
Copyright IBM Corp. 2008 1Section Title in Header

© 2009 IBM Corporation

®

IMS Version 10

IMS Version 10 Connectivity
Enhancements and the IMS Connect API

Kevin Flanigan Dave Cameron Jack Yuan
kf@us.ibm.com daveac@ca.ibm.com jackyuan@us.ibm.com

Copyright IBM Corp. 2008 2Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

2

Agenda

 V10 IMS Connect API

 V10 IMS Connect Updates

 V10 Synchronous Callout via IMS Connect

Copyright IBM Corp. 2008 3Section Title in Header

© 2009 IBM Corporation

®

IMS Version 10

V10 IMS Connect API

Kevin Flanigan
kf@us.ibm.com

Copyright IBM Corp. 2008 4Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

4

Agenda

 IMS Connect API Overview

– Business Value

– Description and Positioning

– Prerequisites

 Design Assumptions

 Restrictions

 Externals

 Interfaces

 API Environment

 Properties files

 Tracing

 Usage

 IMS Connect Functions
Supported

 IMS Connect API Functions

Copyright IBM Corp. 2008 5Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

5

Business Value
 Target Market

– The IMS Connect API is intended for all customers who write client
applications that interact directly with IMS Connect (i.e., IMS Connect clients
that do not use IMS TM Resource Adapter or IMS SOAP Gateway)

 Challenge Addressed

– Simplifies interactions with IMS Connect by handling:
• IMS Connect message header
• IMS Connect interaction protocols
• TCP/IP socket connections

 Solution Statement

– Provides a set of reusable profiles that define connections and types of
interactions to be performed and set of high- and low-level methods for
performing interactions with IMS Connect

 Business Value Statement

– Simplifies design, development, test and maintenance of IMS Connect client
applications written in Java and C

This line item addresses the need for a simplified way to interact with IMS Connect. Currently, IMS Connect client
application developers must understand the complexities of both the IMS Connect IRM header and IMS Connect
protocols for all of the types of interactions supported by IMS Connect as well as the complexities of TCP/IP socket
programming. The goal of the IMS Connect API is to shield IMS Connect client application developers from these
complexities by providing an easy-to-use API which facilitates interacting with IMS Connect. This will be accomplished
by providing simple ways of describing the connections that they need and the interactions that they want performed
along with easy ways provide the data that they want sent to IMS for those interactions. The will provide re-usable
profiles to configure connections and interactions and simple methods to perform those interactions. In addition, if IMS
Connect client application developers want more direct control over certain interactions, they will still be able to use the
more granular, lower-level calls to interact with IMS Connect and IMS as they do now with IMS Connect RYO (Roll-
Your-Own) clients.

The IMS Connect API will establish socket connections between the client application using the API and IMS Connect
based on a connection profile supplied either through customizable default connection property values or connection
property values set at runtime using the Connection setter methods. The IMS Connect API can then perform
interactions with IMS Connect on behalf of the client application after the TmInteraction has been configured based on
the interaction properties specified by the client application in the same manner as the Connection properties are
specified.

Versions of the API will initially be provided for both Java and C. Please note that, although the C implementation is
mentioned occasionally in this presentation, the focus of the presentation is the Java implementation which is planned to
be made available to customers prior to the C implementation.

Copyright IBM Corp. 2008 6Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

6

Description and Positioning

 Facilitates remote access to IMS transactions and commands

 Shields users from:

– IMS Connect protocol

– Socket communications

 Targets users who need to write and maintain RYO applications

– Accomplishes same task as IMS TM Resource Adapter and IMS SOAP
Gateway

– Leaner implementation

• No J2EE/JCA

• No SOAP server

– Allows different RYO applications to use the same code for accessing IMS
from Java applications

 Utilizes JCA-like paradigm for accessing IMS Connect

– ConnectionFactory, Connection and TmInteraction interfaces

The IMS Connect API is a set of Java classes whose methods can be used to perform interactions with IMS through
IMS Connect. The user “tells” the API what to do by setting values for the API properties which describe the connection
to be made and the interaction to be performed.

The API can be used to execute both IMS transactions as well as IMS Connect and OTMA-supported IMS commands,
while shielding the clients from having to manage the IMS Connect protocol or deal with the TCP/IP socket connections.
The API targets users who need the same access to IMS that they can get through the IMS TM Resource Adapter or
IMS SOAP Gateway, but who don’t need the overhead of a J2EE/JCA implementation or SOAP server and SOAP
messaging environment – those who are looking for a “leaner” implementation. It allows all of your Java RYO client
applications to share the same code for accessing IMS transactions and commands.

Although it is not a JCA connector, it uses a JCA-like paradigm for interactions. Your application instantiates a
ConnectionFactory from which you obtain a Connection interface which the API communicates with IMS Connect, and
from that Connection interface, you create a TmInteraction interface through which the interaction is performed.

Copyright IBM Corp. 2008 7Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

7

Prerequisites

 Software requirements

– IMS V10 license required

– IMS V10 Integrated IMS Connect function

– JDK/JRE 1.4.2 or higher

 Hardware requirements

– Same as existing IMS Connect client application environment

 Tooling

– None required

The IMS Connect API is being delivered as an IMS V10 SPE and, as such, requires a valid IMS V10 license. It will
initially be supported only with IMS V10 and the Integrated IMS Connect V10 function. A follow-on version will be
released in conjunction with IMS V11 which supports the new IMS V11 functions as well as additional IMS V10 SPE
functions. JDK/JRE 1.4.2 or higher is required for developing and running IMS Connect API client applications. Tooling
support is not required in the initial release but may be considered for a follow-on release.

The IMS Connect API does not impose any additional hardware requirements beyond those that would be needed to
execute the same interactions without the use of the API. In this release there is no requirement for tooling to develop
client applications that use the API.

Copyright IBM Corp. 2008 8Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

8

Design Assumptions

 IMS Connect API

– API will support existing IMS Connect function for RYO client applications

• TCP/IP only

– Client application responsible for:

• Preparing input data as expected by IMS application

• Interpreting output data as returned by IMS application

• Management of memory for required data structures used in C implementation

– Java implementation initially supported on Windows and System z

– C implementation initially supported on Windows only

In order to make the IMS Connect API as flexible as possible, only the above-listed design assumptions were made.
These design assumptions are in keeping with the way RYO applications are typically programmed today. No design
assumptions were made which would restrict or otherwise impact its use. The TCP/IP-only nature of the API reflects the
functionality currently available in IMS Connect to Roll-Your-Own client applications. Also, preparing the input request
data in byte array form and interpreting the output response data are currently responsibilities of the RYO application
and would continue to be so with the API. However, with the API you will be able to provide the input request data to
the API and retrieve the output response data from the API in byte[], byte[][], String or String[] form.

The Java version of the API will initially be supported for use on Windows and System z only. This is a reflection of
where the API is being tested. Being Java, it should run on any platform where there is a supported JRE/JVM that has
TCP/IP connectivity to the target IMS Connect. The C version will be supported on Windows only.

Copyright IBM Corp. 2008 9Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

9

Restrictions

 IMS Connect API intended to support existing IMS Connect function

– New features added after start of development not included in initial GA

 Two-Phase Commit (2PC)

– Not supported in initial release

– May be restrictions which would prevent 2PC from ever being feasible with
API

 SSL

– May not be supported in initial release

– May not be concern if running API on System z behind firewall

 Cancel client ID

– May not supported in initial release

 XML

– Not supported in initial release

The IMS Connect API is intended to support all existing IMS Connect function at the time of release of the API.
However, in the first release, the 2PC functionality currently available in IMS Connect will not be supported. In fact, it
could be that there are limitations to what the API can do which prevent 2PC from ever being feasible with the API. In
addition, it is possible that SSL and cancel client ID support may also not be available in the initial Java release. XML
support will not be available in the first release.

It should be noted that Local Option is IMS TM Resource Adapter-specific and not supported for IMS Connect RYO
clients. As a result, it is also not supported by the IMS Connect API.

Copyright IBM Corp. 2008 10Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

10

Externals

 Major Functionality from Users’ Point-of-View

– IMS Connect API executes interactions with IMS Connect

• Shields IMS Connect client application developers from dealing with
complexities of:

– IMS Connect headers and protocols,

– TCP/IP sockets programming, and

– IMS Connect user exits (defaults to HWSSMPL1)

– The IMS Connect client application developer responsible for
configuring connection and interaction property files used by API

– Optional features

• SSL connections

• API runtime tracing

The IMS Connect API is intended to be used to execute interactions with IMS Connect. In order to shield client
applications (and their developers) from the complexities of interacting with TCP/IP sockets and IMS Connect, the IMS
Connect API will internally both generate the IMS Connect input message header and manage the interaction with IMS
Connect according to the IMS Connect message protocols. In addition, the IMS Connect API will deal with socket
connections to IMS Connect made on behalf of the client applications.

The API will support all existing IMS Connect user message exits. The default user exit is HWSSMPL1. Customer
written user exits will also be supported provided they use the same message and header structures used by the
HWSSMPL0 or HWSSMPL1 user exits. HWSSMPL0 and HWSSMPL1 are identical except that response messages
processed by HWSSMPL1 begin with a 4-byte length field, LLLL in front of the IRM, whereas messages processed
HWSSMPL0 begin with the IRM fields without an LLLL prefix.

