z/0S C/C++

Standard C++ Library Reference

<|lI!

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Edition Notice (October, 2001)

This edition applies to Version 1.2 of IBM z/0OS C/C++ and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1999, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
Chapter 1. Dinkum C++ Library.

Chapter 2. C Library Overview .
Using Standard C Headers

C Library Conventions .

Program Startup and Termmatlon

Chapter 3. C++ Library Overview .

Using C++ Library Headers

C++ Library Conventions.

Tostreams Conventions. .
C++ Program Startup and Term1nat1on .

Chapter 4. Characters
Character Sets
Character Sets and Locales
Escape Sequences . .
Numeric Escape Sequences .
Trigraphs . .
Multibyte Characters . .
Wide-Character Encoding.

Chapter 5. Expressions

Chapter 6. Files and Streams .
Text and Binary Streams .

Byte and Wide Streams

Controlling Streams

Stream States .

Chapter 7. Functions.

Chapter 8. Formatted Input
Scan Formats .

Scan Functions . .

Scan Conversion Spec1f1ers .

Chapter 9. Formatted Output
Print Formats.

Print Functions . .

Print Conversion Spec1f1ers .

Chapter 10. STL Conventions .

Iterator Conventions
Algorithm Conventions

Chapter 11. Containers .
Cont. .
Cont::begin
Cont::clear.
Cont::const_iterator .
Cont::const_reference .
Cont::const_reverse_iterator .

© Copyright IBM Corp. 1999, 2001

N o o U1

. 10
.11
.11

. 13
.13
. 14
.14
.15
.15
. 16
.17

. 19

.21
.21
.22
.23
. 24

.27

. 29
. 29
. 29
. 30

. 35
. 35
. 36
. 37

.41
.41
.42

. 45
. 46
. 48
. 48
. 48
. 48
. 48

Cont:difference_type48
Contzempty48
Contzend49
Cont:erase49
Cont:iterator49
Cont:max_size49
Conturbegin49
Contureference49
Contirend.49
Cont:reverse_iterator50
Contusize50
Cont:size_type50
Contzswap50
Cont::value typeh0
operator!=. . S 1)
operator==50
operator<5l
operator<=51
operator>5l
operator>=5l
swap5l
Chapter 12. Preprocessing 53
Chapter 13. Standard C Header Files 55
<asserth>.55
assert55
<ctypeh>.55
isalnum.57
isalpha57
isentrel57
isdigit57
isgraph.57
islower.57
isprint57
ispunct.58
isspaceb8
isupper.58
isxdigit.58
tolower.58
toupper.58
<errnoh>58
EDOM5
EILSEQ.5
ERANGE59
errno« .«5
<floath>5
pBLDIG.60
DBL_EPSILON60
DBL_MANT.DIG60
DBL_MAX.60
DBL_MAX_10_EXP.60
DBL MAX_EXP.60
DBLMIN.61
DBL_MIN_10_EXP61
iii

DBL_MIN_EXP .
FLT_DIG
FLT_EPSILON
FLT_MANT_DIG
FLT_MAX . .
FLT_MAX_10_EXP .
FLT_MAX_EXP .
FLT_MIN . .
FLT_MIN_10_EXP .
FLT_MIN_EXP
FLT_RADIX .
FLT_ROUNDS
LDBL_DIG
LDBL_EPSILON.
LDBL_MANT_DIG .
LDBL_MAX .
LDBL_MAX_10_EXP
LDBL_MAX_EXP
LDBL_MIN
LDBL_MIN_10_EXP
LDBL_MIN_EXP

<is0646.h>.

and .
and_eq .
bitand .
bitor.
compl .
not . .
not_eq .
or .
or_eq
xor . .
xor_eq .

<limits.h> .

CHAR_BIT
CHAR_MAX .
CHAR_MIN .
INT_MAX.
INT_MIN .
LONG_MAX .
LONG_MIN .
MB_LEN_MAX .
SCHAR_MAX
SCHAR_MIN.
SHRT_MAX .
SHRT_MIN
UCHAR_MAX
UINT_MAX .
ULONG_MAX
USHRT_MAX

<locale.h> .

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME .
NULL .

lconv

localeconv .
setlocale

Standard C++ Library

. 61
. 61
. 61
. 61
. 61
. 61
. 61
. 62
. 62
. 62
. 62
. 62
. 62
. 62
. 62
. 63
. 63
. 63
. 63
. 63
. 63
. 63
. 64
. 64
. 64
. 64
. 64
. 64
. 64
. 64
. 64
. 65
. 65
. 65
. 65
. 65
. 65
. 66
. 66
. 66
. 66
. 66
. 66
. 66
. 66
. 66
. 67
. 67
. 67
. 67
. 67
. 67
. 67
. 68
. 68
. 68
. 68
. 68
. 68
. 70
.71

<math.h> .
HUGE_VAL .
abs . ..
acos, acosf, acosl.
asin, asinf, asinl .
atan, atanf, atanl.
atan2, atan2f, atan2l
ceil, ceilf, ceill
cos, cosf, cosl .
cosh, coshf, coshl
exp, expf, expl .
fabs, fabsf, fabsl .
floor, floorf, floorl
fmod, fmodf, fmodl.
frexp, frexpf, frexpl.
ldexp, Idexpf, 1dexpl
log, logf, logl .
log10, log10f, log101
modf, modff, modfl.
pow, powf, powl
sin, sinf, sinl .
sinh, sinhf, sinhl.
sqrt, sqrtf, sqrtl .
tan, tanf, tanl .
tanh, tanhf, tanhl
<setjmp.h>
jmp_buf
longjmp
setjmp .
<signal.h>.
SIGABRT .
SIGFPE .
SIGILL .
SIGINT.
SIGSEGV .
SIGTERM .
SIG_DFL
SIG_ERR
SIG_IGN
raise. .
sig_atomic_t .
signal
<stdarg.h>.
va_arg .
va_end .
va_list .
va_start.
<stddef.h>.
NULL .
offsetof .
ptrdiff_t
size_t
wchar_t.
<stdio.h> .
_IOFBF.
_IOLBF.
_IONBF
BUFSIZ.
EOF .
FILE. ..
FILENAME_MAX .

.71
.73
. 74
. 74
.74
. 74
. 74
. 74
.75
.75
.75
.75
.75
.75
. 76
. 76
. 76
. 76
. 76
.77
.77
.77
.77
.77
. 78
. 78
.78
. 78
. 78
.79
.79
.79
. 80
. 80
. 80
. 80
. 80
. 80
. 80
. 80
. 80
.81
.81
. 82
. 82
. 82
. 82
. 83
. 83
. 83
. 83
. 83
. 83
. 83
. 85
. 85
. 85
. 85
. 85
. 85
. 85

FOPEN_MAX
L_tmpnam.
NULL .
SEEK_CUR
SEEK_END
SEEK_SET .
TMP_MAX
clearerr .
fclose
feof .
ferror
fflush
fgetc.
fgetpos .
fgets.
fopen
fpos_t
fprintf .
fputc
fputs
fread
freopen.
fscanf
fseek
fsetpos .
ftell .
fwrite
getc .
getchar .
gets .
perror .
printf
putc .
putchar.
puts .
remove .
rename .
rewind .
scanf
setbuf
setvbuf .
size_t
sprintf .
sscanf
stderr
stdin.
stdout .
tmpfile .
tmpnam
ungetc .
viprintf.
vprintf .
vsprintf.
<stdlib.h> .

EXIT_FAILURE .
EXIT_SUCCESS .
MB_CUR_MAX .

NULL .
RAND_MAX .
abort

abs .

. 86
. 86
. 86
. 86
. 86
. 86
. 86
. 86
. 87
. 87
. 87
. 87
. 87
. 87
. 87
. 88
. 88
. 88
. 89
. 89
. 89
. 89
. 89
. 89
. 90
. 90
.90
.90
.91
.91
.91
.9
.91
.91
.91
.92
.92
.92
.92
.92
.92
. 93
.93
. 93
. 93
. 93
.93
. 93
. 94
. 94
.94
. 95
. 95
. 95
. 96
. 96
. 96
.97
.97
. 97
. 97

atexit
atof .
atoi .
atol .
bsearch .
calloc
div .
div_t
exit .
free .
getenv .
labs .
Idiv .
Idiv_t .
malloc.
mblen .
mbstowcs
mbtowc
gsort .
rand
realloc.
size_t .
srand .
strtod .
strtol .
strtoul .
system
wchar_t .
wcstombs
wctomb

<string.h>

NULL .
memchr .
mememp .
memcpy .
memmove
memset
size_t .
strcat .
strchr .
stremp.
strcoll .
strcpy .
strcspn
strerror
strlen .
strncat.
strncmp .
strncpy
strpbrk
strrchr.
strspn .
strstr .
strtok .
strxfrm

<time.h> .

CLOCKS_PER_SEC
NULL .

asctime

clock

clock_t.

. 97
. 97
. 98
. 98
. 98
. 98
. 98
.99
.99
. 99
.99
.99
.99

. 100
. 100
. 100
. 100
. 100
. 101
. 101
. 101
. 102
. 102
. 102
. 102
. 103
. 103
. 103
. 104
. 104
. 104
. 105
. 105
. 105
. 106
. 106
. 106
. 106
. 106
. 106
. 106
. 107
. 107
. 107
. 107
. 107
. 107
. 107
. 108
. 108
. 108
. 108
. 108
. 109
. 109
. 109
. 110
. 110
. 110
. 110
111

Contents

\'%

ctime .
difftime
gmtime
localtime .
mktime
size_t .
strftime
time
time_t .
tm . .
<wchar.h>
NULL . .
WCHAR_MAX .
WCHAR_MIN .
WEOF.
btowc .
fgetwc.
fgetws.
fputwe
fputws.
fwide .
fwprintf .
fwscanf
getwce .
getwchar .
mbrlen
mbrtowc .
mbsinit
mbsrtowcs
mbstate_t.
putwec .
putwchar.
size_t .
swprintf .
swscanf
tm . . .
ungetwc .
viwprintf.
vswprintf.
vwprintf .
wchar_t
wcrtomb .
wcscat.
weschr
wesemp
wcescoll
wescpy
wesespn .
wcsftime .
wcslen.
wcesncat
wesnemp .
WCSNCpy .
wespbrk .
wesrchr
wcesrtombs
wesspn
wcsstr .
westod
wcestok
wcstol .

Vi Standard C++ Library

11
. 111
. 111
. 111
. 111
. 111
. 111
. 112
. 112
. 113
. 113
. 115
. 115
. 115
. 115
. 115
. 115
. 115
. 116
. 116
. 116
. 116
. 116
. 117
. 117
. 117
. 117
. 118
. 118
. 119
. 119
. 119
. 119
. 119
. 119
. 119
. 120
. 120
. 120
. 120
. 121
. 121
. 121
. 122
. 122
. 122
. 122
. 122
. 122
. 123
. 123
. 123
. 123
. 123
. 124
. 124
. 124
. 124
. 124
. 125
. 125

westoul126

wesxfrm126
wctob.126
wint_t.126
wmemchr126
wmemcmp 127
wmemcpy 127
wmemmove. 127
wmemset.127
wprintf o o 00 127
wscanf127
<wctypeh>.128
WEOF.129
iswalnum.129
iswalpha129
iswentrl129
iswctype129
iswdigit130
iswgraph.130
iswlower.130
iswprint130
iswpunct.130
iswspace130
iswupper.130
iswxdigit.131
towctrans.131
towlower.131
towupper.131
wctrans13
wcetrans_t.13
wctype 131
wctype_t. 132
wint.t.132

Chapter 14. Standard C++ Library

Header Files. 133
<bitset>136
bitset136
operator<<140
operator>>14l
<cassert>.14
<cctype>. 14
<Cerrno>o 14
<cfloat>14
<cisob46>.142
<climits>.142
<clocale>.142
<cmath>142
<complex>143
abs.145
arg.145
complex145
complex<double>.148
complex<float>.149
complex<long double>149
conj 18
COS. L 14
cosh14
exp.150
imag150
log.15

log10 .
norm .
operator!=
operator* .
operator+.
operator- .
operator/.
operator<< .
operator==.
operator>> .
polar .
pow
real.
sin .
sinh .
sqrt.
_ STD_COMPLEX.
tan .
tanh
<csetjmp>
<csignal>.
<cstdarg>
<cstddef>
<cstdio> .
<cstdlib> .
<cstring>.
<ctime>
<cwchar>.
<cwctype>
<exception> .
bad_exception .
exception.
set_terminate
set_unexpected .
terminate .
terminate_handler .

uncaught_exception .

unexpected .

unexpected_handler .

<fstream> .
basic_filebuf.
basic_fstream
basic_ifstream .
basic_ofstream .
filebuf .
fstream
ifstream .
ofstream .
wistream .
wifstream
wofstream
wfilebuf .

<iomanip>
resetiosflags .
setbase
setfill .
setiosflags
setprecision .
setw

<ios> .
basic_ios .

. 150
. 150
. 150
. 150
. 151
. 151
. 151
. 151
. 152
. 152
. 152
. 152
. 153
. 153
. 153
. 153
. 153
. 153
. 153
. 154
. 154
. 154
. 154
. 154
. 155
. 155
. 155
. 156
. 156
. 156
. 157
. 157
. 157
. 157
. 157
. 157
. 158
. 158
. 158
. 158
. 159
. 163
. 164
. 165
. 166
. 166
. 166
. 167
. 167
. 167
. 167
. 167
. 167
. 168
. 168
. 168
. 168
. 168
. 168
. 168
. 170

boolalpha.
dec.

fixed

fpos

hex.

internal

ios . . .
ios_base .
left .
noboolalpha .
noshowbase .
noshowpoint
noshowpos .
noskipws.
nounitbuf
nouppercase.
oct .

right
scientific .
showbase.
showpoint
showpos .
skipws
streamoff .
streampos
streamsize
unitbuf
uppercase
wios
wstreampos .

<iosfwd>.
<iostream> .

cerr.
cin .
clog
cout
wcerr .
wcin
wclog .
wcout .

<istream>

basic_iostream .
basic_istream
iostream .
istream
operator>> .
wiostream
wistream .

WS .

<limits> .

float_denorm_style
float_round_style .
numeric_limits .

<locale> .

codecvt
codecvt_base
codecvt_byname
collate .
collate_byname.

ctype .
ctype<char>.

Contents

. 173
. 174
. 174
. 174
. 175
. 176
. 176
. 176
. 181
. 181
. 181
. 181
. 182
. 182
. 182
. 182
. 182
. 182
. 182
. 182
. 183
. 183
. 183
. 183
. 183
. 183
. 183
. 183
. 183
. 184
. 184
. 185
. 186
. 186
. 186
. 186
. 187
. 187
. 187
. 187
. 187
. 188
. 188
. 194
. 194
. 195
. 196
. 196
. 196
. 196
. 197
. 197
. 197
. 202
. 203
. 207
. 208
. 208
. 209
. 210
. 213

vii

ctype_base
ctype_byname .
has_facet .

isalnum

isalpha

isentrl .

isdigit .

isgraph

islower

isprint.

ispunct

isspace

isupper

isxdigit

locale .

messages .
messages_base .
messages_byname .
money_base .
money_get
money_put .
moneypunct.
moneypunct_byname.
num_get .
num_put .
numpunct
numpunct_byname
time_base
time_get .
time_get_byname .
time_put .
time_put_byname .
tolower

toupper

use_facet .

<new>

bad_alloc.
new_handler
nothrow .
nothrow_t
operator delete .
operator delete][]
operator new
operator new(] .
set_new_handler

<ostream>

basic_ostream
endl

ends

flush
operator<< .
ostream
wostream.

<sstream>

basic_stringbuf .
basic_istringstream
basic_ostringstream
basic_stringstream.
istringstream
ostringstream
stringbuf .

viii Standard C++ Library

. 214
. 215
. 215
. 215
. 215
. 215
. 216
. 216
. 216
. 216
. 216
. 216
. 216
. 217
. 217
. 221
. 223
. 223
. 223
. 223
. 226
. 228
. 231
. 231
. 235
. 238
. 240
. 240
. 240
. 244
. 244
. 246
. 246
. 246
. 246
. 246
. 247
. 247
. 247
. 247
. 247
. 248
. 248
. 249
. 250
. 250
. 251
. 255
. 255
. 255
. 255
. 258
. 258
. 258
. 259
. 262
. 263
. 264
. 265
. 265
. 265

stringstream .
wistringstream .
wostringstream .
wstringbuf
wstringstream .
<stdexcept> .
domain_error
invalid_argument .
length_error .
logic_error
out_of_range
overflow_error .
range_error .
runtime_error
underflow_error
<streambuf>.
basic_streambuf
streambuf
wstreambuf .
<string> .
basic_string .
char_traits
char_traits<char> .
char_traits<wchar_t> .
getline.
operator+.
operator!=
operator==.
operator<.
operator<< .
operator<= .
operator>.
operator>= .
operator>> .
string .
swap .
wstring
<strstream> .
strstreambuf .
istrstream
ostrstream
strstream .
<typeinfo>
bad_cast .
bad_typeid .
type_info .
<valarray>
abs .
acos
asin
atan
atan2 .
Cos .
cosh
exp.
gslice .
gslice_array .
indirect_array
log . .
log10 .
mask_array .

. 265
. 265
. 266
. 266
. 266
. 266
. 266
. 266
. 267
. 267
. 267
. 267
. 267
. 267
. 268
. 268
. 268
. 277
. 277
. 277
. 279
. 293
. 296
. 296
. 296
. 297
. 297
. 297
. 298
. 298
. 298
. 298
. 299
. 299
. 299
. 300
. 300
. 300
. 300
. 304
. 305
. 306
. 307
. 307
. 307
. 307
. 308
. 312
. 312
. 312
. 312
. 312
. 313
. 313
. 313
. 313
. 314
. 315
. 315
. 315
. 316

operator!=316 next_permutation343
operator%317 nth_element.34
operator& < N V4 partial sort34
operator&& N 1 V4 partial_sort_copy344
operator>.317 partition345
operator>>318 pop_heap.345
operator>=318 prev_permutation.345
operator<.318 push_heap346
operator<<318 random_shuffle.346
operator<=319 remove346
operator*.319 remove_copy347
operator+.319 remove_copy_if347
operator-.319 remove_if347
operator/.320 replace348
operator==320 replace_copy348
operator320 replace_copy_if.348
operatorl.320 replace_if.348
operator! |321 reverse349
pow 0321 reverse_copy349
sin. 0321 rotate349
sinh31 rotate_copy349
slice32 search.349
slice_array322 searchn35
sqrt.323 set_difference350
tan.32 set_intersection. . . B o1 |
tanh323 set_symmetric_| d1fference B 1
valarray323 set_union.352
Valarray<bool> T < (0] sort.35
sort_heap.353

Chapter 15. Standard Template Library stable_partition.353
C++33 stablesort353
swap354

<algorithm>.33l swap_ranges35

adjacent_find33
. transform.354

binary_search336 . 354

copy . . e unique L. L . oL L.

Copybackward 33 unique_copy35
count336 upper bound 355

count if 337 <deque>.356
equal37 deque.35

equal_range 337 Operator!: ’ ’ : : : ’ ’ ’ ’ ’ ’ ’ - 363
11 N < 74 operator== 2363

6l n 338 operator<.364
ﬁna""...“""..SSS operator<=364

find end 338 operator>.364

find_first of338 operator>= 364

.. swap34
?Or;dg;fchggg <functional>.364

generate33 binary_function.366

generaten33 b%nary_negate............367
includes339 bindlst37

inpl bind2nd367
inplace_merge340 binderlst 367
iter_swap. . . O 7 10} oo e

binder2nd367
lexicographical compare. S o340
lower bound 3m const mem_fun_t368
make_hea 341 const. mem_fun_ref t.368
max i 341 const mem_funl_t.368
max ellem.ent. o 341 const mem_funl_ref t368
mer_e o 340 divides369
ming o e 340 equal to369

min_element343 greater36
mismatch.343 greater_equal 369

Contents 11X

less.

less_equal
logical_and .
logical_not
logical_or.
mem_fun.
mem_fun_ref
mem_fun_t .
mem_fun_ref t.
mem_funl_t.
mem_funl_ref_t
minus .
modulus .
multiplies
negate.

notl

not2
not_equal_to
plus

pointer_to_binary_function .
pointer_to_unary_function .

ptr_fun
unary_function .
unary_negate

<iterator>

advance . .
back_insert_iterator
back_inserter
bidirectional_iterator_tag
distance . ..
forward_iterator_tag .
front_insert_iterator
front_inserter
input_iterator_tag .
insert_iterator
inserter
istream_iterator.
istreambuf_iterator
iterator
iterator_traits
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .
operator+.
operator- .
ostream_iterator
ostreambuf_iterator
output_iterator_tag

random_access_iterator_tag.

reverse_iterator.

<list> .

X

list .
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .

Standard C++ Library

. 369
. 369
. 370
. 370
. 370
. 370
. 370
. 371
. 371
. 371
. 371
. 371
. 372
. 372
. 372
. 372
. 372
. 372
. 372
. 373
. 373
. 373
. 373
. 373
. 374
. 375
. 376
. 377
. 377
. 377
. 377
. 377
. 379
. 379
. 379
. 380
. 380
. 382
. 383
. 383
. 384
. 385
. 385
. 385
. 385
. 385
. 385
. 386
. 386
. 387
. 388
. 388
. 388
. 391
. 391
. 400
. 400
. 400
. 400
. 401
. 401

swap .

<map>

map
multimap.
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .
swap .

<memory>

allocator .
allocator<void>.
auto_ptr .

get_temporary_bu

operator!=
operator==.

ffer.

raw_storage_iterator .

return_temporary_buffer

uninitialized_copy .

uninitialized_fill

uninitialized_fill_n

<numeric>

accumulate .

adjacent_difference

inner_product .
partial_sum .

<queue> .

operator!=
operator== .
operator<.
operator<= .
operator>.
operator>= .
priority_queue .
queue .

<set> .

multiset .
operator!=
operator==.
operator<.
operator<= .
operator>.
operator>= .
set .

swap .

<stack>

operator!=
operator== .
operator<.
operator<= .
operator>.
operator>= .
stack

<utility> .

make_pair
operator!=
operator==.
operator<.
operator<= .

. 401
. 401
. 402
. 409
. 416
. 416
. 416
. 417
. 417
. 417
. 417
. 418
. 418
. 421
. 422
. 424
. 424
. 424
. 425
. 426
. 426
. 426
. 426
. 427
. 427
. 427
. 428
. 428
. 428
. 429
. 429
. 429
. 429
. 429
. 430
. 430
. 432
. 434
. 435
. 441
. 441
. 442
. 442
. 442
. 442
. 442
. 449
. 449
. 450
. 450
. 450
. 450
. 450
. 450
. 450
. 452
. 453
. 453
. 453
. 453
. 454

operator>.

operator>= .

pair
<vector> .
operator!=

operator==.

operator<.

operator<= .

operator>.

. 454
. 454
. 454
. 455
. 455
. 455
. 456
. 456
. 456

operator>= .
swap .

vector . .
vector<bool, A>

Appendix. Copyright and License
Notice

References
Bug Reports .

Contents

. 456
. 456
. 456
. 463

. 467
. 469
. 469

xi

Xii Standard C++ Library

Chapter 1. Dinkum C++ Library

Use of this Dinkum C++ Library Reference is subject to limitations. See the
Copyright Notice (page l67) for detailed restrictions.

A C++ program can call on a large number of functions from the Dinkum C++
Library, a conforming implementation of the Standard C++ library. These
functions perform essential services such as input and output. They also provide
efficient implementations of frequently used operations. Numerous function and
class definitions accompany these functions to help you to make better use of the
library. Most of the information about the Standard C++ library can be found in
the descriptions of the C++ library headers (page d) that declare or define library
entities for the program.

The Standard C++ library consists of 51 headers. Of these 51 headers, 13 constitute
the Standard Template Library, or STL. These are indicated below with the
notation (STL):

<algorithm> (page Ba1) — (STL) for defining numerous templates that implement
useful algorithms

<bitset> (page flad) — for defining a template class that administers sets of bits
<complex> (page [143) — for defining a template class that supports complex

arithmetic

<deque> (page Bad) — (STL) for defining a template class that implements a deque
container

<exception> (page fi5d) — for defining several functions that control exception
handling

<fstream> (page fisd) — for defining several iostreams template classes that
manipulate exteral files

<functional> (page Bed) — (STL) for defining several templates that help construct
predic%e; for the templates defined in <algorithm> (page Ball) and <numeric>
(page

<iomanip> (page flad) — for declaring several iostreams manipulators that take an
argument

<ios> (page [[68) — for defining the template class that serves as the base for many
iostreams classes

<iosfwd> (page [184) — for declaring several iostreams template classes before they
are necessarily defined

<iostream> (page [[89) — for declaring the iostreams objects that manipulate the
standard streams

<istream> (page @) — for defining the template class that performs extractions
<iterator> (page @) — (STL) for defining several templates that help define and
manipulate iterators

<limits> (page @) — for testing numeric type properties

<list> (page BQll) — (STL) for defining a template class that implements a list
container

<locale> (page Rod) — for defining several classes and templates that control
locale-specific behavior, as in the iostreams classes

<map> (page M) — (STL) for defining template classes that implement associative
containers that map keys to values

<memory> (page ﬁ) — (STL) for defining several templates that allocate and free
storage for various container classes

<new> (page bad) — for declaring several functions that allocate and free storage

© Copyright IBM Corp. 1999, 2001 1

2

Standard C++ Library

<numeric> (page B22) — (STL) for defining several templates that implement
useful numeric functions

<ostream> (page B5(0) — for defining the template class that performs insertions
<queue> (page B28) — (STL) for defining a template class that implements a queue
container

<set> (page @) — (STL) for defining template classes that implement associative
containers

<sstream> (page @) — for defining several iostreams template classes that
manipulate string containers

<stack> (page 449) — (STL) for defining a template class that implements a stack
container

<stdexcept> (page Bsd) — for defining several classes useful for reporting
exceptions

<streambuf> (page bed) — for defining template classes that buffer iostreams
operations

<string> (page bzd) — for defining a template class that implements a string
container

<strstream> (page Bod) — for defining several iostreams classes that manipulate
in-memory character sequences

<typeinfo> (page Bod) — for defining class type_info, the result of the typeid
operator

<utility> (page k52) — (STL) for defining several templates of general utility
<valarray> (page BQ8) — for defining several classes and template classes that
support value-oriented arrays

<vector> (page lsd) — (STL) for defining a template class that implements a vector
container

The Standard C++ library works in conjunction with the 18 headers from the
Standard C library, sometimes with small alterations. The headers come in two
forms, new and traditional. The new-form headers are:

<cassert> (page [41l) — for enforcing assertions when functions execute
<cctype> (page flad) — for classifying characters

<cerrno> (page fiad) — for testing error codes reported by library functions
<cfloat> (page fliad) — for testing floating-point type properties

<ciso646> (page flad) — for programming in ISO 646 variant character sets
<climits> (page flad) — for testing integer type properties

<clocale> (page [[49) — for adapting to different cultural conventions
<cmath> (page [[43) — for computing common mathematical functions
<csetjmp> (page [154) — for executing nonlocal goto statements

<csignal> (page [54) — for controlling various exceptional conditions
<cstdarg> (page [[54) — for accessing a varying number of arguments
<cstddef> (page fisd) — for defining several useful types and macros
<cstdio> (page % — for performing input and output

<cstdlib> (page — for performing a variety of operations

<cstring> (page L55) — for manipulating several kinds of strings

<ctime> (page — for converting between various time and date formats
<cwchar> (page 15d) — for manipulating wide streams (page BJ) and several kinds
of strings

<cwctype> (page f5d) — for classifying wide characters (page i3
The traditional Standard C library headers are:
<assert.h> (page 5 — for enforcing assertions when functions execute

<ctype.h> (page Ed) — for classifying characters
<errno.h> (page Bd) — for testing error codes reported by library functions

<floath> (page Bd) — for testing floating-point type properties

<iso646.h> (page b3) — for programming in ISO 646 variant character sets
<limits.h> (page B3) — for testing integer type properties

<locale.h> (page b7) — for adapting to different cultural conventions
<math.h> (page 1) — for computing common mathematical functions
<setjmp.h> (page — for executing nonlocal goto statements

<signal.h> (page fd) — for controlling various exceptional conditions
<stdarg.h> (page Bl) — for accessing a varying number of arguments
<stddef.h> (page B — for defining several useful types and macros
<stdio.h> (page % — for performing input and output

<stdlib.h> (page Eﬁ_ for performing a variety of operations

<string.h> (page [L04) — for manipulating several kinds of strings

<time.h> (page — for converting between various time and date formats
<wchar.h> (page [l13) — for manipulating wide streams (page Bd) and several
kinds of strings

<wctype.h> (page f2d) — for classifying wide characters (page i)

Other information on the Standard C++ library includes:

C++ Library Overview (page B) — how to use the Standard C++ library

C Library Overview (page %) — how to use the Standard C library, including what
happens at program startup (page B and at program termination (page B)
Characters (page l3) — how to write character constants (page fid) and strin
literals (page é), and how to convert between multibyte characters (page E)gand
wide characters (page W)

Files and Streams (page 1) — how to read and write data between the program
and files (page b1)

Formatted Output (page Bd) — how to generate text under control of a format
string (page

Formatted Input (page bd) — how to scan and parse text under control of a format
string (page %}

STL Conventions (page #1) — how to read the descriptions of STL (page i)
template classes and functions

Containers (page i3) — how to use an arbitrary STL (page fl) container template
class

A few special conventions are introduced into this document specifically for this
particular implementation of the Standard C++ library. Because the C++ Standard
(page Ba9) is still relatively new, not all implementations support all the features
described here. Hence, this implementation introduces macros, or alternative
declarations, where necessary to provide reasonable substitutes for the capabilities
required by the C++ Standard.

Chapter 1. Dinkum C++ Library 3

4 Standard C++ Library

Chapter 2. C Library Overview

Using Standard C Headers (page B-c Library Conventions (page B - Program
Startup and Termination (page 1)

All Standard C library entities are declared or defined in one or more standard
headers. To make use of a library entity in a program, write an include (page Ed)
directive that names the relevant standard header. The full set of Standard C
headers constitutes a hosted implementation: <assert.h> (page Bd), <ct pe.h>
(page B3), <errno.h> (page %, <float.h> (page Bd), <iso646.h> (page <limits.h>
(page B3, <locale.h> (page b4), <math.h> (page [Z1), <setjmp.h> (page £3),
<signal.h> (page kd), <stdarg.h> (page Bl), <stddef.h> (page R3), <stdio.h> (page

), <stdlib.h> (page E), <string.h> (page @), <time.h> (page E), <wchar.h>
(page [1d), and <wctype.h> (page 124).

%)e headers <iso646.h> (page kd), <wcharh> (page f1d), and <wctype.h> (page
are added with Amendment 1, an addition to the C Standard published in
1995.)

A freestanding implementation of Standard C provides only a subset of these
standard headers: <float.h> (page E), <is0646.h> (page E) [Added with
Amendment 1 (page B)], <limits.h> (page kd), <stdarg.h> (page R1), and <stddef.h>
(page R3). Each freestanding implementation defines:

¢ how it starts the program
* what happens when the program terminates

* what library functions (if any) it provides

Using Standard C Headers

You include the contents of a standard header by naming it in an include directive
(page B4, as in:
#include <stdio.h> /+ include I/0 facilities =/

You can include the standard headers in any order, a standard header more than
once, or two or more standard headers that define the same macro or the same
type. Do not include a standard header within a declaration. Do not define macros
that have the same names as keywords before you include a standard header.

A standard header never includes another standard header. A standard header
declares or defines only the entities described for it in this document.

Every function in the library is declared in a standard header. The standard header
can also provide a masking macro, with the same name as the function, that
masks the function declaration and achieves the same effect. The macro typically
expands to an expression that executes faster than a call to the function of the
same name. The macro can, however, cause confusion when you are tracing or
debugging the program. So you can use a standard header in two ways to declare
or define a library function. To take advantage of any macro version, include the
standard header so that each apparent call to the function can be replaced by a
macro expansion.

For example:

© Copyright IBM Corp. 1999, 2001 5

#include <ctype.h>
char *skip_space(char *p)

while (isspace(xp)) can be a macro
++p;
return (p);

}

To ensure that the program calls the actual library function, include the standard
header and remove any macro definition with an undef directive (page Ed).

For example:
#include <ctype.h>

#undef isspace remove any macro definition
int f(char *p) {
while (isspace(*p)) must be a function
++p;

You can use many functions in the library without including a standard header
(although this practice is not recommended). If you do not need defined macros or
types to declare and call the function, you can simply declare the function as it
appears in this chapter. Again, you have two choices. You can declare the function
explicitly.

For example:

double sin(double x); declared in <math.h>
y = rho * sin(theta);

Or you can declare the function implicitly if it is a function returning int with a
fixed number of arguments, as in:

n = atoi(str); declared in <stdlib.h>

If the function has a number of arguments (page Bi), such as printf (page b1), you
must declare it explicitly: Either include the standard header that declares it or
write an explicit declaration.

Note also that you cannot define a macro or type definition without including its
standard header because each of these varies among implementations.

C Library Conventions

6

Standard C++ Library

A library macro that masks (page B) a function declaration expands to an
expression that evaluates each of its arguments once (and only once). Arguments
that have side effects (page Bd) evaluate the same way whether the expression
executes the macro expansion or calls the function. Macros for the functions getc
(page E) and putc (page E') are explicit exceptions to this rule. Their stream
arguments can be evaluated more than once. Avoid argument expressions that
have side effects with these macros.

A library function that alters a value stored in memory assumes that the function
accesses no other objects that overlap the object whose stored value it alters. You
cannot depend on consistent behavior from a library function that accesses and
alters the same storage via different arguments. The function memmove (page Lod)
is an explicit exception to this rule. Its arguments can point at objects that overlap.

An implementation has a set of reserved names that it can use for its own
purposes. All the library names described in this document are, of course, reserved

for the library. Don’t define macros with the same names. Don’t try to supply your
own definition of a library function, unless this document explicitly says you can
(only in C++). An unauthorized replacement may be successful on some
implementations and not on others. Names that begin with two underscores (or
contain two successive underscores, in C++), such as __ STDIO, and names that
begin with an underscore followed by an upper case letter, such as _Entry, can be
used as macro names, whether or not a translation unit explicitly includes any
standard headers. Names that begin with an underscore can be defined with
external linkage. Avoid writing such names in a program that you wish to keep
maximally portable.

Some library functions operate on C strings, or pointers to null-terminated strings
(page 3. You designate a C string that can be altered by an argument expression
that has type pointer to char (or type array of char, which converts to pointer to char
in an argument expression). You designate a C string that cannot be altered by an
argument expression that has type pointer to const char (or type const array of char).
In any case, the value of the expression is the address of the first byte in an arra
object. The first successive element of the array that has a null character (page d)
stored in it marks the end of the C string.

* A filename is a string whose contents meet the requirements of the target
environment for naming files.

* A multibyte string is composed of zero or more multibyte characters (page L),
followed by a null character (page id).

¢ A wide-character string is composed of zero or more wide characters (page W)
(stored in an array of wchar_t (page R3)), followed by a null wide character

(page 2.

If an argument to a library function has a pointer type, then the value of the
argument expression must be a valid address for an object of its type. This is true
even if the library function has no need to access an object by using the pointer
argument. An explicit exception is when the description of the library function
spells out what happens when you use a null pointer.

Some examples are:

strcpy(sl, 0) is INVALID
memcpy(s1, 0, 0) is UNSAFE
realloc(0, 50) is the same as malloc(50)

Program Startup and Termination

The target environment controls the execution of the program (in contrast to the
translator part of the implementation, which prepares the parts of the program for
execution). The target environment passes control to the program at program
startup by calling the function main that you define as part of the program.
Program arguments are C strings (page E) that the target environment provides,
such as text from the command line that you type to invoke the program. If the
program does not need to access program arguments, you can define main as:

extern int main(void)
{ <body of main> }

If the program uses program arguments, you define main as:

extern int main(int argc, char *xargv)
{ <body of main> }

Chapter 2. C Library Overview 7

8

Standard C++ Library

You can omit either or both of extern int, since these are the default storage class
and type for a function definition. For program arguments:

* argc is a value (always greater than zero) that specifies the number of program
arguments.

* argv[0] designates the first element of an array of C strings (page B). argv[argc]
designates the last element of the array, whose stored value is a null pointer.

For example, if you invoke a program by typing;:
echo hello

a target environment can call main with:

e The value 2 for argc.

* The address of an array object containing "echo" stored in argv[0].
* The address of an array object containing "hello" stored in argv[1].
* A null pointer stored in argv[2].

argv[0] is the name used to invoke the program. The target environment can
replace this name with a null string (""). The program can alter the values stored
in argc, in argy, and in the array objects whose addresses are stored in argv.

Before the target environment calls main, it stores the initial values you specify in
all objects that have static duration. It also opens three standard streams,
controlled by the text-stream objects designated by the macros:

 stdin (page Rd) — for standard input
* stdout (page b3) — for standard output
* stderr (page b3) — for standard error output

If main returns to its caller, the target environment calls exit (page Bd) with the
value returned from main as the status argument to exit. If the return (page bd)
statement that the program executes has no expression, the status argument is
undefined. This is the case if the program executes the implied return statement at
the end of the function definition.

You can also call exit directly from any expression within the program. In
both cases, exit calls all functions registered with atexit (page BZ) in
reverse order of registry and then begins program termination. At program
termination, the target environment closes all open files, removes any
temporary files that you created by calling tmpfile (page E), and then
returns control to the invoker, using the status argument value to
determine the termination status to report for the program.

The program can terminate abnormally by calling abort (page b, for example.
Each implementation defines whether it closes files, whether it removes temporary
files, and what termination status it reports when a program terminates
abnormally.

Chapter 3. C++ Library Overview

Using C++ Library Headers (%Fe B . c++ Library Conventions (page bo) -
Iostreams Conventions (page 1) - Program Startup and Termination (page 1)

All C++ library entities are declared or defined in one or more standard headers
(page B). To make use of a library entity in a program, write an include directive
(page that names the relevant standard header. The Standard C++ library
consists of 51 required headers. These 51 C++ library headers (along with the
additional 18 Standard C headers (p é B)) constitute a hosted implementation of
the C++ library: <algorithm> (page <bitset> (page f13d), <cassert> (page fLad),
<cctype> (page fLad), <cerrno> (page 141), <cfloat> (page L41), <ciso646> (page
<c11m1ts> (page 142), <clocale> (page 142), <cmath> (page 142)), <complex>
(page <csetE5> (page L54), <csi @ab page fi5d),), <cstdarg> (page [154),
<cstddef> (page <cstdio> (page IL54), <cstdlib> (page)} <cstring> (page

, <ctime> (page IL53), <cwchar> (page , <cwc ﬁe> (page L546), <deque>
(page , <exception> (page , <fstream> (page), <functional> (page Rad),
<iomanip> (page [L67), <ios> (page fled), <iosfwd> (page [l8d), <iostream> (page

, <istream> (page [L87), <iterator> (page , <limits> (page IL96), <list> (page

, <locale> (page , <map> (page KQll), <memory> (page , <new> (page

, <numeric> (page , <ostream> (page @queue> (page ¥28), <set>
(page , <sstream> (page 258), <stack> (page

), <stdexcep%page Red),
<streambuf> (page bag), <string> (page R77), <strstream> (page BOd), <typeinfo>

(page kad), <utility> (page k52, <valarray> (page Bod), and <vector> (page Ls3).

A freestanding implementation of the C++ library provides only a subset of these
headers: <cstddef> (page , <cstdlib> (page) (declaring at least the functions
abort (page ﬁ), atexit (page B7), and exit (page O)), <exception> (page @),

<limits> (page IL196), <new> (page 2446), <typeinfo> (page B04), and <cstdarg> (page

The C++ library headers have two broader subdivisions, iostreams (page fit)
headers and STL (page fl) headers.

Using C++ Library Headers

You include the contents of a standard header by naming it in an include (page b
directive, as in:

#include <iostream> /* include I/0 facilities */

You can include the standard headers in any order, a standard header more than
once, or two or more standard headers that define the same macro or the same
type. Do not include a standard header within a declaration. Do not define macros
that have the same names as keywords before you include a standard header.

A C++ library header includes any other C++ library headers it needs to define
needed types. (Always include explicitly any C++ library headers needed in a
translation unit, however, lest you guess wrong about its actual dependencies.) A
Standard C header never includes another standard header. A standard header
declares or defines only the entities described for it in this document.

© Copyright IBM Corp. 1999, 2001 9

Every function in the library is declared in a standard header. Unlike in Standard
C, the standard header never provides a masking macro (page B), with the same

name as the function, that masks the function declaration and achieves the same

effect.

All names other than operator delete and operator new in the C++ library
headers are defined in the std namespace, or in a namespace nested within the std
namespace. Including a C++ library header does not introduce any library names
into the current namespace. You refer to the name cin (page fisd), for example, as
std::cin. Alternatively, you can write the declaration:

using namespace std;

which promotes all library names into the current namespace. If you write this
declaration immediately after all include directives, you can otherwise ignore
namespace considerations in the remainder of the translation unit. Note that macro
names are not subject to the rules for nesting namespaces.

Note that the C Standard headers (page B) behave mostly as if they include no
namespace declarations. If you include, for example, <cstdlib> (page fis9), you
should call std::abort() (page ﬂ) to cause abnormal termination, but if you
include <stdlib.h> (page 93), you should call abort (). (The C++ Standard is
intentionally vague on this topic, so you should stick with just the usages
described here for maximum portability.)

Unless specifically indicated otherwise, you may not define names in the std
namespace, or in a namespace nested within the std namespace.

C++ Library Conventions

10

The C++ library obeys much the same conventions (page B) as the Standard C
library, plus a few more outlined here.

An implementation has certain latitude in how it declares types and functions in
the C++ library:

¢ Names of functions in the Standard C library may have either extern “C++" or
extern “C” linkage. Include the appropriate Standard C header (page B) rather
than declare a library entity inline.

* A member function name in a library class may have additional function
signatures over those listed in this document. You can be sure that a function
call described here behaves as expected, but you cannot reliably take the address
of a library member function. (The type may not be what you expect.)

* A library class may have undocumented (non-virtual) base classes. A class
documented as derived from another class may, in fact, be derived from that
class through other undocumented classes.

* A type defined as a synonym for some integer type may be the same as one of
several different integer types.

* A bitmask type can be implemented as either an integer type or an
enumeration. In either case, you can perform bitwise operations (such as AND
and OR) on values of the same bitmask type. The elements A and B of a bitmask
type are nonzero values such that A & B is zero.

A library function that has no exception specification can throw an arbitrary
exception, unless its definition clearly restricts such a possibility.

On the other hand, there are some restrictions you can count on:

Standard C++ Library

¢ The Standard C library uses no masking macros. Only specific function
signatures are reserved, not the names of the functions themselves.

* A library function name outside a class will not have additional, undocumented,
function signatures. You can reliably take its address.

* Base classes and member functions described as virtual are assuredly virtual,
while those described as non-virtual are assuredly non-virtual.

* Two types defined by the C++ library are always different unless this document
explicitly suggests otherwise.

* Functions supplied by the library, including the default versions of replaceable
functions (page Ba?), can throw at most those exceptions listed in any exception
specification. No destructors supplied by the library throw exceptions. Functions
in the Standard C library (page B) may propagate an exception, as when qsort
(page fLod) calls a comparison function that throws an exception, but they do not
otherwise throw exceptions.

lostreams Conventions

The iostreams headers support conversions between text and encoded forms, and
input and output to external files (page ba): <fstream> (page fisd), <iomanip>
(page @), <ios> (page @), <iosfwd> (page @), <iostream> gge E),
<istream> (page &), <ostream> (%e), <sstream> (page), <streambuf>
(page , and <strstream> (page BO0).

The simplest use of iostreams requires only that you include the header
<iostream>. You can then extract values from cin (page fi2d), to read the standard
input (page B). The rules for doing so are outlined in the description of the class
basic_istream (page fi89). You can also insert values to cout (page fizd), to write the
standard output (page H). The rules for doing so are outlined in the description of
the class basic_ostream (page R51). Format control common to both extractors and
insertors is managed by the class basic_ios (page fizd). Manipulating this format
information in the guise of extracting and inserting objects is the province of
several manipulators (page [L67).

You can perform the same iostreams operations on files that you open by name,
using the classes declared in <fstream>. To convert between iostreams and objects
of class basic_string (page B79), use the classes declared in <sstream>. And to do
the same with C strings (page), use the classes declared in <strstream>.

The remaining headers provide support services, typically of direct interest to only
the most advanced users of the iostreams classes.

C++ Program Startup and Termination

A C++ program performs the same operations as does a C program at program
startup (page i) and at program termination (page E), plus a few more outlined
here.

Before the target environment calls the function main (page H), and after it stores
any constant initial values you specify in all objects that have static duration, the
program executes any remaining constructors for such static objects. The order of
execution is not specified between translation units, but you can nevertheless
assume that some iostreams (page fud) objects are properly initialized for use by
these static constructors. These control text streams:

* cin (page fisd) — for standard input (page B

Chapter 3. C++ Library Overview 11

* cout (page [186) — for standard output (page B)
* cerr (page fi8A) — for unbuffered standard error (page) output
+ clog (page [186) — for buffered standard error (page B) output

You can also use these objects within the destructors called for static objects,
during program termination (page E).

As with C, returning from main (page B) or calling exit (page Bd) calls all functions

registered with atexit (page B4) in reverse order of registry. An exception thrown
from such a registered function calls terminate().

12 Standard C++ Library

Chapter 4. Characters

Character Sets (pﬁje fLd) - Character Sets and Locales (page Ld - Escape
Sequences (page [14) - Numeric Escape Sequences (page [L5) - Trig%phs (page g -
Multibyte Characters (page L) - Wide-Character Encoding (page 19)

Characters play a central role in Standard C. You represent a C program as one or
more source files. The translator reads a source file as a text stream consisting of
characters that you can read when you display the stream on a terminal screen or
produce hard copy with a printer. You often manipulate text when a C program
executes. The program might produce a text stream that people can read, or it
might read a text stream entered by someone typing at a keyboard or from a file
modified using a text editor. This document describes the characters that you use
to write C source files and that you manipulate as streams when executing C
programs.

Character Sets

When you write a program, you express C source files as text lines (page k1)
containing characters from the source character set. When a program executes in
the target environment, it uses characters from the target character set. These
character sets are related, but need not have the same encoding or all the same
members.

Every character set contains a distinct code value for each character in the basic C
character set. A character set can also contain additional characters with other code
values. For example:

* The character constant 'x’ becomes the value of the code for the character
corresponding to x in the target character set.

* The string literal "xyz" becomes a sequence of character constants stored in
successive bytes of memory, followed by a byte containing the value zero:
{’X,’ lyl’ ’Z” 1\01}

A string literal is one way to specify a null-terminated string, an array of zero or
more bytes followed by a byte containing the value zero.

Visible graphic characters in the basic C character set:

Form Members

letter ABCDEFGHIJKLM
NOPQRSTUVWXY?Z
abcdefghijklm
nopgrstuvwxyz

digit 0123456789

underscore

punctuation ' " # % &' () x4+, - ./ :
s <=>2[\]1 (]}

Additional graphic characters in the basic C character set:

Character Meaning
space leave blank space
BEL signal an alert (BELL)

© Copyright IBM Corp. 1999, 2001 13

BS go back one position (BackSpace)

FF go to top of page (Form Feed)

NL go to start of next line (NewlLine)

CR go to start of this line (Carriage Return)
HT go to next Horizontal Tab stop

25 go to next Vertical Tab stop

The code value zero is reserved for the null character which is always in the target
character set. Code values for the basic C character set are positive when stored in
an object of type char. Code values for the digits are contiguous, with increasing
value. For example, '0’ + 5 equals '5". Code values for any two letters are not
necessarily contiguous.

Character Sets and Locales

An implementation can support multiple locales (page E7), each with a different
character set. A locale summarizes conventions peculiar to a given culture, such as
how to format dates or how to sort names. To change locales and, therefore, target
character sets while the program is running, use the function setlocale (page ﬁé
The translator encodes character constants and string literals for the "C” (page b9)
locale, which is the locale in effect at program startup.

Escape Sequences

14

Within character constants and string literals, you can write a variety of escape
sequences. Each escape sequence determines the code value for a single character.
You use escape sequences to represent character codes:

* you cannot otherwise write (such as \n)

* that can be difficult to read properly (such as \t)

* that might change value in different target character sets (such as \a)

* that must not change in value among different target environments (such as \0)

An escape sequence takes the form shown in the diagram.

arbtfvn escape
Secgience
).. 0-7 :
n-7 n-7
0-9 a-f A—F

Mnemonic escape sequences help you remember the characters they represent:
Character Escape Sequence

n \II
1 \I
? \?
\ \\
BEL \a
BS \b
FF \f
NL \n
CR \r
HT \t
VT \v

Standard C++ Library

Numeric Escape Sequences

You can also write numeric escape sequences using either octal or hexadecimal
digits. An octal escape sequence takes one of the forms:

\d or \dd or \ddd

The escape sequence yields a code value that is the numeric value of the 1-, 2-, or
3-digit octal number following the backslash (\). Each d can be any digit in the
range 0-7.

A hexadecimal escape sequence takes one of the forms:
\xh or \xhh or ...

The escape sequence yields a code value that is the numeric value of the
arbitrary-length hexadecimal number following the backslash (\). Each h can be
any decimal digit 0-9, or any of the letters a-f or A-F. The letters represent the
digit values 10-15, where either a or A has the value 10.

A numeric escape sequence terminates with the first character that does not fit the
digit pattern. Here are some examples:

* You can write the null character (page i) as o'

* You can write a newline character (VL) within a string literal by writing:
"hi\n" which becomes the array {'h’, ’i’, "\n’, 0}
* You can write a string literal that begins with a specific numeric value:
"\3abc" which becomes the array {3, 'a’, 'b", 'c’, 0}
* You can write a string literal that contains the hexadecimal escape sequence \xF

followed by the digit 3 by writing two string literals:
"\xF" "3" which becomes the array {0xF, '3’, 0}

Trigraphs

A trigraph is a sequence of three characters that begins with two question marks
(??). You use trigraphs to write C source files with a character set that does not
contain convenient graphic representations for some punctuation characters. (The
resultant C source file is not necessarily more readable, but it is unambiguous.)

The list of all defined trigraphs is:

Character Trigraph
[22(
\ 27/
] ??)
72!
77<
2?1
77>
??-
7?=

Vet —

These are the only trigraphs. The translator does not alter any other sequence that
begins with two question marks.

For example, the expression statements:
printf("Case ??=3 is done??/n");

printf("You said what????/n");

are equivalent to:

Chapter 4. Characters 15

printf("Case #3 is done\n");
printf("You said what??\n");

The translator replaces each trigraph with its equivalent single character
representation in an early phase of translation (page Bd). You can always treat a
trigraph as a single source character.

Multibyte Characters

16

A source character set or target character set can also contain multibyte characters
(sequences of one or more bytes). Each sequence represents a single character in
the extended character set. You use multibyte characters to represent large sets of
characters, such as Kanji. A multibyte character can be a one-byte sequence that is
a character from the basic C character set (page i), an additional one-byte
sequence that is implementation defined, or an additional sequence of two or more
bytes that is implementation defined.

Any multibyte encoding that contains sequences of two or more bytes depends, for
its interpretation between bytes, on a conversion state determined by bytes earlier
in the sequence of characters. In the initial conversion state if the byte
immediately following matches one of the characters in the basic C character set,
the byte must represent that character.

For example, the EUC encoding is a superset of ASCII. A byte value in the interval
[0xA1, OxFE] is the first of a two-byte sequence (whose second byte value is in the
interval [0x80, OxFF]). All other byte values are one-byte sequences. Since all
members of the basic C character set (page fd) have byte values in the range [0x00,
0x7F] in ASCII, EUC meets the requirements for a multibyte encoding in Standard
C. Such a sequence is not in the initial conversion state immediately after a byte
value in the interval [0xA1, OxFe]. It is ill-formed if a second byte value is not in
the interval [0x80, OxFF].

Multibyte characters can also have a state-dependent encoding. How you interpret
a byte in such an encoding depends on a conversion state that involves both a
parse state, as before, and a shift state, determined by bytes earlier in the sequence
of characters. The initial shift state, at the beginning of a new multibyte character,
is also the initial conversion state. A subsequent shift sequence can determine an
alternate shift state, after which all byte sequences (including one-byte sequences)
can have a different interpretation. A byte containing the value zero, however,
always represents the null character (page [4). Tt cannot occur as any of the bytes
of another multibyte character.

For example, the JIS encoding is another superset of ASCIL In the initial shift

state, each byte represents a single character, except for two three-byte shift

sequences:

* The three-byte sequence "\x1B$B" shifts to two-byte mode. Subsequently, two
successive bytes (both with values in the range [0x21, 0x7E]) constitute a single
multibyte character.

* The three-byte sequence "\x1B(B" shifts back to the initial shift state.

JIS also meets the requirements for a multibyte encoding in Standard C. Such a
sequence is not in the initial conversion state when partway through a three-byte
shift sequence or when in two-byte mode.

Standard C++ Library

(Amendment 1 (page B) adds the type mbstate_t (page [l1d), which describes an
object that can store a conversion state. It also relaxes the above rules for
generalized multibyte characters (page B2), which describe the encoding rules for a
broad range of wide streams (page R2).)

You can write multibyte characters in C source text as part of a comment, a
character constant, a string literal, or a filename in an include (page Bd) directive.
How such characters print is implementation defined. Each sequence of multibyte
characters that you write must begin and end in the initial shift state. The program
can also include multibyte characters in null-terminated (page C strings used

by several library functions, including the format strings (page B3) for printf (page
ﬁ) and scanf (page E). Each such character string must begin and end in the
initial shift state.

Wide-Character Encoding

Each character in the extended character set also has an integer representation,
called a wide-character encoding. Each extended character has a unique
wide-character value. The value zero always corresponds to the null wide
character. The type definition wchar_t (page) specifies the integer type that
represents wide characters.

You write a wide-character constant as L’'mbc’, where mbc represents a single
multibyte character. You write a wide-character string literal as L"mbs", where mbs
represents a sequence of zero or more multibyte characters. The wide-character
string literal L"xyz" becomes a sequence of wide-character constants stored in
successive bytes of memory, followed by a null wide character:

{Lx, Ly, L'z, L'\0'}

The following library functions help you convert between the multibyte and

wide-character representations of extended characters: btowc (page , mblen

(page Loy, mbrl%page [13), mbrtowc (page i), mbsrtowes (page [18),

mbstowcs (page [100), mbtowc (page flad), wertomb (page f21), wesrtombs (page
, westombs (page m), wctob (page , and wctomb (page).

The macro MB_LEN_MAX (page Ef) specifies the length of the longest possible
multibyte sequence required to represent a single character defined by the
implementation across supported locales. And the macro MB_CUR_MAX (page bd)
specifies the length of the longest possible multibyte sequence required to
represent a single character defined for the current locale (page b4).

For example, the string literal (page [L3) "he110" becomes an array of six char:
{Ihl’ Iel, I'll, I'|I, IOI, 0}

while the wide-character string literal L"hel10" becomes an array of six integers of
type wchar_t (page 5):
{L'h', L'e', L'T', L'1", L'o', 0}

Chapter 4. Characters 17

18 Standard C++ Library

Chapter 5. Expressions

You write expressions to determine values, to alter values stored in objects, and to
call functions that perform input and output. In fact, you express all computations
in the program by writing expressions. The translator must evaluate some of the
expressions you write to determine properties of the program. The translator or the
target environment must evaluate other expressions prior to program startup to
determine the initial values stored in objects with static duration. The program
evaluates the remaining expressions when it executes.

This document describes briefly just those aspect of expressions most relevant to
the use of the Standard C library:

An address constant expression specifies a value that has a pointer type and that
the translator or target environment can determine prior to program startup.

A constant expression specifies a value that the translator or target environment
can determine prior to program startup.

An integer constant expression specifies a value that has an integer type and that
the translator can determine at the point in the program where you write the
expression. (You cannot write a function call, assigning operator, or comma operator
except as part of the operand of a sizeof (page bd) operator.) In addition, you must
write only subexpressions that have integer type. You can, however, write a
floating-point constant as the operand of an integer type cast operator.

An lvalue expression An lvalue expression designates an object that has an object
type other than an array type. Hence, you can access the value stored in the object.
A modifiable Ivalue expression designates an object that has an object type other
than an array type or a const type. Hence, you can alter the value stored in the
object. You can also designate objects with an lvalue expression that has an array
type or an incomplete type, but you can only take the address of such an
expression.

Promoting occurs for an expression whose integer type is not one of the
"computational”” types. Except when it is the operand of the sizeof operator, an
integer rvalue expression has one of four types: int, unsigned int, long, or unsigned
long. When you write an expression in an rvalue context and the expression has an
integer type that is not one of these types, the translator promotes its type to one of
these. If all of the values representable in the original type are also representable as
type int, then the promoted type is int. Otherwise, the promoted type is unsigned
int. Thus, for signed char, short, and any signed bitfield type, the promoted type is int.
For each of the remaining integer types (char, unsigned char, unsigned short, any
plain bitfield type, or any unsigned bitfield type), the effect of these rules is to favor
promoting to int wherever possible, but to promote to unsigned int if necessary to
preserve the original value in all possible cases.

An rvalue expression is an expression whose value can be determined only when

the program executes. The term also applies to expressions which need not be
determined until program execution.

© Copyright IBM Corp. 1999, 2001 19

You use the sizeof operator, as in the expression sizeof X to determine the size in
bytes of an object whose type is the type of X. The translator uses the expression
you write for X only to determine a type; it is not evaluated.

A void expression has type void.

20 Standard C++ Library

Chapter 6. Files and Streams

Text and Binary Streams (page k1) - Byte and Wide Streams (page b -
Controlling Streams (page 23) - Stream States (page 24)

A program communicates with the target environment by reading and writing files
(ordered sequences of bytes). A file can be, for example, a data set that you can
read and write repeatedly (such as a disk file), a stream of bytes generated by a
program (such as a pipeline), or a stream of bytes received from or sent to a
peripheral device (such as the keyboard or display). The latter two are interactive
files. Files are typically the principal means by which to interact with a program.

You manipulate all these kinds of files in much the same way — by calling library
functions. You include the standard header <stdio.h> to declare most of these
functions.

