
A Consumer Library Interface to DWARF

UNIX International Programming Languages Special Interest Group

1. INTRODUCTION

This document describes an interface to libdwarf, a library of functions to provide access to DWARF
debugging information records, DWARF line number information, DWARF address range and global
names information, weak names information, DWARF frame description information, DWARF static
function names, DWARF static variables, and DWARF type information.

1.1 Purpose and Scope

The purpose of this document is to document a library of functions to access DWARF debugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately.

Additionally, the focus of this document is the functional interface, and as such, implementation as well as
optimization issues are intentionally ignored.

1.2 Definitions

DWARF debugging information entries (DIE) are the segments of information placed in the .debug_*
sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source-level debugging. Refer to the document "DWARF Debugging Information
Format" from UI PLSIG for a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information Format" version 2.
It focuses on the implementation at Silicon Graphics Computer Systems. Although we believe the
interface is general enough to be of interest to other vendors too, there are a few places where changes may
need to be made.

1.3 Overview

The remaining sections of this document describe the proposed interface to libdwarf, first by
describing the purpose of additional types defined by the interface, followed by descriptions of the
available operations. This document assumes you are thoroughly familiar with the information contained
in the DWARF Debugging Information Format document.

We separate the functions into several categories to emphasize that not all consumers want to use all the
functions. We call the categories Debugger, Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the rather large set of function calls easier to
understand.

Unless otherwise specified, all functions and structures should be taken as being designed for Debugger
consumers.

The Debugger Interface of this library is intended to be used by debuggers. The interface is low-level
(close to dwarf) but suppresses irrelevant detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sections except at need. And even then will probably
want to absorb only the information in a single compilation unit at a time. A debugger does not care about
implementation details of the library.

rev 1.48, 31 Mar 2002 - 1 -

- 2 -

The Internal-level Interface is for a DWARF prettyprinter and checker. A thorough prettyprinter will want
to know all kinds of internal things (like actual FORM numbers and actual offsets) so it can check for
appropriate structure in the DWARF data and print (on request) all that internal information for human
users and libdwarf authors and compiler-writers. Calls in this interface provide data a debugger does not
care about.

The High-level Interface is for higher level access (it’s not really a high level interface!). Programs such as
disassemblers will want to be able to display relevant information about functions and line numbers
without having to invest too much effort in looking at DWARF.

The miscellaneous interface is just what is left over: the error handler functions.

The following is a brief mention of the changes in this libdwarf from the libdwarf draft for DWARF
Version 1.

1.4 Items Changed

dwarf_nextglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pointer arguments.
This makes writing safe and correct library-using-code far easier. For justification for this approach, see
the book by Steve Maguire titled "Writing Solid Code" at your bookstore.

1.5 Items Removed

Dwarf_Type was removed since types are no longer special.

dwarf_typeof() was removed since types are no longer special.

Dwarf_Ellist was removed since element lists no longer are a special format.

Dwarf_Bounds was removed since bounds have been generalized.

dwarf_nextdie() was replaced by dwarf_next_cu_header() to reflect the real way dwarf is organized. The
dwarf_nextdie() was only useful for getting to compilation unit beginnings, so it does not seem harmful to
remove it in favor of a more direct function.

dwarf_childcnt() is removed on grounds that no good use was apparent.

dwarf_prevline() and dwarf_nextline() were removed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was removed.

dwarf_is1stline() was removed as it was not meaningful for the revised dwarf line operations.

Any libdwarf implementation might well decide to support all the removed functionality and to retain the
DWARF Version 1 meanings of that functionality. This would be difficult because the original libdwarf
draft specification used traditional C library interfaces which confuse the values returned by successful
calls with exceptional conditions like failures and ’no more data’ indications.

1.6 Revision History

March 93 Work on dwarf2 SGI draft begins

June 94 The function returns are changed to return an error/success code only.

2. Types Definitions

rev 1.48, 31 Mar 2002 - 2 -

- 3 -

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names
used to reference objects of libdwarf. The types defined by typedefs contained in libdwarf.h all use the
convention of adding Dwarf_ as a prefix and can be placed in three categories:

g Scalar types : The scalar types defined in libdwarf.h are defined primarily for notational convenience
and identification. Depending on the individual definition, they are interpreted as a value, a pointer, or
as a flag.

g Aggregate types : Some values can not be represented by a single scalar type; they must be represented
by a collection of, or as a union of, scalar and/or aggregate types.

g Opaque types : The complete definition of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another
query, or an instance of a scalar or aggregate type, which is the actual result.

2.2 Scalar Types

The following are the defined by libdwarf.h:

typedef int Dwarf_Bool;
typedef unsigned long long Dwarf_Off;
typedef unsigned long long Dwarf_Unsigned;
typedef unsigned short Dwarf_Half;
typedef unsigned char Dwarf_Small;
typedef signed long long Dwarf_Signed;
typedef unsigned long long Dwarf_Addr;
typedef void *Dwarf_Ptr;
typedef void (*Dwarf_Handler)(Dwarf_Error *error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the library, not for representing pc-
values/addresses within the target object file. Dwarf_Addr is for pc-values within the target object file.
The sample scalar type assignments above are for a libdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machine. The types must be defined appropriately for each
implementation of libdwarf. A description of these scalar types in the SGI/MIPS environment is given in
Figure 1.

rev 1.48, 31 Mar 2002 - 3 -

- 4 -

iii
NAME SIZE ALIGNMENT PURPOSEiii
Dwarf_Bool 4 4 Boolean states
Dwarf_Off 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Signed large integer
Dwarf_Addr 8 8 Program address

(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer

(host program)
Dwarf_Handler 4|8 4|8 Pointer to

error handler functioniiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 1. Scalar Types

2.3 Aggregate Types

The following aggregate types are defined by the SGI libdwarf.h: Dwarf_Loc, Dwarf_Locdesc,
Dwarf_Block, Dwarf_Frame_Op. While most of libdwarf acts on or returns simple values or
opaque pointer types, this small set of structures seems useful.

2.3.1 Location Record

The Dwarf_Loc type identifies a single atom of a location description or a location expression.

typedef struct {
Dwarf_Small lr_atom;
Dwarf_Unsigned lr_number;
Dwarf_Unsigned lr_number2;
Dwarf_Unsigned lr_offset;

} Dwarf_Loc;

The lr_atom identifies the atom corresponding to the DW_OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

The lr_number field is the operand to be used in the calculation specified by the lr_atom field; not
all atoms use this field. Some atom operations imply signed numbers so it is necessary to cast this to a
Dwarf_Signed type for those operations.

The lr_number2 field is the second operand specified by the lr_atom field; only DW_OP_BREGX
has this field. Some atom operations imply signed numbers so it may be necessary to cast this to a
Dwarf_Signed type for those operations.

The lr_offset field is the byte offset (within the block the location record came from) of the atom
specified by the lr_atom field. This is set on all atoms. This is useful for operations DW_OP_SKIP
and DW_OP_BRA.

rev 1.48, 31 Mar 2002 - 4 -

- 5 -

2.3.2 Location Description

The Dwarf_Locdesc type represents an ordered list of Dwarf_Loc records used in the calculation to
locate an item. Note that in many cases, the location can only be calculated at runtime of the associated
program.

typedef struct {
Dwarf_Addr ld_lopc;
Dwarf_Addr ld_hipc;
Dwarf_Unsigned ld_cents;
Dwarf_Loc* ld_s;

} Dwarf_Locdesc;

The ld_lopc and ld_hipc fields provide an address range for which this location descriptor is valid.
Both of these fields are set to zero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addresses, not offsets-from-something. The virtual
memory addresses do not account for dso movement (none of the pc values from libdwarf do that, it is up
to the consumer to do that).

The ld_cents field contains a count of the number of Dwarf_Loc entries pointed to by the ld_s
field.

The ld_s field points to an array of Dwarf_Loc records.

2.3.3 Data Block

The Dwarf_Block type is used to contain the value of an attribute whose form is either
DW_FORM_block1, DW_FORM_block2, DW_FORM_block4, DW_FORM_block8, or
DW_FORM_block. Its intended use is to deliver the value for an attribute of any of these forms.

typedef struct {
Dwarf_Unsigned bl_len;
Dwarf_Ptr bl_data;

} Dwarf_Block;

The bl_len field contains the length in bytes of the data pointed to by the bl_data field.

The bl_data field contains a pointer to the uninterpreted data. Since we use a Dwarf_Ptr here one
must copy the pointer to some other type (typically an unsigned char *) so one can add increments
to index through the data. The data pointed to by bl_data is not necessarily at any useful alignment.

2.3.4 Frame Operation Codes

The Dwarf_Frame_Op type is used to contain the data of a single instruction of an instruction-sequence
of low-level information from the section containing frame information. This is ordinarily used by
Internal-level Consumers trying to print everything in detail.

rev 1.48, 31 Mar 2002 - 5 -

- 6 -

typedef struct {
Dwarf_Small fp_base_op;
Dwarf_Small fp_extended_op;
Dwarf_Half fp_register;
Dwarf_Signed fp_offset;
Dwarf_Offset fp_instr_offset;

} Dwarf_Frame_Op;

fp_base_op is the 2-bit basic op code. fp_extended_op is the 6-bit extended opcode (if
fp_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is any (or the first) register value as defined in the Call Frame Instruction
Encodings figure in the dwarf document. If not used with the Op it is 0.

fp_offset is the address, delta, offset, or second register as defined in the Call Frame
Instruction Encodings figure in the dwarf document. If this is an address then the value
should be cast to (Dwarf_Addr) before being used. In any implementation this field *must* be as
large as the larger of Dwarf_Signed and Dwarf_Addr for this to work properly. If not used with the op it is
0.

fp_instr_offset is the byte_offset (within the instruction stream of the frame instructions) of this
operation. It starts at 0 for a given frame descriptor.

2.3.5 Macro Details Record

The Dwarf_Macro_Details type gives information about a single entry in the .debug.macinfo
section.

struct Dwarf_Macro_Details_s {
Dwarf_Off dmd_offset;
Dwarf_Small dmd_type;
Dwarf_Signed dmd_lineno;
Dwarf_Signed dmd_fileindex;
char * dmd_macro;

};
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

dmd_offset is the byte offset, within the .debug_macinfo section, of this macro information.

dmd_type is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation unit. See DW_MACINFO_define, etc in the DWARF
document.

dmd_lineno is the line number where this entry was found, or 0 if there is no applicable line number.

dmd_fileindex is the file index of the file involved. This is only guaranteed meaningful on a
DW_MACINFO_start_file dmd_type. Set to -1 if unknown (see the functional interface for more
details).

dmd_macro is the applicable string. For a DW_MACINFO_define this is the macro name and value.
For a DW_MACINFO_undef, or this is the macro name. For a DW_MACINFO_vendor_ext this is the
vendor-defined string value. For other dmd_types this is 0.

2.4 Opaque Types

The opaque types declared in libdwarf.h are used as descriptors for queries against dwarf information
stored in various debugging sections. Each time an instance of an opaque type is returned as a result of a
libdwarf operation (Dwarf_Debug excepted), it should be free’d, using dwarf_dealloc() when it is
no longer of use. Some functions return a number of instances of an opaque type in a block, by means of a

rev 1.48, 31 Mar 2002 - 6 -

- 7 -

pointer to the block and a count of the number of opaque descriptors in the block: see the function
description for deallocation rules for such functions. The list of opaque types defined in libdwarf.h that are
pertinent to the Consumer Library, and their intended use is described below.

typedef struct Dwarf_Debug_s* Dwarf_Debug;

An instance of the Dwarf_Debug type is created as a result of a successful call to dwarf_init(), or
dwarf_elf_init(), and is used as a descriptor for subsequent access to most libdwarf functions
on that object. The storage pointed to by this descriptor should be not be free’d, using the
dwarf_dealloc() function. Instead free it with dwarf_finish().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of a Dwarf_Die type is returned from a successful call to the dwarf_siblingof(),
dwarf_child, or dwarf_offdie() function, and is used as a descriptor for queries about
information related to that DIE. The storage pointed to by this descriptor should be free’d, using
dwarf_dealloc() with the allocation type DW_DLA_DIE when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances of Dwarf_Line type are returned from a successful call to the dwarf_srclines()
function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually free’d, using dwarf_dealloc() with the allocation type
DW_DLA_LINE when no longer needed.

typedef struct Dwarf_Global_s* Dwarf_Global;

Instances of Dwarf_Global type are returned from a successful call to the dwarf_get_globals()
function, and are used as descriptors for queries about global names (pubnames). The storage pointed to by
these descriptors should be individually free’d, using dwarf_dealloc() with the allocation type
DW_DLA_GLOBAL, when no longer needed.

typedef struct Dwarf_Weak_s* Dwarf_Weak;

Instances of Dwarf_Weak type are returned from a successful call to the SGI-specific
dwarf_get_weaks() function, and are used as descriptors for queries about weak names. The storage
pointed to by these descriptors should be individually free’d, using dwarf_dealloc() with the
allocation type DW_DLA_WEAK when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf_Func type are returned from a successful call to the SGI-specific
dwarf_get_funcs() function, and are used as descriptors for queries about static function names. The
storage pointed to by these descriptors should be individually free’d, using dwarf_dealloc() with the
allocation type DW_DLA_FUNC, when no longer needed.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGI-specific
dwarf_get_types() function, and are used as descriptors for queries about user defined types. The
storage pointed to by this descriptor should be individually free’d, using dwarf_dealloc() with the
allocation type DW_DLA_TYPENAME when no longer needed.

rev 1.48, 31 Mar 2002 - 7 -

- 8 -

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf_Var type are returned from a successful call to the SGI-specific
dwarf_get_vars() function, and are used as descriptors for queries about static variables. The storage
pointed to by this descriptor should be individually free’d, using dwarf_dealloc() with the allocation
type DW_DLA_VAR when no longer needed.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors detected by
libdwarf. Users typically provide a location for libdwarf to store this descriptor for the user to
obtain more information about the error. The storage pointed to by this descriptor should be free’d, using
dwarf_dealloc() with the allocation type DW_DLA_ERROR when no longer needed.

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances of Dwarf_Attribute type are returned from a successful call to the
dwarf_attrlist(), or dwarf_attr() functions, and are used as descriptors for queries about
attribute values. The storage pointed to by this descriptor should be individually free’d, using
dwarf_dealloc() with the allocation type DW_DLA_ATTR when no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of a Dwarf_Abbrev type is returned from a successful call to dwarf_get_abbrev(),
and is used as a descriptor for queries about abbreviations in the .debug_abbrev section. The storage
pointed to by this descriptor should be free’d, using dwarf_dealloc() with the allocation type
DW_DLA_ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances of Dwarf_Fde type are returned from a successful call to the dwarf_get_fde_list(),
dwarf_get_fde_for_die(), or dwarf_get_fde_at_pc() functions, and are used as
descriptors for queries about frames descriptors. The storage pointed to by these descriptors should be
individually free’d, using dwarf_dealloc() with the allocation type DW_DLA_FDE when no longer
needed.

typedef struct Dwarf_Cie_s* Dwarf_Cie;

Instances of Dwarf_Cie type are returned from a successful call to the dwarf_get_fde_list()
function, and are used as descriptors for queries about information that is common to several frames. The
storage pointed to by this descriptor should be individually free’d, using dwarf_dealloc() with the
allocation type DW_DLA_CIE when no longer needed.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances of Dwarf_Arange type are returned from successful calls to the dwarf_get_aranges(),
or dwarf_get_arange() functions, and are used as descriptors for queries about address ranges. The
storage pointed to by this descriptor should be individually free’d, using dwarf_dealloc() with the
allocation type DW_DLA_ARANGE when no longer needed.

