

IMS and Modern Storage Subsystems

Rich Lewis, Bob Magid, and Frank Ricchio

IMS and Modern Storage Subsystems

- Storage Systems
 - Storage systems overview
 - RAID architecture
 - Mirroring
 - Caching and cache algorithms
 - Solid State Devices
- Parallel Access Volumes and Multiple Allegiance
- IOS Queue time, Pend time, Connect time, and Disconnect time
- I/O times
- Caching and IMS buffer pools
- Disk volume sizes
- IMS 10 Large Data Set Support
- Data set allocation
- FlashCopy
- Extended Address Volumes (EAV)

Storage Systems

- •IBM DS8300
 - 1.1 TB to 1024 TB capacity
 - Support for
 - FlashCopy®
 - Global Mirror
 - Metro Mirror
 - Metro/Global Mirror
 - Global Copy
 - High-capacity Serial ATA (SATA) drives
 - Solid-state drives
 - High Performance FICON® for System z®
 - Extended Address Volumes
 - HyperPAV
 - Extended Distance FICON
 - Cooperative Caching
 - Self encrypting disk drives

Storage Systems

- Address mapping
 - Cylinder and head (CCHH) addresses are mapped to physical disks in the system

Cache

- Large cache holds data
 - Recently referenced data
 - Prefetched data
- Non-volatile storage
 - Holds updates which have not yet been written to disks

RAID Architecture

- <u>Redundant Array of Independent (or inexpensive)</u> <u>Disks</u>
 - Data for a track is written to multiple physical tracks and devices
 - Any device may be lost and the data can be rebuilt
- Good news
 - We very rarely lose individual volumes
 - For IMS this means we rarely do full database recoveries
 - Our database recoveries are timestamp recoveries for application or operational errors
- Bad news
 - If we lose data, we probably lose a whole storage system!

RAID Architecture

- All addresses are virtual
 - The address known to a z/OS system is virtual
 - CCHH is not a real cylinder and track
 - Data is mapped to some other address on some disk
 - The subsystem dynamically maps addresses to physical drives.
- Data placement is not physical placement
 - Placement of data sets in not so critical
 - You don't need to separate data sets to address "arm movement"

Storage Systems

- Mirroring (remote copy)
 - Data written to one storage system is then written to another storage system

z/OS

- Typically done for disaster recovery
- Synchronous mirroring
 - Writes to remote system must complete before host is notified of write completion
 - Writes are elongated
- Asynchronous mirroring
 - Writes to remote system may be done after host is notified of write completion
 - Writes are not elongated

Storage System Caching

- Storage systems have very large caches
 - Up to 256GB in DS8300
 - Frequently accessed tracks are kept in cache
 - Like an IMS buffer pool
 - Anticipatory caching is done
 - Like OSAM sequential buffering
- Sophisticated caching algorithms are used
 - May stage block, partial track, full track, cylinder, or next cylinder
 - Adaptively monitors and adjusts caching
 - Not just a simple "least recently used" algorithm

Storage System Caching

- Caching is used to avoid disk reads
 - Data is kept to satisfy reads from z/OS
- Non-volatile storage is used to shorten write times
 - Data does not have to be written to disk before "end of write" signal is sent to z/OS
 - Write to disk is done asynchronously
- Caching reduces DISCONNECT times
 - Avoids the access to the actual physical disks

Solid State Devices (SSDs)

- DS8300 now supports SSDs
 - Alternative to disks
 - System has mix of disks and SSDs
- SSD properties
 - Flash technology
 - Faster than disks
 - No seeks
 - No rotational delays
 - More expensive than disks
- DFSMS is aware of SSDs
 - May be assigned to storage pools
 - Used by data classes
- Enhanced reporting
 - SMF 42-6 record includes Data Set Read-Only Disconnect Time
 - Tool to report good candidates using these SMF records

- SSDs reduce DISCONNECT times
 - No seeks
 - No rotational delay

PAV (Parallel Access Volumes)

- Multiple UCBs (unit control blocks) per volume
 - Allows concurrent I/Os from the same z/OS system

