DB2 for z/OS
Optimising Insert
Performance

John Campbell

Distinguished Engineer

DB?2 for z/OS Development
Email: CampbelJ(@uk.ibm.com

Objectives

Understand typical performance bottlenecks

How to design and optimise for high

pprfnrm ance

How to tune for optimum performance
Understand the new features of DB2 V9

Understand how to best apply and use new
features

Agenda

Typical Performance Bottlenecks and Tuning
Read and Write 1/O for Index and Data
Active Log Write
CPU Time
Lock/Latch Contention and Service Task Waits
IDENTITY Column, SEQUENCE Object, GENERATE UNIQUE()
Use of Multi Row Insert

DB2 9 Performance Enhancements
Reduced LRSN Spin and Log Latch Contention
Larger Index page size
Increased Index Look aside
Asymmetric Index Leaf Page Split
Randomized Index Key

Identifying unreferenced indexes
Table APPEND option

Summary

Key Physical Design
Questions

Design for maximum performance throughput or
space reuse”?

Random key insert or sequential key insert?

Store rows 1n clustering sequence or insert at the
end?

Input records sorted into clustering key sequence?

What are indexing requirements and are they
justified?

Choice: Performance or
Space Reuse

High performance, than less space reuse
Better space reuse, than less performance

Classic partitioned table space

— Usually better performance especially in data
sharing environment

Segmented or Universal Table Space

— Usually better space management due to more
space information in space map pages

Typical Performance
Bottlenecks
and

Tuning Observations

Read and Write |/O for Index
and Data

Random key insert to index

— N sync read I/Os for each index

e N depends on # index levels, # leaf pages, and buffer pool
availability

e Index read I/O time = N * #indexes * ~1-2 ms

— Sync data read I/O time = ~1-2 ms per page (0 if insert
to the end)

— Deferred async write I/0O for each page
e ~1-2 ms for each row inserted

e Depends on channel type, device type, I/O path utilisation, and
distance between pages

— Recommend keeping the number of indexes to a
minimum
e Challenge the need for low value indexes

Read and Write I/O for Index
and Data ...

Sequential insert to the end of data set

— For data row insert, and/or ever-ascending or
descending index key insert

MY Ta P IJ T/

— QCTdll Cl1111111dalC b_y 11U 1Al 1/YV

— Deferred async write I/0 only for contiguous pages
e ~0.4 ms per page filled with inserted rows

e Time depends on channel type, device type and I/O path
utilisation

Read and Write I/O for Index
and Data ...

Recommendations on deferred write thresholds

— VDWQT = Vertical (dataset level) Deferred Write
Threshold

e Default: when 5% of buffers updated from one dataset, a
deferred write 1s scheduled

— DWQT = buffer pool level Deferred Write Threshold
e Default: when 30% of buffers updated, a deferred write 1s
scheduled
— Want to configure for continuous ‘trickle’ write activity
in between successive system checkpoints

e VDWQT and DWQT will typically have to be set lower for
very intensive insert workloads

Read and Write I/O for Index

and Data ...

With high deferred write thresholds, write 1/Os for
data or index entirely resident in buffer pool can be

eliminated except at system checkpoint or STOP
TABLESPACE/DATABASE time

TTan \/ YW NT—NO0/ fAvr Aata lhitfFar
UDVL V LJ VY \{1 VUV /0 1Ul1 Uudlid vuliuvil P

ratio (1-5%) if single thread insert
— Else VDWQT=150 + # concurrent threads (e.g., 100) 1f
sequential insert to the end of pageset/partition

— When 250 buffers are updated for this dataset, 128 LRU
buffers are scheduled for write

Use VDWQT=0% for sequential index insert
Use default 1f not sure, also for random index insert

Distributed Free Space

Use distributed free space — PCTFREE and/or
FREEPAGE

— For efficient sequential read of index
Affin al +anAd Aata xr1a ~liictar
— [‘Ul UlllblUllL bULiLlCllLlal rcaa Udiada via C1UdLCl1l

— To minimize index split
Carefully calculate settings

Default distributed free space
— 0 FREEPAGE
— 5% PCTFREE within data page
— 10% PCTFREE within index page

Distributed Free Space ...