3. Error Handling

The method for detection and disposition of error conditions that arise during access of debugging
information via libdwarf is consistent across all libdwarf functions that are capable of producing an error.

rev 1.48, 31 Mar 2002 - 8 -

- 9 -

This section describes the method used by libdwarf in notifying client programs of error conditions.

Most functions within libdwarf accept as an argument a pointer to a Dwarf_Error descriptor where a
Dwarf_Error descriptor is stored if an error is detected by the function. Routines in the client program
that provide this argument can query the Dwarf_Error descriptor to determine the nature of the error
and perform appropriate processing.

A client program can also specify a function to be invoked upon detection of an error at the time the library
is initialized (see dwarf_init()). When a libdwarf routine detects an error, this function is called with
two arguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(again see dwarf_init()). This pointer argument can be used to relay information between the error
handler and other routines of the client program. A client program can specify or change both the error
handling function and the pointer argument after initialization using dwarf_seterrhand() and
dwarf_seterrarg().

In the case where libdwarf functions are not provided a pointer to a Dwarf_Error descriptor, and no
error handling function was provided at initialization, libdwarf functions terminate execution by calling
abort(3C).

The following lists the processing steps taken upon detection of an error:

1. Check the error argument; if not a NULL pointer, allocate and initialize a Dwarf_Error
descriptor with information describing the error, place this descriptor in the area pointed to by
error, and return a value indicating an error condition.

2. If an errhand argument was provided to dwarf_init() at initialization, call errhand()
passing it the error descriptor and the value of the errarg argument provided to
dwarf_init(). If the error handling function returns, return a value indicating an error condition.

3. Terminate program execution by calling abort(3C).

In all cases, it is clear from the value returned from a function that an error occurred in executing the
function, since DW_DLV_ERROR is returned.

As can be seen from the above steps, the client program can provide an error handler at initialization, and
still provide an error argument to libdwarf functions when it is not desired to have the error handler
invoked.

If a libdwarf function is called with invalid arguments, the behaviour is undefined. In particular,
supplying a NULL pointer to a libdwarf function (except where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes undefined behaviour; the return value in such cases is
undefined, and the function may fail to invoke the caller supplied error handler or to return a meaningful
error number. Implementations also may abort execution for such cases.

3.1 Returned values in the functional interface

Values returned by libdwarf functions to indicate success and errors are enumerated in Figure 2. The
DW_DLV_NO_ENTRY case is useful for functions need to indicate that while there was no data to return
there was no error either. For example, dwarf_siblingof() may return DW_DLV_NO_ENTRY to
indicate that that there was no sibling to return.

rev 1.48, 31 Mar 2002 - 9 -

- 10 -

ii
SYMBOLIC NAME VALUE MEANINGii
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable valueiicc

c
c
c
c

cc
c
c
c
c

Figure 2. Error Indications

Each function in the interface that returns a value returns one of the integers in the above figure.

If DW_DLV_ERROR is returned and a pointer to a Dwarf_Error pointer is passed to the function, then
a Dwarf_Error handle is returned thru the pointer. No other pointer value in the interface returns a value.
After the Dwarf_Error is no longer of interest, a
dwarf_dealloc(dbg,dw_err,DW_DLA_ERROR) on the error pointer is appropriate to free any
space used by the error information.

If DW_DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW_DLV_OK is returned the Dwarf_Error pointer, if supplied, is not touched, but any other values
to be returned through pointers are returned. In this case calls (depending on the exact function returning
the error) to dwarf_dealloc() may be appropriate once the particular pointer returned is no longer of
interest.

Pointers passed to allow values to be returned thru them are uniformly the last pointers in each argument
list.

All the interface functions are defined from the point of view of the writer-of-the-library (as is traditional
for UN*X library documentation), not from the point of view of the user of the library. The caller might
code:

Dwarf_Line line;
Dwarf_Signed ret_loff;
Dwarf_Error err;
int retval = dwarf_lineoff(line,&ret_loff,&err);

for the function defined as

int dwarf_lineoff(Dwarf_Line line,Dwarf_Signed *return_lineoff,
Dwarf_Error* err);

and this document refers to the function as returning the value thru *err or *return_lineoff or uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

4. Memory Management

Several of the functions that comprise libdwarf return pointers (opaque descriptors) to structures that have
been dynamically allocated by the library. To aid in the management of dynamic memory, the function
dwarf_dealloc() is provided to free storage allocated as a result of a call to a libdwarf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

4.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a result of a libdwarf Consumer Library call should be
assumed to point to read-only memory. The results are undefined for libdwarf clients that attempt to write
to a region pointed to by a value returned by a libdwarf Consumer Library call.

4.2 Storage Deallocation

See the section "Returned values in the functional interface", above, for the general rules where calls to
dwarf_dealloc() is appropriate.

rev 1.48, 31 Mar 2002 - 10 -

- 11 -

In some cases the pointers returned by a libdwarf call are pointers to data which is not free-able. The
library knows from the allocation type provided to it whether the space is freeable or not and will not free
inappropriately when dwarf_dealloc() is called. So it is vital that dwarf_dealloc() be called
with the proper allocation type.

For most storage allocated by libdwarf, the client can free the storage for reuse by calling
dwarf_dealloc(), providing it with the Dwarf_Debug descriptor specifying the object for which
the storage was allocated, a pointer to the area to be free-ed, and an identifier that specifies what the
pointer points to (the allocation type). For example, to free a Dwarf_Die die belonging the the object
represented by Dwarf_Debug dbg, allocated by a call to dwarf_siblingof(), the call to
dwarf_dealloc() would be:

dwarf_dealloc(dbg, die, DW_DLA_DIE);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list
should be deallocated, followed by deallocation of the actual list itself. The following code fragment uses
an invocation of dwarf_attrlist() as an example to illustrate a technique that can be used to free
storage from any libdwarf routine that returns a list:

Dwarf_Unsigned atcnt;
Dwarf_Attribute *atlist;
int errv;

if ((errv = dwarf_attrlist(somedie, &atlist,&atcnt, &error)) == DW_DLV_OK) {

for (i = 0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);

}
dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}

The Dwarf_Debug returned from dwarf_init() or dwarf_elf_init() cannot be free’d using
dwarf_dealloc(). The function dwarf_finish() will deallocate all dynamic storage associated
with an instance of a Dwarf_Debug type. In particular, it will deallocate all dynamically allocated space
associated with the Dwarf_Debug descriptor, and finally make the descriptor invalid.

An Dwarf_Error returned from dwarf_init() or dwarf_elf_init() in case of a failure
cannot be free’d using dwarf_dealloc(). The only way to free the Dwarf_Error from either of
those calls is to use free(3) directly. Every Dwarf_Error must be free’d by dwarf_dealloc()
except those returned by dwarf_init() or dwarf_elf_init().

The codes that identify the storage pointed to in calls to dwarf_dealloc() are described in figure 3.

rev 1.48, 31 Mar 2002 - 11 -

- 12 -

iii
IDENTIFIER USED TO FREEiii
DW_DLA_STRING char*
DW_DLA_LOC Dwarf_Loc
DW_DLA_LOCDESC Dwarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (not used)
DW_DLA_SUBSCR Dwarf_Subscr (not used)
DW_DLA_GLOBAL Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST a list of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dwarf_Frame_Op
DW_DLA_CIE Dwarf_Cie
DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_FRAME_BLOCK Dwarf_Frame Block (not used)
DW_DLA_FUNC Dwarf_Func
DW_DLA_TYPENAME Dwarf_Type
DW_DLA_VAR Dwarf_Var
DW_DLA_WEAK Dwarf_Weakiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 3. Allocation/Deallocation Identifiers

5. Functional Interface

This section describes the functions available in the libdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the function’s operation.

The following sections describe these functions.

5.1 Initialization Operations

These functions are concerned with preparing an object file for subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

5.1.1 dwarf_init()

rev 1.48, 31 Mar 2002 - 12 -

- 13 -

int dwarf_init(
int fd,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_init() returns thru dbg a Dwarf_Debug
descriptor that represents a handle for accessing debugging records associated with the open file descriptor
fd. DW_DLV_NO_ENTRY is returned if the object does not contain DWARF debugging information.
DW_DLV_ERROR is returned if an error occurred. The access argument indicates what access is
allowed for the section. The DW_DLC_READ parameter is valid for read access (only read access is
defined or discussed in this document). The errhand argument is a pointer to a function that will be
invoked whenever an error is detected as a result of a libdwarf operation. The errarg argument is
passed as an argument to the errhand function. The file descriptor associated with the fd argument
must refer to an ordinary file (i.e. not a pipe, socket, device, /proc entry, etc.), be opened with the at least as
much permission as specified by the access argument, and cannot be closed or used as an argument to
any system calls by the client until after dwarf_finish() is called. The seek position of the file
associated with fd is undefined upon return of dwarf_init().

With SGI IRIX, by default it is allowed that the app close() fd immediately after calling
dwarf_init(), but that is not a portable approach (that it works is an accidental side effect of the fact
that SGI IRIX uses ELF_C_READ_MMAP in its hidden internal call to elf_begin()). The portable
approach is to consider that fd must be left open till after the corresponding dwarf_finish() call has
returned.

Since dwarf_init() uses the same error handling processing as other libdwarf functions (see Error
Handling above), client programs will generally supply an error parameter to bypass the default actions
during initialization unless the default actions are appropriate.

5.1.2 dwarf_elf_init()

int dwarf_elf_init(
Elf * elf_file_pointer,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

The function dwarf_elf_init() is identical to dwarf_init() except that an open Elf *
pointer is passed instead of a file descriptor. In systems supporting ELF object files this may be more
space or time-efficient than using dwarf_init(). The client is allowed to use the Elf * pointer for
its own purposes without restriction during the time the Dwarf_Debug is open, except that the client
should not elf_end() the pointer till after dwarf_finish is called.

5.1.3 dwarf_get_elf()

int dwarf_get_elf(
Dwarf_Debug dbg,
Elf ** elf,
Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_get_elf() returns thru the pointer elf the Elf

rev 1.48, 31 Mar 2002 - 13 -

- 14 -

* handle used to access the object represented by the Dwarf_Debug descriptor dbg. It returns
DW_DLV_ERROR on error.

Because int dwarf_init() opens an Elf descriptor on its fd and dwarf_finish() does not
close that descriptor, an app should use dwarf_get_elf and should call elf_end with the pointer
returned thru the Elf** handle created by int dwarf_init().

This function is not meaningful for a system that does not used the Elf format for objects.

5.1.4 dwarf_finish()

int dwarf_finish(
Dwarf_Debug dbg,
Dwarf_Error *error)

The function dwarf_finish() releases all Libdwarf internal resources associated with the descriptor
dbg, and invalidates dbg. It returns DW_DLV_ERROR if there is an error during the finishing operation.
It returns DW_DLV_OK for a successful operation.

Because int dwarf_init() opens an Elf descriptor on its fd and dwarf_finish() does not
close that descriptor, an app should use dwarf_get_elf and should call elf_end with the pointer
returned thru the Elf** handle created by int dwarf_init().

5.2 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries.

5.2.1 Debugging Information Entry Debugger Delivery Operations

5.2.2 dwarf_next_cu_header()

int dwarf_next_cu_header(
Dwarf_debug dbg,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Unsigned *next_cu_header,
Dwarf_Error *error);

The function dwarf_next_cu_header() returns DW_DLV_ERROR if it fails, and DW_DLV_OK if it
succeeds.

If it succeeds, *next_cu_header is set to the offset in the .debug_info section of the next
compilation-unit header if it succeeds. On reading the last compilation-unit header in the .debug_info
section it contains the size of the .debug_info section. The next call to dwarf_next_cu_header()
returns DW_DLV_NO_ENTRY without reading a compilation-unit or setting *next_cu_header.
Subsequent calls to dwarf_next_cu_header() repeat the cycle by reading the first compilation-unit
and so on.

The other values returned through pointers are the values in the compilation-unit header. If any of
cu_header_length, version_stamp, abbrev_offset, or address_size is NULL, the
argument is ignored (meaning it is not an error to provide a NULL pointer).

rev 1.48, 31 Mar 2002 - 14 -

- 15 -

5.2.3 dwarf_siblingof()

int dwarf_siblingof(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Die *return_sib,
Dwarf_Error *error)

The function dwarf_siblingof() returns DW_DLV_ERROR and sets the error pointer on error.
If there is no sibling it returns DW_DLV_NO_ENTRY. When it succeeds, dwarf_siblingof()
returns DW_DLV_OK and sets *return_sib to the Dwarf_Die descriptor of the sibling of die. If
die is NULL, the Dwarf_Die descriptor of the first die in the compilation-unit is returned. This die has
the DW_TAG_compile_unit tag.

5.2.4 dwarf_child()

int dwarf_child(
Dwarf_Die die,
Dwarf_Die *return_kid,
Dwarf_Error *error)

The function dwarf_child() returns DW_DLV_ERROR and sets the error die on error. If there is
no child it returns DW_DLV_NO_ENTRY. When it succeeds, dwarf_child() returns DW_DLV_OK
and sets *return_kid to the Dwarf_Die descriptor of the first child of die. The function
dwarf_siblingof() can be used with the return value of dwarf_child() to access the other
children of die.

5.2.5 dwarf_offdie()

int dwarf_offdie(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Die *return_die,
Dwarf_Error *error)

The function dwarf_offdie() returns DW_DLV_ERROR and sets the error die on error. When it
succeeds, dwarf_offdie() returns DW_DLV_OK and sets *return_die to the the Dwarf_Die
descriptor of the debugging information entry at offset in the section containing debugging information
entries i.e the .debug_info section. A return of DW_DLV_NO_ENTRY means that the offset in the
section is of a byte containing all 0 bits, indicating that there is no abbreviation code. Meaning this ’die
offset’ is not the offset of a real die, but is instead an offset of a null die, a padding die, or of some random
zero byte: this should not be returned in normal use. It is the user’s responsibility to make sure that
offset is the start of a valid debugging information entry. The result of passing it an invalid offset could
be chaos.

5.3 Debugging Information Entry Query Operations

These queries return specific information about debugging information entries or a descriptor that can be
used on subsequent queries when given a Dwarf_Die descriptor. Note that some operations are specific
to debugging information entries that are represented by a Dwarf_Die descriptor of a specific type. For
example, not all debugging information entries contain an attribute having a name, so consequently, a call
to dwarf_diename() using a Dwarf_Die descriptor that does not have a name attribute will return
DW_DLV_NO_ENTRY. This is not an error, i.e. calling a function that needs a specific attribute is not an
error for a die that does not contain that specific attribute.

rev 1.48, 31 Mar 2002 - 15 -

- 16 -

There are several methods that can be used to obtain the value of an attribute in a given die:

1. Call dwarf_hasattr() to determine if the debugging information entry has the attribute of
interest prior to issuing the query for information about the attribute.

2. Supply an error argument, and check its value after the call to a query indicates an unsuccessful
return, to determine the nature of the problem. The error argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to have an error handling function invoked upon detection of an error (see
dwarf_init()).