PAV (Parallel Access Volumes)

- Multiple UCBs per volume
 - PAVs allow simultaneous access to volumes by I/Os from one system
 - Reads are simultaneous
 - Writes to different domains are simultaneous
 - Writes to same domain are serialized
- High I/O activity to a volume benefits from PAV
- Static PAVs (fixed number of UCBs per volume)
- Dynamic PAVs adjusts the number of UCBs per volume
 - Requires WLM goal mode and coordination across a sysplex
- Hyper PAVs with DS8000
 - Does not use WLM or require coordination across a sysplex
- PAV sharply reduces IOSQ time
 - IOSQ time is time waiting for a UCB

Multiple Allegiance

Multiple Allegiance allows concurrent I/Os from <u>different LPARs</u>

Multiple Allegiance

- Multiple Allegiance
 - Compatible I/Os (no extent conflict) from different LPARs may run in parallel
 - Incompatible I/Os are queued in the storage system
 - Storage system guarantees data integrity
- Multiple Allegiance reduces PEND time (device busy)

PAV and MA Extent Conflicts

Reads

- There is no restriction on concurrent reads using PAV and/or MA
- Multiple reads of the same data may occur concurrently

Writes

- There are some restrictions on concurrent writes or writes with reads
- A write cannot occur concurrently with a read or another write to the same *domain*
 - The *domain* is set by the DEFINE EXTENT in the channel program
 - Typically, for IMS the *domain* is an allocation extent for a data set

Elements of I/O Times

- Storage administrators use RMF DASD Reports to analyze I/O response times
 - IOSQ time Device is busy in this z/OS, UCB not available
 - Time waiting for the device availability in the z/OS operating system.
 - PEND time Device is reserved by another system
 - Time from the SSCH instruction (issued by z/OS) till the start of the dialog between the channel and the I/O controller.
 - DISCONNECT time Data not being transferred
 - Time when the I/O operation is already started but the channel and I/O controller are not in a dialog.
 - Read cache miss, sync remote copy, PAV and MA write extent conflicts, ...
 - CONNECT time Channel data and protocol transfer
 - Time when the channel is transferring data from or to the controller cache or exchanging control information with the controller about an I/O operation.

I/O Response Time = IOSQ time + PEND time + DISCONNECT time + CONNECT time

I/O Times

Typical I/O times¹

I/O type	3390	DS8300 Disk	DS8300 SSD	
4K sequential I/O ²	1.6 to 2 ms	0.035 to 0.060 ms (in DS8300 cache)	0.035 to 0.060 ms (in DS8300 cache)	
8K sequential I/O ²	3 to 4 ms	0.070 to 0.12 ms (in DS8300 cache)	0.070 to 0.12 ms (in DS8300 cache)	
4K or 8K random read	20 ms	5 to 10 ms (not in DS8300 cache)	~0.75 ms (not in DS8300 cache)	

¹These are non-scientific observations from anecdotal evidence. ²Includes random reads with cache hit in DS8300

- Caching provides dramatically improved I/O times
- SSDs can be used to improve random reads
 - If today there are buffer and cache misses
 - If number or importance of I/Os justifies costs

Caching and IMS Buffer Pools

- IMS full function buffer pools
 - Keep frequently referenced data in the pools
 - Avoids <u>reads</u> of recently referenced blocks/CIs
- Caching
 - Keeps frequently <u>read</u> data in cache
 - May prefetch blocks for sequential processing
- IMS data references
 - Not many hits in cache for reads
 - IMS only asks for infrequently referenced data
 - May get hit for sequential processing

Caching, Buffer Pools, and Data Sharing

• Data sharing

- Buffers may be invalidated by updates on another IMS
- If data is needed again, IMS reads it from storage system
 - Or from cache structure in Coupling Facility
- This data may be in storage system cache
 - Written by the updating IMS system
- Data sharing systems may benefit from cache hits

Caching and IMS Buffer Pools

- IMS Fast Path buffer pools
 - Without VSO,
 - Data is <u>not</u> kept in pool for successive transactions
 - Each region has its own buffers
 - Reads are required
 - Cache hits will occur for frequently referenced data