IMS Connect client application developers are responsible for configuring the connection and interaction properties files
used by the API during execution or for coding the client applications to set appropriate values for these properties
during execution.

Client applications will be able to elect to use SSL connections for secure, encrypted TCP/IP communications between
the IMS Connect API and IMS Connect. The API will also allow the user to specify several different levels of tracing to
be used at runtime. With tracing enabled and configured, runtime execution tracing is provided through the
java.util.logging classes which generates tracing output similar to what is provided by WebSphere Application Server on
distributed platforms.

Copyright IBM Corp. 2008 11Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

11

Interfaces

 Customers may provide pathnames to customized files

– Specify default connection- and interaction-related properties

 OO approach used for Java API

– Similar to design used for J2EE and JCA

– ConnectionFactory getConnection call returns Connection interface on which
createInteraction is called to return TmInteraction interface

 Low-level calls for Java Connection interface

– Connect ()

• Input parameters: Java – none
C – pointer to ConnectionAttributes

– pointer to call completion/error status structure

• Return value: void

• Opens TCP/IP socket connection to IMS Connect identified in properties of
Connection instance

• Invoked explicitly by client application or called internally by API during high-level
execute call if Connection is not connected

A client application may provide pathnames to customized files which specify default values for connection- and
interaction-related properties to be used Connection and TmInteraction instances used by an application. Different
ConnectionFactory, Connection and TmInteraction instances may use separate customized files which specify the
connection- and interaction-related property values to be used by that instance.

The IMS Connect API will allow client applications to interact with IMS Connect at either a high level, in which an
interaction is configured and executed under complete control of the API, or at a lower level through which the client is
able to exert more control over the interaction such as invoking individual calls to open a connection to the target IMS
Connect, send a request message and receive a response message over that connection and finally disconnect that
connection. However, although the user can exert this lower level control over the interaction that gets performed, the
preferred means of performing interactions with IMS Connect will be to use the high-level execute interaction. The
actual implementations of these calls will usually differ slightly between the Java and C implementations due to the
different natures of the two languages, Object Oriented vs. procedural.

While the low-level calls give the application greater control over the interaction, they also require a deeper
understanding of the IMS Connect protocols. The connect() call is used to open a physical TCP/IP socket connection to
the target IMS Connect and associate it with the Connection object on which the Connect call is made.

The Java low-level connect() call takes no input parameters and has a return value of void. After the connect call
completes successfully, the Connection object can then be used to perform interactions with the IMS Connect at the
other end of the underlying socket. For C, the connect() call takes a parameter containing a pointer to the connection
properties of the desired connection (for values not set by the application, default values for the connection properties
will be used,) and a parameter containing a pointer to a status structure which contains the call completion code and
any error message returned from the API or IMS Connect. Since the output is returned in the status structure, the C
connect() call does not have a return value.

Copyright IBM Corp. 2008 12Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

12

Interfaces (continued)

 Low-level calls for Connection interface (cont.)
– disconnect()

• Input parameters: Java –none
C – pointer to ConnectionAttributes structure

– pointer to call completion/error structure
• Return value: void

• Closes underlying TCP/IP socket connection to IMS Connect for that Connection
instance

• Invoked explicitly by client application or called internally by API during high-level
execute call if Connection is not connected

– send()
• Input parameters: Java – input byte array

C – pointer to ConnectionAttributes structure
– pointer to input byte array
– pointer to call completion/error structure

• Return value: void

• Sends input byte array to IMS Connect using underlying socket for that Connection
instance

• Invoked explicitly by client application or called internally by API during high-level
execute call

The low-level disconnect() call can be invoked by the client application when an application has finished using a
particular socket connection. The Java disconnect method has no input parameters and no return value. The C
disconnect() call takes a pointer to a ConnectionAttributes structure along with a pointer to a call completion/error
structure as input parameters and has no return value.

The low-level send() call is invoked by the API when an application wants to send a request message to IMS Connect.
In Java, the send() call takes one input parameter: a one-dimensional input data byte array containing LLLL, IRM, LLZZ,
trancode (if applicable), data and the End-Of-Message indicator, an empty segment consisting of just LLZZ. Multi-
segment messages are constructed in a similar manner with as many segments as needed placed between the first
data segment and the EOM segment and each segment delineated by an LLZZ prefix. The Java low-level send() call
does not have a return value. In C, the send() call takes three parameters, one containing a pointer to a
ConnectionAttributes structure, another containing a pointer to the input data byte array and a third containing a pointer
to the call completion codes and any error message returned from the API, IMS or IMS Connect. The C send() call also
does not have a return value. Since the low-level send call only sends a message to IMS Connect, any response must
be retrieved using a separate receive call or resumeTpipe interaction if the response was treated as asynchronous
output by IMS Connect and routed to an asynchronous hold queue.

Copyright IBM Corp. 2008 13Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

13

Interfaces (continued)

 Low-level calls for Connection interface (cont.)

– receive()

• Input parameters: Java – void
C – pointer to ConnectionAttributes structure

– pointer to output buffer
– pointer to call completion/error structure

• Return value: Java – output byte array
C – void

• Receives output byte array from IMS Connect using underlying socket for that
Connection instance

• Invoked explicitly by client application or called internally by API during high-level
execute call

The low-level receive() call is invoked by the API when an application wants to receive a response message from the
IMS application (or in some cases, the response from the IMS control region, IMS Connect or an IMS Connect user
exit.) The receive() call is typically used after a send() call when the send and receive are invoked separately (as
opposed to invoking a sendReceive interaction through the execute call described later in this presentation) or following
a resumeTpipe request sent in using a low-level send() call. In Java, the receive() call takes no parameters and returns
a one--dimensional output byte array containing either a single-segment response message or a multi-segment
response message, provided the segments are delineated by LLZZ prefixes. In C, the receive() call takes three
parameters, one containing a pointer to a ConnectionAttributes structure, another containing a pointer to the output data
byte array and a third containing a pointer to the status structure which holds the call completion codes and any error
message returned from the API, IMS or IMS Connect. The C receive() call does not have a return value since the
response message is returned in the output buffer pointed to in the parameter list of the receive() call.

Copyright IBM Corp. 2008 14Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

14

Interfaces (continued)

 High-level calls for Connection interface (cont.)

– loadConnectionPropertiesFromFile()

• Input parameters: Java – qualified or unqualified name of file containing
Connection property values

C – qualified or unqualified name of file containing
Connection property values

– pointer to ConnectionAttributes structure
– pointer to call completion/error structure

• Return value: void

• Sets the values for all Connection properties identified by name-value pairs in the
specified Connection properties file

• Invoked explicitly by client application

There is also a higher level loadConnectionPropertiesFromFile() call in the Connection interface. This call allows the
user to set the values for some or all of the Connection properties from a text file containing name-value pairs of
different Connection properties. The loadConnectionPropertiesFromFile() call would typically be invoked by the API
when an application wants to change the values for a number of different Connection properties from their default
values to the values specified in the name-value pairs in the In Java, the loadConnectionPropertiesFromFile() call
takes a String parameter containing the qualified or unqualified name of file containing Connection property name-value pairs
and has no return value. In C, the loadConnectionPropertiesFromFile() call takes three parameters: a string parameter
containing the qualified or unqualified name of file containing Connection property name-value pairs, a pointer to a
ConnectionAttributes structure and a third parameter containing a pointer to the status structure which holds the call
completion codes and any error message returned from the API, IMS or IMS Connect. The C
loadConnectionPropertiesFromFile() call has no return value.

Copyright IBM Corp. 2008 15Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

15

Interfaces (continued)

 High-level calls for TmInteraction interface

– execute()

• Input parameters: Java – none
C – pointer to ConnectionAttributes structure

– pointer to input buffer
– pointer to output buffer
– pointer to InteractionAttributes structure
– pointer to call completion/error structure

• Return value: void

•

• Invoked explicitly by client application
– Establishes socket connection with IMS Connect if not already connected

– Builds input request message to be sent to IMS Connect including the IRM headers and with
or without trancode and data as necessary

– Enforces rules of IMS Connect protocol, throwing exceptions if interaction would violate
protocol

– Sends request message to IMS Connect

– Receives output from IMS Connect and IMS

– Processes output and returns either output or exception to calling client application

The most method for most users will be the execute() call in the TmInteraction interface. This call allows the user to
perform an interaction with IMS Connect and IMS utilizing the connection and interaction configuration that has
previously been set up. The execute() call is provides users with a single method call that performs the entire
interaction, relieving the application of the burden of managing most of the communications protocol with IMS Connect.
In Java, the execute() call takes no parameters and return value. The input has already been set by the client
application in the InputMessage interface and the output response can be retrieved from the OutputMessage interface in
a variety of ways after the execute() call has completed and control has been returned to the client application. In C, the
execute() call takes five pointer parameters: a pointer to the ConnectionAttributes structure, another to the input buffer,
the third to the output buffer, the fourth an InteractionAttributes structure and the fifth pointer to the status structure
which holds the call completion codes and any error message returned from the API, IMS or IMS Connect. Because the
response message and other properties of the interaction are returned in structures in the method parameters, the C
execute() call has no return value.