Before you can perform many of the operations on a file, the file must be opened.
Opening a file associates it with a stream, a data structure within the Standard C
library that glosses over many differences among files of various kinds. The library
maintains the state of each stream in an object of type FILE (page B3).

The target environment opens three files prior to program startup (page B. You
can open a file by calling the library function fopen (page 88) with two arguments.
The first argument is a filename (page @), a multibyte string (page B) that the target
environment uses to identify which file you want to read or write. The second
argument is a C string (page @) that specifies:

* whether you intend to read data from the file or write data to it or both

* whether you intend to generate new contents for the file (or create a file if it did
not previously exist) or leave the existing contents in place

* whether writes to a file can alter existing contents or should only append bytes
at the end of the file

* whether you want to manipulate a text stream (page B1) or a binary stream

(page E)

Once the file is successfully opened, you can then determine whether the stream is
byte oriented (a byte stream (page 22)) or wide oriented (a wide stream (page
é)). Wide-oriented streams are supported only with Amendment 1 (page é)) A
stream is initially unbound. Calling certain functions to operate on the stream
makes it byte oriented, while certain other functions make it wide oriented. Once
established, a stream maintains its orientation until it is closed by a call to fclose
(page BZ) or freopen (page Bd).

Text and Binary Streams

A text stream consists of one or more lines of text that can be written to a
text-oriented display so that they can be read. When reading from a text stream,
the program reads an NL (newline) at the end of each line. When writing to a text
stream, the program writes an NL to signal the end of a line. To match differing
conventions among target environments for representing text in files, the library
functions can alter the number and representations of characters transmitted
between the program and a text stream.

© Copyright IBM Corp. 1999, 2001 21

Thus, positioning within a text stream is limited. You can obtain the current
file-position indicator (page B3) by calling fgetpos (page BZ) or ftel1 (page Bd).
You can position a text stream at a position obtained this way, or at the beginning
or end of the stream, by calling fsetpos (page Rd) or fseek (page Bd). Any other
change of position might well be not supported.

For maximum portability, the program should not write:

> empty files

* space characters at the end of a line

* partial lines (by omitting the NL at the end of a file)

¢ characters other than the printable characters, N, and HT (horizontal tab)

If you follow these rules, the sequence of characters you read from a text stream
(either as byte or multibyte characters) will match the sequence of characters you
wrote to the text stream when you created the file. Otherwise, the library functions
can remove a file you create if the file is empty when you close it. Or they can
alter or delete characters you write to the file.

A binary stream consists of one or more bytes of arbitrary information. You can
write the value stored in an arbitrary object to a (byte-oriented) binary stream and
read exactly what was stored in the object when you wrote it. The library functions
do not alter the bytes you transmit between the program and a binary stream.
They can, however, append an arbitrary number of null bytes to the file that you
write with a binary stream. The program must deal with these additional null
bytes at the end of any binary stream.

Thus, positioning within a binary stream is well defined, except for positioning
relative to the end of the stream. You can obtain and alter the current file-position
indicator (page P3) the same as for a text stream (page B1). Moreover, the offsets
used by ftell (page Bd) and fseek (page Bd) count bytes from the beginning of
the stream (which is byte zero), so integer arithmetic on these offsets yields
predictable results.

A byte stream treats a file as a sequence of bytes. Within the program, the stream
looks like the same sequence of bytes, except for the possible alterations described
above.

Byte and Wide Streams

While a byte stream treats a file as a sequence of bytes, a wide stream treats a file
as a sequence of generalized multibyte characters, which can have a broad range
of encoding rules. (Text and binary files are still read and written as described
above.) Within the program, the stream looks like the corresponding sequence of
wide characters (page [L4). Conversions between the two representations occur
within the Standard C library. The conversion rules can, in principle, be altered by
a call to setlocale (page [d) that alters the category LC_CTYPE (page kd). Each
wide stream determines its conversion rules at the time it becomes wide oriented,
and retains these rules even if the category LC_CTYPE (page Ed) subsequently
changes.

Positioning within a wide stream suffers the same limitations as for text streams
(page B1). Moreover, the file-position indicator (page) may well have to deal
with a state-dependent encoding (page d). Typically, it includes both a byte offset
within the stream and an object of type mbstate_t (page flud). Thus, the only

22 Standard C++ Library

reliable way to obtain a file position within a wide stream is by calling fgetpos
(page BZ), and the only reliable way to restore a position obtained this way is by
calling fsetpos.

Controlling Streams

fopen (page Bd) returns the address of an object of type FILE (page @). You use
this address as the stream argument to several library functions to perform various
operations on an open file. For a byte stream, all input takes place as if each
character is read by calling fgetc (page k), and all output takes place as if each
character is written by calling fputc (page @). For a wide stream (with
Amendment 1 (page g)), all input takes place as if each character is read by calling
fgetwc (page), and all output takes place as if each character is written by
calling fputwc (page Iﬂ).

You can close a file by calling fclose (page BZ), after which the address of the
FILE (page) object is invalid.

A FILE (page) object stores the state of a stream, including:

* an error indicator — set nonzero by a function that encounters a read or write
error

* an end-of-file indicator — set nonzero by a function that encounters the end of
the file while reading

* a file-position indicator — specifies the next byte in the stream to read or write,
if the file can support positioning requests

* a stream state (page ba) — specifies whether the stream will accept reads
and/or writes and, with Amendment 1, whether the stream is unbound (page
b1), byte oriented (page B1), or wide oriented (page b1)

* a conversion state (page L) — remembers the state of any partly assembled or
generated generalized multibyte character (page B2, as well as any shift state for
the sequence of bytes in the file)

* a file buffer — specifies the address and size of an array object that library
functions can use to improve the performance of read and write operations to
the stream

Do not alter any value stored in a FILE object or in a file buffer that you specify for

use with that object. You cannot copy a FILE object and portably use the address of
the copy as a stream argument to a library function.

Chapter 6. Files and Streams 23

Stream States

The valid states, and state transitions, for a stream are shown in the diagram.

OFPEN

-1 1
EYTE Wil K
i ORIENTED IR b1 ORIENTELD
EYTE EYTE
WRITING BEADING

F-ihy
at EOF

WILE WILE
WEITING READTING
LTy
at EOF
' J

-1 fwdide(s, -1) P positicod B+l fwideis, +1)
ER byte read R wide read
F= byte writa o wide writa

Each of the circles denotes a stable state. Each of the lines denotes a transition that
can occur as the result of a function call that operates on the stream. Five groups
of functions can cause state transitions.

Functions in the first three groups are declared in <stdio.h> (page Bd):

¢ the byte read functions — fgetc (page B7), fgets (page BA), fread (page Bd),
fscanf (page Rd), getc (page bd), getchar (page k1), gets (page k1), scanf
(page ﬁ), and ungetc (page)

* the byte write functions — fprintf (page Bd), fputc (page Rd), fputs (page
Bd), furite (page Bd), printf (page R), putc (page k1), putchar (page R,
puts (page ﬂ), viprintf (page @), and vprintf (page E)

* the position functions — fflush (page ﬁ), fseek (page), fsetpos (page
kbd), and rewind (page 3%)

Functions in the remaining two groups are declared in <wchar.h>:

* the wide read functions — fgetwc (page fd), fgetws (page f1d), fwscanf
(page fL1d), getwc (page 117), getwchar (page f12), ungetwc (page [2d), and
wscanf (page [27)

* the wide write functions — fwprintf (page [1d), fputwc (page [1d), fputws

(page [L18), putwc (page E1d), putwchar (page [[1d), vfwprintf (page [2d),
vwprintf (page [2d), and wprintf (page [27)

For the stream s, the call fwide(s, 0) is always valid and never causes a change of
state. Any other call to fwide, or to any of the five groups of functions described
above, causes the state transition shown in the state diagram. If no such transition
is shown, the function call is invalid.

The state diagram shows how to establish the orientation of a stream:

* The call fwide(s, -1), or to a byte read or byte write function, establishes the
stream as byte oriented (page R1).

24 Standard C++ Library

e The call fwide(s, 1), or to a wide read or wide write function, establishes the
stream as wide oriented (page R1)).

The state diagram shows that you must call one of the position functions between
most write and read operations:

* You cannot call a read function if the last operation on the stream was a write.

* You cannot call a write function if the last operation on the stream was a read,
unless that read operation set the end-of-file indicator (page E))

Finally, the state diagram shows that a position operation never decreases the
number of valid function calls that can follow.

Chapter 6. Files and Streams 25

26 Standard C++ Library

Chapter 7. Functions

You write functions to specify all the actions that a program performs when it
executes. The type of a function tells you the type of result it returns (if any). It can
also tell you the types of any arguments that the function expects when you call it
from within an expression.

This document describes briefly just those aspect of functions most relevant to the
use of the Standard C library:

Argument promotion occurs when the type of the function fails to provide any
information about an argument. Promotion occurs if the function declaration is not
a function prototype or if the argument is one of the unnamed arguments in a
varying number of arguments (page B1). In this instance, the argument must be an
rvalue expression (page 19). Hence:

¢ An integer argument type is promoted.
* An lvalue of type array of T becomes an rvalue of type pointer to T.

* A function designator of type function returning T becomes an rvalue of type
pointer to function returning T.

e An argument of type float is converted to double.

A do statement executes a statement one or more times, while its test-context
expression (page Bg) has a nonzero value:
do

statement
while (test);

An expression statement evaluates an expression in a side-effects context (page R3):

printf("hello\n"); call a function
y =m=*x + b; store a value
++count; alter a stored value

A for statement executes a statement zero or more times, while the optional
test-context expression (page B8) test has a nonzero value. You can also write two
expressions, se-1 and se-2, in a for statement that are each in a side-effects context
(page B3):
for (se-1; test; se-2)
statement

An if statement executes a statement only if the test-context expression (page kd)
has a nonzero value:

if (test)
statement

An if-else statement executes one of two statements, depending on whether the
test-context expression (page Bd) has a nonzero value:
if (test)
statement-1

else
statement-2

© Copyright IBM Corp. 1999, 2001 27

28

Standard C++ Library

A return statement terminates execution of the function and transfers control to the
expression that called the function. If you write the optional rvalue expression
(page [19) within the return statement, the result must be assignment-compatible
with the type returned by the function. The program converts the value of the
expression to the type returned and returns it as the value of the function call:

return expression;

An expression that occurs in a side-effects context specifies no value and
designates no object or function. Hence, it can have type void. You typically
evaluate such an expression for its side effects — any change in the state of the
program that occurs when evaluating an expression. Side effects occur when the
program stores a value in an object, accesses a value from an object of volatile
qualified type, or alters the state of a file.

A switch statement jumps to a place within a controlled statement, depending on
the value of an integer expression:
switch (expr)

{

case val-1:
stat-1;
break;
case val-2:
stat-2; falls through to next
default:
stat-n
1

In a test-context expression the value of an expression causes control to flow one
way within the statement if the computed value is nonzero or another way if the
computed value is zero. You can write only an expression that has a scalar rvalue
result, because only scalars can be compared with zero.

A while statement executes a statement zero or more times, while the test-context
expression has a nonzero value:

while (test)
statement

Chapter 8. Formatted Input

Scan Formats (page Bd) - Scan Functions (page bd) - Scan Conversion Specifiers
(page Bd)

Several library functions help you convert data values from text sequences that are
generally readable by people to encoded internal representations. You provide a
format string (page éf as the value of the format argument to each of these
functions, hence the term formatted input. The functions fall into two categories:

The byte scan functions (declared in <stdio.h> (page E)) convert sequences of
type char to internal representations, and help you scan such sequences that you
read: fscanf (page), scanf (page E), and sscanf (page E). For these
function, a format string is a multibyte string (page B) that begins and ends in the
initial shift state (page [Ld).

The wide scan functions (declared in <wchar.h> (page @) and hence added with
Amendment 1 (page B) convert sequences of type wchar_t (page Rd), to internal
representations, and help you scan such sequences that you read: fwscanf (page

), wscanf (page EI) and swscanf (page m). For these functions, a format
string is a wide-character string (page W). In the descriptions that follow, a wide
character wc from a format string or a stream is compared to a specific (byte)
character c as if by evaluating the expression wctob(wc) == c.

Scan Formats

A format string has the same general syntax (page R3) for the scan functions as for
the print functions (page B3): zero or more conversion specifications (page kd),
interspersed with literal text and white space (page B3). For the scan functions,
however, a conversion specification is one of the scan conversion specifications
(page bd) described below.

A scan function scans the format string once from beginning to end to determine
what conversions to perform. Every scan function accepts a varying number of
arguments (page B), either directly or under control of an argument of type va_list
(page B2)). Some scan conversion specifications in the format string use the next
argument in the list. A scan function uses each successive argument no more than
once. Trailing arguments can be left unused.

In the description that follows, the integer conversions (page Bd) and floating-point
conversions (page B4) are the same as for the print functions (page B3).

Scan Functions

For the scan functions, literal text in a format string must match the next characters
to scan in the input text. White space in a format string must match the longest
possible sequence of the next zero or more white-space characters in the input.
Except for the scan conversion specifier (page Bd) %n (which consumes no input),
each scan conversion specification determines a pattern that one or more of the
next characters in the input must match. And except for the scan conversion
specifiers ¢, n, and [, every match begins by skipping any white space characters in
the input.

© Copyright IBM Corp. 1999, 2001 29

A scan function returns when:

* it reaches the terminating null in the format string

* it cannot obtain additional input characters to scan (input failure)
* a conversion fails (matching failure)

A scan function returns EOF (page Bd) if an input failure occurs before any
conversion. Otherwise it returns the number of converted values stored. If one or
more characters form a valid prefix but the conversion fails, the valid prefix is
consumed before the scan function returns. Thus:

scanf("%i", &i) consumes 0X from field 0XZ
scanf("%f", &f) consumes 3.2E from field 3.2EZ

A scan conversion specification typically converts the matched input characters to
a corresponding encoded value. The next argument value must be the address of
an object. The conversion converts the encoded representation (as necessary) and
stores its value in the object. A scan conversion specification has the format shown
in the diagram.

50312
cRIversion
specification

E

Following the percent character (%) in the format string, you can write an asterisk
(*) to indicate that the conversion should not store the converted value in an
object.

Following any *, you can write a nonzero field width that specifies the maximum
number of input characters to match for the conversion (not counting any white
space that the pattern can first skip).

Scan Conversion Specifiers

30

Standard C++ Library

Following any field width (page Bd), you must write a one-character scan
conversion specifier, either a one-character code or a scan set (page @), possibly
preceded by a one-character qualifier. Each combination determines the type
required of the next argument (if any) and how the scan functions interpret the
text sequence and converts it to an encoded value. The integer (page @gand
floating-point conversions (page) also determine what base to assume for the
text representation. (The base is the base argument to the functions strtol (page
@) and strtoul (page E) .) The following table lists all defined combinations
and their properties.

Conversion Argument Conversion
Specifier Type Function Base
%C char x[]
%1c wchar_t x[]

%d int *x strtol 10
%hd short *x strtol 10
%1d long *x strtol 10

%e float *x strtod 10
%le double =*x strtod 10
%Le long double =*x strtod 10

%E float *x strtod 10
%1E double =*x strtod 10
%LE long double =*x strtod 10

%f float *x
S1f double =*x
%Lf long double =*x

%9 float *x
%1g double *x
%Lg long double *x

%G float *x
%1G doubTe #*x
%LG long double *x

%i int *x
%hi short *x
%11 lTong *x

%n int *x
%hn short *x
%1In long *x

%0 unsigned int *x
%ho unsigned short *x
%10 unsigned long *x

%p void **x

%S char x[]

%1s wchar_t x[]

%u unsigned int *x
%hu unsigned short *x
%lu unsigned Tong *x

%X unsigned int *x
%hx unsigned short *x
%1x unsigned Tong *x

%X unsigned int *x
%hX unsigned short *x
%1X unsigned long *x

%[...] char x[]
S1[...] wchar_t x[]
%% none

strtod
strtod
strtod
strtod
strtod
strtod
strtod
strtod
strtod
strtol
strtol
strtol

strtoul
strtoul
strtoul

strtoul
strtoul
strtoul
strtoul
strtoul
strtoul
strtoul
strtoul
strtoul

o 00

The scan conversion specifier (or scan set (page Bd)) determines any behavior not

summarized in this table. In the following descriptions, examples follow each of

the scan conversion specifiers. In each example, the function sscanf (page E)

matches the bold characters.

You write %c to store the matched input characters in an array object. If you
specify no field width w, then w has the value one. The match does not skip
leading white space (page BH). Any sequence of w characters matches the

conversion pattern.

sscanf("129E-2", "%c", &c)
sscanf("129E-2", "%2c", &c[0])

stores
stores '1',

For a wide stream (page B2), conversion occurs as if by repeatedly calling wcrtomb
(page [27), beginning in the initial conversion state (page [Ld).

swscanf(L"129E-2", L"%c", &c)

stores

You write %Ic to store the matched input characters in an array object, with

elements of type wchar_t (page
value one. The match does not skip leading white space (page

of w characters matches the conversion pattern. For a byte stream (page R2),

conversion occurs as if by repeatedly calling mbrtowc (page

initial conversion state (page
sscanf("129E-2", "%1c", &c)

sscanf("129E-2", "%21c", &c)
swscanf(L"129E-2", L"%1c", &c)

).

stores L'1'
stores L'1', L'2'
stores L'1'

Chapter 8. Formatted Input

). Any sequence

@). If you specify no field width w, then w has the

), beginning in the

31

32

You write %d, %i, %0, %u, %X, or %X to convert the matched input characters as
a signed integer and store the result in an integer object.

sscanf("129E-2", "%0%d%x", &i, &j, &k) stores 10, 9, 14

You write %e, %E, %f, %g, or %G to convert the matched input characters as a
signed fraction, with an optional exponent, and store the result in a floating-point
object.

sscanf("129E-2", "%e", &f) stores 1.29

You write %n to store the number of characters matched (up to this point in the
format) in an integer object. The match does not skip leading white space and does
not match any input characters.

sscanf("129E-2", "12%n", &i) stores 2

You write %p to convert the matched input characters as an external representation
of a pointer to void and store the result in an object of type pointer to void. The input
characters must match the form generated by the %p print conversion specification
(page bd).

sscanf("129E-2", "%p", &p) stores, e.g. 0x129E

You write %s to store the matched input characters in an array object, followed by
a terminating null character. If you do not specify a field width w, then w has a
large value. Any sequence of up to w non white-space characters matches the
conversion pattern.

sscanf("129E-2", "%s", &s[0]) stores "129E-2"

For a wide stream (page b2), conversion occurs as if by repeatedly calling wcrtomb
beginning in the initial conversion state (page [Ld).

swscanf(L"129E-2", L"%s", &s[0]) stores "129E-2"

You write %ls to store the matched input characters in an array object, with
elements of type wchar_t (page Ed), followed by a terminating null wide character.
If you do not specify a field width w, then w has a large value. Any sequence of up
to w non white-space characters matches the conversion pattern. For a byte stream
(page B2), conversion occurs as if by repeatedly calling mbrtowc (page é),
beginning in the initial conversion state.

sscanf("129E-2", "%1s", &s[0]) stores L"129E-2"
swscanf(L"129E-2", L"%1s", &s[0]) stores L"129E-2"

You write %[to store the matched input characters in an array object, followed by
a terminating null character. If you do not specify a field width w, then w has a
large value. The match does not skip leading white space. A sequence of up to w
characters matches the conversion pattern in the scan set that follows. To complete
the scan set, you follow the left bracket ([) in the conversion specification with a
sequence of zero or more match characters, terminated by a right bracket (]).

If you do not write a caret () immediately after the [, then each input character
must match one of the match characters. Otherwise, each input character must not
match any of the match characters, which begin with the character following the "
If you write a] immediately after the [or [, then the] is the first match
character, not the terminating]. If you write a minus (-) as other than the first or
last match character, an implementation can give it special meaning. It usually
indicates a range of characters, in conjunction with the characters immediately
preceding or following, as in 0-9 for all the digits.) You cannot specify a null
match character.

Standard C++ Library

sscanf("129E-2", "[54321]", &s[0]) stores "12"

For a wide stream (page B2), conversion occurs as if by repeatedly calling wcrtomb,
beginning in the initial conversion state.

swscanf (L"129E-2", L"[54321]", &s[0]) stores "12"

You write %I[to store the matched input characters in an array object, with
elements of type wchar_t (page kd), followed by a terminating null wide character.
If you do not specify a field width w, then w has a large value. The match does not
skip leading white space. A sequence of up to w characters matches the conversion
pattern in the scan set (page B2) that follows.

For a byte stream (page BJ), conversion occurs as if by repeatedly calling mbrtowc,
beginning in the initial conversion state.

sscanf("129E-2", "1[54321]", &s[0]) stores L"12"
swscanf(L"129E-2", L"1[54321]", &s[0]) stores L"12"

You write %% to match the percent character (%). The function does not store a
value.

sscanf("% OXA", "%% %i") stores 10

Chapter 8. Formatted Input 33

34 Standard C++ Library

Chapter 9. Formatted Output

Print Formats (page B3) - Print Functions (page Bd) - Print Conversion Specifiers
(page BD)

Several library functions help you convert data values from encoded internal
representations to text sequences that are generally readable by people. You
provide a format string (page BH) as the value of the format argument to each of
these functions, hence the term formatted output. The functions fall into two
categories.

The byte print functions (declared in <stdio.h> (page E)) convert internal
representations to sequences of type char, and help you compose such sequences
for display: fprintf (page), printf (page EI), sprintf (page E), vfprintf
(page B4), vprintf (page E), and vsprintf (page Q9). For these function, a
format string is a multibyte string (page l) that begins and ends in the initial shift
state (page [Ld).

The wide print functions (declared in <wcharh> (page E) and hence added with
Amendment 1 (page B) convert internal representations to sequences of type
wchar T%page Eg), and help you compose such sequences for display: fwprintf
(page), swprintf (page Ym), wprintf (page Eﬂ), vfwprintf (page @),
vswprintf (page @), and vwprintf (page). For these functions, a format
string is a wide-character string (page E) In the descriptions that follow, a wide
character we from a format string or a stream is compared to a specific (byte)
character c as if by evaluating the expression wctob(wc) == c.

Print Formats

A format string has the same syntax for both the print functions and the scan
functions (page 29), as shown in the diagram.

COIVErS 1ol
n specification
format
‘J" any multibpte ‘] string

character excepk @—}
white space ¥ mell h

A format string consists of zero or more conversion specifications interspersed
with literal text and white space. White space is a sequence of one or more
characters ¢ for which the call isspace(c) returns nonzero. (The characters defined
as white space can change when you change the LC_CTYPE (page k) locale
category (page E2).) For the print functions, a conversion specification is one of the
print conversion specifications (page) described below.

A print function scans the format string once from beginning to end to determine
what conversions to perform. Every print function accepts a varying number of
arguments (page Rl), either directly or under control of an argument of type va_list
(page B2). Some print conversion specifications in the format string use the next
argument in the list. A print function uses each successive argument no more than
once. Trailing arguments can be left unused.

© Copyright IBM Corp. 1999, 2001 35

In the description that follows:
* integer conversions are the conversion specifiers that end in d, i, o, u, x, or X

¢ floating-point conversions are the conversion specifiers that end in e, E, f, g, or
G

Print Functions

36

For the print functions, literal text or white space (page E) in a format string
generates characters that match the characters in the format string. A print
conversion specification typically generates characters by converting the next
argument value to a corresponding text sequence. A print conversion specification
has the format:

peink
SOIVers 1o

; 5 specification
L.
X f 3 £ g
i

Following the percent character (%) in the format string, you can write zero or
more format flags:

HD 0
w0
e

e - — to left-justify a conversion
* + — to generate a plus sign for signed values that are positive

e space — to generate a space for signed values that have neither a plus nor a
minus sign

* # — to prefix 0 on an o conversion, to prefix 0x on an x conversion, to prefix 0X
on an X conversion, or to generate a decimal point and fraction digits that are
otherwise suppressed on a floating-point conversion

* 0 — to pad a conversion with leading zeros after any sign or prefix, in the
absence of a minus (-) format flag or a specified precision

Following any format flags, you can write a field width that specifies the
minimum number of characters to generate for the conversion. Unless altered by a
format flag, the default behavior is to pad a short conversion on the left with space
characters. If you write an asterisk (*) instead of a decimal number for a field
width, then a print function takes the value of the next argument (which must be
of type int) as the field width. If the argument value is negative, it supplies a -
format flag and its magnitude is the field width.

Following any field width, you can write a dot (.) followed by a precision that
specifies one of the following: the minimum number of digits to generate on an
integer conversion; the number of fraction digits to generate on an e, E, or f
conversion; the maximum number of significant digits to generate on a g or G
conversion; or the maximum number of characters to generate from a C string
(page B on an s conversion.

If you write an * instead of a decimal number for a precision, a print function
takes the value of the next argument (which must be of type int) as the precision.
If the argument value is negative, the default precision applies. If you do not write
either an * or a decimal number following the dot, the precision is zero.

Standard C++ Library

Print Conversion Specifiers

Following any precision (page Bd), you must write a one-character print
conversion specifier, possibly preceded by a one-character qualifier. Each
combination determines the type required of the next argument (if any) and how
the library functions alter the argument value before converting it to a text
sequence. The integer (page) and floating-point conversions (page) also
determine what base to use for the text representation. If a conversion specifier
requires a precision p and you do not provide one in the format, then the
conversion specifier chooses a default value for the precision. The following table
lists all defined combinations and their properties.

Conversion Argument Converted Default Pre-
Specifier Type Value Base cision

%C int x (unsigned char)x
%lc wint_t x wchar_t a[2] = {x}

%d int x (int)x 10 1
%hd int x (short)x 10 1
%1d long x (Tong) x 10 1

%e double x (double)x 10 6
%Le long double x (Tong double)x 10 6

%E double x (double)x 10 6
%LE long double x (Tong double)x 10 6

%f double x (double)x 10 6
LT long double x (Tong double)x 10 6

%9 double x (double)x 10 6
%Lg long double x (Tong double)x 10 6

%G double x (double)x 10 6
%LG long double x (long double)x 10 6

%i int x (int)x 10 1
%hi int x (short)x 10 1
%11 long x (Tong) x 10 1

%n int *x
%hn short *x
%1In long *x

%0 int x (unsigned int)x 8 1
%ho int x (unsigned short)x 8 1
%10 long x (unsigned long)x 8 1

%p void *x (void *)x

%S char x[] x[0]... large
%1s wchar_t x[] x[0]... large

%U int x (unsigned int)x 10 1
%hu int x (unsigned short)x 10 1
%1u long x (unsigned long)x 10 1

%X int x (unsigned int)x 16 1
%hx int x (unsigned short)x 16 1
%1x long x (unsigned long)x 16 1

%X int x (unsigned int)x 16 1
%hX int x (unsigned short)x 16 1
%1X long x (unsigned long)x 16 1

%% none %!

The print conversion specifier determines any behavior not summarized in this
table. In the following descriptions, p is the precision. Examples follow each of the
print conversion specifiers. A single conversion can generate up to 509 characters.

You write %c to generate a single character from the converted value.

printf("%c", 'a') generates a
printf("<%3c|%-3c>", 'a', 'b') generates < alb >

For a wide stream (page BJ), conversion of the character x occurs as if by calling
btowc (x).

wprintf(L"%c", 'a') generates btowc(a)

Chapter 9. Formatted Output 37

38

You write %lc to generate a single character from the converted value. Conversion
of the character x occurs as if it is followed by a null character in an array of two
elements of type wchar_t (page B3) converted by the conversion specification 1s

(page B9).

printf("%1c", L'a') generates a
wprintf(L"1c", L'a") generates L'a’

You write %d, %i, %0, %u, %X, or %X to generate a possibly signed integer
representation. %d or %i specifies signed decimal representation, %0 unsigned octal,
%u unsigned decimal, %x unsigned hexadecimal using the digits 0-9 and a-f, and
%X unsigned hexadecimal using the digits 0-9 and A-F. The conversion generates at
least p digits to represent the converted value. If p is zero, a converted value of
zero generates no digits.

printf("%d %o %x", 31, 31, 31) generates 31 37 1f

printf("%hu", Oxffff) generates 65535
printf("%#X %+d", 31, 31) generates OX1F +31

You write %e or %E to generate a signed fractional representation with an
exponent. The generated text takes the form +d.dddE+dd, where + is either a plus
or minus sign, d is a decimal digit, the dot (.) is the decimal point for the current
locale (page E), and E is either e (for %e conversion) or E (for %E conversion). The
generated text has one integer digit, a decimal point if p is nonzero or if you
specify the # format flag, p fraction digits, and at least two exponent digits. The
result is rounded. The value zero has a zero exponent.

printf("%e", 31.4) generates 3.140000e+01
printf("%.2E", 31.4) generates 3.14E+01

You write %f to generate a signed fractional representation with no exponent. The
generated text takes the form +d.ddd, where + is either a plus or minus sign, d is a
decimal digit, and the dot (.) is the decimal point for the current locale (page @).
The generated text has at least one integer digit, a decimal point if p is nonzero or
if you specify the # format flag, and p fraction digits. The result is rounded.

printf("%f", 31.4) generates 31.400000
printf("%.0f %#.0f", 31.0, 31.0)generates 31 31.

You write %g or %G to generate a signed fractional representation with or without
an exponent, as appropriate. For %g conversion, the generated text takes the same
form as either %e or %f conversion. For %G conversion, it takes the same form as
either %E or %f conversion. The precision p specifies the number of significant digits
generated. (If p is zero, it is changed to 1.) If %e conversion would yield an
exponent in the range [-4, p), then %f conversion occurs instead. The generated text
has no trailing zeros in any fraction and has a decimal point only if there are
nonzero fraction digits, unless you specify the # format flag.

printf("%.6g9", 31.4) generates 31.4
printf("%.1g", 31.4) generates 3.14e+01

You write %n to store the number of characters generated (up to this point in the
format) in the object of type int whose address is the value of the next successive
argument.

printf("abc%n", &x) stores 3

You write %p to generate an external representation of a pointer to void. The
conversion is implementation defined.

printf("%p", (void *)&x) generates, e.g. F4CO

Standard C++ Library

You write %s to generate a sequence of characters from the values stored in the
argument C string (page @).

printf("%s", "hello") generates hello
printf("%. Zs", "hello") generates he

For a wide stream (page E), conversion occurs as if by repeatedly calling mbrtowc
(page m), beginning in the initial conversion state (page E) The conversion
generates no more than p characters, up to but not including the terminating null
character.

wprintf(L"%s", "hello") generates hello

You write %ls to generate a sequence of characters from the values stored in the
argument wide-character string (page B). For a byte stream (page Rd), conversion
occurs as if by repeatedly calling wcrtomb (page h) beginning in the initial
conversion state (page Ild), so long as complete multibyte characters can be
generated. The conversion generates no more than p characters, up to but not
including the terminating null character.

printf("%1s", L"hello") generates hello
wprintf(L"%.2s", L"hello") generates he

You write %% to generate the percent character (%).
printf("%%") generates %

Chapter 9. Formatted Output 39

40 Standard C++ Library

Chapter 10. STL Conventions

The Standard Template Library (page), or STL (page EI), establishes uniform
standards for the application of iterators (page ﬁﬁ to STL containers (page K¥3) or
other sequences that you define, by STL algorithms (page @) or other functions
that you define. This document summarizes many of the conventions used widely
throughout the Standard Template Library.

lterator Conventions

The STL facilities make widespread use of iterators, to mediate between the
various algorithms and the sequences upon which they act. For brevity in the
remainder of this document, the name of an iterator type (or its prefix) indicates
the category of iterators required for that type. In order of increasing power, the
categories are summarized here as:

¢ Outlt — An output iterator X can only have a value V stored indirect on it, after
which it must be incremented before the next store, as in (*X++ = V), (*X =V,
++X), or (*X =V, X++).

* InIt — An input iterator X can represent a singular value that indicates
end-of-sequence. If an input iterator does not compare equal to its
end-of-sequence value, it can have a value V accessed indirect on it any number
of times, as in (V = *X). To progress to the next value, or end-of-sequence, you
increment it, as in ++X, X++, or (V = *X++). Once you increment any copy of an
input iterator, none of the other copies can safely be compared, dereferenced, or
incremented thereafter.

e FwdIt — A forward iterator X can take the place of an output iterator (for
writing) or an input iterator (for reading). You can, however, read (via V = *X)
what you just wrote (via *X = V) through a forward iterator. And you can make
multiple copies of a forward iterator, each of which can be dereferenced and
incremented independently.

* BidIt — A bidirectional iterator X can take the place of a forward iterator. You
can, however, also decrement a bidirectional iterator, as in =X, X—, or (V = *X-).

¢ Ranlt — A random-access iterator X can take the place of a bidirectional iterator.
You can also perform much the same integer arithmetic on a random-access
iterator that you can on an object pointer. For N an integer object, you can write
x[N], x + N, x - N, and N + X.

Note that an object pointer can take the place of a random-access iterator, or any
other for that matter. All iterators can be assigned or copied. They are assumed to
be lightweight objects and hence are often passed and returned by value, not by
reference. Note also that none of the operations described above can throw an
exception, at least when performed on a valid iterator.

The hierarchy of iterator categories can be summarize by showing three sequences.
For write-only access to a sequence, you can use any of:
output iterator

-> forward iterator

-> bidirectional iterator
-> random-access iterator

© Copyright IBM Corp. 1999, 2001 41

The right arrow means "can be replaced by.” So any algorithm that calls for an
output iterator should work nicely with a forward iterator, for example, but not the
other way around.

For read-only access to a sequence, you can use any of:

input iterator
-> forward iterator
-> bidirectional iterator
-> random-access iterator

An input iterator is the weakest of all categories, in this case.

Finally, for read/write access to a sequence, you can use any of:

forward iterator
-> bidirectional iterator
-> random-access iterator

Remember that an object pointer can always serve as a random-access iterator.
Hence, it can serve as any category of iterator, so long as it supports the proper
read/write access to the sequence it designates.

An iterator It other than an object pointer must also define the member types
required by the specialization iterator_traits<It>. Note that these requirements
can be met by deriving It from the public base class iterator.

This "algebra” of iterators is fundamental to practically everything else in the
Standard Template Library (page . 1t is important to understand the promises,
and limitations, of each iterator category to see how iterators are used by
containers and algorithms in STL.

Algorithm Conventions

42

The descriptions of the algorithm template functions employ several shorthand
phrases:

* The phrase "in the range [A, B)”” means the sequence of zero or more discrete
values beginning with A up to but not including B. A range is valid only if B is
reachable from A — you can store A in an object N (N = A), increment the object
zero or more times (++N), and have the object compare equal to B after a finite
number of increments (N == B).

* The phrase "each N in the range [A, B)” means that N begins with the value A
and is incremented zero or more times until it equals the value B. The case N ==
B is not in the range.

* The phrase ""the lowest value of N in the range [A, B) such that X"’ means that
the condition X is determined for each N in the range [A, B) until the condition
X is met.

* The phrase "the highest value of N in the range [A, B) such that X"’ usually
means that X is determined for each N in the range [A, B). The function stores
in K a copy of N each time the condition X is met. If any such store occurs, the
function replaces the final value of N (which equals B) with the value of K. For a
bidirectional or random-access iterator, however, it can also mean that N begins
with the highest value in the range and is decremented over the range until the
condition X is met.

* Expressions such as X - Y, where X and Y can be iterators other than
random-access iterators, are intended in the mathematical sense. The function

Standard C++ Library

does not necessarily evaluate operator- if it must determine such a value. The
same is also true for expressions such as X + N and X - N, where N is an integer

type.

Several algorithms make use of a predicate, using operator==, that must impose an
equivalence relationship on pairs of elements from a sequence. For all elements X,
Y, and Z:

e X == X is true.
o If X == Y is true, then Y == X is true.
e If X ==Y &% Y == 7 is true, then X == 7 is true.

Several algorithms make use of a predicate that must impose a strict weak
ordering on pairs of elements from a sequence. For the predicate pr(X, Y):

» "strict” means that pr(X, X) is false

* "weak” means that X and Y have an equivalent ordering if !pr(X, Y) && !pr(Y,
X) (X == Y need not be defined)

* "ordering” means that pr(X, Y) && pr(Y, Z) implies pr(X, Z)

Some of these algorithms implicitly use the predicate X < Y. Other predicates that
typically satisfy the "strict weak ordering’” requirement are X > Y, Tess(X, Y), and
greater(X, Y). Note, however, that predicates such as X <= Y and X >= Y do not
satisfy this requirement.

A sequence of elements designated by iterators in the range [first, last) is "a
sequence ordered by operator<” if, for each N in the range [0, last - first) and
for each M in the range (N, last - first) the predicate ! (*(first + M) < x(first
+N)) is true. (Note that the elements are sorted in ascending order.) The predicate
function operator<, or any replacement for it, must not alter either of its operands.
Moreover, it must impose a strict weak ordering (page E3) on the operands it
compares.

A sequence of elements designated by iterators in the range [first, last) is "a
heap ordered by operator<” if, for each N in the range [1, Tast - first) the
predicate ! (x¥first < *(first + N)) is true. (The first element is the largest.) Its
internal structure is otherwise known only to the template functions make_heap
(page B41), pop_heap (page B45), and push_heap (page B4d). As with an ordered
sequence (page B3), the predicate function operator<, or any replacement for it,
must not alter either of its operands, and it must impose a strict weak ordering
(page B3) on the operands it compares.

Chapter 10. STL Conventions 43

44 Standard C++ Library

Chapter 11. Containers

namespace std {
template<class T>
class Cont;

// TEMPLATE FUNCTIONS
template<class T>
bool operator==
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
bool operator!=(
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
bool operator<(
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
bool operator>(
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
bool operator<=(
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
bool operator>=(
const Cont<T>& Ths,
const Cont<T>& rhs);
template<class T>
void swap(
Cont<T>& 1hs,
Cont<T>& rhs);
1

A container is an STL (page fl template class that manages a sequence of elements.
Such elements can be of any object type that supplies a copy constructor, a
destructor, and an assignment operator (all with sensible behavior, of course). The
destructor may not throw an exception. This document describes the properties
required of all such containers, in terms of a generic template class Cont. An actual
container template class may have additional template parameters. It will certainly

have additional member functions.
The STL template container classes are:

deque (page Bsd)
list (page @)
map (page ked)
multimap (page)
multiset (page @)
set (page ﬁ
vector (page)

The Standard C++ library template class basic_string also meets the requirements

for a template container class.

© Copyright IBM Corp. 1999, 2001

Cont

begin (page k) - clear (page i) - const_iterator (page g - const_reference (page
i8) - const_reverse_iterator (page [8) - difference_type (page B8) - empty (page %)
- end (page ld) - erase (page ﬁ . iterator (page B9) - max_size (page %) - rbegin
(page é) - reference (page @) - rend (page 49) - reverse_iterator (pEﬁe E) - size
(page Ed) - size_type (page - swap (page Bd) - value_type (page 50)
template<class T<T> >

class Cont {
public:

typedef TO size_type;

typedef T1 difference_type;

typedef T2 reference;

typedef T3 const_reference;

typedef T4 value_type;

typedef T5 iterator;

typedef T6 const_iterator;

typedef T7 reverse_iterator;

typedef T8 const_reverse_iterator;

iterator begin();

const_iterator begin() const;

iterator end();

const_iterator end() const;

reverse_iterator rbegin();

const_reverse_iterator rbegin() const;

reverse_iterator rend();

const_reverse_iterator rend() const;

size_type size() const;

size_type max_size() const;

bool empty() const;

iterator erase(iterator it);

iterator erase(iterator first, iterator last);

void clear();

void swap(Cont& x);

s

The template class describes an object that controls a varying-length sequence of
elements, typically of type T. The sequence is stored in different ways, depending
on the actual container.

A container constructor or member function may call the constructor T(const T&)
or the function T::operator=(const T&). If such a call throws an exception, the
container object is obliged to maintain its integrity, and to rethrow any exception it
catches. You can safely swap, assign to, erase, or destroy a container object after it
throws one of these exceptions. In general, however, you cannot otherwise predict
the state of the sequence controlled by the container object.

A few additional caveats:

* If the expression T() throws an exception, the resulting state of the container
object is undefined.

* If the container stores an allocator object al, and al throws an exception other
than as a result of a call to al.allocate, the resulting state of the container
object is undefined.

e If the container stores a function object comp, to determine how to order the
controlled sequence, and comp throws an exception of any kind, the resulting
state of the container object is undefined.

The container classes defined by STL satisfy several additional requirements, as
described in the following paragraphs.

46 Standard C++ Library

Container template class 1ist (page El) provides deterministic, and useful,
behavior even in the presence of the exceptions described above. For example, if an
exception is thrown during the insertion of one or more elements, the container is
left unaltered and the exception is rethrown.

For all the container classes defined by STL, if an exception is thrown during calls
to the following member functions:

insert // single element inserted
push_back
push_front

the container is left unaltered and the exception is rethrown.

For all the container classes defined by STL, no exception is thrown during calls to
the following member functions:

erase // single element erased
pop_back
pop_front

Moreover, no exception is thrown while copying an iterator returned by a member
function.

The member function swap (page E) makes additional promises for all container
classes defined by STL.:

¢ The member function throws an exception only if the container stores an
allocator object al, and al throws an exception when copied.

* References, pointers, and iterators that designate elements of the controlled
sequences being swapped remain valid.

An object of a container class defined by STL allocates and frees storage for the
sequence it controls through a stored object of type A, which is typically a template
parameter. Such an allocator object (page k1) must have the same external
interface as an object of class allocator (page L1d). In particular, A must be the
same type as A::rebind<value_type>::other

For all container classes defined by STL, the member function:
A get_allocator() const;

returns a copy of the stored allocator object. Note that the stored allocator object is
not copied when the container object is assigned. All constructors initialize the
value stored in allocator, to A() if the constructor contains no allocator parameter.

According to the C++ Standard (page Led) a container class defined by STL can
assume that:

* All objects of class A compare equal.

e Type A::const_pointer is the same as const T *.
* Type A::const_reference is the same as const T&.
* Type A::pointer is the same as T *.

* Type A::reference is the same as T&.

In this implementation (page B), however, containers do not make such simplifying

assumptions. Thus, they work properly with allocator objects that are more
ambitious:

Chapter 11. Containers 47

Cont::

Cont::

Cont::

Cont::

Cont::

Cont::

Cont::

* All objects of class A need not compare equal. (You can maintain multiple pools
of storage.)

* Type A::const_pointer need not be the same as const T *. (A pointer can be a
class.)

* Type A::pointer need not be the same as T *. (A const pointer can be a class.)

begin

const_iterator begin() const;
iterator begin();

The member function returns an iterator that points at the first element of the
sequence (or just beyond the end of an empty sequence).

clear

void clear();

The member function calls erase(begin(), end()).

const_iterator
typedef T6 const_iterator;

The type describes an object that can serve as a constant iterator for the controlled
sequence. It is described here as a synonym for the unspecified type T6.

const_reference

typedef T3 const_reference;

The type describes an object that can serve as a constant reference to an element of
the controlled sequence. It is described here as a synonym for the unspecified type
T3 (typically A::const_reference).

const_reverse_iterator

typedef T8 const_reverse_iterator;

The type describes an object that can serve as a constant reverse iterator for the
controlled sequence. It is described here as a synonym for the unspecified type T8
(typically reverse_iterator <const_iterator>).

difference_type
typedef T1 difference_type;

The signed integer type describes an object that can represent the difference
between the addresses of any two elements in the controlled sequence. It is
described here as a synonym for the unspecified type T1 (typically
A::difference_type).

empty

bool empty() const;

The member function returns true for an empty controlled sequence.

48 Standard C++ Library

Cont:

Cont:

Cont

Cont

Cont

Cont

Cont

:end

const_iterator end() const;
iterator end();

The member function returns an iterator that points just beyond the end of the
sequence.

.erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);

The first member function removes the element of the controlled sequence pointed
to by it. The second member function removes the elements of the controlled
sequence in the range [first, last). Both return an iterator that designates the
first element remaining beyond any elements removed, or end() if no such element
exists.

The member functions never throw an exception.

iterator

typedef T5 iterator;

The type describes an object that can serve as an iterator for the controlled
sequence. It is described here as a synonym for the unspecified type T5. An object
of type iterator can be cast to an object of type const_iterator (page KS).

‘max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can
control, in constant time regardless of the length of the controlled sequence.

:rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse iterator that points just beyond the end of
the controlled sequence. Hence, it designates the beginning of the reverse
sequence.

:reference

typedef T2 reference;

The type describes an object that can serve as a reference to an element of the
controlled sequence. It is described here as a synonym for the unspecified type T2
(typically A::reference). An object of type reference can be cast to an object of
type const_reference (page 4d).

‘rend

const_reverse_iterator rend() const;
reverse_iterator rend();

Chapter 11. Containers 49

The member function returns a reverse iterator that points at the first element of
the sequence (or just beyond the end of an empty sequence). Hence, it designates
the end of the reverse sequence.

Cont:: reverse_iterator
typedef T7 reverse_iterator;
The type describes an object that can serve as a reverse iterator for the controlled
sequence. It is described here as a synonym for the unspecified type T7 (typically
reverse_iterator <iterator>).

Cont::size
size_type size() const;
The member function returns the length of the controlled sequence, in constant
time regardless of the length of the controlled sequence.

Cont::size_type
typedef TO size_type;
The unsigned integer type describes an object that can represent the length of any
controlled sequence. It is described here as a synonym for the unspecified type T0
(typically A::size_type).

Cont::swap
void swap(Cont& x);
The member function swaps the controlled sequences between *this and x. If
get_allocator() == x.get_allocator(), it does so in constant time. Otherwise, it
performs a number of element assignments and constructor calls proportional to
the number of elements in the two controlled sequences.

Cont::value_type
typedef T4 value_type;
The type is a synonym for the template parameter T. It is described here as a
synonym for the unspecified type T4 (typically A::value_type).

operator!=
template<class T>
bool operator!=(
const Cont <T>& Tlhs,
const Cont <T>& rhs);
The template function returns ! (Ths == rhs).
operator==

template<class T>
bool operator==(
const Cont <T>& Ths,
const Cont <T>& rhs);

50 Standard C++ Library

The template function overloads operator== to compare two objects of template
class Cont (page). The function returns Ths.size() == rhs.size() &&
equal(Ths. begin(), Ths. end(), rhs.begin()).

operator<

template<class T>
bool operator<(
const Cont <T>& Tlhs,
const Cont <T>& rhs);

The template function overloads operator< to compare two objects of template
class Cont. The function returns lexicographical _compare(lhs. begin(), Ths.
end(), rhs.begin(), rhs.end()).

operator<=

template<class T>
bool operator<=(
const Cont <T>& Ths,
const Cont <T>& rhs);

The template function returns !(rhs < Ths).

operator>

template<class T>
bool operatorxgt; (
const Cont <T>& 1lhs,
const Cont <T>& rhs);

The template function returns rhs < Ths.

operator>=

template<class T>
bool operator>=(
const Cont <T>& Tlhs,
const Cont <T>& rhs);

The template function returns ! (Ths < rhs).

swap

template<class T>
void swap(
Cont <T>& T1hs,
Cont <T>& rhs);

The template function executes Ths.swap (page E) (rhs).

Portions derived from work copyright ® 1994 by Hewlett-Packard Company. All rights
reserved.

Chapter 11. Containers

51

52 Standard C++ Library

Chapter 12. Preprocessing

The translator processes each source file in a series of phases. Preprocessing
constitutes the earliest phases, which produce a translation unit (page 54).
Preprocessing treats a source file as a sequence of text lines (page R1). You can
specify directives and macros that insert, delete, and alter source text.

This document describes briefly just those aspect of preprocessing most relevant to
the use of the Standard C library:

The macro __FILE__ expands to a string literal (page i) that gives the
remembered filename (page B) of the current source file. You can alter the value of
this macro by writing a line directive.

The macro __LINE__ expands to a decimal integer constant that gives the
remembered line number within the current source file. You can alter the value of
this macro by writing a line directive.

A define directive defines a name as a macro. Following the directive name define,
you write one of two forms:

* aname not immediately followed by a left parenthesis, followed by any
sequence of preprocessing tokens — to define a macro without parameters

* a name immediately followed by a left parenthesis with 7o intervening white
space, followed by zero or more distinct parameter names separated by commas,
followed by a right parenthesis, followed by any sequence of preprocessing
tokens — to define a macro with as many parameters as names that you write
inside the parentheses

You can selectively skip groups of lines within source files by writing an if
directive, or one of the other conditional directives, ifdef or ifndef. You follow the
conditional directive by the first group of lines that you want to selectively skip.
Zero or more elif directives follow this first group of lines, each followed by a
group of lines that you want to selectively skip. An optional else directive follows
all groups of lines controlled by elif directives, followed by the last group of lines
you want to selectively skip. The last group of lines ends with an endif directive.

At most one group of lines is retained in the translation unit — the one
immediately preceded by a directive whose if expression (page E3) has a nonzero
value. For the directive:

#ifdef X

this expression is defined (X), and for the directive:
#ifndef X

this expression is !defined (X).

An if expression is a conditional expression that the preprocessor evaluates. You

can write only integer constant expressions (page i), with the following additional

considerations:

* The expression defined X, or defined (X), is replaced by 1 if X is defined as a
macro, otherwise 0.

© Copyright IBM Corp. 1999, 2001 53

54

* You cannot write the sizeof (page Rd) or type cast operators. (The translator
expands all macro names, then replaces each remaining name with 0, before it
recognizes keywords.)

* The translator may be able to represent a broader range of integers than the
target environment.

* The translator represents type int the same as long, and unsigned int the same as
unsigned long.

e The translator can translate character constants to a set of code values different
from the set for the target environment.

An include directive includes the contents of a standard header (page E) or
another source file in a translation unit. The contents of the specified standard
header or source file replace the include directive. Following the directive name
include, write one of the following:

* a standard header name between angle brackets
* a filename between double quotes

* any other form that expands to one of the two previous forms after macro
replacement

A line directive alters the source line number and filename used by the predefined
macros __FILE__ (page E) and _ FILE_ . Following the directive name Tine, write
one of the following:

* a decimal integer (giving the new line number of the line following)

* a decimal integer as before, followed by a string literal (giving the new line
number and the new source filename)

* any other form that expands to one of the two previous forms after macro
replacement

Preprocessing translates each source file in a series of distinct phases. The first few
phases of translation: terminate each line with a newline character (NL), convert
trigraphs to their single-character equivalents, and concatenate each line ending in
a backslash (\) with the line following. Later phases process include directives
(page B4), expand macros, and so on to produce a translation unit. The translator
combines separate translation units, with contributions as needed from the
Standard C library (page), at link time, to form the executable program.

An undef directive removes a macro definition. You might want to remove a macro
definition so that you can define it differently with a define directive or to unmask
any other meaning given to the name. The name whose definition you want to
remove follows the directive name undef. If the name is not currently defined as a
macro, the undef directive has no effect.

Standard C++ Library

Chapter 13. Standard C Header Files

<assert.h>

#undef assert

#if defined NDEBUG

#define assert(test) (void)0

#else

#define assert(test) <void expression>
#endif

Include the standard header <assert.h> to define the macro assert (page E),
which is useful for diagnosing logic errors in the program. You can eliminate the
testing code produced by the macro assert without removing the macro references
from the program by defining the macro NDEBUG in the program before you
include <assert.h>. Each time the program includes this header, it redetermines
the definition of the macro assert.

assert

#undef assert

#if defined NDEBUG

#define assert(test) (void)0

#else

#define assert(test) <void expression>
#endif

If the int expression test equals zero, the macro writes to stderr (page Bd) a
diagnostic message that includes:

* the text of test
* the source filename (the predefined macro _ FILE__ (page E))
* the source line number (the predefined macro _ LINE__ (page E))

It then calls abort (page B3).

You can write the macro assert in the program in any side-effects context (page

b9

<ctype.h>

int isalnum(int c);
int isalpha(int c);
int isentrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);

int tolower(int c);
int toupper(int c);

Include the standard header <ctype.h> to declare several functions that are useful
for classifying and mapping codes from the target character set. Every function

© Copyright IBM Corp. 1999, 2001 55

56

that has a parameter of type int can accept the value of the macro EOF (page B3)
or any value representable as type unsigned char. Thus, the argument can be the
value returned by any of the functions fgetc (page B7), fputc (page Bd), getc
(page Bd), getchar (page B1l), putc (page R1), putchar (page B1), tolower (page
Bd), toupper (page BF), and ungetc (page Bd). You must not call these functions
with other argument values.

Other library functions use these functions. The function scanf (page E), for
example, uses the function isspace to determine valid white space within an input
field.

The character classification functions are strongly interrelated. Many are defined
in terms of other functions. For characters in the basic C character set (page), a
simple diagram shows the dependencies between these functions.

isxdigit
ssaigie
isalnum
Lsupper
. +
isgraph izalpha
i i A-Z
isprint < 1513:_‘?‘:‘: 151':_"_”er

Space
:' - ishlank

+ (C9X)

+ extendable oucside "C" locale

++ extendable in any locale

izspace
+

izcrncrl
++

The diagram tells you that the function isprint (page EZ) returns nonzero for
space or for any character for which the function isgraph (page EZ) returns
nonzero. The function isgraph, in turn, returns nonzero for any character for which
either the function isalnum or the function ispunct returns nonzero. The function
isdigit, on the other hand, returns nonzero only for the digits 0-9.

An implementation can define additional characters that return nonzero for some
of these functions. Any character set can contain additional characters that return
nonzero for:

* ispunct (provided the characters cause isalnum to return zero)
* iscntrl (provided the characters cause isprint to return zero)

The diagram indicates with ++ those functions that can define additional characters
in any character set. Moreover, locales other than the “C” locale can define
additional characters that return nonzero for:

» isalpha, isupper, and islower (provided the characters cause iscntrl, isdigit,
ispunct, and isspace to return zero)

* isspace (provided the characters cause isprint to return zero)

The diagram indicates with + those functions that can define additional characters
in locales other than the “C” (page @) locale.

Note that an implementation can define locales other than the “C” locale in which
a character can cause isalpha (and hence isalnum) to return nonzero, yet still cause
isupper and islower to return zero.

Standard C++ Library

isalnum

int isalnum(int c);

The function returns nonzero if c is any of:
abcdefghijklImnopgr VWXYzZ
ABCDEFGHIJKLMN PQR VWXYZ
0123456789

or any other locale-specific alphabetic character.

isalpha
int isalpha(int c);

The function returns nonzero if c is any of:

abcdefghijkImnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

or any other locale-specific alphabetic character.

iscntrl
int iscntrl(int c);
The function returns nonzero if c is any of:
BEL BS CR FF HT NL VT
or any other implementation-defined control character.
isdigit
int isdigit(int c);
The function returns nonzero if c is any of:
0123456789
isgraph
int isgraph(int c);
The function returns nonzero if c is any character for which either isalnum or
ispunct returns nonzero.
islower
int islower(int c);
The function returns nonzero if c is any of:
abcdefghijkImnopgqrstuvwxyz
or any other locale-specific lowercase character.
isprint

int isprint(int c);

The function returns nonzero if c is space or a character for which isgraph returns
nonzero.

Chapter 13. Standard C Header Files 57

iIspunct

int ispunct(int c);
The function returns nonzero if c is any of:

%R) 5 <
2 [\ +, -
}

[T

]
{

—_— %~

or any other implementation-defined punctuation character.

Isspace

int isspace(int c);

The function returns nonzero if c is any of:
CR FF HT NL VT space

or any other locale-specific space character.

iIsupper

int isupper(int c);

The function returns nonzero if c is any of:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

or any other locale-specific uppercase character.
isxdigit
int isxdigit(int c);

The function returns nonzero if c is any of:
0123456789abcdefABCDEF

tolower

int tolower(int c);

The function returns the corresponding lowercase letter if one exists and if
isupper(c); otherwise, it returns c.

toupper
int toupper(int c);

The function returns the corresponding uppercase letter if one exists and if
isTower(c); otherwise, it returns c.

<errno.h>

#define EDOM <#if expression>

#define EILSEQ <#if expression>
#define ERANGE <#if expression>
#define errno <int modifiable lvalue>

Include the standard header <errno.h> to test the value stored in errno (page E)
by certain library functions. At program startup, the value stored is zero. Library

58 Standard C++ Library

functions store only values greater than zero. Any library function can alter the

value stored, but only those cases where a library function is explicitly required to

store a value are documented here.

To test whether a library function stores a value in errno (page Bd), the program
should store the value zero there immediately before it calls the library function.

An implementation can define additional macros in this standard header that you
can test for equality with the value stored. All these additional macros have names

that begin with E.

EDOM

#define EDOM <#if expression>

The macro yields the value stored in errno on a domain error.

EILSEQ

#define EILSEQ <#if expression>

The macro yields the value stored in errno on an invalid multibyte sequence.

ERANGE

#define ERANGE <#if expression>

The macro yields the value stored in errno on a range error.

errno

#define errno <int modifiable lvalue>

The macro designates an object that is assigned a value greater than zero on
certain library errors.

<float.h>

#define DBL_DIG <integer rvalue >= 10>
#define DBL_EPSILON <double rvalue <= 10 (-9)>
#define DBL_MANT_DIG <integer rvalue>

#define DBL_MAX <double rvalue >= 10 37>
#define DBL_MAX_10_EXP <integer rvalue >= 37>
#define DBL_MAX_EXP <integer rvalue>

#define DBL_MIN <double rvalue <= 10 (-37)>
#define DBL_MIN_10_EXP <integer rvalue <= -37>
#define DBL_MIN_EXP <integer rvalue>

#define FLT_DIG <integer rvalue >= 6>
#define FLT_EPSILON <float rvalue <= 10 (-5)>
#define FLT_MANT_DIG <integer rvalue>

#define FLT_MAX <float rvalue >= 10 37>
#define FLT_MAX_10_EXP <integer rvalue >= 37>
#define FLT_MAX_EXP <integer rvalue>

#define FLT_MIN <float rvalue <= 10 (-37)>
#define FLT_MIN_10_EXP <integer rvalue <= -37>
#define FLT_MIN_EXP <integer rvalue>

#define FLT_RADIX <#if expression >= 2>
#define FLT_ROUNDS <integer rvalue>

#define LDBL_DIG <integer rvalue >= 10>

#define LDBL_EPSILON <long double rvalue <= 10 (-9)>
#define LDBL_MANT_DIG <integer rvalue>

Chapter 13. Standard C Header Files

59

60

#define LDBL_MAX <long double rvalue >= 10 37>
#define LDBL_MAX_10_EXP <integer rvalue >= 37>
#define LDBL_MAX_EXP <integer rvalue> R
#define LDBL_MIN <long double rvalue <= 10 (-37)>
#define LDBL_MIN_10_EXP <integer rvalue <= -37>
#define LDBL_MIN_EXP <integer rvalue>

Include the standard header <float.h> to determine various properties of
floating-point type representations. The standard header <float.h> is available
even in a freestanding implementation (page E)

You can test only the value of the macro FLT_RADIX (page Ed) in an if directive.
(The macro expands to a #if expression.) All other macros defined in this header
expand to expressions whose values can be determined only when the program
executes. (These macros are rvalue expressions (page fud).) Some target
environments can change the rounding and error-reporting properties of
floating-point type representations while the program is running.