- With VSO
 - Frequently referenced and preloaded data are kept in VSO pool
 - Not many hits in cache for reads

Disk Volume Sizes

- Storage systems use 3390 emulation
 - Track size is 56,664 potential bytes per track
 - Actual capacity depends on block sizes
- Cylinders per volume can be anything
 - 3390-1, 3390-2, 3390-3, and 3390-9
 - or
 - Custom volumes of any size
 - May be used to overcome difficulties with multi-volume data sets
 - Warning: access method may limit usefulness of large volumes for a single data set
- More than 65,520 cylinders per volume require EAV support
 - EAV extended address volume

Disk Volumes Capacities

Model	Cylinders	Tracks	Bytes/Volume [*]	Bytes/Track*	
3390-1	1113	16695	946,005,480	56664	
3390-2	2226	33390	1,892,010,960	56664	
3390-3	3339	50085	2,838,016,440	56664	
3390-9	10017	150255	8,514,049,320	56664	
3390-27**	32760	491400	27,844,689,600	56664	
3390-54**	65520	982800	55,689,379,200	56664	

*Bytes/volume and bytes/track are potential capacities.

**These are custom volumes.

Warning:Disk people useSoftware people useGB = 1,000,000,000GB = 1,073,741,824

• Block sizes determine actual capacities

Block size	2K	4K	8K	16K	24K	26K	32K
Bytes/track	42K	48K	48K	48K	48K	52K	32K
3390-9 capacity [*]	6.02 GB	6.88 GB	6.88 GB	6.88 GB	6.88 GB	7.45 GB	4.56 GB

*GB=1,073,741,824

Large Sequential Data Sets

- Before z/OS 1.7, sequential data sets were limited to 65,536 tracks per volume
 - Only 3GB with 4K, 8K, or 12K blocks
 - Data sets larger than 3GB required multiple volumes
- z/OS 1.7 DFSMS adds support for large sequential data sets
 - More than 65,535 tracks on one volume for a data set
 - Requires DSNTYPE=LARGE
- IMS 10 adds large sequential data set support
 - OSAM and GSAM/BSAM data sets
 - Includes
 - OSAM database data sets
 - Logs
 - Trace data sets
 - Message queue data sets
 - GSAM/BSAM files

• Image Copy and Change Accum data sets

OSAM data set size is limited to 8GB

 8GB data set with 4K or 8K block size requires 174,763 tracks = 11,651 cylinders

Allocation of Data Sets

VSAM

- Not SMS managed:
 - 255 extents per component
 - 123 extents per volume
- SMS managed:
 - 255 extents per component
 - More if extent constraint removal is specified in the data class
 - Adjacent extents are consolidated
 - 123 extents per volume
- Any number of tracks per volume
- IMS limits VSAM database data sets to 4GB

Allocation of Data Sets

OSAM

- IMS 10 with DSNTYPE=LARGE
 - Any number of tracks per volume
- IMS 8, IMS 9, or IMS 10 without DSNTYPE=LARGE
 - Maximum of 65,535 tracks per volume
- Database data sets
 - Maximum of 60 extents per data set
 - Maximum of 16 extents per volume
 - Maximum of 59 volumes per data set
 - IMS limits OSAM non-HALDB database data sets to 8GB
 - IMS limits OSAM HALDB database data sets to 4GB
- Message queue data sets
 - One volume without secondary extents
- OLDS data sets
 - One volume without secondary extents

FlashCopy

- FlashCopy is a storage system capability to copy volumes or data sets
 - Copy is created in the same storage system
 - Almost instantaneous
 - Done by creating another "map" to the actual data on disks
 - Subsequent updates are written to different locations for the two data sets or volumes
 - New and old "maps" are used
- IMS 10 Image Copy 2 supports data set FlashCopy
 - Requires z/OS 1.8
 - IMS 10 Database Recovery can use these image copies
- IBM High Performance Image Copy supports data set FlashCopy
 - Does not require z/OS 1.8
 - Restriction: fuzzy copies of KSDSs are not allowed

