
DB2 for z/OSDB2 for z/OS

Optimising Insert Optimising Insert

PerformancePerformance

John Campbell

Distinguished Engineer

DB2 for z/OS Development

Email: CampbelJ@uk.ibm.com

1

ObjectivesObjectives

� Understand typical performance bottlenecks

� How to design and optimise for high

performance performance

� How to tune for optimum performance

� Understand the new features of DB2 V9

� Understand how to best apply and use new

features

2

AgendaAgenda

� Typical Performance Bottlenecks and Tuning
– Read and Write I/O for Index and Data

– Active Log Write

– CPU Time

– Lock/Latch Contention and Service Task Waits

– IDENTITY Column, SEQUENCE Object, GENERATE_UNIQUE()

– Use of Multi Row Insert

� DB2 9 Performance Enhancements� DB2 9 Performance Enhancements
– Reduced LRSN Spin and Log Latch Contention

– Larger Index page size

– Increased Index Look aside

– Asymmetric Index Leaf Page Split

– Randomized Index Key

– Identifying unreferenced indexes

– Table APPEND option

� Summary

3

Key Physical Design Key Physical Design

QuestionsQuestions
� Design for maximum performance throughput or

space reuse?

� Random key insert or sequential key insert?

� Store rows in clustering sequence or insert at the

end?

� Input records sorted into clustering key sequence?

� What are indexing requirements and are they

justified?

4

Choice: Performance or Choice: Performance or

Space ReuseSpace Reuse

� High performance, than less space reuse

� Better space reuse, than less performance

� Classic partitioned table space

– Usually better performance especially in data

sharing environment

� Segmented or Universal Table Space

– Usually better space management due to more

space information in space map pages

5

Typical Performance Typical Performance

Bottlenecks Bottlenecks

and and

Tuning Tuning ObservationsObservationsTuning Tuning ObservationsObservations

6

Read and Write I/O for Index Read and Write I/O for Index

and Dataand Data
� Random key insert to index

– N sync read I/Os for each index

� N depends on # index levels, # leaf pages, and buffer pool
availability

� Index read I/O time = N * #indexes * ~1-2 ms

– Sync data read I/O time = ~1-2 ms per page (0 if insert
to the end)

– Deferred async write I/O for each page

� ~1-2 ms for each row inserted

� Depends on channel type, device type, I/O path utilisation, and
distance between pages

– Recommend keeping the number of indexes to a
minimum

� Challenge the need for low value indexes
7

Read and Write I/O for Index Read and Write I/O for Index

and Data and Data ……
� Sequential insert to the end of data set

– For data row insert, and/or ever-ascending or
descending index key insert

– Can eliminate sync read I/O– Can eliminate sync read I/O

– Deferred async write I/O only for contiguous pages

� ~0.4 ms per page filled with inserted rows

� Time depends on channel type, device type and I/O path
utilisation

8

Read and Write I/O for Index Read and Write I/O for Index

and Data and Data ……

� Recommendations on deferred write thresholds

– VDWQT = Vertical (dataset level) Deferred Write
Threshold

� Default: when 5% of buffers updated from one dataset, a � Default: when 5% of buffers updated from one dataset, a
deferred write is scheduled

– DWQT = buffer pool level Deferred Write Threshold

� Default: when 30% of buffers updated, a deferred write is
scheduled

– Want to configure for continuous ‘trickle’ write activity
in between successive system checkpoints

� VDWQT and DWQT will typically have to be set lower for
very intensive insert workloads

9

Read and Write I/O for Index Read and Write I/O for Index

and Data and Data ……
� With high deferred write thresholds, write I/Os for
data or index entirely resident in buffer pool can be
eliminated except at system checkpoint or STOP
TABLESPACE/DATABASE time

� Use VDWQT=0% for data buffer pool with low hit � Use VDWQT=0% for data buffer pool with low hit
ratio (1-5%) if single thread insert

– Else VDWQT=150 + # concurrent threads (e.g., 100) if
sequential insert to the end of pageset/partition

– When 250 buffers are updated for this dataset, 128 LRU
buffers are scheduled for write