DBL_DIG

#define DBL_DIG <integer rvalue >= 10>

The macro yields the precision in decimal digits for type double.

DBL_EPSILON

#define DBL_EPSILON <double rvalue <= 10" (-9)>

The macro yields the smallest X of type double such that 1.0 + X != 1.0.

DBL_MANT_DIG

#define DBL_MANT_DIG <integer rvalue>

The macro yields the number of mantissa digits, base FLT_RADIX, for type double.

DBL_MAX

#define DBL_MAX <double rvalue >= 10 37>

The macro yields the largest finite representable value of type double.

DBL_MAX_10 EXP

#define DBL_MAX_10_EXP <integer rvalue >= 37>

The macro yields the maximum integer X, such that 10 X is a finite representable
value of type double.

DBL_MAX_EXP

#define DBL_MAX_EXP <integer rvalue>

The macro yields the maximum integer X, such that FLT_R/—\DIXA(X - 1) is a finite
representable value of type double.

Standard C++ Library

DBL_MIN

#define DBL_MIN <double rvalue <= 10 (-37)>

The macro yields the smallest normalized, finite representable value of type double.

DBL_MIN_10_EXP

#define DBL_MIN_10_EXP <integer rvalue <= -37>

The macro yields the minimum integer X such that 10" X is a normalized, finite
representable value of type double.

DBL_MIN_EXP

#define DBL_MIN_EXP <integer rvalue>

The macro yields the minimum integer X such that FLT_RADIX (X - 1) is a
normalized, finite representable value of type double.

FLT DIG

#define FLT_DIG <integer rvalue >= 6>

The macro yields the precision in decimal digits for type float.

FLT_EPSILON

#define FLT_EPSILON <float rvalue <= 10 (-5)>

The macro yields the smallest X of type float such that 1.0 + X != 1.0.

FLT _MANT DIG

#define FLT_MANT_DIG <integer rvalue>

The macro yields the number of mantissa digits, base FLT_RADIX, for type float.

FLT_MAX

#define FLT_MAX <float rvalue >= 10 37>

The macro yields the largest finite representable value of type float.

FLT_MAX_10 EXP

#define FLT_MAX_10_EXP <integer rvalue >= 37>

The macro yields the maximum integer X, such that 10" X is a finite representable
value of type float.

FLT _MAX_EXP

#define FLT_MAX_EXP <integer rvalue>

The macro yields the maximum integer X, such that FLT_RADIX (X - 1) is a finite
representable value of type float.

Chapter 13. Standard C Header Files 61

FLT_MIN

#define FLT_MIN <float rvalue <= 10 (-37)>

The macro yields the smallest normalized, finite representable value of type float.

FLT_MIN_10_EXP

#define FLT_MIN_10_EXP <integer rvalue <= -37>

The macro yields the minimum integer X, such that 10" X is a normalized, finite
representable value of type float.

FLT_MIN_EXP

#define FLT_MIN_EXP <integer rvalue>

The macro yields the minimum integer X, such that FLT_RADIX (X - 1) is a
normalized, finite representable value of type float.

FLT_RADIX

#define FLT_RADIX <#if expression >= 2>

The macro yields the radix of all floating-point representations.

FLT_ROUNDS

#define FLT_ROUNDS <integer rvalue>

The macro yields a value that describes the current rounding mode for
floating-point operations. Note that the target environment can change the
rounding mode while the program executes. How it does so, however, is not
specified. The values are:

* -1 if the mode is indeterminate

* 0 if rounding is toward zero

* 1 if rounding is to nearest representable value
* 2 if rounding is toward +infinity

* 3 if rounding is toward -infinity

An implementation can define additional values for this macro.

LDBL_DIG

#define LDBL_DIG <integer rvalue >= 10>

The macro yields the precision in decimal digits for type long double.

LDBL_EPSILON

#define LDBL_EPSILON <long double rvalue <= 10 (-9)>

The macro yields the smallest X of type long double such that 1.0 + X != 1.0.

LDBL_MANT_DIG

#define LDBL_MANT_DIG <integer rvalue>

62 Standard C++ Library

The macro yields the number of mantissa digits, base FLT_RADIX, for type long
double.

LDBL_MAX

#define LDBL_MAX <long double rvalue >= 10 37>

The macro yields the largest finite representable value of type long double.

LDBL_MAX_10_EXP

#define LDBL_MAX_10_EXP <integer rvalue >= 37>

The macro yields the maximum integer X, such that 10" X is a finite representable
value of type long double.

LDBL_MAX_EXP

#define LDBL_MAX_EXP <integer rvalue>

The macro yields the maximum integer X, such that FLT_RADIX (X - 1) is a finite
representable value of type long double.

LDBL_MIN

#define LDBL_MIN <long double rvalue <= 10 (-37)>

The macro yields the smallest normalized, finite representable value of type long
double.

LDBL_MIN_10_EXP

#define LDBL_MIN_10_EXP <integer rvalue <= -37>

The macro yields the minimum integer X, such that 10 X is a normalized, finite
representable value of type long double.

LDBL_MIN_EXP

#define LDBL_MIN_EXP <integer rvalue>

The macro yields the minimum integer X, such that FLT_RADIXA(X -1)isa
normalized, finite representable value of type long double.

<is0646.h>

[Added with Amendment 1 (page E)]

#define and && [keyword in C++]
#define and_eq &= [keyword in C++]
#define bitand & [keyword in C++]
#define bitor | [keyword in C++]
#define compl [keyword in C++]
#define not ! [keyword in C++]
#define not_eq != [keyword in C++]
#define or || [keyword in C++]

#define or_eq |= [keyword in C++]
#define xor [keyword in C++]
#define xor_eq = [keyword in C++]

Chapter 13. Standard C Header Files 63

Include the standard header <is0646.h> to provide readable alternatives to certain
operators or punctuators. The standard header <iso0646.h> is available even in a
freestanding implementation (page B).

and

#define and && [keyword in C++]

The macro yields the operator &&.
and_eq

#define and_eq &= [keyword in C++]

The macro yields the operator &=.
bitand

#define bitand & [keyword in C++]

The macro yields the operator &.
bitor

#define bitor | [keyword in C++]

The macro yields the operator |.
compl

#define compl ~ [keyword in C++]

The macro yields the operator -
not

#define not ! [keyword in C++]

The macro yields the operator !.
not_eq

#define not_eq != [keyword in C++]

The macro yields the operator !=.
or

#define or || [keyword in C++]

The macro yields the operator | |.
or_eq

#define or_eq |= [keyword in C++]

The macro yields the operator |=.

64 Standard C++ Library

Xor
#define

xor ~ [keyword in C++]

The macro yields the operator ~

Xor_eq
#define

xor_eq = [keyword in C++]

The macro yields the operator " =.

<limits.h>

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

CHAR_BIT <#if expression >= 8>
CHAR_MAX <#if expression >= 127>
CHAR_MIN <#if expression <= 0>
SCHAR_MAX <#if expression >= 127>
SCHAR_MIN <#if expression <= -127>
UCHAR_MAX <#if expression >= 255>
MB_LEN_MAX <#if expression >= 1>

SHRT_MAX <#if expression >= 32,767>
SHRT_MIN <#if expression <= -32,767>
USHRT_MAX <#if expression >= 65,535>

INT_MAX <#if expression >= 32,767>
INT_MIN <#if expression <= -32,767>
UINT_MAX <#if expression >= 65,535>

LONG_MAX <#if expression >= 2,147,483,647>
LONG_MIN <#if expression <= -2,147,483,647>
ULONG_MAX <#if expression >= 4,294,967,295>

Include the standard header <limits.h> to determine various properties of the
integer type representations. The standard header <limits.h> is available even in a
freestanding implementation (page B).

You can test the values of all these macros in an if directive. (The macros are #if
expressions.)

CHAR_BIT

#define

CHAR_BIT <#if expression >= 8>

The macro yields the maximum value for the number of bits used to represent an
object of type char.

CHAR_MAX

#define

CHAR_MAX <#if expression >= 127>

The macro yields the maximum value for type char. Its value is:
¢ SCHAR_MAX (page B4 if char represents negative values
* UCHAR_MAX (page E2) otherwise

CHAR_MIN

#define

CHAR_MIN <#if expression <= 0>

The macro yields the minimum value for type char. Its value is:

Chapter 13. Standard C Header Files 65

« SCHAR_MIN (page kd) if char represents negative values

e zero otherwise

INT_MAX

#define INT_MAX <#if expression >= 32,767>

The macro yields the maximum value for type int.

INT_MIN

#define INT_MIN <#if expression <= -32,767>

The macro yields the minimum value for type int.

LONG_MAX

#define LONG_MAX <#if expression >= 2,147,483,647>

The macro yields the maximum value for type long.

LONG_MIN

#define LONG_MIN <#if expression <= -2,147,483,647>

The macro yields the minimum value for type long.

MB_LEN_MAX

#define MB_LEN_MAX <#if expression >= I>
The macro yields the maximum number of characters that constitute a multibyte

character (page fid) in an supported locale (page B2). Its value is >=
MB_CUR_MAX (page ﬁ)

SCHAR_MAX

#define SCHAR_MAX <#if expression >= 127>

The macro yields the maximum value for type signed char.

SCHAR_MIN

#define SCHAR_MIN <#if expression <= -127>

The macro yields the minimum value for type signed char.

SHRT_MAX

#define SHRT_MAX <#if expression >= 32,767>

The macro yields the maximum value for type short.

SHRT_MIN

#define SHRT_MIN <#if expression <= -32,767>

The macro yields the minimum value for type short.

66 Standard C++ Library

UCHAR_MAX

#define UCHAR_MAX <#if expression >= 255>

The macro yields the maximum value for type unsigned char.

UINT_MAX

#define UINT_MAX <#if expression >= 65,535>

The macro yields the maximum value for type unsigned int.

ULONG_MAX

#define ULONG_MAX <#if expression >= 4,294,967,295>

The macro yields the maximum value for type unsigned long.

USHRT_MAX

#define USHRT_MAX <#if expression >= 65,535>

The macro yields the maximum value for type unsigned short.

<locale.h>

#define LC_ALL <integer constant expression>
#define LC_COLLATE <integer constant expression>
#define LC_CTYPE <integer constant expression>
#define LC_MONETARY <integer constant expression>
#define LC_NUMERIC <integer constant expression>
#define LC_TIME <integer constant expression>
#define NULL <either 0, OL, or (void *)0> [0 in C++]

struct Tconv;

struct Tconv *localeconv(void);
char *setlocale(int category, const char *Tocale);

Include the standard header <locale.h> to alter or access properties of the current
locale — a collection of culture-specific information. An implementation can define
additional macros in this standard header with names that begin with LC_. You can
use any of these macro names as the locale category argument (which selects a
cohesive subset of a locale) to setlocale (page IZ1).

LC_ALL

#define LC_ALL <integer constant expression>

The macro yields the locale category argument value that affects all locale
categories.

LC_COLLATE

#define LC_COLLATE <integer constant expression>

The macro yields the locale category argument value that affects the collation
functions strcoll and strxfrm.

Chapter 13. Standard C Header Files 67

68

LC_CTYPE

#define LC_CTYPE <integer constant expression>

The macro yields the locale category argument value that affects character
classification (page E) functions, wide-character classification (page @) functions,
and various multibyte conversion functions.

LC_MONETARY

#define LC_MONETARY <integer constant expression>

The macro yields the locale category argument value that affects monetary
information returned by Tocaleconv.

LC_NUMERIC

#define LC_NUMERIC <integer constant expression>

The macro yields the locale category argument value that affects numeric
information returned by Tocaleconv, including the decimal point used by numeric
conversion, read, and write functions.

LC_TIME

NULL

lconv

#define LC_TIME <integer constant expression>

The macro yields the locale category argument value that affects the time
conversion function strftime (page).

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant
expression (page [L9).

struct Tconv {

ELEMENT "C" LOCALE LOCALE CATEGORY
char *currency_symbol; " LC_MONETARY
char xdecimal_point; " LC_NUMERIC
char *grouping; " LC_NUMERIC
char *int_curr_symbol; " LC_MONETARY
char *mon_decimal_point; "" LC_MONETARY
char *mon_grouping; " LC_MONETARY
char *mon_thousands_sep; "" LC_MONETARY
char *negative_sign; " LC_MONETARY
char *positive_sign; " LC_MONETARY
char *thousands_sep; " LC_NUMERIC
char frac_digits; CHAR_MAX LC_MONETARY
char int_frac_digits; CHAR_MAX LC_MONETARY
char n_cs_precedes; CHAR_MAX LC_MONETARY
char n_sep_by space; CHAR_MAX LC_MONETARY
char n_sign_posn; CHAR_MAX LC_MONETARY
char p_cs_precedes; CHAR_MAX LC_MONETARY
char p_sep_by_space; CHAR_MAX LC_MONETARY
char p_sign_posn; CHAR_MAX LC_MONETARY

}s

Standard C++ Library

struct Tconv contains members that describe how to format numeric and
monetary values. Functions in the Standard C library use only the field
decimal_point. The information is otherwise advisory:

* Members of type pointer to char all point to C strings (page B).
* Members of type char have nonnegative values.

* A char value of CHAR_MAX (page kd) indicates that a meaningful value is not
available in the current locale.

The members shown above can occur in arbitrary order and can be interspersed
with additional members. The comment following each member shows its value
for the “C” locale, the locale in effect at program startup (page B), followed by the
locale category that can affect its value.

A description of each member follows, with an example in parentheses that would
be suitable for a USA locale.

currency_symbol — the local currency symbol ("$")
decimal_point — the decimal point for non-monetary values (".")

grouping — the sizes of digit groups for non-monetary values. Successive elements
of the string describe groups going away from the decimal point:

* An element value of zero (the terminating null character) calls for the previous
element value to be repeated indefinitely.

* An element value of CHAR_MAX (page kd) ends any further grouping (and
hence ends the string).

Thus, the array {3, 2, CHAR_MAX} calls for a group of three digits, then two, then
whatever remains, as in 9876,54,321, while "\3" calls for repeated groups of three
digits, as in 987,654,321. ("\3")

int_curr_symbol — the international currency symbol specified by ISO 4217 ("USD
II)

mon_decimal_point — the decimal point for monetary values (".")
mon_grouping — the sizes of digit groups for monetary values. Successive
elements of the string describe groups going away from the decimal point. The
encoding is the same as for grouping (page h9).

mon_thousands_sep — the separator for digit groups to the left of the decimal
point for monetary values (",")

negative_sign — the negative sign for monetary values ("-")
positive_sign — the positive sign for monetary values ("+"

thousands_sep — the separator for digit groups to the left of the decimal point for
non-monetary values (",")

frac_digits — the number of digits to display to the right of the decimal point for
monetary values (2)

int_frac_digits — the number of digits to display to the right of the decimal point
for international monetary values (2)

Chapter 13. Standard C Header Files 69

n_cs_precedes — whether the currency symbol precedes or follows the value for
negative monetary values:

* A value of 0 indicates that the symbol follows the value.
* A value of 1 indicates that the symbol precedes the value. (1)

n_sep_by_space — whether the currency symbol is separated by a space or by no
space from the value for negative monetary values:

* A value of 0 indicates that no space separates symbol and value.

* A value of 1 indicates that a space separates symbol and value. (0)

n_sign_posn — the format for negative monetary values:

* A value of 0 indicates that parentheses surround the value and the currency
symbol.

* A value of 1 indicates that the negative sign precedes the value and the currency
symbol.

* A value of 2 indicates that the negative sign follows the value and the
currency_symbol.

* A value of 3 indicates that the negative sign immediately precedes the currency
symbol.

* A value of 4 indicates that the negative sign immediately follows the
currency_symbol. (4)

p_cs_precedes — whether the currency symbol precedes or follows the value for
positive monetary values:

* A value of 0 indicates that the symbol follows the value.
* A value of 1 indicates that the symbol precedes the value. (1)

p_sep_by_space — whether the currency symbol is separated by a space or by no
space from the value for positive monetary values:

* A value of 0 indicates that no space separates symbol and value.
e A value of 1 indicates that a space separates symbol and value. (0)

p_sign_posn — the format for positive monetary values:

* A value of 0 indicates that parentheses surround the value and the currency
symbol.

* A value of 1 indicates that the negative sign precedes the value and the currency
symbol.

* A value of 2 indicates that the negative sign follows the value and the currency
symbol.

* A value of 3 indicates that the negative sign immediately precedes the currency
symbol.

* A value of 4 indicates that the negative sign immediately follows the currency
symbol. (4)

localeconv

struct Tconv *localeconv(void);
The function returns a pointer to a static-duration structure containing numeric

formatting information for the current locale. You cannot alter values stored in the
static-duration structure. The stored values can change on later calls to Tocaleconv

70 Standard C++ Library

or on calls to setlocale that alter any of the categories LC_ALL (page b2),
LC_MONETARY (page b8), or LC_LNUMERIC (page ES).

setlocale

char xsetlocale(int category, const char *locale);

The function either returns a pointer to a static-duration string describing a new
locale or returns a null pointer (if the new locale cannot be selected). The value of
category selects one or more locale categories (page kd), each of which must match
the value of one of the macros defined in this standard header with names that
begin with LC_.

If Tocale is a null pointer, the locale remains unchanged. If Tocale points to the
string "C", the new locale is the “C” (page kd) 1ocale for the locale category
specified. If Tocale points to the string "", the new locale is the native locale (a
default locale presumably tailored for the local culture) for the locale category
specified. Tocale can also point to a string returned on an earlier call to setlocale
or to other strings that the implementation can define.

At program startup (page B, the target environment calls setlocale(LC_ALL, "C")
before it calls main.

<math.h>

#define HUGE_VAL <double rvalue>

double abs(double x); [C++ only]
float abs(float x); [C++ only]
long double abs(Tong double x); [C++ only]

double acos(double x);

float acos(float x); [C++ only]

Tong double acos(long double x); [C++ only]
float acosf(float x); [optional]

Tong double acosl(long double x); [optional]

double asin(double x);

float asin(float x); [C++ only]

Tong double asin(Tong double x); [C++ only]
float asinf(float x); [optional]

Tong double asinl(long double x); [optional]

double atan(double x);

float atan(float x); [C++ only]

Tong double atan(long double x); [C++ only]
float atanf(float x); [optional]

Tong double atanl(long double x); [optional]

double atan2(double y, double x);
float atan2(float y, float x); [C++ only]
long double atan2(long double y,

Tong double x); [C++ only]
float atan2f(float y, float x); [optional]
Tong double atan21(long double vy,

Tong double x); [optional]

double ceil(double x);

float ceil(float x); [C++ only]

Tong double ceil(Tong double x); [C++ only]
float ceilf(float x); [optional]

Tong double ceill(long double x); [optional]

Chapter 13. Standard C Header Files 71

double cos(double x);

float cos(float x); [C++ only]

long double cos(long double x); [C++ only]
float cosf(float x); [optional]

Tong double cosl1(Tong double x); [optional]

double cosh(double x);

float cosh(float x); [C++ only]

Tong double cosh(Tong double x); [C++ only]
float coshf(float x); [optional]

Tong double coshl(long double x); [optional]

double exp(double x);

float exp(float x); [C++ only]

Tong double exp(long double x); [C++ only]
float expf(float x); [optional]

Tong double expl(Tong double x); [optional]

double fabs(double x);

float fabs(float x); [C++ only]

long double fabs(long double x); [C++ only]
float fabsf(float x); [optional]

long double fabsl(long double x); [optional]

double floor(double x);

float floor(float x); [C++ only]

long double floor(long double x); [C++ only]
float floorf(float x); [optional]

Tong double floorl(long double x); [optional]

double fmod(double x, double y);
float fmod(float x, float y); [C++ only]
long double fmod(long double x,

long double y); [C++ only]
float fmodf(float x, float y); [optional]
long double fmodl(long double x,

long double y); [optional]

double frexp(double x, int *pexp);

float frexp(float x, int *pexp); [C++ only]

Tong double frexp(long double x, int *pexp); [C++ only]
float frexpf(float x, int *pexp); [optional]

long double frexpl(long double x, int *pexp); [optional]

double T1dexp(double x, int exp);

float Tdexp(float x, int exp); [C++ only]

Tong double 1dexp(long double x, int exp); [C++ only]
float Tdexpf(float x, int exp); [optional]

long double Tdexpl(long double x, int exp); [optionall

double Tog(double x);

float Tog(float x); [C++ only]

long double Tog(long double x); [C++ only]
float Togf(float x); [optional]

Tong double logl(Tong double x); [optional]

double Togl0(double x);

float logl@(float x); [C++ only]

Tong double 1ogl0(long double x); [C++ only]
float Togl0f(float x); [optional]

Tong double 10g101(long double x); [optional]

double modf(double x, double *pint);
float modf(float x, float *pint); [C++ only]
long double modf(long double x,

Tong double *pint); [C++ only]
float modff(float x, float *pint); [optional]
Tong double modfl1(Tong double x,

72 Standard C++ Library

Tong double *pint); [optional]

double pow(double x, double y);
float pow(float x, float y); [C++ only]
Tong double pow(Tong double x, long double y); [C++ only]
double pow(double x, int y); [C++ only]
float pow(float x, int y); [C++ only]
Tong double pow(long double x, int y); [C++ only]
float powf(float x, float y); [optional]
Tong double powl(Tong double x,
long double y); [optional]

double sin(double x);

float sin(float x); [C++ only]

long double sin(Tong double x); [C++ only]
float sinf(float x); [optional]

Tong double sinl(Tong double x); [optional]

double sinh(double x);

float sinh(float x); [C++ only]

Tong double sinh(Tong double x); [C++ only]
float sinhf(float x); [optional]

Tong double sinhl(long double x); [optional]

double sqrt(double x);

float sqrt(float x); [C++ only]

Tong double sqrt(long double x); [C++ only]
float sqrtf(float x); [optional]

Tong double sqrtl(long double x); [optional]

double tan(double x);

float tan(float x); [C++ only]

long double tan(long double x); [C++ only]
float tanf(float x); [optional]

Tong double tanl(Tong double x); [optional]

double tanh(double x);

float tanh(float x); [C++ only]

Tong double tanh(Tong double x); [C++ only]
float tanhf(float x); [optional]

Tong double tanhl(long double x); [optional]

Include the standard header <math.h> to declare several functions that perform
common mathematical operations on floating-point values.

A domain error exception occurs when the function is not defined for its input
argument value or values. A function reports a domain error by storing the value
of EDOM (page Bd) in errno (page Bd) and returning a peculiar value defined for
each implementation.

A range error exception occurs when the return value of the function is defined
but cannot be represented. A function reports a range error by storing the value of
ERANGE (page BY) in errno (page Bd) and returning one of three values:

* HUGE_VAL (page 3) — if the value of a function returning double is positive
and too large in magnitude to represent

* zero — if the value of the function is too small to represent with a finite value

* -HUGE_VAL (page fd) — if the value of a function returning double is negative
and too large in magnitude to represent

HUGE_VAL

#define HUGE_VAL <double rvalue>

Chapter 13. Standard C Header Files 73

74

abs

The macro yields the value returned by some functions on a range error. The value
can be a representation of infinity.

double abs(double x); [C++ only]
float abs(float x); [C++ only]
Tong double abs(long double x); [C++ only]

The function returns the absolute value of x, |x|, the same as fabs (page E).

acos, acosf, acosl

doubTe acos(double x);

float acos(float x); [C++ only]

Tong double acos(Tong double x); [C++ only]
float acosf(float x); [optional]

Tong double acosl1(long double x); [optional]

The function returns the angle whose cosine is x, in the range [0, pi] radians.

asin, asinf, asinl

double asin(double x);

float asin(float x); [C++ only]

long double asin(Tong double x); [C++ only]
float asinf(float x); [optional]

Tong double asinl(long double x); [optional]

The function returns the angle whose sine is x, in the range [-pi/2, +pi/2] radians.

atan, atanf, atanl

atan2,

double atan(double x);

float atan(float x); [C++ only]

Tong double atan(long double x); [C++ only]
float atanf(float x); [optional]

long double atanl(long double x); [optional]

The function returns the angle whose tangent is x, in the range [-pi/2, +pi/2]
radians.

atan2f, atan2|

double atan2(double y, double x);
float atan2(float y, float x); [C++ only]
long double atan2(long double y,

long double x); [C++ only]
float atan2f(float y, float x); [optional]
long double atan21(long double vy,

Tong double x); [optional]

The function returns the angle whose tangent is y/x, in the full angular range [-pi,
+pi] radians.

ceil, ceilf, ceill

double ceil(double x);

float ceil(float x); [C++ only]

long double ceil(Tong double x); [C++ only]
float ceilf(float x); [optional]

Tong double ceill(long double x); [optional]

Standard C++ Library

The function returns the smallest integer value not less than x.

cos, cosf, cosl

double cos(double x);

float cos(float x); [C++ only]

Tong double cos(Tong double x); [C++ only]
float cosf(float x); [optional]

Tong double cosl1(Tong double x); [optional]

The function returns the cosine of x for x in radians. If x is large the value returned
might not be meaningful, but the function reports no error.

cosh, coshf, coshl

double cosh(double x);

float cosh(float x); [C++ only]

Tong double cosh(Tong double x); [C++ only]
float coshf(float x); [optional]

Tong double coshl(long double x); [optional]

The function returns the hyperbolic cosine of x.

exp, expf, expl

double exp(double x);

float exp(float x); [C++ only]

Tong double exp(long double x); [C++ only]
float expf(float x); [optionall

Tong double expl(Tong double x); [optional]

The function returns the exponential of x, e x.

fabs, fabsf, fabsl

double fabs(double x);

float fabs(float x); [C++ only]

Tong double fabs(Tong double x); [C++ only]
float fabsf(float x); [optional]

Tong double fabs1(long double x); [optional]

The function returns the absolute value of x, |x | , the same as abs (page @).

floor, floorf, floorl

double floor(double x);

float floor(float x); [C++ only]

Tong double floor(long double x); [C++ only]
float floorf(float x); [optional]

Tong double floorl(long double x); [optional]

The function returns the largest integer value not greater than x.

fmod, fmodf, fmodl

double fmod(double x, double y);
float fmod(float x, float y); [C++ only]
long double fmod(long double x,

Tong double y); [C++ only]
float fmodf(float x, float y); [optional]
long double fmodl(long double x,

Tong double y); [optional]

Chapter 13. Standard C Header Files

75

76

The function returns the remainder of x/y, which is defined as follows:
* If y is zero, the function either reports a domain error or simply returns zero.

e Otherwise, if 0 <= x, the value is x - i*y for some integer i such that:
0 <= 1'*|y| <=x < (i + 1)*|y|

e Otherwise, x < 0 and the value is x - i*y for some integer i such that:
'i*lyl <= X < ('| + 1)*|y| <=0

frexp, frexpf, frexpl

double frexp(double x, int *pexp);

float frexp(float x, int *pexp); [C++ only]

long double frexp(long double x, int *pexp); [C++ only]
float frexpf(float x, int *pexp); [optional]

Tong double frexpl(long double x, int *pexp); [optional]

The function determines a fraction f and base-2 integer i that represent the value
of x. It returns the value f and stores the integer i in *pexp, such that |f| is in the
interval [1/2, 1) or has the value 0, and x equals f*2 i. If x is zero, *pexp is also
Zero.

Idexp, Idexpf, Idexpl

double Tdexp(double x, int exp);

float Tdexp(float x, int exp); [C++ only]

Tong double 1dexp(long double x, int exp); [C++ only]
float ldexpf(float x, int exp); [optional]

long double 1dexpl(long double x, int exp); [optional]

The function returns x*2 exp.

log, logf, logl

double Tog(double x);

float log(float x); [C++ only]

Tong double log(long double x); [C++ only]
float Togf(float x); [optional]

Tong double logl(Tong double x); [optional]

The function returns the natural logarithm of x.

log10, log10f, log10l

double Togl@(double x);

float logl@(float x); [C++ only]

Tong double 1ogl0(Tong double x); [C++ only]
float Togl0f(float x); [optional]

Tong double Togl01(long double x); [optional]

The function returns the base-10 logarithm of x.

modf, modff, modfl

double modf(double x, double *pint);
float modf(float x, float *pint); [C++ only]
long double modf(long double x,

Tong double =*pint); [C++ only]
float modff(float x, float *pint); [optional]
long double modfl(long double x,

Tong double *pint); [optionall

Standard C++ Library

The function determines an integer i plus a fraction f that represent the value of x.
It returns the value f and stores the integer i in *pint, such that:

o f + i ==x,
* |f]| is in the interval [0, 1), and

* both f and i have the same sign as x.

pow, powf, powl

double pow(double x, double y);
float pow(float x, float y); [C++ only]
Tong double pow(Tong double x, long double y); [C++ only]
double pow(double x, int y); [C++ only]
float pow(float x, int y); [C++ only]
Tong double pow(long double x, int y); [C++ only]
float powf(float x, float y); [optional]
Tong double powl(Tong double x,
Tong double y); [optional]

The function returns x raised to the power y, x'y.

sin, sinf, sinl

double sin(double x);

float sin(float x); [C++ only]

Tong double sin(Tong double x); [C++ only]
float sinf(float x); [optional]

Tong double sinl(Tong double x); [optional]

The function returns the sine of x for x in radians. If x is large the value returned
might not be meaningful, but the function reports no error.

sinh, sinhf, sinhl

double sinh(double x);

float sinh(float x); [C++ only]

Tong double sinh(Tong double x); [C++ only]
float sinhf(float x); [optional]

Tong double sinh1(Tong double x); [optional]

The function returns the hyperbolic sine of x.

sqrt, sqrtf, sqrtl

double sqrt(double x);

float sqrt(float x); [C++ only]

Tong double sqrt(long double x); [C++ only]
float sqrtf(float x); [optional]

Tong double sqrtl(long double x); [optional]

The function returns the square root of x, x (1/2).

tan, tanf, tanl

double tan(double x);

float tan(float x); [C++ only]

Tong double tan(lTong double x); [C++ only]
float tanf(float x); [optional]

Tong double tanl(long double x); [optional]

The function returns the tangent of x for x in radians.If x is large the value
returned might not be meaningful, but the function reports no error.

Chapter 13. Standard C Header Files 77

tanh, tanhf, tanhl

doubTe tanh(double x);

float tanh(float x); [C++ only]

long double tanh(Tong double x); [C++ only]
float tanhf(float x); [optionall

Tong double tanhl(long double x); [optional]

The function returns the hyperbolic tangent of x.

<setjmp.h>

#define setjmp(jmp_buf env) <int rvalue>
typedef a-type jmp_buf;
void longjmp(jmp_buf env, int val);
Include the standard header <setjmp.h> to perform control transfers that bypass
the normal function call and return protocol.

jmp_buf
typedef a-type jmp_buf;
The type is the array type a-type of an object that you declare to hold the context
information stored by setjmp and accessed by longjmp.

longjmp
void Tongjmp(jmp_buf env, int val);
The function causes a second return from the execution of setjmp that stored the
current context value in env. If val is nonzero, the return value is val; otherwise, it
is 1.
The function that was active when setjmp stored the current context value must
not have returned control to its caller. An object with dynamic duration that does
not have a volatile type and whose stored value has changed since the current
context value was stored will have a stored value that is indeterminate.

setjimp

#define setjmp(jmp_buf env) <int rvalue>

The macro stores the current context value in the array designated by env and
returns zero. A later call to Tongjmp that accesses the same context value causes
setjmp to again return, this time with a nonzero value. You can use the macro
setjmp only in an expression that:

* has no operators
* has only the unary operator !

* has one of the relational or equality operators (==, !=, <, <=, >, or >=) with the
other operand an integer constant expression

You can write such an expression only as the expression part of a do (page k4,
expression (page bd), for (page 3, if (page), if-else (page R4), switch, (page Rd), or
while (page RY) statement.

78 Standard C++ Library

<signal.h>

#define SIGABRT <integer constant expression >= 0>
#define SIGFPE <integer constant expression >= 0>
#define SIGILL <integer constant expression >= 0>
#define SIGINT <integer constant expression >= 0>
#define SIGSEGV <integer constant expression >= 0>
#define SIGTERM <integer constant expression >= 0>
#define SIG_DFL <address constant expression>
#define SIG_ERR <address constant expression>
#define SIG_IGN <address constant expression>

int raise(int sig);
typedef i-type sig_atomic_t;
void (*signal(int sig, void (*func)(int)))(int);

Include the standard header <signal.h> to specify how the program handles
signals while it executes. A signal can report some exceptional behavior within the
program, such as division by zero. Or a signal can report some asynchronous event
outside the program, such as someone striking an interactive attention key on a
keyboard.

You can report any signal by calling raise (page Bd). Each implementation defines
what signals it generates (if any) and under what circumstances it generates them.
An implementation can define signals other than the ones listed here. The standard
header <signal.h> can define additional macros with names beginning with SIG to
specify the values of additional signals. All such values are integer constant
expressions >= 0.

You can specify a signal handler for each signal. A signal handler is a function that
the target environment calls when the corresponding signal occurs. The target
environment suspends execution of the program until the signal handler returns or
calls Tongjmp (page). For maximum portability, an asynchronous signal handler
should only:

* make calls (that succeed) to the function signal
* assign values to objects of type volatile sig_atomic_t
* return control to its caller

Furthermore, in C++, a signal handler should:
* have extern "C" linkage
* use only language features common to C and C++

If the signal reports an error within the program (and the signal is not
asynchronous), the signal handler can terminate by calling abort (page E), exit
(page E), or longjmp (page E).

SIGABRT

#define SIGABRT <integer constant expression >= 0>

The macro yields the sig argument value for the abort signal.

SIGFPE

#define SIGFPE <integer constant expression >= 0>

The macro yields the sig argument value for the arithmetic error signal, such as
for division by zero or result out of range.

Chapter 13. Standard C Header Files 79

SIGILL

#define SIGILL <integer constant expression >= 0>

The macro yields the sig argument value for the invalid execution signal, such as
for a corrupted function image.

SIGINT

#define SIGINT <integer constant expression >= 0>

The macro yields the sig argument value for the asynchronous interactive
attention signal.

SIGSEGV

#define SIGSEGV <integer constant expression >= 0>

The macro yields the sig argument value for _the invalid storage access signal, such
as for an erroneous lvalue expression (page id).

SIGTERM

#define SIGTERM <integer constant expression >= 0>

The macro yields the sig argument value for the asynchronous termination request
signal.

SIG_DFL

#define SIG_DFL <address constant expression>

The macro yields the func argument value to signal to specify default signal
handling.

SIG_ERR

#define SIG_ERR <address constant expression>

The macro yields the signal return value to specify an erroneous call.

SIG_IGN

#define SIG_IGN <address constant expression>

The macro yields the func argument value to signal to specify that the target
environment is to henceforth ignore the signal.

raise

int raise(int sig);

The function sends the signal sig and returns zero if the signal is successfully
reported.

sig_atomic_t
typedef i-type sig_atomic_t;

80 Standard C++ Library

signal

The type is the integer type i-type for objects whose stored value is altered by an
assigning operator as an atomic operation (an operation that never has its
execution suspended while partially completed). You declare such objects to
communicate between signal handlers (page 79) and the rest of the program.

void (*signal(int sig, void (*func)(int)))(int);

The function specifies the new handling for signal sig and returns the previous

handling, if successful; otherwise, it returns SIG_ERR (page kd).

s If func is SIG_DFL, the target environment commences default handling (as
defined by the implementation).

 If func is SIG_IGN, the target environment ignores subsequent reporting of the
signal.

¢ Otherwise, func must be the address of a function returning void that the target
environment calls with a single int argument. The target environment calls this
function to handle the signal when it is next reported, with the value of the
signal as its argument.

When the target environment calls a signal handler:

* The target environment can block further occurrences of the corresponding
signal until the handler returns, calls Tongjmp, or calls signal for that signal.

* The target environment can perform default handling of further occurrences of
the corresponding signal.

* For signal SIGILL, the target environment can leave handling unchanged for that
signal.

<stdarg.h>

#define va_arg(va_list ap, T) <rvalue of type T>
#define va_end(va_list ap) <void expression>
#define va_start(va_list ap, last-par) <void expression>

typedef do-type va_list;

Include the standard header <stdarg.h> to access the unnamed additional
arguments (arguments with no corresponding parameter declarations) in a function
that accepts a varying number of arguments. To access the additional arguments:

* The program must first execute the macro va_start (page B4) within the body
of the function to initialize an object with context information.

* Subsequent execution of the macro va_arg (page B2), designating the same
context information, yields the values of the additional arguments in order,
beginning with the first unnamed argument. You can execute the macro va_arg
from any function that can access the context information saved by the macro
va_start.

* If you have executed the macro va_start in a function, you must execute the
macro va_end in the same function, designating the same context information,
before the function returns.

You can repeat this sequence (as needed) to access the arguments as often as you
want.

Chapter 13. Standard C Header Files 81

82

You declare an object of type va_list to store context information. va_list can be
an array type, which affects how the program shares context information with
functions that it calls. (The address of the first element of an array is passed, rather
than the object itself.)

For example, here is a function that concatenates an arbitrary number of strings
onto the end of an existing string (assuming that the existing string is stored in an
object large enough to hold the resulting string):

#include <stdarg.h>

void va_cat(char *s, ...)

{
char =t;
va_list ap;

va_start(ap, s);
while (t = va_arg(ap, char *)) null pointer ends Tist

{

s += strlen(s); skip to end
strcpy(s, t); and copy a string
}

va_end(ap);

#define va_arg(va_list ap, T) <rvalue of type T>

The macro yields the value of the next argument in order, specified by the context
information designated by ap. The additional argument must be of object type T
after applying the rules for promoting arguments (page B7) in the absence of a
function prototype.

va_end

#define va_end(va_list ap) <void expression>

The macro performs any cleanup necessary, after processing the context
information designated by ap, so that the function can return.

typedef do-type va_list;

The type is the object type do-type that you declare to hold the context
information initialized by va_start and used by va_arg to access additional
unnamed arguments.

va_start

#define va_start(va_list ap, last-par) <void expression>

The macro stores initial context information in the object designated by ap.
last-par is the name of the last parameter you declare. For example, last-par is b
for the function declared as int f(int a, int b, ...). The last parameter must
not have register storage class, and it must have a type that is not changed by the
translator. It cannot have:

° an array type

* a function type

* type float

Standard C++ Library

* any integer type that changes when promoted
* a reference type [C++ only]

<stddef.h>

NULL

#define NULL <either 0, 0L, or (void *)0> [0 in C++]
#define offsetof(s-type, mbr) <size t constant expression>

typedef si-type ptrdiff_t;
typedef ui-type size_t;
typedef i-type wchar_t; [keyword in C++]

Include the standard header <stddef.h> to define several types and macros that

are of general use throughout the program. The standard header <stddef.h> is
available even in a freestanding implementation (page B).

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant
expression (page E).

offsetof

#define offsetof(s-type, mbr) <size t constant expression>

The macro yields the offset in bytes, of type size_t (page Bd), of member mbr from
the beginning of structure type s-type, where for X of type s-type, &X.mbr is an
address constant expression (page iud).

ptrdiff_t

size t

typedef si-type ptrdiff_t;

The type is the signed integer type si-type of an object that you declare to store
the result of subtracting two pointers.

typedef ui-type size_t;

The type is the unsigned integer type ui-type of an object that you declare to store
the result of the sizeof (page 20) operator.

wchar _t

typedef i-type wchar_t; [keyword in C++]

The type is the integer type i-type of a wide-character constant (page E), such as
L’X". You declare an object of type wchar_t to hold a wide character (page IL4).

<stdio.h>

_IOFBF (page B3) - _IOLBF (page B3) - IONBF (page B3) - BUFSIZ (page B3) -
EOF (page B3) - FILE (page EE) - FILENAME_MAX (page B3) - FOPEN_MAX
(page BA) - L_tmpnam (page Bd) - NULL (age Bd) - SEEK_CUR (age B -
SEEK_END (page Bd) - SEEK_SET (page Bd) - TMP_MAX (page B) - clearerr
(page Bd) - fclose (page BJ) - feof (page B2 - ferror (page Eﬁj fflush (page k) -

Chapter 13. Standard C Header Files 83

84

fgetc (Ege B7) - fgetpos %age BD) - fgets (éage B7) - fopen (page B) - fpos_t
(page BA) - fprintf (page BY) - fputc (page BI) - fputs (page Bd) - fread (page B9) -
freopen (page Bd) - fscanf (page BY) - fseek (page BI) - fsetpos (page ﬁ - ftell
(page BO) - fwrite (page - getc (page Bd) - getchar (page B1) - gets (page B1) -

error (page [01) - printf (page BJ) - putc (page BI) - putchar (page BI) - puts (page

) - remove (page kd) - rename (age bd) - rewind (age BJ) - scanf (age bJ) -
setbuf (page é) - setvbuf (page é) - size_t (page E})’ - sprintf (page - sscanf
(page é; - stderr (page B3) - stdin (age B3) - stdout (age b3) - tmpfile (page kd) -
tmpnam (page kd) - ungetc (page 04) - vfprintf (page &) - vprintf (page B5) -
vsprintf (page bd)

#define _IOFBF <integer constant expression>

#define _IOLBF <integer constant expression>

#define _IONBF <integer constant expression>

#define BUFSIZ <integer constant expression >= 256>
#define EOF <integer constant expression < 0>
#define FILENAME_MAX <integer constant expression > 0>
#define FOPEN_MAX <integer constant expression >= 8>
#define L_tmpnam <integer constant expression > 0>
#define NULL <either 0, 0L, or (void *)0> [0 in C++]
#define SEEK _CUR <integer constant expression>
#define SEEK_END <integer constant expression>
#define SEEK_SET <integer constant expression>
#define TMP_MAX <integer constant expression >= 25>
#define stderr <pointer to FILE rvalue>

#define stdin <pointer to FILE rvalue>

#define stdout <pointer to FILE rvalue>

typedef o-type FILE;
typedef o-type fpos_t;
typedef ui-type size_t;

void clearerr(FILE *stream);

int fclose(FILE *stream);

int feof(FILE *stream);

int ferror(FILE *stream);

int fflush(FILE *stream);

int fgetc(FILE *stream);

int fgetpos(FILE *stream, fpos_t *pos);

char *fgets(char *s, int n, FILE *stream);

FILE =fopen(const char *filename, const char *mode);

int fprintf(FILE *stream, const char *format, ...);

int fputc(int c, FILE xstream);

int fputs(const char *s, FILE *stream);

size_t fread(void *ptr,
size_t size, size_t nelem, FILE *Sstream);

FILE *freopen(const char xfilename, const char *mode,
FILE *stream);

int fscanf(FILE *stream, const char *format, ...);

int fseek(FILE *stream, long offset, int mode);

int fsetpos(FILE *stream, const fpos_t *pos);

long ftel1(FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nelem,
FILE *stream);

int getc(FILE *stream);

int getchar(void);

char xgets(char =*s);

void perror(const char =s);

int printf(const char xformat, ...);

int putc(int c, FILE *stream);

int putchar(int c);

int puts(const char *s);

int remove(const char *filename);

int rename(const char *old, const char #*new);

void rewind(FILE *stream);

int scanf(const char *format, ...);

Standard C++ Library

void setbuf(FILE *stream, char *buf);

int setvbuf(FILE *stream, char *buf, int mode,
size t size);

int sprintf(char *s, const char *format, ...);

int sscanf(const char *s, const char *format, ...);

FILE *tmpfile(void)

char *tmpnam(char *s);

int ungetc(int c, FILE *stream);

int vfprintf(FILE *stream, const char *format,
va_list ap);

int vprintf(const char *format, va_list ap);

int vsprintf(char *s, const char *format, va_list ap);

Include the standard header <stdio.h> so that you can perform input and output
operations on streams and files.

_IOFBF

#define _IOFBF <integer constant expression>

The macro yields the value of the mode argument to setvbuf to indicate full
buffering. (Flush the stream buffer only when it fills.)

_IOLBF

#define _IOLBF <integer constant expression>

The macro yields the value of the mode argument to setvbuf to indicate line
buffering. (Flush the stream buffer at the end of a text line (page E‘).)

_IONBF

#define _IONBF <integer constant expression>

The macro yields the value of the mode argument to setvbuf to indicate no
buffering. (Flush the stream buffer at the end of each write operation.)

BUFSIZ

#define BUFSIZ <integer constant expression >= 256>

The macro yields the size of the stream buffer used by setbuf (page BJ).

EOF
#define EOF <integer constant expression < 0>
The macro yields the return value used to signal the end of a stream or to report
an error condition.

FILE

typedef o-type FILE;
The type is an object type o-type that stores all control information (page Rd) for a

stream. The functions fopen and freopen allocate all FILE objects used by the read
and write functions.

FILENAME_MAX

#define FILENAME_MAX <integer constant expression > 0>

Chapter 13. Standard C Header Files 85

86

The macro yields the maximum size array of characters that you must provide to
hold a filename (page B).

FOPEN_MAX

#define FOPEN_MAX <integer constant expression >= 8>

The macro yields the maximum number of files that the target environment
permits to be simultaneously open (including stderr, stdin, and stdout).

L_tmpnam

#define L_tmpnam <integer constant expression > 0>

The macro yields the number of characters that the target environment requires for
representing temporary filenames created by tmpnam.

NULL

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant
expression (page id).

SEEK_CUR

#define SEEK CUR <integer constant expression>

The macro yields the value of the mode argument to fseek to indicate seeking
relative to the current file-position indicator.

SEEK_END

#define SEEK_END <integer constant expression>

The macro yields the value of the mode argument to fseek to indicate seeking
relative to the end of the file.

SEEK_SET

#define SEEK_SET <integer constant expression>

The macro yields the value of the mode argument to fseek to indicate seeking
relative to the beginning of the file.

TMP_MAX

#define TMP_MAX <integer constant expression >= 25>

The macro yields the minimum number of distinct filenames created by the
function tmpnam.

clearerr

void clearerr(FILE *stream);

The function clears the end-of-file and error indicators for the stream stream.

Standard C++ Library

fclose

int fclose(FILE *stream);

The function closes the file associated with the stream stream. It returns zero if
successful; otherwise, it returns EOF. fclose writes any buffered output to the file,
deallocates the stream buffer if it was automatically allocated, and removes the
association between the stream and the file. Do not use the value of stream in
subsequent expressions.

feof
int feof (FILE *stream);
The function returns a nonzero value if the end-of-file indicator is set for the
stream stream.

ferror
int ferror(FILE *stream);
The function returns a nonzero value if the error indicator is set for the stream
stream.

fflush
int fflush(FILE *stream);
The function writes any buffered output to the file associated with the stream
stream and returns zero if successful; otherwise, it returns EOF. If stream is a null
pointer, fflush writes any buffered output to all files opened for output.

fgetc
int fgetc(FILE *stream);
The function reads the next character c (if present) from the input stream stream,
advances the file-position indicator (if defined), and returns (int) (unsigned
char)c. If the function sets either the end-of-file indicator or the error indicator, it
returns EOF.

fgetpos
int fgetpos(FILE *stream, fpos_t *pos);
The function stores the file-position indicator for the stream stream in *pos and
returns zero if successful; otherwise, the function stores a positive value in errno
(page E) and returns a nonzero value.

fgets

char xfgets(char *s, int n, FILE *stream);

The function reads characters from the input stream stream and stores them in
successive elements of the array beginning at s and continuing until it stores n-1
characters, stores an NL character, or sets the end-of-file or error indicators. If fgets
stores any characters, it concludes by storing a null character in the next element of
the array. It returns s if it stores any characters and it has not set the error

Chapter 13. Standard C Header Files 87

indicator for the stream; otherwise, it returns a null pointer. If it sets the error
indicator, the array contents are indeterminate.

fopen

FILE *fopen(const char *filename, const char *mode);

The function opens the file with the filename filename, associates it with a stream,
and returns a pointer to the object controlling the stream. If the open fails, it
returns a null pointer. The initial characters of mode determine how the program
manipulates %age B1) the stream and whether it interprets the stream as text or
binary (page R1). The initial characters must be one of the following sequences:

e "r" — to open an existing text file for reading

* "w" — to create a text file or to open and truncate an existing text file, for
writing

* "a" — to create a text file or to open an existing text file, for writing. The
file-position indicator is positioned at the end of the file before each write

* "rb" — to open an existing binary file for reading

* "wb" — to create a binary file or to open and truncate an existing binary file, for
writing

* "ab" — to create a binary file or to open an existing binary file, for writing. The
file-position indicator is positioned at the end of the file (possibly after arbitrary
null byte padding) before each write

* "r+" — to open an existing text file for reading and writing

e "wt" — to create a text file or to open and truncate an existing text file, for
reading and writing

* "a+" — to create a text file or to open an existing text file, for reading and
writing. The file-position indicator is positioned at the end of the file before each
write

* "r+b" or "rb+" — to open an existing binary file for reading and writing

e "wth" or "wht+" — to create a binary file or to open and truncate an existing
binary file, for reading and writing

e "atb" or "ab+" — to create a binary file or to open an existing binary file, for
reading and writing. The file-position indicator is positioned at the end of the
file (possibly after arbitrary null byte padding) before each write

If you open a file for both reading and writing, the target environment can open a

binary file instead of a text file. If the file is not interactive, the stream is fully
buffered.

fpos_t
typedef o-type fpos_t;

The type is an object type o-type of an object that you declare to hold the value of
a file-position indicator stored by fsetpos and accessed by fgetpos.

fprintf

int fprintf(FILE *stream, const char *format, ...);

The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and writes each generated character to the

88 Standard C++ Library

stream stream. It returns the number of characters generated, or it returns a
negative value if the function sets the error indicator for the stream.

fputc

int fputc(int c, FILE *stream);

The function writes the character (unsigned char)c to the output stream stream,
advances the file-position indicator (if defined), and returns (int) (unsigned
char)c. If the function sets the error indicator for the stream, it returns EOF.

fputs

int fputs(const char *s, FILE *stream);

The function accesses characters from the C string (page B) s and writes them to
the output stream stream. The function does not write the terminating null
character. It returns a nonnegative value if it has not set the error indicator;
otherwise, it returns EOF.

fread

size_t fread(void *ptr, size_t size, size_t nelem,
FILE *stream);

The function reads characters from the input stream stream and stores them in
successive elements of the array whose first element has the address (char *)ptr
until the function stores sizexnelem characters or sets the end-of-file or error
indicator. It returns n/size, where n is the number of characters it read. If n is not
a multiple of size, the value stored in the last element is indeterminate. If the
function sets the error indicator, the file-position indicator is indeterminate.

freopen

FILE *freopen(const char *filename, const char =*mode,
FILE *stream);

The function closes the file associated with the stream stream (as if by calling
fclose); then it opens the file with the filename filename and associates the file
with the stream stream (as if by calling fopen(filename, mode)). It returns stream
if the open is successful; otherwise, it returns a null pointer.

fscanf

int fscanf(FILE *stream, const char *format, ...);

The function scans formatted text (page E), under the control of the format format
and any additional arguments. It obtains each scanned character from the stream
stream. It returns the number of input items matched and assigned, or it returns
EOF if the function does not store values before it sets the end-of-file or error
indicator for the stream.

fseek
int fseek(FILE *stream, long offset, int mode);

The function sets the file-position indicator for the stream stream (as specified by

offset and mode), clears the end-of-file indicator for the stream, and returns zero if
successful.

Chapter 13. Standard C Header Files 89

90

For a binary stream (page BJ), offset is a signed offset in bytes:

* If mode has the value SEEK_SET, fseek adds offset to the file-position indicator
for the beginning of the file.

* If mode has the value SEEK_CUR, fseek adds offset to the current file-position
indicator.

* If mode has the value SEEK_END, fseek adds offset to the file-position indicator
for the end of the file (possibly after arbitrary null character padding).

fseek sets the file-position indicator to the result of this addition.

For a text stream (page E‘):

* If mode has the value SEEK_SET, fseek sets the file-position indicator to the value
encoded in offset, which is either a value returned by an earlier successful call
to ftell or zero to indicate the beginning of the file.

* If mode has the value SEEK_CUR and offset is zero, fseek leaves the file-position
indicator at its current value.

* If mode has the value SEEK_END and offset is zero, fseek sets the file-position
indicator to indicate the end of the file.

The function defines no other combination of argument values.

fsetpos

int fsetpos(FILE *stream, const fpos_t *pos);

The function sets the file-position indicator for the stream stream to the value
stored in *pos, clears the end-of-file indicator for the stream, and returns zero if
successful. Otherwise, the function stores a positive value in errno and returns a
nonzero value.

ftell

Tong ftell1(FILE *stream);

The function returns an encoded form of the file-position indicator for the stream
stream or stores a positive value in errno and returns the value -1. For a binary
file, a successful return value gives the number of bytes from the beginning of the
file. For a text file, target environments can vary on the representation and range of
encoded file-position indicator values.

fwrite

size_t fwrite(const void *ptr, size t size, size_t nelem,
FILE *stream);

The function writes characters to the output stream stream, accessing values from
successive elements of the array whose first element has the address (char *)ptr
until the function writes size*nelem characters or sets the error indicator. It returns
n/size, where n is the number of characters it wrote. If the function sets the error
indicator, the file-position indicator is indeterminate.

getc
int getc(FILE *stream);

The function has the same effect as fgetc(stream) except that a macro version of
getc can evaluate stream more than once.

Standard C++ Library

getchar

gets

perror

printf

putc

int getchar(void);

The function has the same effect as fgetc(stdin), reading a character from the
stream stdin

char xgets(char =*s);

The function reads characters from the stream stdin and stores them in successive
elements of the array whose first element has the address s until the function reads
an NL character (which is not stored) or sets the end-of-file or error indicator. If
gets reads any characters, it concludes by storing a null character in the next
element of the array. It returns s if it reads any characters and has not set the error
indicator for the stream; otherwise, it returns a null pointer. If it sets the error
indicator, the array contents are indeterminate. The number of characters that gets
reads and stores cannot be limited. Use fgets instead.

void perror(const char *s);

The function writes a line of text to the stream stderr. If s is not a null pointer, the
function first writes the C string s (as if by calling fputs(s, stderr)), followed by
a colon (:) and a space. It then writes the same message C string that is returned
by strerror(errno), converting the value stored in errno, followed by an NL.

int printf(const char xformat, ...);

The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and writes each generated character to the
stream stdout. It returns the number of characters generated, or it returns a
negative value if the function sets the error indicator for the stream.

int putc(int c, FILE *stream);

The function has the same effect as fputc(c, stream) except that a macro version
of putc can evaluate stream more than once.

putchar

puts

int putchar(int c);

The function has the same effect as fputc(c, stdout), writing a character to the
stream stdout.

int puts(const char *s);

Chapter 13. Standard C Header Files 91

92

The function accesses characters from the C string s and writes them to the stream
stdout. The function writes an NL character to the stream in place of the
terminating null character. It returns a nonnegative value if it has not set the error
indicator; otherwise, it returns EOF.

remove

int remove(const char *filename);

The function removes the file with the filename filename and returns zero if
successful. If the file is open when you remove it, the result is implementation
defined. After you remove it, you cannot open it as an existing file.

rename

int rename(const char *o0ld, const char *new);

The function renames the file with the filename o1d to have the filename new and
returns zero if successful. If a file with the filename new already exists, the result is
implementation defined. After you rename it, you cannot open the file with the
filename old.

rewind

void rewind(FILE *stream);

The function calls fseek(stream, 0L, SEEK_SET) and then clears the error indicator
for the stream stream.

scanf

int scanf(const char *format, ...);

The function scans formatted text (page Bd), under the control of the format format
and any additional arguments. It obtains each scanned character from the stream
stdin. It returns the number of input items matched and assigned, or it returns EOF
if the function does not store values before it sets the end-of-file or error indicators
for the stream.

setbuf
void setbuf(FILE *stream, char xbuf);

If buf is not a null pointer, the function calls setvbuf(stream, buf, _ IOFBF,
BUFSIZ), specifying full buffering with _IOFBF and a buffer size of BUFSIZ
characters. Otherwise, the function calls setvbuf(stream, 0, IONBF, BUFSIZ),
specifying no buffering with _IONBF.

setvbuf

int setvbuf(FILE *stream, char *buf, int mode,
size t size);

The function sets the buffering mode for the stream stream according to buf, mode,
and size. It returns zero if successful. If buf is not a null pointer, then buf is the
address of the first element of an array of char of size size that can be used as the
stream buffer. Otherwise, setvbuf can allocate a stream buffer that is freed when
the file is closed. For mode you must supply one of the following values:

» _IOFBF — to indicate full buffering

Standard C++ Library

size t

sprintf

sscanf

stderr

stdin

stdout

e _IOLBF — to indicate line buffering
* _IONBF — to indicate no buffering

You must call setvbuf after you call fopen to associate a file with that stream and
before you call a library function that performs any other operation on the stream.

typedef ui-type size_t;

The type is the unsigned integer type ui-type of an object that you declare to store
the result of the sizeof (page Rd) operator.

int sprintf(char *s, const char xformat, ...);

The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and stores each generated character in
successive locations of the array object whose first element has the address s. The

function concludes by storing a null character in the next location of the array. It
returns the number of characters generated — not including the null character.

int sscanf(const char *s, const char *format, ...);

The function scans formatted text (page Bd), under the control of the format format
and any additional arguments. It accesses each scanned character from successive
locations of the array object whose first element has the address s. It returns the

number of items matched and assigned, or it returns EOF if the function does not
store values before it accesses a null character from the array.

#define stderr <pointer to FILE rvalue>

The macro yields a pointer to the object that controls the standard error output
stream.

#define stdin <pointer to FILE rvalue>

The macro yields a pointer to the object that controls the standard input stream.