The execute method performs all of the setup for an interaction, completes the interaction, then interprets the response
message to determine if the interaction successfully returned a response or returned an error condition and finally
returns either the response or an appropriate exception as needed. The steps required to accomplish this begin with
determining if underlying socket connection of the Connection instance to be used is connected to the target IMS
Connect. If the socket is not connected, the execute method first executes the low-level connect() method on the
Connection to open a connection to IMS Connect. Once the connection has been opened, the execute() method
continues by analyzing the TmInteraction property values to determine if the interaction that it is being asked to perform
is valid and then performing the requested interaction if it conforms to the IMS Connect protocol. If the interaction is not
valid, the execute() method builds an appropriate exception and then returns that exception to the calling client
application. The client application then gets control and is able to process the output message or exception and
proceed accordingly.

Copyright IBM Corp. 2008 16Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

16

API Environment

IMS
Connect

API

Client
Application IMS

Connect
API

Client
Application IMS

Connect
API

Client
Application

IMS
Connect

Windows or z/OS

Connection
and

TmInteraction
Attribute files

Connection
and

TmInteraction
Attribute files

IMS

O
T
M
A

IMS App

Load default
property values

IMS App
IMS App

z/OS

TCP/IP

This figure shows the environment in which the IMS Connect API can be used. It also depicts the fact that multiple
client applications that use the IMS Connect API can be invoked simultaneously. The API will communicate with IMS
Connect. Upon request by the client application, for example, in an execute() or connect() call, the API will create a
connection object for use by that application only, which the client must keep track of, calling disconnect() on the
connection object before exiting. Of coarse in Java, orphaned connections would eventually be cleaned whenever there
are no longer any references to those connection objects, but this still requires that the application developer does not
keep references to connection objects that it no longer needs.

In addition to IMS transactions, the initial release of the IMS Connect API will support the IMS Connect user message
exit-supported PING and RACF password change commands along with all IMS commands supported by OTMA.

Copyright IBM Corp. 2008 17Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

17

Properties Files
 Default values

– Properties files used to set default values for Connection and TmInteraction

– Default values can be over-written by Connection and TmInteraction
properties setter methods

 Two types of properties files supported

– Connection properties

• Identify target IMS Connect, type of connection and SSL-related properties of
Connections

• Same connection properties used by ConnectionFactory class and Connection
Interface
– ConnectionFactory can be loaded with connection property values which are then used as

default values for Connections it creates

– Connections can also be loaded with connection property values which overwrite values set
by ConnectionFactory

• Changing of connection properties allowed only while Connection is not connected

– TmInteraction properties

• Describe type and characteristics of interaction to be performed

• Can be changed any time – changes affect subsequent interactions

Properties files, plain text files containing name-value pairs, are supported by the IMS Connect API for the ConnectionFactory class
and the Connection and TmInteraction interfaces. The intent of these text files is to allow users to customize these files for use with
either individual applications or groups of applications. All of the properties are included in these files, but the values set in the files
as shipped are the API’s default values for these properties. Because they are read in at runtime, it is recommended that you
remove the settings for any properties in these files where application(s) will use the API’s default value. To support the use of these
properties files by multiple applications, you can configure the files to set only those properties whose values are the same in
multiple applications and are not the API’s default values. Values which differ from application to application or are changed during
the running of an application can be set using the properties setter methods in order to make the applications faster and more
efficient.

Although there are three different Java classes and interfaces that use properties files, there are only two different types of
properties files, Connection and TmInteraction. This is because the same properties can be specified for the ConnectionFactory
class and Connection interface. The two types of properties files differ only in the properties that can be specified in them. They can
be given any names that OS can use to locate the files, but they must be plain text files. Java-style (//) or C-style comments can be
used in the files, but it is recommended that they be removed from the copies used at runtime for better performance. If an invalid
property name or value is encountered while reading in one of these files, loading will terminate immediately and an exception will be
returned to the user.

The ConnectionFactory and Connection properties are the same to allow users to configure connections at either the higher-level
ConnectionFactory or in the Connection itself. This allows you to configure a base set of properties once at the ConnectionFactory
level, and then configure other properties at the Connection level on a Connection-by-Connection basis. The Connection properties
are used to identify the target IMS Connect, hostname and portnumber, the type of connection, persistent or transaction and SSL-related
properties such as the whether you want to use SSL for that connection, the type of encryption you want to use, and the locations and passwords
for a keystore and truststore and the passwords. Note that these properties can only be set while there is not an open physical TCP/IP socket
associated with the Connection. Otherwise, an exception will be returned to the client application without the API having changed the property’s
value or setting any of the remaining values in the properties file.

TmInteraction properties are used to describe the type of interaction that you want performed and its characteristics. When you are using the high-
level execute method to perform your interactions, in general, the TmInteraction property values can be changed at any time in your application.
This is because their values are only used while the execute and certain other setter methods are running. The API has control while these
methods are running and therefore the application is not able to make any property value changes after it has passed control to the API until the API
returns control to the calling application. The one caveat to this statement is that you would not want to set the data in your InputMessage object
and then change a property such as the imsConnectCodePage which affects how the data is saved in the InputMessage object. The correct
approach would be to set the values of all of the environment-related properties first, before you invoke methods which utilize those values in there
processing.

Copyright IBM Corp. 2008 18Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

18

Properties Files (continued)

Connection Properties

Target IMS Connect
- Host name
- Port number

SSL configuration
- Use SSL flag
- SSL encryption level
- Keystore and truststore

Other properties
- Client ID
- Socket type

TmInteraction Properties

Interaction
- Datastore name (IMS)
- Commit mode, sync level
- Interaction type

Message routing
- Purge undeliverable output
- Reroute undeliverable output
- Reroute name

Security
- RACF settings

Timeouts
- IMS Connect timeout
- Interaction timeout

Message encoding
- IMS Connect codepage

Response
- responseIncludesLLLL
- returnMfsModName

This slide lists the categories of properties and some examples of the Connection properties and the TmInteraction properties.

As mentioned previously, the Connection properties identify the TCP/IP endpoint, which is the listening port of the target IMS
Connect, by hostName and portNumber properties. The SSL configuration includes properties which tell the API whether or not to
use SSL for that Connection, what level of encryption you want used for data passed back and forth on the underlying SSL
connection along with the name of the keystore and truststore and their passwords. In addition, there are other properties which
allow you to set the clientId and socket type for a Connection. The clientId when assigned a non-null, non-blank value, will be used
by IMS Connect to identify that connection. If the clientId is set to blanks, the IMS Connect user message exit will create a unique
clientId to be used for that connection. The socket type determines how IMS Connect will treat a connection when an interaction has
completed. Persistent sockets remain open until they are explicitly closed by the client application or the API or until a fatal error has
occurred on the connection and IMS Connect needs to close the connection because it can no longer guarantee that its state is
valid. Transaction sockets on the other hand are automatically closed by IMS Connect at the conclusion of an interaction. An
interaction does not conclude until any required ACK or NAK has been received or, if it is a conversational interaction, until all of the
iterations of the conversation have completed and the conversation has been ended by IMS. Conversations can be ended by IMS
either in response to an end conversation request sent by the client through the API or by the IMS application that was processing
the conversation.

The TmInteraction properties can be divided into several different categories. The above charts list these categories and some
example properties in these categories First there are interaction-related categories which contain properties that control various
facets of an interaction with IMS Connect. These would include the datastore name which tells IMS Connect what IMS you want to
interact with, the commitMode and syncLevel which determine the process that IMS goes through to complete transaction and
commit any database changes along with the interactionType which determines the type of interaction to be performed such as
sendrecv, the default, sendOnly, resumeTpipe, Ack or Nak. Message routing properties such as the rerouteUndeliverableOutput
and purgeUndeliverableOutput flags and rerouteName determine what OTMA and IMS Connect do with output that cannot be
delivered to the client application. Security-related properties sucn as racfUserId, racfPassword, racfGroupName and racfApNm
provide the security information that IMS Connect uses for authentication of the client and IMS uses to verify client authorization to
use RACF protected resources in IMS. Timeout properties used by the IMS Connect API include the imsConnectTimeout property
which determines the amount of time that IMS Connect should wait for response to be returned by OTMA, and the
interactionTimeout property which determines the amount of time that the API should spend waiting for a response to be received
from IMS Connect before throwing a timeout exception back to the originating client application. MessageEncoding properties
include the imsConnectCodePage which determines what codepage the API is to use when creating the input request message byte
array and interpreting the output response message. Response-related properties include properties such as responseIncludesLLLL
which tells the API whether the output response messages received from IMS Connect are prefixed with LLLL values as is the case
with the default user message exit, HWSSMPL1, and the returnMfsModName property, which tells IMS whether or not to return an
MFS MOD name in a separate segment in the output response message.

More information about these and other properties will be provided in a later slide in this presentation.