4. Call dwarf_attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

5.3.1 dwarf_tag()

int dwarf_tag(
Dwarf_Die die,
Dwarf_Half *tagval,
Dwarf_Error *error)

The function dwarf_tag() returns the tag of die thru the pointer tagval if it succeeds. It returns
DW_DLV_OK if it succeeds. It returns DW_DLV_ERROR on error.

5.3.2 dwarf_dieoffset()

int dwarf_dieoffset(
Dwarf_Die die,
Dwarf_Off * return_offset,
Dwarf_Error *error)

When it succeeds, the function dwarf_dieoffset() returns DW_DLV_OK and sets
*return_offset to the position of die in the section containing debugging information entries (the
return_offset is a section-relative offset). In other words, it sets return_offset to the offset of
the start of the debugging information entry described by die in the section containing die’s i.e
.debug_info. It returns DW_DLV_ERROR on error.

5.3.3 dwarf_die_CU_offset()

int dwarf_die_CU_offset(
Dwarf_Die die,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_die_CU_offset() is similar to dwarf_dieoffset(), except that it puts the
offset of the DIE represented by the Dwarf_Die die, from the start of the compilation-unit that it
belongs to rather than the start of .debug_info (the return_offset is a CU-relative offset).

5.3.4 dwarf_diename()

rev 1.48, 31 Mar 2002 - 16 -

- 17 -

int dwarf_diename(
Dwarf_Die die,
char ** return_name,
Dwarf_Error *error)

When it succeeds, the function dwarf_diename() returns DW_DLV_OK and sets *return_name
to a pointer to a null-terminated string of characters that represents the name attribute of die. It returns
DW_DLV_NO_ENTRY if die does not have a name attribute. It returns DW_DLV_ERROR if an error
occurred. The storage pointed to by a successful return of dwarf_diename() should be free’d using
the allocation type DW_DLA_STRING when no longer of interest (see dwarf_dealloc()).

5.3.5 dwarf_attrlist()

int dwarf_attrlist(
Dwarf_Die die,
Dwarf_Attribute** attrbuf,
Dwarf_Signed *attrcount,
Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_attrlist() sets attrbuf to point to an array
of Dwarf_Attribute descriptors corresponding to each of the attributes in die, and returns the number
of elements in the array thru attrcount. DW_DLV_NO_ENTRY is returned if the count is zero (no
attrbuf is allocated in this case). DW_DLV_ERROR is returned on error. On a successful return from
dwarf_attrlist(), each of the Dwarf_Attribute descriptors should be individually free’d using
dwarf_dealloc() with the allocation type DW_DLA_ATTR, followed by free-ing the list pointed to by
*attrbuf using dwarf_dealloc() with the allocation type DW_DLA_LIST, when no longer of
interest (see dwarf_dealloc()).

Freeing the attrlist:

Dwarf_Unsigned atcnt;
Dwarf_Attribute *atlist;
int errv;

if ((errv = dwarf_attrlist(somedie, &atlist,&atcnt, &error)) == DW_DLV_OK) {

for (i = 0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);

}
dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}

5.3.6 dwarf_hasattr()

int dwarf_hasattr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

When it succeeds, the function dwarf_hasattr() returns DW_DLV_OK and sets *return_bool
to non-zero if die has the attribute attr and zero otherwise. If it fails, it returns DW_DLV_ERROR.

rev 1.48, 31 Mar 2002 - 17 -

- 18 -

5.3.7 dwarf_attr()

int dwarf_attr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Attribute *return_attr,
Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_attr() sets *return_attr to the
Dwarf_Attribute descriptor of die having the attribute attr. It returns W_DLV_NO_ENTRY if
attr is not contained in die. It returns W_DLV_ERROR if an error occurred.

5.3.8 dwarf_lowpc()

int dwarf_lowpc(
Dwarf_Die die,
Dwarf_Addr * return_lowpc,
Dwarf_Error * error)

The function dwarf_lowpc() returns DW_DLV_OK and sets *return_lowpc to the low program
counter value associated with the die descriptor if die represents a debugging information entry with
this attribute. It returns DW_DLV_NO_ENTRY if die does not have this attribute. It returns
DW_DLV_ERROR if an error occurred.

5.3.9 dwarf_highpc()

int dwarf_highpc(
Dwarf_Die die,
Dwarf_Addr * return_highpc,
Dwarf_Error *error)

The function dwarf_highpc() returns DW_DLV_OK and sets *return_highpc the high program
counter value associated with the die descriptor if die represents a debugging information entry with
this attribute. It returns DW_DLV_NO_ENTRY if die does not have this attribute. It returns
DW_DLV_ERROR if an error occurred.

5.3.10 dwarf_bytesize()

Dwarf_Signed dwarf_bytesize(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds, dwarf_bytesize() returns DW_DLV_OK and sets *return_size to the
number of bytes needed to contain an instance of the aggregate debugging information entry represented by
die. It returns DW_DLV_NO_ENTRY if die does not contain the byte size attribute
DW_AT_byte_size. It returns DW_DLV_ERROR if an error occurred.

5.3.11 dwarf_bitsize()

rev 1.48, 31 Mar 2002 - 18 -

- 19 -

int dwarf_bitsize(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds, dwarf_bitsize() returns DW_DLV_OK and sets *return_size to the number
of bits occupied by the bit field value that is an attribute of the given die. It returns DW_DLV_NO_ENTRY
if die does not contain the bit size attribute DW_AT_bit_size. It returns DW_DLV_ERROR if an
error occurred.

5.3.12 dwarf_bitoffset()

int dwarf_bitoffset(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds, dwarf_bitoffset() returns DW_DLV_OK and sets *return_size to the
number of bits to the left of the most significant bit of the bit field value. This bit offset is not necessarily
the net bit offset within the structure or class , since DW_AT_data_member_location may give a
byte offset to this DIE and the bit offset returned through the pointer does not include the bits in the byte
offset. It returns DW_DLV_NO_ENTRY if die does not contain the bit offset attribute
DW_AT_bit_offset. It returns DW_DLV_ERROR if an error occurred.

5.3.13 dwarf_srclang()

int dwarf_srclang(
Dwarf_Die die,
Dwarf_Unsigned *return_lang,
Dwarf_Error *error)

When it succeeds, dwarf_srclang() returns DW_DLV_OK and sets *return_lang to a code
indicating the source language of the compilation unit represented by the descriptor die. It returns
DW_DLV_NO_ENTRY if die does not represent a source file debugging information entry (i.e. contain
the attribute DW_AT_language). It returns DW_DLV_ERROR if an error occurred.

5.3.14 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf_Die die,
Dwarf_Unsigned *return_order,
Dwarf_Error *error)

When it succeeds, dwarf_arrayorder() returns DW_DLV_OK and sets *return_order a code
indicating the ordering of the array represented by the descriptor die. It returns DW_DLV_NO_ENTRY if
die does not contain the array order attribute DW_AT_ordering. It returns DW_DLV_ERROR if an
error occurred.

5.4 Attribute Form Queries

Based on the attribute’s form, these operations are concerned with returning uninterpreted attribute data.
Since it is not always obvious from the return value of these functions if an error occurred, one should
always supply an error parameter or have arranged to have an error handling function invoked (see
dwarf_init()) to determine the validity of the returned value and the nature of any errors that may
have occurred.

rev 1.48, 31 Mar 2002 - 19 -

- 20 -

A Dwarf_Attribute descriptor describes an attribute of a specific die. Thus, each
Dwarf_Attribute descriptor is implicitly associated with a specific die.

5.4.1 dwarf_hasform()

nt dwarf_hasform(
Dwarf_Attribute attr,
Dwarf_Half form,
Dwarf_Bool *return_hasform,
Dwarf_Error *error)

The function dwarf_hasform() returns DW_DLV_OK and and puts a non-zero
value in the *return_hasform boolean if the attribute represented by the Dwarf_Attribute
descriptor attr has the attribute form form. If the attribute does not have that form zero is put into
*return_hasform. DW_DLV_ERROR is returned on error.

5.4.2 dwarf_whatform()

int dwarf_whatform(
Dwarf_Attribute attr,
Dwarf_Half *return_form,
Dwarf_Error *error)

When it succeeds, dwarf_whatform() returns DW_DLV_OK and sets *return_form to the
attribute form code of the attribute represented by the Dwarf_Attribute descriptor attr. It returns
DW_DLV_ERROR on error.

5.4.3 dwarf_whatattr()

int dwarf_whatattr(
Dwarf_Attribute attr,
Dwarf_Half *return_attr,
Dwarf_Error *error)

When it succeeds, dwarf_whatattr() returns DW_DLV_OK and sets *return_attr to the
attribute code represented by the Dwarf_Attribute descriptor attr. It returns DW_DLV_ERROR
on error.

5.4.4 dwarf_formref()

int dwarf_formref(
Dwarf_Attribute attr,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds, dwarf_formref() returns DW_DLV_OK and sets *return_offset to the CU-
relative offset represented by the descriptor attr if the form of the attribute belongs to the REFERENCE
class. attr must be a CU-local reference, not form DW_FORM_ref_addr. It is an error for the form
to not belong to this class or to be form DW_FORM_ref_addr. It returns DW_DLV_ERROR on error.
See also dwarf_global_formref below.

5.4.5 dwarf_global_formref()

rev 1.48, 31 Mar 2002 - 20 -

- 21 -

int dwarf_global_formref(
Dwarf_Attribute attr,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds, dwarf_global_formref() returns DW_DLV_OK and sets *return_offset
to the .debug_info-section-relative offset represented by the descriptor attr if the form of the attribute
belongs to the REFERENCE class. attr can be any legal REFERENCE class form including
DW_FORM_ref_addr. It is an error for the form to not belong to this class. It returns DW_DLV_ERROR
on error. See also dwarf_formref above.

5.4.6 dwarf_formaddr()

int dwarf_formaddr(
Dwarf_Attribute attr,
Dwarf_Addr * return_addr,
Dwarf_Error *error)

When it succeeds, dwarf_formaddr() returns DW_DLV_OK and sets *return_addr to the
address represented by the descriptor attr if the form of the attribute belongs to the ADDRESS class. It
is an error for the form to not belong to this class. It returns DW_DLV_ERROR on error.

5.4.7 dwarf_formflag()

int dwarf_formflag(
Dwarf_Attribute attr,
Dwarf_Bool * return_bool,
Dwarf_Error *error)

When it succeeds, dwarf_formflag() returns DW_DLV_OK and sets *return_bool 1 (i.e. true)
(if the attribute has a non-zero value) or 0 (i.e. false) (if the attribute has a zero value). It returns
DW_DLV_ERROR on error or if the attr does not have form flag.

5.4.8 dwarf_formudata()

int dwarf_formudata(
Dwarf_Attribute attr,
Dwarf_Unsigned * return_uvalue,
Dwarf_Error * error)

The function dwarf_formudata() returns DW_DLV_OK and sets *return_uvalue to the
Dwarf_Unsigned value of the attribute represented by the descriptor attr if the form of the attribute
belongs to the CONSTANT class. It is an error for the form to not belong to this class. It returns
DW_DLV_ERROR on error.

5.4.9 dwarf_formsdata()

int dwarf_formsdata(
Dwarf_Attribute attr,
Dwarf_Signed * return_svalue,
Dwarf_Error *error)

The function dwarf_formsdata() returns DW_DLV_OK and sets *return_svalue to the
Dwarf_Signed value of the attribute represented by the descriptor attr if the form of the attribute
belongs to the CONSTANT class. It is an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size of the Dwarf_Signed type, its value is sign extended.

rev 1.48, 31 Mar 2002 - 21 -

- 22 -

It returns DW_DLV_ERROR on error.

5.4.10 dwarf_formblock()

int dwarf_formblock(
Dwarf_Attribute attr,
Dwarf_Block ** return_block,
Dwarf_Error * error)

The function dwarf_formblock() returns DW_DLV_OK and sets *return_block to a pointer to
a Dwarf_Block structure containing the value of the attribute represented by the descriptor attr if the
form of the attribute belongs to the BLOCK class. It is an error for the form to not belong to this class.
The storage pointed to by a successful return of dwarf_formblock() should be free’d using the
allocation type DW_DLA_BLOCK, when no longer of interest (see dwarf_dealloc()). It returns
DW_DLV_ERROR on error.

5.4.11 dwarf_formstring()

int dwarf_formstring(
Dwarf_Attribute attr,
char ** return_string,
Dwarf_Error *error)

The function dwarf_formstring() returns DW_DLV_OK and sets *return_string to a pointer
to a null-terminated string containing the value of the attribute represented by the descriptor attr if the
form of the attribute belongs to the STRING class. It is an error for the form to not belong to this class.
The storage pointed to by a successful return of dwarf_formstring() should be free’d using the
allocation type DW_DLA_STRING when no longer of interest (see dwarf_dealloc()). It returns
DW_DLV_ERROR on error.

5.4.11.1 dwarf_loclist()

int dwarf_loclist(
Dwarf_Attribute attr,
Dwarf_Locdesc **llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

The function dwarf_loclist() sets *llbuf to point to an array of Dwarf_Locdesc pointers
corresponding to each of the location expressions in a location list, and sets *listlen to the number of
elements in the array and returns DW_DLV_OK if the attribute is appropriate. It returns DW_DLV_ERROR
on error. dwarf_loclist() works on DW_AT_location,
DW_AT_data_member_location, DW_AT_vtable_elem_location,
DW_AT_string_length, DW_AT_use_location, and DW_AT_return_addr attributes.

Storage allocated by a successful call of dwarf_loclist() should be deallocated when no longer of
interest (see dwarf_dealloc()). The block of Dwarf_Loc structs pointed to by the ld_s field of
each Dwarf_Locdesc structure should be deallocated with the allocation type DW_DLA_LOC_BLOCK.
This should be followed by deallocation of the llbuf using the allocation type DW_DLA_LOCDESC.

rev 1.48, 31 Mar 2002 - 22 -

- 23 -

Dwarf_Signed lcnt;
Dwarf_Locdesc *llbuf;
int lres;

if ((lres = dwarf_loclist(someattr, &llbuf,&lcnt &error)) == DW_DLV_OK) {
for (i = 0; i < lcnt; ++i) {

/* use llbuf[i] */

/* Deallocate Dwarf_Loc block of llbuf[i] */
dwarf_dealloc(dbg, llbuf[i].ld_s, DW_DLA_LOC_BLOCK);

}
dwarf_dealloc(dbg, llbuf, DW_DLA_LOCDESC);

}

5.5 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry
objects to their corresponding source lines, and providing a mechanism for obtaining information about line
number entries. Although, the interface talks of "lines" what is really meant is "statements". In case there
is more than one statement on the same line, there will be at least one descriptor per statement, all with the
same line number. If column number is also being represented they will have the column numbers of the
start of the statements also represented.

There can also be more than one Dwarf_Line per statement. For example, if a file is preprocessed by a
language translator, this could result in translator output showing 2 or more sets of line numbers per
translated line of output.

5.5.1 Get A Set of Lines

The function returns information about every source line for a particular compilation-unit. The
compilation-unit is specified by the corresponding die.