#define stdout <pointer to FILE rvalue>

The macro yields a pointer to the object that controls the standard output stream.

tmpfile

FILE *tmpfile(void)
The function creates a temporary binary file with the filename temp-name and then

has the same effect as calling fopen(temp-name, "wb+"). The file temp-name is
removed when the program closes it, either by calling fclose explicitly or at

Chapter 13. Standard C Header Files 93

94

normal program termination. The filename temp-name does not conflict with any
filenames that you create. If the open is successful, the function returns a pointer to
the object controlling the stream; otherwise, it returns a null pointer.

tmpnam

char *tmpnam(char *s);

The function creates a unique filename temp-name and returns a pointer to the
filename. If s is not a null pointer, then s must be the address of the first element
of an array at least of size L_tmpnam. The function stores temp-name in the array and
returns s. Otherwise, if s is a null pointer, the function stores temp-name in a
static-duration array and returns the address of its first element. Subsequent calls
to tmpnam can alter the values stored in this array.

The function returns unique filenames for each of the first TMP_MAX times it is
called, after which its behavior is implementation defined. The filename temp-name
does not conflict with any filenames that you create.

ungetc

int ungetc(int c, FILE *stream);

If ¢ is not equal to EOF, the function stores (unsigned char)c in the object whose
address is stream and clears the end-of-file indicator. If ¢ equals EOF or the store
cannot occur, the function returns EOF; otherwise, it returns (unsigned char)c. A
subsequent library function call that reads a character from the stream stream
obtains this stored value, which is then forgotten.

Thus, you can effectively push back a character to a stream after reading a
character. (You need not push back the same character that you read.) An
implementation can let you push back additional characters before you read the
first one. You read the characters in reverse order of pushing them back to the
stream. You cannot portably:

* push back more than one character
* push back a character if the file-position indicator is at the beginning of the file
» Call ftell for a text file that has a character currently pushed back

A call to the functions fseek, fsetpos, or rewind for the stream causes the stream
to forget any pushed-back characters. For a binary stream, the file-position
indicator is decremented for each character that is pushed back.

viprintf

int vfprintf(FILE *stream, const char *format,
va_list ap);

The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and writes each generated character to the
stream stream. It returns the number of characters generated, or it returns a
negative value if the function sets the error indicator for the stream.

The function accesses additional arguments by using the context information
designated by ap. The program must execute the macro va_start before it calls the
function, and then execute the macro va_end after the function returns.

Standard C++ Library

vprintf

int vprintf(const char *format, va_list ap);

The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and writes each generated character to the
stream stdout. It returns the number of characters generated, or a negative value if
the function sets the error indicator for the stream.

The function accesses additional arguments by using the context information
designated by ap. The program must execute the macro va_start before it calls the
function, and then execute the macro va_end after the function returns.

vsprintf

int vsprintf(char *s, const char *format, va_list ap);

The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and stores each generated character in
successive locations of the array object whose first element has the address s. The
function concludes by storing a null character in the next location of the array. It
returns the number of characters generated — not including the null character.

The function accesses additional arguments by using the context information
designated by ap. The program must execute the macro va_start before it calls the
function, and then execute the macro va_end after the function returns.

<stdlib.h>

EXIT_FAILURE (page Ré) - EXIT_SUCCESS (page k) - MB_CUR_MAX (page bd)
- NULL (page b?) - RAND_MAX (page B7) - abort (page B - abs (page d; atexit
(page B - atof (page b - atoi (page B bg) - atol (page B9) - bsearch (page B bd) -
calloc (page 6) div (page O Rd) - div_t (page hd) - exit (page 6 Rd) . free (page B Rd) .
etenv (page - labs (page b9 - 1div (page e b9) - 1div_t (page flod) - malloc (page
- mblen (page flod) - mbstowcs (%ﬁ) - mbtowc EEage frod) - qsort ﬁge
) - size_t (pa

- rand (pa, - realloc (pa) - srand (p Ega
strtod (page) strtol (page - strtoul (page - system (page [103) -
wchar_t (page flod) - westombs (page flod) - wctomb (page fiod)

#define EXIT_FAILURE <rvalue integer expression>
#define EXIT_SUCCESS <rvalue integer expression>
#define MB_CUR_MAX <rvalue integer expression >= 1>
#define NULL <either 0, OL, or (void *)0> [0 in C++]
#define RAND_MAX <integer constant expression >= 32,767>

typedef T div_t;

typedef T 1div_t;

typedef ui-type size_t;

typedef i-type wchar_t; [keyword in C++]

void abort(void);

double atof(const char =*s);

int atoi(const char *s);

Tong atol(const char *s);

void *calloc(size _t nelem, size t size);
void exit(int status);

void free(void *ptr);

char xgetenv(const char *name);

Tong labs(long i);

1div_t 1div(Tong numer, Tong denom);
void *malloc(size t size);

Chapter 13. Standard C Header Files 95

int mblen(const char *s, size t n);
size_t mbstowcs(wchar_t *wcs, const char *s, size t n);
int mbtowc(wchar_t *pwc, const char *s, size t n);
int rand(void);
void *realloc(void *ptr, size t size);
void srand(unsigned int seed);
double strtod(const char *s, char **endptr);
Tong strtol(const char xs, char xxendptr, int base);
unsigned long strtoul(const char *s, char **endptr,
int base);
int system(const char *s);
size_t wcstombs(char *s, const wchar_t *wcs, size t n);
int wctomb(char *s, wchar_t wchar);

int abs(int i);
long abs(long i); [C++ only]

div_t div(int numer, int denom);
1div_t div(Tong numer, long denom); [C++ only]

extern "C++"

int atexit(void (*func)(void)); [C++ only]
extern "C" [C++ only]

int atexit(void (*func)(void));

extern "C++"
void xbsearch(const void *key, const void =*base,
size_t nelem, size_t size,
int (xcmp) (const void *ck,
const void *ce)); [C++ only]
extern "C" [C++ only]
void *bsearch(const void *key, const void *base,
size_t nelem, size_t size,
int (xcmp) (const void *ck,
const void *ce));

extern "C++"
void gsort(void *base, size t nelem, size t size,
int (*cmp) (const void *el, const void xe2));
[C++ only]
extern "C" [C++ only]
void gsort(void *base, size t nelem, size_ t size,
int (xcmp) (const void *el, const void *e2));

Include the standard header <stdlib.h> to declare an assortment of useful
functions and to define the macros and types that help you use them.

EXIT_FAILURE

#define EXIT_FAILURE <rvalue integer expression>

The macro yields the value of the status argument to exit that reports
unsuccessful termination.

EXIT_SUCCESS

#define EXIT_SUCCESS <rvalue integer expression>

The macro yields the value of the status argument to exit that reports successful
termination.

MB_CUR_MAX

#define MB_CUR_MAX <rvalue integer expression >= 1>

96 Standard C++ Library

The macro yields the maximum number of characters that constitute a multibyte
character (page [d) in the current locale (page b2). Its value is <= MB_LEN_MAX

(page k4.

NULL
#define NULL <either 0, OL, or (void x)0> [0 in C++]
The macro yields a null pointer constant that is usable as an address constant
expression (page IL9).

RAND_MAX
#define RAND_MAX <integer constant expression >= 32,767>
The macro yields the maximum value returned by rand.

abort
void abort(void);
The function calls raise(SIGABRT) (page), which reports the abort signal,
SIGABRT. Default handling for the abort signal is to cause abnormal program
termination and report unsuccessful termination to the target environment.
Whether or not the target environment flushes output streams, closes open files, or
removes temporary files on abnormal termination is implementation defined. If
you specify handling that causes raise to return control to abort, the function calls
exit (EXIT_FAILURE), to report unsuccessful termination with EXIT_FAILURE. abort
never returns control to its caller.

abs
int abs(int 1);
long abs(long i); [C++ only]
The function returns the absolute value of i, |i|. The version that accepts a long
argument behaves the same as 1abs

atexit
extern "C++"

int atexit(void (*func)(void)); [C++ only]
extern "C" [C++ only]
int atexit(void (xfunc)(void));

The function registers the function whose address is func to be called by exit (or
when main (page E) returns) and returns zero if successful. The functions are called
in reverse order of registry. You can register at least 32 functions.
Furthermore, in C++, if control leaves a called function because it fails to handle a
thrown exception, terminate is called.

atof

double atof(const char *s);

The function converts the initial characters of the string s to an equivalent value x

of type double and then returns x. The conversion is the same as for strtod(s, 0),
except that a value is not necessarily stored in errno (page Bd) if a conversion error
occurs.

Chapter 13. Standard C Header Files 97

98

atoi

int atoi(const char *s);

The function converts the initial characters of the string s to an equivalent value x
of type int and then returns x. The conversion is the same as for (int)strtol
(page E) (s, 0, 10), except that a value is not necessarily stored in errno if a
conversion error occurs.

atol
Tong atol(const char =*s);
The function converts the initial characters of the string s to an equivalent value x
of type long and then returns x. The conversion is the same as for strtol(s, 0,
10), except that a value is not necessarily stored in errno if a conversion error
occurs.
bsearch
extern "C++"
void *bsearch(const void *key, const void *base,
size_t nelem, size t size,
int (*cmp) (const void =*ck,
const void *ce)); [C++ only]
extern "C" [C++ only]
void xbsearch(const void *key, const void =*base,
size_t nelem, size t size,
int (*cmp) (const void =*ck,
const void xce));
The function searches an array of ordered values and returns the address of an
array element that equals the search key key (if one exists); otherwise, it returns a
null pointer. The array consists of nelem elements, each of size bytes, beginning
with the element whose address is base.
bsearch calls the comparison function whose address is cmp to compare the search
key with elements of the array. The comparison function must return:
* a negative value if the search key ck is less than the array element ce
* zero if the two are equal
* a positive value if the search key is greater than the array element
bsearch assumes that the array elements are in ascending order according to the
same comparison rules that are used by the comparison function.
calloc

div

void *calloc(size_t nelem, size_t size);

The function allocates an array object containing nelem elements each of size size,
stores zeros in all bytes of the array, and returns the address of the first element of
the array if successful; otherwise, it returns a null pointer. You can safely convert
the return value to an object pointer of any type whose size in bytes is not greater
than size.

div_t div(int numer, int denom);
1div_t div(long numer, long denom); [C++ only]

Standard C++ Library

The function divides numer by denom and returns both quotient and remainder in
the structure div_t (or 1div_t) result x, if the quotient can be represented. The
structure member x.quot is the algebraic quotient truncated toward zero. The
structure member x.rem is the remainder, such that numer == x.quot*denom +
X.rem.

div_t

typedef struct {
int quot, rem;
}odiv_t;

The type is the structure type returned by the function div. The structure contains
members that represent the quotient (quot) and remainder (rem) of a signed integer
division with operands of type int. The members shown above can occur in either
order.

exit

void exit(int status);

The function calls all functions registered by atexit, closes all files, and returns
control to the target environment. If status is zero or EXIT_SUCCESS, the program
reports successful termination. If status is EXIT_FAILURE, the program reports
unsuccessful termination. An implementation can define additional values for
status.

free

void free(void *ptr);

If ptr is not a null pointer, the function deallocates the object whose address is ptr;
otherwise, it does nothing. You can deallocate only objects that you first allocate by
calling calloc, malloc, or realloc.

getenv

char *getenv(const char *name);

The function searches an environment list, which each implementation defines, for
an entry whose name matches the string name. If the function finds a match, it
returns a pointer to a static-duration object that holds the definition associated
with the target environment name. Otherwise, it returns a null pointer. Do not alter
the value stored in the object. If you call getenv again, the value stored in the
object can change. No target environment names are required of all environments.

labs
Tong labs(long 1i);

The function returns the absolute value of i, |i|, the same as abs.
Idiv
1div_t 1div(Tong numer, Tong denom);

The function divides numer by denom and returns both quotient and remainder in
the structure 1div_t result x, if the quotient can be represented. The structure

Chapter 13. Standard C Header Files 99

member x.quot is the algebraic quotient truncated toward zero. The structure
member x.rem is the remainder, such that numer == x.quot*denom + x.rem.

div_t

typedef struct {
long quot, rem;
} Tdiv_t;

The type is the structure type returned by the function 1div. The structure contains
members that represent the quotient (quot) and remainder (rem) of a signed integer
division with operands of type long. The members shown above can occur in either
order.

malloc

void *malloc(size_t size);

The function allocates an object of size size, and returns the address of the object
if successful; otherwise, it returns a null pointer. The values stored in the object are
indeterminate. You can safely convert the return value to an object pointer of any
type whose size is not greater than size.

mblen

int mblen(const char *s, size t n);

If s is not a null pointer, the function returns the number of bytes in the multibyte
string s that constitute the next multibyte character, or it returns -1 if the next n (or
the remaining) bytes do not constitute a valid multibyte character. mblen does not
include the terminating null in the count of bytes. The function can use a
conversion state (page [Lf) stored in an internal static-duration object to determine
how to interpret the multibyte string.

If s is a null pointer and if multibyte characters have a state-dependent encoding
(page fld) in the current locale (page k), the function stores the initial conversion
state (page fid) in its internal static-duration object and returns nonzero; otherwise,
it returns zero.

mbstowcs

size t mbstowcs(wchar_t *wcs, const char *s, size t n);

The function stores a wide character string, in successive elements of the array
whose first element has the address wcs, by converting, in turn, each of the
multibyte characters in the multibyte string s. The string begins in the initial
conversion state. The function converts each character as if by calling mbtowc
(except that the internal conversion state stored for that function is unaffected). It
stores at most n wide characters, stopping after it stores a null wide character. It
returns the number of wide characters it stores, not counting the null wide
character, if all conversions are successful; otherwise, it returns -1.

mbtowc
int mbtowc(wchar_t *pwc, const char *s, size t n);
If s is not a null pointer, the function determines x, the number of bytes in the
multibyte string s that constitute the next multibyte character. (x cannot be greater
than MB_CUR_MAX (page).) If pwc is not a null pointer, the function converts

100 Standard C++ Library

gsort

rand

realloc

the next multibyte character to its corresponding wide-character value and stores
that value in *pwc. It then returns x, or it returns -1 if the next n or the remaining
bytes do not constitute a valid multibyte character. mbtowc does not include the
terminating null in the count of bytes. The function can use a conversion state
stored in an internal static-duration object to determine how to interpret the
multibyte string.

If s is a null pointer and if multibyte characters have a state-dependent encoding
(page fld) in the current locale, the function stores the initial conversion state in its
internal static-duration object and returns nonzero; otherwise, it returns zero.

extern "C++"
void gsort(void *base, size t nelem, size t size,
int (xcmp) (const void *el, const void *e2));
[C++ only]
extern "C" [C++ only]
void gsort(void *base, size_t nelem, size t size,
int (xcmp) (const void *el, const void *e2));

The function sorts, in place, an array consisting of nelem elements, each of size
bytes, beginning with the element whose address is base. It calls the comparison
function whose address is cmp to compare pairs of elements. The comparison
function must return a negative value if el is less than e2, zero if the two are
equal, or a positive value if el is greater than e2. Two array elements that are
equal can appear in the sorted array in either order.

int rand(void);

The function computes a pseudo-random number x based on a seed value stored
in an internal static-duration object, alters the stored seed value, and returns x. x is
in the interval [0, RAND_MAX].

void *realloc(void *ptr, size t size);

The function allocates an object of size size, possibly obtaining initial stored values
from the object whose address is ptr. It returns the address of the new object if
successful; otherwise, it returns a null pointer. You can safely convert the return
value to an object pointer of any type whose size is not greater than size.

If ptr is not a null pointer, it must be the address of an existing object that you
first allocate by calling calloc, malloc, or realloc. If the existing object is not
larger than the newly allocated object, realloc copies the entire existing object to
the initial part of the allocated object. (The values stored in the remainder of the
object are indeterminate.) Otherwise, the function copies only the initial part of the
existing object that fits in the allocated object. If realloc succeeds in allocating a
new object, it deallocates the existing object. Otherwise, the existing object is left
unchanged.

If ptr is a null pointer, the function does not store initial values in the newly
created object.

Chapter 13. Standard C Header Files 101

102

size t

srand

strtod

strtol

typedef ui-type size_t;

The type is the unsigned integer type ui-type of an object that you declare to store
the result of the sizeof (page Rd) operator.

void srand(unsigned int seed);

The function stores the seed value seed in a static-duration object that rand uses to
compute a pseudo-random number. From a given seed value, that function always
generates the same sequence of return values. The program behaves as if the target
environment calls srand(1) at program startup.

double strtod(const char *s, char **endptr);

The function converts the initial characters of the string s to an equivalent value x
of type double. If endptr is not a null pointer, the function stores a pointer to the
unconverted remainder of the string in *endptr. The function then returns x.

The initial characters of the string s must consist of zero or more characters for
which isspace (page Bg) returns nonzero, followed by the longest sequence of one
or more characters that match the pattern for strtod shown in the diagram.

strtod
ratiarm

Here, a point is the decimal-point (page @) character for the current locale. (It is
the dot (.) in the “C” locale.) If the string s matches this pattern, its equivalent
value is the decimal integer represented by any digits to the left of the point, plus
the decimal fraction represented by any digits to the right of the point, times 10
raised to the signed decimal integer power that follows an optional e or E. A
leading minus sign negates the value. In locales other than the “C” locale, strtod
can define additional patterns as well.

If the string s does not match a valid pattern, the value stored in *endptr is s, and
x is zero. If a range error (page E3) occurs, strtod behaves exactly as the functions
declared in <math.h> (page [Z1).

Tong strtol(const char xs, char xxendptr, int base);

The function converts the initial characters of the string s to an equivalent value x
of type long. If endptr is not a null pointer, it stores a pointer to the unconverted
remainder of the string in *endptr. The function then returns x.

Standard C++ Library

The initial characters of the string s must consist of zero or more characters for
which isspace returns nonzero, followed by the longest sequence of one or more
characters that match the pattern for strtol shown in the diagram.

+ bt
strtol
] N patiern
> a- }"
&< |

The function accepts the sequences 0x or 0X only when base equals zero or 16. The
letters a-z or A-Z represent digits in the range [10, 36). If base is in the range [2,
36], the function accepts only digits with values less than base. If base == 0, then a
leading Ox or OX (after any sign) indicates a hexadecimal (base 16) integer, a
leading 0 indicates an octal (base 8) integer, and any other valid pattern indicates a
decimal (base 10) integer.

H W

If the string s matches this pattern, its equivalent value is the signed integer of the
appropriate base represented by the digits that match the pattern. (A leading
minus sign negates the value.) In locales other than the “C” locale, strtol can
define additional patterns as well.

If the string s does not match a valid pattern, the value stored in *endptr is s, and
x is zero. If the equivalent value is too large to represent as type long, strtol stores
the value of ERANGE (page Ed) in errno and returns either LONG_MAX (page
Bd), if x is positive, or LONG_MIN (page Bd), if x is negative.

strtoul

unsigned long strtoul(const char *s, char **endptr,
int base);

The function converts the initial characters of the string s to an equivalent value x
of type unsigned long. If endptr is not a null pointer, it stores a pointer to the
unconverted remainder of the string in *endptr. The function then returns x.

strtoul converts strings exactly as does strtol, but reports a range error only if
the equivalent value is too large to represent as type unsigned long. In this case,
strtoul stores the value of ERANGE (page Ed) in errno and returns ULONG_MAX

(page E2).

system

int system(const char =*s);

If s is not a null pointer, the function passes the string s to be executed by a
command processor, supplied by the target environment, and returns the status
reported by the command processor. If s is a null pointer, the function returns
nonzero only if the target environment supplies a command processor. Each
implementation defines what strings its command processor accepts.

wchar _t
typedef i-type wchar_t; [keyword in C++]

The type is the integer type i-type of a wide-character constant (page id), such as
L’X". You declare an object of type wchar_t to hold a wide character (page [L4).

Chapter 13. Standard C Header Files 103

wcstombs

size_t wcstombs(char *s, const wchar_t *wcs, size_t n);

The function stores a multibyte string, in successive elements of the array whose
first element has the address s, by converting in turn each of the wide characters
in the string wcs. The multibyte string begins in the initial conversion state. The
function converts each wide character as if by calling wctomb (except that the
conversion state (page E) stored for that function is unaffected). It stores no more
than n bytes, stopping after it stores a null byte. It returns the number of bytes it
stores, not counting the null byte, if all conversions are successful; otherwise, it
returns -1.

wctomb

int wctomb(char *s, wchar_t wchar);

If s is not a null pointer, the function determines x, the number of bytes needed to
represent the multibyte character corresponding to the wide character wchar. x
cannot exceed MB_CUR_MAX. The function converts wchar to its corresponding
multibyte character, which it stores in successive elements of the array whose first
element has the address s. It then returns x, or it returns -1 if wchar does not
correspond to a valid multibyte character. wctomb includes the terminating null
byte in the count of bytes. The function can use a conversion state stored in a
static-duration object to determine how to interpret the multibyte character string.

If s is a null pointer and if multibyte characters have a state-dependent encoding
(page fld) in the current locale, the function stores the initial conversion state in its
static-duration object and returns nonzero; otherwise, it returns zero.

<string.h>

NULL (page [109) - memchr (page [103) - mememp (page [105) - memcpy (page [10d)
. memmove (page [[06) - memset (age flod) - size t (age fod) - strcat (page [L0d) -
strchr (page E?E% strcmp (page [L06) - strcoll (page E&) - strcpy (page [107) -
strcspn (page flod) - strerror (page flod) - strlen (page flod) - strncat (page [107) -
strncmp (pagfm@) - strncpy (page frod) - strpbrk (page flod) - strrchr (page fi0d) -
strspn (page [108) - strstr (page - strtok (page [109) - strxfrm (page

#define NULL <either 0, OL, or (void x)0> [0 in C++]

typedef ui-type size_t;

int memcmp(const void *sl, const void *s2, size t n);
void *memcpy(void *sl, const void *s2, size t n);
void *memmove(void *sl, const void *s2, size_t n);
void *memset(void *s, int c, size t n);

char *strcat(char *sl, const char *s2);

int strcmp(const char *sl, const char *s2);

int strcoll(const char *sl, const char *s2);

char *strcpy(char *s1, const char *s2);

size_t strcspn(const char *sl, const char *s2);

char *strerror(int errcode);

size_t strlen(const char *s);

char *strncat(char *sl, const char *s2, size t n);
int strncmp(const char *sl, const char *s2, size_t n);
char *strncpy(char *sl, const char *s2, size t n);
size_t strspn(const char *sl, const char *s2);

char =strtok(char *sl, const char *s2);

size_t strxfrm(char *sl, const char *s2, size_t n);

104 Standard C++ Library

NULL

void *memchr(const void *s, int c,
size_t n); [not in C++]
const void *memchr(const void *s, int c,
size_t n); [C++ only]
void *memchr(void *s, int c, size_t n); [C++ only]

char *strchr(const char *s, int c); [not in C++]
const char *strchr(const char *s, int c); [C++ only]
char *strchr(char *s, int c); [C++ only]

char xstrpbrk(const char *sl,
const char *s2); [not in C++]
const char *strpbrk(const char *sl,
const char *s2); [C++ only]
char *strpbrk(char *sl, const char *s2); [C++ only]

char *strrchr(const char *s, int c); [not in C++]
const char *strrchr(const char *s, int c); [C++ only]
char xstrrchr(char *s, int c); [C++ only]

char =strstr(const char =*sl,
const char *s2); [not in C++]
const char *strstr(const char =*sl,
const char *s2); [C++ only]
char xstrstr(char *sl, const char *s2); [C++ only]

Include the standard header <string.h> to declare a number of functions that help
you manipulate C strings (page @) and other arrays of characters.

#define NULL <either 0, 0L, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant
expression (page id).

memchr

void *memchr(const void *s, int c,
size_t n); [not in C++]
const void *memchr(const void *s, int c,
size_t n); [C++ only]
void *memchr(void *s, int c, size_t n); [C++ only]

The function searches for the first element of an array of unsigned char, beginning
at the address s with size n, that equals (unsigned char)c. If successful, it returns
the address of the matching element; otherwise, it returns a null pointer.

memcmp

int memcmp(const void *sl, const void *s2, size_t n);

The function compares successive elements from two arrays of unsigned char,
beginning at the addresses s1 and s2 (both of size n), until it finds elements that
are not equal:

* If all elements are equal, the function returns zero.

* If the differing element from sl is greater than the element from s2, the function
returns a positive number.

* Otherwise, the function returns a negative number.

Chapter 13. Standard C Header Files 105

memcpy

void *memcpy(void *sl, const void *s2, size_t n);

The function copies the array of char beginning at the address s2 to the array of
char beginning at the address s1 (both of size n). It returns s1. The elements of the
arrays can be accessed and stored in any order.

memmove

void *memmove(void *sl, const void *s2, size_t n);

The function copies the array of char beginning at s2 to the array of char beginning
at s1 (both of size n). It returns sl. If the arrays overlap, the function accesses each
of the element values from s2 before it stores a new value in that element, so the
copy is not corrupted.

memset

void *memset(void *s, int c, size_t n);

The function stores (unsigned char)c in each of the elements of the array of
unsigned char beginning at s, with size n. It returns s.

size t
typedef ui-type size_t;
The type is the unsigned integer type ui-type of an object that you declare to store
the result of the sizeof (page) operator.
strcat
char *strcat(char *sl, const char *s2);
The function copies the string s2, including its terminating null character, to
successive elements of the array of char that stores the string s1, beginning with
the element that stores the terminating null character of sl. It returns s1.
strchr
char *strchr(const char *s, int c); [not in C++]
const char xstrchr(const char *s, int c); [C++ only]
char xstrchr(char *s, int c); [C++ only]
The function searches for the first element of the string s that equals (char)c. It
considers the terminating null character as part of the string. If successful, the
function returns the address of the matching element; otherwise, it returns a null
pointer.
strcmp

int strecmp(const char *sl, const char *s2);

The function compares successive elements from two strings, s1 and s2, until it
finds elements that are not equal.

* If all elements are equal, the function returns zero.

* If the differing element from s1 is greater than the element from s2 (both taken
as unsigned char), the function returns a positive number.

106 Standard C++ Library

¢ Otherwise, the function returns a negative number.

strcoll
int strcoll(const char *sl, const char *s2);
The function compares two strings, sl and s2, using a comparison rule that
depends on the current locale (page k). 1f s1 compares greater than s2 by this
rule, the function returns a positive number. If the two strings compare equal, it
returns zero. Otherwise, it returns a negative number.

strcpy
char xstrcpy(char *s1, const char *s2);
The function copies the string s2, including its terminating null character, to
successive elements of the array of char whose first element has the address s1. It
returns sl.

strcspn
size_t strcspn(const char *sl, const char *s2);
The function searches for the first element s1[i] in the string s1 that equals any
one of the elements of the string s2 and returns i. Each terminating null character
is considered part of its string.

strerror
char *strerror(int errcode);
The function returns a pointer to an internal static-duration object containing the
message string corresponding to the error code errcode. The program must not
alter any of the values stored in this object. A later call to strerror can alter the
value stored in this object.

strlen
size t strlen(const char =*s);
The function returns the number of characters in the string s, not including its
terminating null character.

strncat
char *strncat(char *sl, const char *s2, size t n);
The function copies the string s2, not including its terminating null character, to
successive elements of the array of char that stores the string s1, beginning with
the element that stores the terminating null character of s1. The function copies no
more than n characters from s2. It then stores a null character, in the next element
to be altered in s1, and returns s1.

strncmp

int strncmp(const char *sl, const char *s2, size t n);

Chapter 13. Standard C Header Files 107

108

The function compares successive elements from two strings, s1 and s2, until it
finds elements that are not equal or until it has compared the first n elements of
the two strings.

* If all elements are equal, the function returns zero.

* If the differing element from sl is greater than the element from s2 (both taken
as unsigned char), the function returns a positive number.

e Otherwise, it returns a negative number.

strncpy

char *strncpy(char *sl, const char *s2, size t n);

The function copies the string s2, not including its terminating null character, to
successive elements of the array of char whose first element has the address s1. It
copies no more than n characters from s2. The function then stores zero or more
null characters in the next elements to be altered in s1 until it stores a total of n
characters. It returns s1.

strpbrk

char *strpbrk(const char =*sl,

const char *s2); [not in C++]
const char *strpbrk(const char *sl,

const char *s2); [C++ only]
char xstrpbrk(char =sl,

const char *s2); [C++ only]

The function searches for the first element s1[i] in the string s1 that equals any
one of the elements of the string s2. It considers each terminating null character as
part of its string. If s1[i] is not the terminating null character, the function returns
&s1[i]; otherwise, it returns a null pointer.

strrchr

strspn

strstr

char *strrchr(const char *s, int c); [not in C++]
const char *strrchr(const char *s, int c); [C++ only]
char *strrchr(char *s, int c); [C++ only]

The function searches for the last element of the string s that equals (char)c. It
considers the terminating null character as part of the string. If successful, the
function returns the address of the matching element; otherwise, it returns a null
pointer.

size_t strspn(const char *sl, const char *s2);

The function searches for the first element s1[i] in the string s1 that equals none of
the elements of the string s2 and returns i. It considers the terminating null
character as part of the string s1 only.

char *strstr(const char =sl,
const char *s2); [not in C++]
const char *strstr(const char =*sl,
const char xs2); [C++ only]
char xstrstr(char *sl, const char *s2); [C++ only]

Standard C++ Library

The function searches for the first sequence of elements in the string s1 that
matches the sequence of elements in the string s2, not including its terminating
null character. If successful, the function returns the address of the matching first
element; otherwise, it returns a null pointer.

strtok

char =strtok(char *sl, const char *s2);

If s1 is not a null pointer, the function begins a search of the string s1. Otherwise,

it begins a search of the string whose address was last stored in an internal

static-duration object on an earlier call to the function, as described below. The
search proceeds as follows:

1. The function searches the string for begin, the address of the first element that
equals none of the elements of the string s2 (a set of token separators). It
considers the terminating null character as part of the search string only.

2. If the search does not find an element, the function stores the address of the
terminating null character in the internal static-duration object (so that a
subsequent search beginning with that address will fail) and returns a null
pointer. Otherwise, the function searches from begin for end, the address of the
first element that equals any one of the elements of the string s2. It again
considers the terminating null character as part of the search string only.

3. If the search does not find an element, the function stores the address of the
terminating null character in the internal static-duration object. Otherwise, it
stores a null character in the element whose address is end. Then it stores the
address of the next element after end in the internal static-duration object (so
that a subsequent search beginning with that address will continue with the
remaining elements of the string) and returns begin.

strxfrm

size t strxfrm(char *sl, const char *s2, size t n);

The function stores a string in the array of char whose first element has the address
s1. It stores no more than n characters, including the terminating null character, and
returns the number of characters needed to represent the entire string, not
including the terminating null character. If the value returned is n or greater, the
values stored in the array are indeterminate. (If n is zero, s1 can be a null pointer.)

strxfrm generates the string it stores from the string s2 by using a transformation
rule that depends on the current locale (page b7). For example, if x is a
transformation of sl and y is a transformation of s2, then strcmp(x, y) returns the
same value as strcoll(sl, s2).

<time.h>

#define CLOCKS_PER_SEC <integer constant expression > 0>
#define NULL <either 0, 0L, or (void *)0> [0 in C++]

typedef a-type clock_t;
typedef ui-type size_t;
typedef a-type time_t;
struct tm;

char xasctime(const struct tm *tptr);
clock_t clock(void);

char xctime(const time_t *tod);
double difftime(time t tl, time_t t0);

Chapter 13. Standard C Header Files 109

110

struct tm xgmtime(const time_t *tod);

struct tm *Tocaltime(const time_t *tod);

time_t mktime(struct tm *tptr);

size_t strftime(char *s, size_t n, const char *format,
const struct tm *tptr);

time_t time(time_t *tod);

Include the standard header <time.h> to declare several functions that help you

manipulate times. The diagram summarizes the functions and the object types that
they convert between.

clock

difftime ot ime

aschtime
strftime

ot ime
localtime

The functions share two static-duration objects that hold values computed by the
functions:

* a time string of type array of char

* a time structure of type struct tm

A call to one of these functions can alter the value that was stored earlier in a
static-duration object by another of these functions.

CLOCKS_PER_SEC

#define CLOCKS_PER_SEC <integer constant expression > 0>

The macro yields the number of clock ticks, returned by clock, in one second.

NULL
#define NULL <either 0, 0L, or (void *)0> [0 in C++]
The macro yields a null pointer constant that is usable as an address constant
expression (page [L9).

asctime
char *asctime(const struct tm xtptr);
The function stores in the static-duration time string a 26-character
English-language representation of the time encoded in *tptr. It returns the
address of the static-duration time string. The text representation takes the form:
Sun Dec 2 06:55:15 1979\n\0

clock

clock_t clock(void);
The function returns the number of clock ticks of elapsed processor time, counting

from a time related to program startup (page f), or it returns -1 if the target
environment cannot measure elapsed processor time.

Standard C++ Library

clock_t

typedef a-type clock_t;

The type is the arithmetic type a-type of an object that you declare to hold the
value returned by clock, representing elapsed processor time.

ctime
char *ctime(const time_t *tod);
The function converts the calendar time in *tod to a text representation of the local
time in the static-duration time string. It returns the address of that string. It is
equivalent to asctime(localtime(tod)).

difftime
double difftime(time_t tl, time_t t0);
The function returns the difference t1 - t0, in seconds, between the calendar time
t0 and the calendar time t1.

gmtime
struct tm *gmtime(const time_t *tod);
The function stores in the static-duration time structure an encoding of the
calendar time in *tod, expressed as Universal Time Coordinated, or UTC. (UTC
was formerly Greenwich Mean Time, or GMT). It returns the address of that
structure.

localtime
struct tm *localtime(const time_t *tod);
The function stores in the static-duration time structure an encoding of the
calendar time in *tod, expressed as local time. It returns the address of that
structure.

mktime
time_t mktime(struct tm *tptr);
The function alters the values stored in *tptr to represent an equivalent encoded
local time, but with the values of all members within their normal ranges. It then
determines the values tptr->wday and tptr->yday from the values of the other
members. It returns the calendar time equivalent to the encoded time, or it returns
a value of -1 if the calendar time cannot be represented.

size t
typedef ui-type size_t;
The type is the unsigned integer type ui-type of an object that you declare to store
the result of the sizeof (page Rd) operator.

strftime

size t strftime(char *s, size t n, const char *format,
const struct tm *tptr);

Chapter 13. Standard C Header Files 111

The function generates formatted text, under the control of the format format and
the values stored in the time structure *tptr. It stores each generated character in
successive locations of the array object of size n whose first element has the
address s. The function then stores a null character in the next location of the
array. It returns x, the number of characters generated, if x < n; otherwise, it
returns zero, and the values stored in the array are indeterminate.

For each multibyte character other than % in the format, the function stores that
multibyte character in the array object. Each occurrence of % followed by another
character in the format is a conversion specifier. For each conversion specifier, the
function stores a replacement character sequence.

The following table lists all conversion specifiers defined for strftime. Example
replacement character sequences in parentheses follow each conversion specifier.
All examples are for the “C” locale, using the date and time Sunday, 2 December
1979 at 06:55:15 AM EST.

%a abbreviated weekday name (Sun)

%A full weekday name (Sunday)

%b abbreviated month name (Dec)

%B full month name (December)

%C date and time (Dec 2 06:55:15 1979)
%d day of the month (02)

%H hour of the 24-hour day (06)

%1 hour of the 12-hour day (06)

%3 day of the year, from 001 (335)

%m month of the year, from 01 (12)

%M minutes after the hour (55)

%p AM/PM indicator (AM)

%S seconds after the minute (15)

%U Sunday week of the year, from 00 (48)
%W day of the week, from 0 for Sunday (6)
%W Monday week of the year, from 00 (47)
%X date (Dec 2 1979)

%X time (06:55:15)

%y year of the century, from 00 (79)
year (1979)

time zone name, if any (EST)

percent character %

A O o°
NN =<

The current locale category LC_TIME (page kd) can affect these replacement
character sequences.

time
time_t time(time_t *tod);
If tod is not a null pointer, the function stores the current calendar time in *tod.
The function returns the current calendar time, if the target environment can
determine it; otherwise, it returns -1.

time_t

typedef a-type time_t;

The type is the arithmetic type a-type of an object that you declare to hold the
value returned by time. The value represents calendar time.

112 Standard C++ Library

tm

struct tm {
int tm_sec; seconds after the minute (from 0)
int tm_min; minutes after the hour (from 0)
int tm_hour; hour of the day (from 0)
int tm_mday; day of the month (from 1)
int tm_mon; month of the year (from 0)
int tm_year; years since 1900 (from 0)
int tm_wday; days since Sunday (from 0)
int tm_yday; day of the year (from 0)
int tm_isdst; Daylight Saving Time flag

}s

struct tm contains members that describe various properties of the calendar time.
The members shown above can occur in any order, interspersed with additional
members. The comment following each member briefly describes its meaning.

The member tm_isdst contains:
* a positive value if Daylight Saving Time is in effect
* zero if Daylight Saving Time is not in effect

* a negative value if the status of Daylight Saving Time is not known (so the
target environment should attempt to determine its status)

<wchar.h>
[Added with Amendment 1 (page E)]

btowc (page TE fgetwc (page f1s) - fgetws (page fi1g) - fputwce (page fi1g) -
fputws (page fi1d) - fwide (page f1d) - fwprintf (page fl1g) - fwscanf (page fi1d) -
getwc (page g . getwchar (page f1d) - mbrlen (page 1D - mbrtowc (page) -
mbsinit (page fi1d) . mbsrtowcs (page fl1d) - mbstate_t (page flud) - NULL (page
TE)R putwc (page fld) - putwchar (page fi1d) - size t (page fi1d) - swprintf (page

) - swscanf (page f1d) - tm (pageﬁ) - ungetwc (pagegm) - viwprintf (page
fi2d) - vswprintf (page fi2d) - vwprintf (page 12d) - WCHAR_MAX (page I15) -
WCHAR_MIN (page fi1d) - wehar_t (page 0121) - wertomb (page EII)) wcscat
(page fi21) - weschr (page fi2d) . wcescmp (page f2d) - wescoll (page 22 - wcscpy
(page f22) - wesespn (page f2d) - wesftime (page 22 - weslen (page fi23) .
wesncat (page [123) - wesnemp (page fi23) - wcesncpy (page fi2d) . wespbrk (page

- wesrchr (page [124) - wesrtombs (page [124) - wesspn (page [124) - wesstr

(page fi24d) - westod (page fi24) - westok (page fr2d) - westol (page fi25) - westoul
(page fi26) - wesxfrm (page fi2d) - wctob (page fi2d) - WEOF (page fi1g) - wint_t
(page 126) - wmemchr (page [126) - wmemcemp (page - wmemcpy (page [27) -
wmemmove (page [127) - wmemset (page EE) wprintf (page [27) - wscanf (page

#define NULL <either 0, 0L, or (void *)0> [0 in C++]
#define WCHAR_MAX <#if expression >= 127>

#define WCHAR_MIN <#if expression <= 0>

#define WEOF <wint_t constant expression>

typedef o-type mbstate_t;

typedef ui-type size_t;

typedef i-type wchar_t; [keyword in C++]
typedef i_type wint_t;

struct tm;

wint_t fgetwc(FILE *stream);

wchar_t *fgetws(wchar_t *s, int n, FILE *stream);
wint_t fputwc(wchar_t c, FILE *stream);

Chapter 13. Standard C Header Files 113

int fputws(const wchar_t *s, FILE *stream);

int fwide(FILE *stream, int mode);

int fwprintf(FILE *stream, const wchar_t *format, ...);
int fwscanf(FILE *stream, const wchar_t *format, ...);
wint_t getwc(FILE *stream);

wint_t getwchar(void);

wint_t putwc(wchar_t c, FILE *stream);

wint_t putwchar(wchar_t c);

int swprintf(wchar_t *s, size t n,

const wchar_t *=format, ...);
int swscanf(const wchar_t =s,
const wchar_t *format, ...);

wint_t ungetwc(wint_t c, FILE *stream);

int vfwprintf(FILE *stream, const wchar_t *format,
va_list arg);

int vswprintf(wchar_t *s, size t n,
const wchar_t *format, va_list arg);

int vwprintf(const wchar_t *format, va_list arg);

int wprintf(const wchar_t *format, ...);

int wscanf(const wchar_t *format, ...);

size t wesftime(wchar_t *s, size_t maxsize,
const wchar_t *format, const struct tm *timeptr);

wint_t btowc(int c);

size_t mbrlen(const char *s, size t n, mbstate t *ps);

size_t mbrtowc(wchar_t *pwc, const char *s, size_t n,
mbstate_t *ps);

int mbsinit(const mbstate t *ps);

size_t mbsrtowcs(wchar_t *dst, const char **src,
size t len, mbstate t *ps);

size_t wertomb(char *s, wchar_t wc, mbstate t *ps);

size_t wecsrtombs(char *dst, const wchar_t **src,
size_t len, mbstate_t *ps);

double westod(const wchar_t *nptr, wchar_t **endptr);

Tong westol (const wchar_t *nptr, wchar_t *xendptr,
int base);

unsigned long westoul(const wchar_t *nptr,
wchar_t *xendptr, int base);

int wctob(wint_t c);

wchar_t *wcscat(wchar_t *sl, const wchar_t *s2);
wchar_t *wcschr(const wchar_t *s, wchar_ t c);

int wesemp(const wchar_t *s1, const wchar_t *s2);

int wescoll(const wchar_t *sl, const wchar_t *s2);
wchar_t *wcscpy(wchar_t *sl, const wchar_t *s2);
size_t wescspn(const wchar_t *sl, const wchar_t *s2);
size_t weslen(const wchar t *s);

wchar_t *wcsncat(wchar_t *sl, const wchar_t *s2,

size t n);

int wesnemp(const wchar_t *sl, const wchar_t *s2,
size_t n);

wchar_t *wcsncpy(wchar_t *sl, const wchar_t *s2,
size_ t n);

wchar_t *wcspbrk(const wchar_t *sl, const wchar_ t *s2);
wchar_t *wesrchr(const wchar_t *s, wchar_t c);
size_t wesspn(const wchar_t *sl, const wchar_t *s2);
wchar_t *wesstr(const wchar_t *sl, const wchar_t *s2);
wchar_t *wecstok(wchar_t *sl, const wchar_t *s2,

wchar_t **ptr);
size_t wesxfrm(wchar_t *sl, const wchar_t *s2, size t n);
int wmemcmp(const wchar_t *sl, const wchar_t *s2,

size_t n);

wchar_t *wmemcpy (wchar_t *sl, const wchar t *s2,
size_t n);

wchar_t *wmemmove(wchar_t *sl, const wchar_t *s2,
size_t n);

114 Standard C++ Library

wchar_t +wmemset(wchar_t *s, wchar_t c, size_t n);

wchar_t *wmemchr(const wchar_ t s, wchar t c,
size_t n); [not in C++]

const wchar_t *wmemchr(const wchar_t *s, wchar_t c,
size_t n); [C++ only]

wchar_t *wmemchr(wchar_t *s, wchar_t c,
size_t n); [C++ only]

Include the standard header <wchar.h> so that you can perform input and output
operations on wide streams or manipulate wide strings.

NULL

#define NULL <either 0, OL, or (void *)0> [0 in C++]

The macro yields a null pointer constant that is usable as an address constant
expression (page [L9).

WCHAR_MAX

#define WCHAR_MAX <#if expression >= 127>

The macro yields the maximum value for type wchar_t.

WCHAR_MIN

#define WCHAR_MIN <#if expression <= 0>

The macro yields the minimum value for type wchar_t.

WEOF

#define WEOF <wint_t constant expression>

The macro yields the return value, of type wint_t, used to signal the end of a wide
stream (page ﬁ) or to report an error condition.

btowc

wint_t btowc(int c);

The function returns WEOF (page Iﬂ) if c equals EOF (page @). Otherwise, it
converts (unsigned char)c as a one-byte multibyte character beginning in the
initial conversion state (page [Ld), as if by calling mbrtowc. If the conversion

succeeds, the function returns the wide-character conversion. Otherwise, it returns
WEOF.

fgetwc
wint_t fgetwc(FILE *stream);

The function reads the next wide character c (if present) from the input stream
stream, advances the file-position indicator (if defined), and returns (wint_t)c. If
the function sets either the end-of-file indicator or the error indicator, it returns
WEOF.

fgetws

wchar_t =fgetws(wchar_t *s, int n, FILE *stream);

Chapter 13. Standard C Header Files 115

116

The function reads wide characters from the input stream stream and stores them
in successive elements of the array beginning at s and continuing until it stores n -
1 wide characters, stores an NL wide character, or sets the end-of-file or error
indicators. If fgetws stores any wide characters, it concludes by storing a null wide
character in the next element of the array. It returns s if it stores any wide
characters and it has not set the error indicator for the stream; otherwise, it returns
a null pointer. If it sets the error indicator, the array contents are indeterminate.

fputwc

wint_t fputwc(wchar_t c, FILE *stream);

The function writes the wide character c to the output stream stream, advances the
file-position indicator (if defined), and returns (wint_t)c. If the function sets the
error indicator for the stream, it returns WEOF.

fputws

fwide

int fputws(const wchar_t *s, FILE *stream);

The function accesses wide characters from the string s and writes them to the
output stream stream. The function does not write the terminating null wide
character. It returns a nonnegative value if it has not set the error indicator;
otherwise, it returns WEOF.

int fwide(FILE *stream, int mode);

The function determines the orientation of the stream stream. If mode is greater
than zero, it first attempts to make the stream wide oriented (page R1). 1f mode is
less than zero, it first attempts to make the stream byte oriented (page B1). In any
event, the function returns:

+ a value greater than zero if the stream is left wide oriented (page 1)
* zero if the stream is left unbound (page baly

+ a value less than zero if the stream is left byte oriented (page R1)

In no event will the function alter the orientation of a stream once it has been
oriented.

fwprintf

int fwprintf(FILE *stream, const wchar_t *format, ...);

The function generates formatted text (page @), under the control of the format
format and any additional arguments, and writes each generated wide character to
the stream stream. It returns the number of wide characters generated, or it returns
a negative value if the function sets the error indicator for the stream.

fwscanf

int fwscanf(FILE *stream, const wchar_t *format, ...);

The function scans formatted text (page Bd), under the control of the format format
and any additional arguments. It obtains each scanned character from the stream
stream. It returns the number of input items matched and assigned, or it returns
EOF if the function does not store values before it sets the end-of-file or error
indicator for the stream.

Standard C++ Library

getwc
wint_t getwc(FILE *stream);

The function has the same effect as fgetwc(stream) except that a macro version of
getwc can evaluate stream more than once.

getwchar

wint_t getwchar(void);

The function has the same effect as fgetwc(stdin).

mbrlen

size_t mbrlen(const char *s, size_t n, mbstate_t *ps);

The function is equivalent to the call:
mbrtowc(0, s, n, ps != 0 ? ps : &internal)

where internal is an object of type mbstate_t internal to the mbrlen function. At
program startup, internal is initialized to the initial conversion state. No other
library function alters the value stored in internal.

The function returns:

* (size_t)-2 if, after converting all n characters, the resulting conversion state
(pagem) indicates an incomplete multibyte character

* (size_t)-1 if the function detects an encoding error before completing the next
multibyte character, in which case the function stores the value EILSEQ in errno
and leaves the resulting conversion state undefined

* zero, if the next completed character is a null character, in which case the
resulting conversion state is the initial conversion state

* X, the number of bytes needed to complete the next muitibyte character, in
which case the resulting conversion state indicates that x bytes have been
converted

Thus, mbrien effectively returns the number of bytes that would be consumed in
successfully converting a multibyte character to a wide character (without storing
the converted wide character), or an error code if the conversion cannot succeed.

mbrtowc

size_t mbrtowc(wchar_t *pwc, const char *s, size_t n,
mbstate_t *ps);

The function determines the number of bytes in a multibyte string that completes
the next multibyte character, if possible.

If ps is not a null pointer, the conversion state (page iLd) for the multibyte string is
assumed to be *ps. Otherwise, it is assumed to be &internal, where internal is an
object of type mbstate_t internal to the mbrtowc function. At program startup (page

, internal is initialized to the initial conversion state. No other library function
alters the value stored in internal.

If s is not a null pointer, the function determines x, the number of bytes in the
multibyte string s that complete or contribute to the next multibyte character. (x

cannot be greater than n.) Otherwise, the function effectively returns mbrtowc (0,

Chapter 13. Standard C Header Files 117

118

"", 1, ps), ignoring pwc and n. (The function thus returns zero only if the

conversion state indicates that no incomplete multibyte character is pending from a
previous call to mbrlen, mbrtowc, or mbsrtowcs for the same string and conversion
state.)

If pwc is not a null pointer, the function converts a completed multibyte character
to its corresponding wide-character value and stores that value in *pwc.

The function returns:

* (size_t)-2 if, after converting all n characters, the resulting conversion state
indicates an incomplete multibyte character

* (size_t)-1 if the function detects an encoding error before completing the next
multibyte character, in which case the function stores the value EILSEQ in errno
and leaves the resulting conversion state undefined

* zero, if the next completed character is a null character, in which case the
resulting conversion state is the initial conversion state

* X, the number of bytes needed to complete the next muitibyte character, in
which case the resulting conversion state indicates that x bytes have been
converted

mbsinit

int mbsinit(const mbstate_t *ps);

The function returns a nonzero value if ps is a null pointer or if *ps designates an
initial conversion state. Otherwise, it returns zero.

mbsrtowcs

size_t mbsrtowcs(wchar_t *dst, const char **src,
size_t len, mbstate_t #*ps);

The function converts the multibyte string beginning at *src to a sequence of wide
characters as if by repeated calls of the form:

x = mbrtowc(dst, *src, n, ps != 0 ? ps : &internal)

where n is some value > 0 and internal is an object of type mbstate_t internal to
the mbsrtowcs function. At program startup, internal is initialized to the initial
conversion state. No other library function alters the value stored in internal.

If dst is not a null pointer, the mbsrtowcs function stores at most len wide
characters by calls to mbrtowc. The function effectively increments dst by one and
*src by x after each call to mbrtowc that stores a converted wide character. After a
call that returns zero, mbsrtowcs stores a null wide character at dst and stores a
null pointer at *src.

If dst is a null pointer, Ten is effectively assigned a large value.

The function returns:

* (size_t)-1, if a call to mbrtowc returns (size_t)-1, indicating that it has
detected an encoding error before completing the next multibyte character

* the number of multibyte characters successfully converted, not including the
terminating null character

Standard C++ Library

mbstate_t

typedef o-type mbstate_t;

The type is an object type o-type that can represent a conversion state for any of the
functions mbrlen, mbrtowc, mbsrtowcs, wcrtomb, or wesrtombs. A definition of the
form:

mbstate_t mbst = {0};

ensures that mbst represents the initial conversion state. Note, however, that other
values stored in an object of type mbstate_t can also represent this state. To test
safely for this state, use the function mbsinit.

putwc
wint_t putwc(wchar_t c, FILE *stream);
The function has the same effect as fputwc(c, stream) except that a macro version
of putwc can evaluate stream more than once.

putwchar
wint_t putwchar(wchar_t c);
The function has the same effect as fputwc(c, stdout).

size t
typedef ui-type size_t;
The type is the unsigned integer type ui-type of an object that you declare to store
the result of the sizeof (page 20) operator.

swprintf
int swprintf(wchar_t *s, size_t n,

const wchar_t *format, ...);

The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and stores each generated character in
successive locations of the array object whose first element has the address s. The
function concludes by storing a null wide character in the next location of the
array. It returns the number of wide characters generated — not including the null
wide character.

swscanf

tm

int swscanf(const wchar_t *s,
const wchar_t *format, ...);

The function scans formatted text (page Bd), under the control of the format format
and any additional arguments. It accesses each scanned character from successive
locations of the array object whose first element has the address s. It returns the
number of items matched and assigned, or it returns EOF if the function does not
store values before it accesses a null wide character from the array.

struct tm;

Chapter 13. Standard C Header Files 119

struct tm contains members that describe various properties of the calendar time.
The declaration in this header leaves struct tm an incomplete type. Include the
header <time.h> to complete the type.

ungetwc

wint_t ungetwc(wint_t c, FILE *stream);

If ¢ is not equal to WEOF, the function stores (wchar_t)c in the object whose address
is stream and clears the end-of-file indicator. If ¢ equals WEOF or the store cannot
occur, the function returns WEOF; otherwise, it returns (wchar_t)c. A subsequent
library function call that reads a wide character from the stream stream obtains
this stored value, which is then forgotten.

Thus, you can effectively push back (page Bd) a wide character to a stream after
reading a wide character.

viwprintf

int vfwprintf(FILE *stream, const wchar_t *format,
va_list arg);

The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and writes each generated wide character to
the stream stream. It returns the number of wide characters generated, or it returns
a negative value if the function sets the error indicator for the stream.

The function accesses additional arguments by using the context information
designated by ap. The program must execute the macro va_start (page BJ) before it
calls the function, and then execute the macro va_end (page B2) after the function
returns.

vswprintf

int vswprintf(wchar_t *s, size t n,
const wchar_t *=format, va_list arg);

The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and stores each generated wide character in
successive locations of the array object whose first element has the address s. The
function concludes by storing a null wide character in the next location of the
array. It returns the number of characters generated — not including the null wide
character.

The function accesses additional arguments by using the context information
designated by ap. The program must execute the macro va_start before it calls the
function, and then execute the macro va_end after the function returns.

vwprintf
int vwprintf(const wchar_t *format, va list arg);
The function generates formatted text (page Bd), under the control of the format
format and any additional arguments, and writes each generated wide character to

the stream stdout (page Bd). It returns the number of characters generated, or a
negative value if the function sets the error indicator for the stream.

120 Standard C++ Library

The function accesses additional arguments by using the context information
designated by ap. The program must execute the macro va_start before it calls the
function, and then execute the macro va_end after the function returns.

wchar _t
typedef i-type wchar_t; [keyword in C++]

The type is the integer type i-type of a wide-character constant (page E), such as
L’X". You declare an object of type wchar_t to hold a wide character (page [L4).

wcrtomb

size_t wertomb(char *s, wchar_t wc, mbstate_t *ps);

The function determines the number of bytes needed to represent the wide
character wc as a multibyte character, if possible. (Not all values representable as
type wchar_t are necessarily valid wide-character codes.)

If ps is not a null pointer, the conversion state (page fLd) for the multibyte string is
assumed to be *ps. Otherwise, it is assumed to be &internal, where internal is an
object of type mbstate_t internal to the wcrtomb function. At program startup (page

, internal is initialized to the initial conversion state (page ild). No other library
function alters the value stored in internal.

If s is not a null pointer and wc is a valid wide-character code, the function
determines x, the number of bytes needed to represent wc as a multibyte character,
and stores the converted bytes in the array of char beginning at s. (x cannot be
greater than MB_CUR_MAX (page).) If wc is a null wide character, the function
stores any shift sequence (page L) needed to restore the initial shift state (page
Ld). followed by a null byte. The resulting conversion state is the initial conversion
state (page fid).

If s is a null pointer, the function effectively returns wcrtomb (buf, L’\@", ps),
where buf is a buffer internal to the function. (The function thus returns the
number of bytes needed to restore the initial conversion state (page E) and to
terminate the multibyte string pending from a previous call to wertomb or
wesrtombs for the same string and conversion state (page [Ld).)

The function returns:

* (size_t)-1if wc is an invalid wide-character code, in which case the function
stores the value EILSEQ (page B9) in errno (page Bd) and leaves the resulting
conversion state (page L) undefined

* X, the number of bytes needed to complete the next muitibyte character, in
which case the resulting conversion state (page E) indicates that x bytes have
been generated

wcscat

wchar_t *wcscat(wchar_t *sl, const wchar_t *s2);

The function copies the wide string s2, including its terminating null wide
character, to successive elements of the array that stores the wide string s1,
beginning with the element that stores the terminating null wide character of s1. It
returns sl.

Chapter 13. Standard C Header Files 121

122

wcschr

wchar_t *wcschr(const wchar_t *s, wchar_t c);

The function searches for the first element of the wide string s that equals c. It
considers the terminating null wide character as part of the wide string. If
successful, the function returns the address of the matching element; otherwise, it
returns a null pointer.

wcscmp

int wesemp(const wchar_t *sl, const wchar_t *s2);

The function compares successive elements from two wide strings, s1 and s2, until
it finds elements that are not equal.

* If all elements are equal, the function returns zero.

* If the differing element from sl is greater than the element from s2, the function
returns a positive number.

* Otherwise, the function returns a negative number.

wcscoll

int wescoll(const wchar_t *sl, const wchar_t *s2);

The function compares two wide strings, sl and s2, using a comparison rule that
depends on the current locale (page 53 If s1 compares greater than s2 by this
rule, the function returns a positive number. If the two wide strings compare equal,
it returns zero. Otherwise, it returns a negative number.

wcscpy

wchar_t *wecscpy(wchar_t *sl, const wchar_t *s2);

The function copies the wide string s2, including its terminating null wide
character, to successive elements of the array whose first element has the address
sl. It returns s1.

wcscspn

size_t wescspn(const wchar_t *sl, const wchar_t *s2);

The function searches for the first element s1[i] in the wide string s1 that equals
any one of the elements of the wide string s2 and returns i. Each terminating null
wide character is considered part of its wide string.

wcsftime

size_t wesftime(wchar_t *s, size_t maxsize,
const wchar_t *format, const struct tm *timeptr);

The function generates formatted text, under the control of the format format and
the values stored in the time structure *tptr. It stores each generated wide
character in successive locations of the array object of size n whose first element
has the address s. The function then stores a null wide character in the next
location of the array. It returns X, the number of wide characters generated, if x <
n; otherwise, it returns zero, and the values stored in the array are indeterminate.

Standard C++ Library

For each wide character other than % in the format, the function stores that wide
character in the array object. Each occurrence of % followed by another character in
the format is a conversion specifier. For each conversion specifier, the function
stores a replacement wide character sequence. Conversion specifiers are the same
as for the function strftime (page [l1J). The current locale category LC_TIME (page
@) can affect these replacement character sequences.

wcslen

size t weslen(const wchar t *s);

The function returns the number of wide characters in the wide string s, not
including its terminating null wide character.

wcsncat

wchar_t *wcsncat(wchar_t *sl, const wchar_t *s2,
size t n);

The function copies the wide string s2, not including its terminating null wide
character, to successive elements of the array that stores the wide string s1,
beginning with the element that stores the terminating null wide character of s1.
The function copies no more than n wide characters from s2. It then stores a null
wide character, in the next element to be altered in s1, and returns sl1.

wcsncmp

int wesnemp(const wchar_t *sl, const wchar_t *s2,
size_t n);

The function compares successive elements from two wide strings, sl and s2, until

it finds elements that are not equal or until it has compared the first n elements of

the two wide strings.

