmHost* handle,

char* workProfile,
pmStore** stores)

Header File
pmGetStatThread.h

Description
This function requests the Data Collector to return information about all active
snapshot stores for a user that is identified by parameter workProfile.

44 DB2 PM for OS/390: Data Collector API Guide

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. stores (output)
A pointer to a list of all active snapshot stores for this user. Every list member
is represented as a structure named pmStore. Use the pmFreeMem() function to
release the memory area, if the output data is no longer needed.

typedef struct _store
{

unsigned int id; // id of this snapshot store
pmTOD timeLatest; // time of snapshot in buffer Latest
pmTOD timeStored; // time of snapshot in buffer Stored
char userData[32] // contains the user defined

// identifier
struct _store* next; // next snapshot store in list

} pmStore;

v id contains the snapshot store identifier. This identifier was assigned by the
pmInitializeStore() function.

v timeLatest contains a time stamp, which shows when the buffer Latest of all
counters in this store was changed.
timeLatest returns \0\0\0\0\0\0\0\0 (8 bytes set to 0) if the counters were not
used so far.

v timeStored contains a time stamp, which shows when the buffer Stored of all
counters in this store was changed.
timeStored returns \0\0\0\0\0\0\0\0 (8 bytes set to 0) if the counters were not
used so far.

v userData[32] contains the user data (a 32-character field) that was assigned to
this snapshot store by the pmInitializeStore() function.

v next contains a pointer to the next member in the list of active snapshot
stores.

Example
#include "pmGetStatThread.h"
#include "pmTOD.h" // for time conversions
#include "pmTrace.h" // for asHexString()
#include <time.h>

// beginning of list with returned stores
pmStore* store;
pmStore* help;

time_t t1,
t2;

char *userInfo;
pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";

// connect and log on to DC
...

// query all stores for this user
error = pmQueryStores (&myHandle, workProfile, &store);

Chapter 3. The Data Collector API Functions 45

// print infos about all active snapshot stores
while(store)
{
// print infos
tod2time (store->timeLatest, &t1);
tod2time (store->timeStored, &t2);
userInfo = asHexString (store->userData, 32);
printf("Snapshot Store %d :\n \

\tUserData : %s\n \
\tBuffer Latest time : %s\n \
\tBuffer Stored time : %s\n\n",

store->id,
userInfo,
ctime(&t1),
ctime(&t2));

pmFreeMem(userInfo);

// set list to next item
help = store;
store = store->next;

// now free memory for list item, if no longer used.
pmFreeMem(help);

}

// log off and disconnect
...

Return Codes and Reason Codes

Return Code (Hex) Reason Code (Hex) Description

8 1 Internal Data Collector error.

8 22 Internal Data Collector error.

8 25 Internal Data Collector error.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 1554 Internal Data Collector error.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Snapshot Processing - Get Snapshot Data

Function Call
pmReturnCodes pmGetSnapshot (pmHost* handle,

char* workProfile,
pmSnapshotMode mode,
unsigned int id,
char** fields,
unsigned int counterNo,
pmTOD timestampLatest,
pmTOD timestampStored,
pmHashTable result)

Header File
pmGetStatThread.h

46 DB2 PM for OS/390: Data Collector API Guide

Description

This function requests the Data Collector to return counter data from a specified
snapshot store for a user identified by parameter workProfile.

Parameter mode controls the buffer calculations and the results to be returned. It
also controls whether actual DB2 performance data or data from the history data
set is to be used. If the latter is to be used, the Data Collector must have been
started with history recording active.

Parameter fields controls which counters from the specified counter store are to be
returned.

This function requires that the output data area is initialized with the
clearHashTable() function.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. mode (input)
One or more keywords that describes how the counters in the identified
snapshot store are treated before being returned. The following table
summarizes the possible modes and its major characteristics. For a detailed
description see “Possible Modes to Control the Snapshot Store Operation” on
page 31.
You need to specify one of the keywords shown in the left column of the table.
If you want to specify additional keywords, provide them as shown in the
following example. Internally, the keywords are declared as numeric constants,
which need to be bitwise ORed to control the program flow.
GET_LATEST | GET_HISTORY | GET_LOCKEDRESOURCES

Mode Copies
“Latest”
to
“Stored”

Refreshes
“Latest”

Returns ... Remark

GET_LATEST No Yes “Latest” Optionally, together with
GET_HISTORY, or
GET_LOCKEDRESOURCES, or
both.

Alternatively, together
with GET_HISTORY, or
GET_SUMMARY, or both.

VIEW_LATEST No No “Latest” Optionally, together with
GET_LOCKEDRESOURCES.

Alternatively, together
with GET_SUMMARY.

Chapter 3. The Data Collector API Functions 47

Mode Copies
“Latest”
to
“Stored”

Refreshes
“Latest”

Returns ... Remark

GET_INTERVAL No Yes “Latest”−
“Stored”

Preset by pmReset().
Optionally, together with
GET_HISTORY, or
GET_SUMMARY, or both.

VIEW_INTERVAL No No “Latest”−
“Stored”

Optionally, together with
GET_SUMMARY.

GET_DELTA Yes Yes “Latest”−
“Stored”

Optionally, together with
GET_HISTORY, or
GET_SUMMARY, or both.

VIEW_DELTA No No “Latest”−
“Stored”

Optionally, together with
GET_SUMMARY.

v The GET_HISTORY keyword selects the history data set (instead of actual DB2
performance data) as the data source to refresh the counters in a snapshot
store before their values are returned. It can be used together with one of the
GET modes, which refreshes buffer Latest.
The snapshot in the history data set is identified by parameter
timestampLatest. See “Snapshot Processing - Get History Contents” on
page 54 about how to retrieve a list of all snapshots in the history data set
and how to identify a snapshot by its time stamp.

v If you specify GET_INTERVAL, you must first use the pmReset() function to
ensure that the reference values for interval processing are set. See “Snapshot
Processing - Reset Interval Data” on page 51 for more details.
If you specify GET_INTERVAL together with GET_HISTORY, ensure that you have
selected an appropriate data source also for the pmReset() function.

v The GET_SUMMARY keyword causes the Data Collector to summarize all
thread-related counters. You can combine this keyword with other mode
keywords, except GET_LOCKEDRESOURCES.

4. id (input)
The identification of the snapshot store for which this function is to be
executed. The identification was set by the pmInitializeStore() function.

5. fields (input)
An array of counter names for which counter data is requested.
If you set fields to NULL, counter data is requested for all counters in this
snapshot store.
If you specify a subset of counter names, counter data is requested only for the
specified counters. A subset is any number of counters that was specified by
the pmInitializeStore() function for this snapshot store id.
To specify a subset of counters insert the counter names as follows. Counter
names are not case-sensitive. Invalid counters are ignored. Counters not
available in the stored snapshot record in a history data set are ignored. No
warning is returned.
char *fields[] = {

"QISEDBD", "QTMAXDS", "QTAUCHK", "QTAUSUC", "QBSTMAX",
"QBSTPID", "QBSTGET", "QBSTWFT", "QBSTWFD", "QBSTWKPD",
"QBSTWKPD", "QBSTMAX", "QBSTWKPD", "QBSTWDRP", "QBSTWBVQ",
"QBSTWFR", "QBSTWFF", "QBSTWFD", "QISEDSI", "QISEDSG",
"QISEDSC", "QXSTFND", "QXSTNFND", "QBSTWDRP", "QBSTWBVQ"

};

48 DB2 PM for OS/390: Data Collector API Guide

If you specify also thread counters in the array, and GET_SUMMARY as mode
parameter, all thread counters in the array are summarized before being
returned. See the field table, section “Thread Data”, for valid thread counter
names.

6. counterNo (input)
The number of counters specified with parameter fields. If parameter fields is
NULL, set counterNo to 0.

7. timestampLatest (output/input)
This parameter returns a time stamp, which shows when the buffer Latest of all
requested counters in this store was changed.
If the pmGetSnapshot() function is used with mode parameter GET_HISTORY,
specify a valid time stamp of a snapshot in the history data set. See parameter
mode for more details. Input data is overwritten upon return.

8. timestampStored (output)
This parameter returns a time stamp, which shows when the buffer Stored of
all requested counters in this store was changed.
The time stamp holds a valid time only if parameter mode is one of the
following:
v GET_INTERVAL

v VIEW_INTERVAL

v GET_DELTA

v VIEW_DELTA

9. result (output)
Pointer to the output data area. See “Working with Returned Data” on page 37
for how to retrieve individual counter values. Use the freeHashTable() function
to release the memory area, if the output data is no longer needed.
If counters about locked resources are requested (with mode set to
GET_LOCKEDRESOURCES), the output data area does not contain the REPTHLCK
repeating block under the REPTHRD repeating block. Instead, the following
additional information is returned in the output data area:

result REPTHLCK Groups all locked resources.

counter* Resource-related IFCID 150 counters.

REPLOTHR Thread-related IFCID 150 counters. Contains one
repeating block per thread.

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

4 1 No data returned by DB2.

4 2 Output data area too small. Output data
truncated.

4 3 Request resulted in a DB2 abend.

4 6 Authorization exit in the Data Collector is
active and returned no data.

4 7 Severe error in authorization exit. Standard
authorization checks are used.

Chapter 3. The Data Collector API Functions 49

Return Code2 (Hex) Reason Code2 (Hex) Description

4 E Dynamic statement cache error. You
qualified a special statement in the
statement cache. The requested statement
was not found in the cache.

4 F No data available in snapshot store. You
have requested to view previously saved
data, or to build the delta/interval, and at
least one buffer is empty. Fill buffer and
retry.

8 1 Internal Data Collector error.

8 8 DB2 request failed, no data. See the console
log for detailed information.

8 22 Internal Data Collector error.

8 24 Returned data too large. Request canceled.
Use qualification to reduce the amount of
data.

8 25 Internal Data Collector error.

8 2B Internal Data Collector error.

8 33 The history function in the Data Collector is
not started. If you want to retrieve
snapshots from the history data set, ensure
that the Data Collector is enabled to record
snapshots in the history data set (Data
Collector startup parameters).

8 35 Internal Data Collector error.

8 36 Request rejected. You specified GET_HISTORY
as mode parameter, but the history data
was found empty. No snapshot was yet
gathered.

8 36 Request rejected. You specified GET_HISTORY
as mode parameter, but the history data
was found empty. No snapshot was yet
gathered.

8 39 Request rejected. You requested
GET_HISTORY as mode parameter and
specified the time stamp of a snapshot with
parameter timestampLatest that could not
be found in the history data set. Use the
pmGetHistoryContents() function to
retrieve valid snapshot time stamps and try
again.

8 39 Request rejected. You requested
GET_HISTORY as mode parameter and
specified the time stamp of a snapshot with
parameter timestampLatest that could not
be found in the history data set. Use the
pmGetHistoryContents() function to
retrieve valid snapshot time stamps and try
again.

8 3B Internal Data Collector error.

8 3C Internal Data Collector error.

8 3D Internal Data Collector error.

50 DB2 PM for OS/390: Data Collector API Guide

Return Code2 (Hex) Reason Code2 (Hex) Description

8 3E Internal Data Collector error.

8 40 Data Collector Authorization exit returned
error. Irrecoverable error.

8 3B Internal Data Collector error.

8 3C Internal Data Collector error.

8 3D Internal Data Collector error.

8 3E Internal Data Collector error.

8 40 Data Collector Authorization exit returned
error. Irrecoverable error.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 4D You requested dynamic statement cache
counters, but dynamic statement cache is
not enabled. Try without these counters.

8 1554 Internal Data Collector error.

8 155A Incorrect snapshot store ID specified.

8 155D Incorrect snapshot store ID specified, or
snapshot store is no longer available.

8 155E Profile ID of user not found or no longer
valid.

8 1560 Internal Data Collector error.

8 1561 Internal Data Collector error. Storage
allocation for buffers failed.

8 1562 At least one field ID was requested that
exceeds the basic scope of collected IFCIDs,
as specified by the pmInitializeStore()
function.

8 1563 Internal Data Collector error.

8 156C You specified GET_DELTA or VIEW_DELTA as
mode parameter, but the time stamp of the
snapshot in buffer Latest is older or equal
to the time stamp in buffer Stored. The
delta calculation was not possible. Refresh
buffer Latest with a more recent snapshot.

PM _ APIERROR PM _ INCORRECT _
PARAMETER

One of the specified mode parameters is
incorrect, or too many fields are requested
(maximum is 2048). Check for correct
parameters.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Snapshot Processing - Reset Interval Data

Function Call
pmReturnCodes pmReset (pmHost* handle,

char* workProfile,
pmSnapshotMode mode
unsigned int id,
pmTOD snapshotTime)

Chapter 3. The Data Collector API Functions 51

Header File
pmGetStatThread.h

Description
This function requests the Data Collector to preset reference values for an
identified snapshot store for subsequent interval processing.

Use the pmReset() function before you use the pmGetSnapshot() function in mode
GET_INTERVAL. pmReset() makes the buffer Stored a fixed reference for interval
processing.
1. Buffer Stored is filled with latest performance data, or data from a snapshot of

the history data set.
2. Buffer Latest is released.

Subsequent pmGetSnapshot() function calls in mode GET_INTERVAL now use the
content of buffer Stored to calculate the difference to buffer Latest. The value in
buffer Stored is not changed by subsequent pmGetSnapshot() function calls in
mode GET_INTERVAL.

The pmReset() function is a companion to the pmGetSnapshot() function, which
can use actual DB2 performance data, or snapshot data from the history data set,
to refresh the content of buffer Latest. Consequently, you also need to specify the
data source for the pmReset() function. Use parameter mode to specify either data
source:
v If you specify GET_DB2, the pmReset() function uses actual DB2 performance

data to fill buffer Stored.
v If you specify GET_HISTORY, the pmReset() function uses data from a selected

snapshot of the history data set to fill buffer Stored. The snapshot in the history
data set is specified by its time stamp, in the same manner as with the
pmGetSnapshot() function.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. mode (input)
A keyword that controls the data source to use:
v GET_DB2 uses actual DB2 performance data.
v GET_HISTORY uses snapshot data from the history data set. Specify the

snapshot with parameter snapshotTime. See “Snapshot Processing - Get
History Contents” on page 54 about how to retrieve a list of all snapshots in
the history data set and how to identify a snapshot by its time stamp.

4. id (input)
The identification of the snapshot store for which this function is to be
executed. The identification was set by the pmInitializeStore() function.

5. snapshotTime (output/input)

52 DB2 PM for OS/390: Data Collector API Guide

If used with parameter mode set to GET_DB2, this parameter returns a time
stamp, which shows when the buffer Stored was filled with latest DB2
performance data.
If used with parameter mode set to GET_HISTORY, specify a valid time stamp of
a snapshot in the history data set that you want to use.
The time stamp is in Store Clock format. If you need a conversion to time_t
format, see “Convert Store Clock Format to time_t Format” on page 95 for
details.

Return Codes and Reason Codes

Return Code (Hex) Reason Code (Hex) Description

4 1 No data returned by DB2.

4 2 Output data area too small. Output data
truncated.

4 3 Request resulted in a DB2 abend. See the
OS/390 system log for more information.

4 6 Authorization exit returned no data.

4 7 Severe Error in authorization exit. Standard
authorization checks are used.

4 E Dynamic statement cache error. You
qualified a special statement in the
statement cache. The requested statement
was not found in the cache.

4 F No data available in snapshot store. You
have requested to view previously saved
data, or to build the delta/interval, and at
least one buffer is empty. Fill buffer and
retry.

8 1 Internal Data Collector error.

8 8 DB2 request failed, no data. See the console
log for detailed information.