For best insert performance

— Random key insert to index

e Use non-zero index PCTFREE and/or FREEPAGE

— To reduce index leaf page splits
— For efficient sequential index read

e Use default PCTFREE and FREEPAGE unless you know better

— Sequential key insert to index

o Immediately after LOAD, REORG, or
CREATE/RECOVER/REBUILD INDEX

— Use 0% PCTFREE to reduce the number of index pages and possibly index
levels by populating each leaf page 100%

— Use PCTFREE=FREEPAGE=0 for data to reduce both sync
read and async write I/Os for each row insert

e Possible performance penalty for query in terms of sync single page I/O
when reading multiple rows via clustering index

Distributed Free Space ...

Trade-off 1n free space search

— Insert to the end of pageset/partition
e To minimize the cost of insert by minimising
— Read/Write I/Os, Getpages, Lock requests
— Search for available space near the optimal page
e To store data rows in clustering index sequence
e To store leaf pages in index key sequence
e To minimize dataset size

— Search for available space anywhere within the allocated area
e To minimise dataset size

e Can involve exhaustive space search which is expensive

e Use large PRIQTY/SECQTY and large SEGSIZE to minimize
exhaustive space search

Insert - Space Search Steps
(PartitionedTablespace)

Search from free space to the end
with physical extend

Search

adjacent
End

Search the
end with
Extend

5

Search the
end Without
physical
extend

6 Exhaustive search

Insert - Space Search Steps

(Segmented Tablespace)

Search the space map page that contains
lowest segment has free space to the end
of space map page

Search
adjacent
pages within
the segment End

Search the
end with
Extend

5

Search the
end Without
physical
extend

Exhaustive search

Segmented Tablespace

Segmented tablespace provides for more efficient
search 1n fixed length compressed and true
variable length row insert

— Spacemap contains more information on avallable

snace N that anlys a Aata nace w 1th ogniarantand ava
Spavv SO tuat on 1y a gaita pagsv vy itn sucucultuuu ayv

Space 1s accessed

e 2 bits per data page in non segmented tablespace (2**2=4
different conditions)

e 4 bits per data page in segmented tablespace (2**4=16
different conditions)

— But more spacemap page updates
e Possible performance penalty with data sharing

Segmented Tablespace

SEGSIZE

— General recommendation is to use large SEGSIZE value consistent
with size of pageset

e Typical SEGSIZE value 32 or 64
— Large SEGSIZE

e Provides better opportunity to find space in page near by to candidate

naoce and thoarafare maintain clhictering
PAsL Gliu UIVIVIULL HIIGIIItainl uluouu11115

e Better chance to avoid exhaustive space search

— Small SEGSIZE

e Can reduce spacemap page contention
e But less chance of hitting ‘False Lead Threshold’ of 3 and looking for
space at the end of pageset/partition

— ‘False Lead’ is when spacemap page indicates there is a data page with
room for the row, but on visit to the respective data page this is not the
case

Also applies to Universal Table Space (DB2 9)

MAXROWS n

Optimisation to avoid wasteful space search on
partitioned tablespace in fixed length compressed and
true variable length row insert

Must carefully estimate ‘average’ row size and how
many ‘average’ size rows will fit comfortably 1n a
single data page

A VA QU

W IlCIl lVlAAI\U WS n IS I

full

But introduces on going maintenance challenges
— Could waste space?
— What happens if compression is removed?
— What happens if switch from uncompressed to compressed?
— What happens when new columns are added?

Partitioning

Use page range partitioning by dividing tablespace
into partitions by key range
Spread insert workload across partitions

Can reduce logical and physical contention to
improve concurrency and reduce cost

Separate index B-tree for each index partition of
partitioned index (good for concurrency)

Only one index B-tree for non-partitioned index
(bad for concurrency)

Over wide partitioning has potential to reduce
number of index levels to reduce performance cost

Data Page Size

Use large data page size for sequential
inserts to

— Reduce # Getpages

— Reduce # Lock Requests

— Reduce # CF requests
— Get better space use

Active Log Write

Log data volume

— From DB2 log statistics, minimum MB/sec of writing
to active log dataset can be calculated as

statistics interval 1n seconds

— Pay attention to log data volume 1f >10MB/sec
e Consider use of DB2 data compression
e Use faster device as needed
e Consider use of DFSMS striping