Copyright IBM Corp. 2008 19Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

19

Tracing

 Uses java.util.logging package

 Provides four levels of tracing from no tracing to detailed tracing:

– None

– Exception – exceptions only
Mon, Jan 19 2009, 14.05.15.971 PST [SEVERE] Exception caught in client application

Mon, Jan 19 2009, 14.05.15.986 PST [SEVERE] Exception was:

[com.ibm.ims.connect.ImsConnectCommunicationException: HWS0006E: IMS OTMA returned an

error. IMS Connect return code: [16], OTMA sense code: [26], OTMA reason code: [25] (SMB

transaction or LTERM stopped (see DFS065))]

– EntryExit – exceptions plus significant method entries and exits
Fri, Jan 16 2009, 17.18.05.111 PST [FINER] --> ConnectionImpl.connect()...

Fri, Jan 16 2009, 17.18.05.283 PST [FINER] <-- ConnectionImpl.connect()...

– Internal – trace exceptions plus entries and exits plus useful information such
as the input and output buffer contents formatted and interpreted
InputMessage.getBytes() - writing trancode [IVTNO] to "dout" DataOutStream

InputMessage.getBytes() - copied bout.toByteArray() to "message" byte array:

00000098 00700200 5ce2c1d4 d7d3f15c 00000000 10001000 c3d3c9c5 d5e3f0f1 |...q.ø..*SAMPL1*........CLIENT01| : 32

00400140 c9e5e3d5 d6404040 c9d4e2f1 40404040 40404040 40404040 d9c1c3c6 |. . IVTNO IMS1 RACF| : 64

e4c9c440 d9c1c3c6 c7d9e4d7 d9c1c3c6 d7e2e6c4 d9c1c3c6 c1d7d5d4 40404040 |UID RACFGRUPRACFPSWDRACFAPNM | : 96

40404040 c8e6e2e7 d4d3c1f0 c8e6e2e7 c3d5e5f0 00200000 c9e5e3d5 d6404040 | HWSXMLA0HWSXCNV0....IVTNO | : 128

4040c4c9 e2d7d3c1 e840d3c1 e2e3f140 40404040 00040000 | DISPLAY LAST1 | : 152

The IMS Connect API uses the java.util.logging package to provide tracing services for the API. Four levels of tracing
are provide, None in which tracing is done, Exception where only exception messages are traced, EntryExit in which
tracing statements are logged on entry and exit of all methods where any significant processing occurs and Internal
where additional information is traced such as the contents of the send and receive buffers.

Copyright IBM Corp. 2008 20Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

20

Tracing
 Tracing output at Internal level also includes interpreted IRM fields

Thu, Jan 15 2009, 00.01.15.877 PST [FINEST] llll = 0x98 (decimal 152)
Thu, Jan 15 2009, 00.01.15.877 PST [FINEST] irm_ll = 0x70 (decimal 112]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] archLvl = 0x02
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] f0 = 0x00 (decimal 0] (no XML transformation)
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] irmId = [*SAMPL1*]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] resWrd = 0x00 (decimal 0]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] f5 = 0x10 (decimal 16]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] EBCDIC translation not done by client
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] resumeTpipe option is SINGLE_WAIT
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] irmTimer = 0x00 (decimal 0]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] sockType = 0x10 (decimal 16]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] Persistent socket
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] encSchema = 0x00 (decimal 0]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] clientId = [CLIENT01]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] f1 = 0x00 (decimal 0)
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] Return MFS modname not requested
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] f2 = 0x40 (decimal 64)
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] Commit mode 0
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] f3 = 0x01 (decimal 1)
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] Sync Level is CONFIRM (1),

Purge undeliverable output is false,
Reroute undeliverable output is false

Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] f4 = 0x40 (decimal 64, chararcter [])
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] SENDRECV interaction
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] irmTrancode = [IVTNO]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] datastoreId = [IMS1]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] ltermOvrd = []
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] racfuserid = [RACFUID]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] racfGroup = [RACFGRUP]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] racfPassword = [********]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] racfApplNm = [RACFAPNM]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] rerouteName = []
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] xmlAdapterNm = [HWSXMLA0]
Thu, Jan 15 2009, 00.01.15.892 PST [FINEST] xmlConvrtrNm = [HWSXCNV0]

In addition to the contents of the buffer sent to IMS Connect, the trace output at the Internal level includes a listing of the
contents of each field in the IRM header along with the meanings of those fields.

Copyright IBM Corp. 2008 21Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

21

Usage
 API uses JEE/JCA-like paradigm

– Instantiate ConnectionFactory

• Configure using loadConnectionFactoryPropertiesFromFile() method or
ConnectionFactory property setter methods

– Create Connection from ConnectionFactory

• Configure using loadConnectionPropertiesFromFile() method or
Connection property setter methods

– Create TmInteraction from Connection

• Configure interaction using loadTmInteractionPropertiesFromFile() method
or TmInteraction property setter methods

– Create input data as one- or two-dimensional byte array or String

– Obtain InputMessage object using TmInteraction.getInputMessage()

• Set input data in InputMessage

– Invoke TmInteraction.execute() to perform interaction

– Obtain OutputMessage using TmInteraction.getOutputMessage()

• Get response data and properties from OutputMessage

From an external standpoint, the structure of the API bears a resemblance to the structure of the J2EE Connector
Architecture. The basic way that you use the API is to instantiate a ConnectionFactory and from that, create
Connections which are the interfaces through which the client applications accesses either directly or indirectly the
underlying physical connection to IMS Connect. Both the ConnectionFactory as well as the Connection interfaces that
are created by that ConnectionFactory can be configured, that is, the connection properties which define the partner
endpoint of a Connection and some of the characteristics of that endpoint, can be set. This setting of properties can be
accomplished either using setter properties on individual properties or by loading a properties file containing a name-
value pair for each property that you want to set. Allowing properties to be set both at the connection factory level,
allows you to set customized values at the ConnectionFactory level
for a base set of properties that will usually or always be the same in all of the Connection instances that are created
from that ConnectionFactory. Then the individual Connection objects created can be further customized as required,
again using the Connection setter methods or by loading a properties file containing a name-value pair for each property
that you want to customize.

From the Connection, you can create a TmInteraction interface which is the interface through which you set properties
that describe the interaction that you want to perform. The TmInteraction object can be also be configured by loading a
properties file containing a name-value pair for each property that you want to set or by setting the property values you
want to configure individually. As with the Connection interface, you can use a combination of these two approaches to
set the majority of the properties, those that are common in most TmInteraction interfaces used by your application, with
the properties file loader approach and use the TmInteraction property setters to customize the TmInteraction interfaces
for the particular interaction they are to perform.

The TmInteraction object contains references to an InputMessage interface to which you provide the input data for the
interaction in a variety of ways, as well as an OutputMessage interface which the application will use after the interaction
completes to retrieve the interaction’s response. The IMS Connect return code as well as the OTMA sense code and
reason code are available through getter methods in both the TmInteraction and OutputMessage interfaces. The output
response data must be retrieved from the OutputMessage, but can be retrieved in a variety of byte array and String
formats.

Copyright IBM Corp. 2008 22Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

22

Usage (continued)
 Simplified example

1 Logger logger = apiLoggingConfig.configureApiLogging(“trace.out”, ApiProperties.TRACE_LEVEL_INTERNAL);

2

3 ConnectionFactory myCF = new ConnectionFactory();

4 myCF.loadConnectionFactoryAttributesFromFile(“c:\\myPropAttributesFiles\\ConnAttr.txt");

5 myCF.setHostName(“myhost.mycompany.com");

6 myCF.setPortNumber(9999);

7

8 Connection myConn = myCF.getConnection();

9 myConn.setClientId(“client01");
10

11 TmInteraction myTmInteraction = myConn.createInteraction();

12 myTmInteraction.setImsDatastoreName("IMS1");
12 String myImsConnectCodepage = myTmInteraction.getImsConnectCodepage();

13 byte[] indata1 = (new String("/STA TRAN IVTNO")).getBytes(myImsConnectCodepage);

14 InputMessage inMsg = myTmInteraction.getInputMessage();

15 inMsg.setInputMessageData(indata1);
16

17 myTmInteraction.execute();
18

19 OutputMessage outMsg = myTmInteraction.getOutputMessage();

20 System.out.println(“\nResponse was: [” + outMsg.getDataAsString + “]\n”);
21

22 myTmInteraction.setTrancode(“IVTNO “);

23

24 byte[] indata2 = (new String(“DISPLAY LAST1 ")).getBytes(imsConnectCodepage);

25 inMsg.setInputMessageData(indata2);
26

27 myTmInteraction.execute();
28

29 System.out.println(“\nResponse was: [” + outMsg.getDataAsString + “]\n”);

Here is a very simplified example. It describes a very simple scenario in which an IMS /START TRAN command is sent
in followed by request to run an IVTNO DISPLAY LAST1 command. The IVTNO transaction is part of the IMS
INSTALL/IVP installation verification program which is shipped with the IMS product and therefore be available in
customer shops.

