

IBM IMS

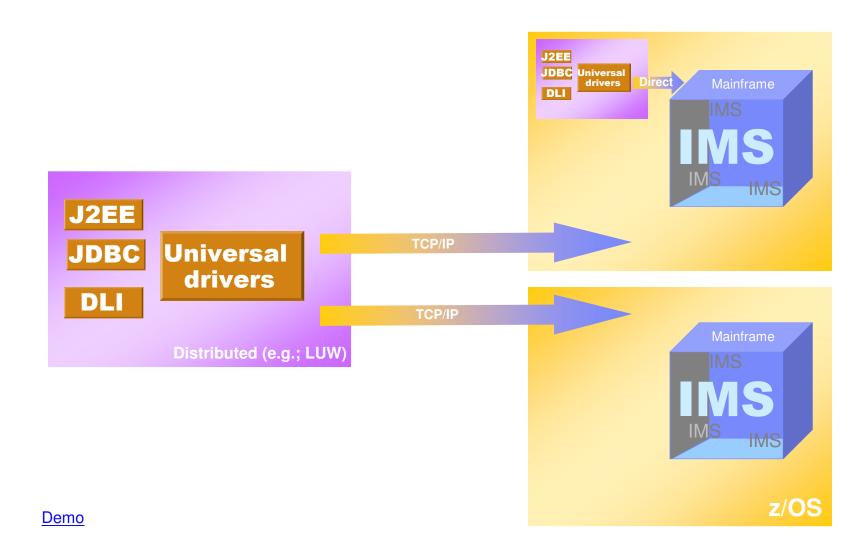
IMS 11 Open Database Modernizing IMS Database Access

Kyle Charlet, Senior Software Engineer, IBM, charletk@us.ibm.com

© 2009 IBM Corporation

IMS SOA Strategy

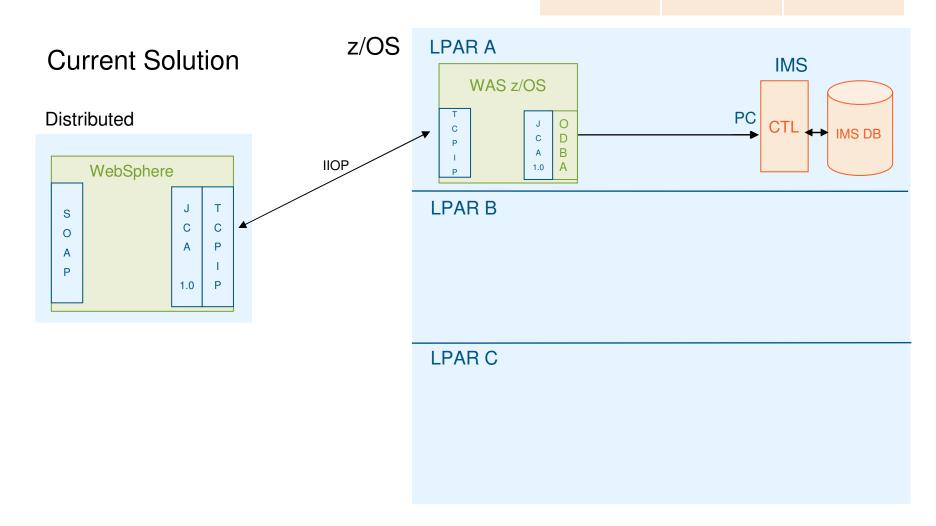
- Protect customer investments by making it easy, flexible and cost efficient to reuse and modernize IMS applications and data
- Fully integrate with WebSphere/Rational servers and tooling in a service-oriented architecture (SOA) environment
- Encourage new application development by supporting standards – e.g. XML, SOAP, Java, JDBC, etc.
- Partner with ISVs to facilitate IMS-SOA exploitation



IMS Open Database

- Solution Statement
 - Open new avenues to IMS
 - Offer scalable, distributed, and high-speed local access to IMS database resources
- Value
 - Business growth
 - Allow more flexibility in accessing IMS data to meet growth challenges
 - Market positioning
 - Allow IMS databases to be processed as a standards-based data server
- Key differentiators
 - Standards-based approach (Java Connector Architecture, JDBC, SQL, DRDA)
 - Solution packaged with IMS
- Enables new application design frameworks and patterns
 - JCA 1.5 (Java EE)
 - JDBC