8 22 Internal Data Collector error.

8 24 Returned amount of data too large. Request
canceled. Use qualification to reduce the
amount of data.

8 25 Internal Data Collector error.

8 2B Internal Data Collector error.

8 33 The history function in the Data Collector is
not started. If you want to retrieve
snapshots from the history data set, ensure
that the Data Collector is enabled to record
snapshots in the history data set (Data
Collector startup parameters).

8 35 Internal Data Collector error.

8 36 Request rejected. You specified GET_HISTORY
as mode parameter, but the history data
was found empty. No snapshot was yet
gathered.

Chapter 3. The Data Collector API Functions 53

Return Code (Hex) Reason Code (Hex) Description

8 39 Request rejected. You requested
GET_HISTORY as mode parameter and
specified the time stamp of a snapshot with
parameter snapshotTime that could not be
found in the history data set. Use the
pmGetHistoryContents() function to
retrieve valid snapshot time stamps and try
again.

8 3B Internal Data Collector error.

8 3C Internal Data Collector error.

8 3D Internal Data Collector error.

8 3E Internal Data Collector error.

8 40 Data Collector Authorization exit returned
error. Irrecoverable error.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 4D You requested dynamic statement cache
counters, but dynamic statement cache is
not enabled. Try without these counters.

8 1554 Internal Data Collector error.

8 155A Incorrect snapshot store ID specified.

8 155D Incorrect snapshot store ID specified or
snapshot store no longer available.

8 155E Profile ID of user not found or no longer
valid.

8 1560 Internal Data Collector error.

8 1561 Internal Data Collector error. Storage
allocation for buffers failed.

8 1562 At least one field ID was requested that
exceeds the basic scope of collected IFCIDs,
as specified by the pmInitializeStore()
function.

8 1563 Internal Data Collector error.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Snapshot Processing - Get History Contents

Function Call
pmReturnCodes pmGetHistoryContents (pmHost* handle,

char* workProfile,
unsigned int* ifcids,
unsigned int ifcidNo,
pmTOD timestampFrom,
pmTOD timestampTo,
pmHashTable result)

Header File
pmGetStatThread.h

54 DB2 PM for OS/390: Data Collector API Guide

Description
This function requests the Data Collector to return a list of snapshots from the
history data set for the user identified by parameter workProfile. The information
returned includes the recorded IFCIDs per snapshot and their time stamps.

The amount of returned information can be limited by specifying a time frame,
and by specifying IFCIDs for which data should be returned.

This function requires that the output data area is initialized with the
clearHashTable() function.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. ifcids (input)
This parameter allows you to specify IFCIDs for which data should be
returned. This limits the amount of data returned.
If you do not want to specify individual IFCIDs, specify NULL. The list of
snapshots returned contains all available IFCIDs.
If you want to specify individual IFCIDs, specify them as an array of unsigned
integer values. The list of snapshots returned contains snapshots that contain at
least one of the specified IFCIDs.

4. ifcidNo (input)
The number of IFCIDs specified with parameter ifcids, or 0, if no IFCIDs are
specified.

5. timestampFrom (input)
This parameter allows you to specify a time stamp that limits the amount of
data returned. The list of snapshots returned contains snapshots that are taken
after this time stamp. If you also specify a time stamp for parameter
timestampTo, keep both in timely order.
If you do not want to specify a time stamp, specify NULL. The list of snapshots
returned contains all snapshots from the history data set (if not limited by the
parameters ifcids or timestampTo).

6. timestampTo (input)
This parameter allows you to specify a time stamp that limits the amount of
data returned. The list of snapshots returned contains snapshots that are taken
before this time stamp.
If you do not want to specify a time stamp, specify NULL. The list of snapshots
returned contains all snapshots from the history data set (if not limited by the
parameters ifcids or timestampFrom).

7. result (output)
Pointer to the output data area. See “Working with Returned Data” on page 37
for how to retrieve individual counter values. Use the freeHashTable() function
to release the memory area, if the output data is no longer needed.
If no snapshots are in the history data set that match the selection criteria, the
output data area is empty (no REPHISNP repeating block is available). The

Chapter 3. The Data Collector API Functions 55

function returns with a return code of 0.

result REPHISNP Groups all history data set snapshots.

HISTTIME Time stamp of history data set snapshot, in Store
Clock format.

REPHIIFI Groups all IFCIDs collected at HISTTIME.
Contains one repeating block per HISTTIME.

HISTIFI IFCID collected at HISTTIME.

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 24 Returned data too large. Request canceled.
Try to limit the amount of returned data by
changing some of the input parameters.

8 33 History function not started in the Data
Collector.

8 22 Internal Data Collector error.

8 51 Internal Data Collector error.

PM _ APIERROR PM _ INPUTAREA _
OVERFLOW

Too many IFCIDs requested. Request input
area overflow. Reduce the number of
requested IFCIDs.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Snapshot Processing - Release Snapshot Store

Function Call
pmReturnCodes pmReleaseStore (pmHost* handle,

char* workProfile,
unsigned int id)

Header File
pmGetStatThread.h

Description
This function requests the Data Collector to release one or all snapshot stores that
are assigned to the user identified by parameter workProfile.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. id (input)
The identification of the snapshot store for which this function is to be
executed. The identification was set by the pmInitializeStore() function.
If you want to release an individual snapshot store, specify the store with
parameter id.

56 DB2 PM for OS/390: Data Collector API Guide

If you want to release all snapshot stores of the user identified by parameter
workProfile, set id to 0.

Return Codes and Reason Codes

Return Code (Hex) Reason Code (Hex) Description

8 1 Internal Data Collector error.

8 22 Internal Data Collector error.

8 25 Internal Data Collector error.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 1554 Internal Data Collector error.

8 155A Incorrect snapshot store ID specified.

8 155D Incorrect snapshot store ID specified, or
snapshot store no longer available.

8 155E Profile ID of user not found, or no longer
valid.

See also “Common Return Codes and Reason Codes” on page 10, if required.

History Processing - Get History Data

Function Call
pmReturnCodes pmGetHistory (pmHost* handle,

char* workProfile,
char** fields,
unsigned int counterNo,
pmQualifierList* qualifier,
pmTOD requestTime,
pmDirection dir,
pmTOD snapshotTime,
pmHashTable result)

Header File
pmGetStatThread.h

Description
This function requests the Data Collector to retrieve a stored snapshot of DB2
performance data from the history data set for a user specified by parameter
workProfile.

Counters can be specified and qualified as with the pmGetSnapshot() function.

Note that only snapshots of IFCIDs that are specified as Data Collector startup
parameters and qualified thread data are written to the history data set.

This function requires that the output data area is initialized with the
clearHashTable() function.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)

Chapter 3. The Data Collector API Functions 57

A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. fields (input)
An array of counter names for which counter data is requested from a stored
snapshot record in a history data set.
Specify at least one counter name. Counter names are not case-sensitive. Invalid
counter names are ignored. Counters not available in the stored snapshot
record in a history data set are ignored. No warning is returned.

char *fields[] = {
"QISEDBD", "QTMAXDS", "QTAUCHK", "QTAUSUC", "QBSTMAX",
"QBSTPID", "QBSTGET", "QBSTWFT", "QBSTWFD", "QBSTWKPD",
"QBSTWKPD", "QBSTMAX", "QBSTWKPD", "QBSTWDRP", "QBSTWBVQ",
"QBSTWFR", "QBSTWFF", "QBSTWFD", "QISEDSI", "QISEDSG",
"QISEDSC", "QXSTFND", "QXSTNFND", "QBSTWDRP", "QBSTWBVQ"

};

4. counterNo (input)
The number of counters specified with parameter fields (> 0).

5. qualifier (input)
The name of a qualifier list. The list specifies the criteria which data the Data
Collector should return. See “How Qualifying Works” on page 35, if required.

6. requestTime (input)
Use this parameter together with parameter dir to locate a stored snapshot
record in the history data set.
v If you want to locate a stored snapshot record nearest to a specified point in

time (and younger than the given time), set requestTime to the point in time
you want and parameter dir to TO.

v If you want to locate the oldest stored snapshot record, set requestTime to
TOD_FIRST and parameter dir to FORWARD.

v If you want to locate the youngest stored snapshot record, set requestTime
to TOD_LAST and parameter dir to BACK.

v If you want to locate a stored snapshot record adjacent to a previously
located record, set requestTime to the time returned by the previous
pmGetHistory() function call. See parameter snapshotTime below. Use
parameter dir to choose the direction (the older or the younger record
adjacent to this point in time).

See “Working with the History Data Set” on page 36 if you need a more
detailed description.

The required format of the requestTime parameter is the Store Clock format. If
you need a conversion from time_t format, see “Convert time_t Format to Store
Clock Format” on page 97 for details.

7. dir (input)
Use this parameter together with parameter requestTime to locate a stored
snapshot record in the history data set.
v Use TO together with a given point in time (specified by parameter

requestTime), if you want to locate a stored snapshot record nearest to a
point in time. Per definition the younger snapshot in the history data set is
chosen.

v Use BACK if you want to choose the older snapshot adjacent to a previously
located snapshot.

v Use FORWARD if you want to choose the younger snapshot adjacent to a
previously located snapshot.

58 DB2 PM for OS/390: Data Collector API Guide

8. snapshotTime (output)
The time stamp of a stored snapshot retrieved from the history data set.
The time stamp is in Store Clock format. If you need a conversion to time_t
format, see “Convert Store Clock Format to time_t Format” on page 95 for
details.

9. result (output)
Pointer to the output data area. See “Working with Returned Data” on page 37
for how to retrieve individual counter values. Use the freeHashTable() function
to release the memory area, if the output data is no longer needed.

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 1 Internal Data Collector error.

8 22 Internal Data Collector error.

8 32 Internal Data Collector error.

8 33 History function not started in the Data
Collector.

8 35 Internal Data Collector error.

8 36 Request rejected. The history data set is
empty. No snapshot is gathered yet.

8 37 Request rejected. You requested a snapshot
with parameter dir set to TO for a time that
is older than the oldest snapshot in the
history data set.

Specify a requestTime that is younger than
the oldest snapshot in the history data set,
or locate the oldest snapshot with
requestTime set to TOD_FIRST and dir set to
FORWARD.

8 38 Request rejected. You requested a snapshot
with parameter dir set to BACK that is
already the oldest snapshot in the history
data set.

8 39 Request rejected. You specified a snapshot
with parameter dir set to TO for a time that
is younger than the youngest snapshot in
the history data set.

Specify a requestTime that is older than the
youngest snapshot in the history data set,
or locate the youngest snapshot with
requestTime set to TOD_LAST and dir set to
BACK.

8 3A Request rejected. You requested a snapshot
with parameter dir set to FORWARD for a
snapshot that is currently the youngest in
the history data set.

Wait until the next snapshot is gathered by
the Data Collector and retry the operation.

8 3B Internal Data Collector error.

8 3C Internal Data Collector error.

Chapter 3. The Data Collector API Functions 59

Return Code2 (Hex) Reason Code2 (Hex) Description

8 3D Internal Data Collector error.

8 3E Internal Data Collector error.

8 40 Data Collector Authorization exit returned
error. Irrecoverable error.

8 42 The function is not available. A DB2 PM
license is required for this function.

PM _ APIERROR PM _ INCORRECT _
PARAMETER

You specified incorrect parameter values:

- counterNo must be larger than 0.

- fields must contain at least one valid
counter name.

- dir must be BACK, FORWARD, or TO.

PM _ APIERROR PM _ INPUTAREA _
OVERFLOW

You requested too many counters, or too
many counters as qualifiers.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Processing DB2 Exception Events

Introduction to Exception Processing
The DB2 PM API provides functions that you can use in the application to work
with DB2 exception events. The following DB2 event types are supported:
v Authorization failure
v Timeout
v EDM Pool full
v Global Trace started
v Thread commit indoubt
v Deadlock
v Data set extension
v Unit of recovery inflight or indoubt
v Logspace shortage
v Coupling Facility events:

– CF rebuild start
– CF rebuild stop
– CF alter start
– CF alter stop

Exception processing through the API requires that the Data Collector is started
with event exception processing or periodic exception processing enabled. The API
can access exception events only if the Data Collector records this data. Note that
the Data Collector can be started with event exception processing enabled, periodic
exception processing enabled, none, or both enabled. However, the API currently
has access only to event exception data.

The Data Collector records the 500 most recent DB2 authorization events and other
DB2 events in an exception log. The application program can retrieve this
exception log and individual log records for further processing.

60 DB2 PM for OS/390: Data Collector API Guide

The application can also request the Data Collector to post event exceptions to the
application program as they occur.

The application program controls the event exception processing in the Data
Collector with the following API functions:
v The pmGetEventExceptionLog() function retrieves the exception log from the

Data Collector. You can specify a time frame to limit the number of exception
log records that are returned to the application.

v The pmGetEventDetails() function retrieves all details about an individual
exception log record. You identify an exception log record by a time stamp and
an event exception type. Both are returned by a previous
pmGetEventExceptionLog() function call, and a pmFetchExceptions() function
call.

v The pmStartExceptionProc() function starts event exception processing in the
Data Collector. This prepares the Data Collector for posting event exceptions to
the application. Parameters allow you to specify the type of event exceptions to
process. Each event exception process is assigned to an existent user profile
(specified by the pmLogOn() function at logon time). One event exception
process can be assigned to one user’s work profile.

v The pmGetExceptionStatus() function requests status information about an
exception process for a specified user. You use this function to check whether a
process is already started, or to gather details about a process.

v The pmFetchExceptions() function requests the Data Collector to post exception
records to the application program as they occur.
You use this function to keep track with exception events. The exception records
that are returned to the application program are similar to those returned by the
pmGetEventExceptionLog() function. Therefore, use the pmGetEventDetails()
function to retrieve all details about an individual exception log record.
Subsequent pmFetchExceptions() function calls request the Data Collector to
post yet undelivered exception records. If no new exception records exist, this
function waits until the next exception occurs.

v Finally, the pmStopExceptionProc() function stops event exception processing
for a named user profile.
Event exception processing also stops if the named user is logged off from the
Data Collector.
However, event exception processing remains active if the application
disconnects the named user from the Data Collector. After the application
reconnects to the Data Collector, the named user has again access to exceptions
that occurred after the pmFetchExceptions() function was used last.

Note: The following functions contain provisions for possible future extensions.
Therefore, some parameters must be set to fixed values, and some output
variables return fixed values.

Retrieve Event Exception Log

Function Call
pmReturnCodes pmGetEventExceptionLog (pmHost* handle,

char* workProfile,
pmTOD from,
pmTOD to,
char** data,
unsigned int* length)

Chapter 3. The Data Collector API Functions 61

Header File
pmExcpProc.h

Description
This function requests the Data Collector to retrieve the exception log for a user
specified by parameter workProfile.

At the most, the Data Collector returns 500 of the most recent exception log
records. You can specify a time frame to limit the number of exception log records
to be returned.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. from (input)
This parameter specifies the earliest date and time (in Store Clock format) for
which exception log records should be retrieved. If from is NULL, the exception
log is read from the beginning.
The from parameter requires the Store Clock format. If you need a conversion
from time_t format, see “Convert time_t Format to Store Clock Format” on
page 97 for details.

4. to (input)
This parameter specifies the latest date and time (in Store Clock format) for
which exception log records should be retrieved. If to is NULL, the exception log
is read to the end.
The to parameter requires the Store Clock format. If you need a conversion
from time_t format, see “Convert time_t Format to Store Clock Format” on
page 97 for details.