5.5.1.1 dwarf_srclines()

int dwarf_srclines(
Dwarf_Die die,
Dwarf_Line **linebuf,
Dwarf_Signed *linecount,
Dwarf_Error *error)

The function dwarf_srclines() places all line number descriptors for a single compilation unit into a
single block, sets *linebuf to point to that block, sets *linecount to the number of descriptors in
this block and returns DW_DLV_OK. The compilation-unit is indicated by the given die which must be a
compilation-unit die. It returns DW_DLV_ERROR on error. On successful return, each line number
information structure pointed to by an entry in the block should be free’d using dwarf_dealloc()
with the allocation type DW_DLA_LINE when no longer of interest. Also the block of descriptors itself
should be free’d using dwarf_dealloc() with the allocation type DW_DLA_LIST when no longer of
interest.

rev 1.48, 31 Mar 2002 - 23 -

- 24 -

Dwarf_Signed cnt;
Dwarf_Line *linebuf;
int sres;

if ((sres = dwarf_srclines(somedie, &linebuf,&cnt, &error)) == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use linebuf[i] */
dwarf_dealloc(dbg, linebuf[i], DW_DLA_LINE);

}
dwarf_dealloc(dbg, linebuf, DW_DLA_LIST);

}

5.5.2 Get the set of Source File Names

The function returns the names of the source files that have contributed to the compilation-unit represented
by the given DIE. Only the source files named in the statement program prologue are returned.

int dwarf_srcfiles(
Dwarf_Die die,
char ***srcfiles,
Dwarf_Signed *srccount,
Dwarf_Error *error)

When it succeeds dwarf_srcfiles() returns DW_DLV_OK and puts the number of source files
named in the statement program prologue indicated by the given die into *srccount. Source files
defined in the statement program are ignored. The given die should have the tag
DW_TAG_compile_unit. The location pointed to by srcfiles is set to point to a list of pointers to
null-terminated strings that name the source files. On a successful return from this function, each of the
strings returned should be individually free’d using dwarf_dealloc() with the allocation type
DW_DLA_STRING when no longer of interest. This should be followed by free-ing the list using
dwarf_dealloc() with the allocation type DW_DLA_LIST. It returns DW_DLV_ERROR on error. It
returns DW_DLV_NO_ENTRY if there is no corresponding statement program (i.e., if there is no line
information).

Dwarf_Signed cnt;
char **srcfiles;
int res;

if ((res = dwarf_srcfiles(somedie, &srcfiles,&cnt &error)) == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use srcfiles[i] */
dwarf_dealloc(dbg, srcfiles[i], DW_DLA_STRING);

}
dwarf_dealloc(dbg, srcfiles, DW_DLA_LIST);

}

5.5.3 Get information about a Single Table Line

The following functions can be used on the Dwarf_Line descriptors returned by
dwarf_srclines() to obtain information about the source lines.

rev 1.48, 31 Mar 2002 - 24 -

- 25 -

5.5.3.1 dwarf_linebeginstatement()

int dwarf_linebeginstatement(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The function dwarf_linebeginstatement() returns DW_DLV_OK and sets *return_bool to
non-zero (if line represents a line number entry that is marked as beginning a statement). or zero ((if
line represents a line number entry that is not marked as beginning a statement). It returns
DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY.

5.5.3.2 dwarf_lineendsequence()

int dwarf_lineendsequence(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The function dwarf_lineendsequence() returns DW_DLV_OK and sets *return_bool non-
zero if line represents a line number entry that is marked as ending a text sequence) or zero ((if line
represents a line number entry that is not marked as ending a text sequence). It returns DW_DLV_ERROR
on error. It never returns DW_DLV_NO_ENTRY.

5.5.3.3 dwarf_lineno()

int dwarf_lineno(
Dwarf_Line line,
Dwarf_Unsigned * returned_lineno,
Dwarf_Error * error)

The function dwarf_lineno() returns DW_DLV_OK and sets *return_lineno to the source
statement line number corresponding to the descriptor line. It returns DW_DLV_ERROR on error. It
never returns DW_DLV_NO_ENTRY.

5.5.3.4 dwarf_lineaddr()

int dwarf_lineaddr(
Dwarf_Line line,
Dwarf_Addr *return_lineaddr,
Dwarf_Error *error)

The function dwarf_lineaddr() returns DW_DLV_OK and sets *return_lineaddr to the
address associated with the descriptor line. It returns DW_DLV_ERROR on error. It never returns
DW_DLV_NO_ENTRY.

5.5.3.5 dwarf_lineoff()

int dwarf_lineoff(
Dwarf_Line line,
Dwarf_Signed * return_lineoff,
Dwarf_Error *error)

The function dwarf_lineoff() returns DW_DLV_OK and sets *return_lineoff to the column
number at which the statement represented by line begins. It sets return_lineoff to -1 if the
column number of the statement is not represented (meaning the producer library call was given zero as the
column number).

rev 1.48, 31 Mar 2002 - 25 -

- 26 -

On error it returns DW_DLV_ERROR. It never returns DW_DLV_NO_ENTRY.

5.5.3.6 dwarf_linesrc()

int dwarf_linesrc(
Dwarf_Line line,
char ** return_linesrc,
Dwarf_Error *error)

The function dwarf_linesrc() returns DW_DLV_OK and sets *return_linesrc to a pointer to
a null-terminated string of characters that represents the name of the source-file where line occurs. It
returns DW_DLV_ERROR on error.

If the applicable file name in the line table Statement Program Prolog does not start with a ’/’ character the
string in DW_AT_comp_dir (if applicable and present) or the applicable directory name from the line
Statement Program Prolog is prepended to the file name in the line table Statement Program Prolog to
make a full path.

The storage pointed to by a successful return of dwarf_linesrc() should be free’d using
dwarf_dealloc() with the allocation type DW_DLA_STRING when no longer of interest. It never
returns DW_DLV_NO_ENTRY.

5.5.3.7 dwarf_lineblock()

int dwarf_lineblock(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The function dwarf_lineblock() returns DW_DLV_OK and sets *return_linesrc to non-zero
(i.e. true)(if the line is marked as beginning a basic block) or zero (i.e. false) (if the line is marked as not
beginning a basic block). It returns DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY.

5.6 Global Name Space Operations

These operations operate on the .debug_pubnames section of the debugging information.

5.6.1 Debugger Interface Operations

5.6.1.1 dwarf_get_globals()

int dwarf_get_globals(
Dwarf_Debug dbg,
Dwarf_Global **globals,
Dwarf_Signed * return_count,
Dwarf_Error *error)

The function dwarf_get_globals() returns DW_DLV_OK and sets *return_count to the count
of pubnames represented in the section containing pubnames i.e. .debug_pubnames. It also stores at
*globals, a pointer to a list of Dwarf_Global descriptors, one for each of the pubnames in the
.debug_pubnames section. It returns DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if the
.debug_pubnames section does not exist.

On a successful return from this function, the Dwarf_Global descriptors should be individually free’d

rev 1.48, 31 Mar 2002 - 26 -

- 27 -

using dwarf_dealloc() with the allocation type DW_DLA_GLOBAL, followed by the deallocation of
the list itself with the allocation type DW_DLA_LIST when the descriptors are no longer of interest.

Dwarf_Signed cnt;
Dwarf_Global *globs;
int res;

if ((res = dwarf_get_globals(dbg, &globs,&cnt, &error)) == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use globs[i] */
dwarf_dealloc(dbg, globs[i], DW_DLA_GLOBAL);

}
dwarf_dealloc(dbg, globs, DW_DLA_LIST);

}

5.6.1.2 dwarf_globname()

int dwarf_globname(
Dwarf_Global global,
char ** return_name,
Dwarf_Error *error)

The function dwarf_globname() returns DW_DLV_OK and sets *return_name to a pointer to a
null-terminated string that names the pubname represented by the Dwarf_Global descriptor, global.
It returns DW_DLV_ERROR on error. On a successful return from this function, the string should be free’d
using dwarf_dealloc(), with the allocation type DW_DLA_STRING when no longer of interest. It
never returns DW_DLV_NO_ENTRY.

5.6.1.3 dwarf_global_die_offset()

int dwarf_global_die_offset(
Dwarf_Global global,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_global_die_offset() returns DW_DLV_OK and sets *return_offset
to the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the pubname that is
described by the Dwarf_Global descriptor, glob. It returns DW_DLV_ERROR on error. It never
returns DW_DLV_NO_ENTRY.

5.6.1.4 dwarf_global_cu_offset()

int dwarf_global_cu_offset(
Dwarf_Global global,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_global_cu_offset() returns DW_DLV_OK and sets *return_offset to
the offset in the section containing DIE’s, i.e. .debug_info, of the compilation-unit header of the
compilation-unit that contains the pubname described by the Dwarf_Global descriptor, global. It
returns DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY.

rev 1.48, 31 Mar 2002 - 27 -

- 28 -

5.6.1.5 dwarf_get_cu_die_offset_given_cu_header_offset()

int dwarf_get_cu_die_offset_given_cu_header_offset(
Dwarf_Debug dbg,
Dwarf_Off in_cu_header_offset,
Dwarf_Off * out_cu_die_offset,
Dwarf_Error *error)

The function dwarf_get_cu_die_offset_given_cu_header_offset() returns
DW_DLV_OK and sets *out_cu_die_offset to the offset of the compilation-unit DIE given the offset
in_cu_header_offset of a compilation-unit header. It returns DW_DLV_ERROR on error. It never
returns DW_DLV_NO_ENTRY.

This effectively turns a compilation-unit-header offset into a compilation-unit DIE offset (by adding the
size of the applicable CU header). This function is also sometimes useful with the
dwarf_weak_cu_offset(), dwarf_func_cu_offset(), dwarf_type_cu_offset(),
and int dwarf_var_cu_offset() functions.

dwarf_get_cu_die_offset_given_cu_header_offset() added Rev 1.45, June, 2001.

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if the version of libdwarf linked into an application has this
function.

5.6.1.6 dwarf_global_name_offsets()

int dwarf_global_name_offsets(
Dwarf_Global global,
char **return_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The function dwarf_global_name_offsets() returns DW_DLV_OK and sets *return_name
to a pointer to a null-terminated string that gives the name of the pubname described by the
Dwarf_Global descriptor global. It returns DW_DLV_ERROR on error. It never returns
DW_DLV_NO_ENTRY. It also returns in the locations pointed to by die_offset, and cu_offset,
the offsets of the DIE representing the pubname, and the DIE representing the compilation-unit containing
the pubname, respectively. On a successful return from dwarf_global_name_offsets() the
storage pointed to by return_name should be free’d using dwarf_dealloc(), with the allocation
type DW_DLA_STRING when no longer of interest.

5.7 Weak Name Space Operations

These operations operate on the .debug_weaknames section of the debugging information.

These operations are SGI specific, not part of standard DWARF.

5.7.1 Debugger Interface Operations

rev 1.48, 31 Mar 2002 - 28 -

- 29 -

5.7.1.1 dwarf_get_weaks()

int dwarf_get_weaks(
Dwarf_Debug dbg,
Dwarf_Weak **weaks,
Dwarf_Signed *weak_count,
Dwarf_Error *error)

The function dwarf_get_weaks() returns DW_DLV_OK and sets *weak_count to the count of
weak names represented in the section containing weak names i.e. .debug_weaknames. It returns
DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if the section does not exist. It also stores in
*weaks, a pointer to a list of Dwarf_Weak descriptors, one for each of the weak names in the
.debug_weaknames section. On a successful return from this function, the Dwarf_Weak descriptors
should be individually free’d using dwarf_dealloc() with the allocation type DW_DLA_WEAK,
followed by the deallocation of the list itself with the allocation type DW_DLA_LIST when the descriptors
are no longer of interest.

Dwarf_Signed cnt;
Dwarf_Weak *weaks;
int res;

if ((res = dwarf_get_weaks(dbg, &weaks,&cnt, &error)) == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use weaks[i] */
dwarf_dealloc(dbg, weaks[i], DW_DLA_WEAK);

}
dwarf_dealloc(dbg, weaks, DW_DLA_LIST);

}

5.7.1.2 dwarf_weakname()

int dwarf_weakname(
Dwarf_Weak weak,
char ** return_name,
Dwarf_Error *error)

The function dwarf_weakname() returns DW_DLV_OK and sets *return_name to a pointer to a
null-terminated string that names the weak name represented by the Dwarf_Weak descriptor, weak. It
returns DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY. On a successful return from
this function, the string should be free’d using dwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

int dwarf_weak_die_offset(
Dwarf_Weak weak,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_weak_die_offset() returns DW_DLV_OK and sets *return_offset to
the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the weak name that is
described by the Dwarf_Weak descriptor, weak. It returns DW_DLV_ERROR on error. It never
returns DW_DLV_NO_ENTRY.

rev 1.48, 31 Mar 2002 - 29 -

- 30 -

5.7.1.3 dwarf_weak_cu_offset()

int dwarf_weak_cu_offset(
Dwarf_Weak weak,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_weak_cu_offset() returns DW_DLV_OK and sets *return_offset to the
offset in the section containing DIE’s, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the weak name described by the Dwarf_Weak descriptor, weak. It returns
DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY.

5.7.1.4 dwarf_weak_name_offsets()

int dwarf_weak_name_offsets(
Dwarf_Weak weak,
char ** weak_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The function dwarf_weak_name_offsets() returns DW_DLV_OK and sets *weak_name to a
pointer to a null-terminated string that gives the name of the weak name described by the Dwarf_Weak
descriptor weak. It also returns in the locations pointed to by die_offset, and cu_offset, the
offsets of the DIE representing the weakname, and the DIE representing the compilation-unit containing
the weakname, respectively. It returns DW_DLV_ERROR on error. It never returns
DW_DLV_NO_ENTRY. On a successful return from dwarf_weak_name_offsets() the storage
pointed to by weak_name should be free’d using dwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

5.8 Static Function Names Operations

This section is SGI specific and is not part of standard DWARF version 2.

These function operate on the .debug_funcnames section of the debugging information. The
.debug_funcnames section contains the names of static functions defined in the object, the offsets of the
DIEs that represent the definitions of the corresponding functions, and the offsets of the start of the
compilation-units that contain the definitions of those functions.

5.8.1 Debugger Interface Operations

5.8.1.1 dwarf_get_funcs()

int dwarf_get_funcs(
Dwarf_Debug dbg,
Dwarf_Func **funcs,
Dwarf_Signed *func_count,
Dwarf_Error *error)

The function dwarf_get_funcs() returns DW_DLV_OK and sets *func_count to the count of
static function names represented in the section containing static function names, i.e. .debug_funcnames. It
also stores, at *funcs, a pointer to a list of Dwarf_Func descriptors, one for each of the static
functions in the .debug_funcnames section. It returns DW_DLV_NOCOUNT on error. It returns
DW_DLV_NO_ENTRY if the .debug_funcnames section does not exist. On a successful return from this
function, the Dwarf_Func descriptors should be individually free’d using dwarf_dealloc() with

rev 1.48, 31 Mar 2002 - 30 -

- 31 -

the allocation type DW_DLA_FUNC, followed by the deallocation of the list itself with the allocation type
DW_DLA_LIST when the descriptors are no longer of interest.

Dwarf_Signed cnt;
Dwarf_Func *funcs;
int fres;

if ((fres = dwarf_get_funcs(dbg, &funcs, &error)) == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use funcs[i] */
dwarf_dealloc(dbg, funcs[i], DW_DLA_FUNC);

}
dwarf_dealloc(dbg, funcs, DW_DLA_LIST);

}

5.8.1.2 dwarf_funcname()

int dwarf_funcname(
Dwarf_Func func,
char ** return_name,
Dwarf_Error *error)

The function dwarf_funcname() returns DW_DLV_OK and sets *return_name to a pointer to a
null-terminated string that names the static function represented by the Dwarf_Func descriptor, func.
It returns DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY. On a successful return
from this function, the string should be free’d using dwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

5.8.1.3 dwarf_func_die_offset()

int dwarf_func_die_offset(
Dwarf_Func func,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_func_die_offset(), returns DW_DLV_OK and sets *return_offset to
the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the static function that
is described by the Dwarf_Func descriptor, func. It returns DW_DLV_ERROR on error. It never
returns DW_DLV_NO_ENTRY.