IMS Open Database

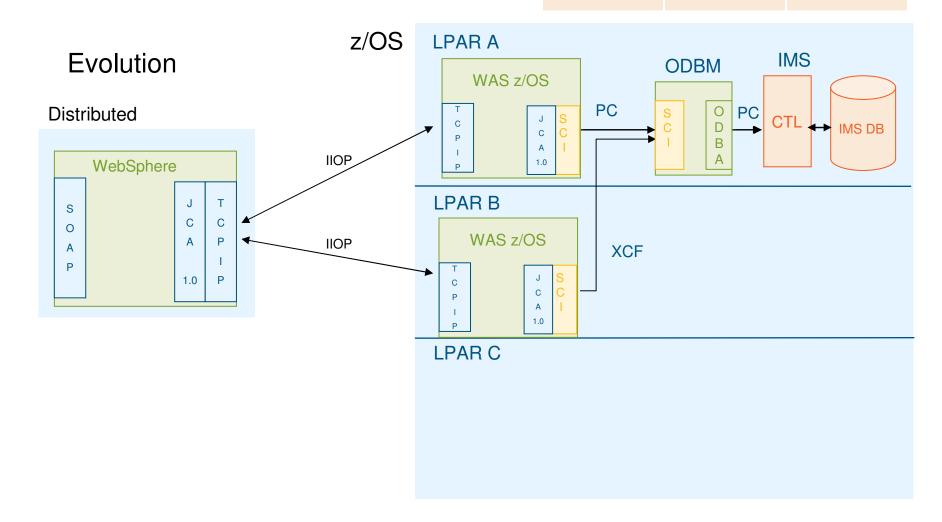


Open Database Environment

Innovative

Improved Usability

Open Standards

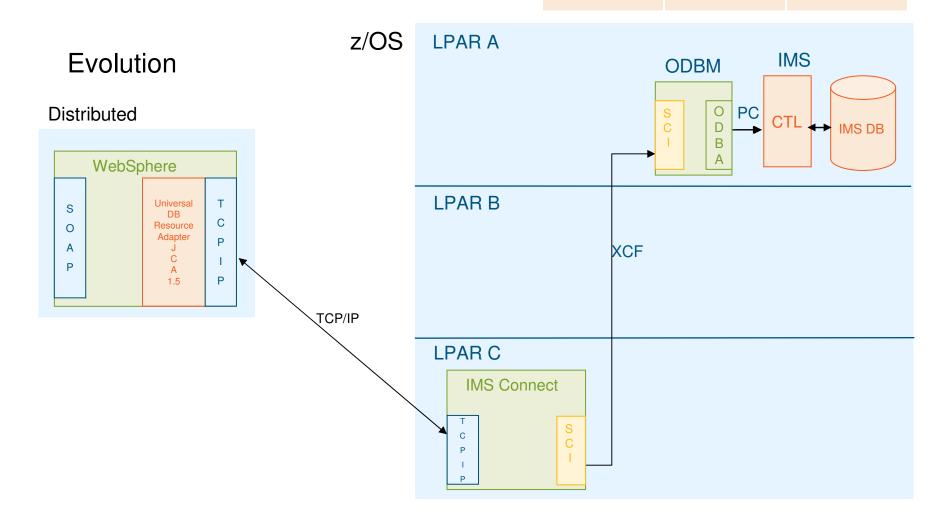


Open Database Environment

Innovative

Improved Usability

Open Standards

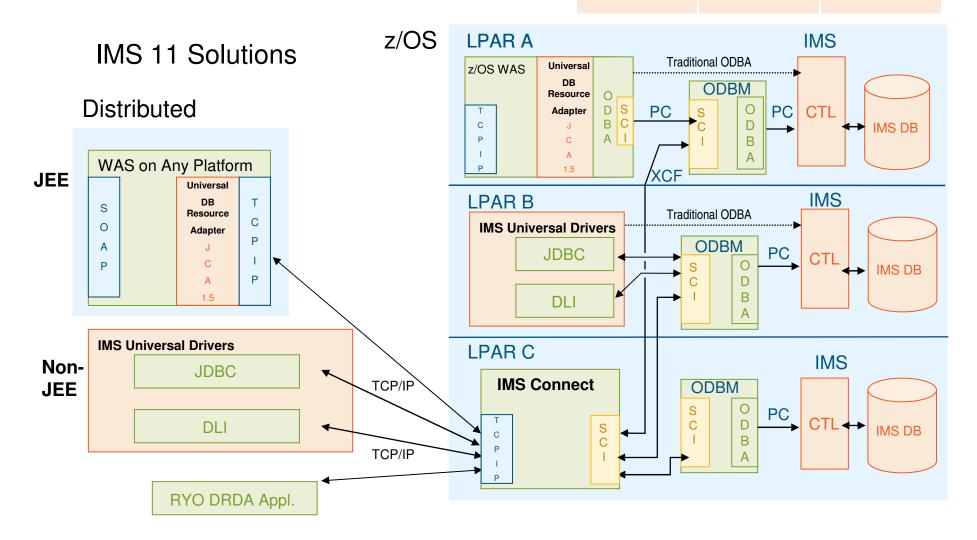


Open Database Environment

Innovative

Improved Usability

Open Standards



Open Database Environment

Innovative

Improved Usability

Open Standards

Solution highlights – Universal drivers

Three Universal drivers

- Universal DB resource adapter
 - JCA 1.5
 - XA transaction support, Local transaction support
 - Connection pooling
 - Connection sharing
 - Multiple programming models available
 - > JDBC
 - > CCI with SQL interactions
 - > CCI with DLI interactions
- Universal JDBC driver
- Universal DLI driver

Distributed access

- All Universal drivers support type 4 connectivity to IMS databases from TCP/IP enabled platforms and runtimes
 - Windows
 - zLinux
 - z/OS
 - WebSphere Application Server
 - Standalone Java SE
- Resource Recovery Services (RRS) is NOT required if applications do not require distributed two phase commit

Solution highlights – local connectivity

- Local connectivity
 - Universal drivers will support type 2 connectivity to IMS databases from z/OS runtimes
 - WebSphere Application Server for z/OS
 - IMS Java dependent regions
 - CICS

- DB2 z/OS stored procedures