Maximum Observed Rate

MB/sec

of Active Log Write

First 3 use Escon channel, the rest is Ficon
-N indicates N 1/O stripes; * MIDAW

22

Insert CPU Rough Rule of Thumb

To get the CPU time for other processor models, see
http://www-03.ibm.com/systems/z/advantages/management/Ispr/
on Internal Throughput of various IBM processors

9672-717 CPU time

No index

40 to 80us

One 1index with no index read I/O

40 to 140us

One index with index read I/O

130 to 230us

Five indexes with index read 1I/O

500 to 800us

Insert CPU Rough Rule of
Thumb ...

9672-717 CPU time = 40 to 80Qus
+ 30 to 50us * number of indexes

+ 40us * number of I/Os

Examples

— If 1 index and no read I/O because of sequential index
insert

e 40 to 80us + 30 to 50us =70 to 130us
e CPU cost for write I/O can be ignored because of sequential
write of contiguous pages
— If 3 indexes and 1 random read I/O for each index

e 40 to 80us + (30 to 50us)*3 + 40us*3*2 (read +write) = 370 to
470us

Lock/Latch and Service Task
Waits

Rule-of-Thumb on LOCKSIZE

— Page lock (LOCKSIZE PAGE|ANY) as design default
and especially if sequentially inserting many rows/page

Page P-lock contention in data sharing
environment

— Index page update
— Spacemap page update
— Data page update when LOCKSIZE ROW

MEMBER CLUSTER

Member-private spacemap and corresponding data
pages
Beneficial in data sharing environment to reduce

page P-lock and page latch contention especially
when data 1s inserted at end of pageset/partition

— Spacemap page
— Data page if LOCKSIZE(ROW)
Inserted rows are not clustered

May want to use LOCKSIZE ROW and larger
data page size with MEMBER CLUSTER

— Better space use
— Reduce working set of buffer pool pages

MEMBER CLUSTER ...

Rows 1nserted by Insert SQL are not
clustered by clustering index

— Instead, rows stored 1n available space in
member-private area

Option not available on segmented table
space or UTS

199 data pages per spacemap page

member 1 | spacemap | [data page 1 datapage199

member 2 | spacemap | |data page 1

TRACKMOD NO

Reduces spacemap contention in data sharing
environment

DB2 does not track changed pages 1n the
spacemap pages

It uses the LRSN value in each page to determine
whether a page has been changed since last copy

Trade-off as degraded performance for

incremental 1mage copy because of tablespace
scan

DB2 Latch Contention in Heavy Insert Application

Latch Counters LC01-32 in DB2 PM/PE Statistics Report Layout Long

Rule-of-Thumb on Internal DB2 latch contention rate

— Investigate 1f > 10000/sec

— Ignore if < 1000/sec
Class 6 for latch for index tree P-lock due to index split - Data sharing
only

— Index split is painful in data sharing - results in 2 forced physical log writes

— Index split time can be significantly reduced by using faster active log device

— Index splits in random insert can be reduced by providing non-zero PCTFREE
Class 19 for logical log write latch - Both non-data sharing and data
sharing

— Use LOAD LOG NO instead of SQL INSERT

— Make sure Log Output Buffer fully backed up by real storage
— Elimiate Unavailable Output Log Buffer condition

If >1K-10K contentions/sec, disabling Accounting Class 3 trace helps to
significantly reduced CPU time as well as elapsed time

Service Task Waits

Service task waits most likely for preformatting

— Shows up in Dataset Extend Wait in Accounting Class
3 Trace

— Typlcally up to 1 second each time, but depends on

allAarats nit/a nA Aa
ClllU\/ClLlUll Lllllt/ DLLJ\./ auu U\/Vl\/\/ L_)’lJ\.«

— Anticipatory and asynchronous preformat in DB2 V7
significantly reduces wait time for preformat

— Can be eliminated by LOAD/REORG with
PREFORMAT option and high PRIQTY value

— Do not use PREFORMAT on MEMBER CLUSTER
tablespace with high PRIQTY

ldentity Column and Sequence Object

DB2 to automatically generate a guaranteed-unique
number for sequencing each row inserted into table