5. data (output)
Pointer to the output data area. The output data area can be parsed by using
the functions described in “Parsing Data” on page 88. The field table describes
the exception IDs returned by this function in section “Exception IDs”. The
“Example” on page 64 shows how this can be done.Use the pmFreeMem()
function to release the memory area, if the output data is no longer needed.

Output Data Area for pmGetEventExceptionLog()

ÊÊ total length of output area CNT_X number DATEATIM date and time Ê

Ê » Event exception record ÊÍ

62 DB2 PM for OS/390: Data Collector API Guide

Event exception record:

RC_XEVT Event information DATEATIM date and time RC_XEVTE

Event information:

XEV_DEAD RESOURTY Locked resource type
XEV_TOUT RESOURTY Locked resource type
XEV_EDM EDMFULID EDM Pool full reason
XEV_AUTH AUTHORIZ Authorization ID checked
XEV_CFRA STRUCTNA Structure name
XEV_CFRO

REASSTOP Reason stopped
XEV_CFAO REASSTOP Reason stopped

ASUCCESS
SUCCEBUT

XEV_COMM EI_HEUDO
EI_PACOS
EI_ILOGS
EI_SNACO
EI_HEUDA
EI_SNASD
EI_SNASY
EI_LOGCH
EI_CICSU
EI_CONDR
EI_XLNPR
EI_RESTA

XEV_TRAC
XEV_DSEX DSNAME Data set name EXTAFT Number of extents after
XEV_URPR URTYP Unit of recovery type
XEV_LGSP COPYNUM Log copy number PERCENT Percentage filled

CNT_XEVT
The value indicates the number of event exceptions following in the list.

RC_XEVT
Specifies the beginning of an event exception record.

CNT_XEVT
The value indicates the number of event exceptions following in the list.

RC_XEVT
Specifies the beginning of an event exception record.

RC_XEVTE
Specifies the end of an event exception record.

EI_HEUDO
Heuristic decision occurred.

EI_PACOS
Partner cold start detected.

EI_ILOGS
Incorrect logname or syncpoint parm.

EI_SNACO
SNA compare stats protocol error.

Chapter 3. The Data Collector API Functions 63

EI_HEUDA
Heuristic damage.

EI_SNASD
SNA syncpoint protocol damage.

EI_SNASY
Syncpoint communication failure.

EI_LOGCH
Logname changed on warm/start.

EI_CICSU
CICS or IMS NID unknown.

EI_CONDR
Conditional restart data loss.

EI_XLNPR
XLN protocol error.

EI_RESTA
Error during DB2 restart.

6. length (output)
The length (in number of bytes) of the output data area.

Example
#include "pmExcpProc.h"
#include "pmParser.h"
#include "pmCounter.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"
#include "pmTOD.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
...

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
pmReturnCodes error;
char* data;
char* helpPtr;
unsigned int length,

pos = 0,
counterNo;

pmCounter aCounter;
time_t eventTime;
pmBoolean skipped;

// connect to data collector and log on
...

// start event exception processing
error = pmStartExceptionProc(&myHandle, workProfile, EVENT, 0, FALSE, NULL);

// ok, now get the complete event exception log
// from log start to log end (from and to set to NULL)

if(pmGetEventExceptionLog (&myHandle, workProfile, NULL, NULL,
&data, &length).returnCode == 0)

{
helpPtr = data + 4; /* helpPtr points now to output data area */

/* without 'total length of output' area */
/* field. */

64 DB2 PM for OS/390: Data Collector API Guide

length -= 4; /* output data area length without */
/* 'total length of output' area field */

/* get number of returned exceptions (CNT_X) */
if(nextTokenValue (&myHandle, helpPtr, &pos,

length, "CNT_X", &counterNo) != PM_FAILED)
{
printf("Found %d exceptions:\n", counterNo);

/* skip date and time of pmGetEventExceptionLog() execution */
/* (first DATEATIM counter) */
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

/* now handle all returned exceptions */
while(counterNo--)
{
/* skip start of Event Exception Record (RC_XEVT), it is just */
/* a flag to indicate start */
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

/* now we are at the start of the event information -> */
/* get type of event exception */
aCounter = nextToken(&myHandle, helpPtr, &pos, length, FALSE);
if(aCounter.counterID == 0)
{

printf("Parsing failed, data stream is invalid.\n");
counterNo = 0;
break; /* counter invalid */

}

/* handle all kinds of event exceptions */
if(!strcmp(aCounter.name, "XEV_DEAD"))
{
/* deadlock event */
printf(" >> \'Deadlock\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}
else if(!strcmp(aCounter.name, "XEV_TOUT"))
{
/* timeout event */
printf(" >> \'Timeout\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}
else if(!strcmp(aCounter.name, "XEV_EDM"))
{
/* EDM pool full event */
printf(" >> \'EDM Pool full\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}
else if(!strcmp(aCounter.name, "XEV_AUTH"))
{
/* authentification failure event */
printf(" >> \'Authentification Failure\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}
else if(!strcmp(aCounter.name, "XEV_CFRA"))
{
/* CF rebuild start event */
printf(" >> \'CF rebuild start\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}

else if(!strcmp(aCounter.name, "XEV_CFRO"))
{
/* CF rebuild stop event */
printf(" >> \'CF rebuild stop\' exception from");
if(testToken("REASSTOP", helpPtr, pos, length) == PM_OK)

Chapter 3. The Data Collector API Functions 65

skipToken(&myHandle, helpPtr, &pos, length, FALSE);
}
else if(!strcmp(aCounter.name, "XEV_CFAO"))
{
/* CF alter event */
printf(" >> \'CF alter\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}
else if(!strcmp(aCounter.name, "XEV_COMM"))
{
/* commit in-doubt event */
printf(" >> \'Commit in-doubt\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}
else if(!strcmp(aCounter.name, "XEV_TRAC"))
{
/* trace started event */
printf(" >> \'Global Trace Started\' exception from");

}
else if(!strcmp(aCounter.name, "XEV_DSEX"))
{
/* trace started event */
printf(" >> \'Data Set Extention\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}

else if(!strcmp(aCounter.name, "XEV_URPR"))
{
/* trace started event */
printf(" >> \'Unit of Recovery inflight or indoubt\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}
else if(!strcmp(aCounter.name, "XEV_LGSP"))
{
/* trace started event */
printf(" >> \'Logspace shortage\' exception from");
skipToken(&myHandle, helpPtr, &pos, length, FALSE);
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}
else
{
printf("Unknown event exception found, skipping...\n");
skipped = PM_OK;
while(testToken("DATEATIM", helpPtr, pos, length) ==

PM_FAILED && skipped == PM_OK)
skipped = skipToken(&myHandle, helpPtr, &pos, length, FALSE);

if(skipped == PM_FAILED)
{
printf("Data stream invalid!\n");
counterNo = 0;
break; /* counter invalid */

}
}

/* free internal used memory of counter */
deleteCounter(aCounter);

/* get time of event */
aCounter = nextToken(&myHandle, helpPtr, &pos, length, FALSE);
if(aCounter.counterID == 0)
{
printf("Parsing failed, data stream is invalid.\n");
counterNo = 0;
break; /* counter invalid */

}
tod2time(aCounter.value, &eventTime);
printf(" %s", ctime(&eventTime));

66 DB2 PM for OS/390: Data Collector API Guide

deleteCounter(aCounter);

/* skip end of event record token */
skipToken(&myHandle, helpPtr, &pos, length, FALSE);

}
}
else
{
printf("Parsing failed, data stream is invalid.\n");

}
pmFreeMem(data);

}

// log off and disconnect (stops also event exception processing)
...

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 1 Internal Data Collector error.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 1000 Internal Data Collector error.

8 1001 Internal Data Collector error.

PM _ APIERROR PM _ INCORRECT _
PARAMETER

Start time is equal or greater than end time.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Retrieve Event Exception Details

Function Call
pmReturnCodes pmGetEventDetails (pmHost* handle,

char* workProfile,
pmTOD eventTime,
char* eventType,
char** data,
unsigned int* length)

Header File
pmExcpProc.h

Description
This function requests the Data Collector to retrieve detailed information about an
event exception. The exception log record to retrieve is specified by the time stamp
and the event exception type that was returned by a previous
pmGetEventExceptionLog() or pmFetchExceptions() function call. The information
returned depends on the event exception type.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

Chapter 3. The Data Collector API Functions 67

3. eventTime (input)
The time (in Store Clock format) at which the event exception occurred. Use the
content of field DATEATIM returned by a previous
pmGetEventExceptionLog() or pmFetchExceptions() function call.

4. eventType (input)
The event exception type. Use the event exception type (“XEV_xxxx”) returned
by a previous pmGetEventExceptionLog() or pmFetchExceptions() function.
For example, “XEV_DEAD” specifies a “deadlock” event. See the output data
area description of the pmGetEventExceptionLog() function for possible event
exception types.

5. data (output)
Pointer to the output data area. The output data area can be parsed by using
the functions described in “Parsing Data” on page 88. The “Example” on
page 74 shows how this can be done.The field table describes the exception IDs
returned by this function in section “Exception IDs”. Use the pmFreeMem()
function to release the memory area, if the output data is no longer needed.

Output Data Area for pmGetEventDetails()

ÊÊ total length of output area General product header Ê

Ê Deadlock details
Timeout details
EDM pool full details
Authorization failure details
Global trace start details
Thread commit in-doubt details
CF rebuild / alter start details
CF rebuild stop details
CF alter stop details
Data set extension details
Unit of recovery problem details
Log space shortage details

ÊÍ

General product header:

IFCID The IFCID SUBSID The DB2 subsystem ID Ê

Ê TDLUWIN Unique instance number DATEATIM Store Clock value of header Ê

Ê PNAME Plan name AUTHORIZ Authorization ID CONNECT Connection ID Ê

Ê CORRELID Correlation ID EUSERID End user’s user ID Ê

Ê EUTRANS End user’s transaction name EUWRKST End user’s workstation name Ê

68 DB2 PM for OS/390: Data Collector API Guide

Ê GNAME DB2 data sharing group name MNAME DB2 member name

Deadlock details:

INTERVCT Interval counter CNT_RESI Numbers involved Ê

Ê DATEIFROM Deadlock detection time » Deadlock repeating section

Deadlock repeating section:

XSEPARAT Deadlock/Timeout resource details REQFUNCT Requested function Ê

Ê ASSIGNWV DB2 worth value LOCKFLAG Lock attribute Ê

Ê XSEPARAT BLK_FLAG Constant H for Holder Ê

Ê BLK_STAT Lock flag Deadlock/Timeout Holder/Waiter details Ê

Ê XSEPARAT BLK_FLAG Constant W for Waiter Deadlock/Timeout Holder/Waiter details

Timeout details:

CNT_RESI Numbers involved TINTERV Timeout interval Ê

Ê COUNT_S Timeout counter for thread Ê

Ê Deadlock/Timeout resource details REQFUNCT Requested function Ê

Ê REQSTATE Requested lock state REQDURAT Requested duration Ê

Ê REQFLAG Requested lock flag REQOWNUW Requested owning work unit Ê

Ê » Timeout repeating section

Timeout repeating section:

XSEPARAT BLK_FLAG Holder, (Priority) Waiter, Retained Lock Ê

Chapter 3. The Data Collector API Functions 69

Ê BLK_STAT Lock flag Ê

Ê REQOWNUW Requested owning work unit Deadlock/Timeout Holder/Waiter details

Deadlock/Timeout resource details:

RESOURTY X’00’ Data page Deadlock/Timeout common details PAGENUMB Page number
RESOURTY X’01’ Database DATABASE Database
RESOURTY X’02’ Pageset locking Deadlock/Timeout common details
RESOURTY X’03’ Table space Deadlock/Timeout common details PARTNUMB Partition number
RESOURTY X’04’ Skeleton cursor table PNAME Plan name
RESOURTY X’05’ Index page Deadlock/Timeout common details PAGENUMB Page number SUBPAGEN Subpage number
RESOURTY X’06’ Partition lock Deadlock/Timeout common details PARTNUMB Partition number
RESOURTY X’07’ Page dataset open Deadlock/Timeout common details
RESOURTY X’0A’ Database exception table Deadlock/Timeout common details PARTNUMB Partition number
RESOURTY X’0D’ GBP dependent Deadlock/Timeout common details
RESOURTY X’0F’ Mass delete Deadlock/Timeout common details
RESOURTY X’10’ Table Deadlock/Timeout common details
RESOURTY X’11’ Hash anchor Deadlock/Timeout common details PAGENUMB Page number ANCHOR Anchor
RESOURTY X’12’ Skeleton package table PACKAGE Package COLLECTI Collection ID CONSTOKE Consistency token
RESOURTY X’13’ Collection COLLECTI Collection ID
RESOURTY X’14’ CS read drain Deadlock/Timeout common details PARTNUMB Partition number
RESOURTY X’15’ Repeatable read drain Deadlock/Timeout common details PARTNUMB Partition number
RESOURTY X’16’ Write drain Deadlock/Timeout common details PARTNUMB Partition number
RESOURTY X’18’ Data row Deadlock/Timeout common details PAGNUMB Page number ROW Row
RESOURTY X’19’ Index EOF Deadlock/Timeout common details PARTNUMB Partition number
RESOURTY X’1A’ Alter bufferpool BPOOL Bufferpool
RESOURTY X’1B’ Group bufferpool BPOOL Bufferpool
RESOURTY X’1C’ Index tree Deadlock/Timeout common details
RESOURTY X’1D’ Pageset/partition Deadlock/Timeout common details
RESOURTY X’1E’ Page P-lock Deadlock/Timeout common details
RESOURTY X’23’ DBD P-lock Deadlock/Timeout common details
RESOURTY X’27’ Database exception Deadlock/Timeout common details PARTNUMB Partition number
RESOURTY X’28’ Utility UID UTIL Utility ID
RESOURTY X’29’ Utility exclusive RMID Rmid HASHVALU Hash value
RESOURTY X’30’ LOB lock Deadlock/Timeout common details

Deadlock/Timeout common details:

DATABASE Database OBJECT Object name LOBROWID LOB row ID (V6) Ê

Ê LOBVERSI LOB version number (V6)

Deadlock/Timeout Holder/Waiter details:

PNAME Plan name CORRELID Correlation identifier Ê

Ê CONNECT Connection identifier TDLUWNID LUW network ID Ê

Ê TDLUWLUN LUW LU name TDLUWIN LUW instance number TDTOKEN Thread token Ê

Ê LOCKSTAT Requested state DURATION Requested duration Ê

Ê MEMBERNA Member name AUTHORIZ Authorization ID EUSERID End user’s ID Ê

70 DB2 PM for OS/390: Data Collector API Guide

Ê EUTRANS End user’s transaction name EUWRKST End user’s workstation name

EDM pool full details:

EDMFULID EDM Pool full reason Reason: database
Reason: cursor table
Reason: package table

Reason: database:

DATABASE Database SECTILEN Length of section

Reason: cursor table:

PNAME Planname RDSID RDS identifier Ê

Ê SEQUENNO Sequence number within RDS Ê

Ê CUTABLEN Length of cursor table selection

Reason: package table:

LOCATION Location name COLLECTI Collection identifier Ê

Ê PACKAGE Package identifier CONSTOKE Consistency token Ê

Ê RDSID RDS identifier SEQUENNO Sequence number within RDS Ê

Ê PATABLEN Len of pkg tab sel

Authorization failure details:

AUTHORIZ Authorization ID checked PRIVILEG Privilege checked Ê

Ê OBJECTTY Object type OBJECTOW Source object owner Ê

Ê OBJECTNA Source object name OBJECTOW Target object owner Ê

Chapter 3. The Data Collector API Functions 71

Ê OBJECTNA Target object name SQLSTATE SQL statement

Global trace start details:

TRACECMD The trace command

Thread commit in-doubt details:

EI_HEUDO
EI_PACOS
EI_ILOGS
EI_SNASD
EI_HEUDA
EI_SNASD
EI_SNASY
EI_LOGCH
EI_CICSU
EI_CONDR
EI_XLNPR
EI_RESTA

UNFORREC Unformatted record

Coupling facility rebuild / alter start details:

STRUCTNA Structure name REASINIT Reason initiated DATEATIM Start time Ê

Ê REQUSIZE Requested size

Coupling facility rebuild stop details:

STRUCTNA Structure name DATEATIM Start time DATEATIM End time Ê

Ê ELAPSTIM Elapsed time REASINIT Reason initiated Ê

Ê CUCOELEM Current count of elements (V6)
REASSTOP Reason stopped

Coupling facility alter stop details:

STRUCTNA Structure name DATEATIM Start time DATEATIM End time Ê

72 DB2 PM for OS/390: Data Collector API Guide

Ê ELAPSTIM Elapsed time REASSTOP Reason stopped
ASUCCESS Current values
SUCCEBUT

Current values:

REQUSIZE Size (4 KB) MINISIZE Minimum size (4 KB) Ê

Ê DIRENTRY Directory entries ELMENTRY Element entries Ê

Ê CUCOELEM Current count of elements (V6)

Data set extension details:

DSNAME The data set name DATEATIM The timestamp after extent Ê

Ê DBNAME The database name DATABASE The database ID - DBID Ê

Ê OBJECT The pageset ID - PSID TISNAME The table/index space name Ê

Ê PQUANT The primary allocation quantity Ê

Ê SQUANT The secondary allocation quantity Ê

Ê MAXSIZE The maximum data set size Ê

Ê ALLOCBEF The allocated space before extent Ê

Ê ALLOCAFT The allocated space after extent MAXEXT The maximum extents Ê

Ê EXTBEF The number of extents before extent Ê

Ê EXTAFT The number of extents after extent MAXVOL The maximum volumes Ê

Ê VOLBEF The number of volumes before extent Ê

Ê VOLAFT The number of volumes after extent

Chapter 3. The Data Collector API Functions 73

Unit of recovery problem details:

MESSNUM The message number
CHKPTNBR The number of checkpoints

Ê

Ê CONNECT The connection ID CORRELID The correlation ID Ê

Ê TDLUWNID The LUW network IF TDLUWLUN The LUW LU name Ê

Ê TDLUWIN The LUW instance URID The Unit of Recovery ID Ê

Ê URTYP The UR type PNAME The plan name AUTHORIZ The authorization ID Ê

Ê EUSERID The end user’s user ID EUTRANS The end user’s transaction name Ê

Ê EUWRKST The end user’s workstation name

Log space shortage details:

COPYNUM The active log copy number PERCENT The percentage filled

6. length (output)
The length (in number of bytes) of the output data area.

Example
#include "pmExcpProc.h"
#include "pmParser.h"
#include "pmCounter.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
...

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
pmReturnCodes error;
char* data;
char* helpPtr;
unsigned int length,

pos = 0,
counterNo;

pmCounter aCounter;
pmTOD evTime;
char evType[256];

// connect to data collector and log on
...

// start event exception processing
error = pmStartExceptionProc(&myHandle, workProfile, EVENT, 0, FALSE, NULL);

74 DB2 PM for OS/390: Data Collector API Guide

// fetch exception
error = pmFetchExceptions (...);

// parse it and store time and type of event exception
...

evTime = ...
evType = ... /* 'XEV_DEAD', 'XEV_AUTH', 'XEV_COMM', etc. */

// ok, now get the details for this event
if(pmGetEventDetails(&myHandle, workProfile, evTime,

evType, &data, length).returnCode == 0)
{
helpPtr = data + 4; /* helpPtr points now to output data area */

/* without 'total length of output' area */
/* field. */

length -= 4; /* output data area length without */
/* 'total length of output' area field */

/* use parser functions to get values */
...

/* do not forget to free output data area */
pmFreeMem(data);

}

// log off and disconnect (stops also event exception processing)
...

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

4 1045 Event detail no longer available.

8 1 Internal Data Collector error.

8 1000 Internal Data Collector error.

8 1001 Internal Data Collector error.

PM _ APIERROR PM _ INCORRECT _
PARAMETER

Unknown event exception type specified.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Start Exception Processing

Function Call
pmReturnCodes pmStartExceptionProc (pmHost* handle,

char* workProfile,
pmExceptionType type,
unsigned int interval,
pmBoolean userExit,
char* thresholdDefs)

Header File
pmExcpProc.h

Description
This function requests the Data Collector to start event exception processing for a
user specified by parameter workProfile.

This function is required before the pmFetchExceptions() function can be used in
the application program.

Chapter 3. The Data Collector API Functions 75

This function should not be called more than once for the same event type and for
the same user. Use the pmGetExceptionStatus() with the same work profile to
check in advance whether exception processing is already started for a specified
user.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. type (input)
The type of exception processing to start. Specify EVENT.

4. interval (input)
Reserved. Specify 0.

5. userExit (input)
Reserved. Specify FALSE.

6. thresholdDefs (input)
Reserved. Specify NULL.

Example
#include "pmExcpProc.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"
...

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
pmReturnCodes error;

// connect to data collector and log on
...

// start event exception processing
error = pmStartExceptionProc(&myHandle, workProfile, EVENT, 0, FALSE, NULL);

// log off and disconnect
...

Return Codes and Reason Codes

Return Code (Hex) Reason Code (Hex) Description

8 1 Internal Data Collector error.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 1000 Internal Data Collector error.

8 1001 Internal Data Collector error.

8 1002 Internal Data Collector error.

See also “Common Return Codes and Reason Codes” on page 10, if required.

76 DB2 PM for OS/390: Data Collector API Guide

Get Exception Processing Status

Function Call
pmReturnCodes pmGetExceptionStatus (pmHost* handle,

char* workProfile,
pmExcpInfo* info)

Header File
pmExcpProc.h

Description
This function requests the Data Collector to report the status of exception
processing for a user specified by parameter workProfile. It returns information
about:
v Whether exception processing is already started.
v Which exceptions are enabled in the Data Collector.

The type of exception events (none, event exceptions only, periodic exceptions
only, or both) is specified as Data Collector startup parameter.

v Which type of exception events occurred since exception processing was started.
The pmGetExceptionStatus() function requests the Data Collector to scan the
DB2 trace records for the existence of possible exception types to find out which
type of exception events occurred.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. info (output)
Pointer to the output data area. Some structure members are reserved for future
use.

typedef struct _excpInfo
{
pmExceptionType status; /* if EVENT, PERIODIC, */

/* BOTH or NONE are active */
pmBoolean userExitActive; /* host user exit */
unsigned int periodicExcpInterval; /* interval in seconds */

/* when PM checks for */
/* periodic excps */

pmBoolean perExcpHappened; /* periodic excp happened */
pmBoolean evExcpHappened; /* event excp happened */

/* since logoff */
pmBoolean deadlockActive, /* indicates that the */

timeoutActive, /* corresponding events */
EDMPoolActive, /* are observed */
authFailureActive,
traceActive,
datasetExtentActive,
unitOfRecoveryActive,
logspaceShortageActive,
commitActive,
rebuildActive;

Chapter 3. The Data Collector API Functions 77

unsigned short datasetExtentValue; /* number of extents before*/
/* datasetExtent event is */
/* triggered */

} pmExcpInfo;

v status indicates the type of exception processing that was started for this user.
It contains:
– EVENT for event exception processing
– PERIODIC for periodic exception processing (shown here if started from the

DB2 PM Online Monitor)
– BOTH for event exception and periodic exception processing
– NONE if no exception processing was started.

v userExitActive indicates whether a DB2 PM user exit routine is active. This
can limit the access of the application to some data.

v periodicExcpInterval. Reserved for future use.
v perExcpHappened. Reserved for future use.
v evExcpHappened indicates whether event exceptions occurred since the last

pmFetchExceptions() function call for the user specified by parameter
workProfile. If no pmFetchExceptions() function was called, it indicates
whether event exceptions occurred since exception processing was started for
this user.

v deadlockActive ... rebuildActive indicate which events are observed.
v datasetExtentValue shows the number of data set extents to occur before DB2

triggers a corresponding event. This number is a Data Collector startup
parameter.

Boolean variables are returned as either TRUE or FALSE.

Example
#include "pmExcpProc.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"
...

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
pmReturnCodes error;
pmExcpInfo info;

// connect to data collector and log on
...

// get exception processing information
error = pmGetExceptionStatus(&myHandle, workProfile, &info);

// log off and disconnect
...

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 1 Internal Data Collector error.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 1000 Internal Data Collector error.

78 DB2 PM for OS/390: Data Collector API Guide

Return Code2 (Hex) Reason Code2 (Hex) Description

PM _ APIERROR PM _ DATASTREAM
_ INVALID

Received data stream not valid. Counter not
found, or end of data reached before
expected.

Verify that the latest DB2 PM PTF is
installed. If you cannot solve the problem,
call for IBM support.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Fetch Exceptions

Function Call
pmReturnCodes pmFetchExceptions (pmHost* handle,

char* workProfile,
unsigned int exceptionNo,
char** data,
unsigned int* length)

Header File
pmExcpProc.h

Description
This function requests the Data Collector to post exception records to the
application as they occur. Exception records are posted for a user (specified by
parameter workProfile) for whom exception processing was started with the
pmStartExceptionProc() function.

This function allows the application to fetch event exceptions immediately when
they occur. Each pmFetchExceptions() function call returns those exception records
that were not yet returned by a previous pmFetchExceptions() function call. If no
exceptions occurred in the meantime, the function waits until the next event
exception occurs.

You can use the pmGetExceptionStatus() function to check whether event
exceptions occurred since the last time the pmFetchExceptions() function was
used.

The pmFetchExceptions() function does not deliver an exception record twice to
the user specified by workProfile. If the application needs access to the same
exception record more than once, you need to retrieve the exception log from the
Data Collector with the pmGetEventExceptionLog() function. Then, you can
retrieve details about an individual exception log record with the
pmGetEventDetails() function.

When the pmFetchExceptions() function has returned one or more exception
records to the application, use the pmGetEventDetails() function to request details
about individual records.

The pmFetchExceptions() function returns an unknown number of exception
records to the application. The number of returned exception records depends on
the elapsed time between two consecutive pmFetchExceptions() function calls and
the number of events that occurred in the meantime. This function can return a
maximum of 500 exception records. With parameter exceptionNo you can control
the number of exception records to be returned. If more than the specified number
of events occur between two consecutive function calls, only the most recent ones

Chapter 3. The Data Collector API Functions 79

are returned. You can also control that the pmFetchExceptions() function returns
only the next exception record that occurs after the function is called. This causes
the function to wait for the next event exception.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. exceptionNo (input)
Set this parameter to either 0 or a positive number ≤ 500.
If exceptionNo is set to 0, only the exception that occurs after this
pmFetchExceptions() function call is received by the Data Collector is posted to
the application. No previous exception records are posted.
If exceptionNo is set to a number > 0, all exception records (up to the specified
number) not yet delivered by a previous pmFetchExceptions() function call are
immediately returned.
If no exception record is to be returned, the function waits for the next
exception.

Note: For subsequent pmFetchExceptions() function calls you should set
exceptionNo to the maximum of 500.

4. data (output)
Pointer to the output data area. The output data area can be parsed by using
the functions described in “Parsing Data” on page 88. The “Example” on
page 81 shows how this can be done. The field table describes the exception
IDs returned by this function in section “Exception IDs”. Use the pmFreeMem()
function to release the memory area, if the output data is no longer needed.

Output Data Area for pmFetchExceptions()

ÊÊ total length of output area CNT_X number of exceptions Ê

Ê DATEATIM date and time Ê

Ê

»
(1)

Periodic exception record
(2)

Event exception record

ÊÍ

Notes:

1 Periodic exceptions are currently not supported by the DB2 PM API.

2 Refer to the pmGetEventExceptionLog() function for a detailed
description of the event exception record.

5. length (output)

80 DB2 PM for OS/390: Data Collector API Guide

The length (in number of bytes) of the output data area.

Example
#include "pmExcpProc.h"
#include "pmParser.h"
#include "pmCounter.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
...

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";

pmReturnCodes error;
char* data;
char* helpPtr;
unsigned int length,

pos = 0;
pmCounter aCounter;

// connect to data collector and log on
...

// start event exception processing
error = pmStartExceptionProc(&myHandle, workProfile, EVENT, 0, FALSE, NULL);

// ok, now fetch always the detected event exceptions
// until returnCode <> 0
while(!pmFetchExceptions (&myHandle, workProfile, 0,

&data, &length).returnCode)
{
helpPtr = data + 4; /* helpPtr points now to output data area */

/* without 'total length of output' area */
/* field. */

length -= 4; /* output data area length without */
/* 'total length of output' area field */

/* skip number of returned exceptions (CNT_X) because it is '1' */
if(skipToken(&myHandle, helpPtr, &pos, length, FALSE) == PM_FAILED) break;

/* skip date and time of pmFetchExceptions() execution */
/* (first DATEATIM counter) */
if(skipToken(&myHandle, helpPtr, &pos, length, FALSE) == PM_FAILED) break;

/* skip start of Event Exception Record (RC_XEVT), it is just */
/* a flag to indicate start */
if(skipToken(&myHandle, helpPtr, &pos, length, FALSE) == PM_FAILED) break;

/* now we are at the start of the event information -> */
/* get type of event exception */
aCounter = nextToken(&myHandle, helpPtr, &pos, length, FALSE);
if(aCounter.id == 0) break; /* counter invalid */

/* handle all kinds of event exceptions */
if(!strcmp(aCounter.name, "XEV_DEAD"))
// deadlock event
...

else if(!strcmp(aCounter.name, "XEV_TOUT"))
// timeout event
...

Chapter 3. The Data Collector API Functions 81

else if(!strcmp(aCounter.name, "XEV_EDM"))
// EDM pool full event
...

else if(!strcmp(aCounter.name, "XEV_AUTH"))
// authentification failure event
...

/* free internal used memory of counter */
deleteCounter(aCounter);

/* do not forget to free output data area */
pmFreeMem(data);

/* reset pos to beginning of data stream */
pos = 0;

}

// log off and disconnect (stops also event exception processing)
...

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

4 6 Authorization exit returned no data.

4 7 Severe error in authorization exit.

4 1043 Exception processing not active.

8 1 Internal Data Collector error.

8 8 DB2 request failed, no data. See the console
log for more information.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 1000 Internal Data Collector error.

PM _ APIERROR PM _ INCORRECT _
PARAMETER

Parameter exceptionNo is greater than 500.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Stop Exception Processing

Function Call
pmReturnCodes pmStopExceptionProc (pmHost* handle,

char* workProfile,
pmExceptionType type)

Header File
pmExcpProc.h

Description
This function requests the Data Collector to stop event exception processing for a
user specified by parameter workProfile.

After successful completion of this function, the pmFetchExceptions() function
cannot be used anymore for this user.

This function should be used only if event exception processing was started for
this user, otherwise the Data Collector returns a warning.

82 DB2 PM for OS/390: Data Collector API Guide

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. type (input)
The type of exception processing to be stopped. Specify EVENT.

Example
#include "pmExcpProc.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"
...

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
pmReturnCodes error;

// connect to data collector and log on
...

// stop event exception processing
error = pmStopExceptionProc(&myHandle, workProfile, EVENT);

// log off and disconnect
...

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

4 1043 Exception processing not active.