- All environments zAAP eligible

Solution highlights - JDBC

Innovative

Improved Usability

Open Standards

- The two Universal drivers for JDBC IMS Universal DB Resource Adapter and IMS Universal JDBC Driver - offer a greatly enhanced JDBC implementation
 - JDBC 3.0

- Local commit/rollback support
- Standard SQL implementation for the SQL subset supported
 - Keys of parent segments are included in table as foreign keys
 - Allows Standard SQL implementation
- Updatable result sets
- Metadata discovery API implementation
 - Uses metadata generated by DLIModel Utility as "catalog data"
 - Enables JDBC tooling to work with IMS DBs just as they do with DB2 DBs

Java DL/I Access

Innovative

Improved Usability

Open Standards

- The IMS Universal DL/I Driver provides a DL/I Call interface for Java applications in a Java SE environment
 - Completely re-architected and rewritten
 - Rich in function

- Usable in distributed or z/OS environments
- The IMS Universal DB Resource Adapter not only supports JDBC, but also fully supports the JCA 1.5 CCI interaction specification
 - SQLInteractionSpec class provides SQL call interaction
 - DLIInteractionSpec class provides simple DL/I call interaction
 - RETRIEVE, CREATE, UPDATE, DELETE functions

IMS Open Database

Innovative

Improved Usability

Open Standards

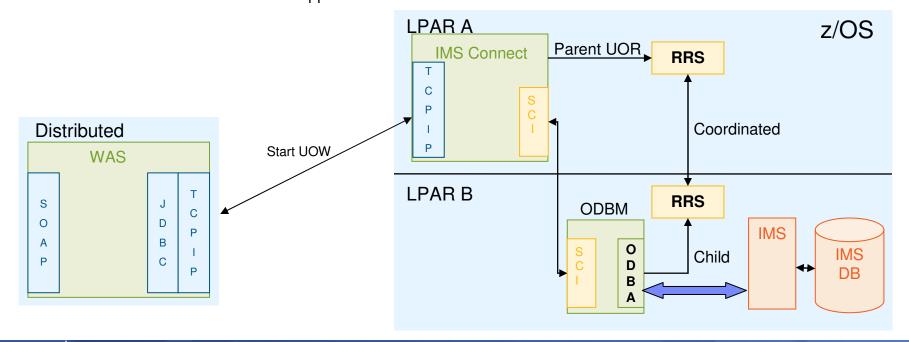
Comparison of programming approaches for accessing IMS:

Approach	Scenario
Use the JCA 1.5-compliant IMS distributed DB resource adapter	Accessing IMS data through TCP/IP from a J2EE application that resides on a distributed non-z/OS platform or a z/OS platform that is on a different LPAR from the IMS subsystem.
Use the type-4 JDBC driver or the DL/I for Java API	Accessing IMS data through TCP/IP from a Java application (non-J2EE) that resides on a distributed non-z/OS platform or a z/OS platform that is on a different LPAR from the IMS subsystem.
Use the type-2 JDBC driver or the DL/I for Java API	Accessing IMS data from a local z/OS runtime such as IMS Java Dependent regions, WebSphere Application Server for z/OS, DB2 z/OS Java stored procedures, or CICS Java transactions. All runtimes are on the same LPAR as the IMS subsystem.

Solution highlights - virtual foreign keys

Foreign keys

- Referential constraint between two tables
 - Used to link information together and have linkage managed by the DBMS
- Identifies a column (or set of columns) in one referencing table that refers to a column (or set of columns) in another referenced table
- Columns in referencing table must be the primary key in the referenced table
- Row in the referencing table cannot contain values that don't exist in the referenced table
- Cannot insert a row in a referencing table unless the column identified as the foreign key exists in the referenced table
 - Establishes a hierarchy in a relational database
- Think IMS...cannot insert a dependent segment unless the parent segment exists
 - Virtually represent foreign keys in each segment which are comprised of keys of each parent segment
 - Fully integrate this into the metadata exposed via JDBC for tooling to consume
 - These fields actually do exist in the key feedback area


Solution highlights - XA

Innovative

Improved Usability

Open Standards

- Distributed Syncpoint (global transaction) requires RRS on z/OS
- Use of RRS with ODBM is optional
 - RRS=Y|N parm for ODBM start-up
 - If RRS=Y (also the default), ODBM will use the ODBA interface (i.e. AERTDLI)
 - If RRS=N, ODBM will use the DRA interface like CICS
 - Global transactions are not supported if RRS=N

Solution highlights – SQL query governance

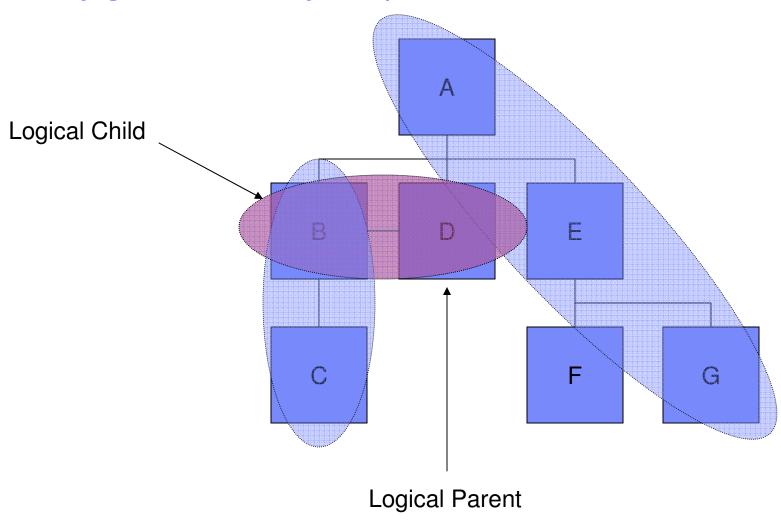
Value

- Offer a rules engine such that queries are as efficiently processed by IMS as possible
 - Offer customizable rules

Existing query governance

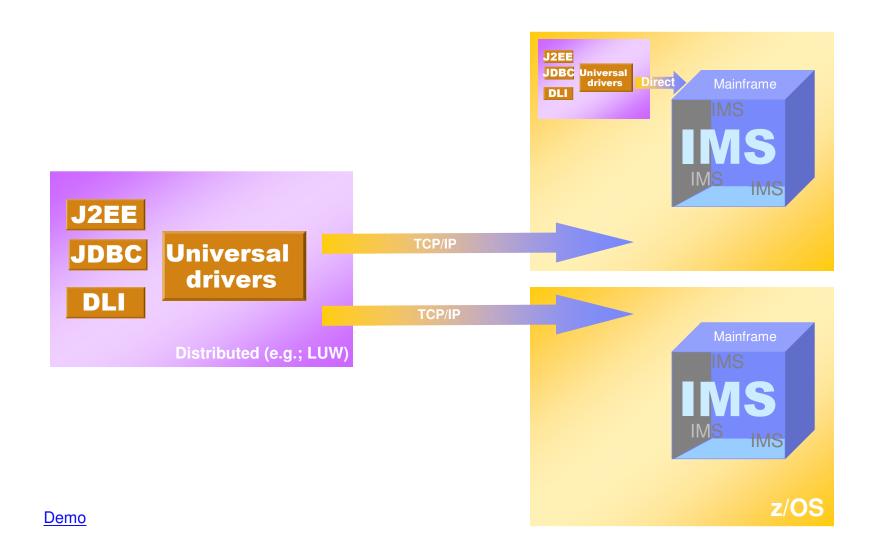
- Cannot execute SQL queries that filter (search) results based on fields not defined in a DBD
- Cannot execute SQL queries that join IMS segments that are not in the same hierarchic path