* If all elements are equal, the function returns zero.

* If the differing element from sl is greater than the element from s2, the function
returns a positive number.

¢ Otherwise, it returns a negative number.

wcsncpy

wchar_t *wecsncpy (wchar_t *s1, const wchar_t *s2,
size_t n);

The function copies the wide string s2, not including its terminating null wide
character, to successive elements of the array whose first element has the address
s1. It copies no more than n wide characters from s2. The function then stores zero
or more null wide characters in the next elements to be altered in sl until it stores
a total of n wide characters. It returns s1.

wcspbrk

wchar_t *wecspbrk(const wchar_t *sl, const wchar_t *s2);

The function searches for the first element s1[i] in the wide string s1 that equals
any one of the elements of the wide string s2. It considers each terminating null
wide character as part of its wide string. If s1[] is not the terminating null wide
character, the function returns &s1[i]; otherwise, it returns a null pointer.

Chapter 13. Standard C Header Files 123

wcsrchr

wchar_t *wcsrchr(const wchar_t s, wchar_ t c);

The function searches for the last element of the wide string s that equals c. It
considers the terminating null wide character as part of the wide string. If
successful, the function returns the address of the matching element; otherwise, it
returns a null pointer.

wcsrtombs

size_t wcsrtombs(char *dst, const wchar_t **src,
size_t len, mbstate_t *ps);

The function converts the wide-character string beginning at *src to a sequence of
multibyte characters as if by repeated calls of the form:

x = wcrtomb(dst ? dst : buf, *src, ps != 0 ? ps : &internal)

where buf is an array of type char and internal is an object of type mbstate_t,
both internal to the wcsrtombs function. At program startup, internal is initialized
to the initial conversion state (page fid). No other library function alters the value
stored in internal.

If dst is not a null pointer, the wcsrtombs function stores at most 1en bytes by calls
to wertomb. The function effectively increments dst by x and *src by one after each
call to wcrtomb that stores a complete converted multibyte character in the
remaining space available. After a call that stores a complete null multibyte
character at dst (including any shift sequence (page fld) needed to restore the
initial shift state (page fLd)), the function stores a null pointer at *src.

If dst is a null pointer, Ten is effectively assigned a large value.

The function returns:

* (size_t)-1, if a call to wertomb (page [21) returns (size t)-1, indicating that it
has detected an invalid wide-character code

¢ the number of bytes successfully converted, not including the terminating null
byte

wcsspn

size_t wesspn(const wchar_t *sl, const wchar_t *s2);

The function searches for the first element s1[i] in the wide string s1 that equals
none of the elements of the wide string s2 and returns 1i. It considers the
terminating null wide character as part of the wide string s1 only.

WCSsStr

wchar_t *wcsstr(const wchar_t *sl, const wchar_ t *s2);

The function searches for the first sequence of elements in the wide string sl that
matches the sequence of elements in the wide string s2, not including its
terminating null wide character. If successful, the function returns the address of
the matching first element; otherwise, it returns a null pointer.

wcstod

double westod(const wchar_t *nptr, wchar_t **endptr);

124 Standard C++ Library

The function converts the initial wide characters of the wide string s to an
equivalent value x of type double. If endptr is not a null pointer, the function stores
a pointer to the unconverted remainder of the wide string in *endptr. The function
then returns x.

The initial wide characters of the wide string s must match the same pattern as
recognized by the function strtod (page @), where each wide character wc is
converted as if by calling wctob(wc)).

If the wide string s matches this pattern, its equivalent value is the value returned
by strtod (page Eﬁ) for the converted sequence. If the wide string s does not
match a valid pattern, the value stored in *endptr is s, and x is zero. If a range
error (page E3) occurs, westod behaves exactly as the functions declared in
<math.h> (page E‘).

wcstok

wcstol

wchar_t *wcstok(wchar_t *sl1, const wchar_t *s2,
wchar_t **ptr);

If s1 is not a null pointer, the function begins a search of the wide string s1.
Otherwise, it begins a search of the wide string whose address was last stored in
*ptr on an earlier call to the function, as described below. The search proceeds as
follows:

1. The function searches the wide string for begin, the address of the first
element that equals none of the elements of the wide string s2 (a set of token
separators). It considers the terminating null character as part of the search
wide string only.

2. If the search does not find an element, the function stores the address of the
terminating null wide character in *ptr (so that a subsequent search beginning
with that address will fail) and returns a null pointer. Otherwise, the function
searches from begin for end, the address of the first element that equals any one
of the elements of the wide string s2. It again considers the terminating null
wide character as part of the search string only.

3. If the search does not find an element, the function stores the address of the
terminating null wide character in *ptr. Otherwise, it stores a null wide
character in the element whose address is end. Then it stores the address of the
next element after end in *ptr (so that a subsequent search beginning with that
address will continue with the remaining elements of the string) and returns
begin.

Tong westol (const wchar_t *nptr, wchar_t xxendptr,
int base);

The function converts the initial wide characters of the wide string s to an
equivalent value x of type long. If endptr is not a null pointer, the function stores a
pointer to the unconverted remainder of the wide string in *endptr. The function
then returns x.

The initial wide characters of the wide string s must match the same pattern as
recognized by the function strtol (page fLod), with the same base argument, where
each wide character wc is converted as if by calling wctob(wc)).

If the wide string s matches this pattern, its equivalent value is the value returned
by strtol (page L02), with the same base argument, for the converted sequence. If

Chapter 13. Standard C Header Files 125

126

the wide string s does not match a valid pattern, the value stored in *endptr is s,
and x is zero. If the equivalent value is too large in magnitude to represent as type
long, westol stores the value of ERANGE (page B9) in errno and returns either
LONG_MAX (page bf) if x is positive or LONG_MIN (page Ef) if x is negative.

wcstoul

unsigned long westoul(const wchar_t *nptr,
wchar_t *xendptr, int base);

The function converts the initial wide characters of the wide string s to an
equivalent value x of type unsigned long. If endptr is not a null pointer, it stores a
pointer to the unconverted remainder of the wide string in *endptr. The function
then returns x.

wcstoul converts strings exactly as does westol, but checks only if the equivalent
value is too large to represent as type unsigned long. In this case, wcstoul stores the
value of ERANGE (page Ed) in errno and returns ULONG_MAX (page kd).

wcesxfrm

size_t wesxfrm(wchar_t *s1, const wchar_t *s2,
size t n);

The function stores a wide string in the array whose first element has the address
sl. It stores no more than n wide characters, including the terminating null wide
character, and returns the number of wide characters needed to represent the entire
wide string, not including the terminating null wide character. If the value returned
is n or greater, the values stored in the array are indeterminate. (If n is zero, s1 can
be a null pointer.)

wesxfrm generates the wide string it stores from the wide string s2 by using a
transformation rule that depends on the current locale (page E%). For example, if x
is a transformation of sl and y is a transformation of s2, then wcscmp(x, y) returns
the same value as wcscoll(sl, s2).

wctob
int wctob(wint_t c);
The function determines whether ¢ can be represented as a one-byte multibyte
character x, beginning in the initial shift state (page [Ld). (It effectively calls wcrtomb
to make the conversion.) If so, the function returns x. Otherwise, it returns WEOF
(page [19).
wint_t
typedef i_type wint_t;
The type is the integer type i_type that can represent all values of type wchar_t as
well as the value of the macro WEOF, and that doesn’t change when promoted.
wmemchr

wchar_t *wmemchr(const wchar_t s, wchar_t c,
size_t n); [not in C++]

const wchar_t *wmemchr(const wchar_t *s, wchar_t c,
size_t n); [C++ only]

wchar_t *wmemchr(wchar_t *s, wchar_t c,
size_t n); [C++ only]

Standard C++ Library

The function searches for the first element of an array beginning at the address s
with size n, that equals c. If successful, it returns the address of the matching
element; otherwise, it returns a null pointer.

wmemcmp

int wmemcmp(const wchar_t *sl, const wchar_t *s2,
size t n);

The function compares successive elements from two arrays beginning at the
addresses sl and s2 (both of size n), until it finds elements that are not equal:

* If all elements are equal, the function returns zero.

* If the differing element from sl is greater than the element from s2, the function
returns a positive number.

e Otherwise, the function returns a negative number.

wmemcpy
wchar_t +wmemcpy (wchar_t *sl1, const wchar_t *s2,
size_t n);

The function copies the array beginning at the address s2 to the array beginning at
the address sl (both of size n). It returns s1. The elements of the arrays can be
accessed and stored in any order.

wmemmove

wchar_t *wmemmove(wchar_ t *sl, const wchar t *s2,
size_t n);

The function copies the array beginning at s2 to the array beginning at s1 (both of
size n). It returns sl. If the arrays overlap, the function accesses each of the
element values from s2 before it stores a new value in that element, so the copy is
not corrupted.

wmemset

wchar_t +wmemset(wchar_t *s, wchar_t c, size_t n);

The function stores ¢ in each of the elements of the array beginning at s, with size
n. It returns s.

wprintf
int wprintf(const wchar_t *format, ...);
The function generates formatted text (page), under the control of the format
format and any additional arguments, and writes each generated wide character to

the stream stdout. It returns the number of wide characters generated, or it returns
a negative value if the function sets the error indicator for the stream.

wscanf

int wscanf(const wchar_t *format, ...);

The function scans formatted text (page Bd), under the control of the format format
and any additional arguments. It obtains each scanned wide character from the

Chapter 13. Standard C Header Files 127

stream stdin. It returns the number of input items matched and assigned, or it
returns EOF if the function does not store values before it sets the end-of-file or
error indicators for the stream.

<wctype.h>

[Added with Amendment 1 (page E)]
typedef s_type wctrans_t;

typedef s_type wctype_t;

typedef i_type wint_t;

int iswalnum(wint_t c);
int iswalpha(wint_t c);
int iswentrl(wint_t c);
int iswctype(wint_t c, wctype t category);
int iswdigit(wint_t c);
int iswgraph(wint_t c);
int iswlower(wint_t c);
int iswprint(wint_t c);
int iswpunct(wint_t c);
int iswspace(wint_t c);
int iswupper(wint_t c);
int iswxdigit(wint_t c);

wint_t towctrans(wint_t c, wctrans_t category);
wint_t towlower(wint_t c);
wint_t towupper(wint_t c);

wctrans_t wctrans(const char *property);
wctype t wctype(const char *property);

Include the standard header <wctype.h> to declare several functions that are useful
for classifying and mapping codes from the target wide-character set.

Every function that has a parameter of type wint_t can accept the value of the
macro WEOF or any valid wide-character code (of type wchar_t (page R3)). Thus, the
argument can be the value returned by any of the functions: btowc (page f13),
fgetwc lﬁﬁage f1g), fputwc (page fiid), getwc (page W) getwchar (pagegm), putwc
(page I19), putwchar (page , towctrans (page , towlower (page [131),
towupper (page a1, or ungetwc (page fi2d). You must not call these functions
with other wide-character argument values.

The wide-character classification functions are strongly related to the (byte)
character classification (page bd) functions. Each function isXXX has a
corresponding wide-character classification function iswXXX. Moreover, the
wide-character classification functions are interrelated much the same way as their
corresponding byte functions, with two added provisos:

* The function iswprint, unlike isprint (page E), can return a nonzero value for
additional space characters besides the wide-character equivalent of space (L').
Any such additional characters return a nonzero value for iswspace and return
zero for iswgraph or iswpunct.

e The characters in each wide-character class are a superset of the characters in the
corresponding byte class. If the call isXXX(c) returns a nonzero value, then the
corresponding call iswXXX(btowc(c)) also returns a nonzero value.

An implementation can define additional characters that return nonzero for some
of these functions. Any character set can contain additional characters that return
nonzero for:

* iswpunct (provided the characters cause iswalnum to return zero)

128 Standard C++ Library

e iswentrl (provided the characters cause iswprint to return zero)

Moreover, a locale (page BZ) other than the “C” locale can define additional

characters for:

* iswalpha, iswupper, and iswlower (provided the characters cause iswcntrl,
iswdigit, iswpunct, and iswspace to return zero)

* iswspace (provided the characters cause iswpunct to return zero)

Note that the last rule differs slightly from the corresponding rule for the function
isspace (page Ed), as indicated above. Note also that an implementation can define
a locale other than the “C” locale in which a character can cause iswalpha (and
hence iswalnum) to return nonzero, yet still cause iswupper and iswlower to return
Zero.

WEOF

#define WEOF <wint_t constant expression>

The macro yields the return value, of type wint_t, used to signal the end of a wide
stream (page E) or to report an error condition.

iswalnum

int iswalnum(wint_t c);

The function returns nonzero if c is any of:

Jklmnopgrstuvwxyz
JKLMNOPQRSTUVWXYZ
9

cma P
NI S

(<> =y <7}
0 — —

b
B
1

N OO
w oo
&~ m o
1 T —h

or any other locale-specific alphabetic character.

iswalpha

int iswalpha(wint_t c);
The function returns nonzero if c is any of:

abcdefghijklImnopgr

stuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

or any other locale-specific alphabetic character.

iswcntrl

int iswentrl(wint_t c);

The function returns nonzero if c is any of:
BEL BS CR FF HT NL VT

or any other implementation-defined control character.

Iswctype
int iswctype(wint_t c, wctype t category);

The function returns nonzero if c is any character in the category category. The
value of category must have been returned by an earlier successful call to wctype.

Chapter 13. Standard C Header Files 129

iswdigit
int iswdigit(wint_t c);

The function returns nonzero if c is any of:
0123456789

iswgraph
int iswgraph(wint_t c);

The function returns nonzero if ¢ is any character for which either iswalnum or
iswpunct returns nonzero.

iswlower

int iswlower(wint_t c);

The function returns nonzero if c is any of:
abcdefghijkImnopgrstuvwxyz

or any other locale-specific lowercase character.

iIswprint
int iswprint(wint_t c);
The function returns nonzero if c is space, a character for which iswgraph returns

nonzero, or an implementation-defined subset of the characters for which iswspace
returns nonzero.

iIswpunct

int iswpunct(wint_t c);

The function returns nonzero if c is any of:

()<

— o0

= >

/

]
_

—_— %
— 4

or any other implementation-defined punctuation character.

iIswspace

int iswspace(wint_t c);

The function returns nonzero if ¢ is any of:
CR FF HT NL VT space

or any other locale-specific space character.

iIswupper

int iswupper(wint_t c);

The function returns nonzero if c is any of:
ABCDEFGHIJKLMNOPQRSTUVWXY?Z

or any other locale-specific uppercase character.

130 Standard C++ Library

iIswxdigit
int iswxdigit(wint t c);

The function returns nonzero if c is any of
0123456789abcdefABCDEFTF

towctrans

wint_t towctrans(wint_t c, wctrans_t category);

The function returns the transformation of the character c, using the transform in
the category category. The value of category must have been returned by an
earlier successful call to wctrans.

towlower

wint_t towlower(wint_t c);

The function returns the corresponding lowercase letter if one exists and if
iswupper(c); otherwise, it returns c.

towupper

wint_t towupper(wint_t c);

The function returns the corresponding uppercase letter if one exists and if
iswlower(c); otherwise, it returns c.

wctrans

wctrans_t wctrans(const char *property);

The function determines a mapping from one set of wide-character codes to
another. If the LC_CTYPE (page @% category of the current locale does not define a
mapping whose name matches the property string property, the function returns
zero. Otherwise, it returns a nonzero value suitable for use as the second argument
to a subsequent call to towctrans.

The following pairs of calls have the same behavior in all locales (but an
implementation can define additional mappings even in the "C" locale):

towlower(c) same as towctrans(c, wctrans("tolower"))
towupper(c) same as towctrans(c, wctrans("toupper"))

wctrans_t
typedef s_type wctrans_t;

The type is the scalar type s-type that can represent locale-specific character
mappings, as specified by the return value of wctrans.

wctype
wctype t wctype(const char xproperty);
wctrans_t wctrans(const char *property);

The function determines a classification rule for wide-character codes. If the
LC_CTYPE (page) category of the current locale does not define a classification

Chapter 13. Standard C Header Files 131

rule whose name matches the property string property, the function returns zero.
Otherwise, it returns a nonzero value suitable for use as the second argument to a
subsequent call to towctrans.

The following pairs of calls have the same behavior in all locales (but an
implementation can define additional classification rules even in the "C” locale):
iswalnum(c) same as iswctype(c, wctype("alnum"))

iswalpha(c) same as iswctype(c, wctype("alpha"))

iswcntrl(c) same as iswctype(c, wctype("cntrl"))

iswdigit(c) same as iswctype(c, wctype("digit"))

iswgraph(c) same as iswctype(c, wctype("graph"))

iswlower(c) same as iswctype(c, wctype("lower"))

iswprint(c) same as iswctype(c, wctype("print"))

iswpunct(c) same as iswctype(c, wctype("punct"))

iswspace(c) same as iswctype(c, wctype("space"))

iswupper(c) same as iswctype(c, wctype("upper"))

iswxdigit(c) same as iswctype(c, wctype("xdigit"))

wctype _t

typedef s_type wctype_t;

The type is the scalar type s-type that can represent locale-specific character
classifications, as specified by the return value of wctype.

wint_t
typedef i_type wint_t;
The type is the integer type i_type that can represent all values of type wchar_t

(page as well as the value of the macro WEOF, and that doesn’t change when
promoted (page id).

132 Standard C++ Library

Chapter 14. Standard C++ Library Header Files

The Standard C++ Library is composed of eight special-purpose libraries:

* The Language Support Library

* The Diagnostics Library

¢ The General Utilities Library

* The Standard String Templates

* Localization Classes and Templates

¢ The Containers, Iterators and Algorithms Libraries (the Standard Template
Library)

¢ The Standard Numerics Library

¢ The Standard Input/Output Library

e C++ Headers for the Standard C Library

The Language Support Library

The Language Support Library defines types and functions that will be used
implicitly by C++ programs that employ such C++ language features as operators
new and delete, exception handling and runtime type information (RTTI).

Standard C++ Equivalent in previous versions
header

%Cephom (Page | DM <stdexcepth>
BT SCEM <stdexcpt.h>
BT 1o equivalent

<limits> (page [9d) |no equivalent

<new> (page R44) <new.h>

<té§einfo> (page <typeinfo.h>
BT 1o equivalent

The Diagnostics Library
The Diagnostics Library is used to detect and report error conditions in C++
programs.

Standard C++ Equivalent in previous versions
header

%i except> (page BEEM <stdexcept.h>
BT SCEM <stdexcpth>
BT 1o equivalent

The General Utilities Library

The General Utilities Library is used by other components of the Standard C++
Library, especially the Containers, Iterators and Algorithms Libraries (the Standard
Template Library).

Standard C++ header Equivalent in previous versions

© Copyright IBM Corp. 1999, 2001 133

<utility> (page U52)

no equivalent

<functional> (page Bad)

no equivalent

<memory> (page E)

no equivalent

The Standard String Templates
The Strings Library is a facility for the manipulation of character sequences.

Standard C++ header

Equivalent in previous versions

<string> (page ﬁ)

no equivalent

Localization Classes and Templates
The Localization Library permits a C++ program to address the cultural differences
of its various users.

Standard C++ header
<locale> (page Bod)

Equivalent in previous versions

no equivalent

The Containers, Iterators and Algorithms Libraries (the Standard Template
Library)

The Standard Template Library (STL) is a facility for the management and
manipulation of collections of objects.

Standard C++ header

Equivalent in previous versions

<algorithm> (page B31)

no equivalent

<bitset> (page [3d)

no equivalent

<deque> (page B54)

no equivalent

<iterator> (page BZd)

no equivalent

<list> (page @)

no equivalent

<map> (page E)

no equivalent

<queue> (page k2d)

no equivalent

<set> (page @)

no equivalent

<stack> (page Lad)

no equivalent

<vector> (page @)

no equivalent

The Standard Numerics Library
The Numerics Library is a facility for performing seminumerical operations.

Users who require library facilities for complex arithmetic but wish to maintain
compatibility with older compilers may use the compatibility complex numbers
library whose types are defined in the non-standard header file <complex.h>.
Although the header files <complex> and <complex.h> are similar in purpose, they
are mutually incompatible.

Standard C++ header

Equivalent in previous versions

<complex> (page)

no equivalent

<numeric> (page @)

no equivalent

<valarray> (page Bod)

no equivalent

134 Standard C++ Library

The Standard Input/Output Library

The standard iostreams library differs from the compatibility iostreams in a
number of important respects. To maintain compatibility between such a product
and VisualAge C++ Version 5.0 or z/OS C/C++ Version 1.2, use instead the
compatibility iostreams library.

Standard C++ header Equivalent in previous versions
<fstream> (page ET:) no equivalent
<iomanip> (page fied) no equivalent
<ios> (page @) no equivalent
<iosfwd> (page @) no equivalent
<iostream> (page TEE) no equivalent
<istream> (page [L.87) no equivalent
<ostream> (page bsd) no equivalent
<streambuf> (page R&d) no equivalent
<sstream> (page bsd) no equivalent

C++ Headers for the Standard C Library

The C International Standard specifies 18 headers which must be provided by a
conforming hosted implementation. The name of each of these headers is of the
form name.h. The C++ Standard Library includes the C Standard Library and,
hence, includes these 18 headers. Additionally, for each of the 18 headers specified
by the C International Standard, the C++ standard specifies a corresponding
header that is functionally equivalent to its C library counterpart, but which locates
all of the declarations that it contains within the std namespace. The name of each
of these C++ headers is of the form cname, where name is the string that results
when the “.h” extension is removed from the name of the equivalent C Standard
Library header. For example, the header files <stdlib.h> and <cstdlib> are both
provided by the C++ Standard Library and are equivalent in function, with the
exception that all declarations in <cstdlib> are located within the std namespace.

Standard C++ Header Corresponding Standard C & C++ Header
<cassert> (page EI) <assert.h>
<cctype> (page flad) <ctype.h>
<cerrno> (page EI) <errno.h>
<cfloat> (page fLad) <float.h>
<ciso646> (page E) <is0646.h>
<climits> (page m) <limits.h>
<clocale> (page m) <locale.h>
<cmath> (page fad) <math.h>
<csetjmp> (page %) <setjmp.h>
<csignal> (page [E¥) <signal.h>
<cstdarg> (page @) <stdarg.h>
<cstddef> (page @I) <stddef.h>
<cstdio> (page @) <stdio.h>
<cstdlib> (page 153) <stdlib.h>

Chapter 14. Standard C++ Library Header Files 135

<cstring> (page @) <string.h>
<ctime> (page [EE) <time.h>
<cwchar> (page @) <wchar.h>
<cwctype> (page fisd) <wctype.h>

<bhitset>

bitset

namespace std {
template<size_t N>
class bitset;

// TEMPLATE FUNCTIONS
template<class E, class T, size t N>
basic_istream<E, T>&
operator>>(basic_istream<E, >& is,
bitset<N>& x);
template<class E, class T, size_t N>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
const bitset<N>& x);

1

Include the standard header <bitset> to define the template class bitset and two
supporting templates.

any (page 139 - at (page fad) - bitset (page 13D - bitset_size (page fi38) - count
(page E%) - element_type (page fiad) . flip (page fad) - none (page fad) -
operator!= (page frad) . operator&= (page EE) - operator<< (page fiad) -
operator<<= (page s - operator== (page fiad) - operator>> (page fiad) .
operator>>= (page f39) - operator[] (page fad) - operator = (page fad) -
operator | = (page f39) - operator (page f(39) - reference (page EE) - reset (page
ﬁ) - set (pagegm) - size (page [144) - test (page fad) - to_string (page flad) -
to_ulong (page flad)

template<size_t N>
class bitset {
pubTic:
typedef bool element_type;
class reference;
bitset();
bitset(unsigned long val);
template<class E, class T, class A>
explicit bitset(const basic_string<k, T, A>& str,
typename basic_string<E, T, A>::size_type
pos = 0,
typename basic_string<E, T, A>::size_type
n = basic_string<k, T, A>::npos);
bitset<N>& operator&=(const bitset<N>& rhs);
bitset<N>& operatorl=(const bitset<N>& rhs);
bitset<N>& operator =(const bitset<N>& rhs);
bitset<N>& operator<<=(const bitset<N>& pos);
bitset<N>& operator>>=(const bitset<N>& pos);
bitset<N>& set();
bitset<N>& set(size_t pos, bool val = true);
bitset<N>& reset();
bitset<N>& reset(size_t pos);
bitset<N>& flip();
bitset<N>& flip(size_t pos);
reference operator[](size t pos);
bool operator[](size_t pos) const;

136 Standard C++ Library

reference at(size_t pos);

bool at(size_t pos) const;

unsigned long to_ulong() const;

template<class E, class T, class A>
basic_string<E, T, A> to_string() const;

size_t count() const;

size t size() const;

bool operator==(const bitset<N>& rhs) const;

bool operator!=(const bitset<N>& rhs) const;

bool test(size t pos) const;

bool any() const;

bool none() const;

bitset<N> operator<<(size_t pos) const;

bitset<N> operator>>(size_t pos) const;

bitset<N> operator ();

static const size_t bitset_size = N;

}s

The template class describes an object that stores a sequence of N bits. A bit is set if
its value is 1, reset if its value is 0. To flip a bit is to change its value from 1 to 0
or from 0 to 1. When converting between an object of class bitset<N> and an
object of some integral type, bit position j corresponds to the bit value 1 << j. The
integral value corresponding to two or more bits is the sum of their bit values.

bitset::any
bool any() const;

The member function returns true if any bit is set in the bit sequence.

bitset::at
bool at(size_type pos) const;
reference at(size_type pos);

The member function returns an object of class reference (page flad), which
designates the bit at position pos, if the object can be modified. Otherwise, it
returns the value of the bit at position pos in the bit sequence. If that position is
invalid, the function throws an object of class out_of_range (page bad).

bitset::bitset

bitset();
bitset(unsigned long val);
template<class E, class T, class A>
explicit bitset(const basic_string<E, T, A>& str,
typename basic_string<E, T, A>::size_type
pos = 0,
typename basic_string<k, T, A>::size_type
n = basic_string<E, T, A>::npos);

The first constructor resets all bits in the bit sequence. The second constructor sets
only those bits at position j for which val & 1 << j is nonzero.

The third constructor determines the initial bit values from elements of a string
determined from str. If str.size (page E) () < pos, the constructor throws an
object of class out_of_range (page R64). Otherwise, the effective length of the string
rlen is the smaller of n and str.size() - pos. If any of the rlen elements
beginning at position pos is other than 0 or 1, the constructor throws an object of
class invalid_argument (page Bad). Otherwise, the constructor sets only those bits
at position j for which the element at position pos + j is 1.

Chapter 14. Standard C++ Library Header Files 137

138

bitset::bitset_size
static const size_t bitset_size = N;

The const static member is initialized to the template parameter N.

bitset::count
size_t count() const;

The member function returns the number of bits set in the bit sequence.

bitset::element_type
typedef bool element_type;

The type is a synonym for bool.

bitset::flip
bitset<N>& flip();
bitset<N>& flip(size_t pos);

The first member function flips all bits in the bit sequence, then returns *this. The
second member function throws out_of_range (page Bad) if size() <= pos.
Otherwise, it flips the bit at position pos, then returns *this.

bitset::none
bool none() const;

The member function returns true if none of the bits are set in the bit sequence.

bitset::operator!=
bool operator !=(const bitset<N>& rhs) const;

The member operator function returns true only if the bit sequence stored in *this
differs from the one stored in rhs.

bitset::operator&=
bitset<N>& operator&=(const bitset<N>& rhs);

The member operator function replaces each element of the bit sequence stored in
*this with the logical AND of its previous value and the corresponding bit in rhs.
The function returns *this.

bitset::operator<<
bitset<N> operator<<(const bitset<N>& pos);

The member operator function returns bitset(*this) <<= pos.

bitset::operator<<=
bitset<N>& operator<<=(const bitset<N>& pos);

The member operator function replaces each element of the bit sequence stored in
*this with the element pos positions earlier in the sequence. If no such earlier
element exists, the function clears the bit. The function returns *this.

bitset::operator==
bool operator ==(const bitset<N>& rhs) const;

Standard C++ Library

The member operator function returns true only if the bit sequence stored in *this
is the same as the one stored in rhs.

bitset::operator>>
bitset<N> operator>>(const bitset<N>& pos);

The member operator function returns bitset(*this) >>= (page @) pos.

bitset::operator>>=
bitset<N>& operator>>=(const bitset<N>& pos);

The member function replaces each element of the bit sequence stored in *this
with the element pos positions later in the sequence. If no such later element exists,
the function clears the bit. The function returns *this.

bitset::operator(]

bool operator[](size_type pos) const;
reference operator[] (size_type pos);

The member function returns an object of class reference, which designates the bit
at position pos, if the object can be modified. Otherwise, it returns the value of the
bit at position pos in the bit sequence. If that position is invalid, the behavior is
undefined.

bitset::operator =
bitset<N>& operator =(const bitset<N>& rhs);

The member operator function replaces each element of the bit sequence stored in
*this with the logical EXCLUSIVE OR of its previous value and the corresponding
bit in rhs. The function returns *this.

bitset::operator|=
bitset<N>& operator|=(const bitset<N>& rhs);

The member operator function replaces each element of the bit sequence stored in
*this with the logical OR of its previous value and the corresponding bit in rhs.
The function returns *this.

bitset::operator
bitset<N> operator ();

The member operator function returns bitset(*this).f1ip().

bitset::reference
class reference {
pubTic:
reference& operator=(bool b};
referenced operator=(const referenced x);
bool operator () const;
operator bool() const;
reference& flip();

}s

The member class describes an object that designates an individual bit within the
bit sequence. Thus, for b an object of type bool, x and y objects of type bitset<N>,
and i and j valid positions within such an object, the member functions of class
reference ensure that (in order):

» x[i] = b stores b at bit position i in x

Chapter 14. Standard C++ Library Header Files 139

140

» x[i] = y[J] stores the value of the bit y[j] at bit position i in x

* b= x[i] stores the flipped value of the bit x[i] in b

e b = x[i] stores the value of the bit x[i] in b

» x[i].f1ip() stores the flipped value of the bit x[i] back at bit position i in x

bitset::reset

bitset<N>& reset();
bitset<N>& reset(size_t pos);

The first member function resets (or clears) all bits in the bit sequence, then returns
*this. The second member function throws out_of range if size() <= pos.
Otherwise, it resets the bit at position pos, then returns *this.

bitset::set

bitset<N>& set();
bitset<N>& set(size_t pos, bool val = true);

The first member function sets all bits in the bit sequence, then returns *this. The
second member function throws out_of range if size() <= pos. Otherwise, it
stores val in the bit at position pos, then returns *this.

bitset::size
size t size() const;

The member function returns N.

bitset::test
bool test(size_t pos, bool val = true);

The member function throws out _of range (page bed) if size() <= pos.
Otherwise, it returns true only if the bit at position pos is set.

bitset::to_string
template<class E, class T, class A>
basic_string<k, T, A> to_string() const;

The member function constructs str, an object of class basic_string<k, T, A>. For
each bit in the bit sequence, the function appends 1 if the bit is set, otherwise 0.
The last element appended to str corresponds to bit position zero. The function
returns str.

bitset::to_ulong
unsigned long to_ulong() const;

The member function throws overflow_error (page @) if any bit in the bit
sequence has a bit value that cannot be represented as a value of type unsigned
long. Otherwise, it returns the sum of the bit values in the bit sequence.

operator<<

template<class E, class T, size t N>
basic_ostream<kE, T>&
operator<<(basic_ostream<E, T>& os,
const bitset<N>& x);

Standard C++ Library

The template function overloads operator<< to insert a text representation of the
bit sequence in os. It effectively executes os << x.to_string<k, T, allocator<E>
>(), then returns os.

operator>>

template<class E, class T, size_t N>
basic_istream<E, T>&
operator>>(basic_istream<E, T>& is,
bitset<N>& x);

The template function overloads operator>> to store in x the value bitset(str),
where str is an object of type basic_string<kE, T, allocator<E> >& extracted from
is. The function extracts elements and appends them to str until:

* N elements have been extracted and stored
* end-of-file occurs on the input sequence

* the next input element is neither 0 not 1, in which case the input element is not
extracted

If the function stores no characters in str, it calls is.setstate(ios_base::failbit).
In any case, it returns is.

<cassert>
#include <assert.h>
Include the standard header <cassert> to effectively include the standard header
<assert.h> (page E3).
<cctype>
#include <ctype.h>
namespace std {
using ::isalnum; using ::isalpha; using ::iscntrl;
using ::isdigit; using ::isgraph; using ::islower;
using ::isprint; using ::ispunct; using ::isspace;
using ::isupper; using ::isxdigit; using ::tolower;
using ::toupper;
bs
Include the standard header <cctype> to effectively include the standard header
<ctype.h> (page E3) within the std namespace (page [Ld).
<cerrno>
#include <errno.h>
Include the standard header <cerrno> to effectively include the standard header
<errno.h> (page Ed).
<cfloat>

#include <float.h>

Include the standard header <cfloat> to effectively include the standard header
<float.h> (page Ed).

Chapter 14. Standard C++ Library Header Files 141

<Ccis0646>
#include <iso0646.h>

Include the standard header <cis0646> to effectively include the standard header
<is0646.h> (page %))

<climits>

#include <limits.h>

Include the standard header <climits> to effectively include the standard header
<limits.h> (page k).

<clocale>

#include <locale.h>

namespace std {
using ::1conv; using ::localeconv; using ::setlocale;

}s

Include the standard header <clocale> to effectively include the standard header
<locale.h> (page B within the std namespace (page id).

<cmath>

#include <math.h>

namespace std {

using ::abs; using ::acos; using ::asin;
using ::atan; using ::atan2; using ::ceil;
using ::€0S; using ::cosh; using ::exp;
using ::fabs; using ::floor; using ::fmod;
using ::frexp; using ::ldexp; using ::Tog;
using ::10910; using ::modf; using ::pow;
using ::sin; using ::sinh; using ::sqrt;
using ::tan; using ::tanh;

using ::acosf; using ::asinf;

using ::atanf; using ::atan2f; using ::ceilf;
using ::cosf; using ::coshf; using ::expf;
using ::fabsf; using ::floorf; using ::fmodf;
using ::frexpf; using ::Tdexpf; using ::1ogf;
using ::10910f; using ::modff; using ::powf;
using ::sinf; using ::sinhf; using ::sqrtf;
using ::tanf; using ::tanhf;

using ::acosl; using ::asinl;

using ::atanl; using ::atan21; using ::ceill;
using ::cosl; using ::coshl; using ::expl;
using ::fabsl; using ::floorl; using ::fmodl;
using ::frexpl; using ::Tdexpl; using ::1o0gl;
using ::109101; using ::modfl; using ::powl;
using ::sinl; using ::sinhl; using ::sqrtl;
using ::tanl; using ::tanhl;

}s

Include the standard header <cmath> to effectively include the standard header
<math.h> (page i) within the std namespace (page fud).

142 Standard C++ Library

<complex>

abs (page f145) - arg (page) complex (page fLad) - complex<double> (page

- complex<float> (page [149) - complex<long double> (page [149) - conj (page

flad) - cos (page [14d) - cosh (page

- exp_(page [150) - imag (page @) log

(page R log10 (page f50) - norm (page - operator!= (page rator*

(page 150) - 0perat0r+ (page bs1) - operator— (page Is1) - operator/ (éage

0perator<< (page - operator== (page [L52) - operator>> (page
(page ow (page) - real (page i53) - sin (page

sqrt(page) - tan(pageﬁga) tanh (page

namespace std {
#define _ STD_COMPLEX

// TEMPLATE CLASSES

template<class T>

class complex;
template<>

class complex<float>;
template<>

class complex<double>;
template<>

class complex<long double>;

// TEMPLATE FUNCTIONS
template<class T>
complex<T> operator+(const complex<T>& 1lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator+(const complex<T>& 1lhs,
const T& rhs);
template<class T>
complex<T> operator+(const T& 1lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator-(const complex<T>& lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator-(const complex<T>& Tlhs,
const T& rhs);
template<class T>
complex<T> operator-(const T& Ths,
const complex<T>& rhs);
template<class T>
complex<T> operator*(const complex<T>& Ths,
const complex<T>& rhs);
template<class T>
complex<T> operatorx(const complex<T>& lhs,
const T& rhs);
template<class T>
complex<T> operator*(const T& 1lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator/(const complex<T>& Tlhs,
const complex<T>& rhs);
template<class T>
complex<T> operator/(const complex<T>& lhs,
const T& rhs);
template<class T>
complex<T> operator/(const T& 1lhs,
const complex<T>& rhs);
template<class T>

complex<T> operator+(const complex<T>& 1hs);

template<class T>

complex<T> operator-(const complex<T>& 1hs);

template<class T>

Chapter 14. Standard C++ Library Header Files

) - sinh (page
_ STD_COMPLEX (page

E)

143

144

bool operator==(const complex<T>& 1hs,
const complex<T>& rhs);
template<class T>
bool operator==(const complex<T>& Ths,
const T& rhs);
template<class T>
bool operator==(const T& Ths,
const complex<T>& rhs);
template<class T>
bool operator!=(const complex<T>& 1lhs,
const complex<T>& rhs);
template<class T>
bool operator!=(const complex<T>& Ths,
const T& rhs);
template<class T>
bool operator!=(const T& 1lhs,
const complex<T>& rhs);
template<class U, class E, class T>
basic_istream<k, T>&
operator>>(basic_istream<kE, T>& is,
complex<U>& x);
template<class U, class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
const complex<U>& x);
template<class T>
T real(const complex<T>& Xx);
template<class T>
T imag(const complex<T>& Xx);
template<class T>
T abs(const complex<T>& x);
template<class T>
T arg(const complex<T>& Xx);
template<class T>
T norm(const complex<T>& Xx);
template<class T>
complex<T> conj(const complex<T>& x);
template<class T>
complex<T> polar(const T& rho, const T& theta =
template<class T>
complex<T> cos(const complex<T>& x);
template<class T>
complex<T> cosh(const complex<T>& x);
template<class T>
complex<T> exp(const complex<T>& x);
template<class T>
complex<T> log(const complex<T>& x);
template<class T>
complex<T> 10g10(const complex<T>& x);
template<class T>
complex<T> pow(const complex<T>& x, int y);
template<class T>
complex<T> pow(const complex<T>& x, const T& y);
template<class T>
complex<T> pow(const complex<T>& x,
const complex<T>& y);
template<class T>
complex<T> pow(const T& x, const complex<T>& y);
template<class T>
complex<T> sin(const complex<T>& x);
template<class T>
complex<T> sinh(const complex<T>& x);
template<class T>
complex<T> sqrt(const complex<T>& x);

}s

Standard C++ Library

0);

Include the standard header <complex> to define template class complex and a host
of supporting template functions. Unless otherwise specified, functions that can
return multiple values return an imaginary part in the half-open interval (-pi,

pil.
abs
template<class T>
T abs(const complex<T>& Xx);
The function returns the magnitude of x.
arg
template<class T>
T arg(const complex<T>& Xx);
The function returns the phase angle of x.
complex

template<class T>
class complex {
pubTic:

typedef T value_type;
T real() const;
T imag() const;
complex(const T& re = 0, const T& im = 0);
template<class U>

complex(const complex<U>& Xx);
template<class U>

complex& operator=(const complex<U>& rhs);
template<class U>

complex& operator+=(const complex<U>& rhs);
template<class U>

complex& operator-=(const complex<U>& rhs);
template<class U>

complex& operator*=(const complex<U>& rhs);
template<class U>

complex& operator/=(const complex<U>& rhs);
complex& operator=(const T& rhs);
complex& operator+=(const T& rhs);
complex& operator-=(const T& rhs);
complex& operator*=(const T& rhs);
complex& operator/=(const T& rhs);
friend complex<T>

operator+(const complex<T>& 1hs, const T& rhs);
friend complex<T>

operator+(const T& Ths, const complex<T>& rhs);
friend complex<T>

operator-(const complex<T>& lhs, const T& rhs);
friend complex<T>

operator-(const T& Ths, const complex<T>& rhs);
friend complex<T>

operatorx(const complex<T>& 1hs, const T& rhs);
friend complex<T>

operatorx(const T& Ths, const complex<T>& rhs);
friend complex<T>

operator/(const complex<T>& 1hs, const T& rhs);
friend complex<T>

operator/(const T& Ths, const complex<T>& rhs);
friend bool

operator==(const complex<T>& lhs, const T& rhs);
friend bool

operator==(const T& Ths, const complex<T>& rhs);

Chapter 14. Standard C++ Library Header Files 145

friend bool

operator!=(const complex<T>& lhs, const T& rhs);
friend bool

operator!=(const T& Ths, const complex<T>& rhs);
}s

The template class describes an object that stores two objects of type T, one that

represents the real part of a complex number and one that represents the

imaginary part. An object of class T:

* has a public default constructor, destructor, copy constructor, and assignment
operator — with conventional behavior

* can be assigned integer or floating-point values, or type cast to such values —
with conventional behavior

* defines the arithmetic operators and math functions, as needed, that are defined
for the floating-point types — with conventional behavior

In particular, no subtle differences may exist between copy construction and
default construction followed by assignment. And none of the operations on
objects of class T may throw exceptions.

Explicit specializations of template class complex exist for the three floating-point
types. In this implementation (page B), a value of any other type T is type cast to
double for actual calculations, with the double result assigned back to the stored
object of type T.

complex::complex

complex(const T& re = 0, const T& im = 0);
template<class U>
complex(const complex<U>& Xx);

The first constructor initializes the stored real part to re and the stored imaginary
part to im. The second constructor initializes the stored real part to x.real () and
the stored imaginary part to x.imag().

In this implementation (page B), if a translator does not support member template
functions, the template:

template<class U>
complex(const complex<U>& Xx);

is replaced by:

complex(const complex& x);

which is the copy constructor.

complex::imag
T imag() const;

The member function returns the stored imaginary part.

complex::operator*=
template<class U>

complex& operator*=(const complex<U>& rhs);
complex& operator*=(const T& rhs);

The first member function replaces the stored real and imaginary parts with those
corresponding to the complex product of *this and rhs. It then returns *this.

146 Standard C++ Library

The second member function multiplies both the stored real part and the stored
imaginary part with rhs. It then returns *this.

In this implementation (page B), if a translator does not support member template
functions, the template:

template<class U>
complex& operator*=(const complex<U>& rhs);

is replaced by:

complex& operator*=(const complex& rhs);

complex::operator+=

template<class U>
complex& operator+=(const complex<U>& rhs);
complex& operator+=(const T& rhs);

The first member function replaces the stored real and imaginary parts with those
corresponding to the complex sum of *this and rhs. It then returns *this.

The second member function adds rhs to the stored real part. It then returns *this.

In this implementation (page B), if a translator does not support member template
functions, the template:

template<class U>
complex& operator+=(const complex<U>& rhs);

is replaced by:
complex& operator+=(const complex& rhs);

complex::operator-=

template<class U>
complex& operator-=(const complex<U>& rhs);
complex& operator-=(const T& rhs);

The first member function replaces the stored real and imaginary parts with those
corresponding to the complex difference of *this and rhs. It then returns *this.

The second member function subtracts rhs from the stored real part. It then returns
*this.

In this implementation (page B), if a translator does not support member template
functions, the template:

template<class U>
complex& operator-=(const complex<U>& rhs);

is replaced by:

complex& operator-=(const complex& rhs);

complex::operator/=

template<class U>
complex& operator/=(const complex<U>& rhs);
complex& operator/=(const T& rhs);

The first member function replaces the stored real and imaginary parts with those
corresponding to the complex quotient of *this and rhs. It then returns *this.

Chapter 14. Standard C++ Library Header Files 147

148

The second member function multiplies both the stored real part and the stored
imaginary part with rhs. It then returns *this.

In this implementation (page B), if a translator does not support member template
functions, the template:

template<class U>
complex& operator/=(const complex<U>& rhs);

is replaced by:

complex& operator/=(const complex& rhs);

complex::operator=

template<class U>
complex& operator=(const complex<U>& rhs);
complex& operator=(const T& rhs);

The first member function replaces the stored real part with rhs.real() and the
stored imaginary part with rhs.imag(). It then returns *this.

The second member function replaces the stored real part with rhs and the stored
imaginary part with zero. It then returns *this.

In this implementation (page B), if a translator does not support member template
functions, the template:

template<class U>
complex& operator=(const complex<U>& rhs);

is replaced by:
complex& operator=(const complex& rhs);

which is the default assignment operator.

complex::real
T real() const;

The member function returns the stored real part.

complex::value_type
typedef T value_type;

The type is a synonym for the template parameter T.

complex<double>

template<>
class complex<double> {
public:
complex(double re = 0, double im = 0);
complex(const complex<float>& x);
explicit complex(const complex<long double>& x);
// rest same as template class complex

}s

The explicitly specialized template class describes an object that stores two objects
of type double, one that represents the real part of a complex number and one that
represents the imaginary part. The explicit specialization differs only in the
constructors it defines. The first constructor initializes the stored real part to re and

Standard C++ Library

the stored imaginary part to im. The remaining two constructors initialize the
stored real part to x.real() and the stored imaginary part to x.imag().

complex<float>

template<>
class complex<float> {
public:
complex(float re = 0, float im = 0);
explicit complex(const complex<double>& x);
explicit complex(const complex<long double>& x);
// rest same as template class complex

1

The explicitly specialized template class describes an object that stores two objects
of type float, one that represents the real part of a complex number and one that
represents the imaginary part. The explicit specialization differs only in the
constructors it defines. The first constructor initializes the stored real part to re and
the stored imaginary part to im. The remaining two constructors initialize the
stored real part to x.real() and the stored imaginary part to x.imag().

complex<long double>

conj

COS

cosh

template<>

class complex<long double> {
public:

complex(long double re = 0, long double im = 0);

complex(const complex<float>& x);

complex(const complex<double>& x);
// rest same as template class complex

b
The explicitly specialized template class describes an object that stores two objects
of type Tong double, one that represents the real part of a complex number and
one that represents the imaginary part. The explicit specialization differs only in
the constructors it defines. The first constructor initializes the stored real part to re

and the stored imaginary part to im. The remaining two constructors initialize the
stored real part to x.real() and the stored imaginary part to x.imag().

template<class T>
complex<T> conj(const complex<T>& x);

The function returns the conjugate of x.

template<class T>
complex<T> cos(const complex<T>& x);

The function returns the cosine of x.

template<class T>
complex<T> cosh(const complex<T>& x);

The function returns the hyperbolic cosine of x.

Chapter 14. Standard C++ Library Header Files 149

exp

template<class T>
complex<T> exp(const complex<T>& x);

The function returns the exponential of x.

imag
template<class T>
T imag(const complex<T>& Xx);

The function returns the imaginary part of x.

template<class T>
complex<T> log(const complex<T>& x);

The function returns the logarithm of x. The branch cuts are along the negative real
axis.

log10

template<class T>
complex<T> 1loglO(const complex<T>& x);

The function returns the base 10 logarithm of x. The branch cuts are along the
negative real axis.

norm

template<class T>
T norm(const complex<T>& Xx);

The function returns the squared magnitude of x.

operator!=

template<class T>
bool operator!=(const complex<T>& 1lhs,
const complex<T>& rhs);
template<class T>
bool operator!=(const complex<T>& Ths,
const T& rhs);
template<class T>
bool operator!=(const T& 1hs,
const complex<T>& rhs);

The operators each return true only if real(Ths) != real(rhs) || imag(lhs) !=
imag(rhs).

operator*

template<class T>
complex<T> operator*(const complex<T>& lhs,
const complex<T>& rhs);
template<class T>
complex<T> operatorx(const complex<T>& 1lhs,
const T& rhs);
template<class T>
complex<T> operator*(const T& 1lhs,
const complex<T>& rhs);

150 Standard C++ Library

The operators each convert both operands to the return type, then return the
complex product of the converted Ths and rhs.

operator+

template<class T>
complex<T> operator+(const complex<T>& lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator+(const complex<T>& Tlhs,
const T& rhs);
template<class T>
complex<T> operator+(const T& Ths,
const complex<T>& rhs);
template<class T>
complex<T> operator+(const complex<T>& 1hs);

The binary operators each convert both operands to the return type, then return
the complex sum of the converted Ths and rhs.

The unary operator returns 1hs.

operator-

template<class T>
complex<T> operator-(const complex<T>& Tlhs,
const complex<T>& rhs);
template<class T>
complex<T> operator-(const complex<T>& 1lhs,
const T& rhs);
template<class T>
complex<T> operator-(const T& 1lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator-(const complex<T>& 1hs);

The binary operators each convert both operands to the return type, then return
the complex difference of the converted Ths and rhs.

The unary operator returns a value whose real part is -real(Ths) and whose
imaginary part is -imag(1hs).

operator/

template<class T>
complex<T> operator/(const complex<T>& 1lhs,
const complex<T>& rhs);
template<class T>
complex<T> operator/(const complex<T>& lhs,
const T& rhs);
template<class T>
complex<T> operator/(const T& 1lhs,
const complex<T>& rhs);

The operators each convert both operands to the return type, then return the
complex quotient of the converted Ths and rhs.

operator<<

template<class U, class E, class T>
basic_ostream<kE, T>&
operator<<(basic_ostream<kE, T>& os,
const complex<U>& x);

Chapter 14. Standard C++ Library Header Files 151

152

The template function inserts the complex value x in the output stream os,
effectively by executing:

basic_ostringstream<kE, T> ostr;

ostr.flags(os.flags());

ostr.imbue(os.imbue());

ostr.precision(os.precision());

ostr << '(' << real(x) << ','
<< imag(x) << ')';

0s << ostr.str().c_str();

Thus, if os.width() is greater than zero, any padding occurs either before or after
the parenthesized pair of values, which itself contains no padding. The function
returns os.

operator==

template<class T>
bool operator==(const complex<T>& 1hs,
const complex<T>& rhs);
template<class T>
bool operator==(const complex<T>& 1lhs,
const T& rhs);
template<class T>
bool operator==(const T& 1lhs,
const complex<T>& rhs);

The operators each return true only if real(Ths) == real(rhs) && imag(lhs) ==
imag(rhs).

operator>>

template<class U, class E, class T>
basic_istream<k, T>&
operator>>(basic_istream<kE, T>& is,
complex<U>& x);

The template function attempts to extract a complex value from the input stream
is, effectively by executing:

is >> ch & ch == '('
&& is >> re >> ch && ¢
&& is >> im >> ch && ¢

h I’I
h==1)

Here, ch is an object of type E, and re and im are objects of type U.

If the result of this expression is true, the function stores re in the real part and im
in the imaginary part of x. In any event, the function returns is.

polar
template<class T>
complex<T> polar(const T& rho,
const T& theta = 0);
The function returns the complex value whose magnitude is rho and whose phase
angle is theta.
pow

template<class T>

complex<T> pow(const complex<T>& x, int y);
template<class T>

complex<T> pow(const complex<T>& x,

Standard C++ Library

real

sin

sinh

sqrt

const T& y);
template<class T>
complex<T> pow(const complex<T>& x,
const complex<T>& y);
template<class T>
complex<T> pow(const T& x,
const complex<T>& y);

The functions each effectively convert both operands to the return type, then

return the converted x to the power y. The branch cut for x is along the negative
real axis.

template<class T>
T real(const complex<T>& X);

The function returns the real part of x.

template<class T>
complex<T> sin(const complex<T>& x);

The function returns the sine of x.

template<class T>
complex<T> sinh(const complex<T>& x);

The function returns the hyperbolic sine of x.

template<class T>
complex<T> sqrt(const complex<T>& x);

The function returns the square root of x, with phase angle in the half-open
interval (-pi/2, pi/2]. The branch cuts are along the negative real axis.

__STD_COMPLEX

tan

tanh

#define __STD_COMPLEX

The macro is defined, with an unspecified expansion, to indicate compliance with
the specifications of this header.

template<class T>
complex<T> tan(const complex<T>& x);

The function returns the tangent of x.

template<class T>
complex<T> tanh(const complex<T>& x);

The function returns the hyperbolic tangent of x.

Chapter 14. Standard C++ Library Header Files 153

<csetjmp>

#include <setjmp.h>

namespace std {
using ::jmp_buf; using ::Tongjmp;

}s

Include the standard header <csetjmp> to effectively include the standard header
<setjmp.h> (page @) within the std namespace (page E).

<csignal>
#include <signal.h>
namespace std {
using ::sig_atomic_t; using ::raise; using ::signal;
bs
Include the standard header <csignal> to effectively include the standard header
<signal.h> (page fd) within the std namespace (page fd).
<cstdarg>
#include <stdarg.h>
namespace std {
using ::va_list;
b
Include the standard header <cstdarg> to effectively include the standard header
<stdarg.h> (page Bl) within the std namespace (page [id).
<cstddef>
#include <stddef.h>
namespace std {
using ::ptrdiff_t; using ::size_t;
b
Include the standard header <cstddef> to effectively include the standard header
<stddef.h> (page B3) within the std namespace (page iLd).
<cstdio>

#include <stdio.h>

namespace std {

using ::size_t; using ::fpos_t; using ::FILE;
using ::clearerr; using ::fclose; using ::feof;
using ::ferror; using ::fflush; using ::fgetc;
using ::fgetpos; using ::fgets; using ::fopen;
using ::fprintf; using ::fputc; using ::fputs;
using ::fread; using ::freopen; using ::fscanf;
using ::fseek; using ::fsetpos; using ::ftell;
using ::fwrite; using ::gets; using ::perror;
using ::printf; using ::puts; using ::remove;
using ::rename; using ::rewind; using ::scanf;
using ::setbuf; using ::setvbuf; using ::sprintf;

154 Standard C++ Library

using ::sscanf; using ::tmpfile; using ::tmpnam;
using ::ungetc; using ::vfprintf; using ::vprintf;
using ::vsprintf;

}s

Include the standard header <cstdio> to effectively include the standard header
<stdio.h> (page Bd) within the std namespace (page id).

<cstdlib>

#include <stdlib.h>

namespace std {

using ::size_t; using ::div_t; using ::1div_t;

using ::abort; using ::abs; using ::atexit;

using ::atof; using ::atoi; using ::atol;

using ::bsearch; using ::calloc; using ::div;

using ::exit; using ::free; using ::getenv;

using ::labs; using ::1div; using ::malloc;

using ::mblen; using ::mbstowcs; using ::mbtowc;

using ::qsort; using ::rand; using ::realloc;

using ::srand; using ::strtod; using ::strtol;

using ::strtoul; using ::system;

using ::wcstombs; using ::wctomb;

1

Include the standard header <cstdlib> to effectively include the standard header

<stdlib.h> (page Bd) within the std namespace (page fud).
<cstring>

#include <string.h>

namespace std {

using ::size_t; using ::memcmp; using ::memcpy;

using ::memmove; using ::memset; using ::strcat;

using ::strcmp; using ::strcoll; using ::strcpy;

using ::strcspn; using ::strerror; using ::strlen;

using ::strncat; using ::strncmp; using ::strncpy;

using ::strspn; using ::strtok; using ::strxfrm;

1

Include the standard header <cstring> to effectively include the standard header

<string.h> (page @I) within the std namespace (page).
<ctime>

#include <time.h>

namespace std {

using ::clock_t; using ::size_t;

using ::time_t; using ::tm;

using ::asctime; using ::clock; using ::ctime;

using ::difftime; using ::gmtime; using ::localtime;
using ::mktime; using ::strftime; using ::time;

}s

Include the standard header <ctime> to effectively include the standard header
<time.h> (page flod) within the std namespace (page id).

Chapter 14. Standard C++ Library Header Files 155

<cwchar>

#include <wchar.h>

namespace std {

using ::mbstate_t; using ::size_t; using ::wint_t;
using ::fgetwc; using ::fgetws; using ::fputwc;
using ::fputws; using ::fwide; using ::fwprintf;
using ::fwscanf; using ::getwc; using ::getwchar;
using ::mbrlen; using ::mbrtowc; using ::mbsrtowcs;
using ::mbsinit; using ::putwc; using ::putwchar;
using ::swprintf; using ::swscanf; using ::ungetwc;
using ::vfwprintf; using ::vswprintf; using ::vwprintf;
using ::wcrtomb; using ::wprintf; using ::wscanf;
using ::wcsrtombs; using ::wcstol; using ::wcscat;
using ::wcschr; using ::wcscmp; using ::wcscoll;
using ::wcscpy; using ::wcscspn; using ::wcslen;
using ::wcsncat; using ::wcsncmp; using ::wcsncpy;
using ::wcspbrk; using ::wcsrchr; using ::wcsspn;
using ::wcsstr; using ::wcstok; using ::wcsxfrm;
using ::wmemchr; using ::wmemcmp; using ::wmemcpy;
using ::wmemmove; using ::wmemset; using ::wcsftime;

}s

Include the standard header <cwchar> to effectively include the standard header
<wcharh> (page [l1d) within the std namespace (page id).

<cwctype>

#include <wctype.h>

namespace std {

using ::wint_t; using ::wctrans_t; using ::wctype_t;
using ::iswalnum; using ::iswalpha; using ::iswcntrl;
using ::iswctype; using ::iswdigit; using ::iswgraph;
using ::iswlower; using ::iswprint; using ::iswpunct;
using ::iswspace; using ::iswupper; using ::iswxdigit;
using ::towctrans; using ::towlower; using ::towupper;
using ::wctrans; using ::wctype;

}s

Include the standard header <cwctype> to effectively include the standard header
<wctype.h> (page f28) within the std namespace (page fid).

<exception>

namespace std {
class exception;
class bad_exception;

// FUNCTIONS

typedef void (*terminate_handler)();
typedef void (*unexpected_handler)();
terminate_handler

set_terminate(terminate_handler ph) throw();
unexpected_handler

set_unexpected(unexpected_handler ph) throw();
void terminate();
void unexpected();
bool uncaught_exception();

}s

Include the standard header <exception> to define several types and functions
related to the handling of exceptions.

156 Standard C++ Library

bad_exception

class bad_exception : public exception {

bs

The class describes an exception that can be thrown from an unexpected handler
(page [58). The value returned by what() is an implementation-defined C string
(page). None of the member functions throw any exceptions.

exception

class exception {

public:
exception() throw();
exception(const exception& rhs) throw();
exceptiond operator=(const exception& rhs) throw();
virtual exception() throw();
virtual const char *what() const throw();

}s

The class serves as the base class for all exceptions thrown by certain expressions
and by the Standard C++ library. The C string (page B) value returned by what () is
left unspecified by the default constructor, but may be defined by the constructors
for certain derived classes as an implementation-defined C string (page B.