8 1 Internal Data Collector error.

8 1000 Internal Data Collector error.

PM _ APIERROR PM _ INCORRECT _
PARAMETER

type must be EVENT.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Executing DB2 Commands
DB2 commands can be executed by means of the DB2 PM API if the SAF user ID
issuing the DB2 command has sufficient DB2 privileges. The Data Collector passes
the DB2 command over to the instrumentation facility interface (IFI) for execution
and returns the command response to the application.

Execute DB2 Command

Function Call
pmReturnCodes pmExecDB2Command (pmHost* handle,

char* workProfile,
char* command,
char** response)

Chapter 3. The Data Collector API Functions 83

Header File
pmExecDB2Command.h

Description
This function requests the Data Collector to execute a DB2 command and to return
the command response for a user specified by parameter workProfile.

All DB2 commands are allowed, except you cannot request the Data Collector to
start or to stop DB2.

The API allocates an output data area of up to 1 MB to store the command
response. If the amount of data returned exceeds 1 MB, data is truncated, and the
function returns a warning. The output data area holding the command response
remains allocated until it is freed by the application.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. command (input)
The DB2 command to execute. Precede the command by a hyphen “-”. The
command can be written in upper- or lowercase, or in mixed case.

4. response (output)
Pointer to the output data area in memory where the result of the DB2
command is stored. Use the pmFreeMem() function to release the memory
area, if the output data is no longer needed.

Example
#include "pmExecDB2Command.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"
#include <stdlib.h>
...

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
char* response = NULL;
pmReturnCodes error;

// connect to data collector and log on
...

// execute command to display bufferpools
error = pmExecDB2Command(&myHandle, workProfile,

"-DISPLAY BUFFERPOOL(*)", &response);

// work with output
...

// don't forget to free memory for DB2 response
if(response) pmFreeMem(response);

// log off and disconnect
...

84 DB2 PM for OS/390: Data Collector API Guide

Return Codes and Reason Codes

Return Code (Hex) Reason Code (Hex) Description

4 1 No data returned by DB2.

4 2 Command response contains more than 1
MB of data. Data is truncated.

4 3 Request resulted in a DB2 abend.

4 D DB2 command failed. Possible reasons are:

v Command authorization failure

v Command processor abend

v Command syntax error

v Command output limit being exceeded

Response might be truncated.

8 1 Internal Data Collector error.

8 8 DB2 request failed, no data is returned. See
the console log for more information.

8 11 Internal Data Collector error.

8 22 Internal Data Collector error.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Saving and Retrieving User Data
The Data Collector provides a central storage area of 1 MB for each user specified
by a work profile. You can use this storage area to store and retrieve whatever data
you want. The intention for this storage area is to hold user-specific data to
support mobile users of the application. When mobile users disconnect from the
Data Collector at one workstation and reconnect to it at another workstation
without logging off, they need to have a workstation-independent storage to hold,
for example, their current application settings.

A 1-MB central storage area has the following characteristics:
v It is created when a user specified by a work profile logs on to the Data

Collector.
v It is initialized to X'00.
v It is released when:

– The user specified by a work profile logs off from the Data Collector.
– The Data Collector is stopped.
– An SAF user or SAF group is purged by a DB2 PM operator command.

v It is divided into 256 chunks of 4-KB buffers. Each buffer can be addressed by
buffer numbers of 1 to 256.

The API provides two functions to use these buffers:
v The pmSaveUserData() function saves a block of data up to 4 KB in a buffer

addressed by a buffer number of 1 to 256.
v The pmGetUserData() function retrieves a block of data from a buffer addressed

by a buffer number of 1 to 256. Alternatively you can use this function to
retrieve the content of all 256 buffers by specifying a buffer number of 0.

Chapter 3. The Data Collector API Functions 85

Buffers are bound to a work profile. Both functions must be assigned to a work
profile when they are called.

Data is saved in a buffer as is. No conversion takes place. However, if less than 4
KB of data is saved, returned data is filled with 0x00 up to a size of 4 KB.

When a pmGetUserData() function is called, the API allocates an output data area
of 4 KB (or 1 MB, if the contents of all buffers are retrieved) in the workstation’s
memory to store the returned data. The output data area holding the returned data
remains allocated until it is freed by the application.

Save User Data

Function Call
pmReturnCodes pmSaveUserData(pmHost* handle,

char* workProfile,
char* data,
unsigned int length,
unsigned short bufferNo)

Header File
pmUserData.h

Description
This function requests the Data Collector to save user-specific application data in a
buffer in the Data Collector addressed by buffer number bufferNo.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. data (input)
Pointer to the data in the workstation’s memory to be saved.

4. length (input)
Length (in number of bytes) of the data area to save (up to 4 KB).

5. bufferNo (input)
Number of the Data Collector buffer. This must be a number from 1 to 256.

Example
#include "pmUserData.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"
...

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
char *userData = ...;
pmReturnCodes error;

// connect to data collector and log on
...

// store data in buffer

86 DB2 PM for OS/390: Data Collector API Guide

error = pmSaveUserData(&myHandle, workProfile, userData, strlen(userData), 1);

// log off and disconnect
...

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 1 Internal Data Collector error.

8 22 Internal Data Collector error. Request
rejected.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 154C Internal Data Collector error. Request
rejected.

PM _ APIERROR PM _ INCORRECT _
PARAMETER

Incorrect value for parameter length or
bufferNo.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Get User Data

Function Call
pmReturnCodes pmGetUserData(pmHost* handle,

char* workProfile,
unsigned short bufferNo,
char** data)

Header File
pmUserData.h

Description
This function requests the Data Collector to retrieve user-specific application data
from the Data Collector that was previously saved with the pmSaveUserData()
function.

Either the content of a buffer addressed by buffer number bufferNo is retrieved, or
the contents of all 256 buffers is retrieved from the Data Collector.

Parameters
1. handle (input)

The platform-independent handle that identifies the TCP/IP connection to be
used to transfer this request to the Data Collector. The handle was set by the
pmConnect() function.

2. workProfile (input)
A user’s work profile for which this function is to be executed. The user was
specified by the pmLogOn() function.

3. bufferNo (input)
The number of a 4-KB buffer from which data is to be retrieved. If bufferNo is
set to 0, the data of all 256 buffers is retrieved.

4. data (output)
Pointer to the output data area in memory. The memory (4 KB or 1 MB) is
allocated by the DB2 PM API. Note that each buffer content is filled with 0x00,

Chapter 3. The Data Collector API Functions 87

if less than 4 KB of data was saved. Use the pmFreeMem() function to release
the memory area, if the output data is no longer needed.

Example
#include "pmUserData.h"
#include "pmConnect.h"
#include "pmLogOnOff.h"
...

pmHost myHandle;
char workProfile[] = "PMUSER DB2PM 10.0.0.1:0001 ";
char *storedUserData;
pmReturnCodes error;

// connect to data collector and log on
...

// store data in buffer 1
...

// work

...

// get stored data
error = pmGetUserData (&myHandle, workProfile, 1, &storedUserData);

// work with received data
...

// do not forget to free memory if no longer used
pmFreeMem(storedUserData);

// log off and disconnect
...

Return Codes and Reason Codes

Return Code2 (Hex) Reason Code2 (Hex) Description

8 1 Internal Data Collector error.

8 22 Internal Data Collector error. Request
rejected.

8 42 The function is not available. A DB2 PM
license is required for this function.

8 154D Internal Data Collector error. Request
rejected.

PM _ APIERROR PM _ INCORRECT _
PARAMETER

Incorrect value for parameter length or
bufferNo.

See also “Common Return Codes and Reason Codes” on page 10, if required.

Parsing Data

Introduction to Parsing
The following DB2 PM API functions, described in “Processing DB2 Exception
Events” on page 60, return data streams with complex and varying data structures:
v pmGetEventExceptionLog()

v pmGetEventDetails()

88 DB2 PM for OS/390: Data Collector API Guide

v pmFetchExceptions()

These structures vary with the type of event requested and the number of
exceptions being monitored.

A data stream consists of a pattern of fixed and variable information units that are
called tokens. For example, the pmGetEventExceptionLog() function returns a data
stream that starts as following:

Output Data Area for pmGetEventExceptionLog()

ÊÊ total length of output area CNT_X number DATEATIM date and time ÊÍ

Here, CNT_X number and DATEATIM date and time represent two tokens.

The Parsing Functions
The API provides a set of functions that lets you parse a data stream on a token
basis after it is stored in memory:
v nextToken() returns a counter represented by the current token in the data

stream and increments a pointer to point to the next token.
v nextTokenValue() tests the current token in the data stream for a specified

counter name, extracts and stores the counter value, and increments a pointer to
the next token.

v skipToken() tests whether the current token is valid and increments a pointer to
the next token.

v testToken() tests whether the current token represents a specified counter name.
(This function does not increment a pointer.)

v deleteCounter() is used together with the nextToken() function and frees the
memory area where the counter structure for a specified counter is stored.

These functions have some common characteristics:
v The nextToken(), nextTokenValue(), and skipToken() functions require the

specification of a handle. This ensures that the correct code page is used by
these functions when they perform their tests. You should specify one of the
handles that were used with those functions that returned the data stream
(pmGetEventExceptionLog(), pmGetEventDetails(), pmFetchExceptions()).

v You do not need to specify a work profile because these functions do not
communicate with the Data Collector.

v The data stream in the output data area starts with a 4-byte length field, which
shows the length (in number of bytes) of the output data area without the
preceding 4-byte length field. The parsing functions require that you set a
pointer (parameter tokenBlock) after the 4-byte length field. If you use the
pointer of the function that returned the data as a reference, add four bytes to
that pointer value to skip the length field.

v All parsing functions (except the testToken() function) increment a position
pointer to point to the next token in a data stream before a function finishes. A
subsequent parsing function uses this position pointer as input parameter to
address the adjacent token. To start parsing a data stream you should set the
position pointer to 0.
The testToken() function only tests for a specified counter name and returns a
true or false condition. The position pointer is not incremented to allow one of
the other parsing functions to work with this token.

Chapter 3. The Data Collector API Functions 89

The Counter Structure
A counter in the data stream is represented as a structure identical to the one
shown in “The Counter Structure” on page 38. Note that the parsing functions do
not use structure member attribute to validate a counter value. The nextToken()
function uses the content of the counterID member to test for a valid counter. The
other parsing functions return with a return code of PM_OK or PM_FAILED.

Working with Parsing Functions
Proper use of the parsing functions ensures that an application using these
functions can also handle unexpected tokens in the returned data streams.

Unexpected tokens in a data stream can occur, for example, if users of an existing
application install API enhancements (new versions, releases, or PTFs) that return
additional tokens in the data stream.

You should consider the following coding sequences to ensure that an application
continues to work even if the data stream changes to accommodate new functions.

If you expect a unique counter name in one of the tokens in the data stream, the
following sequence will let you identify the token and retrieve the counter value:
1. Use the testToken() function and specify as parameter the counter name you

are expecting in the data stream.
This function does not increment the position pointer.

2. If the token does not contain the counter name you have specified, the
testToken() function returns PM_FAILED. Use the skipToken() function to
increment the position pointer to the next token in the data stream. Continue
with step 1 to test the next token for the specified name (until the end of the
data stream is reached).

3. If the token contains the counter name you have specified, the testToken()
function returns PM_OK. Use the nextTokenValue() function to retrieve the
counter value from the token. Continue as required by the application’s logic.

However, if you have no unique expectation about a counter name but need to
react on a variety of counters, apply the following program structure. The
testToken() function checks the current token for one of the specified counter
names; the nextTokenValue() function retrieves the corresponding counter value. If
the current token does not contain one of the expected counter names, the
skipToken() function increments the position pointer to the next token.
Do While not end of data stream

{IF testToken() = counter_name_1 /* Does not increment position pointer */
nextTokenValue() for counter_name_1 /* Retrieve counter value 1 from token */

... program logic for counter 1 ...
ELSE

{IF testToken() = counter_name_2 /* Does not increment position pointer */
nextTokenValue() for counter_name_2 /* Retrieve counter value 2 from token */

... program logic for counter 2 ...
ELSE

{IF testToken() = counter_name_n /* Does not increment position pointer */
nextTokenValue() for counter_name_n /* Retrieve counter value n from token */

... program logic for counter n ...
ELSE
skipToken() /* Increments position pointer */

/* Continue with next token */
End of Do While

Do not use nextToken() together with skipToken() as an alternative. Both functions
increment the position pointer upon return, and you would miss every other
token.

90 DB2 PM for OS/390: Data Collector API Guide

Get Token

Function Call
pmCounter nextToken (pmHost* handle,

char* tokenBlock,
unsigned int* pos,
unsigned int length,
pmBoolean attr)

Header File
pmParser.h

Description
This function returns a counter represented by the current token in the data stream
and increments a pointer to point to the next token.

A counter is valid if member counterID in the counter structure contains a value
greater than 0.

Use the deleteCounter() function to release the memory that was allocated by a
nextToken() function call.

Parameters
1. handle (input)

Specify one of the handles that were used by the functions that created the
returned data stream.

2. tokenBlock (input)
Pointer to the output data area (following the total length of output area field).

3. pos (input/output)
The actual position pointer of the parser in the data stream. This position
pointer must be initialized with 0 when you start parsing a data stream. After
successful completion of this function, pos points to the next token.

4. length (input)
The length (in number of bytes) of the output data area (not including the total
length of output area field).

5. attr (input)
Reserved. Specify FALSE.

Get Token Value

Function Call
pmBoolean nextTokenValue(pmHost* handle,

char* tokenBlock,
unsigned int* pos,
unsigned int length,
char* name,
char* storage)

Header File
pmParser.h

Description
This function tests the current token in the data stream for a counter name
specified by parameter name, stores the counter value in memory location storage,
and increments a pointer to the next token.

Chapter 3. The Data Collector API Functions 91

Upon successful execution, the function returns PM_OK.

If the function returns PM_FAILED, the data stream is not valid, or the specified
counter is not found at this position.

Parameters
1. handle (input)

Specify one of the handles that were used by the functions that created the
returned data stream.

2. tokenBlock (input)
Pointer to the output data area (following the total length of output area field).

3. pos (input/output)
The actual position pointer of the parser in the data stream. This position
pointer must be initialized with 0 when you start parsing a data stream. After
successful completion of this function, pos points to the next token.

4. length (input)
The length (in number of bytes) of the output data area (not including the total
length of output area field).

5. name (input)
The counter name expected at this position in the data stream.

6. storage (output)
Pointer to the memory location where the counter value should be stored. The
memory area must be already allocated. Member length in the counter structure
shows the required length.
Counters of type PMVARCHAR and PMREPBLOCK are not supported, because
the counter length is not known before parsing.

Skip Token

Function Call
pmBoolean skipToken (pmHost* handle,

char* tokenBlock,
unsigned int* pos,
unsigned int length,
pmBoolean attr)

Header File
pmParser.h

Description
This function tests whether the current token is valid and increments a pointer to
the next token.

This function skips unconditionally to the next token. Use this function to skip a
token in the data stream you are not interested in, or to detect the end of a data
stream. As a side effect, this function tests the current token for a valid data
stream.

If the data stream is valid, the function returns PM_OK, else it returns PM_FAILED.

Parameters
1. handle (input)

Specify one of the handles that were used by the functions that created the
returned data stream.

92 DB2 PM for OS/390: Data Collector API Guide

2. tokenBlock (input)
Pointer to the output data area (following the total length of output area field).

3. pos (input/output)
The actual position pointer of the parser in the data stream. This position
pointer must be initialized with 0 when you start parsing a data stream. After
successful completion of this function, pos points to the next token.