� Use VDWQT=0% for sequential index insert

� Use default if not sure, also for random index insert
10

Distributed Free Space Distributed Free Space

� Use distributed free space – PCTFREE and/or
FREEPAGE

– For efficient sequential read of index

– For efficient sequential read of data via clustering index – For efficient sequential read of data via clustering index

– To minimize index split

� Carefully calculate settings

� Default distributed free space

– 0 FREEPAGE

– 5% PCTFREE within data page

– 10% PCTFREE within index page

11

Distributed Free Space Distributed Free Space ……
� For best insert performance

– Random key insert to index

� Use non-zero index PCTFREE and/or FREEPAGE

– To reduce index leaf page splits

– For efficient sequential index read

� Use default PCTFREE and FREEPAGE unless you know better

Sequential key insert to index – Sequential key insert to index

� Immediately after LOAD, REORG, or

CREATE/RECOVER/REBUILD INDEX

– Use 0% PCTFREE to reduce the number of index pages and possibly index

levels by populating each leaf page 100%

– Use PCTFREE=FREEPAGE=0 for data to reduce both sync

read and async write I/Os for each row insert

� Possible performance penalty for query in terms of sync single page I/O

when reading multiple rows via clustering index
12

Distributed Free Space Distributed Free Space ……

� Trade-off in free space search

– Insert to the end of pageset/partition

� To minimize the cost of insert by minimising

– Read/Write I/Os, Getpages, Lock requests

– Search for available space near the optimal page – Search for available space near the optimal page

� To store data rows in clustering index sequence

� To store leaf pages in index key sequence

� To minimize dataset size

– Search for available space anywhere within the allocated area

� To minimise dataset size

� Can involve exhaustive space search which is expensive

� Use large PRIQTY/SECQTY and large SEGSIZE to minimize
exhaustive space search

13

Insert Insert -- Space Space Search Search Steps Steps
(Partitioned (Partitioned TablespaceTablespace))

End

22

4

Search from free space to the end

with physical extend

Search

adjacent

Search the

1

3

Search the

end Without

physical

extend

Exhaustive search6

end with

Extend

5

14

Insert Insert -- Space Search Steps Space Search Steps
(Segmented (Segmented TablespaceTablespace))

End

22

Search the space map page that contains

lowest segment has free space to the end

of space map page

Search

adjacent

pages within

the segment

Search the

end with

3

1

4

Search the

end Without

physical

extend

Exhaustive search6

end with

Extend

5

15

Segmented TablespaceSegmented Tablespace

� Segmented tablespace provides for more efficient
search in fixed length compressed and true
variable length row insert

– Spacemap contains more information on available
space so that only a data page with guaranteed available space so that only a data page with guaranteed available
space is accessed

� 2 bits per data page in non segmented tablespace (2**2=4
different conditions)

� 4 bits per data page in segmented tablespace (2**4=16
different conditions)

– But more spacemap page updates

� Possible performance penalty with data sharing

16

Segmented Tablespace Segmented Tablespace ……
� SEGSIZE

– General recommendation is to use large SEGSIZE value consistent
with size of pageset

� Typical SEGSIZE value 32 or 64

– Large SEGSIZE

� Provides better opportunity to find space in page near by to candidate
page and therefore maintain clusteringpage and therefore maintain clustering

� Better chance to avoid exhaustive space search

– Small SEGSIZE

� Can reduce spacemap page contention

� But less chance of hitting ‘False Lead Threshold’ of 3 and looking for
space at the end of pageset/partition

– ‘False Lead’ is when spacemap page indicates there is a data page with
room for the row, but on visit to the respective data page this is not the
case

� Also applies to Universal Table Space (DB2 9)

17

MAXROWS nMAXROWS n
� Optimisation to avoid wasteful space search on
partitioned tablespace in fixed length compressed and
true variable length row insert

� Must carefully estimate ‘average’ row size and how
many ‘average’ size rows will fit comfortably in a
single data page

� When MAXROWS n is reached the page is marked � When MAXROWS n is reached the page is marked
full

� But introduces on going maintenance challenges
– Could waste space?

– What happens if compression is removed?

– What happens if switch from uncompressed to compressed?