None of the member functions throw any exceptions.

set_terminate

terminate_handler
set_terminate(terminate_handler ph) throw();

The function establishes a new terminate handler (page [L57) as the function *ph.
Thus, ph must not be a null pointer. The function returns the address of the
previous terminate handler.

set_unexpected

unexpected_handler
set_unexpected(unexpected_handler ph) throw();

The function establishes a new unexpected handler (page [158) as the function *ph.
Thus, ph must not be a null pointer. The function returns the address of the
previous unexpected handler.

terminate

void terminate();

The function calls a terminate handler, a function of type void (). If terminate is
called directly by the program, the terminate handler is the one most recently set
by a call to set_terminate (page @). If terminate is called for any of several other
reasons during evaluation of a throw expression, the terminate handler is the one
in effect immediately after evaluating the throw expression.

A terminate handler may not return to its caller. At program startup (page B, the
terminate handler is a function that calls abort().

terminate_handler
typedef void (*terminate_handler)();

Chapter 14. Standard C++ Library Header Files 157

The type describes a pointer to a function suitable for use as a terminate handler
(page 157).

uncaught_exception

bool uncaught_exception();

The function returns true only if a thrown exception is being currently processed.
Specifically, it returns true after completing evaluation of a throw expression and
before completing initialization of the exception declaration in the matching
handler or calling unexpected (page [158) as a result of the throw expression.

unexpected

void unexpected();

The function calls an unexpected handler, a function of type void (). If
unexpected is called directly by the program, the un%)ected handler is the one
most recently set by a call to set_unexpected (page L52). If unexpected is called
when control leaves a function by a thrown exception of a type not permitted by
an exception specification for the function, as in:

void f() throw() // function may throw no exceptions
{throw "bad"; } // throw calls unexpected()

the unexpected handler is the one in effect immediately after evaluating the throw
expression.

An unexpected handler may not return to its caller. It may terminate execution by:

* throwing an object of a type listed in the exception specification (or an object of
any type if the unexpected handler is called directly by the program)

* throwing an object of type bad_exception
* calling terminate(), abort(), or exit(int)

At program startup (page), the unexpected handler is a function that calls
terminate().

unexpected handler

typedef void (*unexpected_handler) ();

The type describes a pointer to a function suitable for use as an unexpected
handler.

<fstream>

namespace std {

template<class E, class T = char_traits<E> >
class basic_filebuf;

typedef basic_filebuf<char> filebuf;

typedef basic_filebuf<wchar_t> wfilebuf;

template<class E, class T = char_traits<E> >
class basic_ifstream;

typedef basic_ifstream<char> ifstream;

typedef basic_ifstream<wchar_t> wifstream;

template<class E, class T = char_traits<E> >
class basic_ofstream;

typedef basic_ofstream<char> ofstream;

typedef basic_ofstream<wchar_t> wofstream;

template<class E, class T = char_traits<E> >

158 Standard C++ Library

class basic_fstream;
typedef basic_fstream<char> fstream;
typedef basic_fstream<wchar_t> wfstream;

Include the iostreams (page E‘) standard header <fstream> to define several classes
that support iostreams operations on sequences stored in external files (page ﬁ).

basic_filebuf

template <class E, class T = char_traits<E> >
class basic_filebuf : public basic_streambuf<k, T> {
public:
typedef typename basic_streambuf<E, T>::char_type
char_type;
typedef typename basic_streambuf<E, T>::traits_type
traits_type;
typedef typename basic_streambuf<E, T>::int_type
int_type;
typedef typename basic_streambuf<E, T>::pos_type
pos_type;
typedef typename basic_streambuf<kE, T>::off_type
off_type;
basic_filebuf();
bool is_open() const;
basic_filebuf xopen(const char =*s,
jos_base::openmode mode);
basic_filebuf *close();
protected:
virtual pos_type seekoff(off type off,
ios_base::seekdir way,
ios_base::openmode which =
ios_base::in | ios_base::out);
virtual pos_type seekpos(pos type pos,
ios_base::openmode which =
ios_base::in | ios_base::out);
virtual int_type underflow();
virtual int_type pbackfail(int_type c =
traits_type::eof());
virtual int_type overflow(int_type c =
traits_type::eof());
virtual int sync();
virtual basic_streambuf<k, T>
*xsetbuf (E *s, streamsize n);
}s

The template class describes a stream buffer (page R69) that controls the
transmission of elements of type E, whose character traits (page R93) are
determined by the class T, to and from a sequence of elements stored in an
external file (page b1l

An object of class basic_filebuf<E, T> stores a file pointer, which designates the
FILE (page E) object that controls the stream (page R1) associated with an open
(page R1) file. It also stores pointers to two file conversion facets (page ftsd) for
use by the protected member functions overflow (page @) and underflow (page

basic_filebuf::basic_filebuf

basic_filebuf();

The constructor stores a null pointer in all the pointers controlling the input buffer
(page bzd) and the output buffer (page Bzd). 1t also stores a null pointer in the file

pointer (page fi5d).

Chapter 14. Standard C++ Library Header Files 159

160

basic_filebuf::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

basic_filebuf::close
basic_filebuf *close();

The member function returns a null pointer if the file pointer (page @) fpis a
null pointer. Otherwise, it calls fclose(fp). If that function returns a nonzero
value, the function returns a null pointer. Otherwise, it returns this to indicate that
the file was successfully closed (page Rd).

For a wide stream, if any insertions have occured since the stream was opened, or
since the last call to streampos, the function calls overflow(). It also inserts any
sequence needed to restore the initial conversion state (page Ld), by using the file
conversion facet (page EI) fac to call fac.unshift as needed. Each element x of
type char thus produced is written to the associated stream designated by the file
pointer fp as if by successive calls of the form fputc(x, fp). If the call to
fac.unshift or any write fails, the function does not succeed.

basic_filebuf::int_type
typedef typename traits_type::int_type int_type;

The type is a synonym for traits_type::int_type.

basic_filebuf::is_open
bool is_open();

The member function returns true if the file pointer is not a null pointer.

basic_filebuf::off type
typedef typename traits_type::off_type off_type;

The type is a synonym for traits_type::off_type.

basic_filebuf::open
basic_filebuf xopen(const char =*s,
ios_base::openmode mode);

The member function endeavors to open the file with filename s, by calling
fopen(s, strmode). Here strmode is determined from mode & (ate & | binary):

* ios_base::in becomes "r" (open existing file for reading).

* jos_base::out or ios_base::out | ios_base::trunc becomes "w" (truncate
existing file or create for writing).

* ios_base::out | app becomes "a" (open existing file for appending all writes).

 jos_base::in | ios_base::out becomes "r+" (open existing file for reading and
writing).

 jos_base::in | ios_base::out | ios_base::trunc becomes "w+" (truncate
existing file or create for reading and writing).

* ios_base::in | ios_base::out | ios_base::app becomes "a+" (open existing
file for reading and for appending all writes).

If mode & ios_base::binary is nonzero, the function appends b to strmode to open
a binary stream (page Bd) instead of a text stream (page Rd). 1t then stores the

Standard C++ Library

value returned by fopen in the file pointer (page [5d) fp. If mode & ios_base: :ate
is nonzero and the file pointer is not a null pointer, the function calls fseek(fp, 0,
SEEK_END to position the stream at end-of-file. If that positioning operation fails, the
function calls close(fp) and stores a null pointer in the file pointer.

If the file pointer is not a null pointer, the function determines the file conversion
facet: use_facet< codecvt<E, char, traits_type:: state_type> >(getloc()), for
use by underflow and overflow.

If the file pointer is a null pointer, the function returns a null pointer. Otherwise, it
returns this.

basic_filebuf::overflow

virtual int_type overflow(int_type c =
traits_type::eof());

If ¢ != traits_type::eof(), the protected virtual member function endeavors to
insert the element traits_type::to_char_type(c) into the output buffer (page E)
It can do so in various ways:

* If a write position (page Rzd) is available, it can store the element into the write
position and increment the next pointer for the output buffer.

* It can make a write position available by allocating new or additional storage for
the output buffer.

* It can convert any pending output in the output buffer, followed by ¢, by using
the file conversion facet (page fac to call fac.out as needed. Each element x
of type char thus produced is written to the associated stream designated by the
file pointer fp as if by successive calls of the form fputc(x, fp). If any
conversion or write fails, the function does not succeed.

If the function cannot succeed, it returns traits_type::eof (). Otherwise, it returns
traits_type::not_eof(c).

basic_filebuf::pbackfail

virtual int_type pbackfail(int_type c =
traits_type::eof());

The protected virtual member function endeavors to put back an element into the
input buffer (page m), then make it the current element (pointed to by the next
pointer). If ¢ == traits_type::eof(), the element to push back is effectively the
one already in the stream before the current element. Otherwise, that element is
replaced by x = traits_type::to_char_type(c). The function can put back an
element in various ways:

* If a putback position (page @) is available, and the element stored there
compares equal to X, it can simply decrement the next pointer for the input
buffer.

* If the function can make a putback position available, it can do so, set the next
pointer to point at that position, and store x in that position.

* If the function can push back an element onto the input stream, it can do so,
such as by calling ungetc (page Bd) for an element of type char.

If the function cannot succeed, it returns traits_type::eof (). Otherwise, it returns
traits_type::not_eof(c).

Chapter 14. Standard C++ Library Header Files 161

162

basic_filebuf::pos_type
typedef typename traits_type::pos_type pos_type;

The type is a synonym for traits_type::pos_type.

basic_filebuf::seekoff

virtual pos_type seekoff(off_type off,
ios_base::seekdir way,
ios_base::openmode which =
ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for

the controlled streams. For an object of class basic_filebuf<E, T>, a stream

position can be represented by an object of type fpos_t (page Bd), which stores an

offset and any state information needed to parse a wide stream (page BJ). Offset

zero designates the first element of the stream. (An object of type pos_type (page
stores at least an fpos_t object.)

For a file opened for both reading and writing, both the input and output streams

are positioned in tandem. To switch (page B4) between inserting and extracting,

you must call either pubseekoff (page R73) or pubseekpos (page bzd). Calls to

%bsee koff (and hence to seekoff) have various limitations for text streams (page
), binary streams (page Bd), and wide streams (page Bd).

If the file pointer (page fi5d) fp is a null pointer, the function fails. Otherwise, it
endeavors to alter the stream position by calling fseek(fp, off, way). If that
function succeeds and the resultant position fposn can be determined by calling
fgetpos (fp, &fposn), the function succeeds. If the function succeeds, it returns a
value of type pos_type containing fposn. Otherwise, it returns an invalid stream
position.

basic_filebuf::seekpos

virtual pos_type seekpos(pos_type pos,
ios_base::openmode which =
ios_base::in | ios_base::out);

The protected virtual member function endeavors to alter the current positions for
the controlled streams. For an object of class basic_filebuf<E, T>, a stream
position can be represented by an object of type fpos_t (page Bd), which stores an
offset and any state information needed to parse a wide stream (page P2). Offset
zero designates the first element of the stream. (An object of type pos_type (page
@) stores at least an fpos_t object.)

For a file opened for both reading and writing, both the input and output streams

are positioned in tandem. To switch (page Bd) between inserting and extracting,

you must call either pubseekoff (page 2Z3) or pubseekpos (page Bz3). calls to

%bsee koff (and hence to seekoff) have various limitations for text streams (page
), binary streams (page E), and wide streams (page E).

For a wide stream, if any insertions have occured since the stream was opened, or
since the last call to streampos, the function calls overflow(). It also inserts any
sequence needed to restore the initial conversion state (page id), by using the file
conversion facet (page fled) fac to call fac.unshift as needed. Each element x of
type char thus produced is written to the associated stream designated by the file
pointer fp as if by successive calls of the form fputc(x, fp). If the call to
fac.unshift or any write fails, the function does not succeed.

Standard C++ Library

If the file pointer (page [159) p is a null pointer, the function fails. Otherwise, it
endeavors to alter the stream position by calling fsetpos(fp, &fposn), where
fposn is the fpos_t object stored in pos. If that function succeeds, the function
returns pos. Otherwise, it returns an invalid stream position.

basic_filebuf::setbuf

virtual basic_streambuf<k, T>
+«setbuf (E *s, streamsize n);

The protected member function returns zero if the file pointer (page fisd) fpis a
null pointer. Otherwise, it calls setvbuf(fp, (char *)s, _IOFBF, n * sizeof (E))
to offer the array of n elements beginning at s as a buffer for the stream. If that
function returns a nonzero value, the function returns a null pointer. Otherwise, it
returns this to signal success.

basic_filebuf::sync
int sync();

The protected member function returns zero if the file pointer (page @) fpisa
null pointer. Otherwise, it returns zero only if calls to both overflow() and
fflush(fp) succeed in flushing any pending output to the stream.

basic_filebuf::traits_type
typedef T traits_type;

The type is a synonym for the template parameter T.

basic_filebuf::underflow
virtual int_type underflow();

The protected virtual member function endeavors to extract the current element c
from the input stream, and return the element as traits_type::to_int_type(c). It
can do so in various ways:

« 1If a read position (page RZ0) is available, it takes c as the element stored in the
read position and advances the next pointer for the input buffer (page BZd).

* It can read one or more elements of type char, as if by successive calls of the
form fgetc(fp), and convert them to an element c of type E by using the file
conversion facet (page 1) fac to call fac.in as needed. If any read or
conversion fails, the function does not succeed.

If the function cannot succeed, it returns traits_type::eof (). Otherwise, it returns
¢, converted as described above.

basic_fstream

template <class E, class T = char_traits<E> >
class basic_fstream : public basic_iostream<E, T> {
pubTic:
basic_fstream();
explicit basic_fstream(const char *s,
ios_base::openmode mode =
ios_base::in | ios_base::out);
basic_filebuf<E, T> *rdbuf() const;
bool is_open() const;
void open(const char *s,
ios_base::openmode mode =
ios_base::in | ios_base::out);
void close();

}s

Chapter 14. Standard C++ Library Header Files 163

164

The template class describes an object that controls insertion and extraction of
elements and encoded objects using a stream buffer (page R&9) of class
basic_filebuf<E, T> with elements of type E, whose character traits (page £93)
are determined by the class T. The object stores an object of class basic_filebuf<E,
T>.

basic_fstream::basic_fstream

basic_fstream();
explicit basic_fstream(const char =*s,
ios_base::openmode mode =
ios_base::in | ios_base::out);

The first constructor initializes the base class by calling basic_iostream(sb), where
sb is the stored object of class basic_filebuf<E, T>. It also initializes sb by calling
basic_filebuf<k, T>().

The second constructor initializes the base class by calling basic_iostream(sb). It
also initializes sh by calling basic_filebuf<E, T>(), then sb.open(s, mode). If the
latter function returns a null pointer, the constructor calls setstate(failbit).

basic_fstream::close
voidclose();

The member function calls rdbuf()-> close().

basic_fstream::is_open
bool is_open();

The member function returns rdbuf()-> is_open().

basic_fstream::open

void open(const char xs,
ios_base::openmode mode =
ios_base::in | ios_base::out);

The member function calls rdbuf()-> open(s, mode). If that function returns a null
pointer, the function calls setstate(failbit).

basic_fstream::rdbuf
basic_filebuf<E, T> *rdbuf() const

The member function returns the address of the stored stream buffer, of type
pointer to basic_filebuf<E, T>.

basic_ifstream

template <class E, class T = char_traits<E> >
class basic_ifstream : public basic_istream<kE, T> {
public:
basic_filebuf<E, T> *rdbuf() const;
basic_ifstream();
explicit basic_ifstream(const char =*s,
jos_base::openmode mode = ios_base::in);
bool is_open() const;
void open(const char xs,
jos_base::openmode mode = ios_base::in);
void close();

}s

Standard C++ Library

The template class describes an object that controls extraction of elements and
encoded objects from a stream buffer of class basic_filebuf<E, T>, with elements
of type E, whose character traits (page £93) are determined by the class T. The
object stores an object of class basic_filebuf<k, T>.

basic_ifstream::basic_ifstream

basic_ifstream();
explicit basic_ifstream(const char =*s,
jos_base::openmode mode = jos_base::in);

The first constructor initializes the base class by calling basic_istream(sb), where
sb is the stored object of class basic_filebuf<E, T>. It also initializes sb by calling
basic_filebuf<k, T>().

The second constructor initializes the base class by calling basic_istream(sb). It
also initializes sb by calling basic_filebuf<kE, T>(), then sb.open(s, mode |
ios_base::in). If the latter function returns a null pointer, the constructor calls
setstate(failbit).

basic_ifstream::close
void close();

The member function calls rdbuf()-> close().

basic_ifstream::is_open
bool 1is_open();

The member function returns rdbuf()-> is_open().

basic_ifstream::open
void open(const char *s,
jos_base::openmode mode = ios_base::in);

The member function calls rdbuf()-> open(s, mode | ios_base::in). If that
function returns a null pointer, the function calls setstate(failbit).

basic_ifstream::rdbuf
basic_filebuf<E, T> *rdbuf() const

The member function returns the address of the stored stream buffer.

basic_ofstream

template <class E, class T = char_traits<E> >
class basic_ofstream : public basic_ostream<kE, T> {
public:
basic_filebuf<E, T> *rdbuf() const;
basic_ofstream();
explicit basic_ofstream(const char *s,
jos_base::openmode mode = ios_base::out);
bool is_open() const;
void open(const char =s,
jos_base::openmode mode = ios_base::out);
void close();

}s

The template class describes an object that controls insertion of elements and
encoded objects into a stream buffer of class basic_filebuf<k, T>, with elements

Chapter 14. Standard C++ Library Header Files 165

of type E, whose character traits (page R93) are determined by the class T. The
object stores an object of class basic_filebuf<E, T>.

basic_ofstream::basic_ofstream

basic_ofstream();
explicit basic_ofstream(const char =*s,
jos_base::openmode which = ios_base::out);

The first constructor initializes the base class by calling basi c_ostream(sb), where
sb is the stored object of class basic_filebuf<E, T>. It also initializes sb by calling
basic_filebuf<k, T>().

The second constructor initializes the base class by calling basic_ostream(sb). It
also initializes sb by calling basic_filebuf<E, T>(), then sbh.open(s, mode |
ios_base::out). If the latter function returns a null pointer, the constructor calls
setstate(failbit).

basic_ofstream::close
void close();

The member function calls rdbuf()-> close().

basic_ofstream::is_open
bool is_open();

The member function returns rdbuf()-> is_open().

basic_ofstream::open

void open(const char xs,
jos_base::openmode mode = ios_base::out);

The member function calls rdbuf()-> open(s, mode | ios_base::out). If that
function returns a null pointer, the function calls setstate(failbit).

basic_ofstream::rdbuf
basic_filebuf<E, T> *rdbuf() const

The member function returns the address of the stored stream buffer.

filebuf

typedef basic_filebuf<char, char_traits<char> > filebuf;

The type is a synonym for template class basic_filebuf (page 15d), specialized for
elements of type char with default character traits (page ﬁ).

fstream

typedef basic_fstream<char, char_traits<char> > fstream;

The type is a synonym for template class basic_fstream %e Led), specialized for
elements of type char with default character traits (page 293).

ifstream

typedef basic_ifstream<char, char_traits<char> > ifstream;

166 Standard C++ Library

The type is a synonym for template class basic_ifstream (page [164), specialized for
elements of type char with default character traits (page @).

ofstream

typedef basic_ofstream<char, char_traits<char> >
ofstream;

The type is a synonym for template class basic_ofstream (page fLed), specialized for
elements of type char with default character traits (page 293).

wfstream

typedef basic_fstream<wchar_t, char_traits<wchar_t> >
wfstream;

The type is a synonym for template class basic_fstream (page fLed), specialized for
elements of type wchar_t with default character traits (page 293).

wifstream

typedef basic_ifstream<wchar_t, char_traits<wchar_t> >
wifstream;

The type is a synonym for template class basic_ifstream (page fled), specialized for
elements of type wchar_t with default character traits (page 293).

wofstream

typedef basic_ofstream<wchar_ t, char_traits<wchar t> >
wofstream;

The type is a synonym for template class basic_ofstream (page fled), specialized for
elements of type wchar_t with default character traits (page 293).

wfilebuf

typedef basic_filebuf<wchar_t, char_traits<wchar_t> >
wfilebuf;

The type is a synonym for template class basic_filebuf (page [i59), specialized for
elements of type wchar_t with default character traits (page 293).

<iomanip>

namespace std {
T1 resetiosflags(ios_base::fmtflags mask);
T2 setiosflags(ios_base::fmtflags mask);
T3 setbase(int base);
template<class E>
T4 setfill(E c);
T5 setprecision(streamsize n);
T6 setw(streamsize n);

}s

Include the iostreams (page EI) standard header <iomanip> to define several
manipulators (page lL&d) that each take a single argument. Each of these
manipulators returns an unspecified type, called T1 through T6 here, that overloads
both basic_istream<E, T>::operator>> and basic_ostream<kE, T>::operator<<.
Thus, you can write extractors and inserters such as:

Chapter 14. Standard C++ Library Header Files 167

cin >> setbase(8);
cout << setbase(8);

resetiosflags

T1 resetiosflags(ios_base::fmtflags mask);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.setf(ios_base:: fmtflags(), mask), then returns str.

setbase

setfill

T3 sethase(int base);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.setf(mask, ios_base::basefield), then returns str. Here,
mask is determined as follows:

 If base is 8, then mask is ios_base::oct

» If base is 10, then mask is ios_base: :dec

» If base is 16, then mask is jos_base: :hex

+ If base is any other value, then mask is ios_base::fmtflags(0)

template<class E>
T4 setfill(E fillch);

The template manipulator returns an object that, when extracted from or inserted
into the stream str, calls str.fi11(fi11ch), then returns str. The type E must be
the same as the element type for the stream str.

setiosflags

T2 setiosflags(ios_base::fmtflags mask);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.setf(mask), then returns str.

setprecision

setw

T5 setprecision(streamsize prec);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.precision(prec), then returns str.

T6 setw(streamsize wide);

The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.width(wide), then returns str.

<ios>

basic_ios (page fizo) - fpos (page 1zd) - ios (page [izd) - ios_base (age izd) -
streamoff (page fs3) streampos (page [183) - streamsize (page Eg) - wios (page
- wstreampos (page [L84)

168 Standard C++ Library

boolalpha (page fizd) - dec (page fizd) - fixed (page fizd) - hex (page fiz3) - internal
(page [176) - 1eft (page [181) - noboolalpha (page [181) - noshowbase (page [L81)
noshowpoint (page - noshowpos (page [182) - noskipws (page [182) -
nounitbuf (page Eﬁ) - nouppercase (page [183) - oct (page - right (page [182) -
scientific (page [182) - showbase (page &) - showpoint (page [183) - showpos
(page hs3) - skipws (page L83 - unitbuf (page lsd) - uppercase (page sd)
namespace std {

typedef T1 streamoff;

typedef T2 streamsize;
class ios_base;

// TEMPLATE CLASSES
template <class E, class T = char_traits<E> >
class basic_ios;
typedef basic_ios<char, char_traits<char> > jos;
typedef basic_ios<wchar_t, char_traits<wchar_t> >
wios;
template <class St>
class fpos;
typedef fpos<mbstate t> streampos;
typedef fpos<mbstate_t> wstreampos;

// MANIPULATORS
jos_base& boolalpha(ios_base& str);
jos_base& noboolalpha(ios_base& str);
jos_base& showbase(ios_base& str);
jos_base& noshowbase(ios_base& str);
jos_base& showpoint(ios_base& str);
jos_base& noshowpoint(ios_base& str);
jos_base& showpos(ios_base& str);
jos_base& noshowpos(ios_base& str);
jos_base& skipws(ios_base& str);
jos_base& noskipws(ios_base& str);
jos_base& unitbuf(ios_base& str);
jos_base& nounitbuf(ios_base& str);
jos_base& uppercase(ios_base& str);
jos_base& nouppercase(ios_base& str);
jos_base& internal(ios_base& str);
jos_base& left(ios_base& str);
jos_base& right(ios_base& str);
jos_base& dec(ios_base& str);
jos_base& hex(ios_base& str);
jos_base& oct(ios_base& str);
jos_base& fixed(ios_base& str);
jos_base& scientific(ios_base& str);

}s

Include the iostreams (page [1l) standard header <ios> to define several types and
functions basic to the operation of iostreams. (This header is typically included for
you by another of the iostreams headers. You seldom have occasion to include it
directly.)

A large group of functions are manipulators. A manipulator declared in <ios>
alters the values stored in its argument object of class ios_base (page [zd). Other
manipulators perform actions on streams controlled by objects of a type derived
from this class, such as a specialization of one of the template classes basic_istream
(page £88) or basic_ostream (page Rs1). For example, noskipws(str) clears the
format flag ios_base::skipws in the object str, which might be of one of these

types.

Chapter 14. Standard C++ Library Header Files 169

170

You can also call a manipulator by inserting it into an output stream or extracting
it from an input stream, thanks to some special machinery supplied in the classes
derived from ios_base. For example:

istr >> noskipws;

calls noskipws (istr).

basic_ios

bad (page bz1) - basic_ios (page izd) - char_type (page fizd) - clear (page bzd) -
copyfmt (page 171 - eof (age bz - exceptions (page - init (page 172 - fail
(page 179) - good (page @) - imbue (page fLzd) - init (page fizd) - int_type (page
ﬁ- narrow _(page é) - off_type (agegﬁ) - operator! (page [LZ3) - operator
void * (page é) - pos_type (page 1LZ3) - rdbuf (page iz3) - rdstate (page iz3) -
setstate (page bz3) - tie (page - traits_type (page fizd) - widen (page iz3)

template <class E, class T = char_traits<E> >
class basic_ios : public ios_base {

public:
typedef E char_type;
typedef T traits_type;
typedef typename T::int_type int_type;
typedef typename T::pos_type pos_type;
typedef typename T::off type off_type;
explicit basic_ios(basic_streambuf<k, T> xsb);
virtual basic_ios();
operator void *() const;
bool operator! () const;
jostate rdstate() const;
void clear(iostate state = goodbit);
void setstate(iostate state);
bool good() const;
bool eof() const;
bool fail() const;
bool bad() const;
jostate exceptions() const;
iostate exceptions(iostate except);
basic_ios& copyfmt(const basic_ios& rhs);
locale imbue(const Tocale& Tloc);
char_type widen(char ch);
char narrow(char_type ch, char dfit);
char_type fil11() const;
char_type fill(char_type ch);
basic_ostream<kE, T> *tie() const;
basic_ostream<E, T> *tie(basic_ostream<E, T> *str);
basic_streambuf<kE, T> *rdbuf() const;
basic_streambuf<k, T>

xrdbuf (basic_streambuf<E, T> *sh);

E widen(char ch);
char narrow(E ch, char dflt);

protected:
void init(basic_streambuf<kE, T> *sb);
basic_ios();
basic_ios(const facetd); // not defined
void operator=(const facet&) // not defined

1

The template class describes the storage and member functions common to both
input streams (of template class basic_istream (page fied)) and output streams (of
template class basic_ostream (page bsd)) that depend on the template parameters.
(The class ios_base (page [1zd) describes what is common and ot dependent on
template parameters.) An object of class basic_ios<E, T> helps control a stream
with elements of type E, whose character traits (page Rad) are determined by the
class T.

Standard C++ Library

An object of class basic_ios<E, T> stores:

* a tie pointer to an object of type basic_ostream<k, T>

* a stream buffer pointer to an object of type basic_streambuf<E, T>

+ formatting information (page [LZ2)

* stream state information (page Lz2) in a base object of type ios_base (page @)
* a fill character in an object of type char_type

basic_ios::bad
bool bad() const;

The member function returns true if rdstate() & badbit is nonzero.

basic_ios::basic_ios
explicit basic_ios(basic_streambuf<kE, T> *sb);
basic_ios();

The first constructor initializes its member objects by calling init(sb). The second
(protected) constructor leaves its member objects uninitialized. A later call to init
must initialize the object before it can be safely destroyed.

basic_ios::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

basic_ios::clear
void clear(iostate state = goodbit);

The member function replaces the stored stream state information (page iz2) with
state | (rdbuf() != 0 ? goodbit : badbit). If state & exceptions() is nonzero,
it then throws an object of class failure (page [Z3).

basic_ios::copyfmt
basic_ios& copyfmt(const basic_ios& rhs);

The member function reports the callback event (page fi72) erase_event (page fizd).
It then copies from rhs into *this the fill character (page fizdl), the tie pointer (page

, and the formatting information (page [l77). Before altering the exception mask
(page [ZD), it reports the callback event copyfmt_event (page ﬁ%). If, after the copy
is complete, state & exceptions() is nonzero, the function effectively calls clear
(page with the argument rdstate(). It returns *this.

basic_ios::eof
bool eof() const;

The member function returns true if rdstate() & eofbit is nonzero.

basic_ios::exceptions
iostate exceptions() const;
jostate exceptions(iostate except);

The first member function returns the stored exception mask (page izd). The
second member function stores except in the exception mask and returns its
previous stored value. Note that storing a new exception mask can throw an
exception just like the call clear(rdstate()).

Chapter 14. Standard C++ Library Header Files 171

basic_ios::fail
bool fail() const;

The member function returns true if rdstate() & failbit is nonzero.

basic_ios::fill
char_type fil1() const;
char_type fill(char_type ch);

The first member function returns the stored fill character (page fizd). The second
member function stores ch in the fill character and returns its previous stored
value.

basic_ios::good
bool good() const;

The member function returns true if rdstate() == goodbit (no state flags are set).

basic_ios::imbue
Tocale imbue(const locale& Toc);

If rdbuf (page iz3) is not a null pointer, the member function calls
rdbuf () ->pubimbue(Toc). In any case, it returns ios_base: :imbue(loc).

basic_ios::init

void init(basic_streambuf<kE, T> =*sb);

The member function stores values in all member objects, so that:

e rdbuf() returns sh

* tie() returns a null pointer

* rdstate() returns goodbit if sb is nonzero; otherwise, it returns badbit
* exceptions() returns goodbit

+ flags() returns skipws | dec

e width() returns zero

e precision() returns 6

* fi11() returns the space character

e getloc() returns locale::classic()

* iword returns zero and pword returns a null pointer for all argument value

basic_ios::int_type
typedef typename T::int_type int_type;

The type is a synonym for T::int_type.

basic_ios::narrow
char narrow(char_type ch, char dfit);

The member function returns use_facet< ctype<E> >(getloc()). narrow(ch,
dflt).

basic_ios::off type
typedef typename T::off _type off_type;

The type is a synonym for T::0ff_type.

172 Standard C++ Library

basic_ios::operator void *
operator void *() const;

The operator returns a null pointer only if fail ().

basic_ios::operator!
bool operator!() const;

The operator returns fail().

basic_ios::pos_type
typedef typename T::pos_type pos_type;

The type is a synonym for T::pos_type.
basic_ios::rdbuf

basic_streambuf<k, T> *rdbuf() const;
basic_streambuf<k, T> *rdbuf(basic_streambuf<k, T> *sb);

The first member function returns the stored stream buffer pointer.

The second member function stores sb in the stored stream buffer pointer and
returns the previously stored value.

basic_ios::rdstate
iostate rdstate() const;

The member function returns the stored stream state information.

basic_ios::setstate
void setstate(iostate state);

The member function effectively calls clear(state | rdstate()).
basic_ios::tie
basic_ostream<E, T> *tie() const;

basic_ostream<kE, T> *tie(basic_ostream<kE, T> #*str);

The first member function returns the stored tie pointer (page [LZ1)). The second
member function stores str in the tie pointer and returns its previous stored value.

basic_ios::traits_type
typedef T traits_type;

The type is a synonym for the template parameter T.

basic_ios::widen
char_type widen(char ch);

The member function returns use facet< ctype<k> >(getloc()). widen(ch).

boolalpha

jos_base& boolalpha(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: boolalpha), then returns
str.

Chapter 14. Standard C++ Library Header Files 173

dec

ios_base& dec(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: dec, ios_base::
basefield), then returns str.

fixed

jos_base& fixed(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: fixed, ios_base::
floatfield), then returns str.

fpos

template <class St>
class fpos {

public:
fpos(streamoff off);
explicit fpos(St state);
St state() const;
void state(St state);
operator streamoff() const;
streamoff operator-(const fpos& rhs) const;
fpos& operator+=(streamoff off);
fpos& operator-=(streamoff off);
fpos operator+(streamoff off) const;
fpos operator-(streamoff off) const;
bool operator==(const fpos& rhs) const;
bool operator!=(const fpos& rhs) const;

}s

The template class describes an object that can store all the information needed to
restore an arbitrary file-position indicator (page Bd) within any stream. An object of
class fpos<St> effectively stores at least two member objects:

* a byte offset, of type streamoff (page [83)

* a conversion state, for use by an object of class basic_filebuf, of type St,
typically mbstate_t (page [19)

It can also store an arbitrary file position, for use by an object of class basic_filebuf
(page [159), of type fpos_t (page Bd). For an environment with limited file size,
however, streamoff and fpos_t may sometimes be used interchangeably. And for
an environment with no streams that have a state-dependent encoding (page fid),
mbstate_t may actually be unused. So the number of member objects stored may
vary.

fpos::fpos

fpos(streamoff off);
explicit fpos(St state);

The first constructor stores the offset off, relative to the beginning of file and in
the initial conversion state (page E) (if that matters). If off is -1, the resulting

object represents an invalid stream position.

The second constructor stores a zero offset and the object state.

174 Standard C++ Library

hex

fpos::operator!=
bool operator!=(const fpos& rhs) const;

The member function returns ! (*this == rhs).

fpos::operator+
fpos operator+(streamoff off) const;

The member function returns fpos(*this) += off.

fpos:.operator+=
fpos& operator+=(streamoff off);

The member function adds off to the stored offset member object, then returns
*this. For positioning within a file, the result is generally valid only for binary
streams (page E) that do not have a state-dependent encoding (page fud).

fpos::operator-
streamoff operator-(const fpos& rhs) const;
fpos operator-(streamoff off) const;

The first member function returns (streamoff)=*this - (streamoff)rhs. The
second member function returns fpos(*this) -= off.

fpos::operator-=
fpos& operator-=(streamoff off);

The member function returns fpos(*this) -= off. For éositioning within a file, the
result is generally valid only for binary streams (page 22) that do not have a
state-dependent encoding (page fid).

fpos::operator==
bool operator==(const fpos& rhs) const;

The member function returns (streamoff)*this == (streamoff)rhs.

fpos::operator streamoff
operator streamoff() const;

The member function returns the stored offset member object, plus any additional
offset stored as part of the fpos_t member object.

fpos::state
St state() const;
void state(St state);

The first member function returns the value stored in the St member object. The
second member function stores state in the St member object.

jos_base& hex(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: hex, ios_base::
basefield), then returns str.

Chapter 14. Standard C++ Library Header Files 175

176

internal

jos_

The manipulator effectively calls str.setf(ios_base::

base& internal(ios_base& str);

adjustfield), then returns str.

i0S

typedef basic_ios<char, char_traits<char> > jos;

int

ernal, ios_base::

The type is a synonym for template class basic_ios (page fizd), specialized for
elements of type char with default character traits (page

ios_base

event (page izd) - event_callback (page iz - failure (
-fnuﬂags(pageﬁza)-geﬂoc(page) - imbue (page

).

i7d) - flags (fzd)
%e ags ﬁ%e

) - Init (page

ios_base (page fizd) - iostate (page fzd) - iword (page fizd) - openmode (page fizd) -
operator= (page fisd) - precision (page fisd) - pword (page
(page fi8d) - seekdir (page o) - setf (page [180) - sync_with_stdio (page 1) -

unsetf (page fis1) - width (page fr81) - xalloc (page

class ios_base {
public:

class failure;

typedef T1 fmtflags;

static const fmtflags boolalpha, dec, fixed, hex,
internal, left, oct, right, scientific,
showbase, showpoint, showpos, skipws, unitbuf,
uppercase, adjustfield, basefield, floatfield;

typedef T2 iostate;

static const iostate badbit, eofbit, failbit,
goodbit;

typedef T3 openmode;

static const openmode app, ate, binary, in, out,
trunc;

typedef T4 seekdir;

static const seekdir beg, cur, end;

typedef T5 event;

static const event copyfmt_event, erase_event,
copyfmt_event;

class Init;

jos_base& operator=(const ios_base& rhs);

fmtflags flags() const;

fmtflags flags(fmtflags fmtfl);

fmtflags setf(fmtflags fmtfl);

fmtflags setf(fmtflags fmtfl, fmtflags mask);

void unsetf(fmtflags mask);

streamsize precision() const;

streamsize precision(streamsize prec);

streamsize width() const;

stramsize width(streamsize wide);

Tocale imbue(const Tocale& Tloc);

locale getloc() const;

static int xalloc();

Tong& iword(int idx);

void *& pword(int idx);

typedef void *(event_callback(event ev,
jos_base& ios, int idx);

frs1)

void register_callback(event callback pfn, int idx);

static bool sync_with_stdio(bool sync = true);

protected:

Standard C++ Library

ios_base();

}s

- register_callback

The class describes the storage and member functions common to both input and
output streams that does not depend on the template parameters. (The template
class basic_ios (page [Z0) describes what is common and is dependent on template
parameters.)

An object of class i0s_base stores formatting information, which consists of:
 format flags in an object of type fmtflags (page izd)

* an exception mask in an object of type iostate (page @)

* a field width in an object of type int

* a display precison in an object of type int

* a locale object (page B19) in an object of type locale (page R1d)

* two extensible arrays, with elements of type long and void pointer

An object of class i0s_base also stores stream state information, in an object of
type iostate (page izd), and a callback stack.

ios_base::event

typedef T5 event;
static const event copyfmt_event, erase_event,
imbue_event;

The type is an enumerated type T5 that describes an object that can store the
callback event used as an argument to a function registered with register_callback
(page fl80). The distinct event values are:

* copyfmt_event, to identify a callback that occurs near the end of a call to
copyfmt, just before the exception mask is copied.

* erase_event, to identify a callback that occurs at the beginning of a call to
copyfmt, or at the beginning of a call to the destructor for *this.

* imbue_event, to identify a callback that occurs at the end of a call to imbue (page
I@), just before the function returns.

ios_base::event_callback

typedef void *(event_callback(event ev,
ios_base& ios, int idx);

The type describes a pointer to a function that can be registered with
register_callback (page [180). Such a function must not throw an exception.

ios_base::failure

class failure : public exception {
public:
explicit failure(const string& what_arg) {

s

The member class serves as the base class for all exceptions thrown by the member
function clear (page fzd) in template class basic_ios (page fLzd). The value returned
by what () is what_arg.data().

ios_base::flags
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);

The first member function returns the stored format flags (page fLz3). The second

member function stores fmtf1 in the format flags and returns its previous stored
value.

Chapter 14. Standard C++ Library Header Files 177

178

ios_base::fmtflags

typedef T1 fmtflags;

static const fmtflags boolalpha, dec, fixed, hex,
internal, left, oct, right, scientific,
showbase, showpoint, showpos, skipws, unitbuf,
uppercase, adjustfield, basefield, floatfield;

The type is a bitmask type (page E) T1 that describes an object that can store
format flags. The distinct flag values (elements) are:

* boolalpha, to insert or extract objects of type bool as names (such as true and
false) rather than as numeric values

* dec, to insert or extract integer values in decimal format

» fixed, to insert floating-point values in fixed-point format (with no exponent
field)

* hex, to insert or extract integer values in hexadecimal format

e internal, to pad to a field width (page [Lz73) as needed by inserting fill characters
(page fzd) at a point internal to a generated numeric field

* left, to pad to a field width (page [z as needed by inserting fill characters
(page LZ1) at the end of a generated field (left justification)

* oct, to insert or extract integer values in octal format

* right, to pad to a field width (page iLz2) as needed by inserting fill characters
(page fizd) at the beginning of a generated field (right justification)

e scientific, to insert floating-point values in scientific format (with an exponent
field)

* showbase, to insert a prefix that reveals the base of a generated integer field

* showpoint, to insert a decimal point unconditionally in a generated floating-point
field

* showpos, to insert a plus sign in a non-negative generated numeric field
« skipws, to skip leading white space (page B3) before certain extractions
* unitbuf, to flush output after each insertion

* uppercase, to insert uppercase equivalents of lowercase letters in certain
insertions

In addition, several useful values are:

* adjustfield, internal | left | right
* basefield, dec | hex | oct

« floatfield, fixed | scientific

ios_base::getloc
locale getloc() const;

The member function returns the stored locale object.

ios_base::imbue
locale imbue(const locale& Toc);

The member function stores loc in the locale object, then reports the callback event
(page ilzd) imbue_event (page Lz). It returns the previous stored value.

ios_base::Init
class Init {

}s

Standard C++ Library

The nested class describes an object whose construction ensures that the standard
iostreams objects are properly constructed (page [18d), even before the execution of
a constructor for an arbitrary static object.

ios_base::ios_base
ios_base();

The (protected) constructor does nothing. A later call to basic_ios::init must
initialize the object before it can be safely destroyed. Thus, the only safe use for
class i0os_base is as a base class for template class basic_ios (page 1ZJ).

ios_base::iostate

typedef T2 iostate;
static const iostate badbit, eofbit, failbit, goodbit;

The type is a bitmask type (page fld) T2 that describes an object that can store
stream state information (page 1Z4). The distinct flag values (elements) are:

* badbit, to record a loss of integrity of the stream buffer
 eofbit, to record end-of-file while extracting from a stream

e failbit, to record a failure to extract a valid field from a stream

In addition, a useful value is:
* goodbit, no bits set

ios_base::iword
Tong& iword(int idx);

The member function returns a reference to element idx of the extensible array
(page [lz7) with elements of type long. All elements are effectively present and
initially store the value zero. The returned reference is invalid after the next call to
iword for the object, after the object is altered by a call to basic_ios::copyfmt, or
after the object is destroyed.

If idx is negative, or if unique storage is unavailable for the element, the function
calls setstate(badbit) and returns a reference that might not be unique.

To obtain a unique index, for use across all objects of type io0s_base, call xalloc
(page fis1l.

i0os_base::openmode

typedef T3 openmode;
static const openmode app, ate, binary, in, out, trunc;

The type is a bitmask type (page fld) 73 that describes an object that can store the
opening mode for several iostreams objects. The distinct flag values (elements) are:

* app, to seek to the end of a stream before each insertion

* ate, to seek to the end of a stream when its controlling object is first created

* binary, to read a file as a binary stream (page BJ), rather than as a text stream
(page £3)

* in, to permit extraction from a stream

* out, to permit insertion to a stream

* trunc, to truncate an existing file when its controlling object is first created

Chapter 14. Standard C++ Library Header Files 179

ios_base::operator=
jos_base& operator=(const ios_base& rhs);

The operator copies the stored formatting information (page [[74), making a new
copy of any extensible arrays (page [LZ2). It then returns *this. Note that the
callback stack (page LZ4) is not copied.

ios_base::precision
streamsize precision() const;
streamsize precision(streamsize prec);

The first member function returns the stored display precision (page 7). The
second member function stores prec in the display precision and returns its
previous stored value.

ios_base::pword
void *& pword(int idx);

The member function returns a reference to element idx of the extensible array
(page [z with elements of type void pointer. All elements are effectively present
and initially store the null pointer. The returned reference is invalid after the next
call to pword for the object, after the object is altered by a call to
basic_ios::copyfmt, or after the object is destroyed.

If idx is negative, or if unique storage is unavailable for the element, the function
calls setstate(badbit) and returns a reference that might not be unique.

To obtain a unique index, for use across all objects of type i0s_base, call xalloc

(page [81).

ios_base::register_callback
void register_callback(event callback pfn, int idx);

The member function pushes the pair {pfn, idx} onto the stored callback stack
(page [.Z2). When a callback event (page [172) ev is reported, the functions are
called, in reverse order of registry, by the expression (*pfn) (ev, *this, idx).

ios_base::seekdir

typedef T4 seekdir;
static const seekdir beg, cur, end;

The type is an enumerated type T4 that describes an object that can store the seek
mode used as an argument to the member functions of several iostreams classes.
The distinct flag values are:

* beg, to seek (alter the current read or write position) relative to the beginning oc
a sequence (array, stream, or file)

* cur, to seek relative to the current position within a sequence
* end, to seek relative to the end of a sequence

ios_base::setf

void setf(fmtflags mask);
fmtflags setf(fmtflags fmtfl, fmtflags mask);

The first member function effectively calls flags(mask | flags()) (set selected
bits), then returns the previous format flags (page LZ4). The second member

180 Standard C++ Library

left

function effectively calls flags(mask & fmtf1, flags() & “mask) (replace selected
bits under a mask), then returns the previous format flags.

ios_base::sync_with_stdio
static bool sync_with_stdio(bool sync = true);

The static member function stores a stdio sync flag, which is initially true. When
true, this flag ensures that operations on the same file are properly synchronized
between the iostreams (page [d) functions and those defined in the Standard C
library (page B). Otherwise, synchronization may or may not be guaranteed, but
performance may be improved. The function stores sync in the stdio sync flag and
returns its previous stored value. You can call it reliably only before performing
any operations on the standard streams (page B).

ios_base::unsetf
void unsetf(fmtflags mask);

The member function effectively calls f1 ags(mask & flags()) (clear selected bits).

ios_base::width
streamsize width() const;
streamsize width(streamsize wide);

The first member function returns the stored field width (page fizd). The second
member function stores wide in the field width and returns its previous stored
value.

ios_base::xalloc
static int xalloc();

The static member function returns a stored static value, which it increments on

each call. You can use the return value as a unique index argument when calling
the member functions iword (page [2d) or pword (page [L&d).

jos_base& Teft(ios_base& str);

The manipulator effectively calls str.setf(ios_base:: Teft, jos_base::
adjustfield), then returns str.

noboolalpha

jos_base& noboolalpha(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base::boolalpha), then returns
str.

noshowbase

jos_base& noshowbase(ios_base& str);

The manipulator effectively calls str.unsetf(ios_base::showbase), then returns
str.

noshowpoint

jos_base& noshowpoint(ios_base& str);

Chapter 14. Standard C++ Library Header Files 181

The manipulator effectively calls str.
str.

noshowpos

jos_base& noshowpos(ios_base& str);

The manipulator effectively calls str.
str.

noskipws

jos_base& noskipws(ios_base& str);

The manipulator effectively calls str.

nounitbuf

jos_base& nounitbuf(ios_base& str);

The manipulator effectively calls str.

nouppercase

jos_base& nouppercase(ios_base& str);

The manipulator effectively calls str.
str.

oct

ios_base& oct(ios_base& str);

The manipulator effectively calls str.
then returns str.

right

jos_base& right(ios_base& str);

unsetf(ios_base::showpoint), then returns

unsetf(ios_base::showpos"), then returns

unsetf(ios_base::skipws), then returns str.

:unitbuf), then returns str.

unsetf(ios_base:

unsetf(ios_base::uppercase), then returns

setf(ios_base::oct, ios_base::basefield),

The maiipulator effectively calls str.setf(ios_base::right,
jos_base::adjustfield), then returns str.

scientific

jos_base& scientific(ios_base& str);

The manipulator effectively calls str.

setf(ios_base::scientific,

jos_base::floatfield), then returns str.

showbase

jos_base& showbase(ios_base& str);

The manipulator effectively calls str.

Standard C++ Library

setf(ios_base::showbase), then returns str.

showpoint

jos_base& showpoint(ios_base& str);

The manipulator effectively calls str.setf(ios_base::showpoint), then returns str.

showpos

jos_base& showpos(ios_base& str);

The manipulator effectively calls str.setf(ios_base::showpos), then returns str.

skipws

jos_base& skipws(ios_base& str);

The manipulator effectively calls str.setf(ios_base::skipws), then returns str.

streamoff
typedef T1 streamoff;

The type is a signed integer type T1 that describes an object that can store a byte
offset involved in various stream positioning operations. Its representation has at
least 32 value bits. It is not necessarily large enough to represent an arbitrary byte
position within a stream. The value streamoff(-1) generally indicates an erroneous
offset.

streampos

typedef fpos<mbstate t> streampos;

The type is a synonym for fpos< mbstate_t>.

streamsize
typedef T2 streamsize;
The type is a signed integer type T3 that describes an object that can store a count
of the number of elements involved in various stream operations. Its representation

has at least 16 bits. It is not necessarily large enough to represent an arbitrary byte
position within a stream.

unitbuf

jos_base& unitbuf(ios_base& str);

The manipulator effectively calls str.setf(ios_base::unitbuf), then returns str.

uppercase

jos_base& uppercase(ios_base& str);

The manipulator effectively calls str.setf(ios_base::uppercase), then returns str.

Wios

typedef basic_ios<wchar_t, char_traits<wchar_t> > wios;

Chapter 14. Standard C++ Library Header Files 183

The type is a synonym for template class basic_ios (page [Z0), specialized for
elements of type wchar_t with default character traits (page 293).

wstreampos

typedef fpos<mbstate_t> wstreampos;

The type is a synonym for fpos< wmbstate_t>.

<josfwd>

namespace std {

typedef T1 streamoff;
typedef T2 streamsize;
typedef fpos streampos;

// TEMPLATE CLASSES

template<class E>
class char_traits;

class char_traits<char>;

class char_traits<wchar_t>;

template<class E, class T = char_traits<E> >
class basic_ios;

template<class E, class T = char_traits<E> >
class istreambuf_iterator;

template<class E, class T = char_traits<E> >
class ostreambuf_iterator;

template<class E, class T = char_traits<E> >
class basic_streambuf;

template<class E, class T = char_traits<E> >
class basic_istream;

template<class E, class T = char_traits<E> >
class basic_ostream;

template<class E, class T = char_traits<E> >
class basic_iostream;

template<class E, class T = char_traits<E> >
class basic_stringbuf;

template<class E, class T = char_traits<E> >
class basic_istringstream;

template<class E, class T = char_traits<E> >
class basic_ostringstream;

template<class E, class T = char_traits<E> >
class basic_stringstream;

template<class E, class T = char_traits<E> >
class basic_filebuf;

template<class E, class T = char_traits<E> >
class basic_ifstream;

template<class E, class T
class basic_ofstream;

template<class E, class T = char_traits<E> >
class basic_fstream;

char_traits<k> >

// char TYPE DEFINITIONS
typedef basic_ios<char, char_traits<char> > ios;
typedef basic_streambuf<char, char_traits<char> >

streambuf;

typedef basic_istream<char, char_traits<char> >
istream;

typedef basic_ostream<char, char_traits<char> >
ostream;

typedef basic_iostream<char, char_traits<char> >
iostream;

typedef basic_stringbuf<char, char_traits<char> >
stringbuf;

typedef basic_istringstream<char, char_traits<char> >
istringstream;

184 Standard C++ Library

typedef basic_ostringstream<char, char_traits<char> >

ostringstream;

typedef basic_stringstream<char, char_traits<char> >
stringstream;

typedef basic_filebuf<char, char_traits<char> >
filebuf;

typedef basic_ifstream<char, char_traits<char> >
ifstream;

typedef basic_ofstream<char, char_traits<char> >
ofstream;

typedef basic_fstream<char, char_traits<char> >
fstream;

// wchar_t TYPE DEFINITIONS

typedef basic_ios<wchar_t, char_traits<wchar_t> > wios;

typedef basic_streambuf<wchar_t, char_traits<wchar_t> >
wstreambuf;

typedef basic_istream<wchar_t, char_traits<wchar_t> >
wistream;

typedef basic_ostream<wchar_t, char_traits<wchar_t> >
wostream;

typedef basic_iostream<wchar_t, char_traits<wchar_t> >
wiostream;

typedef basic_stringbuf<wchar_t, char_traits<wchar_ t> >
wstringbuf;

typedef basic_istringstream<wchar_t,
char_traits<wchar_t> > wistringstream;

typedef basic_ostringstream<wchar_t,
char_traits<wchar_t> > wostringstream;

typedef basic_stringstream<wchar_t,
char_traits<wchar_t> > wstringstream;

typedef basic_filebuf<wchar_t, char_traits<wchar_t> >
wfilebuf;

typedef basic_ifstream<wchar_t, char_traits<wchar_t> >
wifstream;

typedef basic_ofstream<wchar_t, char_traits<wchar t> >
wofstream;

typedef basic_fstream<wchar_ t, char_traits<wchar t> >
wfstream;

s

Include the iostreams (page [LIl) standard header <iosfwd> to declare forward
references to several template classes used throughout iostreams. All such template
classes are defined in other standard headers. You include this header explicitly
only when you need one of the above declarations, but not its definition.

<jostream>

namespace std {

extern istream cin;
extern ostream cout;
extern ostream cerr;
extern ostream clog;

extern wistream wcin;
extern wostream wcout;
extern wostream wcerr;
extern wostream wclog;

b
Include the iostreams (page fl1) standard header <iostream> to declare objects that

control reading from and writing to the standard streams (page B). This is often the
only header you need include to perform input and output from a C++ program.

Chapter 14. Standard C++ Library Header Files 185

186

cerr

cin

clog

cout

The objects fall into two groups:
* cin (page [18d), cout (page [184), cerr (page [[86), and clog (page [86) are byte

oriented (page RI)), performing conventional byte-at-a-time transfers

* wecin (page 183), weout (page [87), weerr (page 183), and weclog (page [182) are
wide oriented (page ﬁ), translating to and from the wide characters (page IL4)
that the program manipulates internally

Once you perform certain operations (page E) on a stream, such as the standard
input (page), you cannot perform operations of a different orientation on the
same stream. Hence, a program cannot operate interchangeably on both cin and
wcin, for example.

All the objects declared in this header share a peculiar property — you can assume
they are constructed before any static objects you define, in a translation unit that
includes <iostreams>. Equally, you can assume that these objects are not destroyed
before the destructors for any such static objects you define. (The output streams
are, however, flushed during program termination.) Hence, you can safely read
from or write to the standard streams prior to program startup and after program
termination.

This guarantee is not universal, however. A static constructor may call a function in
another translation unit. The called function cannot assume that the objects
declared in this header have been constructed, given the uncertain order in which
translation units participate in static construction. To use these objects in such a
context, you must first construct an object of class ios_base::Init (page fizd), as in:
#include <iostream>
void marker()

{ // called by some constructor

ios_base::Init unused_name;

cout << "called fun" << endl;

}

extern ostream cerr;
The object controls unbuffered insertions to the standard error (page H) output as a

byte stream (page J). Once the object is constructed, the expression cerr.flags ()
& unitbuf is nonzero.

extern istream cin;

The object controls extractions from the standard input (page B) as a byte stream
(page R2). Once the object is constructed, the call cin.tie() returns &cout.

extern ostream clog;

The object controls buffered insertions to the standard error (page B output as a
byte stream (page Bd).

extern ostream cout;

Standard C++ Library

The obg)ct controls insertions to the standard output (page B) as a byte stream

(page R2).

wceerr
extern wostream wcerr;
The object controls unbuffered insertions to the standard error (page E) output as a
wide stream (page Bd). Once the object is constructed, the expression
wcerr.flags() & unitbuf is nonzero.

wcin
extern wistream wcin;
The object controls extractions from the standard input as a wide stream (page BJ).
Once the object is constructed, the call wcin.tie() returns &wcout.

wclog
extern wostream wclog;
The object controls buffered insertions to the standard error output as a wide
stream.

wcout
extern wostream wcout;
The object controls insertions to the standard output as a wide stream (page BJ).

<istream>

namespace std {

template<class E, class T = char_traits<kE> >
class basic_istream;

typedef basic_istream<char, char_traits<char> >
istream;

typedef basic_istream<wchar_t, char_traits<wchar_t> >
wistream;

template<class E, class T = char_traits<g> >
class basic_iostream;

typedef basic_iostream<char, char_traits<char> >
iostream;

typedef basic_iostream<wchar_t, char_traits<wchar_t> >
wiostream;

// EXTRACTORS
template<class E, class T>
basic_istream<E, T>&
operator>>(basic_istream<E, T>& is, E *s);
template<class E, class T>
basic_istream<k, T>&
operator>>(basic_istream<E, T>& is, E& c);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed char =*s);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed charg& c);
template<class T>

Chapter 14. Standard C++ Library Header Files 187

188

basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char *s);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char& c);

// MANIPULATORS
template class<E, T>
basic_istream<kE, T>& ws(basic_istream<kE, T>& is);

}s

Include the iostreams (page i) standard header <istream> to define template class
basic_istream (page IL88), which mediates extractions for the iostreams, and the
template class. basic_iostream (page fiad), which mediates both insertions and
extractions. The header also defines a related manipulator (page fled). (This header
is typically included for you by another of the iostreams headers. You seldom have
occasion to include it directly.)

basic_iostream

template <class E, class T = char_traits<E> >
class basic_iostream : public basic_istream<E, T>,
public basic_ostream<E, T> {
public:
explicit basic _iostream(basic_streambuf<k, T>& *sb);
virtual “basic_iostream();

1

The template class describes an object that controls insertions, through its base
object basic_ostream<k, T> (page R4l), and extractions, through its base object
basic_istream<kE, T>. The two objects share a common virtual base object
basic_ios<E, T>. They also manage a common stream buffer (page R&9), with
elements of type E, whose character traits (page Bod) are determined by the class T.
The constructor initializes its base objects via basic_istream(sb) and
basic_ostream(sb).

basic_istream

basic_istream (page frad) - gcount (page frlad) - get (page frad) - getline (page Lo -
ignore (page - ipfx (pa@ - isfx (page b) operator>> (pa %ﬁ) peek
(page) - putback (page [193) - read (page [193) - readsome (page [193) - seekg
ﬁe flod) - sentry (page [194) - sync (page [194) - tellg (page ﬁ) unget (page

template <class E, class T = char_traits<E> >
class basic_istream
: virtual public basic_ios<k, T> {
public:
typedef typename basic_ios<E, T>::char_type char_type;
typedef typename basic_ios<E, T>::traits_type traits_type;
typedef typename basic_ios<E, T>::int_type int_type;
typedef typename basic_ios<E, T>::pos_type pos_type;
typedef typename basic_ios<E, T>::off_type off_type;
explicit basic_istream(basic_streambuf<k, T> *sb);
class sentry;
virtual istream();
bool ipfx(bool noskip = false);
void isfx();
basic_istream& operator>>(
basic_istream& (*pf)(basic_istreamd));
basic_istream& operator>>(
jos_base& (*pf)(ios_based));

Standard C++ Library

The template class describes an object that controls extraction of elements and
encoded objects from a stream buffer (page R&d) with elements of type E, also

basic_istream& operator>>(
basic_ios<kE, T>& (*pf)(basic_ios<E, T>&));
basic_istream& operator>>(
basic_streambuf<k, T> =*sb);
basic_istream& operator>>(bool& n);
basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);
basic_istream& operator>>(Tong& n);
basic_istream& operator>>(unsigned Tong& n);
basic_istream& operator>>(void *& n);
basic_istream& operator>>(float& n);
basic_istream& operator>>(doubled n);
basic_istream& operator>>(Tong double& n);
streamsize gcount() const;
int_type get();
basic_istream& get(char_type& c);
basic_istream& get(char_type *s, streamsize n);
basic_istream&
get(char_type *s, streamsize n, char_type delim);
basic_istream&
get(basic_streambuf<char_type, T> xsb);
basic_istream&
get(basic_streambuf<E, T> xsb, char_type delim);
basic_istream& getline(char_type *s, streamsize n);
basic_istream& getline(char_type *s, streamsize n,
char_type delim);
basic_istream& ignore(streamsize n = 1,
int_type delim = traits_type::eof());
int_type peek();
basic_istream& read(char_type *s, streamsize n);
streamsize readsome(char_type *s, streamsize n);
basic_istream& putback(char_type c);
basic_istream& unget();
pos_type tellg();
basic_istream& seekg(pos_type pos);
basic_istream& seekg(off type off,
jos_base::seek_dir way);
int sync();

known as char_type (page [.Z1), whose character traits (page R93) are determined
by the class T, also known as traits_type (page [1Z3).