Much better concurrency, throughput, and response time
possible

— Compared to application maintaining a sequence number in
one row table, which forces a serialisation (one transaction at a
time) from update to commit

— Potential for 5 to 10 times higher insert/commit rate

Option to cache (default of 20), saving DB2 Catalog
update of maximum number for each insert

— Eliminating GBP write and log write force for each insert in
data sharing

Recycling or wrapping of identity column and sequence
value

GENERATE_UNIQUE()

Built-in function with no arguments
Returns a bit data character string 13 bytes long

Provides a unique value which 1s not sequential
— Unique compared to any other execution of the same function

Allocation does not involve any CF access
Based exclusively on STCK value

.1 . o 1 11 _ 1 C_

mT™wn"n ___ ___ 1 ___ __ e~ 1 mnrrT __ P S " 1 1 _ e
DD Z ITICITIDCT 1NNTUITIOCT dild UEFU NUIINocr d1c Cirniocdadcd 101
uniquencss

Example
CREATE TABLE EMP_UPDATE
(UNIQUE_ID CHAR(13) FOR BIT DATA,
EMPNO CHAR(6),
TEXT VARCHAR(1000)) ;

INSERT INTO EMP UPDATE VALUES (GENERATE UNIQUE(), 000020,
"Update entry...") ;

Multi Row Insert (MRI)

INSERT INTO TABLE for N Rows Values (:hval,:hva2,...)

Up to 40% CPU time reduction by avoiding SQL API
overhead for each INSERT call

— % improvement lower if more indexes, more columns, and/or fewer
rows inserted per call

ATOMIC (default) 1s better from performance viewpoint as

create of multiple SAVEPOINT log records can be avoided
Implication for use in data sharing environment (LRSN spin)

Dramatic reduction in network traffic and response time
possible 1n distributed environment

— By avoiding message send/receive for each row

— Up to 8 times faster response time and 4 times CPU time reduction

DB2 9 Performance
Enhancements

Reduced LRSN Spin and Log

Latch Contention

Available in NFM and automatic
For data sharing

Less DB2 spin for TOD clock to generate unique LRSN
for log stream for a given DB2 member
— Unique LRSN only required as it pertains to a single index or
data page
No longer holds on to log output buffer latch (LC19)
while spinning
Potential to reduce LC19 Log latch contention

Potential to reduce CPU time especially when running on
faster processor

Large Index Page Size

Available in NFM

Potential to reduce the number of index leaf page
splits, which are painful especially for GBP-
dependent index (data sharing)

— Reduce index tree lotch contention

— Reduce index tree p-lock contention

Potential to reduce the number of index levels

— Reduce the number of getpages for index traversal

— Reduce CPU resource consumption

Possibility that large index page size may
aggravate index buffer pool hit ratio for random
access

Large Index Page Size Examples

Rows In Table 1,000,000,000

Key Length
Page Size
4096

Entries/Leaf
Leafs
Non-Leaf fanout

Index Levels
8192

Entries/Leaf
Leafs

Non-Leaf fancut
Index Levels
16,384

Entries/Leaf
Leafs
Non-Leaf fanout

Index Levels
32,768

Entries/Leaf
Leafs
Non-Leaf fanout

Index Levels

4

336
2,976,191
331

4

677

1,477,105
665

UuUU

4

1360
735,295
1,336

3

2725
366,973
2,676

3

252
3,968,254
242

4

508
1,968,504

AR
B oze]

4

1020
980,393
980

4

2044
489,237
1,963

3

16

168
5,952,381
158

5

338
2,958,580

212
Sas

4

680
1,470,589
639

4

1362
734,215
1,280

3

32

100
10,000,000
93

5

203
4,926,109

17
G

4

408
2,450,981
376

4

817
1,223,991
755

4

64

56
17,857,143
51

6

112
8,928,572

1N
(92

5

226
4,424,779
207

4

454
2,202,644
414

4

128

29
34,482,759
26

7

59
16,949,153

BA
fo

6

120
8,333,334
108

5

240
4,166,667
218

4

256

15
66,666,667
13

9

30
33,333,334

27
£

7

61
16,393,443
55

6

123
8,130,082
111

5

512

7
142,857,143
7

11

15
66,666,667

1A
[

8

31
32,258,065
28

7

62
16,129,033
56

6

1024

3
333,333,334
3

19

7
142,857,143

11

15
66,666,667
14

8

31
32,258,065
28

7

37

Increased Index Look Aside

Prior to DB2 9, for clustering index only

In DB2 9, now possible for additional
indexes where CLUSTERRATIO >= 80%
Potential for big reduction in the number of

index getpages with substantial reduction in
CPU time

Asymmetric Leaf Page Split

Available in NFM and automatic

Design point is to provide performance relief for classic sequential
index key problem