Some things that you should observe about this small sample program are:
Connections are configured at both the ConnectionFactory and Connection level using both properties file loaders

as well as individual property setter methods
TmInteraction uses all default values except for the imsDatastoreName and the trancode so the property file

loader is never called
The trancode is right-padded with 5 blanks which makes the trancode longer than 8 bytes. This is done because

the message format of IVTNO in the INSTALL/IVP requires a total of 10 characters between the start of the
trancode, IVTNO and the start of the command field in the message, DISPLAY. Since the API has no knowledge
of this requirement, the client application must specify the actual trancode field to be set in the message including
any required trailing blanks.

Note that this is a simplified sample program for demonstration purposes so important considerations such as
error handling have not been included in this example.

Copyright IBM Corp. 2008 23Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

23

IMS Connect Functions Supported
 IMS transactions

 OTMA-supported IMS commands

 IMS Connect PING command

 IMS Connect RACF password change
command

 Persistent and transaction sockets

 IMS Connect-generated client IDs (application-
generated – CLIENTID)

 SSL connections to IMS Connect (non-SSL)

 HWSSMPL0 and HWSSMPL1 user message
exits (responses with and without LLLL)

 IMS Connect DATASTORE definitions

 ResumeTpipe processing options single wait
and nowait, auto and noauto

 ResumeTpipe alternate client ID

 LTERM override name (8 blanks)

 Return MFS MOD name with response (false)

 Commit mode’s commit-then-send (CM0) and
send-then-commit (CM1)

 Sync level’s none and confirm

 Interaction types ack, nak, cancel timer, end
conversation, receive, resume tpipe, send only,
send only w/ ack, send only w/ XCF ordered
delivery and send receive

 Purge undeliverable output (false)

 Reroute undeliverable output (false)

 Reroute name (8 blanks)

 RACF user ID (RACFUID)

 RACF group name (RACFGRUP)

 RACF password (RACFPSWD)

 RACF appl name (RACAPNM)

 IMS Connect timeout (0 – use IMS Connect
timeout value)

 Interaction timeout (0 – wait forever)

 IMS Connect codepage (cp037 – EBCDIC)

 ASCII or EBCDIC messages

 Bold = default value

This slide lists the IMS Connect functions supported by the IMS Connect API which generally correspond to the Connection properties and the TmInteraction properties.
The IMS Connect API supports both IMS TM transactions and those IMS Commands supported by OTMA. The IMS Information Center contains a section which lists the OTMA modified

commands, IMS commands which were modified to support invocation through OTMA. The API also supports the IMS Command PING command which allows a client to submit a PING request and
get a PING RESPONSE to verify the health of the target IMS Connect as well as the IMS Connect RACF password change command which allows a client to submit a request to IMS Connect to
change the RACF password of the RACF user ID specified in the TmInteraction properties. A user simply submits an interaction with the data set to HWSPWCH oldpaswd/newpaswd/newpaswd.
The EOM, that is, the End Of Message indicator is an “empty” segment, which is a segment that consists solely of LLZZ (00 04 00 00). The LLLL prefix, the LLZZ for the data and the EOM indicator
are all added to the message as needed during processing in the execute() method.
The API supports two socket types. The socket type determines how IMS Connect will disconnect a connection when an interaction has completed. Persistent sockets remain open until they are

explicitly closed by the client application or the API or until a fatal error has occurred on the connection and IMS Connect needs to close the connection because it can no longer guarantee that its
state is valid. Transaction sockets on the other hand are automatically closed by IMS Connect at the conclusion of an interaction where an interaction does not conclude until the any required ACK or
NAK has been received or, if it is a conversational interaction, until all of the iterations of the conversation have completed and the conversation has been ended by IMS. Conversations can be
ended by IMS either in response to an end conversation request sent by the client through the API or by the IMS application that was processing the conversation.
Client IDs are used by IMS Connect to identify a connection. The clientId in the IMS Connect API can either be assigned a non-null, non-blank value, in which case that clientId value will be used by

IMS Connect. If the clientId is set to blanks, the IMS Connect user message exit will create a unique clientId to be used for that connection referred to as an IMS Connect-generated client ID. When
generated clientId’s are used, the client application will never know what the clientId of that connection is since the clientId is not passed back to the client by IMS Connect. The use of generated
clientId’s is a way to ensure that a Connection has a unique clientId within a given IMS Connect since the clientId is generated by IMS Connect which can guarantee that the clientId is not a duplicate
of another, already-existing clientId in that IMS Connect.
The SSL configuration includes properties which tell the API whether or not to use SSL for that Connection, what level of encryption you want used for data passed back and forth on the underlying

SSL connection along with the name of the keystore and truststore and their passwords. The API handles the keystore and truststore in such a way that they can either be used to hold public and
private certificates separately or together in the same keystore or truststore.
The API supports the HWSSMPL0 and HWSSMPL1 IMS Connect user message exits. The API will work with any message exit that uses the same IRM as is used by the HWSSMPL0 and

HWSSMPL1 exits. You specify which exit to use by specifying the imsConnectUserMessageExitIdentifier, which must match the identifier of one of the exit you want to use in the target IMS Connect.
The TmInteraction responseIncludesLLLL property can be used to tell the API whether the output response messages received from IMS Connect are prefixed with LLLL values as is the case with
the default user message exit, HWSSMPL1. If the imsConnectUserMessageExitIdentifier is “*SAMPLE*”, the API will process response messages as if they do not have an LLLL prefix. If the
imsConnectUserMessageExitIdentifier is “*SAMPL1*”, the API will process response messages as if they are prefixed with an LLLL value. If the imsConnectUserMessageExitIdentifier is anything
other than “*SAMPLE*” or “*SAMPL1*”, the API will use the responseIncludesLLLL property to determine whether to process response messages as if they are or are not prefixed with an LLLL value.
The datastoreName property in the TmInteraction interface tells the API and IMS Connect what IMS you want to interact with. The datastoreName property value must match the ID value on the

appropriate DATASTORE statement of the target IMS Connect’s configuration member.
The TmInteraction resumeTpipeProcessing property tells the API which type of resumeTpipe you want to use. The API supports SINGLE_WAIT, SINGLE_NOWAIT, AUTO and NOAUTO. The

difference between SINGLE_WAIT and SINGLE_NOWAIT is that, if there is no output available to be returned when the resumeTpipe call is made, IMS Connect will return always return timeout for
NOWAIT even if output is received by IMS Connect receives output before the IMS Connect timeout expires. On the other hand, if IMS Connect is processing a resumeTpipe WAIT, and IMS Connect
receives output before the IMS Connect timeout expires, IMS Connect will return that new output response rather than timing out. AUTO and NOAUTO are processed in a similar fashion. The
difference between SINGLE and AUTO is that resumeTpipe SINGLE’s will return at most, one output response message. Auto on the other hand, will return as many messages as are available to be
returned with the limitation that a resumeTpipe NOAUTO will only return those messages that are available at the time the resumeTpipe interaction request is received by IMS Connect for processing.
The resumeTpipeAlternateClientId property of TmInteraction allows a client application to retreive the asynchronous output for another client ID. This function is typically used in conjunction with
output that has been rerouted to a different clientID defined by a reroute name, described below.
The lTermOverrideName of the TmInteraction interface allows the client application to specify an name that OTMA places in the IOPCB LTERM field. The returnMfsModName property of the

TmInteraction interface allows a client to request that IMS return an MFS MOD name in a separate segment in the output response message.
Other interaction-related properties include commitMode and syncLevel which determine the process that IMS goes through to complete transaction and commit any database changes. The

commit mode specifies that either commit-then-send (frequently referred to as CM0) or send-then-commit (CM1) is to be used. The sync level determines whether response messages must be
acknowledged (syncLevel CONFIRM) or not (syncLevel NONE.)
The TmInteraction interactionType property determines the type of interaction to be performed such as sendrecv, the default in which the API attempts to send an input request message to IMS

Connect and receive an output response from IMS Connect, sendOnly in which the API attempts only to send an input request message to IMS Connect, resumeTpipe in which the API attempts
retrieve asynchronous output, and Ack or Nak to acknowledge a previous output response message received from IMS Connect.
The TmInteraction message routing properties purgeUndeliverableOutput, rerouteUndeliverableOutput and rerouteName determine what OTMA and IMS Connect will do with output that cannot be

delivered to the client application.
Security-related properties of the TmInteraction interface include racfUserId, racfPassword, racfGroupName and racfApplName which provide the security information that IMS Connect uses for

authentication of the client and IMS uses for authorization to use RACF protected resources in IMS by the client.
TmInteraction timeout-related properties include the imsConnectTimeout property value which is used by IMS Connect to override its TIMEOUT value which in turn, determines the amount of time
that IMS Connect will wait for a response to be returned by OTMA, and the interactionTimeout value which determines the amount of time that the IMS Connect will wait for an interaction response to
be returned from IMS Connect.
Message encoding properties of the TmInteraction interface include the imsConnectCodePage property which determines what codepage the API will use when creating the input request message
byte array and interpreting the output response message. Client applications can use the imsConnectCodePage to tell the API whether to use ASCII or EBCDIC for the input message encoding.