Additional SQL query governance candidates


- Force key field usage at root levels
 - Customizable
- Periodic commit processing (internal) during long running update processing
 - Customizable
- Query explain

15

Given a query, indicate DLI call processing that will take place



Query governance – join operations

IMS Open Database

Solution highlights – IMS Connect and ODBM

- IMS Connect
 - TCP/IP endpoint for type 4 connectivity
 - Authentication engine for type 4 connectivity
 - Focal point for two phase commit for type 4 connectivity
 - Proxies one phase commit requests to ODBM
- Open Database Manager (ODBM)
 - Processes type 4 database requests
 - Processes type 4 one phase commit requests
 - Authorization engine (via ODBA) for database access
 - Processes type 2 database requests when using ODBM compatibility for ODBA
 - Compatibility mode will allow ODBA to proxy requests to an ODBM address space on the same LPAR

IMS Open Database – IMS Connect

Innovative

Improved Usability

Open Standards

- IMS Connect has the following enhancements in support of IMS Open Database:
 - IMS Connect Configuration member HWSCFGxx
 - New ODACCESS statement
 - DRDA ports, timeout value, IMSplex name etc.
 - Changes to existing commands
 - VIEWHWS, VIEWDS, VIEWPORT
 - New Commands
 - STARTOD, STOPOD, STARTIA, STOPIA, VIEWIA, SETOAUTO
 - New User Exits

- HWSROUT0 Routing Exit for ODBM
 - can override the IMS alias and/or select the ODBM target
- HWSAUTH0 Security Exit for ODBM
 - can perform the authentication of the userid

IMS Open Database – IMS Connect

Innovative

Improved Usability

Open Standards

- IMS Connect Workload Distribution
 - Clients can specify an IMS datastore ("alias") to connect to (e.g.; part of JDBC connection URL)
 - Alias represents the IMS datastore that the client wants to send all requests to
 - Multiple Alias names for an IMS datastore can be defined in the ODBM configuration member
 - If the client sends a message with a blank alias, IMS Connect will route the message to an ODBM using a round robin algorithm
 - If an alias points to multiple ODBMs, IMS Connect will route the message to one of those ODBMs using a round robin algorithm

IMS Open Database - ODBM

Innovative

Improved Usability

Open Standards

- Open Database Manager (ODBM) is a new Common Service Layer component
 - Receives database connection requests from IMS Connect
 - Translates incoming database requests from the DDM protocol into DLI calls expected by IMS
 - Translates responses to the client into the DDM protocol
 - Manages connections to ODBA
- ODBM Configuration
 - PROCLIB members
 - ODBM BPE Configuration, ODBM BPE exit list, ODBM Initialization member CSLDIxxx, ODBM Configuration member – CSLDCxxx
 - CSLODBM procedure
 - ODBM execution parameters
- New type-2 commands
 - QUERY ODBM TYPE(option), UPDATE ODBM START|STOP(TRACE), UPDATE ODBM START|STOP(CONNECTION), UPDATE ODBM TYPE(CONFIG)
- Four new ODBM Exit Routines

IMS Connect and
ODBM together act as
the DRDA target
server

Leveraging Open Database

Disclaimer

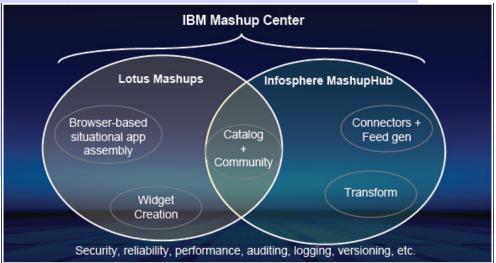
23

"The information on the new product is intended to outline our general product direction and it should not be relied on in making a purchasing decision. The information on the new product is for informational purposes only and may not be incorporated into any contract. The information on the new product is not a commitment, promise, or legal obligation to deliver any material, code or functionality. The development, release, and timing of any features or functionality described for our products remains at our sole discretion"

What is Web 2.0?