Most of the member functions that overload operator>> (page [[93) are formatted
input functions. They follow the pattern:

iostate state = goodbit;
const sentry ok(*this);
if (ok)
{try
{<extract elements and convert
accumulate flags in state
store a successful conversion>}
catch (...)
{try
{setstate(badbit); }

catch (...)

{}

if ((exceptions() & badbit) != 0)
throw; }}
setstate(state);
return (*this);

Chapter 14. Standard C++ Library Header Files

189

Many other member functions are unformatted input functions. They follow the
pattern:
iostate state = goodbit;

count = 0; // the value returned by gcount
const sentry ok(*this, true);

if (ok)
{try
{<extract elements and deliver
count extracted elements in count
accumulate flags in state>}
catch (...)
{try
{setstate(badbit); }
catch (...)

{}
if ((exceptions() & badbit) != 0)
throw; }}
setstate(state);

Both groups of functions call setstate(eofbit) if they encounter end-of-file while
extracting elements.

An object of class basic_istream<E, T> stores:
* a virtual public base object of class basic_ios<E, T>

* an extraction count for the last unformatted input operation (called count in the
code above

basic_istream::basic_istream
explicit basic_istream(basic_streambuf<E, T> *sb);

The constructor initializes the base class by calling init(sb). It also stores zero in
the extraction count (page fiad).

basic_istream::gcount
streamsize gcount() const;

The member function returns the extraction count (page I@)

basic_istream::get

int_type get();

basic_istream& get(char_type& c);

basic_istream& get(char_type *s, streamsize n);

basic_istream& get(char_type *s, streamsize n,
char_type delim);

basic_istream& get(basic_streambuf<k, T> =*sb);

basic_istream& get(basic_streambuf<kE, T> *sb,
char_type delim);

The first of these unformatted input functions (page @) extracts an element, if
possible, as if by returning rdbuf ()->sbumpc (). Otherwise, it returns
traits_type::eof(). If the function extracts no element, it calls setstate(failbit).

The second function extracts the int_type (page f1zd) element x the same way. If x
compares equal to traits_type::eof(x), the function calls setstate(failbit).
Otherwise, it stores traits_type::to_char_type(x) in c. The function returns
*this.

The third function returns get(s, n, widen(’\n')).

190 Standard C++ Library

The fourth function extracts up to n - 1 elements and stores them in the array
beginning at s. It always stores char_type() after any extracted elements it stores.
In order of testing, extraction stops:

1. at end of file

2. after the function extracts an element that compares equal to delim, in which
case the element is put back to the controlled sequence

3. after the function extracts n - 1 elements

If the function extracts no elements, it calls setstate(failbit). In any case, it
returns *this.

The fifth function returns get(sb, widen(’\n’)).

The sixth function extracts elements and inserts them in sb. Extraction stops on
end-of-file or on an element that compares equal to delim (which is not extracted).
It also stops, without extracting the element in question, if an insertion fails or
throws an exception (which is caught but not rethrown). If the function extracts no
elements, it calls setstate(failbit). In any case, the function returns *this.

basic_istream::getline

basic_istream& getline(char_type *s, streamsize n);
basic_istream& getline(char_type *s, streamsize n,
char_type delim);

The first of these unformatted input functions (page fLod) returns getline(s, n,
widen(’\n’)).

The second function extracts up to n - 1 elements and stores them in the array
beginning at s. It always stores char_type() after any extracted elements it stores.
In order of testing, extraction stops:

1. at end of file

2. after the function extracts an element that compares equal to delim, in which
case the element is neither put back nor appended to the controlled sequence

3. after the function extracts n - 1 elements

If the function extracts no elements or n - 1 elements, it calls setstate(failbit).
In any case, it returns *this.

basic_istream::ignore
basic_istream& ignore(streamsize n = 1,
int_type delim = traits_type::eof());

The unformatted input function (page flad) extracts up to n elements and discards
them. If n equals numeric_limits<int>::max (), however, it is taken as arbitrarily
large. Extraction stops early on end-of-file or on an element x such that
traits_type::to_int_type(x) compares equal to delim (which is also extracted).
The function returns *this.

basic_istream::ipfx
bool ipfx(bool noskip = false);

The member function prepares for formatted (page f2d) or unformatted (page flad)
input. If good() is true, the function:

* calls tie-> flush() if tie() is not a null pointer
* effectively calls ws(*this) if flags() & skipws is nonzero

Chapter 14. Standard C++ Library Header Files 191

192

If, after any such preparation, good() is false, the function calls setstate(failbit).
In any case, the function returns good().

You should not call ipfx directly. It is called as needed by an object of class sentry
(page [94).

basic_istream::isfx
void isfx();

The member function has no official duties, but an implementation may depend on
a call to isfx by a formatted (page fied) or unformatted (page fad) input function
to tidy up after an extraction. You should not call isfx directly. It is called as
needed by an object of class sentry (page fLod).

basic_istream::operator>>

basic_istream& operator>>(

basic_istream& (*pf)(basic_istreamd));
basic_istream& operator>>(

jos_base& (*pf)(ios_based));
basic_istream& operator>>(

basic_ios<E, T>& (*pf)(basic_ios<kE, T>8&));
basic_istream& operator>>(

basic_streambuf<kE, T> *sb);
basic_istream& operator>>(bool& n);
basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);
basic_istream& operator>>(Tong& n);
basic_istream& operator>>(unsigned Tong& n);
basic_istream& operator>>(void *& n);
basic_istream& operator>>(float& n);
basic_istream& operator>>(double& n);
basic_istream& operator>>(long double& n);

The first member function ensures that an expression of the form istr >> ws calls
ws(istr), then returns *this. The second and third functions ensure that other
manipulators (page [6d), such as hex (page [[Z3) behave similarly. The remaining
functions constitute the formatted input functions (page [[89).

The function:

basic_istream& operator>>(
basic_streambuf<E, T> #sbh);

extracts elements, if sb is not a null pointer, and inserts them in sh. Extraction
stops on end-of-file. It also stops, without extracting the element in question, if an
insertion fails or throws an exception (which is caught but not rethrown). If the
function extracts no elements, it calls setstate(failbit). In any case, the function
returns *this.

The function:
basic_istream& operator>>(bool& n);

extracts a field and converts it to a boolean value by calling use_facet<num_get<E,
InIt>(getloc()). get(InIt(rdbuf()), Init(0), =*this, getloc(), n). Here,

Inlt is defined as istreambuf_iterator<E, T>. The function returns *this.

The functions:

Standard C++ Library

basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);
basic_istream& operator>>(long& n);
basic_istream& operator>>(unsigned Tong& n);
basic_istream& operator>>(void *& n);

each extract a field and convert it to a numeric value by calling

use facet<num get<E, InIt>(getloc()). get(InIt(rdbuf()), Init(0), *this,
getloc(), x). Here, InlIt is defined as istreambuf_iterator<E, T> and x has type
long, unsigned long, or void * as needed.

If the converted value cannot be represented as the type of n, the function calls
setstate(failbit). In any case, the function returns *this.

The functions:

basic_istream& operator>>(float& n);
basic_istream& operator>>(double& n);
basic_istream& operator>>(long double& n);

each extract a field and convert it to a numeric value by calling
use_facet<num_get<k, InIt>(getloc()). get(InIt(rdbuf()), Init(0), *this,
getloc(), x). Here, InlIt is defined as istreambuf_iterator<E, T> and x has type
double or long double as needed.

If the converted value cannot be represented as the type of n, the function calls
setstate(failbit). In any case, it returns *this.

basic_istream::peek
int_type peek();

The unformatted input function (page filad) extracts an element, if possible, as if by
returning rdbuf () ->sgetc(). Otherwise, it returns traits_type::eof().

basic_istream::putback
basic_istream& putback(char_type c);

The unformatted input function (page [190) puts back c, if possible, as if by calling
rdbuf () ->sputbackc (). If rdbuf() is a null pointer, or if the call to sputbackc
returns traits_type::eof(), the function calls setstate(badbit). In any case, it
returns *this.

basic_istream::read
basic_istream& read(char_type *s, streamsize n);

The unformatted input function (page flad) extracts up to n elements and stores
them in the array beginning at s. Extraction stops early on end-of-file, in which
case the function calls setstate(failbit). In any case, it returns *this.

basic_istream::readsome
streamsize readsome(char_type *s, streamsize n);

The member function extracts up to n elements and stores them in the array

beginning at s. If rdbuf () is a null pointer, the function calls setstate(failbit).
Otherwise, it assigns the value of rdbuf()->in_avail() to N. if N < 0, the function

Chapter 14. Standard C++ Library Header Files 193

194

calls setstate(eofbit). Otherwise, it replaces the value stored in N with the
smaller of n and N, then calls read(s, N). In any case, the function returns
gcount ().

basic_istream::seekg

basic_istream& seekg(pos_type pos);
basic_istream& seekg(off type off,
jos_base::seek_dir way);

If fail() is false, the first member function calls rdbuf () -> pubseekpos (pos). If
fail() is false, the second function calls rdbuf()-> pubseekoff(off, way). Both
functions return *this.

basic_istream::sentry

class sentry {
public:
explicit sentry(basic_istreamd is,
bool noskip = false);
operator bool() const;

s

The nested class describes an object whose declaration structures the formatted
input functions (page fiad) and the unformatted input functions (page flad). The
constructor effectively calls is.ipfx(noskip) and stores the return value. operator
bool1() delivers this return value. The destructor effectively calls is.isfx().

basic_istream::sync
int sync();

If rdbuf() is a null pointer, the function returns -1. Otherwise, it calls
rdbuf () ->pubsync(). If that returns -1, the function calls setstate(badbit) and
returns -1. Otherwise, the function returns zero.

basic_istream::tellg
pos_type tellg();

If fail() is false, the member function returns rdbuf()-> pubseekoff (0, cur, in).
Otherwise, it returns pos_type(-1).

basic_istream::unget
basic_istream& unget();

The unformatted input function (page [190) puts back the previous element in the
stream, if possible, as if by calling rdbuf () ->sungetc(). If rdbuf() is a null pointer,
or if the call to sungetc returns traits_type::eof(), the function calls
setstate(badbit). In any case, it returns *this.

ijostream

typedef basic_iostream<char, char_traits<char> > iostream;

The type is a synonym for template class basic_iostream (page @), specialized for
elements of type char with default character traits (page 293).

istream

typedef basic_istream<char, char_traits<char> > istream;

Standard C++ Library

The type is a synonym for template class basic_istream (page [188), specialized for
elements of type char with default character traits (page R93).

operator>>

template<class E, class T>
basic_istream<E, T>&
operator>>(basic_istream<E, T>& is, E *s);
template<class E, class T>
basic_istream<E, T>&
operator>>(basic_istream<E, T>& is, E& c);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed char =*s);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed char& c);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char *s);
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char& c);

The template function:
template<class E, class T>
basic_istream<kE, T>&
operator>>(basic_istream<E, T>& is, E *s);

extracts up to n - 1 elements and stores them in the array beginning at s. If
is.width() is greater than zero, n is is.width(); otherwise it is the largest array of
E that can be declared. The function always stores E() after any extracted elements
it stores. Extraction stops early on end-of-file or on any element (which is not
extracted) that would be discarded by ws (page [L94). If the function extracts no
elements, it calls is.setstate(failbit). In any case, it calls is.width(0) and
returns is.

The template function:

template<class E, class T>
basic_istream<E, T>&
operator>>(basic_istream<E, T>& is, char& c);

extracts an element, if possible, and stores it in c. Otherwise, it calls
is.setstate(failbit). In any case, it returns is.

The template function:
template<class T>
basic_istream<char, T>&

operator>>(basic_istream<char, T>& is,
signed char =*s);

returns is >> (char *)s.

The template function:

Chapter 14. Standard C++ Library Header Files 195

template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
signed char& c);

returns is >> (char&)c.

The template function:
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char xs);

returns is >> (char *)s.

The template function:
template<class T>
basic_istream<char, T>&
operator>>(basic_istream<char, T>& is,
unsigned char& c);

returns is >> (char&)c.

wiostream

typedef basic_iostream<wchar_t, char_traits<wchar_t> >
wiostream;

The type is a synonym for template class basic_iostream (pa%@) specialized for
elements of type wchar_t with default character traits (page

wistream

WS

typedef basic_istream<wchar_t, char_traits<wchar_t> >
wistream;

The type is a synonym for template class basic_istream (page [L88), specialized for
elements of type wchar_t with default character traits (page 293).

template class<k, T>
basic_istream<E, T>& ws(basic_istream<E, T>& is);

The manipulator extracts and discards any elements x for which use_facet<
ctype<kE> >(getloc()). is(ctype<E>::space, x) is true.

The function calls setstate(eofbit) if it encounters end-of-file while extracting
elements. It returns is.

<limits>

namespace std {
enum float_denorm_style;
enum float_round_style;
template<class T>

class numeric_limits;

}s

196 Standard C++ Library

Include the standard header <1imits> to define the template class numeric_limits.

Explicit specializations of this class describe many arithmetic properties of the

scalar types (other than pointers).

float_denorm_style

enum float_denorm_style {
denorm_indeterminate = -1,
denorm_absent = 0,
denorm_present = 1

}s

The enumeration describes the various methods that an implementation can choose
for representing a denormalized floating-point value — one too small to represent

as a normalized value:

* denorm_indeterminate — presence or absence of denormalized forms cannot be

determined at translation time
* denorm_absent — denormalized forms are absent

* denorm_present — denormalized forms are present

float_round_style

enum float round style {
round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3

s

The enumeration describes the various methods that an implementation can choose

for rounding a floating-point value to an integer value:

* round_indeterminate — rounding method cannot be determined

* round_toward_zero — round toward zero
* round_to_nearest — round to nearest integer
* round_toward_infinity — round away from zero

* round_toward_neg_infinity — round to more negative integer

numeric_limits

template<class T>
class numeric_limits {

public:
static const float denorm style has_denorm

= denorm_absent;
static const bool has_denorm_loss = false;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const bool is_bounded = false;
static const bool is_exact = false;
static const bool is_iec559 = false;
static const bool is_integer = false;
static const bool is_modulo = false;
static const bool is_signed = false;
static const bool is_specialized = false;
static const bool tinyness_before = false;
static const bool traps = false;
static const float_round_style round_style =
round_toward_zero;

Chapter 14. Standard C++ Library Header Files

197

198

static const int digits = 0;
static const int digitsl0 = 0;

static const int max_exponent = 0;
static const int max_exponentl0 = 0;
static const int min_exponent = 0;
static const int min_exponentl0 = 0;

static const int radix = 0;
static T denorm_min() throw();

static T epsilon() throw();

static T infinity() throw();

static T max() throw();

static T min() throw();

static T quiet_NaN() throw();

static T round_error() throw();
T

static

1

signaling_NaN() throw();

The template class describes many arithmetic properties of its parameter type T.
The header defines explicit specializations for the types wchar_t, bool, char, signed
char, unsigned char, short, unsigned short, int, unsigned int, long, unsigned long, float,
double, and long double. For all these explicit specializations, the member
is_specialized is true, and all relevant members have meaningful values. The
program can supply additional explicit specializations.

For an arbitrary specialization, 70 members have meaningful values. A member
object that does not have a meaningful value stores zero (or false) and a member
function that does not return a meaningful value returns T(0).

numeric_limits::denorm_min
static T denorm_min() throw();

The function returns the minimum value for the type (which is the same as min()
if has_denorm is not equal to denorm_present).

numeric_limits::digits
static const int digits = 0;

The member stores the number of radix (page Ral) digits that the type can
represent without change (which is the number of bits other than any sign bit for a
predefined integer type, or the number of mantissa digits for a predefined
floating-point type).

numeric_limits::digits10
static const int digitsl0 = 0;

The member stores the number of decimal digits that the type can represent
without change.

numeric_limits::epsilon
static T epsilon() throw();

The function returns the difference between 1 and the smallest value greater than 1
that is representable for the type (which is the value FLT_EPSILON (page B1) for

type float).

numeric_limits::has_denorm

static const float_denorm_style has_denorm =
denorm_absent;

Standard C++ Library

The member stores denorm_present (page [192) for a floating-point type that has
denormalized values (effectively a variable number of exponent bits).

numeric_limits::has_denorm_loss
static const bool has_denorm_loss = false;

The member stores true for a type that determines whether a value has lost
accuracy because it is delivered as a denormalized result (too small to represent as
a normalized value) or because it is inexact (not the same as a result not subject to
limitations of exponent range and precision), an option with IEC 559 (page 199)
floating-point representations that can affect some results.

numeric_limits::has_infinity
static const bool has_infinity = false;

The member stores true for a type that has a representation for positive infinity.
True if is_iec559 (page fLad) is true.

numeric_limits::has_quiet_NaN
static const bool has_quiet_NaN = false;

The member stores true for a type that has a representation for a quiet NaN, an
encoding that is "Not a Number”” which does not signal (page kd) its presence in
an expression. True if is_iec559 (page flad) is true.

numeric_limits::has_signaling_NaN
static const bool has_signaling_NaN = false;

The member stores true for a type that has a representation for a signaling NaN,
an encoding that is "Not a Number”” which signals (page Zd) its presence in an
expression by reporting an exception. True if is_iec559 (page fl9d) is true.

numeric_limits::infinity
static T infinity() throw();

The function returns the representation of positive infinity for the type. The return
value is meaningful only if has_infinity (page [199) is true.

numeric_limits::is_bounded
static const bool is_bounded = false;

The member stores true for a type that has a bounded set of representable values
(which is the case for all predefined types).

numeric_limits::is_exact
static const bool is_exact = false;

The member stores true for a type that has exact representations for all its values
(which is the case for all predefined integer types). A fixed-point or rational
representation is also considered exact, but not a floating-point representation.

numeric_limits::is_iec559
static const bool is_iec559 = false;

The member stores true for a type that has a representation conforming to IEC 559,
an international standard for representing floating-point values (also known as
IEEE 754 in the USA).

Chapter 14. Standard C++ Library Header Files 199

200

numeric_limits::is_integer
static const bool is_integer = false;

The member stores true for a type that has an integer representation (which is the
case for all predefined integer types).

numeric_limits::is_modulo
static const bool is_modulo = false;

The member stores true for a type that has a modulo representation, where all
results are reduced modulo some value (which is the case for all predefined
unsigned integer types).

numeric_limits::is_signed
static const bool is_signed = false;

The member stores true for a type that has a signed representation (which is the
case for all predefined floating-point and signed integer types).

numeric_limits::is_specialized
static const bool is_specialized = false;

The member stores true for a type that has an explicit specialization defined for
template class numeric_limits (page fLlod) (which is the case for all scalar types
other than pointers).

numeric_limits::max
static T max() throw();

The function returns the maximum finite value for the type (which is INT_MAX
(page k) for type int and FLT_MAX (page k1) for type float). The return value is
meaningful if is_bounded (page 199) is true.

numeric_limits::max_exponent
static const int max_exponent = 0;

The member stores the maximum positive integer such that the type can represent
as a finite value radix éﬁage Boil) raised to that power (which is the value
FLT_MAX_EXP (page k1) for type float). Meaningful only for floating-point types.

numeric_limits::max_exponent10
static const int max_exponentl0 = 0;

The member stores the maximum positive integer such that the type can represent
as a finite value 10 raised to that power (which is the value FLT_MAX_10_EXP
(page E‘) for type float). Meaningful only for floating-point types.

numeric_limits::min
static T min() throw();

The function returns the minimum normalized value for the type (which is
INT_MIN (page k4) for type int and FLT_MIN (page E2) for type float). The return
value is meaningful if is_bounded (page is true or is_bounded is false and
is_signed (page RQQJ) is false.

Standard C++ Library

numeric_limits::min_exponent
static const int min_exponent = 0;

The member stores the minimum r%lative integer such that the type can represent
as a normalized value radix (page RQJ) raised to that power (which is the value
FLT_MIN_EXP (page E) for type float). Meaningful only for floating-point types.

numeric_limits::min_exponent10
static const int min_exponentl0 = 0;

The member stores the minimum negative integer such that the type can represent
as a normalized value 10 raised to that power (which is the value
FLT_MIN_10_EXP (page E2) for type float). Meaningful only for floating-point

types.

numeric_limits::quiet_NaN
static T quiet_NaN() throw();

The function returns a representation of a quiet NaN (page frad) for the type. The
return value is meaningful only if has_quiet_NaN (page L99) is true.

numeric_limits::radix
static const int radix = 0;

The member stores the base of the representation for the type (which is 2 for the
predefined integer %pes, and the base to which the exponent is raised, or
FLT_RADIX (page B2), for the predefined floating-point types).

numeric_limits::round_error
static T round_error() throw();

The function returns the maximum rounding error for the type.

numeric_limits::round_style
static const float_round_style round_style =
round_toward_zero;

The member stores a value that describes the vaious methods that an
implementation can choose for rounding a floating-point value to an integer value.

numeric_limits::signaling_NaN
static T signaling_NaN() throw();

The function returns a representation of a signaling NaN (page %for the type.
The return value is meaningful only if has_signaling NaN (page 199) is true.

numeric_limits::tinyness_before
static const bool tinyness_before = false;

The member stores true for a type that determines whether a value is "tiny” (too
small to represent as a normalized value) before rounding, an option with IEC 559
(page flad) floating-point representations that can affect some results.

numeric_limits::traps
static const bool traps = false;

Chapter 14. Standard C++ Library Header Files 201

The member stores true for a type that generates some kind of signal (page £9) to
report certain arithmetic exceptions.

<locale>

codec‘%age Bo3) - codecvt_base (pa e Rod) - codecvt byname (page Rod) - collate

(page 208) - collateﬁname (page - ctype é bid) - ctype<char> (page b13)
- ctype_base (page R14) - ctype byname (page R13) - has_facet (page B19) - 1ocale
(page R17) - messages (page - messages_base (page R23) - messages_byname
(page B23) - money_base (pa) - money_get (page 223) - money_put (page
- moneypunct (p @ moneypunct byname (page 231) - num_get (page
- num_put (page 235) - numpunct (pa) - numpunct_byname (page 240)

- time_base (page 240) - time_get (page) - time_get_byname (page 244) -
time_put (page 244) - time_put_byname (page bad) - use_facet (page bad)

isalnum (page Rad) - isalpha (page P13) - iscntrl (page R1d) - isdigit (page bid) -
isgraph (page b1d) - islower (page bid) - isprint (page bid) - ispunct (page b1d) -
isspace (page bid) - isupper (page b1d) - isxdigit (page 1) - tolower (page bad) -
toupper (page 246)

namespace std {
class locale;
class ctype_base;
template<class E>
class ctype;
template<>
class ctype<char>;
template<class E>
class ctype_byname;
class codect_base;
template<class From, class To, class State>
class codecvt;
template<class From, class To, class State>
class codecvt_byname;
template<class E, class InIt>
class num_get;
template<class E, class OQutlIt>
class num_put;
template<class E>
class numpunct;
template<class E>
class numpunct_byname;
template<class E>
class collate;
template<class E>
class collate_byname;
class time_base;
template<class E, class InIt>
class time_get;
template<class E, class InIt>
class time_get_byname;
template<class E, class QutIt>
class time_put;
template<class E, class OQutlIt>
class time_put_byname;
class money_base;
template<class E, bool Intl, class InIt>
class money_get;
template<class E, bool Intl, class QutIt>
class money put;
template<class E, bool Intl>
class moneypunct;
template<class E, bool Intl>
class moneypunct_byname;

202 Standard C++ Library

class messages_base;
template<class E>

class messages;
template<class E>

class messages_byname;

// TEMPLATE FUNCTIONS

template<class Facet>

bool has_facet(const Tocale& Toc);
template<class Facet>

const Facet& use_facet(const locale& Toc);
template<class E>

bool isspace(E c, const Tocale& loc) const;
template<class E>

bool isprint(E c, const Tocaled& Toc) const;
template<class E>

bool iscntr1(E c, const lTocale& loc) const;
template<class E>

bool isupper(E c, const Tocale& loc) const;
template<class E>

bool islower(E c, const locale& loc) const;
template<class E>

bool isalpha(E c, const Tocale& loc) const;
template<class E>

bool isdigit(E c, const Tocale& loc) const;
template<class E>

bool ispunct(E c, const Tocale& Toc) const;
template<class E>

bool isxdigit(E c, const Tocale& loc) const;
template<class E>

bool isalnum(E c, const locale& loc) const;
template<class E>

bool isgraph(E c, const Tocale& loc) const;
template<class E>

E toupper(E c, const locale& loc) const;
template<class E>
E tolower(E c, const locale& loc) const;

b

Include the standard header <locale> to define a host of template classes and
functions that encapsulate and manipulate locales (page b7).

codecvt

template<class From, class To, class State>
class codecvt
: public Tocale::facet, codecvt_base {
public:
typedef From intern_type;
typedef To extern_type;
typedef State state_type;
explicit codecvt(size t refs = 0);
result in(State& state,
const To *firstl, const To *lastl,
const To *nextl,
From *first2, From *last2, From *next2);
result out(State& state,
const From *firstl, const From =*lastl,
const From *nextl,
To *first2, To *last2, To *next2);
result unshift(Stated& state,
To *=first2, To *last2, To *next2);
bool always_noconv() const throw();
int max_length() const throw();
int length(State& state,
const To *firstl, const To *lastl,

Chapter 14. Standard C++ Library Header Files 203

size_t N2) const throw();
int encoding() const throw();
static Tocale::id id;
protected:
codecvt();
virtual result do_in(State& state,

const To *firstl, const To *lastl,

const To *nextl,

From =first2, From *last2, From *next2);
virtual result do_out(State& state,

const From *firstl, const From *lastl,

const From #*nextl,

To *first2, To *last2, To *next2);
virtual result do_unshift(State& state,

To *first2, To *last2, To *next2);
virtual bool do_always_noconv() const throw();
virtual int do_max_length() const throw();
virtual int do_encoding() const throw();
virtual int do_length(State& state,

const To *firstl, const To *lastl,

size_t len2) const throw();

}s

The template class describes an object that can serve as a locale facet (page B1d), to
control conversions between a sequence of values of type From and a sequence of
values of type To. The class State characterizes the transformation — and an object
of class State stores any necessary state information during a conversion.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

The template versions of do_in and do_out always return codecvt_base: :noconv.
The Standard C++ library defines an explicit specialization, however, that is more
useful:

template<>
codecvt<wchar_t, char, mbstate_t>

which converts between wchar_t and char sequences.

codecvt::always_noconv
bool always_noconv() const throw();

The member function returns do_always_noconv ().

codecvt::codecvt
explicit codecvt(size t refs = 0);

The constructor initializes its Tocale::facet base object with Tocale::facet(refs).

codecvt::do_always_noconv
virtual bool do_always_noconv() const throw();

The protected virtual member function returns true only if every call to do_in
(page Bas) or do_out (page Rod) returns noconv (page R0Z). The template version
always returns true.

codecvt::do_encoding
virtual int do_encoding() const throw();

The protected virtual member function returns:

204 Standard C++ Library

+ -1, if the encoding of sequences of type extern_type is state dependent
0, if the encoding involves sequences of varying lengths
* n, if the encoding involves only sequences of length n

codecvt::do_in

virtual result do_in(State stated,
const To *firstl, const To *Tastl, const To *nextl,
From *first2, From *last2, From *next2);

The protected virtual member function endeavors to convert the source sequence at
[firstl, Tastl) to a destination sequence that it stores within [first2, last2). It
always stores in nextl a pointer to the first unconverted element in the source
sequence, and it always stores in next2 a pointer to the first unaltered element in
the destination sequence.

state must represent the initial conversion state (page E) at the beginning of a
new source sequence. The function alters its stored value, as needed, to reflect the
current state of a successful conversion. Its stored value is otherwise unspecified.

The function returns:

* codecvt_base:error if the source sequence is ill formed

¢ codecvt_base:noconv if the function performs no conversion
¢ codecvt_base::ok if the conversion succeeds

* codecvt_base::partial if the source is insufficient, or if the destination is not large
enough, for the conversion to succeed

The template version always returns noconv.

codecvt::do_length

virtual int do_length(State stateg,
const To *firstl, const To *lastl,
size_t 1en2) const throw();

The protected virtual member function effectively calls do_in(state, firstl,
Tastl, nextl, buf, buf + len2, next2) for some buffer buf and pointers nextl
and next2, then returns next2 - buf. (Thus, it counts the maximum number of
conversions, not greater than 1en2, defined by the source sequence at [firstl,
lastl).)

The template version always returns the lesser of Tastl - firstl and len2.

codecvt::do_max_length
virtual int do_max_length() const throw();

The protected virtual member function returns the largest permissible value that
can be returned by do_length(firstl, lastl, 1), for arbitrary valid values of
firstl and lastl. (Thus, it is roughly analogous to the macro MB_CUR_MAX
(page Bd), at least when To is type char.)

The template version always returns 1.

codecvt::do_out

virtual result do_out(State stated,
const From *firstl, const From *lastl,
const From #*nextl,
To *first2, To *last2, To *next2);

Chapter 14. Standard C++ Library Header Files 205

206

The protected virtual member function endeavors to convert the source sequence at
[firstl, Tastl) to a destination sequence that it stores within [first2, Tast2). It
always stores in nextl a pointer to the first unconverted element in the source
sequence, and it always stores in next2 a pointer to the first unaltered element in
the destination sequence.

state must represent the initial conversion state (page Ld) at the beginning of a
new source sequence. The function alters its stored value, as needed, to reflect the
current state of a successful conversion. Its stored value is otherwise unspecified.

The function returns:

 codecvt_base:error if the source sequence is ill formed

* codecvt_base:noconv if the function performs no conversion
¢ codecvt_base::ok if the conversion succeeds

* codecvt_base::partial if the source is insufficient, or if the destination is not large
enough, for the conversion to succeed

The template version always returns noconv.

codecvt::do_unshift

virtual result do_unshift(State state&,
To *=first2, To *last2, To *next2);

The protected virtual member function endeavors to convert the source element
From(0) to a destination sequence that it stores within [first2, last2), except for
the terminating element To(0). It always stores in next2 a pointer to the first
unaltered element in the destination sequence.

state must represent the initial conversion state (page Ld) at the beginning of a
new source sequence. The function alters its stored value, as needed, to reflect the
current state of a successful conversion. Typically, converting the source element
From(0) leaves the current state in the initial conversion state.

The function returns:

* codecvt_base:error if state represents an invalid state

* codecvt_base:noconv if the function performs no conversion
¢ codecvt_base::ok if the conversion succeeds

* codecvt_base::partial if the destination is not large enough for the conversion to
succeed

The template version always returns noconv.

codecvt::exter n_type
typedef To extern_type;

The type is a synonym for the template parameter To.

codecvt::in

result in(State state&,
const To *firstl, const To *lastl, const To *nextl,
From *first2, From *last2, From *next2);

The member function returns do_in(state, firstl, lastl, nextl, first2,
last2, next2).

Standard C++ Library

codecvt::intern_type
typedef From intern_type;

The type is a synonym for the template parameter From.

codecvt::length

int length(State stated,
const To *firstl, const To *lastl,
size_t len2) const throw();

The member function returns do_length(firstl, lastl, Ten2).

codecvt::encoding
int encoding() const throw();

The member function returns do_encoding().

codecvt::max_length
int max_length() const throw();

The member function returns do_max_Tength().

codecvt::out

result out(State stated,
const From *firstl, const From *lastl,
const From #*nextl,
To *first2, To *last2, To *next2);

The member function returns do_out(state, firstl, lastl, nextl, first2,
last2, next2).

codecvt: ‘State_type
typedef State state_type;

The type is a synonym for the template parameter State.

codecvt::unshift

result unshift(State stated,
To *first2, To *last2, To *next2);

The member function returns do_unshift(state, first2, last2, next2).

codecvt_base

class codecvt_base {
pubTic:
enum result {ok, partial, error, noconv};

1

The class describes an enumeration common to all specializations of template class
codecvt (page @%he enumeration result describes the possible return values
from do_in (page R03) or do_out (page bos):

e error if the source sequence is ill formed

* noconv if the function performs no conversion

* ok if the conversion succeeds

* partial if the destination is not large enough for the conversion to succeed

Chapter 14. Standard C++ Library Header Files 207

208

codecvt_byname

template<class From, class To, class State>
class codecvt_byname
: public codecvt<From, To, State> {
public:
explicit codecvt_byname(const char *s,
size_t refs = 0);
protected:
odecvt_byname();

bs

The template class describes an object that can serve

as a locale facet (page m) of

type codecvt<From, To, State>. Its behavior is determined by the named (page
locale s. The constructor initializes its base object with codecvt<From, To,

State>(refs).

collate

template<class E>
class collate : public Tocale::facet {
public:
typedef E char_type;
typedef basic_string<E> string_type;
explicit collate(size t refs = 0);
int compare(const E *firstl, const E *lastl,
const E *first2, const E *last2) const;
string_type transform(const E *first,
const E *last) const;
Tong hash(const E *first, const E *Tast) const;
static Tocale::id id;
protected:
collate();
virtual int
do_compare(const E *firstl, const E *lastl,
const E *first2, const E *last2) const;
virtual string_type do_transform(const E *first,
const E *last) const;
virtual long do_hash(const E *first,
const E *last) const;
1

The template class describes an object that can serve
control comparisons of sequences of type E.

as a locale facet (page B17), to

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

collate::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

collate::collate
explicit collate(size_t refs = 0);

The constructor initializes its base object with Tocale
collate::compare

int compare(const E *firstl, const E *lastl,
const E *first2, const E *last2) const;

Standard C++ Library

::facet (refs).

The member function returns do_compare(firstl, lastl, first2, last2).

collate::do_compare

virtual int do_compare(const E *firstl, const E *lastl,
const E *first2, const E *last2) const;

The protected virtual member function compares the sequence at [firstl, Tastl)
with the sequence at [first2, last2). It compares values by applying operator<
between pairs of corresponding elements of type E. The first sequence compares
less if it has the smaller element in the earliest unequal pair in the sequences, or if
no unequal pairs exist but the first sequence is shorter.

If the first sequence compares less than the second sequence, the function returns
-1. If the second sequence compares less, the function returns +1. Otherwise, the
function returns zero.

collate::do_hash

virtual long do_hash(const E *first,
const E *last) const;

The protected virtual member function returns an integer derived from the values
of the elements in the sequence [first, Tast). Such a hash value can be useful,
for example, in distributing sequences pseudo randomly across an array of lists.

collate::do_transform

virtual string_type do_transform(const E *first,
const E *last) const;

The protected virtual member function returns an object of class string_type (page

whose controlled sequence is a copy of the sequence [first, Tast). If a class
derived from collate<E> overrides do_compare (page Bad), it should also override
do_transform to match. Put simply, two transformed strings should yield the same
result, when passed to collate::compare, that you would get from passing the
untransformed strings to compare in the derived class.

collate::hash
Tong hash(const E *first, const E xlast) const;

The member function returns do_hash(first, Tast).

collate::string_type
typedef basic_string<kE> string_type;

The type describes a specialization of template class basic_string (page @) whose
objects can store copies of the source sequence.

collate::transform

string_type transform(const E *first,
const E *last) const;

The member function returns do_transform(first, last).

collate_byname

template<class E>

class collate_byname : public collate<k> {
public:

explicit collate_byname(const char *s,

Chapter 14. Standard C++ Library Header Files 209

size t refs = 0);
protected:
ollate_byname();

bs

The template class describes an object that can serve as a locale facet (page m) of
type collate<E>. Its behavior is determined by the named (page @) locale s. The
constructor initializes its base object with collate<E>(refs).

ctype

char_type (page bid) - ctype (page B1d) - do_is (page B1d) - do_narrow (page b1d) -
do_scan_is (page R11) - do_scan_not (page B12) - do_tolower (page R1d) -
do_toupper (page B12) - do_widen (page R1d) - is (page B1d) - narrow (page b1d) -
scan_is (page é) - scan_not (page % - tolower (page b13) - toupper (page b13) -
widen (page ¥E))

template<class E>
class ctype
: public Tocale::facet, public ctype_base {
pubTic:
typedef E char_type;
explicit ctype(size_ t refs = 0);
bool is(mask msk, E ch) const;
const E *is(const E *xfirst, const E *last,
mask *dst) const;
const E xscan_is(mask msk, const E *first,
const E *last) const;
const E *scan_not(mask msk, const E *first,
const E *last) const;
E toupper(E ch) const;
const E *toupper(E *first, E *last) const;
E tolower(E ch) const;
const E *tolower(E *first, E *last) const;
E widen(char ch) const;
const char *widen(char *first, char *last,
E xdst) const;
char narrow(E ch, char df1t) const;
const E *narrow(const E *first, const E *last,
char dflt, char *dst) const;
static Tocale::id id;
protected:
ctype();
virtual bool do_is(mask msk, E ch) const;
virtual const E *do_is(const E *first, const E *last,
mask *dst) const;
virtual const E *do_scan_is(mask msk, const E *first,
const E *last) const;
virtual const E *do_scan_not(mask msk, const E *first,
const E *last) const;
virtual E do_toupper(E ch) const;
virtual const E *do_toupper(E *first, E *last) const;
virtual E do_tolower(E ch) const;
virtual const E *do_tolower(E *first, E *last) const;
virtual E do_widen(char ch) const;
virtual const char *do_widen(char *first, char *last,
E *dst) const;
virtual char do_narrow(E ch, char dflt) const;
virtual const E *do_narrow(const E *first,
const E *last, char dflt, char *dst) const;
1

The template class describes an object that can serve as a locale facet (page B1d), to
characterize various properties of a "character”” (element) of type E. Such a facet
also converts between sequences of E elements and sequences of char.

210 Standard C++ Library

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

The Standard C++ library defines two explicit specializations of this template class:

* ctype<char> (page B13), an explicit specialization whose differences are
described separately

* ctype<wchar_t>, which treats elements as wide characters (page E)

In this implementation (page B), other specializations of template class ctype<E>:
* convert a value ch of type E to a value of type char with the expression (char)ch
» convert a value c of type char to a value of type E with the expression E(c)

All other operations are performed on char values the same as for the explicit
specialization ctype<char>.

ctype::.char_type
typedef E char_type;

The type is a synonym for the template parameter E.

ctype::ctype
explicit ctype(size_t refs = 0);

The constructor initializes its Tocale::facet base object with Tocale::facet(refs).

ctype::do_is

virtual bool do_is(mask msk, E ch) const;

virtual const E *do_is(const E *first, const E *last,
mask *dst) const;

The first protected member template function returns true if MASK(ch) & msk is
nonzero, where MASK(ch) designates the mapping between an element value ch
and its classification mask, of type mask (page R14). The name MASK is purely
symbolic here; it is not defined by the template class. For an object of class
ctype<char> (page m), the mapping is tab[(unsigned char) (char)ch], where tab
is the stored pointer to the ctype mask table (page B14).

The second protected member template function stores in dst[I] the value
MASK(first[I]) & msk, where I ranges over the interval [0, Tast - first).

ctype::do_narrow

virtual char do_narrow(E ch, char dflt) const;
virtual const E *do_narrow(const E *first, const E *last,
char dflt, char *dst) const;

The first protected member template function returns (char)ch, or df1t if that
expression is undefined.

The second protected member template function stores in dst[I] the value
do_narrow(first[I], df1t), for I in the interval [0, Tast - first).

ctype::do_scan_is

virtual const E *do_scan_is(mask msk, const E *first,
const E *last) const;

Chapter 14. Standard C++ Library Header Files 211

212

The protected member function returns the smallest pointer p in the range [first,
last) for which do_is(msk, *p) is true. If no such value exists, the function
returns last.

ctype::do_scan_not
virtual const E *do_scan_not(mask msk, const E *first,
const E *last) const;

The protected member function returns the smallest pointer p in the range [first,
last) for which do_is(msk, *p) is false. If no such value exists, the function
returns last.

ctype::do_tolower

virtual E do_tolower(E ch) const;
virtual const E *do_tolower(E *first, E *last) const;

The first protected member template function returns the lowercase character
corresponding to ch, if such a character exists. Otherwise, it returns ch.

The second protected member template function replaces each element first[I],
for I in the interval [0, last - first), with do_tolower(first[I]).

ctype::do_toupper
virtual E do_toupper(E ch) const;
virtual const E *do_toupper(E *first, E *last) const;

The first protected member template function returns the uppercase character
corresponding to ch, if such a character exists. Otherwise, it returns ch.

The second protected member template function replaces each element first[I],
for I in the interval [0, last - first), with do_toupper(first[I]).

ctype::do_widen

virtual E do_widen(char ch) const;

virtual const char *do_widen(char *first, char *last,
E *dst) const;

The first protected member template function returns E(ch).

The second protected member template function stores in dst[I] the value
do_widen(first[I]), for I in the interval [0, last - first).

ctype::is

bool is(mask msk, E ch) const;

const E *is(const E *first, const E xlast,
mask *dst) const;

The first member function returns do_is(msk, ch). The second member function
returns do_is(first, last, dst).

ctype::narrow

char narrow(E ch, char dflt) const;
const E *narrow(const E *first, const E xlast,
char df1t, char *dst) const;

The first member function returns do_narrow(ch, df1t). The second member
function returns do_narrow(first, last, dflt, dst).

Standard C++ Library

ctype::scan_is
const E *scan_is(mask msk, const E *first,
const E *last) const;

The member function returns do_scan_is(msk, first, Tast).

ctype::scan_not

const E *scan_not(mask msk, const E *first,
const E *last) const;

The member function returns do_scan_not(msk, first, Tast).

ctype::tolower

E tolower(E ch) const;
const E *tolower(E *first, E *last) const;

The first member function returns do_tolower(ch). The second member function
returns do_tolower(first, last).

ctype::toupper
E toupper(E ch) const;
const E ~toupper(E *first, E *last) const;

The first member function returns do_toupper(ch). The second member function
returns do_toupper(first, last).

ctype::widen
E widen(char ch) const;
const char *widen(char *first, char *last, E *dst) const;

The first member function returns do_widen(ch). The second member function
returns do_widen(first, last, dst).

ctype<char>

template<>
class ctype<char>
: public locale::facet, public ctype_base {
public:
typedef char char_type;
explicit ctype(const mask *tab = 0, bool del = false,
size_t refs = 0);
bool is(mask msk, char ch) const;
const char *is(const char *first, const char xlast,
mask *dst) const;
const char *scan_is(mask msk,
const char *first, const char *last) const;
const char *scan_not(mask msk,
const char *first, const char *last) const;
char toupper(char ch) const;
const char xtoupper(char *first, char *last) const;
char tolower(char ch) const;
const char *tolower(char *first, char *last) const;
char widen(char ch) const;
const char *widen(char *first, char *last,
char *dst) const;
char narrow(char ch, char dflt) const;
const char *narrow(const char *first,
const char *last, char dflt, char *dst) const;
static Tocale::id id;
protected:
ctype();

Chapter 14. Standard C++ Library Header Files 213

virtual char do_toupper(char ch) const;

virtual const char *do_toupper(char *first,
char *last) const;

virtual char do_tolower(char ch) const;

virtual const char *do_tolower(char *first,
char *last) const;

virtual char do_widen(char ch) const;

virtual const char *do_widen(char *first, char *last,
char =dst) const;

virtual char do_narrow(char ch, char dflt) const;

virtual const char *do_narrow(const char *first,
const char *last, char dflt, char *dst) const;

const mask *table() const throw();
static const mask *classic_table() const throw();
static const size_t table_size;

}s

The class is an explicit specialization of template class ctype (page R1d) for type
char. Hence, it describes an object that can serve as a locale facet (page 214), to
characterize various properties of a "character”” (element) of type char. The explicit
specialization differs from the template class in several ways:

* An object of class ctype<char> stores a pointer to the first element of a ctype
mask table, an array of UCHAR_MAX + 1 (page E) elements of type
ctype_base::mask. It also stores a boolean object that indicates whether the array
should be deleted when the ctype<E> object is destroyed.

e Its sole public constructor lets you specify tab, the ctype mask table, and del,
the boolean object that is true if the array should be deleted when the
ctype<char> object is destroyed — as well as the usual reference-count
parameter refs.

* The protected member function table() returns the stored ctype mask table.

* The static member object table_size specifies the minimum number of elements
in a ctype mask table.

* The protected static member function classic_table() returns the ctype mask
table appropriate to the "C" (page Bd) locale.

* There are no protected virtual member functions do_is (page B11), do_scan_is
(page B11), or do_scan_not (page R13). The corresponding public member
functions perform the equivalent operations themselves.

* The member functions do_narrow (page B11) and do_widen (page B12) simply
copy elements unaltered.

ctype_base

class ctype_base {
public:
enum mask;
static const mask space, print, cntrl,
upper, lower, digit, punct, xdigit,
alpha, alnum, graph;

}s

The class serves as a base class for facets of template class ctype (page Rad). 1t
defines just the enumerated type mask and several constants of this type. Each of
the constants characterizes a different way to classify characters, as defined by the
functions with similar names declared in the header <ctype.h> (page Ed). The
constants are:

* space (function isspace (page E))

 print (function isprint (page E))

214 Standard C++ Library

* cntrl (function iscntrl (page E))

« upper (function isupper (page &)
+ lower (function islower (page E7))
+ digit (function isdigit (page B7))

* punct (function ispunct (page 5))
* xdigit (function isxdigit (page Ed))
* alpha (function isalpha (page E))

* alnum (function isalnum (page E))
 graph (function isgraph (page)

You can charaterize a combination of classifications by ORing these constants. In
particular, it is always true that alnum == (alpha | digit) and graph == (alnum |
punct).

ctype byname

template<class E>
class ctype_byname : public ctype<k> {
public:
explicit ctype_byname(const char =*s,
size_t refs = 0);
protected:
ctype_byname () ;

The template class describes an object that can serve as a locale facet (page B17) of
type ctype<E>. Its behavior is determined by the named (page B1d) 1ocale s. The
constructor initializes its base object with ctype<E>(refs) (or the equivalent for
base class ctype<char> (page ﬁ)).

has_facet

template<class Facet>
bool has_facet(const Tocale& loc);

The template function returns true if a locale facet (page B17) of class Facet is
listed within the locale object (page R1d) 10c.

isalnum

template<class E>
bool isalnum(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<t> >(Toc). is(ctype<E>:: alnum,
c).
isalpha

template<class E>
bool isalpha(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<kt> >(Toc). is(ctype<E>:: alpha,

c).
iscntrl

template<class E>
bool isentrl(E c, const locale& loc) const;

Chapter 14. Standard C++ Library Header Files 215

The template function returns use_facet< ctype<E>

c).
isdigit

template<class E>
bool isdigit(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E>

c).
isgraph

template<class E>
bool isgraph(E c, const Tocale& Toc) const;

The template function returns use_facet< ctype<E>

c).

islower
template<class E>
bool islower(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E>

c).
isprint

template<class E>
bool isprint(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E>

c).

iIspunct

template<class E>
bool ispunct(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E>

c).

iIsspace

template<class E>
bool isspace(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E>

c).

isupper
template<class E>
bool isupper(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E>

c).

Standard C++ Library

>(Toc).

>(Toc).

>(Toc).

>(loc).

>(loc).

>(Toc).

>(Toc).

>(Toc).

is(ctype<E>::

is(ctype<E>::

is(ctype<E>::

is(ctype<E>::

is(ctype<E>::

is(ctype<E>::

is(ctype<E>::

is(ctype<E>::

cntrl,

digit,

graph,

Tower,

print,

punct,

space,

upper,

isxdigit

locale

template<class E>
bool isxdigit(E c, const Tocale& loc) const;

The template function returns use_facet< ctype<E> >(loc). is(ctype<E>::
xdigit, c).

category (page @) - classic (page @) - combine (page E) . fac%(lpage @) .
global (page R20) - id (page ﬁ) - locale (page B2d) - name (page 221) - operator!=
(page R21) - operator() (page b21) - operator== (page 221)
class Tocale {
pubTic:
class facet;
class id;
typedef int category;
static const category none, collate, ctype, monetary,
numeric, time, messages, all;
locale();
explicit locale(const char *s);
locale(const locale& x, const localed y,
category cat);
locale(const localed& x, const char *s, category cat);
template<class Facet>
locale(const Tocale& x, Facet *fac);
template<class Facet>
locale combine(const locale& x) const;
template<class E, class T, class A>
bool operator() (const basic_string<k, T, A>& Ths,
const basic_string<k, T, A>& rhs) const;
string name() const;
bool operator==(const locale& x) const;
bool operator!=(const locale& x) const;
static locale global(const locale& x);
static const Tocale& classic();

1

The class describes a locale object that encapsulates a locale (page B2). 1t
represents culture-specific information as a list of facets. A facet is a pointer to an
object of a class derived from class facet (page R19) that has a public object of the
form:

static Tocale::id id;

You can define an open-ended set of these facets. You can also construct a locale
object that designates an arbitrary number of facets.

Predefined groups of these facets represent the locale categories (page E)
traditionally managed in the Standard C library by the function setlocale (page E).

Category collate (page k1d) (LC_COLLATE (page E)) includes the facets:

collate<char>
collate<wchar_t>

Category ctype (page k1d) (Lc_cTYPE (page E9)) includes the facets:

ctype<char>

ctype<wchar_t>

codecvt<char, char, mbstate_t>
codecvt<wchar_t, char, mbstate_t>

Chapter 14. Standard C++ Library Header Files 217

218

Category monetary (page R19) (LC_MONETARY (page b)) includes the facets:

moneypunct<char, false>

moneypunct<wchar_t, false>

moneypunct<char, true>

moneypunct<wchar_t, true>

money_get<char, istreambuf_iterator<char> >

money get<wchar_t, istreambuf iterator<wchar_ t> >
money_put<char, ostreambuf_iterator<char> >

money put<wchar_t, ostreambuf_iterator<wchar_t> >

Category numeric (page B1d) (LC_NUMERIC (page Ed)) includes the facets:

num_get<char, istreambuf_iterator<char> >
num_get<wchar_t, istreambuf_iterator<wchar_t> >
num_put<char, ostreambuf_iterator<char> >
num_put<wchar_t, ostreambuf_iterator<wchar_t> >
numpunct<char>

numpunct<wchar_t>

Category time (page b1d) (LC_TIME (page Eg)) includes the facets:

time_get<char, istreambuf_iterator<char> >
time_get<wchar_t, istreambuf_iterator<wchar_t> >
time_put<char, ostreambuf_iterator<char> >
time_put<wchar_t, ostreambuf_iterator<wchar_t> >

Category messages (page B1d) [sic] (LC_MESSAGE) includes the facets:

messages<char>
messages<wchar_t>

(The last category is required by Posix, but not the C Standard.)

Some of these predefined facets are used by the iostreams (page L) classes, to
control the conversion of numeric values to and from text sequences.

An object of class locale also stores a locale name as an object of class strin
(page . Using an invalid locale name to construct a locale facet (page ﬁ or a
locale object throws an object of class runtime_error (page baZ). The stored locale
name is "*" if the locale object cannot be certain that a C-style locale corresponds
exactly to that represented by the object. Otherwise, you can establish a matching
locale within the Standard C library, for the locale object x, by calling setTocale(
LC_ALL, x.name. c_str()).

In this implementation (page B), you can also call the static member function:
static locale empty();

to construct a locale object that has no facets. It is also a transparent locale — if
the template functions has_facet (page E) and use_facet (page @) cannot find
the requested facet in a transparent locale, they consult first the global locale (page

and then, if that is transparent, the classic locale (page @). Thus, you can
write:

cout.imbue(locale::empty());

Subsequent insertions to cout (page figd) are mediated by the current state of the
global locale. You can even write:
locale Toc(locale::empty(), locale::classic(),

locale: :numeric);
cout.imbue(loc);

Standard C++ Library

Numeric formatting rules for subsequent insertions to cout remain the same as in
the C locale (page B9), even as the global locale supplies changing rules for
inserting dates and monetary amounts.

locale::category

typedef int category;
static const category none, collate, ctype, monetary,
numeric, time, messages, all;

The type is a synonym for int, so that it can represent any of the C locale
categories (page b4). It can also represent a group of constants local to class Tocale:

* none, corresponding to none of the the C categories

* collate, corresponding to the C category LC_COLLATE (page)

* ctype, corresponding to the C category LC_CTYPE (page kd)

* monetary, corresponding to the C category LC_MONETARY (page E9)
¢ numeric, corresponding to the C category LC_NUMERIC (page kd)

* time, corresponding to the C category LC_TIME (page kd)

* messages, corresponding to the Posix category LC_MESSAGE

* all, corresponding to the C union of all categories LC_ALL (page k)

You can represent an arbitrary group of categories by ORing these constants, as in
monetary | time.

locale::classic
static const locale& classic();

The static member function returns a locale ob%t that represents the classic locale,
which behaves the same as the C locale (page £4) within the Standard C library.

locale::combine

template<class Facet>
locale combine(const locale& x) const;

The member function returns a locale object that replaces in (or adds to) *this the
facet Facet listed in x.

locale::facet

class facet {
protected:
explicit facet(size_t refs = 0);
virtual facet();
private:
facet(const facetd) // not defined
void operator=(const facet&) // not defined

The member class serves as the base class for all locale facets (page R1d). Note that
you can neither copy nor assign an object of class facet. You can construct and
destroy objects derived from class Tocale::facet, but not objects of the base class
proper. Typically, you construct an object myfac derived from facet when you
construct a locale, as in:

locale Toc(locale::classic(), new myfac);

Chapter 14. Standard C++ Library Header Files 219

220

In such cases, the constructor for the base class facet should have a zero refs
argument. When the object is no longer needed, it is deleted. Thus, you supply a
nonzero refs argument only in those rare cases where you take responsibility for
the lifetime of the object.

locale::global
static locale global(const locale& x);

The static member function stores a copy of x as the global locale. It also calls
setlocale(LC_ALL, x.name. c_str()), to establishing a matching locale within the
Standard C library. The function then returns the previous global locale. At
%gram startup (page B), the global locale is the same as the classic locale (page

locale::id

class id {

protected:
id();

private:
id(const id&) // not defined
void operator=(const id&) // not defined

}s

The member class describes the static member object required by each unique
locale facet (page R17). Note that you can neither copy nor assign an object of class
id.

locale::locale

locale();
explicit locale(const char *s);
lTocale(const locale& x, const localed y,
category cat);
locale(const locale& x, const char *s, category cat);
template<class Facet>
locale(const locale& x, Facet *fac);

The first constructor initializes the object to match the global locale (page B2d). The
second constructor initializes all the locale categories (page bZ) to have behavior
consistent with the locale name (page R18) s. The remaining constructors copy x,
with the exceptions noted:

lTocale(const locale& x, const localed y,
category cat);

replaces from y those facets corresponding to a category c for which ¢ & cat is
nonzero.

locale(const locale& x, const char *s, category cat);

replaces from locale(s, all) those facets corresponding to a category c¢ for which
¢ & cat is nonzero.

template<class Facet>
locale(const locale& x, Facet *fac);

replaces in (or adds to) x the facet fac, if fac is not a null pointer.

If a locale name s is a null pointer or otherwise invalid, the function throws
runtime_error (page B63).

Standard C++ Library

locale::name
string name() const;

The member function returns the stored locale name (page 1d).

locale::operator!=
bool operator!=(const locale& x) const;

The member function returns ! (*this == x).

locale::operator()

template<class E, class T, class A>
bool operator() (const basic_string<kE, T, A>& Ths,
const basic_string<k, T, A>& rhs);

The member function effectively executes:

const collate<E>& fac = use_fac<collate<E> >(*this);
return (fac.compare(Ths.begin(), Ths.end(),
rhs.begin(), rhs.end()) < 0);

Thus, you can use a locale object as a function object (page Bad).

locale::operator==
bool operator==(const locale& x) const;

The member function returns true only if *this and x are copies of the same locale
or have the same name (other than "*").

messages

template<class E>
class messages
: public Tocale::facet, public messages_base {
pubTic:
typedef E char_type;
typedef basic_string<kE> string_type;
explicit messages(size t refs = 0);
catalog open(const string& name,
const locale& loc) const;
string_type get(catalog cat, int set, int msg,
const string_type& dflt) const;
void close(catalog cat) const;
static Tocale::id id;
protected:
messages();
virtual catalog do_open(const string& name,
const Tocale& Toc) const;
virtual string_type do_get(catalog cat, int set,
int msg, const string_type& dflt) const;
virtual void do_close(catalog cat) const;

}s

The template class describes an object that can serve as a locale facet (page B1d), to
characterize various properties of a message catalog that can supply messages
represented as sequences of elements of type E.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

Chapter 14. Standard C++ Library Header Files 221

222

messages: :char_type
typedef E char_type;

The type is a synonym for the template parameter E.

messages:.close
void close(catalog cat) const;

The member function calls do_close(cat) ;.

messages:.do_close
virtual void do_close(catalog cat) const;

The protected member function closes the message catalog (%e B21) cat, which
must have been opened by an earlier call to do_open (page 222).

messages::do_get

virtual string type do_get(catalog cat, int set, int msg,
const string_type& df1t) const;

The protected member function endeavors to obtain a message sequence from the
message catalog (page B21) cat. 1t may make use of set, msg, and df1t in doing so.
It returns a copy of df1t on failure. Otherwise, it returns a copy of the specified
message sequence.

messages::do_open
virtual catalog do_open(const string& name,
const locale& loc) const;

The protected member function endeavors to open a message catalog (page b21)
whose name is name. It may make use of the locale Toc in doing so. It returns a
value that compares less than zero on failure. Otherwise, the returned value can be
used as the first argument on a later call to get (page b23). 1t should in any case be
used as the argument on a later call to close (page %)

messages::get

string_type get(catalog cat, int set, int msg,
const string_type& df1t) const;

The member function returns do_get(cat, set, msg, df1t);.

messages:..messages
explicit messages(size_t refs = 0);

The constructor initializes its base object with Tocale::facet(refs).
messages:.open

catalog open(const string& name,
const Tocale& loc) const;

The member function returns do_open(name, Toc);.

messages: :string_type
typedef basic_string<kE> string_type;

The type describes a specialization of template class basic_string (page zd) whose
objects can store copies of the message sequences.