Copyright IBM Corp. 2008 24Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

24

IMS Connect API Functions

 IMS Connect API-specific Functions

– Client ACK or NAK vs. API internal ACK

 LLZZ and trancode can be provided by client application or API

 Input and output message data types

– Byte array

• Single-segment

• Multi-segment if segment in data provided are delineated with LLZZ’s

– Array of byte arrays

• Single-segment if only one byte array element is populated

• Multi-segment – LLZZ not required to be specified

– String - LLZZ cannot be specified

• Single-segment only since there is no way to delineate segments within String

– Array of Strings - LLZZ cannot be specified

• Single-segment if only one String element is populated

• Multi-segment

The IMS Connect API has some functions of its own that are worthy of mention. First, the API allows a client application to reply with an ACK or NAK when an
acknowledgment to a response message is required or to defer that responsibility to the API. In this latter case, that is when the ackNakProvider property value has been
set to API_INTERNAL_ACK, the API will send an ACK interaction back to IMS Connect under the covers during the execute() method processing before returning control
back to the client application. Note that when the ackNakProvider property is set to API_INTERNAL_ACK, the API will only send in an ACK. The API does not have any
criteria to decide whether the response is valid or invalid so there would never be a reason to NAK a message. On the other hand, if the ackNakProvider property is set to
CLIENT_ACK_NAK, the client application can send in an ACK in which case the output message will be dequeued in IMS or a NAK in which case the output response
message will remain queued in IMS and can be retrieved and dealt with at a later time as long as the API has not been configured to purge undeliverable output.

Input request messages sent to IMS Connect must include LLZZ and an optional trancode depending on the interaction. The LLZZ and trancode can either be provided
by the client application within the data that it sets in the InputMessage interface or it can be left out of that data and the API will automatically add an LLZZ along with a
trancode if appropriate to the input request message byte array that it sends to IMS Connect.

The input data can be provided to the InputMessage and retrieved from the OutputMessage interface in any of several different data types: as a one- or two- dimensional
byte array or as a one- or two-dimensional String.

Setting input data in an InputMessage using a one-dimensional byte array:
 Use of both single- and multi-segment data is supported
 Single-segment message data can be provided with or without LLZZ.
 For multi-segment data, each segment must be delineated by an LLZZ and the trancode must be included after the LLZZ in the first segment if appropriate.

Setting input data in an InputMessage using two-dimensional array of byte arrays :
 Use of both single- and multi-segment data is supported
 Both single- and multi-segment message data can be provided with or without LLZZ and trancode if appropriate
 To set single-segment data in an array of byte arrays, only populate the first byte array element
 For multi-segment data, each segment is provided in a separate byte array element in the array of byte arrays

When providing input data as a String or a String array, the LLZZ, and therefore the trancode as well, cannot be specified by the client application since there is no way to
delineate segments with binary LLZZ values within the String. As a result LLZZ and trancode must be added by the API during the execute method.

Setting input data in an InputMessage using a String:
 Use of only single-segment data is supported

Setting input data in an InputMessage using a String array:
 Use of both single- and multi-segment data is supported
 To set single-segment data in a String array, only populate the first element of the String array
 For multi-segment data, each segment is provided in a separate String element in the String array

In a similar fashion, a number of different methods are provided to retrieve the response data from an OutputMessage. Response data can be retrieved from the
OutputMessage using the following getter methods:

 getDataAsByteArray()
 getDataAsArrayOfByteArrays()
 getDataAsString()
 getDataAsArrayOfStrings()

In each of these methods, the data from the response message will be returned without the LLLL if applicable and without the LLZZ(s).

Copyright IBM Corp. 2008 25Section Title in Header

© 2009 IBM Corporation

®

IMS Version 10

V10 IMS Connect Updates

Dave Cameron
daveac@ca.ibm.com

Copyright IBM Corp. 2008 26Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

26

IMS Connect V10 Updates

 OTMA Degraded System Monitoring

 Transaction Expiration

 Cancel Clientid Option

 Performance APAR

 TCP/IP KeepAlive

 MAXSIZE

 Mixed Case Passwords

 BPEINI00

 IMS TM Resource Adapter Socket Reconnect

These are the topics that will be covered for the IMS Connect V10 updates.

Copyright IBM Corp. 2008 27Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

27

OTMA Degraded System Monitoring

 Provide protocol for OTMA to inform its clients about the system health

– Initially deals with TIB flood protection

 OTMA sends x’3C’ protocol messages

– At client bid with initial status

– Immediately when status changes

– Heartbeat once every 60 seconds

 x’3C’ protocol message provides:

– Overall OTMA status: available, warning, severe

– Warning indicators; both global and local (this TMEMBER)

– Severe indicators; both global and local (this TMEMBER)

 IMS Connect externalizes the OTMA status:

– Expanded XIBDS for User Message Exits

– Event 45 issued when XIBDS status updated

IMS V10 OTMA introduces new protocol messages to inform its clients (like IMS Connect and MQSeries IMS Bridge) of
the IMS system health.

Initially OTMA will monitor and report on the TIB usage, also known as flood protection.

IMS Connect provides the OTMA status in an expanded XIBDS for User Message Exits. These exits can use this
information to aid message routing decisions.

There is new Event 45 issued for the Event Recorder Exit (HWSTECL0) that signifies a change in status.

This function was introduced to IMS V10 through the service process as PK70458 (OTMA) and PK70960 (IMS
Connect).

Copyright IBM Corp. 2008 28Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

28

Transaction Expiration – part 1 IMS

 Provide capability to expire unprocessed transactions

– Reduce cost of processing transactions when clients no longer care

 IMS checks for timeout at:

– Input receiving phase – NAK x’34’ (OTMA only)

– Enqueuing phase – NAK x’34’ (OTMA only)

– GU phase – U0243 & DFS555I / DFS2224I (OTMA and IMS V11 non-OTMA)

 Specify transaction expiration at system level or message level

– System Level (in IMS V11 only):

• TRANSACT macro EXPRTIME

• Output Creation Exit (DFSINSX0)

• DRD CREATE/UPDATE TRAN/TRANDESC

– Message Level:

• STCK value (IMS Connect)

• elapsed time in seconds, similar to EXPRTIME

• overrides System Level

IMS V10 introduces the capability for customers to request a time value to expire unprocessed transactions. Once
expired, these transactions will be deleted before being scheduled thus reducing processing costs.

IMS V10 provides transaction expiration for only OTMA transactions and at the Message Level.

IMS V11 extends this support to non-OTMA transactions and also implements System Level transaction expiration.

Copyright IBM Corp. 2008 29Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

29

Transaction Expiration – part 2 IMS Connect

 Client requests transaction expiration on input transaction

– IRM_F1_TRNEXP (x’01’) in the IRM_F1 byte

– Can set in User Message Exit

 IMS Connect uses message execution timeout value

– IRM_TIMER or TIMEOUT from HWS configuration file

– When client times out, unprocessed transaction will expire

 IMS Connect calculates STCK value for expiration and passes to
OTMA

– More closely match client time out than expiration elapsed time

IMS Connect clients request transaction expiration by setting IRM_F1_TRNEXP on the input transaction or modifying
their User Message Exit.

IMS Connect uses the execution timeout value from the IRM_TIMER (or the TIMEOUT value from the HWS
configuration file if no IRM_TIMER value provided). IMS Connect calculates the expiration time based on the current
time plus the execution timeout value. This way the IMS Connect client timeout and OTMA transaction expiration will
more closely match.

This function was introduced to IMS V10 through the service process as PK78195 (IMS), PK74017 (OTMA) and
PK74024 (IMS Connect).

Copyright IBM Corp. 2008 30Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

30

Cancel Clientid Option

 Addresses the issue of “Duplicate Clientid” when a client becomes
disconnected from IMS Connect and tries to re-connect

 Old session can be held up:

– In CONN State waiting for OTMA message or timer

– In RECV State waiting for TCP/IP Keepalive

 Cancel Timer didn’t work well, particularly with Sysplex Distributor

 Cancel Clientid is an option on the first request from a client

– Client session initially starts off as DELDUMMY

– Client set IRM_F3 to IRM_F3_CANCID (x’80’) or

User Message Exit can set OMUSR_FLAG1 to OMUSR_CANCID (x’20’)

 If duplicate clientid found and Cancel Clientid requested, old session
cleaned up and this session proceeds

IMS Connect clients may encounter “Duplicate Clientid” errors when attempting to re-connect after a network failure.

It can take IMS Connect an unacceptable length of time to be informed that the client has failed.

The client can use Cancel Timer but it may not be effective when used with Sysplex Distributor or when the prior
session is in certain states.

The new Cancel Clientid option is specified on the first request from a client when the session clientid is being
established.

IMS Connect checks for the existence of the same clientid on this Port and will clean it up if found before proceeding
with the new session.

This function was introduced to IMS Connect through the service process as IMS V9 PK70327 and IMS V10 PK73829.

Copyright IBM Corp. 2008 31Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

31

Performance APAR PK57574

 IMS Connect searches clients by socket to match clientid for messages
from OTMA

 Search can become CPU intensive when many clients (sockets) active

 Added clientid hash table per Port to access client socket directly by
clientid passed from OTMA

 Internal benchmark showed better than 20% reduction in IMS Connect
CPU

– large number of clients with high transaction rates

– reduction dependent on number of clients and workload type

IMS OTMA sends response messages to IMS Connect specifying the target clientid.