Achieve Growth, Efficiency, and Collaboration with Web 2.0

- Enabling employees to be more productive, more knowledgeable, faster
- Situational applications
 - Leveraging enterprise data without necessarily having the full technical knowledge
- The web becomes a platform for delivery
- From a technology perspective, Web 2.0 uses AJAX, mashups, and feeds predominantly
- Mashups rated by Gartner as Top 10 Strategic Technology for 2008
 - Projected dominant model in 2010
 - http://www.gartner.com/it/page.jsp?id=530109
- Collaboration: Social networking (Facebook, LinkedIn)
- Simplification: Mashups, RIAs, Web services



IBM Mashup Center Lotus Mashups + InfoSphere MashupHub

- Unleash business users from the limitations of fixed application landscapes
- Unlock information buried in information silos: enterprise, departmental,
 Web, and personal data
- Utilize visual tools for transforming and re-mixing Web 2.0-style feeds
- Quickly uncover new business insights
 - by easily assembling information from multiple sources in a browser – when it is needed
- Fuel Innovation while applying the appropriate levels of IT control

25

http://www.ibm.com/software/info/mashup-center/

IBM InfoSphere MashupHub

A visual tool for creating, storing, transforming, and remixing feeds to be utilized in mashup, and a central catalog for users to tag, rate, and share mashable assets.

Transform and Mix:

Excel or CSV

Feed Registration

XML Document

- Importing Feeds
- Filtering Feeds
- Annotate Feeds
- Merge Feed
- Publish Feeds


Catalog

Sharing & discovery of mashable assets.

Create Feed from:

- Domino
- IBM Information Server
- IMS Transaction
- LDAP
- pureXML Document
- SAP
- Relational
- TDI
- Web Service

IMS 11 Open Database

IBM Lotus Mashups

Quickly Assemble and Share New Mashups

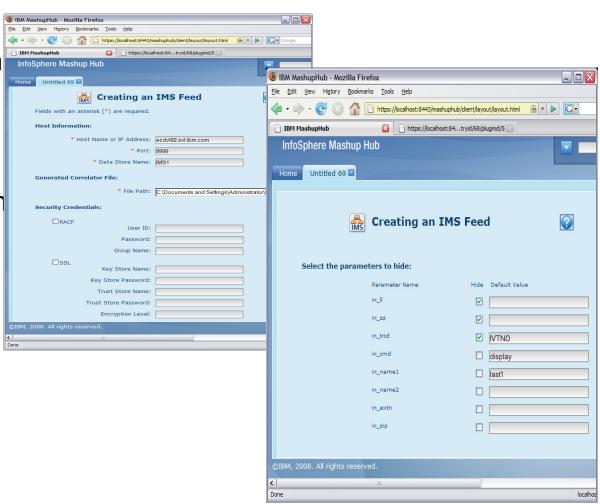
Browser-based tool supports quickly and easily on-the-glass assembly of situational applications by non-technical users.

- Easily Mix and Mash content without coding!
- Rapidly creation to address an immediate need of an individual or community
- Just-in-time solution
- Intuitive, on-the-glass wiring of widgets & feeds
- Increase agility by fostering reuse and rapid remix of content into new, compelling Web applications
- Support innovation and new business opportunities Reference: ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf

- •Share —public or by user/group.
- Automatic wiring
- Embed
- Save new assemblies as widgets
- Edit Source

IMS Web 2.0 support

- Solution Statement
 - Offer capability to expose IMS transaction assets as RESTful services for use in Web 2.0 mashups and Rich Internet Applications
- Value


- Business growth
 - Allow more flexibility in accessing IMS to meet growth challenges
- Standards-based approach
 - Transaction feed creation leverages XML
- Key differentiators
 - Transaction feed creation panels customized specifically for IMS

Web 2.0 support for IMS Transactions (Mashup Center)

- IMS Transaction Editor
 - 1. Specify Connection Properties
 - Optional Security Settings
 - 2. Specify Transaction
 Parameter Properties
 - Default Values