Standard C++ Library

messages_base

class messages_base {
typedef int catalog;

The class describes a type common to all specializations of template class messages
(page El) The type catalog is a synonym for type int that describes the possible
return values from messages::do_open.

messages_byname

template<class E>
class messages_byname : public messages<E> {
pubTic:
explicit messages_byname(const char =*s,
size_t refs = 0);
protected:
messages_byname() ;

bs

The template class describes an object that can serve as a locale facet of type
messages<E>. Its behavior is determined by the named locale s. The constructor
initializes its base object with messages<E>(refs).

money_base

class money_base {
enum part {none, sign, space, symbol, value};
struct pattern {
char field[4];
1
1

The class describes an enumeration and a structure common to all specializations
of template class moneypunct (page B2d). The enumeration part describes the
possible values in elements of the array field in the structure pattern. The values
of part are:

* none to match zero or more spaces or generate nothing
* sign to match or generate a positive or negative sign

* space to match zero or more spaces or generate a space
* symbol to match or generate a currency symbol

* value to match or generate a monetary value

money_get

template<class E,
class InIt = istreambuf_iterator<E> >
class money_get : public Tocale::facet {
public:
typedef E char_type;
typedef Inlt iter_type;
typedef basic_string<E> string_type;
explicit money_get(size t refs = 0);
iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::jostated st,
long double& val) const;
iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::jostated st,
string_type& val) const;
static Tocale::id id;
protected:

Chapter 14. Standard C++ Library Header Files 223

224

“money_get();
virtual iter_type do_get(iter_type first,
iter_type last, bool intl, ios_base& x,
jos_base::jostate& st, string_typed& val) const;
virtual iter_type do_get(iter_type first,
iter_type last, bool intl, ios_base& x,
jos_base::iostate& st, long double& val) const;

}s

The template class describes an object that can serve as a locale facet, to control
conversions of sequences of type E to monetary values.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

money_get::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

money_get::do_get

virtual iter_type do_get(iter type first, iter_type last,
bool intl, ios_base& x, ios_base::iostated st,
string_type& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::iostated st,
Tong double& val) const;

The first virtual protected member function endeavors to match sequential
elements beginning at first in the sequence [first, Tast) until it has recognized
a complete, nonempty monetary input field. If successful, it converts this field to a
sequence of one or more decimal digits, optionally preceded by a minus sign (-),
to represent the amount and stores the result in the string_type (page b23) object
val. It returns an iterator designating the first element beyond the monetary input
field. Otherwise, the function stores an empty sequence in val and sets
ios_base::failbit in st. It returns an iterator designating the first element beyond
any prefix of a valid monetary input field. In either case, if the return value equals
last, the function sets ios_base::eofbit in st.

The second virtual protected member function behaves the same as the first, except
that if successful it converts the optionally-signed digit sequence to a value of type
long double and stores that value in val.

The format of a monetary input field is determined by the locale facet (page R12)
fac returned by the (effective) call use_facet <moneypunct<kE, int1> >(x.
getloc()). Specifically:

» fac.neg_format() determines the order in which components of the field occur.

+ fac.curr_symbol() determines the sequence of elements that constitutes a
currency symbol.

» fac.positive_sign() determines the sequence of elements that constitutes a
positive sign.

» fac.negative_sign() determines the sequence of elements that constitutes a
negative sign.

+ fac.grouping() determines how digits are grouped to the left of any decimal
point.

» fac.thousands_sep() determines the element that separates groups of digits to
the left of any decimal point.

Standard C++ Library

» fac.decimal_point() determines the element that separates the integer digits
from the fraction digits.

+ fac.frac_digits() determines the number of significant fraction digits to the
right of any decimal point.

If the sign string (fac.negative_sign or fac.positive_sign) has more than one
element, only the first element is matched where the element equal to
money_base::sign (page k23) appears in the format pattern (fac.neg_format). Any
remaining elements are matched at the end of the monetary input field. If neither
string has a first element that matches the next element in the monetary input
field, the sign string is taken as empty and the sign is positive.

If x.flags() & showbase is nonzero, the string fac.curr_symbol must match where
the element equal to money_base: :symbol appears in the format pattern. Otherwise,
if money_base::symbol occurs at the end of the format pattern, and if no elements
of the sign string remain to be matched, the currency symbol is not matched.
Otherwise, the currency symbol is optionally matched.

If no instances of fac.thousands_sep() occur in the value portion of the monetary
input field (where the element equal to money_base: :value appears in the format
pattern), no grouping constraint is imposed. Otherwise, any grouping constraints
imposed by fac.grouping() is enforced. Note that the resulting digit sequence
represents an integer whose low-order fac.frac_digits() decimal digits are
considered to the right of the decimal point.

Arbitrary white space (page B3) is matched where the element equal to
money_base: :space appears in the format pattern, if it appears other than at the
end of the format pattern. Otherwise, no internal white space is matched. An
element c is considered white space if use_facet <ctype<E> >(x. getloc()).
is(ctype_base:: space, c) is true.

money_get::get

iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::jostated st,
long double& val) const;
iter_type get(iter_type first, iter_type last,
bool intl, ios _base& x, ios base::jostated st,
string_type& val) const;

Both member functions return do_get(first, Tast, intl, x, st, val).

money_get::iter_type
typedef Inlt iter_type;

The type is a synonym for the template parameter InIt.

money_get::money_get
explicit money_get(size t refs = 0);

The constructor initializes its base object with locale::facet(refs).

money_get::string_type
typedef basic_string<kE> string_type;

The type describes a specialization of template class basic_string (page Bzd) whose
objects can store sequences of elements from the source sequence.

Chapter 14. Standard C++ Library Header Files 225

226

money_put

template<class E,
class OutIt = ostreambuf_iterator<k> >
class money put : public Tocale::facet {
public:
typedef E char_type;
typedef Outlt iter_type;
typedef basic_string<E> string_type;
explicit money put(size t refs = 0);
iter_type put(iter_type next, bool intl, ios_base& x,
E fi11, Tong double& val) const;
iter_type put(iter_type next, bool intl, ios_based x,
E fill, string_type& val) const;
static Tocale::id id;
protected:
money_put();
virtual iter_type do_put(iter_type next, bool intl,
jos_base& x, E fill, string_type& val) const;
virtual iter_type do_put(iter_type next, bool intl,
jos_base& x, E fill, long double& val) const;
}s

The template class describes an object that can serve as a locale facet (page B1d), to
control conversions of monetary values to sequences of type E.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

money_put::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

money_put::do_put

virtual iter_type do_put(iter_type next, bool intl,
jos_base& x, E fill, string_type& val) const;

virtual iter_type do_put(iter_type next, bool intl,
jos_base& x, E fill, Tong double& val) const;

The first virtual protected member function generates sequential elements
beginning at next to produce a monetary output field from the string_type (page
Eg) object val. The sequence controlled by val must begin with one or more
decimal digits, optionally preceded by a minus sign (-), which represents the
amount. The function returns an iterator designating the first element beyond the
generated monetary output field.

The second virtual protected member function behaves the same as the first, except
that it effectively first converts val to a sequence of decimal digits, optionally
preceded by a minus sign, then converts that sequence as above.

The format of a monetary output field is determined by the locale facet (page 73T
fac returned by the (effective) call use_facet <moneypunct<k, int1> >(x.
getloc()). Specifically:

+ fac.pos_format() determines the order in which components of the field are
generated for a non-negative value.

+ fac.neg_format() determines the order in which components of the field are
generated for a negative value.

» fac.curr_symbol() determines the sequence of elements to generate for a
currency symbol.

Standard C++ Library

» fac.positive_sign() determines the sequence of elements to generate for a
positive sign.

» fac.negative_sign() determines the sequence of elements to generate for a
negative sign.

+ fac.grouping() determines how digits are grouped to the left of any decimal
point.

» fac.thousands_sep() determines the element that separates groups of digits to
the left of any decimal point.

» fac.decimal_point() determines the element that separates the integer digits
from any fraction digits.

+ fac.frac_digits() determines the number of significant fraction digits to the
right of any decimal point.

If the sign string (fac.negative_sign or fac.positive_sign) has more than one
element, only the first element is generated where the element equal to
money_base::sign appears in the format pattern (fac.neg_format or
fac.pos_format). Any remaining elements are generated at the end of the monetary
output field.

If x.flags() & showbase is nonzero, the string fac.curr_symbol is generated where
the element equal to money_base: :symbol appears in the format pattern. Otherwise,
no currency symbol is generated.

If no grouping constraints are imposed by fac.grouping() (its first element has the
value CHAR_MAX (page kd)) then no instances of fac.thousands_sep() are
generated in the value portion of the monetary output field (where the element
equal to money_base: :value appears in the format pattern). If fac.frac_digits() is
zero, then no instance of fac.decimal_point() is generated after the decimal digits.
Otherwise, the resulting monetary output field places the low-order
fac.frac_digits() decimal digits to the right of the decimal point.

Padding (page R3d) occurs as for any numeric output field, except that if x.flags ()
& x.internal is nonzero, any internal padding is generated where the element
equal to money_base: :space appears in the format pattern, if it does appear.
Otherwise, internal padding occurs before the generated sequence. The padding
character is fill.

The function calls x.width(0) to reset the field width to zero.
money_put::put
iter_type put(iter_type next, bool intl, ios_base& x,

E fill, Tong double& val) const;

iter_type put(iter_type next, bool intl, ios_base& x,
E fi11, string_type& val) const;

Both member functions return do_put(next, intl, x, fill, val).

money_put::iter_type
typedef Inlt iter_type;

The type is a synonym for the template parameter OutIt.

Chapter 14. Standard C++ Library Header Files 227

228

money_put::money_put
explicit money put(size t refs = 0);

The constructor initializes its base object with locale::facet(refs).

money_put::string_type
typedef basic_string<kE> string_type;

The type describes a specialization of template class basic_string (page @) whose
objects can store sequences of elements from the source sequence.

moneypunct

char_type (page b2d) . curr_symbol (page b2d) . decimal_point (page bad) .
do_curr_symbol (page b2d) . do_decimal_point (page @I)) do_frac_digits (page

- do_grouping (page bad) . do_neg_format (page B2d) - do_ne ative_sign
(page bad) - do_pos_format (page kad) - do_positive_sign (page .
do_thousands_sep %ge Rad) - frac_digits (Eﬁe bag) - grouping (page bag) -
moneypunct (page 230) - neg_format (page 230) - negative_sign (page .
pos_format (page mﬁositive_sign (page bai) - string_type (page Rad) -
thousands_sep (page 231)

template<class E, bool Intl>
class moneypunct
: public Tocale::facet, public money_base {
public:
typedef E char_type;
typedef basic_string<kE> string_type;
explicit moneypunct(size_t refs = 0);
E decimal_point() const;
E thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format(oonst;
pattern neg_format() const;
static const bool intl = Intl;
static Tocale::id id;
protected:
moneypunct () ;
virtual E do_decimal_point() const;
virtual E do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_curr_symbol() const;
virtual string type do_positive_sign() const;
virtual string_type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

}s

The template class describes an object that can serve as a locale facet (page B1d), to
desceibe the sequences of type E used to represent a monetary input field (page

or a monetary output field (page B2d). 1f the template parameter Intl is true,
international conventions are observed.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

The const static object int1 stores the value of the template parameter Intl.

Standard C++ Library

moneypunct: :char_type
typedef E char_type;

The type is a synonym for the template parameter E.

moneypunct::curr_symbol
string_type curr_symbol() const;

The member function returns do_curr_symbol ().

moneypunct::decimal_point
E decimal_point() const;

The member function returns do_decimal_point().

moneypunct::do_curr_symbol
string_type do_curr_symbol() const;

The protected virtual member function returns a locale-specific sequence of
elements to use as a currency symbol.

moneypunct::do_decimal_point
E do_decimal_point() const;

The protected virtual member function returns a locale-specific element to use as a
decimal-point.

moneypunct::do_frac_digits
int do_frac_digits() const;

The protected virtual member function returns a locale-specific count of the
number of digits to display to the right of any decimal point.

moneypunct::do_grouping
string do_grouping() const;

The protected virtual member function returns a locale-specific rule for
determining how digits are grouped to the left of any decimal point. The encoding
is the same as for Tconv::grouping.

moneypunct::do_neg_format
pattern do_neg_format() const;

The protected virtual member function returns a locale-specific rule for
determining how to generate a monetary output field (page B24d) for a negative
amount. Each of the four elements of pattern::field can have the values:

* none (page B23) to match zero or more spaces or generate nothing
 sign (page R23) to match or generate a positive or negative sign

* space (page B23) to match zero or more spaces or generate a space
* symbol (page B23) to match or generate a currency symbol

* value (page B23) to match or generate a monetary value
Components of a monetary output field are generated (and components of a

monetary input field (page B24) are matched) in the order in which these elements
appear in pattern::field. Each of the values sign, symbol, value, and either none

Chapter 14. Standard C++ Library Header Files 229

230

or space must appear exactly once. The value none must not appear first. The
value space must not appear first or last. If Int1 is true, the order is symbol, sign,
none, then value.

The template version of moneypunct<E, Int1> returns {money_base::symbol,
money base::sign, money base::value, money base::none}.

moneypunct::do_negative_sign
string_type do_negative_sign() const;

The protected virtual member function returns a locale-specific sequence of
elements to use as a negative sign.

moneypunct::do_pos_format
pattern do_pos_format() const;

The protected virtual member function returns a locale-specific rule for
determining how to generate a monetary output field (page R24) for a positive
amount. (It also determines how to match the components of a monetary input
field (page B24).) The encoding is the same as for do_neg_format (page @).

The template version of moneypunct<E, Int1> returns {money_base::symbol,
money_base::sign, money base::value, money base::none}.

moneypunct::do_positive_sign
string_type do_positive_sign() const;

The protected virtual member function returns a locale-specific sequence of
elements to use as a positive sign.

moneypunct::do_thousands_sep
E do_thousands_sep() const;

The protected virtual member function returns a locale-specific element to use as a
group separator to the left of any decimal point.

moneypunct::frac_digits
int frac_digits() const;

The member function returns do_frac_digits().

moneypunct::grouping
string grouping() const;

The member function returns do_grouping().

moneypunct::moneypunct
explicit moneypunct(size t refs = 0);

The constructor initializes its base object with Tocale::facet(refs).

moneypunct:: neg_format
pattern neg_format() const;

The member function returns do_neg_format ().

Standard C++ Library

moneypunct::negative_sign
string_type negative_sign() const;

The member function returns do_negative_sign().

moneypunct: :pos_format
pattern pos_format() const;

The member function returns do_pos_format ().

moneypunct::positive_sign
string_type positive_sign() const;

The member function returns do_positive_sign().

moneypunct: :string_type
typedef basic_string<kE> string_type;

The type describes a specialization of template class basic_string (page Bzd) whose
objects can store copies of the punctuation sequences.

moneypunct::thousands_sep
E thousands_sep() const;

The member function returns do_thousands_sep().

moneypunct_byname

template<class E, bool Intl>
class moneypunct_byname
: public moneypunct<kE, Intl> {
pubTic:
explicit moneypunct_byname(const char =*s,
size_t refs = 0);
protected:
moneypunct_byname() ;

bs

The template class describes an object that can serve as a locale facet of type
moneypunct<k, Int1>. Its behavior is determined by the named (page R18) locale s.
The constructor initializes its base object with moneypunct<E, Int1>(refs).

num_get

template<class E, class InlIt = istreambuf_iterator<E> >
class num_get : public Tocale::facet {
public:
typedef E char_type;
typedef Inlt iter_type;
explicit num_get(size_t refs = 0);
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
long& val) const;
iter_type get(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st,
unsigned long& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;
iter_type get(iter_type first, iter_ type last,
ios_base& x, ios_base::iostate& st,

Chapter 14. Standard C++ Library Header Files 231

long double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
void *& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
bool& val) const;
static Tocale::id id;
protected:
num_get();
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long& val) const;
virtual iter_type
do_get(iter_type first, iter_ type last,
jos_base& x, jos_base::iostate& st,
unsigned long& val) const;
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
double& val) const;
virtual iter_type
do_get(iter_type first, iter type last,
ios_base& x, ios_base::iostated st,
long double& val) const;
virtual iter_type
do_get(iter_type first, iter type last,
jos_base& x, ios_base::iostate& st,
void *& val) const;
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
bool& val) const;

}s

The template class describes an object that can serve as a locale facet (page R12), to
control conversions of sequences of type E to numeric values.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

ruun_get:cha[jype
typedef E char_type;

The type is a synonym for the template parameter E.

num_get::do_get

virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
Tong& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
unsigned long& val) const;
virtual iter_type do_get(iter type first, iter_type last,
ios_base& x, ios_base::iostated st,
double& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
Tong double& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,

232 Standard C++ Library

void *& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
bool& val) const;

The first virtual protected member function endeavors to match sequential
elements beginning at first in the sequence [first, last) until it has recognized
a complete, nonempty integer input field. If successful, it converts this field to its
equivalent value as type long, and stores the result in val. It returns an iterator
designating the first element beyond the numeric input field. Otherwise, the
function stores nothing in val and sets ios_base::failbit in st. It returns an
iterator designating the first element beyond any prefix of a valid integer input
field. In either case, if the return value equals 1ast, the function sets
jos_base::eofbit in st.

The integer input field is converted by the same rules used by the scan functions
(page for matching and converting a series of char elements from a file. (Each
such char element is assumed to map to an equivalent element of type E by a
simple, one-to-one, mapping.) The equivalent scan conversion specification (page
E) is determined as follows:

o If x.flags() & ios_base::basefield == ios_base::oct, the conversion
specification is To.

» If x.flags() & ios_base::basefield == jos_base::hex, the conversion
specification is Tx.

» If x.flags() & ios_base::basefield == 0, the conversion specification is 11.

¢ Otherwise, the conversion specification is 1d.

The format of an integer input field is further determined by the locale facet (page
fac returned by the call use_facet <numpunct<E>(x. getloc()). Specifically:

» fac.grouping() determines how digits are grouped to the left of any decimal
point

+ fac.thousands_sep() determines the sequence that separates groups of digits to
the left of any decimal point

If no instances of fac.thousands_sep() occur in the numeric input field, no
grouping constraint is imposed. Otherwise, any grouping constraints imposed by
fac.grouping() is enforced and separators are removed before the scan conversion
occurs.

The second virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st,
unsigned long& val) const;

behaves the same as the first, except that it replaces a conversion specification of
1d with Tu. If successful it converts the numeric input field to a value of type
unsigned long and stores that value in val.

The third virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;

Chapter 14. Standard C++ Library Header Files 233

234

behaves the same as the first, except that it endeavors to match a complete,
nonempty floating-point input field. fac.decimal_point() determines the
sequence that separates the integer digits from the fraction digits. The equivalent
scan conversion specifier is 1f.

The fourth virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
Tong double& val) const;

behaves the same the third, except that the equivalent scan conversion specifier is
Lf.

The fifth virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
void *& val) const;

behaves the same the first, except that the equivalent scan conversion specifier is p.

The sixth virtual protected member function:

virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
bool& val) const;

behaves the same as the first, except that it endeavors to match a complete,
nonempty boolean input field. If successful it converts the boolean input field to a
value of type bool and stores that value in val.

A boolean input field takes one of two forms. If x.flags() & ios_base::boolalpha
is false, it is the same as an integer input field, except that the converted value
must be either 0 (for false) or 1 (for true). Otherwise, the sequence must match
either fac.falsename() (for false), or fac.truename() (for true).

num_get::get
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
Tong& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
unsigned long& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
Tong double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
void *& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostated st,
bool& val) const;

All member functions return do_get(first, last, x, st, val).

Standard C++ Library

num_get::iter_type
typedef InIt iter_type;

The type is a synonym for the template parameter InIt.

num_get::num_get
explicit num_get(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

num_put

template<class E, class OutIt = ostreambuf_iterator<E> >
class num_put : public Tocale::facet {
public:
typedef E char_type;
typedef OutlIt iter_type;
explicit num_put(size_t refs = 0);
iter_type put(iter_type next, ios_base& X,
E fi11, Tong val) const;
iter_type put(iter_type next, ios_based x,
E fi11, unsigned Tong val) const;
iter_type put(iter_type next, ios_based x,
E fill, double val) const;
iter_type put(iter_type next, ios_based x,
E fi11, Tong double val) const;
iter_type put(iter_type next, ios_based x,
E fill, const void *val) const;
iter_type put(iter_type next, ios_based x,
E fill, bool val) const;
static Tocale::id id;
protected:
num_put () ;
virtual iter_type do_put(iter type next, ios base& x,
E fil1, Tong val) const;
virtual iter_type do_put(iter type next, ios base& x,
E fi11, unsigned Tong val) const;
virtual iter_type do_put(iter_type next, ios_based x,
E fill, double val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, Tong double val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, const void *val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, bool val) const;
}s

The template class describes an object that can serve as a locale facet (page R17), to
control conversions of numeric values to sequences of type E.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

num_put::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

num_put::do_put

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, Tong val) const;

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, unsigned Tong val) const;

Chapter 14. Standard C++ Library Header Files 235

236

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, double val) const;

virtual iter_type do_put(iter_type nextp ios base& x,
E fi11, Tong double val) const;

virtual iter_type do_put(iter_type nextp ios_base& x,
E fill, const void #val) const;

virtual iter_type do_put(iter_type next, ios_base& x,
E fill, bool val) const;

The first virtual protected member function generates sequential elements
beginning at next to produce an integer output field from the value of val. The
function returns an iterator designating the next place to insert an element beyond
the generated integer output field.

The integer output field is generated by the same rules used by the print functions

(page for generating a series of char elements to a file. (Each such char element

is assumed to map to an equivalent element of type E by a simple, one-to-one,

mapping.) Where a print function pads a field with either spaces or the digit 0,

however, do_put instead uses fi11. The equivalent print conversion specification

(page Bd) is determined as follows:

o If x.flags() & ios_base::basefield == ios_base::oct, the conversion
specification is To.

o If x.flags() & ios_base::basefield == ios_base::hex, the conversion
specification is Tx.

* Otherwise, the conversion specification is 1d.

If x.width() is nonzero, a field width of this value is prepended. The function then
calls x.width(0) to reset the field width to zero.

Padding occurs only if the minimum number of elements N required to specify the

output field is less than x.width(). Such padding consists of a sequence of N -

width() copies of fi1l. Padding then occurs as follows:

» If x.flags() & ios_base::adjustfield == jos_base::left, the flag - is
prepended. (Padding occurs after the generated text.)

» If x.flags() & ios_base::adjustfield == ios_base::internal, the flag 0 is
prepended. (For a numeric output field, padding occurs where the print
functions pad with 0.)

* Otherwise, no additional flag is prepended. (Padding occurs before the
generated sequence.)

Finally:
» If x.flags() & ios_base::showpos is nonzero, the flag + is prepended to the
conversion specification.

» If x.flags() & ios_base::showbase is nonzero, the flag # is prepended to the
conversion specification.

The format of an integer output field is further determined by the locale facet

(page m) fac returned by the call use_facet <numpunct<E>(x. getloc()).

Specifically:

+ fac.grouping() determines how digits are grouped to the left of any decimal
point

» fac.thousands_sep() determines the sequence that separates groups of digits to
the left of any decimal point

Standard C++ Library

If no grouping constraints are imposed by fac.grouping() (its first element has the
value CHAR_MAX (page E3)) then no instances of fac.thousands_sep() are
generated in the output field. Otherwise, separators are inserted after the print
conversion occurs.

The second virtual protected member function:

virtual iter_type do_put(iter_type next, jos_base& x,
E fi11, unsigned Tong val) const;

behaves the same as the first, except that it replaces a conversion specification of
1d with Tu.

The third virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, double val) const;

behaves the same as the first, except that it produces a floating-point output field
from the value of val. fac.decimal_point() determines the sequence that separates
the integer digits from the fraction digits. The equivalent print conversion
specification is determined as follows:

o If x.flags() & ios_base::floatfield == jos_base::fixed, the conversion
specification is 1f.

e If x.flags() & ios_base::floatfield == ios_base::scientific, the conversion
specification is le. If x.flags() & ios_base::uppercase is nonzero, e is replaced
with E.

* Otherwise, the conversion specification is 1g. If x.flags() &
ios_base::uppercase is nonzero, g is replaced with G.

If x.flags() & ios_base::fixed is nonzero, or if x.precision() is greater than
zero, a precision with the value x.precision() is prepended to the conversion
specification. Any padding (page P3d) behaves the same as for an integer output
field. The padding character is fi11. Finally:

+ If x.flags() & ios_base::showpos is nonzero, the flag + is prepended to the
conversion specification.

» If x.flags() & ios_base::showpoint is nonzero, the flag # is prepended to the
conversion specification.

The fourth virtual protected member function:

virtual iter_type do_put(iter_type next, jos_base& x,
E fi11, Tong double val) const;

behaves the same the third, except that the qualifier 1 in the conversion
specification is replaced with L.

The fifth virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
E fi11, const void *val) const;

behaves the same the first, except that the conversion specification is p, plus any
qualifier needed to specify padding.

The sixth virtual protected member function:

virtual iter_type do_put(iter_type next, ios_base& x,
E fill, bool val) const;

Chapter 14. Standard C++ Library Header Files 237

238

behaves the same as the first, except that it generates a boolean output field from
val.

A boolean output field takes one of two forms. If x.flags() &
ios_base::boolalpha is false, the generated sequence is either 0 (for false) or 1 (for
true). Otherwise, the generated sequence is either fac.fal sename() (for false), or
fac.truename() (for true).

num_put::put

iter_type put(iter_type next, ios_base& x,
E fill, Tong val) const;

iter_type put(iter_type next, ios_base& x,
E fill, unsigned Tong val) const;

iter_type put(iter_type iter_type next, ios_base& X,
E fi11, double val) const;

iter_type put(iter_type next, ios_base& x,
E fi11, Tong double val) const;

iter_type put(iter_type next, ios_base& X,
E fill, const void *val) const;

iter_type put(iter_type next, ios_base& x,
E fill, bool val) const;

All member functions return do_put(next, x, fill, val).

num_put::iter_type
typedef Inlt iter_type;

The type is a synonym for the template parameter OutIt.

num_put::num_put
explicit num_put(size_t refs = 0);

The constructor initializes its base object with Tocale::facet(refs).

numpunct

char_type (page bad) - decimal_point (page Bad) . do_decimal_point (page Bad) .
do_falsename (page Rad) . do_grouping (page Rad) - do_truename (page R39) -
do_thousands_sep (page 239) - falsename (page 239) - grouping (page 39) -
numpunct (page % - string_type (page ﬁ) - thousands_sep (page bad) -
truename (page 240)

template<class E, class numpunct : public Tocale::facet {
public:
typedef E char_type;
typedef basic_string<E> string_type;
explicit numpunct(size_t refs = 0);
E decimal_point() const;
E thousands_sep() const;
string grouping() const;
string_type truename() const;
string _type falsename() const;
static Tocale::id id;
protected:
numpunct () ;
virtual E do_decimal_point() const;
virtual E do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_truename() const;
virtual string_type do_falsename() const;

s

Standard C++ Library

The template class describes an object that can serve as a locale facet (page R17), to
desceibe the sequences of type E used to represent the input fields matched by
num_get (pageh) or the output fields generated by num_get (page B31)).

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

numpunct::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

numpunct::decimal_point
E decimal_point() const;

The member function returns do_decimal_point().

numpunct::do_decimal_point
E do_decimal_point() const;

The protected virtual member function returns a locale-specific element to use as a
decimal-point.

numpunct::do_falsename
string_type do_falsename() const;

The protected virtual member function returns a locale-specific sequence to use as
a text representation of the value false.

numpunct::do_grouping
string do_grouping() const;

The protected virtual member function returns a locale-specific rule for
determining how digits are grouped to the left of any decimal point. The encoding
is the same as for 1conv::grouping.

numpunct::do_thousands_sep
E do_thousands_sep() const;

The protected virtual member function returns a locale-specific element to use as a
group separator to the left of any decimal point.

numpunct: :do_truename
string_type do_truename() const;

The protected virtual member function returns a locale-specific sequence to use as
a text representation of the value true.

numpunct::falsename
string_type falsename() const;

The member function returns do_falsename().

numpunct::grouping
string grouping() const;

The member function returns do_grouping().

Chapter 14. Standard C++ Library Header Files 239

numpunct::numpunct
explicit numpunct(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

numpunct::string_type
typedef basic_string<kE> string_type;

The type describes a specialization of template class basic_string (page @) whose
objects can store copies of the punctuation sequences.

numpunct::thousands_sep
E thousands_sep() const;

The mmmber function returns do_thousands_sep().

numpunct::truename
string_type falsename() const;

The member function returns do_truename().

numpunct_byname

template<class E>
class numpunct_byname : public numpunct<k> {
public:
explicit numpunct_byname (const char =*s,
size_t refs = 0);
protected:
numpunct_byname () ;

bs

The template class describes an object that can serve as a locale facet of type
numpunct<E>. Its behavior is determined by the named (page 218) locale s. The
constructor initializes its base object with numpunct<E>(refs).

time_base

class time_base {
public:
enum dateorder {no_order, dmy, mdy, ymd, ydm};

s

The class serves as a base class for facets of template class time_get (page 240). Tt
defines just the enumerated type dateorder and several constants of this type. Each
of the constants characterizes a different way to order the components of a date.
The constants are:

* no_order specifies no particular order.

* dmy specifies the order day, month, then year, as in 2 December 1979.
¢ mdy specifies the order month, day, then year, as in December 2, 1979.
+ ymd specifies the order year, month, then day, as in 1979/12/2.

* ydm specifies the order year, day, then month, as in 1979: 2 Dec.

time_get

template<class E, class InlIt = istreambuf_iterator<E> >
class time_get : public locale::facet {
pubTic:

240 Standard C++ Library

typedef E char_type;

typedef Inlt iter_type;

explicit time_get(size t refs = 0);

dateorder date_order() const;

iter_type get_time(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

iter_type get_date(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm xpt) const;

iter_type get_weekday(iter_type first, iter_type last,
jos_base& x, ios_base::iostated& st, tm *pt) const;

iter_type get_month(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

iter_type get_year(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;

static Tocale::id id;

protected:

time_get();
virtual dateorder do_date_order() const;
virtual iter_type
do_get_time(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
virtual iter_type
do_get_date(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;
virtual iter_type
do_get_weekday(iter _type first, iter type last,
jos_base& x, ios_base::iostated& st, tm *pt) const;
virtual iter_type
do_get_month(iter type first, iter type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
virtual iter_type
do_get_year(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

}s

The template class describes an object that can serve as a locale facet (page B1d), to

control conversions of sequences of type E to time values.

As with any locale facet, the static object id has an initial stored value of zero. The

first attempt to access its stored value stores a unique positive value in id.

time_get::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

time_get::date_order
dateorder date_order() const;

The member function returns date_order().

time_get::do_date_order
virtual dateorder do_date_order() const;

The virtual protected member function returns a value of type
time_base::dateorder, which describes the order in which date components are

matched by do_get_date (page B4d). In this implementation (page B), the value is

time_base::mdy, corresponding to dates of the form December 2, 1979.

Chapter 14. Standard C++ Library Header Files

241

242

time_get::do_get_date

virtual iter_type
do_get_date(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty date input field. If successful, it converts this field to its
equivalent value as the components tm::tm_mon, tm::tm_day, and tm::tm_year, and
stores the results in pt->tm_mon, pt->tm_day and pt->tm_year, respectively. It
returns an iterator designating the first element beyond the date input field.
Otherwise, the function sets ios_base::failbit in st. It returns an iterator
designating the first element beyond any prefix of a valid date input field. In either
case, if the return value equals Tast, the function sets ios_base::eofbit in st.

In this implementation (page B), the date input field has the form MMM DD, YYYY,
where:

* MMM is matched by calling get_month (page bad), giving the month.

* DD is a sequence of decimal digits whose corresponding numeric value must be
in the range [1, 31], giving the day of the month.

* YYYY is matched by calling get_year (page bad), giving the year.

* The literal spaces and commas must match corresponding elements in the input
sequence.

time_get::do_get_month

virtual iter_type
do_get_month(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty month input field. If successful, it converts this field to its
equivalent value as the component tm: :tm_mon, and stores the result in pt->tm_mon.
It returns an iterator designating the first element beyond the month input field.
Otherwise, the function sets ios_base::failbit in st. It returns an iterator
designating the first element beyond any prefix of a valid month input field. In
either case, if the return value equals 1ast, the function sets ios_base::eofbit in
st.

The month input field is a sequence that matches the longest of a set of
locale-specific sequences, such as: Jan, January, Feb, February, etc. The converted
value is the number of months since January.

time_get::do_get_time

virtual iter_type
do_get_time(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty time input field. If successful, it converts this field to its
equivalent value as the components tm::tm_hour, tm::tm_min, and tm::tm_sec, and
stores the results in pt->tm_hour, pt->tm_min and pt->tm_sec, respectively. It
returns an iterator designating the first element beyond the time input field.
Otherwise, the function sets ios_base::failbit in st. It returns an iterator

Standard C++ Library

designating the first element beyond any prefix of a valid time input field. In
either case, if the return value equals Tast, the function sets ios_base::eofbit in
st.

In this implementation (page B), the time input field has the form HH:MM:SS, where:

* HH is a sequence of decimal digits whose corresponding numeric value must be
in the range [0, 24), giving the hour of the day.

* MM is a sequence of decimal digits whose corresponding numeric value must be
in the range [0, 60), giving the minutes past the hour.

* S§Sis a sequence of decimal digits whose corresponding numeric value must be
in the range [0, 60), giving the seconds past the minute.

¢ The literal colons must match corresponding elements in the input sequence.

time_get::do_get_weekday

virtual iter_type
do_get_weekday(iter type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty weekday input field. If successful, it converts this field to its
equivalent value as the component tm: :tm_wday, and stores the result in
pt->tm_wday. It returns an iterator designating the first element beyond the
weekday input field. Otherwise, the function sets ios_base::failbit in st. It
returns an iterator designating the first element beyond any prefix of a valid
weekday input field. In either case, if the return value equals Tast, the function
sets ios_base::eofbit in st.

The weekday input field is a sequence that matches the longest of a set of
locale-specific sequences, such as: Sun, Sunday, Mon, Monday, etc. The converted
value is the number of days since Sunday.

time_get.:do_get_year

virtual iter_type
do_get_year(iter_type first, iter_type last,
jos_base& x, jos_base::iostate& st, tm *pt) const;

The virtual protected member function endeavors to match sequential elements
beginning at first in the sequence [first, Tast) until it has recognized a
complete, nonempty year input field. If successful, it converts this field to its
equivalent value as the component tm: :tm_year, and stores the result in
pt->tm_year. It returns an iterator designating the first element beyond the year
input field. Otherwise, the function sets ios_base::failbit in st. It returns an
iterator designating the first element beyond any prefix of a valid year input field.
In either case, if the return value equals 1ast, the function sets ios_base::eofbit
in st.

The year input field is a sequence of decimal digits whose corresponding numeric
value must be in the range [1900, 2036). The stored value is this value minus 1900.
In this implementation (page 8), a numeric value in the range [0, 136) is also
permissible. It is stored unchanged.

time_get:.:get_date

iter_type get_date(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

Chapter 14. Standard C++ Library Header Files 243

244

The member function returns do_get date(first, last, x, st, pt).

time_get::get_month
iter_type get_month(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get month(first, last, x, st, pt).
time_get:.:get_time

iter_type get_time(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get time(first, last, x, st, pt).
time_get::get_weekday

iter_type get_weekday(iter_type first, iter_type last,
jos_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get _weekday(first, last, x, st, pt).
time_get::get_year
iter_type get_year(iter_type first, iter type last,

jos_base& x, ios_base::iostate& st, tm *pt) const;

The member function returns do_get_year(first, last, x, st, pt).

time_get::iter_type
typedef Inlt iter_type;

The type is a synonym for the template parameter InIt.

time_get::time_get
explicit time_get(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

time_get _byname

template<class E, class InIt>

class time_get_byname : public time_get<k, InIt> {
public:

explicit time_get_byname(const char =*s,

size t refs = 0);

protected:

time_get_byname();

bs

The template class describes an object that can serve as a locale facet (page m) of
type time_get<E, InIt>. Its behavior is determined by the named (page R18) locale
s. The constructor initializes its base object with time_get<E, InIt>(refs).

time_put

template<class E, class QutIt = ostreambuf_iterator<k> >
class time_put : public Tocale::facet {
public:
typedef E char_type;
typedef OutlIt iter_type;
explicit time_put(size_t refs = 0);
iter_type put(iter_type next, ios_base& x,

Standard C++ Library

char_type fill, const tm *pt, char fmt, char mod = 0) const;
iter_type put(iter_type next, ios_base& X,
char_type fill, const tm *pt, const E *first, const E *last) const;
static Tocale::id id;
protected:
time_put();
virtual iter_type do_put(iter_type next, ios_base& x,
char_type fill, const tm *pt, char fmt, char mod = 0) const;

B

The template class describes an object that can serve as a locale facet (page m), to
control conversions of time values to sequences of type E.

As with any locale facet, the static object id has an initial stored value of zero. The
first attempt to access its stored value stores a unique positive value in id.

time_put::char_type
typedef E char_type;

The type is a synonym for the template parameter E.

time_put::do_put
virtual iter_type do_put(iter_type next, jos_base& x,
char_type fill, const tm *pt, char fmt, char mod = 0) const;

The virtual protected member function generates sequential elements beginning at
next from time values stored in the object *pt, of type tm (page fl1d). The function
returns an iterator designating the next place to insert an element beyond the
generated output.

The output is generated by the same rules used by strftime (page i), with a last
argument of pt, for generating a series of char elements into an array. (Each such
char element is assumed to map to an equivalent element of type E by a simple,
one-to-one, mapping.) If mod equals zero, the effective format is "%F", where F
equals fmt. Otherwise, the effective format is "%MF", where M equals mod.

The parameter fi11 is not used.

time_put::put
iter_type put(iter_type next, ios_base& X,

char_type fill, const tm *pt, char fmt, char mod = 0) const;
iter_type put(iter_type next, ios_base& x,

char_type fill, const tm *pt, const E *first, const E *last) const;

The first member function returns do_put(next, x, fill, pt, fmt, mod). The
second member function copies to *next++ any element in the interval [first,
Tast) other than a percent (%). For a percent followed by a character C in the
interval [first, Tast), the function instead evaluates next = do_put(next, x,
fill, pt, C, 0) and skips past C. If, however, C is a qualifier character from the
set EOQ#, followed by a character C2 in the interval [first, last), the function
instead evaluates next = do_put(next, x, fill, pt, C2, C) and skips past C2.

time_put::iter_type
typedef Inlt iter_type;

The type is a synonym for the template parameter OQutIt.

Chapter 14. Standard C++ Library Header Files 245

time_put::time_put
explicit time_put(size_t refs = 0);

The constructor initializes its base object with locale::facet(refs).

time_put_byname

template<class E, class QutlIt>
class time_put_byname : public time_put<E, OutIt> {
public:
explicit time_put_byname(const char =*s,
size t refs = 0);
protected:
ime_put_byname() ;

b

The template class describes an object that can serve as a locale facet of type
time_put<E, OutIt>. Its behavior is determined by the named (page @) locale s.
The constructor initializes its base object with time_put<E, OutIt>(refs).

tolower

template<class E>
E tolower(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). tolower(c).

toupper

template<class E>
E toupper(E c, const locale& loc) const;

The template function returns use_facet< ctype<E> >(loc). toupper(c).

use facet

template<class Facet>
const Facet& use_facet(const Tocale& Toc);

The template function returns a reference to the locale facet of class Facet listed
within the locale object (page B17) Toc. If no such object is listed, the function
throws an object of class bad_cast (page BO).

<new>

namespace std {
typedef void (*new_handler)();
class bad_alloc;
class nothrow_t;
extern const nothrow_t nothrow;

// FUNCTIONS
new_handler set_new_handler(new_handler ph) throw();

}s

// OPERATORS -- NOT IN NAMESPACE std
void operator delete(void *p) throw();
void operator delete(void *, void *) throw();
void operator delete(void *p,
const std::nothrow_t&) throw();
void operator delete[](void *p) throw();
void operator delete[](void *, void *) throw();

246 Standard C++ Library

void operator delete[](void *p,
const std::nothrow_t&) throw();
void *operator new(std::size t n)
throw(std::bad_alloc);
void *operator new(std::size_t n,
const std::nothrow _t&) throw();
void *operator new(std::size_t n, void *p) throw();
void *operator new[](std::size_t n)
throw(std::bad_alloc);
void *operator new[](std::size t n,
const std::nothrow_t&) throw();
void *operator new[](std::size_t n, void *p) throw();

Include the standard header <new> to define several types and functions that
control allocation and freeing of storage under program control.

Some of the functions declared in this header are replaceable. The implementation
supplies a default version, whose behavior is described in this document. A
program can, however, define a function with the same signature to replace the
default version at link time. The replacement version must satisfy the requirements
described in this document.

bad alloc

class bad_alloc : public exception {

bs

The class describes an exception thrown to indicate that an allocation request did
not succeed. The value returned by what () is an implementation-defined C string
(page). None of the member functions throw any exceptions.

new_handler
typedef void (*new_handler)();

The type points to a function suitable for use as a new handler (page Bad).

nothrow

extern const nothrow_t nothrow;

The object is used as a function argument to match the parameter type nothrow_t
(page éﬁ)

nothrow t

class nothrow_t {};

The class is used as a function parameter to operator new to indicate that the
function should return a null pointer to report an allocation failure, rather than
throw an exception.

operator delete

void operator delete(void *p) throw();
void operator delete(void *, void *) throw();
void operator delete(void *p,

const std::nothrow t&) throw();

The first function is called by a delete expression to render the value of p invalid.
The program can define a function with this function signature that replaces (page

Chapter 14. Standard C++ Library Header Files 247

248

D47) the default version defined by the Standard C++ library. The required
behavior is to accept a value of p that is null or that was returned by an earlier call
to operator new(size_t).

The default behavior for a null value of p is to do nothing. Any other value of p
must be a value returned earlier by a call as described above. The default behavior
for such a non-null value of p is to reclaim storage allocated by the earlier call. It is
unspecified under what conditions part or all of such reclaimed storage is allocated
by a subsequent call to operator new(size_t), or to any of calloc(size_t),
malloc(size_t), or realloc(void*, size t).

The second function is called by a placement delete expression corresponding to
a new expression of the form new(std::size_t). It does nothing.

The third function is called by a placement delete expression corresponding to a
new expression of the form new(std::size_t, const std::nothrow_t&). It calls
delete(p).

operator delete[]

void operator delete[](void *p) throw();
void operator delete[](void *, void *) throw();
void operator delete[](void *p,

const std::nothrow_t&) throw();

The first function is called by a delete[] expression to render the value of p
invalid. The program can define a function with this function signature that
replaces (page 247) the default version defined by the Standard C++ library.

The required behavior is to accept a value of p that is null or that was returned by
an earlier call to operator new[] (size_t).

The default behavior for a null value of p is to do nothing. Any other value of ptr
must be a value returned earlier by a call as described above. The default behavior
for such a non-null value of p is to reclaim storage allocated by the earlier call. It is
unspecified under what conditions part or all of such reclaimed storage is allocated
by a subsequent call to operator new(size_t), or to any of calloc(size_t),
malloc(size_t), or realloc(void*, size t).

The second function is called by a placement delete[] expression corresponding
to a new[] expression of the form new[] (std::size_t). It does nothing.

The third function is called by a placement delete expression corresponding to a
new[] expression of the form new[] (std::size_t, const std::nothrow_t&). It calls
delete[] (p).

operator new

void *operator new(std::size_t n) throw(bad alloc);
void *operator new(std::size t n,

const std::nothrow t&) throw();
void *operator new(std::size_t n, void *p) throw();

The first function is called by a new expression to allocate n bytes of storage
suitably aligned to represent any object of that size. The program can define a
function with this function signature that replaces (page R47) the default version
defined by the Standard C++ library.

Standard C++ Library

The required behavior is to return a non-null pointer only if storage can be
allocated as requested. Each such allocation yields a pointer to storage disjoint
from any other allocated storage. The order and contiguity of storage allocated by
successive calls is unspecified. The initial stored value is unspecified. The returned
pointer points to the start (lowest byte address) of the allocated storage. If n is
zero, the value returned does not compare equal to any other value returned by
the function.

The default behavior is to execute a loop. Within the loop, the function first
attempts to allocate the requested storage. Whether the attempt involves a call to
malloc(size_t) is unspecified. If the attempt is successful, the function returns a
pointer to the allocated storage. Otherwise, the function calls the designated new
handler. If the called function returns, the loop repeats. The loop terminates when
an attempt to allocate the requested storage is successful or when a called function
does not return.

The required behavior of a new handler is to perform one of the following
operations:

* make more storage available for allocation and then return
 call either abort() or exit(int)
* throw an object of type bad_alloc

The default behavior of a new handler is to throw an object of type bad_alloc. A
null pointer designates the default new handler.

The order and contiguity of storage allocated by successive calls to operator
new(size_t) is unspecified, as are the initial values stored there.

The second function:

void *operator new(std::size_t n,
const std::nothrow t&) throw();

is called by a placement new expression to allocate n bytes of storage suitably
aligned to represent any object of that size. The %?gram can define a function
with this function signature that replaces (page 247) the default version defined by
the Standard C++ library.

The default behavior is to return operator new(n) if that function succeeds.
Otherwise, it returns a null pointer.

The third function:

void *operator new(std::size_t n, void *p) throw();

is called by a placement new expression, of the form new (args) T. Here, args
consists of a single object pointer. The function returns p.

operator new(]

void *operator new[](std::size_t n)
throw(std::bad _alloc);
void *operator new[](std::size_t n,
const std::nothrow_t&) throw();
void *operator new[](std::size_t n, void *p) throw();

The first function is called by a new[] expression to allocate n bytes of storage
suitably aligned to represent any array object of that size or smaller. The program

Chapter 14. Standard C++ Library Header Files 249

can define a function with this function signature that replaces (page p47) the
default version defined by the Standard C++ library.

The required behavior is the same as for operator new(size_t). The default
behavior is to return operator new(n).

The second function is called by a placement new[] expression to allocate n bytes
of storage suitably aligned to represent any array object of that size. The program
can define a function with this function signature that replaces (page bad) the
default version defined by the Standard C++ library.

The default behavior is to return operator new(n) if that function succeeds.
Otherwise, it returns a null pointer.

The third function is called by a placement new [1 expression, of the form new
(args) T[N]. Here, args consists of a single object pointer. The function returns p.

set_new_handler

new_handler set_new_handler(new_handler ph) throw();

The function stores ph in a static new handler (page bad) pointer that it maintains,
then returns the value previously stored in the pointer. The new handler is used by
operator new(size t).

<ostream>

namespace std {

template<class E, class T = char_traits<E> >
class basic_ostream;

typedef basic_ostream<char, char_traits<char> >
ostream;

typedef basic_ostream<wchar_t, char_traits<wchar_t> >
wostream;

// INSERTERS
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
const E *s);
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
Ec)s
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
const char #s);
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
char c¢);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const char *s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
char ¢);
template<class T>
basic_ostream<char, T>&

250 Standard C++ Library

operator<<(basic_ostream<char, T>& os,
const signed char *s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
signed char c);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const unsigned char *s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
unsigned char c);

// MANIPULATORS
template class<E, T>
basic_ostream<E, T>&
endl (basic_ostream<E, T>& o0s);
template class<E, T>
basic_ostream<E, T>&
ends (basic_ostream<E, T>& o0s);
template class<E, T>
basic_ostream<E, T>&
flush(basic_ostream<kE, T>& os);
1

Include the iostreams (page L)) standard header <ostream> to define template class
basic_ostream (page R51l), which mediates insertions for the iostreams. The header

also defines several related manipulators (page [L6d). (This header is typically

included for you by another of the iostreams headers. You seldom have occasion to

include it directly.)

basic_ostream

basic_ostream (P%%i 53) - flush %e bsd) - operator<< (page bs3) . opfx (page
)

EEE)-osfx(page) - put (page
(page B53) - write (page

template <class E, class T = char_traits<E> >

class basic_ostream

: virtual public basic_ios<k, T> {

public:

typedef typename basic_ios<E, T>::char_type char_type;
typedef typename basic_ios<E, T>::traits_type traits_type;
typedef typename basic_ios<E, T>::int_type int_type;
typedef typename basic_ios<E, T>::pos_type pos_type;
typedef typename basic_ios<E, T>::off_type off_type;
explicit basic_ostream(basic_streambuf<k, T> *sb);
class sentry;
virtual ostream();
bool opfx();
void osfx();
basic_ostream& operator<<(

basic_ostream& (*pf)(basic_ostreamd));
basic_ostream& operator<<(

jos_base;& (*pf)(ios_based));
basic_ostream& operator<<(

basic_ios<kE, T>& (*pf)(basic_ios<E, T>8));
basic_ostream& operator<<(

basic_streambuf<kE, T> *sbh);
basic_ostream& operator<<(bool n);
basic_ostream& operator<<(short n);
basic_ostream& operator<<(unsigned short n);
basic_ostream& operator<<(int n);
basic_ostream& operator<<(unsigned int n);

Chapter 14. Standard C++ Library Header Files

- seekp (page bsd) - sentry (page bsd) - tellp

251

252

basic_ostream& operator<<(long n);
basic_ostream& operator<<(unsigned long n);
basic_ostream& operator<<(float n);
basic_ostream& operator<<(double n);
basic_ostream& operator<<(long double n);
basic_ostream& operator<<(const void *n);
basic_ostream& put(char_type c);
basic_ostream& write(char_type *s, streamsize n);
basic_ostream& flush();
pos_type tellp();
basic_ostream& seekp(pos_type pos);
basic_ostream& seekp(off_ type off,
jos_base::seek_dir way);
1

The template class describes an object that controls insertion of elements and
encoded objects into a stream buffer (page Bsd) with elements of type E, also
known as char_type (page fizd), whose character traits (page Bad) are determined
by the class T, also known as traits_type (page fizd).

Most of the member functions that overload operator<< (page Bsd) are formatted
output functions. They follow the pattern:

iostate state = goodbit;
const sentry ok(*this);

if (ok)
{try
{<convert and insert elements
accumulate flags in state>}
catch (...)
{try
{setstate(badbit); }
catch (...)

{}
if ((exceptions() & badbit) != 0)
throw; }}
width(0); // except for operator<<(E)
setstate(state);
return (*this);

Two other member functions are unformatted output functions. They follow the
pattern:

iostate state = goodbit;
const sentry ok(*this);
if (lok)
state |= badbit;
else
{try
{<obtain and insert elements
accumulate flags in state>}
catch (...)
{try
{setstate(badbit); }
catch (...)
{}
if ((exceptions() & badbit) != 0)
throw; }}
setstate(state);
return (*this);

Both groups of functions call setstate(badbit) if they encounter a failure while
inserting elements.

Standard C++ Library

An object of class basic_istream<E, T> stores only a virtual public base object of
class basic_ios<E, T> (page [L.70)

basic_ostream::basic_ostream
explicit basic_ostream(basic_streambuf<E, T> *sb);

The constructor initializes the base class by calling init(sb).

basic_ostream::flush
basic_ostream& flush();

If rdbuf () is not a null pointer, the function calls rdbuf ()->pubsync(). If that

returns -1, the function calls setstate(badbit). It returns *this.

basic_ostream::operator<<

basic_ostream& operator<<(

basic_ostream& (*pf)(basic_ostreamd));
basic_ostream& operator<<(

jos_base& (*pf)(ios_based));
basic_ostreamé& operator<<(

basic_ios<E, T>& (*pf)(basic_ios<kE, T>&));
basic_ostream& operator<<(

basic_streambuf<k, T> =*sb);

basic_ostream&
basic_ostreamd
basic_ostream&
basic_ostream&
basic_ostreamd
basic_ostream&
basic_ostreamd
basic_ostream&
basic_ostreamd
basic_ostream&
basic_ostream&

operator<<(bool n);
operator<<(short n);
operator<<(unsigned short n);
operator<<(int n);
operator<<(unsigned int n);
operator<<(long n);
operator<<(unsigned Tong n);
operator<<(float n);
operator<<(double n);
operator<<(long double n);
operator<<(const void #*n);

The first member function ensures that an expression of the form ostr << end]
calls end1 (ostr), then returns *this. The second and third functions ensure that
other manipulators (page [l6d), such as hex (page [LlZ3) behave similarly. The

remaining functions are all formatted output functions (page

The function:
basic_ostream&

b=2).

operator<<(

basic_streambuf<kE, T> *sh);

extracts elements from sb, if sb is not a null pointer, and inserts them. Extraction

stops on end-of-file, or if an extraction throws an exception (which is rethrown). It
also stops, without extracting the element in question, if an insertion fails. If the
function inserts no elements, or if an extraction throws an exception, the function
calls setstate(failbit). In any case, the function returns *this.

The function:
basic_ostream& operator<<(bool n);

converts n to a boolean field and inserts it by calling use_facet<num_put<E,
OutIt>(getloc()). put(OutIt(rdbuf()), *this, getloc(), n). Here, Outlt is

defined as ostreambuf_iterator<k, T>. The function returns *this.

The functions:

Chapter 14. Standard C++ Library Header Files 253

basic_ostream& operator<<(short n);
basic_ostreamé& operator<<(unsigned short n);
basic_ostream& operator<<(int n);
basic_ostream& operator<<(unsigned int n);
basic_ostream& operator<<(long n);
basic_ostream& operator<<(unsigned Tong n);
basic_ostreamé& operator<<(const void *n);

each convert n to a numeric field and insert it by calling use_facet<num_put<E,
OutIt>(getloc()). put(OutIt(rdbuf()), *this, getloc(), n). Here, Outlt is
defined as ostreambuf_iterator<E, T>.

The function returns *this.

The functions:

basic_ostream& operator<<(float n);
basic_ostreamé& operator<<(double n);
basic_ostream& operator<<(long double n);

each convert n to a numeric field and insert it by calling use_facet<num_put<E,
OutIt>(getloc()). put(OutIt(rdbuf()), *this, getloc(), n). Here, Outlt is
defined as ostreambuf_iterator<kE, T>. The function returns *this.

basic_ostream::opfx
bool opfx();

If good() is true, and tie() is not a null pointer, the member function calls
tie->flush(). It returns good().

You should not call opfx directly. It is called as needed by an object of class sentry
(page bsd).

basic_ostream::osfx
void osfx();

If flags() & unitbuf is nonzero, the member function calls flush(). You should
not call osfx directly. It is called as needed by an object of class sentry.

basic_ostream::put
basic_ostream& put(char_type c);

The unformatted output function (page 53) inserts the element c. It returns *this.

basic_ostream::seekp

basic_ostream& seekp(pos_type pos);
basic_ostream& seekp(off_type off,
jos_base::seek_dir way);

If fail() is false, the first member function calls rdbuf () -> pubseekpos (pos). If
fail() is false, the second function calls rdbuf()-> pubseekoff(off, way). Both
functions return *this.

basic_ostream::sentry

class sentry {

public:
explicit sentry(basic_ostream<kE, T>& os);
operator bool() const;

254 Standard C++ Library

private:
sentry(const sentryd); // not defined
sentry& operator=(const sentry&); // not defined

The nested class describes an object whose declaration structures the formatted
output functions (page B5d) and the unformatted output functions (page B5d). The
constructor effectively calls os.opfx() and stores the return value. operator bool ()
delivers this return value. The destructor effectively calls os.0sfx(), but only if
uncaught_exception() returns false.

basic_ostream::tellp
pos_type tellp();

If fail() is false, the member function returns rdbuf()-> pubseekoff (0, cur, in).
Otherwise, it returns pos_type(-1).

basic_ostream::write
basic_ostream& write(const char_type *s, streamsize n);

The unformatted output function (page Bsd) inserts the sequence of n elements
beginning at s.

end|
template class<E, T>
basic_ostream<E, T>& endl(basic_ostream<E, T>& 0s);
The manipulator calls os.put(os. widen(’\n")), then calls os.flush(). It returns
0s.
ends
template class<E, T>
basic_ostream<E, T>& ends(basic_ostream<E, T>& 0s);
The manipulator calls os.put(E(’\0’)). It returns os.
flush
template class<E, T>
basic_ostream<E, T>& flush(basic_ostream<E, T>& o0s);
The manipulator calls os.flush(). It returns os.
operator<<

template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<kE, T>& os,
const E *s);
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,
Ec);
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<k, T>& os,
const char =*s);
template<class E, class T>
basic_ostream<E, T>&
operator<<(basic_ostream<E, T>& os,

Chapter 14. Standard C++ Library Header Files 255

256

char c);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const char *s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
char c¢);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const signed char *s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
signed char c);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
const unsigned char #s);
template<class T>
basic_ostream<char, T>&
operator<<(basic_ostream<char, T>& os,
unsigned char c);

The template function:
template<class E, class T>
basic_ostream<k, T>&
operator<<(basic_ostream<kE, T>& os,
const E *s);

is a formatted output functions (page Bsd) that determines the length n =
traits_type::Tength(s) of the sequence beginning at s, and inserts the sequence.
If n < os.width(), then the function also inserts a repetition of os.width() - n fill
characters (page [LZ1l). The repetition precedes the sequence if (os.flags() &
adjustfield != left. Otherwise, the repetition follows the sequence. The function
returns os.

The template function:
template<class E, class T>
basic_ostream<k, T>&
operator<<(basic_ostream<kE, T>& os,
Ec);

inserts the element c. If 1 < os.width(), then the function also inserts a repetition
of os.width() - 1 fill characters (page LZLl). The repetition precedes the sequence if
(os.flags()