Asymmetric index page split will occur depending on an insert
pattern when inserting in the middle of key range

e Instead of previous 50-50 split prior to DB2 9

e Up to 50% reduction in index split

Asymmetric split information 1s tracked in the actual pages that are

inserted into, so it is effective across multiple threads across DB2
members

PK 62214 introduces changes to the tracking and detection logic, and it
should work much better for data sharing

— Before: DB2 9 only remembered the last insert position and a counter

— Now: DB2 remembers an insert 'range* and tolerates entries being slightly out
of order

o It may still not be effective for large key sizes (hundreds of bytes), or if
entries come in very bad order (i.e., they do not look sequential)

e But for simple cases like 3,2, 1,6,5,4,9,8,7,12, 11, 10 ... DB2 will be able
to determine that the inserted entries are ascending
39

Randomised Index Key

Index contention can be a major problem and a limit for
scalability

This problem 1s more severe in data sharing because of
index page P-lock contention

A randomized index key can reduce lock contention

CREATE/ALTER INDEX ... column-name RANDOM,
instead of ASC or DESC
Careful trade-off required between lock contention relief

and additional getpages, read/write 1/0Os, and increased
number of lock requests

This type of index can provide dramatic improvement or
degradation!

Recommend making randomized indexes only when
buffer pool resident

ldentifying Unreferenced
Indexes

Additional indexes require overhead for

— Data maintenance
e INSERT, UPDATE, DELETE

Utilities
e REORG, RUNSTATS, LOAD etc
DASD storage
Query optimization time
e Increases DB2 Optimizer’s choices to consider

But identifying unused indexes is a difficult task

— Especially in a dynamic SQL environment

ldentifying Unreferenced

Indexes ...

RTS records the index last used date

— SYSINDEXSPACESTATS.LASTUSED

e Updated once in a 24 hour period

— RTS service task updates at first externalization interval (set by
STATSINT) after 12PM

e If the index 1s used by DB2, update occurs
e If the index was not used, no update

“Used” as defined by DB2 means:

— As an access path for query or fetch
— For searched UPDATE / DELETE SQL statement
— As a primary index for referential integrity

— To support foreign key access

Table APPEND Option

New APPEND option 1s provided for INSERT
— CREATE/ALTER TABLE ... APPEND YES

Always use with MEMBER CLUSTER 1n data sharing

Will reduce longer chain of spacemap page search as table
space keeps getting bigger

But will drive need for more frequent table space
reorganization

Degraded query performance until the reorganization 1s
performed

Behaviour the same as ‘pseudo append’ with “MC00”
— MEMBER CLUSTER and PCTFREE=FREEPAGE=0
— Will switch between append and insert mode

— Success depends on deletes and inserts being spread across DB2
members of data sharing group 43

Summary

Summary — Key Points

Decide whether the data rows should be clustered/appended at the end
Sort inserts into clustering key sequence

Use classic partitioned table space and index partitioning

Keep the number of indexes to a minimum and drop low value indexes

Tune deferred write thresholds and distributed free space to drive ‘trickle
write’

Use large PRIQTY/SECQTY and large SEGSIZE to reduce frequency of
exhaustive space search

Use data compression to minimise log record size

Use faster channel, faster device, DFSMS striping for active log write
throughput

Use MEMBER CLUSTER and TRACKMOD NO to reduce spacemap
page contention and when using LOCKSIZE ROW to reduce data page
contention

Use Identity column, sequence object, GENERATE UNIQUE() built-in
function with caching to efficiently generate a unique key

Important new DB2 9 new feature functions such as large index page size

DB2 for z/OS Optimising Insert Performance

John Campbell

Distinguished Engineer

DB2 for z/OS Development