– What happens when new columns are added?

18

PartitioningPartitioning

� Use page range partitioning by dividing tablespace
into partitions by key range

� Spread insert workload across partitions

� Can reduce logical and physical contention to
improve concurrency and reduce costimprove concurrency and reduce cost

� Separate index B-tree for each index partition of
partitioned index (good for concurrency)

� Only one index B-tree for non-partitioned index
(bad for concurrency)

� Over wide partitioning has potential to reduce
number of index levels to reduce performance cost

19

Data Page SizeData Page Size

� Use large data page size for sequential

inserts to

– Reduce # Getpages– Reduce # Getpages

– Reduce # Lock Requests

– Reduce # CF requests

– Get better space use

20

Active Log Write Active Log Write

� Log data volume

– From DB2 log statistics, minimum MB/sec of writing
to active log dataset can be calculated as

#CIs created in Active Log * 0.004MB#CIs created in Active Log * 0.004MB
--

statistics interval in seconds

– Pay attention to log data volume if >10MB/sec

� Consider use of DB2 data compression

� Use faster device as needed

� Consider use of DFSMS striping

21

Maximum Observed Rate Maximum Observed Rate

of Active Log Writeof Active Log Write

80

100

120

140

M
B
/s
e
c

• First 3 use Escon channel, the rest is Ficon

• -N indicates N I/O stripes; * MIDAW

8.2 11.6 16 13.3 20 27 30 22.9
36 45

63
89 87

116

0

20

40

60

80

E
sc

on
 E

20

F2
0

F2
0-
2

Fi
co

n
F2

0
F2

0-
2

F2
0-
4

F2
0-
8

80
0

80
0-
2

80
0-
8

D
S
80

00
-1

D
S
80

00
-2

D
S
80

00
-1
*

D
S
80

00
-2
*

M
B
/s
e
c

22

Insert CPU Rough Rule of Thumb Insert CPU Rough Rule of Thumb

9672-Z17 CPU time

No index 40 to 80us

To get the CPU time for other processor models, see

http://www-03.ibm.com/systems/z/advantages/management/lspr/

on Internal Throughput of various IBM processors

No index 40 to 80us

One index with no index read I/O 40 to 140us

One index with index read I/O 130 to 230us

Five indexes with index read I/O 500 to 800us

23

Insert CPU Rough Rule of Insert CPU Rough Rule of

Thumb Thumb ……
� 9672-Z17 CPU time = 40 to 80us

+ 30 to 50us * number of indexes

+ 40us * number of I/Os

� Examples

– If 1 index and no read I/O because of sequential index
insert

� 40 to 80us + 30 to 50us = 70 to 130us

� CPU cost for write I/O can be ignored because of sequential
write of contiguous pages

– If 3 indexes and 1 random read I/O for each index

� 40 to 80us + (30 to 50us)*3 + 40us*3*2 (read +write) = 370 to
470us

24

Lock/Latch and Service Task Lock/Latch and Service Task

WaitsWaits
� Rule-of-Thumb on LOCKSIZE

– Page lock (LOCKSIZE PAGE|ANY) as design default

and especially if sequentially inserting many rows/page

Page P-lock contention in data sharing � Page P-lock contention in data sharing

environment

– Index page update

– Spacemap page update

– Data page update when LOCKSIZE ROW

25

MEMBER CLUSTERMEMBER CLUSTER

� Member-private spacemap and corresponding data
pages

� Beneficial in data sharing environment to reduce
page P-lock and page latch contention especially
when data is inserted at end of pageset/partition

– Spacemap page

– Data page if LOCKSIZE(ROW)

� Inserted rows are not clustered

� May want to use LOCKSIZE ROW and larger
data page size with MEMBER CLUSTER

– Better space use

– Reduce working set of buffer pool pages

26

MEMBER CLUSTER MEMBER CLUSTER ……

� Rows inserted by Insert SQL are not

clustered by clustering index

– Instead, rows stored in available space in

member-private areamember-private area

� Option not available on segmented table

space or UTS

27

TRACKMOD NOTRACKMOD NO

� Reduces spacemap contention in data sharing
environment

� DB2 does not track changed pages in the
spacemap pagesspacemap pages

� It uses the LRSN value in each page to determine
whether a page has been changed since last copy