4. length (input)
The length (in number of bytes) of the output data area (not including the total
length of output area field).

5. attr (input)
Reserved. Specify FALSE.

Test Token

Function Call
pmBoolean testToken (char* counterName,

char* tokenBlock,
unsigned int pos,
unsigned int length)

Header File
pmParser.h

Description
This function tests whether the current token represents a specified counter name.
(This function does not increment a pointer.)

If the specified counter name is found, the function returns PM_OK, else it returns
PM_FAILED.

Parameters
1. counterName (input)

The counter name expected at this position in the data stream.
2. tokenBlock (input)

Pointer to the output data area (following the total length of output area field).
3. pos (input)

The actual position pointer of the parser in the data stream. This position
pointer must be initialized with 0 when you start parsing a data stream.
After successful completion of this function, pos does not point to the next
token. The position pointer remains unchanged.

4. length (input)
The length (in number of bytes) of the output data area (not including the total
length of output area field).

Delete Counter

Function Call
void deleteCounter (pmCounter counter)

Header File
pmCounter.h

Chapter 3. The Data Collector API Functions 93

Description
This function frees the memory area that was allocated by a nextToken() function
call.

The output data area where the returned data stream is stored in memory is not
freed.

Parameters
1. counter (input)

The counter to be freed.

Converting and Adjusting Dates and Times

Introduction to Date and Time Functions
The Data Collector returns date and time values in a format that must be
converted before these values can be processed in a C language program. Further,
adjustments to dates and times may be required because the Data Collector returns
this data as provided by DB2. DB2 stores dates and times as universal times.5

If the application program operates in another time zone than the Data Collector,
further date and time adjustment is required.

Format Conversions
Several API functions return counter values from the Data Collector to the
application program that represent date and time information. Also, several API
functions require input parameters to be sent to the Data Collector that represent
date and time information.

A date is usually a time stamp that consists of a calendar date and time (for
example, a time stamp of when a history snapshot was taken). A time is usually an
information expressed in hours, minutes, and seconds, with no reference to a
calendar date (for example, a counter that reflects an accumulated waiting time of
a DB2 process).

Dates and times are presented in different formats:
v The Data Collector represents dates and times in the Store Clock format. More

exact, counters of type “Date” or “Time” are presented in Store Clock format.
See ESA/390 Principles of Operation about the Store Clock format, if necessary.
The Data Collector returns affected counters as data type pmTOD, which is
defined as:

typedef char pmTOD[8];

v The application program, if written in the C programming language, uses a
format that conforms to the ANSI-C standard (time_t data type).

The API provides two functions that convert counter values from one format to the
other:
v The tod2time() function converts a counter value from Store Clock format to

time_t format.
You use this function if you want to further process date and time information
in your C language program, for example, to display, print, or change a date or
time.

v The time2tod() function converts a counter value from time_t format to Store
Clock format.

94 DB2 PM for OS/390: Data Collector API Guide

You use this function, for example, to edit date and time information as an input
parameter for an API function.

Local Time Adjustment
Dates and times in DB2 instrumentation data is stored internally as universal time
(UT)5, no matter in which geography a DB2 system operates. Whenever a program
retrieves DB2 instrumentation data, and requires date and time information to be
expressed in local time, an adjustment is required.

For example, when a DB2 system at New York, U.S.A., writes an event record at
11:00 a.m. local time, the corresponding entry is 16:00 universal time, because the
time difference between New York and Greenwich is −5 hours. If a program
operating at New York retrieves this 16:00 universal time entry, it must adjust the
time by −5 hours to show again the correct time of the event.

If the application program retrieves date- and time-based counters from the Data
Collector, these counters are also expressed in universal time. The Data Collector
does not perform a conversion to local times. If the application program requires to
show or use a date or time in local time, it must adjust the universal time.

The following API functions ease the calculation of local times:
v The pmGetInfo() function provides the time difference (counter QR4TID)

between the local time of the host processor (where DB2 and the Data Collector
operate) and universal time.

v The pmAddTOD() and pmSubTOD() functions add and subtract two time
values.

Note: If you use the ANSI-C time() function to create time stamps for use as input
parameters:
v First, adjust the local workstation time to universal time.
v Second, convert the adjusted universal time to the Store Clock format.

Time Zone Adjustment
The Data Collector and the application program may operate in different time
zones. For example, suppose that the application operates at Berlin, Germany (UT
+1 hour), and monitors a DB2 subsystem at New York, U.S.A. (UT −5 hours). A
DB2 event record written at 11:00 a.m. New York local time gets a time stamp of
16:00 universal time. To obtain the time of this event in Berlin local time:
1. Adjust the time stamp (UT) of the event by −5 hours to obtain New York local

time (16:00−05:00=11:00).
Use the information returned by the pmGetInfo() function, counter QR4TID,
for this adjustment.

2. Adjust New York local time to Berlin local time (11:00+06:00=17:00).
This adjustment (+6 hours) is, of course, specific to this example.

For further information about time zones, see the documentation for function
tzset() or _tzset() in your compiler run-time library reference.

Convert Store Clock Format to time_t Format

Function Call
void tod2time (pmTOD aTOD,

time_t* aTime)

Chapter 3. The Data Collector API Functions 95

Header File
pmTOD.h

Description
This function converts a time from Store Clock format to time_t format. The time_t
format contains the seconds since 01-01-1970 00:00:00. Milliseconds from the Store
Clock format are not supported and truncated.

Parameters
1. aTOD (input)

The time value to convert, in Store Clock format.
2. aTime (output)

The converted time value, in time_t format.

Example
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "pmConnect.h"
#include "pmGetInfo.h"
#include "pmTOD.h"

int main(void)
{
pmHost myHandle;
pmReturnCodes error;
char *workprofile = "PMUSER GROUPID PROFILEID TERMINALID ";
pmHashTable result;
pmCounter* aCounter;
pmCursor aCursor;
pmHashTable* DCInfo;
pmTOD timeDifference;
pmTOD hostTime;
time_t time;
struct tm* timeStruct;

/* connect to data collector */
error = pmConnect("10.0.0.1", "4711", 850, &myHandle);
if(error.returnCode)
{
printf("pmConnect - Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

/* initialize timezone setting on workstation */
tzset();

/* prepare result area */
clearHashTable(&result);

/* get time difference and current time from DC */
error = pmGetInfo(&myHandle, workprofile, result);
if(error.returnCode)
{
printf("pmGetInfo - Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}
else
{
/* first locate repeating block for DC info */
aCounter = pmGetCounter(result, "REPDCINF");
if(aCounter != NULL)
{

96 DB2 PM for OS/390: Data Collector API Guide

/* access general info */
aCursor = initCursor(*aCounter);
DCInfo = getRepBlockItem(aCursor);

/* get time difference between local time and GMT on host */
aCounter = pmGetCounter(*DCInfo, "QR4TID");
memcpy(timeDifference, aCounter->value, sizeof(pmTOD));

/* get current time (GMT) on host */
aCounter = pmGetCounter(*DCInfo, "QR4TIME");
memcpy(hostTime, aCounter->value, sizeof(pmTOD));

/* adjust host time to local time by adding time difference */
pmAddTOD(hostTime, timeDifference, hostTime);

/* convert Store Clock Format into time_t format */
tod2time(hostTime, &time);

/* convert time_t format into tm format (without time zone adjustment) */
timeStruct = gmtime(&time);

/* year is relative to 1900 and month starts with 0 -> adjust */
printf("Local time on host: %2.2d:%2.2d:%2.2d on %4.4d/%2.2d/%2.2d\n",

timeStruct->tm_hour, timeStruct->tm_min, timeStruct->tm_sec,
timeStruct->tm_year + 1900, timeStruct->tm_mon + 1,
timeStruct->tm_mday);

}

/* free memory for DC info */
freeHashTable(result);

}

/* disconnect */
error = pmDisconnect(&myHandle);
if(error.returnCode)
{
printf("pmDisconnect - Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

return(0);
}

Convert time_t Format to Store Clock Format

Function Call
void time2tod (time_t aTime,

pmTOD aTOD)

Header File
pmTOD.h

Description
This function converts a time from time_t format to Store Clock format. The time_t
format contains the seconds since 01-01-1970 00:00:00.

Parameters
1. aTime (input)

The time value to convert, in time_t format.
2. aTOD (output)

The converted time value, in Store Clock format.

Chapter 3. The Data Collector API Functions 97

Example
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "pmConnect.h"
#include "pmGetInfo.h"
#include "pmTOD.h"

int main(void)
{
pmHost myHandle;
pmReturnCodes error;
char *workprofile = "PMUSER GROUPID PROFILEID TERMINALID ";
pmHashTable result;
pmCounter* aCounter;
pmCursor aCursor;
pmHashTable* DCInfo;
pmTOD timeDifference;
pmTOD hostTime;
time_t time;
struct tm* timeStruct;
struct tm newTime;

/* connect to data collector */
error = pmConnect("10.0.0.1", "4711", 850, &myHandle);
if(error.returnCode)
{
printf("pmConnect - Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

/* initialize timezone setting on workstation */
tzset();

/* prepare result area */
clearHashTable(&result);

/* get time difference and current time from DC */
error = pmGetInfo(&myHandle, workprofile, result);
if(error.returnCode)
{
printf("pmGetInfo - Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}
else
{
/* first locate repeating block for DC info */
aCounter = pmGetCounter(result, "REPDCINF");
if(aCounter != NULL)
{
/* access general info */
aCursor = initCursor(*aCounter);
DCInfo = getRepBlockItem(aCursor);

/* get time difference between local time and GMT on host */
aCounter = pmGetCounter(*DCInfo, "QR4TID");
memcpy(timeDifference, aCounter->value, sizeof(pmTOD));

/* convert local timestamp into Store Clock Format */
/* preset input data: 15:23:01 2000/05/23 (HH:MM:SS YYYY/MM/DD) */
newTime.tm_hour = 15;
newTime.tm_min = 23;
newTime.tm_sec = 01;
newTime.tm_year = 2000 - 1900; /* adjust year relative to 1900 */
newTime.tm_mon = 5 - 1; /* adjust month to start at 0 */
newTime.tm_mday = 23;

98 DB2 PM for OS/390: Data Collector API Guide

/* convert tm structure into time_t structure using time zone */
/* setting on workstation (result will be in GMT depending on */
/* implementation of mktime() function) */
time = mktime(&newTime);

/* convert time_t structure to Store Clock Format */
time2tod(time, hostTime);

/* if mktime() did not adjust the time to GMT the Store Clock */
/* format needs to be adjusted using pmSubTOD: */
/* pmSubTOD(hostTime, timeDifference, hostTime); */

/* use converted time to request history data, etc. */
/* ... */

}

/* free memory for DC info */
freeHashTable(result);

}

/* disconnect */
error = pmDisconnect(&myHandle);
if(error.returnCode)
{
printf("pmDisconnect - Error [%d/%d]\n", error.returnCode, error.reasonCode);
exit(-1);

}

return(0);
}

Add and Subtract in Store Clock Format

Function Call
void pmAddTOD(pmTOD tod1, pmTOD tod2, pmTOD result)
void pmSubTOD(pmTOD tod1, pmTOD tod2, pmTOD result)

Header File
pmTOD.h

Description
These functions add and subtract two time values that are given in Store Clock
format.

Parameters
1. tod1 (input)

tod2 (input)
Time values to add or subtract, in Store Clock format.

2. result (output)
For pmAddTOD(): tod1 + tod2, in Store Clock format.
For pmSubTOD(): tod1 − tod2, in Store Clock format.

Miscellaneous API Functions
This section describes API functions that are used in several examples. They might
be helpful to reduce your programming effort.

Chapter 3. The Data Collector API Functions 99

Hash Table Functions

clearHashTable()
void clearHashTable (pmHashTable table)

This function initializes the memory area for a hash table. Use this function before
you store returned data in the output data area.

initCursor()
pmCursor initCursor (pmCounter aCounter)

This function initializes a cursor, which is used to parse through all items of a
repeating block.
pmCursor cursor = initCursor(pmGetCounter(result, "REPSTBUF"));
pmHashTable item;

while(!endOfBlock(cursor))
{

item = getRepBlockItem(cursor);

// process data in this repeating block
...

setToNext(cursor);
}

setToNext()
void setToNext (pmCursor* aCursor)

This function sets the cursor to the next hash table found in the repeating block.

endOfBlock()
int endOfBlock (pmCursor aCursor)

This function checks whether the end of a repeating block is reached.

getRepBlockItem()
pmHashTable* getRepBlockItem (pmCursor aCursor)

This function gets the hash table to which cursor aCursor points.

freeHashTable()
void freeHashTable (pmHashTable table)

This function frees the memory of the output data area.

pmGetCounter()
pmCounter* pmGetCounter (pmHashTable table,
char* name)

This function locates counter name in the hash table named table. If the counter is
not found, the function returns NULL.

Memory Releasing Function

pmFreeMem()
void pmFreeMem (void* ptr)

100 DB2 PM for OS/390: Data Collector API Guide

This function releases memory that was allocated by an API function. Parameter
ptr points to the memory area to be released.

Qualifier Functions

initQualifierList()
void initQualifierList (pmQualifierList* list);

This function initializes a qualifier list. Use this function before you add qualifiers
to the list with the addQualifier() function.

addQualifier()
pmReturnCodes addQualifier (pmHost* handle,

pmQualifierList* list,
char* counterName,
char* counterValue);

This function adds qualifiers to a qualifier list that was created with the
initQualifierList() function. Parameter counterName represents the qualification
ID (the name of the counter to add to the list); parameter counterValue represents
the corresponding counter value.

Chapter 3. The Data Collector API Functions 101

102 DB2 PM for OS/390: Data Collector API Guide

Appendix A. Field Table Summary

The field table contains a list of all data fields that are accessible through DB2 PM
API functions. Because of the number of fields the information about it is not
shown in this guide, but is provided as a text file that accompanies the DB2 PM
API. The file resides in data set SDGOWS01 as member DGOKFLDS and has a
record length of 80 bytes.

A short abstract of the field table (section General IDs) is shown next:

Field
ID

Field Name Field
Type

Field
Length

Description

0001 LNGTHID Char 0002 Length of current block. In contrast to
LNGTHID4, this is a 2-byte field. The value
includes the length of LNGTHID itself.

0002 EYECAT Char 0004 Eye catcher of current block.

0003 LNGTHID4 Int 0004 Length of current block. In contrast to
LNGTHID, this is a 4-byte field. The value
includes the length of LNGTHID4 itself.

0010 REPSTAT Rep 0002 Start of statistics record. Contains the number
of repetitions as value.

0011 REPSTDDF Rep 0002 Start of DDF repeating block in statistics
record. Contains the number of repetitions as
value.

0012 REPSTBUF Rep 0002 Start of buffer pool repeating block in statistics
record. Contains the number of repetitions as
value.

0013 REPSTGBF Rep 0002 Start of group buffer pool repeating block in
statistics record. Contains the number of
repetitions as value.

0014 REPSTGLB Rep 0002 Start of CF cache data repeating block in
statistics record. Contains the number of
repetitions as value.

...
...

...
...

...

0050 SNAPTIME Date 0008 Time stamp of current snapshot.
...

...
...

...
...

0103 HISTINTV Smint 0002 Number of history snapshots.

0104 HISTOFF Smint 0002 Offset for history interval.

Column
Meaning

Field ID
Unique identifier number of a counter. The field table is sorted by
identifier number. Ranges of numbers might be reserved for future use.

© Copyright IBM Corp. 2000 103

Field Name
Symbolic name of a counter. These counter names are used in an
application program to specify counters.

Field Type
Data type of the named counter.