IMS Connect must search through all of the clients chained by socket addresses to match the clientid.

This becomes more CPU intensive as the number of active clients (sockets) increases.

IMS Connect now implements a clientid hash table for each Port to access the clients directly by clientid when matching
the clientid sent by OTMA.

This can greatly reduce the CPU required to determine the correct target socket, however the savings is dependent
upon the number of active clients (sockets) and transaction rates.

Copyright IBM Corp. 2008 32Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

32

TCP/IP KeepAlive

 TCP/IP will send KeepAlive packets after period of inactivity on a socket
to determine if partner is still healthy

– can determine when partner terminates abruptly

 To minimize network overhead of KeepAlive packets, TCP/IP stack
KeepAlive interval is usually fairly long

 IMS Connect provides SO_KEEPALIVE to override the stack interval

 New PORT= definition in HWS configuration file
PORT=(ID=name,KEEPAV=nnnn)

Where:

PORT= is the statement to define the Port.

ID= Defines the Port name

KEEPAV= nnnn is the KeepAlive override value in seconds.

Default of 0 uses stack value.

 A Port can only be defined once in PORTID, SSLPORT or PORT

Many customers specify a large TCP/IP KeepAlive interval to reduce the network overhead of KeepAlive packets.

This may prevent IMS Connect from being informed of client problems in a timely manner.

IMS Connect introduces a new PORT definition in the HWS configuration file that allows customers to override the
TCP/IP KeepAlive interval for socket on specific Ports.

Each Port can only be defined once as illustrated in the following example:

TCPIP=(HOSTNAME=TCPIP,PORTID=(9999,7777,LOCAL),RACFID=GOFISHIN,

SSLPORT=(8888),SSLENVAR=HWSCFSSL,TIMEOUT=3000,MAXSOC=65535,

PORT=(ID=9998,KEEPAV=600),PORT=(ID=9997,KEEPAV=120),

PORT=(ID=9996),PORT=(ID=9995,KEEPAV=300), ...)

This function was introduced to IMS V10 through the service process as PK72652.

Copyright IBM Corp. 2008 33Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

33

MAXSIZE

 IMS Connect reads input messages from clients for a length specified
by the first four bytes (LLLL)

– internal maximum message size limit of 10MB

– HWSP1440E INVALID LENGTH SPECIFIED IN MESSAGE PREFIX

 New MAXSIZE parameter on HWS statement in HWSCFG

– overrides default 10MB, either smaller or larger

MAXSIZE=

A decimal field set to the maximum message size that

will be allowed in the four byte total length field

that proceeds the IRM.

Use the MAXSIZE= parm to override the internal

default of 10,000,000.

IMS Connect uses the first four bytes of input messages from clients to determine the total size of the message.

There is an internal size limit of 10MB for input messages.

IMS Connect introduces a new MAXSIZE parameter on the HWS statement in the HWS configuration file to override
this internal default value.

Customers may specify either a larger or smaller value to limit the size of input messages.

This function was introduced to IMS Connect through the service process as IMS V9 PK57769 and IMS V10 PK57770.

Copyright IBM Corp. 2008 34Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

34

Mixed Case Password

 IMS Connect provides support for RACF mixed-case passwords

 PSWDMC option on HWS statement in the HWS configuration file

‘R’ – determine mixed-case password option from RACF (default)

‘Y’ – always enable mixed-case passwords

‘N’ – always disable mixed-case passwords

 dynamically change option using

UPDATE MEMBER TYPE(IMSCON) SET(PSWDMC(xxx))

where ‘xxx’ is

RCF – determine mixed-case password option from RACF

ON – enable mixed-case passwords

OFF – disable mixed-case passwords

IMS Connect provides support for RACF mixed-case passwords with three options.

The default is to determine the mixed-case password option from RACF.

This allows customers to implement RACF mixed-case passwords with IMS Connect active and the change will
automatically be picked up.

The mixed-case password option can be specified in the HWS configuration file or changed dynamically with the
UPDATE MEMBER command.

This function was enhanced in IMS Connect through the service process by PK80037.

Copyright IBM Corp. 2008 35Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

35

BPEINI00

 IMS Connect runs in Key 7 so has required an update to the Program
Properties Table (PPT) for HWSHWS00

 BPEINI00 is pre-defined in the PPT as supplied by z/OS

 IMS Connect now allows either BPEINI00 or HWSHWS00 to be used

– if using BPEINI00, no longer require update to PPT

 change required to IMS Connect JCL for BPEINI00
//STEP1 EXEC PGM=BPEINI00,REGION=&RGN,TIME=1440,

// PARM='BPECFG=&BPECFG,BPEINIT=HWSINI00,HWSCFG=&HWSCFG'

– Note that must add “BPEINIT=HWSINI00”

IMS Connect has required customers to update the Program Properties Table (PPT) to add HWSHWS00.

The PPT supplied by z/OS already includes an entry for BPEINI00.

IMS Connect is enhanced to allow customers to use BPEINI00 thus removing the requirement to update the PPT.

The IMS Connect JCL must be updated to use BPEINI00.

This function was introduced to IMS Connect through the service process as IMS V10 PK41284.

Copyright IBM Corp. 2008 36Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

36

TMRA Socket Reconnect

 IMS TM Resource Adapter (TMRA) Version 10 introduces socket
reconnect

 will try to reestablish a stale connection in a connection pool when one
of the connections encounters a communication problem in the process
of sending a request to or receiving a response from IMS Connect

 when TMRA detects a stale connection, the adapter will throw an
exception, but will set up an internal flag about this issue

 subsequent connections will be compared with the time the initial stale
connection was discovered and if necessary TMRA will reconnect
before submitting the interaction request

 the aged timeout property in WebSphere Application Server connection
pool settings can be used to redistribute connections in an IMS Connect
Sysplex Distributor environment

IMS TM Resource Adapter (TMRA) connections to IMS Connect are managed by the WebSphere Application Server
(WAS) connection pool.

When network problems are encountered or IMS Connect is brought down, WAS may not be aware that the
connections are no longer good.

TMRA may encounter many stale connections from the connection pool.

To minimize the impact, TMRA will throw an exception on the first stale connection encountered and sets an internal
flag.

Subsequent connections are compared with the time the initial stale connection was discovered and reconnected if
necessary.

If an instance of IMS Connect is not available with Sysplex Distributor while the connections are being established, the
sessions will not be evenly distributed when it again becomes available. Using the aged timeout property in the WAS
connection pool settings can help to redistribute the sessions.

Copyright IBM Corp. 2008 37Section Title in Header

© 2009 IBM Corporation

®

IMS Version 10

V10 Synchronous Callout via IMS Connect

Jack Yuan
jackyuan@us.ibm.com

Copyright IBM Corp. 2008 38Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

38

Synchronous Callout Request

 Capability

– IMS applications can invoke external applications and synchronously
receive a response in the same IMS transaction instance

– ICAL new DLI call

• AIBTDLI call provides synchronous callout request

– Timeout capability

• Control the time for synchronous callout processing

– Relieve 32K segmentation limitation

• IMS Connect and OTMA handle buffer and segmentation internally

IMS V10 Synchronous Callout function enhances the current asynchronous IMS Callout support to allow the IMS
application to callout synchronously and wait for the response to come back. Using this programming style, the IMS
application program can initiate direct communication with other external application programs and receive the response
in the same IMS transaction instance

Copyright IBM Corp. 2008 39Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

39

IMS
SOAP

GATEWAY

IMS Synchronous Callout z/OS

IMS

Database

DB
Services

O
T

M
A

TM/CTL
Services

IMS

Connect

TCP/IP
user-written

Client

WebSphere
IMS
TM

resource

adapter

Application
Program

ICAL

MPP/JMP/IFP/BMP/JBP

OTMA
Descriptor

This diagram shows that with the IMS callout support IMS applications can be a client and server.

IMS provides bi-directional access between IMS applications and external application and servers.

The IMS Application Program can callout to:

Callout to user-written IMS Connect client

Callout to WebSphere EJB/MDB using IMS TM Resource Adapter

Callout to Web Service Provider using IMS SOAP Gateway

Copyright IBM Corp. 2008 40Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

40

ICAL AIBTDLI Interface

– ICAL is new DL/I call verb

• SENDRECV is the new subfunction

– REQ_area is the Request data area for sending data

– RESP_area is the Response data area for returned data

• REQ and RESP messages are not recoverable

• req-area and resp-area do not specify LLZZ, data can be > 32K

Call AIBTDLI USING ICAL,aib,REQ_area,RESP_area

The ICAL synchronous call function is only supported using the AIBTDLI interface in IMS TM

runtime environments for IFP, MPP, BMP, JMP and JBP regions

AIBTDLI USING ICAL,aib,REQ_area,RESP_area

ICAL is the new function for call processing

SENDRECV is the new sub function for sync callout

REQ_area is the request data area for sync callout. Note do not specify LLZZ

RESP_area is the response data area for returned data. Note do not specify LLZZ

Req-area for data sent to application . Can be greater than 32K

Resp-area data returned from called application can be greater that 32K

Copyright IBM Corp. 2008 41Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

41

 AIB

– AIBID = DFSAIBbb

– AIBLEN = AIB length

– AIBSFUNC = SENDRECV

– AIBRSNM1 = 8 byte OTMA Descriptor name

– AIBRSFLD = Timeout value
• 4 byte field for time value 100th seconds. System default is 10 sec.