5.8.1.4 dwarf_func_cu_offset()

int dwarf_func_cu_offset(
Dwarf_Func func,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_func_cu_offset() returns DW_DLV_OK and sets *return_offset to the
offset in the section containing DIE’s, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the static function described by the Dwarf_Func descriptor, func. It returns
DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY.

rev 1.48, 31 Mar 2002 - 31 -

- 32 -

5.8.1.5 dwarf_func_name_offsets()

int dwarf_func_name_offsets(
Dwarf_Func func,
char **func_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The function dwarf_func_name_offsets() returns DW_DLV_OK and sets *func_name to a
pointer to a null-terminated string that gives the name of the static function described by the
Dwarf_Func descriptor func. It also returns in the locations pointed to by die_offset, and
cu_offset, the offsets of the DIE representing the static function, and the DIE representing the
compilation-unit containing the static function, respectively. It returns DW_DLV_ERROR on error. It
never returns DW_DLV_NO_ENTRY. On a successful return from dwarf_func_name_offsets()
the storage pointed to by func_name should be free’d using dwarf_dealloc(), with the allocation
type DW_DLA_STRING when no longer of interest.

5.9 User Defined Type Names Operations

This section is SGI specific and is not part of standard DWARF version 2.

These functions operate on the .debug_typenames section of the debugging information. The
.debug_typenames section contains the names of file-scope user-defined types, the offsets of the DIEs that
represent the definitions of those types, and the offsets of the compilation-units that contain the definitions
of those types.

5.9.1 Debugger Interface Operations

5.9.1.1 dwarf_get_types()

int dwarf_get_types(
Dwarf_Debug dbg,
Dwarf_Type **types,
Dwarf_Signed *typecount,
Dwarf_Error *error)

The function dwarf_get_types() returns DW_DLV_OK and sets *typecount to the count of
user-defined type names represented in the section containing user-defined type names, i.e.
.debug_typenames. It also stores at *types, a pointer to a list of Dwarf_Type descriptors, one for
each of the user-defined type names in the .debug_typenames section. It returns DW_DLV_NOCOUNT on
error. It returns DW_DLV_NO_ENTRY if the .debug_typenames section does not exist. On a successful
return from this function, the Dwarf_Type descriptors should be individually free’d using
dwarf_dealloc() with the allocation type DW_DLA_TYPENAME, followed by the deallocation of the
list itself with the allocation type DW_DLA_LIST when the descriptors are no longer of interest.

rev 1.48, 31 Mar 2002 - 32 -

- 33 -

Dwarf_Signed cnt;
Dwarf_Type *types;
int res;

if ((res = dwarf_get_types(dbg, &types,&cnt, &error)) == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use types[i] */
dwarf_dealloc(dbg, types[i], DW_DLA_TYPENAME);

}
dwarf_dealloc(dbg, types, DW_DLA_LIST);

}

5.9.1.2 dwarf_typename()

int dwarf_typename(
Dwarf_Type type,
char **return_name,
Dwarf_Error *error)

The function dwarf_typename() returns DW_DLV_OK and sets *return_name to a pointer to a
null-terminated string that names the user-defined type represented by the Dwarf_Type descriptor,
type. It returns DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY. On a successful
return from this function, the string should be free’d using dwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

5.9.1.3 dwarf_type_die_offset()

int dwarf_type_die_offset(
Dwarf_Type type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_type_die_offset() returns DW_DLV_OK and sets *return_offset to
the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the user-defined type
that is described by the Dwarf_Type descriptor, type. It returns DW_DLV_ERROR on error. It never
returns DW_DLV_NO_ENTRY.

5.9.1.4 dwarf_type_cu_offset()

int dwarf_type_cu_offset(
Dwarf_Type type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_type_cu_offset() returns DW_DLV_OK and sets *return_offset to the
offset in the section containing DIE’s, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the user-defined type described by the Dwarf_Type descriptor, type. It returns
DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY.

5.9.1.5 dwarf_type_name_offsets()

rev 1.48, 31 Mar 2002 - 33 -

- 34 -

int dwarf_type_name_offsets(
Dwarf_Type type,
char ** returned_name,
Dwarf_Off * die_offset,
Dwarf_Off * cu_offset,
Dwarf_Error *error)

The function dwarf_type_name_offsets() returns DW_DLV_OK and sets *returned_name
to a pointer to a null-terminated string that gives the name of the user-defined type described by the
Dwarf_Type descriptor type. It also returns in the locations pointed to by die_offset, and
cu_offset, the offsets of the DIE representing the user-defined type, and the DIE representing the
compilation-unit containing the user-defined type, respectively. It returns DW_DLV_ERROR on error. It
never returns DW_DLV_NO_ENTRY. On a successful return from dwarf_type_name_offsets()
the storage pointed to by returned_name should be free’d using dwarf_dealloc(), with the
allocation type DW_DLA_STRING when no longer of interest.

5.10 User Defined Static Variable Names Operations

This section is SGI specific and is not part of standard DWARF version 2.

These functions operate on the .debug_varnames section of the debugging information. The
.debug_varnames section contains the names of file-scope static variables, the offsets of the DIEs that
represent the definitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

5.10.1 Debugger Interface Operations

5.10.1.1 dwarf_get_vars()

int dwarf_get_vars(
Dwarf_Debug dbg,
Dwarf_Var **vars,
Dwarf_Signed *var_count,
Dwarf_Error *error)

The function dwarf_get_vars() returns DW_DLV_OK and sets *var_count to the count of file-
scope static variable names represented in the section containing file-scope static variable names, i.e.
.debug_varnames. It also stores, at *vars, a pointer to a list of Dwarf_Var descriptors, one for each
of the file-scope static variable names in the .debug_varnames section. It returns DW_DLV_ERROR on
error. It returns DW_DLV_NO_ENTRY if the .debug_varnames section does not exist. On a successful
return from this function, the Dwarf_Var descriptors should be individually free’d using
dwarf_dealloc() with the allocation type DW_DLA_VAR, followed by the deallocation of the list
itself with the allocation type DW_DLA_LIST when the descriptors are no longer of interest.

rev 1.48, 31 Mar 2002 - 34 -

- 35 -

Dwarf_Signed cnt;
Dwarf_Var *vars;
int res;

if ((res = dwarf_get_vars(dbg, &vars,&cnt &error)) == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use vars[i] */
dwarf_dealloc(dbg, vars[i], DW_DLA_VAR);

}
dwarf_dealloc(dbg, vars, DW_DLA_LIST);

}

5.10.1.2 dwarf_varname()

int dwarf_varname(
Dwarf_Var var,
char ** returned_name,
Dwarf_Error *error)

The function dwarf_varname() returns DW_DLV_OK and sets *returned_name to a pointer to a
null-terminated string that names the file-scope static variable represented by the Dwarf_Var descriptor,
var. It returns DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY. On a successful
return from this function, the string should be free’d using dwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

5.10.1.3 dwarf_var_die_offset()

int dwarf_var_die_offset(
Dwarf_Var var,
Dwarf_Off *returned_offset,
Dwarf_Error *error)

The function dwarf_var_die_offset() returns DW_DLV_OK and sets *returned_offset to
the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the file-scope static
variable that is described by the Dwarf_Var descriptor, var. It returns DW_DLV_ERROR on error. It
never returns DW_DLV_NO_ENTRY.

5.10.1.4 dwarf_var_cu_offset()

int dwarf_var_cu_offset(
Dwarf_Var var,
Dwarf_Off *returned_offset,
Dwarf_Error *error)

The function dwarf_var_cu_offset() returns DW_DLV_OK and sets *returned_offset to
the offset in the section containing DIE’s, i.e. .debug_info, of the compilation-unit header of the
compilation-unit that contains the file-scope static variable described by the Dwarf_Var descriptor,
var. It returns DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY.

5.10.1.5 dwarf_var_name_offsets()

rev 1.48, 31 Mar 2002 - 35 -

- 36 -

int dwarf_var_name_offsets(
Dwarf_Var var,
char **returned_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The function dwarf_var_name_offsets() returns DW_DLV_OK and sets *returned_name to
a pointer to a null-terminated string that gives the name of the file-scope static variable described by the
Dwarf_Var descriptor var. It also returns in the locations pointed to by die_offset, and
cu_offset, the offsets of the DIE representing the file-scope static variable, and the DIE representing
the compilation-unit containing the file-scope static variable, respectively. It returns DW_DLV_ERROR on
error. It never returns DW_DLV_NO_ENTRY. On a successful return from
dwarf_var_name_offsets() the storage pointed to by returned_name should be free’d using
dwarf_dealloc(), with the allocation type DW_DLA_STRING when no longer of interest.

5.11 Macro Information Operations

5.11.1 General Macro Operations

5.11.1.1 dwarf_find_macro_value_start()

char *dwarf_find_macro_value_start(char * macro_string);

Given a macro string in the standard form defined in the DWARF document ("name <space> value" or
"name(args)<space>value") this returns a pointer to the first byte of the macro value. It does not alter the
string pointed to by macro_string or copy the string: it returns a pointer into the string whose address was
passed in.

5.11.2 Debugger Interface Macro Operations

Macro information is accessed from the .debug_info section via the DW_AT_macro_info attribute (whose
value is an offset into .debug_macinfo).

No Functions yet defined.

5.11.3 Low Level Macro Information Operations

5.11.3.1 dwarf_get_macro_details()

int dwarf_get_macro_details(Dwarf_Debug /*dbg*/,
Dwarf_Off macro_offset,
Dwarf_Unsigned maximum_count,
Dwarf_Signed * entry_count,
Dwarf_Macro_Details ** details,
Dwarf_Error * err);

dwarf_get_macro_details() returns DW_DLV_OK and sets entry_count to the number of
details records returned through the details pointer. The data returned thru details should be
freed by a call to dwarf_dealloc() with the allocation type DW_DLA_STRING. If DW_DLV_OK is
returned, the entry_count will be at least 1, since a compilation unit with macro information but no
macros will have at least one macro data byte of 0.

dwarf_get_macro_details() begins at the macro_offset offset you supply and ends at the
end of a compilation unit or at maximum_count detail records (whichever comes first). If
maximum_count is 0, it is treated as if it were the maximum possible unsigned integer.

dwarf_get_macro_details() attempts to set dmd_fileindex to the correct file in every
details record. If it is unable to do so (or whenever the current file index is unknown, it sets
dmd_fileindex to -1.

rev 1.48, 31 Mar 2002 - 36 -

- 37 -

dwarf_get_macro_details() returns DW_DLV_ERROR on error. It returns
DW_DLV_NO_ENTRY if there is no more macro information at that macro_offset. If
macro_offset is passed in as 0, a DW_DLV_NO_ENTRY return means there is no macro information.

Dwarf_Unsigned max = 0;
Dwarf_Off cur_off = 0;
Dwarf_Signed count = 0;
Dwarf_Macro_Details *maclist;
int errv;

/* loop thru all the compilation units macro info */
while((errv = dwarf_macro_details(dbg, cur_off,max,

&count,&maclist,&error))== DW_DLV_OK) {
for (i = 0; i < count; ++i) {
/* use maclist[i] */

}
cur_off = maclist[count-1].dmd_offset + 1;
dwarf_dealloc(dbg, maclist, DW_DLA_STRING);

}

5.12 Low Level Frame Operations

These functions provide information about stack frames to be used to perform stack traces. The
information is an abstraction of a table with a row per instruction and a column per register and a column
for the canonical frame address (CFA, which corresponds to the notion of a frame pointer), as well as a
column for the return address. Each cell in the table contains one of the following:

1. A register + offset(a)(b)

2. A register(c)(d)

3. A marker (DW_FRAME_UNDEFINED_VAL) meaning register value undefined

4. A marker (DW_FRAME_SAME_VAL) meaning register value same as in caller

(a) When the column is DW_FRAME_CFA_COL: the register number is a real hardware register, not a
reference to DW_FRAME_CFA_COL, not DW_FRAME_UNDEFINED_VAL, and not
DW_FRAME_SAME_VAL. The CFA rule value should be the stack pointer plus offset 0 when no other
value makes sense. A value of DW_FRAME_SAME_VAL would be semi-logical, but since the CFA is
not a real register, not really correct. A value of DW_FRAME_UNDEFINED_VAL would imply the CFA
is undefined -- this seems to be a useless notion, as the CFA is a means to finding real registers, so those
real registers should be marked DW_FRAME_UNDEFINED_VAL, and the CFA column content
(whatever register it specifies) becomes unreferenced by anything.

(b) When the column is not DW_FRAME_CFA_COL, the ’register’ will and must be
DW_FRAME_CFA_COL, implying that to get the final location for the column one must add the offset
here plus the DW_FRAME_CFA_COL rule value.

(c) When the column is DW_FRAME_CFA_COL, then the register number is (must be) a real hardware
register . If it were DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL it would be a
marker, not a register number.

rev 1.48, 31 Mar 2002 - 37 -

- 38 -

(d) When the column is not DW_FRAME_CFA_COL, the register may be a hardware register. It will not
be DW_FRAME_CFA_COL.

There is no ’column’ for DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL.

Figure 3 is machine dependent and represents MIPS cpu register assignments.

ii
NAME value PURPOSEii
DW_FRAME_CFA_COL 0 column used for CFA
DW_FRAME_REG1 1 integer regster 1
DW_FRAME_REG2 2 integer register 2
--- obvious names and values here
DW_FRAME_REG30 30 integer register 30
DW_FRAME_REG31 31 integer register 31
DW_FRAME_FREG0 32 floating point register 0
DW_FRAME_FREG1 33 floating point register 1
--- obvious names and values here
DW_FRAME_FREG30 62 floating point register 30
DW_FRAME_FREG31 63 floating point register 31
DW_FRAME_RA_COL 64 column recording ra
DW_FRAME_UNDEFINED_VAL1034 register val undefined
DW_FRAME_SAME_VAL 1035 register same as in calleriicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 4. Frame Information Rule Assignments

The following table shows SGI/MIPS specific special cell values: these values mean that the cell has the
value undefined or same value respectively, rather than containing a register or register+offset.

iii
NAME value PURPOSEiii
DW_FRAME_UNDEFINED_VAL 1034 means undefined value.

Not a column or register value
DW_FRAME_SAME_VAL 1035 means ’same value’ as

caller had. Not a column or
register valueiiic

c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Figure 5. Frame Information Special Values

5.12.0.1 dwarf_get_fde_list()

int dwarf_get_fde_list(
Dwarf_Debug dbg,
Dwarf_Cie **cie_data,
Dwarf_Signed *cie_element_count,
Dwarf_Fde **fde_data,
Dwarf_Signed *fde_element_count,
Dwarf_Error *error);

dwarf_get_fde_list() stores a pointer to a list of Dwarf_Cie descriptors in *cie_data, and
the count of the number of descriptors in *cie_element_count. There is a descriptor for each CIE in
the .debug_frame section. Similarly, it stores a pointer to a list of Dwarf_Fde descriptors in
*fde_data, and the count of the number of descriptors in *fde_element_count. There is one

rev 1.48, 31 Mar 2002 - 38 -

- 39 -

descriptor per FDE in the .debug_frame section. dwarf_get_fde_list() returns DW_DLV_EROR
on error. It returns DW_DLV_NO_ENTRY if it cannot find frame entries. It returns DW_DLV_OK on a
successful return.