Field Length
Length in bytes of the named counter.

Description
Short description of the purpose of the counter.

The entire field table is sorted by Field ID (column 1). Fields that describe a
common topic are grouped together. You will find the following groups in the field
table. Notice that fields or groups marked “for internal purposes only” should not
be used.
v General IDs

General field IDs that describe the structure of the provided or returned data.
v Qualification IDs

Field IDs that qualify data. See DB2 for OS/390 Administration Guide, the
appendix about IFI programming about qualifying.

v TOP/Sort IDs
v Statistics data:

– Address space data
– Instrumentation destination data
– Instrumentation data
– Subsystem services data
– Command data
– IFC checkpoint data
– Log manager data
– Distributed Data Facility (DDF) data
– Distributed Data Facility (DDF) system data
– SQL statement data
– Bind data
– Buffer manager data
– Data manager control data
– Lock usage data
– EDM pool usage data
– Group buffer pool usage data
– Global locking data
– CF cache structure data

v Collect report data IDs
Fields concerning Collect Report Data.

v Thread data:
– Exception IDs
– Thread Distributed Detail Data

v Exception IDs
v Statistics data:

104 DB2 PM for OS/390: Data Collector API Guide

– Statement cache
– Statement text
– System parameters block - SYSP
– Log initialization parameters block
– Archive initialization parameters block
– System parameters - SPRM
– List of VSAM catalog qualifiers
– Database start flags
– List of all databases
– Distributed Data Facility (DDF) start control information
– Group initialization parameters block
– DSNHDECP CSECT
– Buffer Manager group buffer pool attributes
– Buffer Manager dynamic pool attributes

v Thread data:
– Current statement data
– Current statement text
– Current statement data
– Current statement data
– Current statement data
– Instrumentation data
– Buffer pool usage data
– SQL statement data
– Buffer pool usage data
– Lock usage data
– Correlation header data
– Agent status data
– Distributed header data
– Distributed data
– Distributed accounting data
– Account code and Distributed Data Facility (DDF) data
– IFI accounting data
– Package data
– Global locking data
– Group buffer pool data
– Locked resources
– Locked resources
– Locked resources
– Locked resources
– Locked resources - details

A cross-reference list follows the field table that maps field names to field IDs.

Appendix A. Field Table Summary 105

106 DB2 PM for OS/390: Data Collector API Guide

Appendix B. Sample Traces

This section shows three samples of trace data. “Using the DB2 PM API Trace
Facility” on page 14 describes how to produce traces.

Sample Connection Trace
(CONNECTION) 15:20:22, PID 324 : +---------------------------------+
(CONNECTION) 15:20:22, PID 324 : | PM_NETWORKDOWN | 10050 |
(CONNECTION) 15:20:22, PID 324 : +---------------------------------+
(CONNECTION) 15:20:22, PID 324 : | PM_TIMEOUT | 10053 |
(CONNECTION) 15:20:22, PID 324 : +---------------------------------+
(CONNECTION) 15:20:22, PID 324 : | PM_HOSTUNREACHABLE | 10060 |
(CONNECTION) 15:20:22, PID 324 : +---------------------------------+
(CONNECTION) 15:20:22, PID 324 : | PM_HOSTDOWN | 10064 |
(CONNECTION) 15:20:22, PID 324 : +---------------------------------+
(CONNECTION) 15:20:22, PID 324 : | PM_DCNOTAVAILABLE | 10061 |
(CONNECTION) 15:20:22, PID 324 : +---------------------------------+
(CONNECTION) 15:20:22, PID 324 : | PM_SOCKETDESCR_INVALID | 10038 |
(CONNECTION) 15:20:22, PID 324 : +---------------------------------+
(CONNECTION) 15:20:22, PID 324 : | PM_SOCKET_NOTCONNECTED | 10038 |
(CONNECTION) 15:20:22, PID 324 : +---------------------------------+
(CONNECTION) 15:20:22, PID 324 : | PM_CONNECTION_ABORTED | 10058 |
(CONNECTION) 15:20:22, PID 324 : +---------------------------------+
(CONNECTION) 15:20:22, PID 324 : Request input area data for request on socket 0x00B8 :
(CONNECTION) 15:20:22, PID 324 : ReceiveRequest :
(CONNECTION) 15:20:22, PID 324 : ReceiveRequest : Received request header
(CONNECTION) 15:20:22, PID 324 : ReceiveRequest : Receiving data for request...
(CONNECTION) 15:20:22, PID 324 : ReceiveRequest : Request on socket b8hex received!
(CONNECTION) 15:20:22, PID 324 : Request input area data for request on socket 0x00B8 :
(CONNECTION) 15:20:22, PID 324 : ReceiveRequest :
(CONNECTION) 15:20:22, PID 324 : ReceiveRequest : Received request header
(CONNECTION) 15:20:22, PID 324 : ReceiveRequest : Receiving data for request...
(CONNECTION) 15:20:22, PID 324 : ReceiveRequest : Request on socket b8hex received!
(CONNECTION) 15:20:28, PID 324 : Request input area data for request on socket 0x0084 :
(CONNECTION) 15:20:28, PID 324 : ReceiveRequest :
(CONNECTION) 15:20:28, PID 324 : ReceiveRequest : Received request header
(CONNECTION) 15:20:28, PID 324 : ReceiveRequest : Request on socket 84hex received!
(CONNECTION) 15:20:28, PID 324 : Request input area data for request on socket 0x00B8 :
(CONNECTION) 15:20:28, PID 324 : ReceiveRequest :
(CONNECTION) 15:20:28, PID 324 : ReceiveRequest : Received request header
(CONNECTION) 15:20:28, PID 324 : ReceiveRequest : Request on socket b8hex received!
(CONNECTION) 15:20:28, PID 324 : Request input area data for request on socket 0x0084 :
(CONNECTION) 15:20:28, PID 324 : ReceiveRequest :
(CONNECTION) 15:20:28, PID 324 : ReceiveRequest : Received request header
(CONNECTION) 15:20:28, PID 324 : ReceiveRequest : Request on socket 84hex received!
(CONNECTION) 15:20:37, PID 324 : Request input area data for request on socket 0x00B8 :
(CONNECTION) 15:20:37, PID 324 : ReceiveRequest :
(CONNECTION) 15:20:37, PID 324 : ReceiveRequest : Received request header
(CONNECTION) 15:20:37, PID 324 : ReceiveRequest : Receiving data for request...
(CONNECTION) 15:20:37, PID 324 : ReceiveRequest : Request on socket b8hex received!

Sample Command Trace
(COMMAND) 15:20:22, PID 324 :
(COMMAND) 15:20:22, PID 324 : ***
(COMMAND) 15:20:22, PID 324 : * *
(COMMAND) 15:20:22, PID 324 : * Application Programming Interface (R6V1MV3) *
(COMMAND) 15:20:22, PID 324 : * --- *
(COMMAND) 15:20:22, PID 324 : * *
(COMMAND) 15:20:22, PID 324 : * IBM DB2 UDB Performance Monitor for OS/390 V6 *
(COMMAND) 15:20:22, PID 324 : * *
(COMMAND) 15:20:22, PID 324 : * COPYRIGHT : 5645-DB2 (C) Copyright IBM Corp. 1999 *
(COMMAND) 15:20:22, PID 324 : * LICENSED MATERIALS - PROPERTY OF IBM *
(COMMAND) 15:20:22, PID 324 : * SEE COPYRIGHT INSTRUCTIONS, G120 - 2083 *
(COMMAND) 15:20:22, PID 324 : * *
(COMMAND) 15:20:22, PID 324 : ***
(COMMAND) 15:20:22, PID 324 :
(COMMAND) 15:20:22, PID 324 : pmConnect() : Connecting to 9.164.172.191:6653 ...
(COMMAND) 15:20:22, PID 324 : pmConnect() : initializing network ...
(COMMAND) 15:20:22, PID 324 : pmConnect() : Network initialized.
(COMMAND) 15:20:22, PID 324 : pmConnect() : port specified as integer ...
(COMMAND) 15:20:22, PID 324 : pmConnect() : hostname specified as dotted decimal integer (ip addr) ...
(COMMAND) 15:20:22, PID 324 : pmConnect() : Creating socket ...
(COMMAND) 15:20:22, PID 324 : pmConnect() : Socket created.
(COMMAND) 15:20:22, PID 324 : pmConnect() : Connecting ...
(COMMAND) 15:20:22, PID 324 : pmConnect() : Connect successful.
(COMMAND) 15:20:22, PID 324 : pmConnect() : Loading code page from host ...
(COMMAND) 15:20:22, PID 324 : loadCodePage() : Receiving return area successful!
(COMMAND) 15:20:22, PID 324 : loadCodePage() : Now parsing response ...
(COMMAND) 15:20:22, PID 324 : loadCodePage() : Host uses EBCDIC code page 500.
(COMMAND) 15:20:22, PID 324 : 00010203372D2E2F1605250B0C0D0E0F101112133C3D322618191C27071D1E1F404F7F7B5B6C

(COMMAND) 15:20:22, PID 324 : pmConnect() : Loading field table from dc ...
(COMMAND) 15:20:22, PID 324 : loadFieldTableFromDC() : Receiving return area successful !
(COMMAND) 15:20:22, PID 324 : loadFieldTableFromDC() : Now parsing response ...
(COMMAND) 15:20:22, PID 324 : loadFieldTableFromDC() : 1907 counters loaded.
(COMMAND) 15:20:22, PID 324 : loadFieldTableFromDC() : field table load complete.
(COMMAND) 15:20:26, PID 324 : pmLogon() : Starting logon for user STI DB2PMTEST1 AAA001 ...
(COMMAND) 15:20:26, PID 324 : pmLogon() : Sending request ...
(COMMAND) 15:20:26, PID 324 : pmLogon() : Logon failed! RC/RS [4/5]

© Copyright IBM Corp. 2000 107

(COMMAND) 15:20:28, PID 324 : pmStoreUserData() : Storing user data in block 1 ...
(COMMAND) 15:20:28, PID 324 : pmStoreUserData() : Storing user data in block 1 failed! RC/RS [8/31]
(COMMAND) 15:20:37, PID 324 : pmGetInfo() : Retrieving DC information ...
(COMMAND) 15:20:37, PID 324 : pmGetInfo() : Added user info for user NICK
(COMMAND) 15:20:37, PID 324 : pmGetInfo() : Added user info for user STI
(COMMAND) 15:20:37, PID 324 : pmGetInfo() : Checked DC release. DC Release is 3 (OK), required is at least 3 .
(COMMAND) 15:20:37, PID 324 : pmGetInfo() : Retrieving DC information complete.
(COMMAND) 15:20:26, PID 324 : pmLogoff() : Starting logoff for user STI ...
(COMMAND) 15:20:26, PID 324 : pmLogoff() : Sending request ...
(COMMAND) 15:20:26, PID 324 : pmLogoff() : Logoff successful !

Sample Data Trace
(DATA) 15:20:22, PID 324 :
(DATA) 15:20:22, PID 324 : Request input area data for request on socket 0x00B8 :
(DATA) 15:20:22, PID 324 : C4C7D6C9000000A4F0F2004B0000000000000000000000000000000000000001000000000000000...

(DATA) 15:20:22, PID 324 :
(DATA) 15:20:22, PID 324 :
(DATA) 15:20:22, PID 324 : Result header data for request on socket 0x00B8 :
(DATA) 15:20:22, PID 324 : C4C7D6C9000000A4F0F2004B0000000000000000000000000000000000000001000000010000000...

(DATA) 15:20:22, PID 324 :
(DATA) 15:20:22, PID 324 :
(DATA) 15:20:22, PID 324 : Result data for request on socket 0x00B8 :
(DATA) 15:20:22, PID 324 : 3051000003523052000001F4305300000333000101353054000000003055000003523056000001F43...

(DATA) 15:20:22, PID 324 :
(DATA) 15:20:22, PID 324 :
(DATA) 15:20:22, PID 324 : Request input area data for request on socket 0x00B8 :
(DATA) 15:20:22, PID 324 : C4C7D6C9000000A4F0F2004C0000000000000000000000000000000000000001000000000000000...

108 DB2 PM for OS/390: Data Collector API Guide

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.IBM
may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 2000 109

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:

AIX
CICS
DATABASE 2
DB2
IBM

110 DB2 PM for OS/390: Data Collector API Guide

MVS
OS/390
RACF
VisualAge

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix C. Notices 111

112 DB2 PM for OS/390: Data Collector API Guide

Bibliography

IBM DB2 Performance Monitor for OS/390
Version 6 Online Monitor User’s Guide,
SC26-9168
IBM DB2 Performance Monitor for OS/390
Version 6 Batch User’s Guide, SC26-9167
IBM DB2 Performance Monitor for OS/390
Version 6 Command Reference, SC26-9166
IBM DB2 Performance Monitor for OS/390
Version 6 Messages, SC26-9169
IBM DB2 Performance Monitor for OS/390
Version 6 Using the Workstation Online Monitor,
SC26-9170
IBM DB2 Performance Monitor for OS/390
Version 6 Installation and Customization,
SC26-9171
IBM DB2 Performance Monitor for OS/390
Version 6 General Information, GC26-9172
Program Directory for IBM DB2 UDB Server for
OS/390 DB2 Performance Monitor DB2
Workstation Analysis and Tuning Version 6,
GI10-8183
IBM DB2 Universal Database Server for OS/390
Version 6 Administration Guide, SC26-9003
IBM DB2 Universal Database Server for OS/390
Version 6 Command Reference, SC26-9006
IBM DB2 Universal Database Server for OS/390
Version 6 Application Programming and SQL
Guide, SC26-9004
IBM DB2 Universal Database Server for OS/390
Version 6 Messages and Codes, GC26-9011
OS/390 Security Server (RACF) - Introduction,
GC28-1912
OS/390 MVS System Codes, GC28-1780
ESA/390 Principles of Operation, SA22-7201
TCP/IP for MVS: Application Programming
Interface Reference, SC31-7187
TCP/IP Tutorial and Technical Overview,
GG24-3376

© Copyright IBM Corp. 2000 113

114 DB2 PM for OS/390: Data Collector API Guide

Index

A
addQualifier() 35, 101
API installation vi
API license vi
application name, definition in RACF 10
ASCII conversion 9