� Trade-off as degraded performance for
incremental image copy because of tablespace
scan

28

DB2 Latch Contention in Heavy Insert ApplicationDB2 Latch Contention in Heavy Insert Application
� Latch Counters LC01-32 in DB2 PM/PE Statistics Report Layout Long

� Rule-of-Thumb on Internal DB2 latch contention rate

– Investigate if > 10000/sec

– Ignore if < 1000/sec

� Class 6 for latch for index tree P-lock due to index split - Data sharing
only

– Index split is painful in data sharing - results in 2 forced physical log writes

– Index split time can be significantly reduced by using faster active log device – Index split time can be significantly reduced by using faster active log device

– Index splits in random insert can be reduced by providing non-zero PCTFREE

� Class 19 for logical log write latch - Both non-data sharing and data
sharing

– Use LOAD LOG NO instead of SQL INSERT

– Make sure Log Output Buffer fully backed up by real storage

– Eliminate Unavailable Output Log Buffer condition

� If >1K-10K contentions/sec, disabling Accounting Class 3 trace helps to
significantly reduced CPU time as well as elapsed time

29

Service Task Waits Service Task Waits

� Service task waits most likely for preformatting

– Shows up in Dataset Extend Wait in Accounting Class
3 Trace

– Typically up to 1 second each time, but depends on
allocation unit/size and device typeallocation unit/size and device type

– Anticipatory and asynchronous preformat in DB2 V7
significantly reduces wait time for preformat

– Can be eliminated by LOAD/REORG with
PREFORMAT option and high PRIQTY value

– Do not use PREFORMAT on MEMBER CLUSTER
tablespace with high PRIQTY

30

Identity Column and Sequence ObjectIdentity Column and Sequence Object

� DB2 to automatically generate a guaranteed-unique
number for sequencing each row inserted into table

� Much better concurrency, throughput, and response time
possible
– Compared to application maintaining a sequence number in
one row table, which forces a serialisation (one transaction at a
time) from update to commit time) from update to commit

– Potential for 5 to 10 times higher insert/commit rate

� Option to cache (default of 20), saving DB2 Catalog
update of maximum number for each insert
– Eliminating GBP write and log write force for each insert in
data sharing

� Recycling or wrapping of identity column and sequence
value

31

GENERATE_UNIQUE() GENERATE_UNIQUE()
� Built-in function with no arguments

� Returns a bit data character string 13 bytes long

� Provides a unique value which is not sequential
– Unique compared to any other execution of the same function

� Allocation does not involve any CF access

� Based exclusively on STCK value

� DB2 member number and CPU number are embedded for � DB2 member number and CPU number are embedded for
uniqueness

� Example
CREATE TABLE EMP_UPDATE

(UNIQUE_ID CHAR(13) FOR BIT DATA,

EMPNO CHAR(6),

TEXT VARCHAR(1000)) ;

INSERT INTO EMP_UPDATE VALUES (GENERATE_UNIQUE(), ’000020’,
’Update entry...’) ;

32

Multi Row Insert (MRI) Multi Row Insert (MRI)
� INSERT INTO TABLE for N Rows Values (:hva1,:hva2,…)

� Up to 40% CPU time reduction by avoiding SQL API
overhead for each INSERT call

– % improvement lower if more indexes, more columns, and/or fewer
rows inserted per call

� ATOMIC (default) is better from performance viewpoint as
create of multiple SAVEPOINT log records can be avoidedcreate of multiple SAVEPOINT log records can be avoided

� Implication for use in data sharing environment (LRSN spin)

� Dramatic reduction in network traffic and response time
possible in distributed environment

– By avoiding message send/receive for each row

– Up to 8 times faster response time and 4 times CPU time reduction

33

DB2 9 Performance DB2 9 Performance

EnhancementsEnhancements

34

Reduced LRSN Spin and Log Reduced LRSN Spin and Log

Latch Contention Latch Contention
� Available in NFM and automatic

� For data sharing

� Less DB2 spin for TOD clock to generate unique LRSN
for log stream for a given DB2 member