On successful return, each of the structures pointed to by a descriptor should be individually free’d using
dwarf_dealloc() with either the allocation type DW_DLA_CIE, or DW_DLA_FDE as appropriate
when no longer of interest. Each of the blocks of descriptors should be free’d using
dwarf_dealloc() with the allocation type DW_DLA_LIST when no longer of interest.

Dwarf_Signed cnt;
Dwarf_Cie *cie_data;
Dwarf_Signed cie_count;
Dwarf_Fde *fde_data;
Dwarf_Signed fde_count;
int fres;

if ((fres = dwarf_get_fde_list(dbg,&cie_data,&cie_count,
&fde_data,&fde_count,&error)) == DW_DLV_OK) {

for (i = 0; i < cie_count; ++i) {
/* use cie[i] */
dwarf_dealloc(dbg, cie_data[i], DW_DLA_CIE);

}
for (i = 0; i < fde_count; ++i) {

/* use fde[i] */
dwarf_dealloc(dbg, fde_data[i], DW_DLA_FDE);

}
dwarf_dealloc(dbg, cie_data, DW_DLA_LIST);
dwarf_dealloc(dbg, fde_data, DW_DLA_LIST);

}

5.12.0.2 dwarf_get_fde_list_eh()

int dwarf_get_fde_list_eh(
Dwarf_Debug dbg,
Dwarf_Cie **cie_data,
Dwarf_Signed *cie_element_count,
Dwarf_Fde **fde_data,
Dwarf_Signed *fde_element_count,
Dwarf_Error *error);

dwarf_get_fde_list_eh() is identical to dwarf_get_fde_list() except that
dwarf_get_fde_list_eh() reads the GNU ecgs section named .eh_frame (C++ exception handling
information).

dwarf_get_fde_list_eh() stores a pointer to a list of Dwarf_Cie descriptors in *cie_data,
and the count of the number of descriptors in *cie_element_count. There is a descriptor for each
CIE in the .debug_frame section. Similarly, it stores a pointer to a list of Dwarf_Fde descriptors in
*fde_data, and the count of the number of descriptors in *fde_element_count. There is one
descriptor per FDE in the .debug_frame section. dwarf_get_fde_list() returns DW_DLV_EROR
on error. It returns DW_DLV_NO_ENTRY if it cannot find exception handling entries. It returns
DW_DLV_OK on a successful return.

rev 1.48, 31 Mar 2002 - 39 -

- 40 -

On successful return, each of the structures pointed to by a descriptor should be individually free’d using
dwarf_dealloc() with either the allocation type DW_DLA_CIE, or DW_DLA_FDE as appropriate
when no longer of interest. Each of the blocks of descriptors should be free’d using
dwarf_dealloc() with the allocation type DW_DLA_LIST when no longer of interest.

5.12.0.3 dwarf_get_cie_of_fde()

int dwarf_get_cie_of_fde(Dwarf_Fde fde,
Dwarf_Cie *cie_returned,
Dwarf_Error *error);

dwarf_get_cie_of_fde() stores a Dwarf_Cie into the Dwarf_Cie that cie_returned
points at.

If one has called dwarf_get_fde_list and does not wish to dwarf_dealloc() all the individual FDEs
immediately, one must also avoid dwarf_dealloc-ing the CIEs for those FDEs not immediately dealloc’d.
Failing to observe this restriction will cause the FDE(s) not dealloced to become invalid: an FDE contains
(hidden in it) a CIE pointer which will be be invalid (stale, pointing to freed memory) if the CIE is
dealloc’d. The invalid CIE pointer internal to the FDE cannot be detected as invalid by libdwarf. If one
later passes an FDE with a stale internal CIE pointer to one of the routines taking an FDE as input the result
will be failure of the call (returning DW_DLV_ERROR) at best and it is possible a coredump or worse will
happpen (eventually).

dwarf_get_cie_of_fde() returns DW_DLV_OK if it is successful (it will be unless fde is the NULL
pointer). It returns DW_DLV_ERROR if the fde is invalid (NULL).

Each Dwarf_Fde descriptor describes information about the frame for a particular subroutine or
function.

int dwarf_get_fde_for_die is SGI/MIPS specific.

5.12.0.4 dwarf_get_fde_for_die()

int dwarf_get_fde_for_die(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Fde * return_fde,
Dwarf_Error *error)

When it succeeds, dwarf_get_fde_for_die() returns DW_DLV_OK and sets *return_fde to a
Dwarf_Fde descriptor representing frame information for the given die. It looks for the
DW_AT_MIPS_fde attribute in the given die. If it finds it, is uses the value of the attribute as the offset
in the .debug_frame section where the FDE begins. If there is no DW_AT_MIPS_fde it returns
DW_DLV_NO_ENTRY. If there is an error it returns DW_DLV_ERROR.

5.12.0.5 dwarf_get_fde_range()

rev 1.48, 31 Mar 2002 - 40 -

- 41 -

int dwarf_get_fde_range(
Dwarf_Fde fde,
Dwarf_Addr *low_pc,
Dwarf_Unsigned *func_length,
Dwarf_Ptr *fde_bytes,
Dwarf_Unsigned *fde_byte_length,
Dwarf_Off *cie_offset,
Dwarf_Signed *cie_index,
Dwarf_Off *fde_offset,
Dwarf_Error *error);

On success, dwarf_get_fde_range() returns DW_DLV_OK. The location pointed to by low_pc
is set to the low pc value for this function. The location pointed to by func_length is set to the length
of the function in bytes. This is essentially the length of the text section for the function. The location
pointed to by fde_bytes is set to the address where the FDE begins in the .debug_frame section. The
location pointed to by fde_byte_length is set to the length in bytes of the portion of .debug_frame
for this FDE. This is the same as the value returned by dwarf_get_fde_range. The location pointed
to by cie_offset is set to the offset in the .debug_frame section of the CIE used by this FDE. The
location pointed to by cie_index is set to the index of the CIE used by this FDE. The index is the
index of the CIE in the list pointed to by cie_data as set by the function dwarf_get_fde_list().
However, if the function dwarf_get_fde_for_die() was used to obtain the given fde, this index
may not be correct. The location pointed to by fde_offset is set to the offset of the start of this FDE in
the .debug_frame section. dwarf_get_fde_range() returns DW_DLV_ERROR on error.

5.12.0.6 dwarf_get_cie_info()

int dwarf_get_cie_info(
Dwarf_Cie cie,
Dwarf_Unsigned *bytes_in_cie,
Dwarf_Small *version,
char **augmenter,
Dwarf_Unsigned *code_alignment_factor,
Dwarf_Signed *data_alignment_factor,
Dwarf_Half *return_address_register_rule,
Dwarf_Ptr *initial_instructions,
Dwarf_Unsigned *initial_instructions_length,
Dwarf_Error *error);

dwarf_get_cie_info() is primarily for Internal-level Interface consumers. If successful, it returns
DW_DLV_OK and sets *bytes_in_cie to the number of bytes in the portion of the frames section for
the CIE represented by the given Dwarf_Cie descriptor, cie. The other fields are directly taken from
the cie and returned, via the pointers to the caller. It returns DW_DLV_ERROR on error.

5.12.0.7 dwarf_get_fde_instr_bytes()

int dwarf_get_fde_instr_bytes(
Dwarf_Fde fde,
Dwarf_Ptr *outinstrs,
Dwarf_Unsigned *outlen,
Dwarf_Error *error);

dwarf_get_fde_instr_bytes() returns DW_DLV_OK and sets *outinstrs to a pointer to a set
of bytes which are the actual frame instructions for this fde. It also sets *outlen to the length, in bytes,
of the frame instructions. It returns DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY.
The intent is to allow low-level consumers like a dwarf-dumper to print the bytes in some fashion. The

rev 1.48, 31 Mar 2002 - 41 -

- 42 -

memory pointed to by outinstrs must not be changed and there is nothing to free.

5.12.0.8 dwarf_get_fde_info_for_reg()

int dwarf_get_fde_info_for_reg(
Dwarf_Fde fde,
Dwarf_Half table_column,
Dwarf_Addr pc_requested,
Dwarf_Signed *offset_relevant,
Dwarf_Signed *register_num,
Dwarf_Signed *offset,
Dwarf_Addr *row_pc,
Dwarf_Error *error);

dwarf_get_fde_info_for_reg() returns DW_DLV_OK and sets *offset_relevant to non-
zero if the offset is relevant for the row specified by pc_requested and column specified by
table_column, for the FDE specified by fde. The intent is to return the rule for the given pc value
and register. The location pointed to by register_num is set to the register value for the rule. The
location pointed to by offset is set to the offset value for the rule. If offset is not relevant for this rule,
*offset_relevant is set to zero. Since more than one pc value will have rows with identical entries,
the user may want to know the earliest pc value after which the rules for all the columns remained
unchanged. Recall that in the virtual table that the frame information represents there may be one or more
table rows with identical data (each such table row at a different pc value). Given a pc_requested
which refers to a pc in such a group of identical rows, the location pointed to by row_pc is set to the
lowest pc value within the group of identical rows. The value put in *register_num any of the
DW_FRAME_* table columns values specified in libdwarf.h or dwarf.h.

dwarf_get_fde_info_for_reg returns DW_DLV_ERROR if there is an error.

It is usable with either dwarf_get_fde_n() or dwarf_get_fde_at_pc().

5.12.0.9 dwarf_get_fde_info_for_all_regs()

int dwarf_get_fde_info_for_all_regs(
Dwarf_Fde fde,
Dwarf_Addr pc_requested,
Dwarf_Regtable *reg_table,
Dwarf_Addr *row_pc,
Dwarf_Error *error);

dwarf_get_fde_info_for_all_regs() returns DW_DLV_OK and sets *reg_table for the
row specified by pc_requested for the FDE specified by fde. The intent is to return the rules for
decoding all the registers, given a pc value. reg_table is an array of rules, one for each register
specified in dwarf.h. The rule for each register contains three items - dw_regnum which denotes the
register value for that rule, dw_offset which denotes the offset value for that rule and
dw_offset_relevant which is set to zero if offset is not relevant for that rule. See
dwarf_get_fde_info_fo_reg() for a description of row_pc.

dwarf_get_fde_info_for_all_regs returns DW_DLV_ERROR if there is an error.

int dwarf_get_fde_info_for_all_regs is SGI/MIPS specific.

5.12.0.10 dwarf_get_fde_n()

rev 1.48, 31 Mar 2002 - 42 -

- 43 -

int dwarf_get_fde_n(
Dwarf_Fde *fde_data,
Dwarf_Unsigned fde_index,
Dwarf_Fde *returned_fde
Dwarf_Error *error);

dwarf_get_fde_n() returns DW_DLV_OK and sets returned_fde to the Dwarf_Fde
descriptor whose index is fde_index in the table of Dwarf_Fde descriptors pointed to by
fde_data. The index starts with 0. Returns DW_DLV_NO_ENTRY if the index does not exist in the
table of Dwarf_Fde descriptors. Returns DW_DLV_ERROR if there is an error. This function cannot be
used unless the block of Dwarf_Fde descriptors has been created by a call to
dwarf_get_fde_list().

5.12.0.11 dwarf_get_fde_at_pc()

int dwarf_get_fde_at_pc(
Dwarf_Fde *fde_data,
Dwarf_Addr pc_of_interest,
Dwarf_Fde *returned_fde,
Dwarf_Addr *lopc,
Dwarf_Addr *hipc,
Dwarf_Error *error);

dwarf_get_fde_at_pc() returns DW_DLV_OK and sets returned_fde to a Dwarf_Fde
descriptor for a function which contains the pc value specified by pc_of_interest. In addition, it sets
the locations pointed to by lopc and hipc to the low address and the high address covered by this FDE,
respectively. It returns DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if
pc_of_interest is not in any of the FDEs represented by the block of Dwarf_Fde descriptors
pointed to by fde_data. This function cannot be used unless the block of Dwarf_Fde descriptors has
been created by a call to dwarf_get_fde_list().

5.12.0.12 dwarf_expand_frame_instructions()

int dwarf_expand_frame_instructions(
Dwarf_Debug dbg,
Dwarf_Ptr instruction,
Dwarf_Unsigned i_length,
Dwarf_Frame_Op **returned_op_list,
Dwarf_Signed * returned_op_count,
Dwarf_Error *error);

dwarf_expand_frame_instructions() is a High-level interface function which expands a frame
instruction byte stream into an array of Dwarf_Frame_Op structures. To indicate success, it returns
DW_DLV_OK. The address where the byte stream begins is specified by instruction, and the length
of the byte stream is specified by i_length. The location pointed to by returned_op_list is set
to point to a table of returned_op_count pointers to Dwarf_Frame_Op which contain the frame
instructions in the byte stream. It returns DW_DLV_ERROR on error. It never returns
DW_DLV_NO_ENTRY. After a successful return, the array of structures should be freed using
dwarf_dealloc() with the allocation type DW_DLA_FRAME_BLOCK (when they are no longer of
interest).

rev 1.48, 31 Mar 2002 - 43 -

- 44 -

Dwarf_Signed cnt;
Dwarf_Frame_Op *frameops;
Dwarf_Ptr instruction;
Dwarf_Unsigned len;
int res;

if (expand_frame_instructions(dbg,instruction,len, &frameops,&cnt, &error)
== DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use frameops[i] */

}
dwarf_dealloc(dbg, frameops, DW_DLA_FRAME_BLOCK);

}

5.13 Location Expression Evaluation

An "interpreter" which evaluates a location expression is required in any debugger. There is no interface
defined here at this time.

One problem with defining an interface is that operations are machine dependent: they depend on the
interpretation of register numbers and the methods of getting values from the environment the expression is
applied to.

It would be desirable to specify an interface.

5.13.1 Location List Internal-level Interface

5.13.1.1 dwarf_get_loclist_entry()

int dwarf_get_loclist_entry(
Dwarf_Debug dbg,
Dwarf_Unsigned offset,
Dwarf_Addr *hipc_offset,
Dwarf_Addr *lopc_offset,
Dwarf_Ptr *data,
Dwarf_Unsigned *entry_len,
Dwarf_Unsigned *next_entry,
Dwarf_Error *error)

dwarf_dwarf_get_loclist_entry() returns DW_DLV_OK if successful. DW_DLV_ERROR is
returned on error. The function reads a location list entry starting at offset and returns through pointers
(when successful) the high pc hipc_offset, low pc lopc_offset, a pointer to the location
description data data, the length of the location description data entry_len, and the offset of the next
location description entry next_entry. When hipc and lopc are zero, this is the end of a particular
location list.

The hipc_offset, low pc lopc_offset are offsets from the beginning of the current procedure,
not genuine pc values.

rev 1.48, 31 Mar 2002 - 44 -

- 45 -

5.14 Abbreviations access

These are Internal-level Interface functions. Debuggers can ignore this.