C
clearHashTable() 100
code page

conversion 9
conversion

ASCII 9
code page 9
EBCDIC 9
format 96
of ASCII and EBCDIC 15
of user data 86

counter
introduction to 29

counter structure 38

D
data type

PMPARSEDREPBLOCK 38
date and time functions

introduction to 94
deleteCounter() 93
delta processing 31

E
EBCDIC conversion 9
endOfBlock() 100
environment variable 14
exception processing

introduction to 60

F
field table

download with pmConnect() 15
format 103
in SDGOWS01 103

format
Store Clock 94
time_t 94

format conversion 94
freeHashTable() 100
function call description

addQualifier() 35, 101
clearHashTable() 40, 100
deleteCounter() 93
endOfBlock() 40, 100
freeHashTable() 40, 100
getRepBlockItem() 40, 100
initCursor() 100
initQualifierList() 35, 101

function call description (continued)
nextToken() 91
nextTokenValue() 91
pmAddTOD() 99
pmConnect() 15
pmDisconnect() 17
pmExecDB2Command() 83
pmFetchEexceptions() 79
pmFreeMem() 100
pmGenPassticket() 21
pmGetCounter() 40, 100
pmGetEventDetails() 67
pmGetEventExceptionLog() 61
pmGetExceptionStatus() 77
pmGetHistory() 57
pmGetHistoryContents() 54
pmGetInfo() 22
pmGetSnapshot() 46
pmGetUserData() 87
pmInitializeStore() 42
pmLogOff() 27
pmLogOn() 19
pmQueryStores() 44
pmReleaseStore() 56
pmReset() 51
pmSaveUserData() 86
pmStartExceptionProc() 75
pmStopExceptionProc() 82
pmSubTOD() 99
setToNext() 100
skipToken() 92
testToken() 93
time2tod() 97
tod2time() 95

function call usage in examples

addQualifier() 35
clearHashTable() 24, 96
deleteCounter() 64, 81
endOfBlock() 24, 40
freeHashTable() 24, 96
getRepBlockItem() 24, 40
initCursor() 40
initQualifierList() 35
nextToken() 64, 81
nextTokenValue() 64
pmAddTOD() 96
pmConnect() 3, 6, 16, 18, 24
pmDisconnect() 3, 7, 18, 24
pmExecDB2Command() 84
pmFetchExceptions() 81
pmFreeMem() 45, 64, 74, 81, 84, 88
pmGenPassticket() 5, 6, 21
pmGetCounter() 24, 40, 96
pmGetEventDetails() 74
pmGetEventExceptionLog() 64
pmGetExceptionStatus() 78
pmGetInfo() 6, 24, 96, 98
pmGetUserData() 7, 88
pmLogOff() 6, 28
pmLogOn() 4, 6, 20, 21
pmQueryStores() 45

function call usage in examples
(continued)

pmSaveUserData() 7, 86
pmStartExceptionProc() 64, 74, 76, 81
pmStopExceptionProc() 83
pmSubTOD() 98
setToNext() 24, 40
skipToken() 64, 81
testToken() 64
time2tod() 98
tod2time() 24, 45, 96

function parameter

application, of pmGenPassticket() 21
aTime, of time2tod() 97
aTime, of tod2time() 96
aTOD, of time2tod() 97
aTOD, of tod2time() 96
attr, of nextToken() 91
attr, of skipToken() 93
bufferNo, of pmGetUserData() 87
bufferNo, of pmSaveUserData() 86
codePage, of pmConnect() 16
command, of

pmExecDB2Command() 84
counter, of deleteCounter() 94
counterName, of testToken() 93
counterNo, of pmGetHistory() 58
counterNo, of pmGetSnapshot() 49
counterNo, of pmInitializeStore() 43
data, of pmFetchExceptions() 80
data, of pmGetEventDetails() 68
data, of

pmGetEventExceptionLog() 62
data, of pmGetUserData() 87
data, of pmSaveUserData() 86
dir, of pmGetHistory() 58
eventTime, of

pmGetEventDetails() 68
eventType, of

pmGetEventDetails() 68
exceptionNo, of

pmFetchExceptions() 80
fields, of pmGetHistory() 58
fields, of pmGetSnapshot() 48
fields, of pmInitializeStore() 43
from, of

pmGetEventExceptionLog() 62
handle, of nextToken() 91
handle, of nextTokenValue() 92
handle, of pmConnect() 16
handle, of pmDisconnect() 18
handle, of

pmExecDB2Command() 84
handle, of pmFetchExceptions() 80
handle, of pmGenPassticket() 21
handle, of pmGetEventDetails() 67
handle, of

pmGetEventExceptionLog() 62
handle, of

pmGetExceptionStatus() 77
handle, of pmGetHistory() 57

© Copyright IBM Corp. 2000 115

function parameter (continued)
handle, of

pmGetHistoryContents() 55
handle, of pmGetInfo() 23
handle, of pmGetSnapshot() 47
handle, of pmGetUserData() 87
handle, of pmInitializeStore() 43
handle, of pmLogOff() 28
handle, of pmLogOn() 19
handle, of pmQueryStores() 45
handle, of pmReleaseStore() 56
handle, of pmReset() 52
handle, of pmSaveUserData() 86
handle, of pmStartExceptionProc() 76
handle, of pmStopExceptionProc() 83
handle, of skipToken() 92
host, of pmConnect() 16
id, of pmGetSnapshot() 48
id, of pmInitializeStore() 43
id, of pmReleaseStore() 56
id, of pmReset() 52
identification, of pmLogOn() 19
ifcidNo, of

pmGetHistoryContents() 55
ifcids, of pmGetHistoryContents() 55
info, of pmGetExceptionStatus() 77
info, of pmGetInfo() 23
interval, of

pmStartExceptionProc() 76
length 80
length, of nextToken() 91
length, of nextTokenValue() 92
length, of pmGetEventDetails() 74
length, of

pmGetEventExceptionLog() 64
length, of pmSaveUserData() 86
length, of skipToken() 93
length, of testToken() 93
mode, of pmGetSnapshot() 47
mode, of pmReset() 52
name, of nextTokenValue() 92
passticket, of pmGenPassticket() 21
pos, of nextToken() 91
pos, of nextTokenValue() 92
pos, of skipToken() 93
pos, of testToken() 93
qualifier, of pmGetHistory() 58
qualifier, of pmInitializeStore() 43
requestTime, of pmGetHistory() 58
response, of

pmExecDB2Command() 84
result, of pmAddTOD() 99
result, of pmGetHistory() 59
result, of pmGetHistoryContents() 55
result, of pmGetSnapshot() 49
result, of pmSubTOD() 99
secureSignonKey, of

pmGenPassticket() 21
servicePort, of pmConnect() 16
snapshotTime, of pmGetHistory() 59
snapshotTime, of pmReset() 52
storage, of nextTokenValue() 92
stores, of pmQueryStores() 45
thresholdDefs, of

pmStartExceptionProc() 76
timestampFrom, of

pmGetHistoryContents() 55

function parameter (continued)
timestampLatest, of

pmGetSnapshot() 49
timestampStored, of

pmGetSnapshot() 49
timestampTo, of

pmGetHistoryContents() 55
to, of pmGetEventExceptionLog() 62
tod1, of pmAddTOD() 99
tod1, of pmSubTOD() 99
tod2, of pmAddTOD() 99
tod2, of pmSubTOD() 99
tokenBlock, of nextToken() 91
tokenBlock, of nextTokenValue() 92
tokenBlock, of skipToken() 93
tokenBlock, of testToken() 93
type, of pmStartExceptionProc() 76
type, of pmStopExceptionProc() 83
userData, of pmInitializeStore() 43
userExit, of

pmStartExceptionProc() 76
userID, of pmGenPassticket() 21
workProfile, of

pmExecDB2Command() 84
workProfile, of

pmFetchExceptions() 80
workProfile, of

pmGetEventDetails() 67
workProfile, of

pmGetEventExceptionLog() 62
workProfile, of

pmGetExceptionStatus() 77
workProfile, of pmGetHistory() 57
workProfile, of

pmGetHistoryContents() 55
workProfile, of pmGetInfo() 23
workProfile, of pmGetSnapshot() 47
workProfile, of pmGetUserData() 87
workProfile, of pmInitializeStore() 43
workProfile, of pmLogOff() 28
workProfile, of pmLogOn() 19
workProfile, of pmQueryStores() 45
workProfile, of pmReleaseStore() 56
workProfile, of pmReset() 52
workProfile, of pmSaveUserData() 86
workProfile, of

pmStartExceptionProc() 76
workProfile, of

pmStopExceptionProc() 83

G
getRepBlockItem() 100

H
handle

generation of 16
hash table

purpose of 38
header file usage

pmConnect.h 15, 16, 17, 18, 20, 21,
24, 28, 64, 74, 76, 78, 81, 83, 84, 86,
88, 96, 98

pmCounter.h 64, 74, 81, 93
pmExcpProc.h 62, 64, 67, 74, 75, 76,

77, 78, 79, 81, 82, 83

header file usage (continued)
pmExecDB2Command.h 84
pmGenPassticket.h 21
pmGetInfo.h 22, 24, 96, 98
pmGetStatThread.h 35, 40, 42, 44, 45,

46, 52, 54, 56, 57
pmHashTable.h 40
pmHashTableList.h 40
pmLogOnOff.h 19, 20, 21, 27, 28, 64,

74, 76, 78, 81, 83, 84, 86, 88, 96, 98
pmParser.h 64, 74, 81, 91, 92, 93
pmTOD.h 45, 64, 96, 97, 98, 99
pmTrace.h 24, 45
pmTypes.h 35
pmUserData.h 86, 87, 88

hosts file, local 16

I
initCursor() 100
initQualifierList() 35, 101
installation of API vi
interval processing 31

K
keyword

BACK 37, 58
BOTH 78
EVENT 76, 78, 83
FALSE 76, 78, 91
FORWARD 37, 58
GET_DB2 52
GET_DELTA 32, 34, 47
GET_HISTORY 32, 33, 47, 48, 49, 52
GET_INTERVAL 32, 34, 47, 52
GET_LATEST 32, 47
GET_LOCKEDRESOURCES 33, 47
GET_SUMMARY 33, 47
MVSDB2PM 21
NC 39
NONE 78
NP 39
NULL 23, 43, 48, 49, 62
PERIODIC 78
PM_FAILED 90
PM_OK 90
TO 37, 58
TOD_FIRST 37, 58
TOD_LAST 37, 58
TRUE 78
VALUE 39
VIEW_DELTA 32, 47
VIEW_INTERVAL 32, 47
VIEW_LATEST 32, 47

L
license, API vi
local hosts file 16
local services file 16
local time adjustment 95

M
mode

of pmGetSnapshot() 32, 33

116 DB2 PM for OS/390: Data Collector API Guide

mode (continued)
of pmReset() 35

MVSDB2PM, application name 10

N
nextToken() 91
nextTokenValue() 91
Notices 109

O
operating systems, supported vi

P
parsing

introduction to 88
PM_COMMAND 14
PM_CONNECTION 14
PM_DATA 14
pmAddTOD() 99
pmConnect() 15
pmDisconnect() 17
pmExecDB2Command() 83
pmFetchExceptions() 79
pmFreeMem() 100
pmGenPassticket() 21
pmGenPassticket(), RACF

preparation 10
pmGetCounter() 100
pmGetEventDetails() 67
pmGetEventExceptionLog() 61
pmGetExceptionStatus() 77
pmGetHistory() 57
pmGetHistoryContents() 54
pmGetInfo() 22
pmGetSnapshot() 46
pmGetUserData() 87
pmInitializeStore() 42
pmLogOff() 27
pmLogOn() 19
pmQueryStores() 44
pmReleaseStore() 56
pmReset() 51
pmSaveUserData() 86
pmStartExceptionProc() 75
pmStopExceptionProc() 82
pmSubTOD() 99
Profile ID 4

Q
qualifying counter stores 35

R
RACF preparation 10
RDEFINE, RACF command 10
reason code

common 10
repeating block

definition 38
return code

common 10

S
SAF group ID 4
SAF user ID 4

secure signon key

accessing on workstation 5
setting up RACF for 10

Security server, preparation 10

services file, local 16

SETOPTS, RACF command 10

setToNext() 100

skipToken() 92

snapshot store

introduction to 29

Store Clock format 94

subuser 4

T
TCP/IP, prerequisite vi

testToken() 93

time and date functions

introduction to 94

time_t format 94

time zone adjustment 95

time2tod() 97

tod2time() 95

trace facility 14

U
universal time adjustment 95

W
work profile

purpose 3
to define user 4

Index 117

118 DB2 PM for OS/390: Data Collector API Guide

Readers’ Comments — We’d Like to Hear from You

DB2 Performance Monitor for OS/390
Data Collector Application Programming Interface Guide

Publication No. SC26-9173-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-9173-00

SC26-9173-00

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5645-DB2

Printed in the United States of America

SC26-9173-00

	Contents
	Preface
	Who Should Read This Book
	How to Use This Book
	Availability of the Data Collector API
	Applicability of the Data Collector API

	Chapter 1. Overview of Elements and Concepts
	The DB2 PM Data Collector
	The Workstation Application
	The Data Collector API Functions
	The Connection Concept
	The User Concept
	The Security Concept
	Logon with a Password
	Logon with a PassTicket

	How the Components Interact
	Establishing and Terminating a User Session
	Disconnecting and Reconnecting while Preserving a UserSession

	Chapter 2. Considerations for Using the Data Collector API
	Workstation Memory Handling
	Code Page Conversions
	Preparations for Using PassTickets
	Common Return Codes and Reason Codes
	Compiler Considerations
	Linking the DB2 PM API Library on Windows NT
	Using the DB2 PM API Trace Facility

	Chapter 3. The Data Collector API Functions
	Maintaining a TCP/IP Connection to the Data Collector
	Connect to Data Collector
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Disconnect from Data Collector
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Maintaining a User Session to the Data Collector
	Log On to Data Collector
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Generate RACF PassTicket
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Get Data Collector Information
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Log Off from Data Collector
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Getting DB2 Performance Data
	Introduction to Counters and Snapshot Stores
	DB2 PM Counters
	Snapshot Stores
	Working with Snapshot Stores
	Working with the History Data Set

	Working with Returned Data
	The Counter Structure
	Interpreting Repeating Blocks

	Snapshot Processing - Initialize Snapshot Store
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Snapshot Processing - Query Snapshot Stores
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Snapshot Processing - Get Snapshot Data
	Function Call
	Header File
	Description
	Parameters
	Return Codes and Reason Codes

	Snapshot Processing - Reset Interval Data
	Function Call
	Header File
	Description
	Parameters
	Return Codes and Reason Codes

	Snapshot Processing - Get History Contents
	Function Call
	Header File
	Description
	Parameters
	Return Codes and Reason Codes

	Snapshot Processing - Release Snapshot Store
	Function Call
	Header File
	Description
	Parameters
	Return Codes and Reason Codes

	History Processing - Get History Data
	Function Call
	Header File
	Description
	Parameters
	Return Codes and Reason Codes

	Processing DB2 Exception Events
	Introduction to Exception Processing
	Retrieve Event Exception Log
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Retrieve Event Exception Details
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Start Exception Processing
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Get Exception Processing Status
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Fetch Exceptions
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Stop Exception Processing
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Executing DB2 Commands
	Execute DB2 Command
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Saving and Retrieving User Data
	Save User Data
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Get User Data
	Function Call
	Header File
	Description
	Parameters
	Example
	Return Codes and Reason Codes

	Parsing Data
	Introduction to Parsing
	The Parsing Functions
	The Counter Structure
	Working with Parsing Functions

	Get Token
	Function Call
	Header File
	Description
	Parameters

	Get Token Value
	Function Call
	Header File
	Description
	Parameters

	Skip Token
	Function Call
	Header File
	Description
	Parameters

	Test Token
	Function Call
	Header File
	Description
	Parameters

	Delete Counter
	Function Call
	Header File
	Description
	Parameters

	Converting and Adjusting Dates and Times
	Introduction to Date and Time Functions
	Format Conversions
	Local Time Adjustment
	Time Zone Adjustment

	Convert Store Clock Format to time_t Format
	Function Call
	Header File
	Description
	Parameters
	Example

	Convert time_t Format to Store Clock Format
	Function Call
	Header File
	Description
	Parameters
	Example

	Add and Subtract in Store Clock Format
	Function Call
	Header File
	Description
	Parameters

	Miscellaneous API Functions
	Hash Table Functions
	clearHashTable()
	initCursor()
	setToNext()
	endOfBlock()
	getRepBlockItem()
	freeHashTable()
	pmGetCounter()

	Memory Releasing Function
	pmFreeMem()

	Qualifier Functions
	initQualifierList()
	addQualifier()

	Appendix A. Field Table Summary
	Appendix B. Sample Traces
	Sample Connection Trace
	Sample Command Trace
	Sample Data Trace

	Appendix C. Notices
	Trademarks

	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