– AIBOALEN = REQ_area length

• As an input parameter: 4 byte field contains the length of the request area
• As an output parameter: Actual length of the response message

– AIBOAUSE = RESP_area length

• As an input parameter: 4 byte field contains the length of the response area
• As an output parameter: Length of the response message.

– AIBRETRN = AIB Return code

– AIBREASN = AIB Reason code.

– AIBERRXT = 2 byte sense code from external application

ICAL AIBTDLI Interface . . .

When partial data is returned because the response area is not large enough, AIBOAUSE contains the length of data
returned in the response area and AIBOALEN contains the actual length of the response message.

Copyright IBM Corp. 2008 42Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

42

OTMA ALTPCB Descriptors – Maximum number = 256
Synchronous Callout

 DFSYDTx member of IMS.PROCLIB

– TYPE: Destination type

– TMEMBER: OTMA Target Client

– TPIPE: Destination Name

– SMEM: YES|NO

– ADAPTER: Type of IMS Connect Adapter

– CONVERTR: Routine called by Adapter

– SYNTIMER=timeout

• If both ICAL & Descriptor specify timeout, the lower value is used

UPDATE OTMADESC NAME(OTMASYN) SET(SYNTIMER(5000))

IMS 11 Type -2 Command

IMS 10 introduces the type D of OTMA Destination Routing Descriptor which externalizes the routing definitions and
specifications for callout messages without IMS user exits. It is read and initialized at IMS startup.

The IMS 11 provides the Type-2 UPDATE commands to dynamically create, update, or query the type D Destination
Routing Descriptors.

The command can be used to dynamically change the SYNTIMER value in the Descriptor

UPDATE OTMADESC NAME(OTMASYN) SET(SYNTIMER(5000))

Example

D SOAPGW1 TYPE=IMSCON TMEMBER=HSW2 TPIPE=HWS2SOAP

D SOAPGW1 ADAPTER=XMLADPTR CONVERTR=XMLCNVTR SYNTIMER=2000

DFSYDTx

TYPE=Specifies output is for IMS Connect (IMSCON)

TMEMBER=IMS Connect OTMA TMEMBER name

TPIPE= TPIPE name the client specifies for Resume Tpipe call

SMEM= Specifies whether (YES) or not (NO) this destination is a supermember

ADAPTER= Identifies the IMS Connect adapter to be used on these messages.

CONVERTR= Name of the converter to be used by the adapter specified on ADAPTER=

SYNTIMER Sets timeout value for ICAL synchronous callout. The AIBRSFLD parameter in the ICAL SENDRECV call
can override this value. If no timer (or value of 0) is specified IMS will use 10 seconds as the default to timeout the
synchronous call process in the dependent region.

Copyright IBM Corp. 2008 43Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

43

V10 Synchronous Callout – RYO Client Message Flow

RYO
Application

ACK

Response

1

5

6

IMS
Connect IMS

IMS
Application

2

TRXQUERY JOHN DOE.

Resume
TPIPE
TPIPE1

ICAL SENDRECV OTMDEST1
JOHN DOE

JOHN DOE

Request

TPIPE
TPIPE1

34

7 8 9

12345678
12345678

1. Resume TPIPE Archlvl=3, sync-only or sync-and-async

2. ICAL with request area and AIBOALEN for LLLL

3. OTMA breaks message into 32K segments

OMPFX | LLZZ Data | {OMPFX | LLZZ Data …}

4. ICON combines data and sends to client

LLLL | LL CORTKN | {LL RMM} | LLLL Data | LL CSM

5. Client sends ACK

6. Client sends Sync Callout response
LLLL | LL IRM | LLLL Data | 00040000
Note: response IRM contains CORTKN from request

7. ICON breaks message into 32K segments
OMPFX | LLZZ Data | {OMPFX | LLZZ Data …}

8. OTMA combines data and returns to ICAL

9. ICAL gets data in response buffer and AIBOAUSE is LLLL

Copyright IBM Corp. 2008 44Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

44

Client Programming – NAK Synch Callout

 NAK-STOP

– Reject message and terminate Resume TPIPE

– AIBRETRN=X’100’ AIBREASN=X‘108’ return to ICAL

• Client can provide extended error code for AIBERRXT

 NAK-Continue (Reroute)

– Reject message, continue retrieving messages for Resume TPIPE

– AIBRETRN =X‘100’ AIBREASN=X‘108’ returned to ICAL

• Client can provide extended error code for AIBERRXT

 NAK-Pause (Hold Message)
– Terminate this Resume TPIPE and keep message

• OTMA will hold message for another Resume TPIPE request
• Used if message is OK but don’t want to receive more messages
• Note ICAL is waiting for response message

The Synch Callout message retrieved by Resume TPIPE is CM0 so requires ACK or NAK

There are 3 types of NAK message for a sync callout message: NAK-STOP, NAK-Continue, and NAK-Pause.

Copyright IBM Corp. 2008 45Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

45

Enhanced Commands

 /DISPLAY ACTIVE REGION

– New status for region waiting on synchronous callout response

• WAIT-CALLOUT

– Continuation line for region waiting on synchronous callout response

• TMEMBER name TPIPE: tpipename

REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
1 MPP1A TP APOL11 APOL1 WAIT-CALLOUT 1

TMEMBER HWS TPIPE: TPIPE1
JMPRGN JMP NONE
JBPRGN JBP NONE
BATCHREG BMP NONE
FPRGN FP NONE
DBTRGN DBT NONE
DBRZCSAJ DBRC
DLIZCSAJ DLS

08213/165100

The /DIS ACTIVE REGION command response now includes TMEMBER as well as TPIPE. You can use the /DIS
TMEM xx TPIPE yy SYNC to find status.

Copyright IBM Corp. 2008 46Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

46

Enhanced IMS commands . . .

 /DIS TMEMBER TPIPE
– WAIT-S (WT-S)

• The transaction pipe is waiting for an ACK or NAK for a synchronous callout message

 /DIS TMEMBER TPIPE SYNC
– Display the detailed sync callout message count and status

 /PSTOP
– Clear the wait in the region

– Dequeues synchronous callout messages from the TPIPE

1. /STOP REG ABDUMP
– Clear the wait in the region and terminate the application program

 /STOP TMEMBER TPIPE
– Clear state of all messages for the TPIPE

 /STOP OTMA
– Clear all the ICAL messages for all the TPIPEs.

– New ICAL synchronous callout requests rejected

 These stop commands return to ICAL
• AIBRETRN = 100
• AIBREASN = 10C

When the /STOP OTMA command is issued, it will clear or reject all the ICAL messages for all the transaction pipes.

/PSTOP, /STOP OTMA, or /STOP TMEMBER TPIPE, may be used to end the ICAL,

In this case, the IMS application will get return code 100 and reason code 10C.

Copyright IBM Corp. 2008 47Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

47

Prerequisites

 Software requirements
– IMS and IMS Connect Version 10

• PK70078, PK70330 ,PK73224 - Precondition
• PK71135 ,PK74168 – Activation

– For synchronous callout to J2EE application/Web Service in WebSphere Application Server (WAS):
• IMS TM Resource Adapter Version 10.3*
• WAS 6.0* for callout to EJB
• WAS 6.1* for callout to MDB

– For synchronous callout to Web Service using IMS SOAP Gateway:
• IMS SOAP Gateway Version 10.1.1

 Tooling
– For synchronous callout to J2EE application/Web Service in WAS

• Rational Application Developer (RAD) V7.007 or later
– V7.5 is recommended

– IMS TM RA ifix 10.3
• WebSphere Integration Developer (WID) V6.1* or later
• MDB generation requirement to RAD/WID

– For synchronous callout to Web Service using IMS SOAP Gateway
• Rational Developer for System z (RDz) 7.1.1* or later

The synchronous callout support requires IMS and IMS Connect 10 with the SPE.

APAR PK70078 and PK73224 contains all the IMS changes (e.g. IMS Systems, OTMA) and APAR PK70330 contains
all IMS Connect changes.

Activation APARS are PK71135 and PK74168

For callout to WebSphere application using IMS TM Resource Adapter, and updated IMS TM Resource Adapter is
required

WAS 6.0 or later is required for the Client Managed programming model

WAS 6.1 or later is required for the MDB programming model.

RAD V7.5 or WID 6.1 or later tooling is required to develop your Java Application code.

IMS SOAP Gateway support is provided in 10.1.1

RDz Version 7.007 or later tooling is required. V7.5 is recommended

Copyright IBM Corp. 2008 48Section Title in Header

IMS Version 10 Connectivity Enhancements and the IMS Connect API

48

Thank You for Joining Us today!

Go to www.ibm.com/software/systemz to:

Replay this teleconference

Replay previously broadcast teleconferences

Register for upcoming events