5.14.1 dwarf_get_abbrev()

int dwarf_get_abbrev(
Dwarf_Debug dbg,
Dwarf_Unsigned offset,
Dwarf_Abbrev *returned_abbrev,
Dwarf_Unsigned *length,
Dwarf_Unsigned *attr_count,
Dwarf_Error *error)

The function dwarf_get_abbrev() returns DW_DLV_OK and sets *returned_abbrev to
Dwarf_Abbrev descriptor for an abbreviation at offset *offset in the abbreviations section (i.e
.debug_abbrev) on success. The user is responsible for making sure that a valid abbreviation begins at
offset in the abbreviations section. The location pointed to by length is set to the length in bytes of
the abbreviation in the abbreviations section. The location pointed to by attr_count is set to the
number of attributes in the abbreviation. An abbreviation entry with a length of 1 is the 0 byte of the last
abbreviation entry of a compilation unit. dwarf_get_abbrev() returns DW_DLV_ERROR on error.

5.14.2 dwarf_get_abbrev_tag()

int dwarf_get_abbrev_tag(
Dwarf_abbrev abbrev,
Dwarf_Half *return_tag,
Dwarf_Error *error);P

If successful, dwarf_get_abbrev_tag() returns DW_DLV_OK and sets *return_tag to the tag
of the given abbreviation. It returns DW_DLV_ERROR on error. It never returns DW_DLV_NO_ENTRY.

5.14.3 dwarf_get_abbrev_code()

int dwarf_get_abbrev_code(
Dwarf_abbrev abbrev,
Dwarf_Unsigned *return_code,
Dwarf_Error *error);P

If successful, dwarf_get_abbrev_code() returns DW_DLV_OK and sets *return_code to the
abbreviation code of the given abbreviation. It returns DW_DLV_ERROR on error. It never returns
DW_DLV_NO_ENTRY.

5.14.4 dwarf_get_abbrev_children_flag()

int dwarf_get_abbrev_children_flag(
Dwarf_Abbrev abbrev,
Dwarf_Signed *returned_flag,
Dwarf_Error *error)

The function dwarf_get_abbrev_children_flag() returns DW_DLV_OK and sets
returned_flag to DW_children_no (if the given abbreviation indicates that a die with that
abbreviation has no children) or DW_children_yes (if the given abbreviation indicates that a die with
that abbreviation has a child). It returns DW_DLV_ERROR on error.

rev 1.48, 31 Mar 2002 - 45 -

- 46 -

5.14.5 dwarf_get_abbrev_entry()

int dwarf_get_abbrev_entry(
Dwarf_Abbrev abbrev,
Dwarf_Signed index,
Dwarf_Half *attr_num,
Dwarf_Signed *form,
Dwarf_Off *offset,
Dwarf_Error *error)

If successful, dwarf_get_abbrev_entry() returns DW_DLV_OK and sets *attr_num to the
attribute code of the attribute whose index is specified by index in the given abbreviation. The index
starts at 0. The location pointed to by form is set to the form of the attribute. The location pointed to by
offset is set to the byte offset of the attribute in the abbreviations section. It returns
DW_DLV_NO_ENTRY if the index specified is outside the range of attributes in this abbreviation. It returns
DW_DLV_ERROR on error.

5.15 String Section Operations

The .debug_str section contains only strings. Debuggers need never use this interface: it is only for
debugging problems with the string section itself.

5.15.1 dwarf_get_str()

int dwarf_get_str(
Dwarf_Debug dbg,
Dwarf_Off offset,
char **string,
Dwarf_Signed *returned_str_len,
Dwarf_Error *error)

The function dwarf_get_str() returns DW_DLV_OK and sets *returned_str_len to the
length of the string, not counting the null terminator, that begins at the offset specified by offset in the
.debug_str section. The location pointed to by string is set to a pointer to this string. The next string in
the .debug_str section begins at the previous offset + 1 + *returned_str_len. A zero-length
string is NOT the end of the section. If there is no .debug_str section, DW_DLV_NO_ENTRY is returned.
If there is an error, DW_DLV_ERROR is returned.

5.16 Address Range Operations

These functions provide information about address ranges. Address ranges map ranges of pc values to the
corresponding compilation-unit die that covers the address range.

5.16.1 dwarf_get_aranges()

int dwarf_get_aranges(
Dwarf_Debug dbg,
Dwarf_Arange **aranges,
Dwarf_Signed * returned_arange_count,
Dwarf_Error *error)

The function dwarf_get_aranges() returns DW_DLV_OK and sets
*returned_arange_count to the count of the number of address ranges in the .debug_aranges
section. It sets *aranges to point to a block of Dwarf_Arange descriptors, one for each address
range. It returns DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if there is no

rev 1.48, 31 Mar 2002 - 46 -

- 47 -

.debug_aranges section.

Dwarf_Signed cnt;
Dwarf_Arange *arang;

if ((dwarf_get_aranges(dbg, &arang,&cnt, &error)) == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use arang[i] */
dwarf_dealloc(dbg, arang[i], DW_DLA_ARANGE);

}
dwarf_dealloc(dbg, arang, DW_DLA_LIST);

}

int dwarf_get_arange(
Dwarf_Arange *aranges,
Dwarf_Unsigned arange_count,
Dwarf_Addr address,
Dwarf_Arange *returned_arange,
Dwarf_Error *error)

The function dwarf_get_arange() takes as input a pointer to a block of Dwarf_Arange pointers,
and a count of the number of descriptors in the block. It then searches for the descriptor that covers the
given address. If it finds one, it returns DW_DLV_OK and sets *returned_arange to the
descriptor. It returns DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if there is no
.debug_aranges entry covering that address.

5.16.2 dwarf_get_cu_die_offset()

int dwarf_get_cu_die_offset(
Dwarf_Arange arange,
Dwarf_Off *returned_cu_die_offset,
Dwarf_Error *error)

The function dwarf_get_cu_die_offset() takes a Dwarf_Arange descriptor as input, and if
successful returns DW_DLV_OK and sets *returned_cu_die_offset to the offset in the
.debug_info section of the compilation-unit DIE for the compilation-unit represented by the given address
range. It returns DW_DLV_ERROR on error.

5.16.3 dwarf_get_arange_cu_header_offset()

int dwarf_get_arange_cu_header_offset(
Dwarf_Arange arange,
Dwarf_Off *returned_cu_header_offset,
Dwarf_Error *error)

The function dwarf_get_arange_cu_header_offset() takes a Dwarf_Arange descriptor as
input, and if successful returns DW_DLV_OK and sets *returned_cu_header_offset to the offset
in the .debug_info section of the compilation-unit header for the compilation-unit represented by the given
address range. It returns DW_DLV_ERROR on error.

This function added Rev 1.45, June, 2001.

rev 1.48, 31 Mar 2002 - 47 -

- 48 -

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if the version of libdwarf linked into an application has this
function.

5.16.4 dwarf_get_arange_info()

int dwarf_get_arange_info(
Dwarf_Arange arange,
Dwarf_Addr *start,
Dwarf_Unsigned *length,
Dwarf_Off *cu_die_offset,
Dwarf_Error *error)

The function dwarf_get_arange_info() returns DW_DLV_OK and stores the starting value of the
address range in the location pointed to by start, the length of the address range in the location pointed
to by length, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-
unit represented by the address range. It returns DW_DLV_ERROR on error.

5.17 General Low Level Operations

This function is low-level and intended for use only by programs such as dwarf-dumpers.

5.17.1 dwarf_get_address_size()

int dwarf_get_address_size(Dwarf_Debug dbg,
Dwarf_Half *addr_size,
Dwarf_Error *error)

The function dwarf_get_address_size() returns DW_DLV_OK on success and sets the
*addr_size to the size in bytes of an address. In case of error, it returns DW_DLV_ERROR and does
not set *addr_size.

5.18 Utility Operations

These functions aid in the management of errors encountered when using functions in the libdwarf library
and releasing memory allocated as a result of a libdwarf operation.

5.18.1 dwarf_errno()

Dwarf_Unsigned dwarf_errno(
Dwarf_Error error)

The function dwarf_errno() returns the error number corresponding to the error specified by
error.

5.18.2 dwarf_errmsg()

const char* dwarf_errmsg(
Dwarf_Error error)

The function dwarf_errmsg() returns a pointer to a null-terminated error message string
corresponding to the error specified by error. The string returned by dwarf_errmsg() should not
be deallocated using dwarf_dealloc().

rev 1.48, 31 Mar 2002 - 48 -

- 49 -

The set of errors enumerated in Figure 3 below were defined in Dwarf 1. These errors are not used by the
current implementation of Dwarf 2.
iii
SYMBOLIC NAME DESCRIPTIONiii
DW_DLE_NE No error (0)
DW_DLE_VMM Version of DWARF information newer than libdwarf
DW_DLE_MAP Memory map failure
DW_DLE_LEE Propagation of libelf error
DW_DLE_NDS No debug section
DW_DLE_NLS No line section
DW_DLE_ID Requested information not associated with descriptor
DW_DLE_IOF I/O failure
DW_DLE_MAF Memory allocation failure
DW_DLE_IA Invalid argument
DW_DLE_MDE Mangled debugging entry
DW_DLE_MLE Mangled line number entry
DW_DLE_FNO File descriptor does not refer to an open file
DW_DLE_FNR File is not a regular file
DW_DLE_FWA File is opened with wrong access
DW_DLE_NOB File is not an object file
DW_DLE_MOF Mangled object file header
DW_DLE_EOLL End of location list entries
DW_DLE_NOLL No location list section
DW_DLE_BADOFF Invalid offset
DW_DLE_EOS End of section
DW_DLE_ATRUNC Abbreviations section appears truncated
DW_DLE_BADBITC Address size passed to dwarf badiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 6. List of Dwarf Error Codes

The set of errors returned by SGI Libdwarf functions is listed below. Some of the errors are SGI
specific.

rev 1.48, 31 Mar 2002 - 49 -

- 50 -

ii
SYMBOLIC NAME DESCRIPTIONii
DW_DLE_DBG_ALLOC Could not allocate Dwarf_Debug struct
DW_DLE_FSTAT_ERROR Error in fstat()-ing object
DW_DLE_FSTAT_MODE_ERROR Error in mode of object file
DW_DLE_INIT_ACCESS_WRONG Incorrect access to dwarf_init()
DW_DLE_ELF_BEGIN_ERROR Error in elf_begin() on object
DW_DLE_ELF_GETEHDR_ERROR Error in elf_getehdr() on object
DW_DLE_ELF_GETSHDR_ERROR Error in elf_getshdr() on object
DW_DLE_ELF_STRPTR_ERROR Error in elf_strptr() on object
DW_DLE_DEBUG_INFO_DUPLICATE Multiple .debug_info sections
DW_DLE_DEBUG_INFO_NULL No data in .debug_info section
DW_DLE_DEBUG_ABBREV_DUPLICATE Multiple .debug_abbrev sections
DW_DLE_DEBUG_ABBREV_NULL No data in .debug_abbrev section
DW_DLE_DEBUG_ARANGES_DUPLICATE Multiple .debug_arange sections
DW_DLE_DEBUG_ARANGES_NULL No data in .debug_arange section
DW_DLE_DEBUG_LINE_DUPLICATE Multiple .debug_line sections
DW_DLE_DEBUG_LINE_NULL No data in .debug_line section
DW_DLE_DEBUG_LOC_DUPLICATE Multiple .debug_loc sections
DW_DLE_DEBUG_LOC_NULL No data in .debug_loc section
DW_DLE_DEBUG_MACINFO_DUPLICATE Multiple .debug_macinfo sections
DW_DLE_DEBUG_MACINFO_NULL No data in .debug_macinfo section
DW_DLE_DEBUG_PUBNAMES_DUPLICATE Multiple .debug_pubnames sections
DW_DLE_DEBUG_PUBNAMES_NULL No data in .debug_pubnames section
DW_DLE_DEBUG_STR_DUPLICATE Multiple .debug_str sections
DW_DLE_DEBUG_STR_NULL No data in .debug_str section
DW_DLE_CU_LENGTH_ERROR Length of compilation-unit bad
DW_DLE_VERSION_STAMP_ERROR Incorrect Version Stamp
DW_DLE_ABBREV_OFFSET_ERROR Offset in .debug_abbrev bad
DW_DLE_ADDRESS_SIZE_ERROR Size of addresses in target bad
DW_DLE_DEBUG_INFO_PTR_NULL Pointer into .debug_info in DIE null
DW_DLE_DIE_NULL Null Dwarf_Die
DW_DLE_STRING_OFFSET_BAD Offset in .debug_str bad
DW_DLE_DEBUG_LINE_LENGTH_BAD Length of .debug_line segment bad
DW_DLE_LINE_PROLOG_LENGTH_BAD Length of .debug_line prolog bad
DW_DLE_LINE_NUM_OPERANDS_BAD Number of operands to line instr bad
DW_DLE_LINE_SET_ADDR_ERROR Error in DW_LNE_set_address instruction
DW_DLE_LINE_EXT_OPCODE_BAD Error in DW_EXTENDED_OPCODE instruction
DW_DLE_DWARF_LINE_NULL Null Dwarf_line argument
DW_DLE_INCL_DIR_NUM_BAD Error in included directory for given line
DW_DLE_LINE_FILE_NUM_BAD File number in .debug_line bad
DW_DLE_ALLOC_FAIL Failed to allocate required structs
DW_DLE_DBG_NULL Null Dwarf_Debug argument
DW_DLE_DEBUG_FRAME_LENGTH_BAD Error in length of frame
DW_DLE_FRAME_VERSION_BAD Bad version stamp for frame
DW_DLE_CIE_RET_ADDR_REG_ERROR Bad register specified for return address
DW_DLE_FDE_NULL Null Dwarf_Fde argument
DW_DLE_FDE_DBG_NULL No Dwarf_Debug associated with FDE
DW_DLE_CIE_NULL Null Dwarf_Cie argument
DW_DLE_CIE_DBG_NULL No Dwarf_Debug associated with CIE
DW_DLE_FRAME_TABLE_COL_BAD Bad column in frame table specifiediicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 7. List of Dwarf 2 Error Codes (continued)