FlashCopy vs. Concurrent Copy

- FlashCopy is a storage system function
 - Copy must be to the same system
 - Single phase copy
 - Creates exact copy of data set
 - Invoked by IMS 10 IC2 or HPIC

FlashCopy vs. Concurrent Copy

- Concurrent Copy uses storage system and the System Data Mover (SDM)
 - Copy may be to another system, including tape or disk
 - Two phase copy
 - Logical copy sets up side file for updates during physical copy (very quick)
 - Physical copy writes data using SDM and host resources
 - Copy format:
 - Exact copy (invoked by HPIC, but not by IMS IC2)
 - or
 - In DUMP format (or in user format by using an exit routine)
 - Invoked by IMS 9, 10, or 11 IC2 or HPIC

HPIC FlashCopy

- FlashCopy IC is available with IMS V9 or later
 - IC record in DBRC is SMSNOCIC/SMSCIC in IMS V9
 - DB can be recovered with HPIC or DRF
- TOIAUTO=Y
 - DB is deallocated from IMS by /DBR or /DBD command before taking image copy, and
 - DB is reallocated to IMS immediately after IC is created.

HPIC FlashCopy

- You can take dual IC data sets with HPIC. Secondary IC can be FlashCopy or Batch Format which can be written to tape
 - If you want to recover DB from secondary IC, you need to change IC type in DBRC to Batch or CIC.

Extended Address Volumes

Problem being addressed

- The continued rapid data growth on the z/OS platform is leading to a critical problem for some of our customers
 - They are are running out of z/OS addressable disk storage
- IBM's solution to this problem is to:
 - Continue the direction started with the 3390-9 (3390 Model 9) of defining larger volumes by increasing the number of cylinders
 - Extend the number of cylinders per device to be >65,520

Extended Address Volume (EAV) – Key Design Points

33

Existing Track Addresses

- Track addresses
 - Existing track address format with 16-bit cylinder number

- Today's supported maximum size volume is 65,520 cylinders, near the 16-bit theoretical limit of 65535
- To handle cylinder numbers greater than 65,520, a new format for the track address is required

Track Addresses - New Format

- 28-bit cylinder numbers
 - Planned new cylinder-track address format
 - CCCCcccH

-H is 4-t track number (0-14)

-ccc is high order 12 bits of 28-bit cylinder number

CCCC is low order 16 bits of 28-bit cylinder number

- Number
 - The cylinder number is in a non-linear form
 - This format preserves the 3390 track geometry
 - Track addresses for space in track-managed space will be compatible to today's track addresses
 - Track addresses for space in cylinder-managed space will NOT be compatible to today's track addresses
- Normalized cylinder-track address (to be used only for printing)

cccCCCC:H

H is 4-bit track number (0-14)

cccCCCC is 28-bit cylinder number in a linear form

• The colon or other special character shows that it is a normalized address

IMS Support for DS8000 EAV Volumes

- Allows IMS customers to exploit the EAV available in z/OS 1.10.
 - This support allows IMS VSAM datasets to reside on these large volumes.
 - Datasets include DEDB databases, full function VSAM databases and RECON datasets
- Provides relief to customers running out of z/OS addressable disk storage due to the four-digit device number limit (actually 65,280 devices)
- Does not change the existing size limits on IMS databases
 - VSAM 5G
 - OSAM 8G
- Available in IMS V10 & V9 through the service process
 - V10 PK72530 (PTF UK43020)
 - V9 PK72529 (PTF UK43019)

IMS Tools Support for DS8000 EAV Volumes

- Available through the service process
 - IMS HP Pointer Checker 310 PK73041 (PTF-UK46126)
 - IMS HP Pointer Checker 310 PK88523 (PTF-UK48147)
 - IMS HP Load 210

PK84282 (PTF-UK46572)

Summary

- Modern storage systems
 - Virtualization
 - Availability
 - Performance
- Functions
 - Mirroring
 - FlashCopy
- IMS interfaces and uses
 - Caching and pools
 - Data set allocations