29

IBM Mashup Center

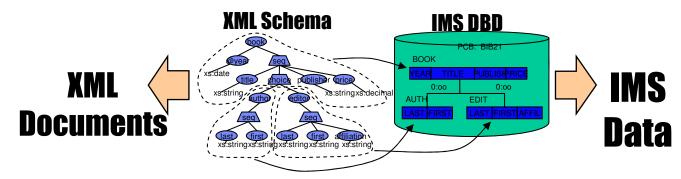
- IBM Mashup Center currently
 - Supports feed generation from several databases that offer JDBC implementations
 - DB2, IDS, Derby, Oracle, etc
 - Supports SQL query generation as part of feed creation
 - GUI panels to facilitate
- IMS V11

- Universal drivers offer a rich JDBC implementation
- Statement of direction
 - Support creation of RESTful services and feed generation using IMS databases as the feed source
 - Leverage Universal drivers for JDBC connectivity to IMS

Future Considerations

Universal drivers

31


- XML-DB/XQuery support
- IMS simplification agenda
- Explore integration opportunities with other IBM offerings

IMS and XML data

- XML Database (IMS V9)
 - Introduces a way to view/map native IMS hierarchical data to XML documents
 - Aligns IMS Database (DBD) with XML Schema
 - Allows the retrieval and storage of IMS Records as XML documents with no change to existing IMS databases
- XQuery (IMS V10)

- Further aligns IMS with industry direction
 - XML, SOA, Web Services, etc.
- More natural fit for hierarchical data query
- Enables customers to leverage emerging standard skill set
- Enhanced product and tooling integration
- Immediately usable with *no change* to existing IMS databases

IMS Simplification Agenda

Current landscape

- re-THINK IMS campaign is gaining traction
 - Growing trend in customer base to modernize IMS applications
 - Enabling existing IMS transactions to be shared across the enterprise
 - Injecting Java workload into existing frameworks using Java technology built by IMS
 - New IMS workload growing
 - Java is more than ever a viable solution for new IMS transactions.
 - IMS database assets now more accessible than ever
 - Open Database and the Universal driver framework already showing signs of making a tremendous impact
 - Standards, standards
 - IMS is again a strategic DB of choice
- As good as the new technologies and IMS solutions are...
 - There are stumbling blocks that need to be addressed
 - We feel it is imperative that we remove them in order to continue the momentum

Issues

- Perception
 - IMS is 40+ years old...and therefore it and its surrounding technology are no longer state of the art
- Lack of knowledge regarding new IMS technology and solutions
 - Key decision makers are simply not aware of it
 - Reality is that IMS has not done a great job marketing itself the past decade
- Net result is that new application workload is targeted less for IMS than it should be
 - There are a lot of choices
 - Need to make sure IMS is in the list
 - Great new technology isn't enough...need more

Application development sticking points

- Resource creation
 - IMS wasn't built to be dynamic
 - Create new (and modify existing) databases
 - Create new transactions
- Application development support
 - The technology is there now...but
 - Opportunity to provide more assistance building new applications targeting IMS
- Application deployment and testing
 - Opportunity to provide more assistance deploying these applications and testing them

Application development needs

- Provide a collection of eclipse-based components to ease IMS application and resource development and deployment tasks
- IMS specific value-adds to IBM's strategic development environments
 - Provide code assistance to simplify development of IMS application
 - Provide graphical editors to simplify development of IMS resource definition
 - Leverage metadata repository
 - Provide interface for extensibility with IBM and vendor tools

Application development strategy

- Integration, not separation
 - Eclipse shell-sharing goes a long way towards integration with any Eclipse-based solution
 - -Similar approaches to similar logical functions so that the cross-over of learning is minimized
 - Panel integration where appropriate
- There will always be some aspects of similar tools that will be unique due to the differences in the underlying data technologies

IMS Simplification Strategy

- Simplify application development
 - Accelerate the development time for new IMS applications with an integrated development environment that supports a choice of programming languages, including COBOL, PL/I and Java
- Simplify IMS resource definition and management tasks
 - Provide a graphical toolkit to visualize IMS resource design, creation, and update
 - Automate deployment of changes without the requirements for a multi-step batch executive process
 - Resources include
 - Database
 - Application
 - Transaction

- Simplify IMS management
 - Focus on reducing skills required to configure, manage, operate, and monitor IMS resources, including IMS regions