rev 1.48, 31 Mar 2002 - 50 -

- 51 -

ii
SYMBOLIC NAME DESCRIPTIONii
DW_DLE_PC_NOT_IN_FDE_RANGE PC requested not in address range of FDE
DW_DLE_CIE_INSTR_EXEC_ERROR Error in executing instructions in CIE
DW_DLE_FRAME_INSTR_EXEC_ERROR Error in executing instructions in FDE
DW_DLE_FDE_PTR_NULL Null Pointer to Dwarf_Fde specified
DW_DLE_RET_OP_LIST_NULL No location to store pointer to Dwarf_Frame_Op
DW_DLE_LINE_CONTEXT_NULL Dwarf_Line has no context
DW_DLE_DBG_NO_CU_CONTEXT dbg has no CU context for dwarf_siblingof()
DW_DLE_DIE_NO_CU_CONTEXT Dwarf_Die has no CU context
DW_DLE_FIRST_DIE_NOT_CU First DIE in CU not DW_TAG_compilation_unit
DW_DLE_NEXT_DIE_PTR_NULL Error in moving to next DIE in .debug_info
DW_DLE_DEBUG_FRAME_DUPLICATE Multiple .debug_frame sections
DW_DLE_DEBUG_FRAME_NULL No data in .debug_frame section
DW_DLE_ABBREV_DECODE_ERROR Error in decoding abbreviation
DW_DLE_DWARF_ABBREV_NULL Null Dwarf_Abbrev specified
DW_DLE_ATTR_NULL Null Dwarf_Attribute specified
DW_DLE_DIE_BAD DIE bad
DW_DLE_DIE_ABBREV_BAD No abbreviation found for code in DIE
DW_DLE_ATTR_FORM_BAD Inappropriate attribute form for attribute
DW_DLE_ATTR_NO_CU_CONTEXT No CU context for Dwarf_Attribute struct
DW_DLE_ATTR_FORM_SIZE_BAD Size of block in attribute value bad
DW_DLE_ATTR_DBG_NULL No Dwarf_Debug for Dwarf_Attribute struct
DW_DLE_BAD_REF_FORM Inappropriate form for reference attribute
DW_DLE_ATTR_FORM_OFFSET_BAD Offset reference attribute outside current CU
DW_DLE_LINE_OFFSET_BAD Offset of lines for current CU outside .debug_line
DW_DLE_DEBUG_STR_OFFSET_BAD Offset into .debug_str past its end
DW_DLE_STRING_PTR_NULL Pointer to pointer into .debug_str NULL
DW_DLE_PUBNAMES_VERSION_ERROR Version stamp of pubnames incorrect
DW_DLE_PUBNAMES_LENGTH_BAD Read pubnames past end of .debug_pubnames
DW_DLE_GLOBAL_NULL Null Dwarf_Global specified
DW_DLE_GLOBAL_CONTEXT_NULL No context for Dwarf_Global given
DW_DLE_DIR_INDEX_BAD Error in directory index read
DW_DLE_LOC_EXPR_BAD Bad operator read for location expression
DW_DLE_DIE_LOC_EXPR_BAD Expected block value for attribute not found
DW_DLE_OFFSET_BAD Offset for next compilation-unit in .debug_info bad
DW_DLE_MAKE_CU_CONTEXT_FAIL Could not make CU context
DW_DLE_ARANGE_OFFSET_BAD Offset into .debug_info in .debug_aranges bad
DW_DLE_SEGMENT_SIZE_BAD Segment size should be 0 for MIPS processors
DW_DLE_ARANGE_LENGTH_BAD Length of arange section in .debug_arange bad
DW_DLE_ARANGE_DECODE_ERROR Aranges do not end at end of .debug_aranges
DW_DLE_ARANGES_NULL NULL pointer to Dwarf_Arange specified
DW_DLE_ARANGE_NULL NULL Dwarf_Arange specified
DW_DLE_NO_FILE_NAME No file name for Dwarf_Line struct
DW_DLE_NO_COMP_DIR No Compilation directory for compilation-unit
DW_DLE_CU_ADDRESS_SIZE_BAD CU header address size not match Elf class
DW_DLE_ELF_GETIDENT_ERROR Error in elf_getident() on object
DW_DLE_NO_AT_MIPS_FDE DIE does not have DW_AT_MIPS_fde attribute
DW_DLE_NO_CIE_FOR_FDE No CIE specified for FDE
DW_DLE_DIE_ABBREV_LIST_NULL No abbreviation for the code in DIE found
DW_DLE_DEBUG_FUNCNAMES_DUPLICATE Multiple .debug_funcnames sections
DW_DLE_DEBUG_FUNCNAMES_NULL No data in .debug_funcnames sectioniic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 8. List of Dwarf 2 Error Codes (continued)

rev 1.48, 31 Mar 2002 - 51 -

- 52 -

iii
SYMBOLIC NAME DESCRIPTIONiii
DW_DLE_DEBUG_FUNCNAMES_VERSION_ERROR Version stamp in .debug_funcnames bad
DW_DLE_DEBUG_FUNCNAMES_LENGTH_BAD Length error in reading .debug_funcnames
DW_DLE_FUNC_NULL NULL Dwarf_Func specified
DW_DLE_FUNC_CONTEXT_NULL No context for Dwarf_Func struct
DW_DLE_DEBUG_TYPENAMES_DUPLICATE Multiple .debug_typenames sections
DW_DLE_DEBUG_TYPENAMES_NULL No data in .debug_typenames section
DW_DLE_DEBUG_TYPENAMES_VERSION_ERROR Version stamp in .debug_typenames bad
DW_DLE_DEBUG_TYPENAMES_LENGTH_BAD Length error in reading .debug_typenames
DW_DLE_TYPE_NULL NULL Dwarf_Type specified
DW_DLE_TYPE_CONTEXT_NULL No context for Dwarf_Type given
DW_DLE_DEBUG_VARNAMES_DUPLICATE Multiple .debug_varnames sections
DW_DLE_DEBUG_VARNAMES_NULL No data in .debug_varnames section
DW_DLE_DEBUG_VARNAMES_VERSION_ERROR Version stamp in .debug_varnames bad
DW_DLE_DEBUG_VARNAMES_LENGTH_BAD Length error in reading .debug_varnames
DW_DLE_VAR_NULL NULL Dwarf_Var specified
DW_DLE_VAR_CONTEXT_NULL No context for Dwarf_Var given
DW_DLE_DEBUG_WEAKNAMES_DUPLICATE Multiple .debug_weaknames section
DW_DLE_DEBUG_WEAKNAMES_NULL No data in .debug_varnames section
DW_DLE_DEBUG_WEAKNAMES_VERSION_ERROR Version stamp in .debug_varnames bad
DW_DLE_DEBUG_WEAKNAMES_LENGTH_BAD Length error in reading .debug_weaknames
DW_DLE_WEAK_NULL NULL Dwarf_Weak specified
DW_DLE_WEAK_CONTEXT_NULL No context for Dwarf_Weak giveniiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 9. List of Dwarf 2 Error Codes

This list of errors is not necessarily complete; additional errors might be added when functionality to create
debugging information entries are added to libdwarf and by the implementors of libdwarf to describe
internal errors not addressed by the above list. Some of the above errors may be unused. Errors may not
have the same meaning in different implementations.

5.18.3 dwarf_seterrhand()

Dwarf_Handler dwarf_seterrhand(
Dwarf_Debug dbg,
Dwarf_Handler errhand)

The function dwarf_seterrhand() replaces the error handler (see dwarf_init()) with
errhand. The old error handler is returned. This function is currently unimplemented.

5.18.4 dwarf_seterrarg()

Dwarf_Ptr dwarf_seterrarg(
Dwarf_Debug dbg,
Dwarf_Ptr errarg)

The function dwarf_seterrarg() replaces the pointer to the error handler communication area (see
dwarf_init()) with errarg. A pointer to the old area is returned. This function is currently
unimplemented.

5.18.5 dwarf_dealloc()

rev 1.48, 31 Mar 2002 - 52 -

- 53 -

void dwarf_dealloc(
Dwarf_Debug dbg,
void* space,
Dwarf_Unsigned type)

The function dwarf_dealloc frees the dynamic storage pointed to by space, and allocated to the
given Dwarf_Debug. The argument type is an integer code that specifies the allocation type of the
region pointed to by the space. Refer to section 4 for details on libdwarf memory management.

rev 1.48, 31 Mar 2002 - 53 -

- 54 -

rev 1.48, 31 Mar 2002 - 54 -

CONTENTS

1. INTRODUCTION . 1
1.1 Purpose and Scope . 1
1.2 Definitions . 1
1.3 Overview . 1
1.4 Items Changed . 2
1.5 Items Removed . 2
1.6 Revision History . 2

2. Types Definitions . 2
2.1 General Description . 3
2.2 Scalar Types . 3
2.3 Aggregate Types . 4

2.3.1 Location Record . 4
2.3.2 Location Description 5
2.3.3 Data Block . 5
2.3.4 Frame Operation Codes 5
2.3.5 Macro Details Record 6

2.4 Opaque Types . 6

3. Error Handling . 8
3.1 Returned values in the functional interface 9

4. Memory Management . 10
4.1 Read-only Properties . 10
4.2 Storage Deallocation . 10

5. Functional Interface . 12
5.1 Initialization Operations . 12

5.1.1 dwarf_init() . 12
5.1.2 dwarf_elf_init() . 13
5.1.3 dwarf_get_elf() . 13
5.1.4 dwarf_finish() . 14

5.2 Debugging Information Entry Delivery Operations 14
5.2.1 Debugging Information Entry Debugger Delivery Operations 14
5.2.2 dwarf_next_cu_header() 14
5.2.3 dwarf_siblingof() . 15
5.2.4 dwarf_child() . 15
5.2.5 dwarf_offdie() . 15

5.3 Debugging Information Entry Query Operations 15
5.3.1 dwarf_tag() . 16
5.3.2 dwarf_dieoffset() . 16
5.3.3 dwarf_die_CU_offset() 16
5.3.4 dwarf_diename() . 16
5.3.5 dwarf_attrlist() . 17
5.3.6 dwarf_hasattr() . 17
5.3.7 dwarf_attr() . 18
5.3.8 dwarf_lowpc() . 18
5.3.9 dwarf_highpc() . 18
5.3.10 dwarf_bytesize() . 18
5.3.11 dwarf_bitsize() . 18
5.3.12 dwarf_bitoffset() . 19
5.3.13 dwarf_srclang() . 19
5.3.14 dwarf_arrayorder() . 19

- i -

5.4 Attribute Form Queries . 19
5.4.1 dwarf_hasform() . 20
5.4.2 dwarf_whatform() . 20
5.4.3 dwarf_whatattr() . 20
5.4.4 dwarf_formref() . 20
5.4.5 dwarf_global_formref() 20
5.4.6 dwarf_formaddr() . 21
5.4.7 dwarf_formflag() . 21
5.4.8 dwarf_formudata() . 21
5.4.9 dwarf_formsdata() . 21
5.4.10 dwarf_formblock() . 22
5.4.11 dwarf_formstring() . 22

5.4.11.1 dwarf_loclist() 22
5.5 Line Number Operations . 23

5.5.1 Get A Set of Lines . 23
5.5.1.1 dwarf_srclines() 23

5.5.2 Get the set of Source File Names 24
5.5.3 Get information about a Single Table Line 24

5.5.3.1 dwarf_linebeginstatement() 25
5.5.3.2 dwarf_lineendsequence() 25
5.5.3.3 dwarf_lineno() 25
5.5.3.4 dwarf_lineaddr() 25
5.5.3.5 dwarf_lineoff() 25
5.5.3.6 dwarf_linesrc() 26
5.5.3.7 dwarf_lineblock() 26

5.6 Global Name Space Operations 26
5.6.1 Debugger Interface Operations 26

5.6.1.1 dwarf_get_globals() 26
5.6.1.2 dwarf_globname() 27
5.6.1.3 dwarf_global_die_offset() 27
5.6.1.4 dwarf_global_cu_offset() 27
5.6.1.5 dwarf_get_cu_die_offset_given_cu_header_offset() 28
5.6.1.6 dwarf_global_name_offsets() 28

5.7 Weak Name Space Operations 28
5.7.1 Debugger Interface Operations 28

5.7.1.1 dwarf_get_weaks() 29
5.7.1.2 dwarf_weakname() 29
5.7.1.3 dwarf_weak_cu_offset() 30
5.7.1.4 dwarf_weak_name_offsets() 30

5.8 Static Function Names Operations 30
5.8.1 Debugger Interface Operations 30

5.8.1.1 dwarf_get_funcs() 30
5.8.1.2 dwarf_funcname() 31
5.8.1.3 dwarf_func_die_offset() 31
5.8.1.4 dwarf_func_cu_offset() 31
5.8.1.5 dwarf_func_name_offsets() 32

5.9 User Defined Type Names Operations 32
5.9.1 Debugger Interface Operations 32

5.9.1.1 dwarf_get_types() 32
5.9.1.2 dwarf_typename() 33
5.9.1.3 dwarf_type_die_offset() 33
5.9.1.4 dwarf_type_cu_offset() 33
5.9.1.5 dwarf_type_name_offsets() 33

5.10 User Defined Static Variable Names Operations 34

- ii -

5.10.1 Debugger Interface Operations 34
5.10.1.1 dwarf_get_vars() 34
5.10.1.2 dwarf_varname() 35
5.10.1.3 dwarf_var_die_offset() 35
5.10.1.4 dwarf_var_cu_offset() 35
5.10.1.5 dwarf_var_name_offsets() 35

5.11 Macro Information Operations 36
5.11.1 General Macro Operations 36

5.11.1.1 dwarf_find_macro_value_start() 36
5.11.2 Debugger Interface Macro Operations 36
5.11.3 Low Level Macro Information Operations 36

5.11.3.1 dwarf_get_macro_details() 36
5.12 Low Level Frame Operations 37

5.12.0.1 dwarf_get_fde_list() 38
5.12.0.2 dwarf_get_fde_list_eh() 39
5.12.0.3 dwarf_get_cie_of_fde() 40
5.12.0.4 dwarf_get_fde_for_die() 40
5.12.0.5 dwarf_get_fde_range() 40
5.12.0.6 dwarf_get_cie_info() 41
5.12.0.7 dwarf_get_fde_instr_bytes() 41
5.12.0.8 dwarf_get_fde_info_for_reg() 42
5.12.0.9 dwarf_get_fde_info_for_all_regs() 42
5.12.0.10 dwarf_get_fde_n() 42
5.12.0.11 dwarf_get_fde_at_pc() 43
5.12.0.12 dwarf_expand_frame_instructions() 43

5.13 Location Expression Evaluation 44
5.13.1 Location List Internal-level Interface 44

5.13.1.1 dwarf_get_loclist_entry() 44
5.14 Abbreviations access . 45

5.14.1 dwarf_get_abbrev() . 45
5.14.2 dwarf_get_abbrev_tag() 45
5.14.3 dwarf_get_abbrev_code() 45
5.14.4 dwarf_get_abbrev_children_flag() 45
5.14.5 dwarf_get_abbrev_entry() 46

5.15 String Section Operations . 46
5.15.1 dwarf_get_str() . 46

5.16 Address Range Operations . 46
5.16.1 dwarf_get_aranges() 46
5.16.2 dwarf_get_cu_die_offset() 47
5.16.3 dwarf_get_arange_cu_header_offset() 47
5.16.4 dwarf_get_arange_info() 48

5.17 General Low Level Operations 48
5.17.1 dwarf_get_address_size() 48

5.18 Utility Operations . 48
5.18.1 dwarf_errno() . 48
5.18.2 dwarf_errmsg() . 48
5.18.3 dwarf_seterrhand() . 52
5.18.4 dwarf_seterrarg() . 52
5.18.5 dwarf_dealloc() . 52

- iii -

LIST OF FIGURES

Figure 1. Scalar Types . 4

Figure 2. Error Indications . 10

Figure 3. Allocation/Deallocation Identifiers 12

Figure 4. Frame Information Rule Assignments 38

Figure 5. Frame Information Special Values 38

Figure 6. List of Dwarf Error Codes . 49

Figure 7. List of Dwarf 2 Error Codes (continued) 50

Figure 8. List of Dwarf 2 Error Codes (continued) 51

Figure 9. List of Dwarf 2 Error Codes 52

- iv -

A Consumer Library Interface to DWARF

UNIX International Programming Languages Special Interest Group

ABSTRACT

This document describes an interface to a library of functions to access DWARF debugging information
entries and DWARF line number information. It does not make recommendations as to how the functions
described in this document should be implemented nor does it suggest possible optimizations.

The document is oriented to reading DWARF version 2. There are certain sections which are SGI-specific
(those are clearly identified in the document). We would propose this to the PLSIG committee as the basis
for a standard libdwarf interface, but as of this writing, the committee is dormant.

This document are subject to change.

rev 1.48, 31 Mar 2002

hhhhhhhhhhhh
0. UNIX is a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