– Unique LRSN only required as it pertains to a single index or – Unique LRSN only required as it pertains to a single index or
data page

� No longer holds on to log output buffer latch (LC19)
while spinning

� Potential to reduce LC19 Log latch contention

� Potential to reduce CPU time especially when running on
faster processor

35

Large Index Page Size Large Index Page Size
� Available in NFM

� Potential to reduce the number of index leaf page
splits, which are painful especially for GBP-
dependent index (data sharing)

– Reduce index tree lotch contention

– Reduce index tree p-lock contention – Reduce index tree p-lock contention

� Potential to reduce the number of index levels

– Reduce the number of getpages for index traversal

– Reduce CPU resource consumption

� Possibility that large index page size may
aggravate index buffer pool hit ratio for random
access

36

Large Index Page Size ExamplesLarge Index Page Size Examples

Rows In Table 1,000,000,000

Key Length 4 8 16 32 64 128 256 512 1024

Page Size

4096
Entries/Leaf 336 252 168 100 56 29 15 7 3

Leafs 2,976,191 3,968,254 5,952,381 10,000,000 17,857,143 34,482,759 66,666,667 142,857,143 333,333,334

Non-Leaf fanout 331 242 158 93 51 26 13 7 3

Index Levels 4 4 5 5 6 7 9 11 19

8192
Entries/Leaf 677 508 338 203 112 59 30 15 7

Leafs 1,477,105 1,968,504 2,958,580 4,926,109 8,928,572 16,949,153 33,333,334 66,666,667 142,857,143

Non-Leaf fanout 666 488 318 187 103 54 27 14 7Non-Leaf fanout 666 488 318 187 103 54 27 14 7

Index Levels 4 4 4 4 5 6 7 8 11

16,384
Entries/Leaf 1360 1020 680 408 226 120 61 31 15

Leafs 735,295 980,393 1,470,589 2,450,981 4,424,779 8,333,334 16,393,443 32,258,065 66,666,667

Non-Leaf fanout 1,336 980 639 376 207 108 55 28 14

Index Levels 3 4 4 4 4 5 6 7 8

32,768
Entries/Leaf 2725 2044 1362 817 454 240 123 62 31

Leafs 366,973 489,237 734,215 1,223,991 2,202,644 4,166,667 8,130,082 16,129,033 32,258,065

Non-Leaf fanout 2,676 1,963 1,280 755 414 218 111 56 28

Index Levels 3 3 3 4 4 4 5 6 7

37

Increased Index Look Aside Increased Index Look Aside

� Prior to DB2 9, for clustering index only

� In DB2 9, now possible for additional

indexes where CLUSTERRATIO >= 80%indexes where CLUSTERRATIO >= 80%

� Potential for big reduction in the number of

index getpages with substantial reduction in

CPU time

38

Asymmetric Leaf Page SplitAsymmetric Leaf Page Split
� Available in NFM and automatic

� Design point is to provide performance relief for classic sequential
index key problem

� Asymmetric index page split will occur depending on an insert
pattern when inserting in the middle of key range

� Instead of previous 50-50 split prior to DB2 9

� Up to 50% reduction in index split

� Asymmetric split information is tracked in the actual pages that are
inserted into, so it is effective across multiple threads across DB2

� Asymmetric split information is tracked in the actual pages that are
inserted into, so it is effective across multiple threads across DB2
members

� PK62214 introduces changes to the tracking and detection logic, and it
should work much better for data sharing
– Before: DB2 9 only remembered the last insert position and a counter

– Now: DB2 remembers an insert 'range‘ and tolerates entries being slightly out
of order

� It may still not be effective for large key sizes (hundreds of bytes), or if
entries come in very bad order (i.e., they do not look sequential)

� But for simple cases like 3, 2, 1, 6, 5, 4, 9, 8, 7, 12, 11, 10 ... DB2 will be able
to determine that the inserted entries are ascending

39

Randomised Index KeyRandomised Index Key
� Index contention can be a major problem and a limit for
scalability

� This problem is more severe in data sharing because of
index page P-lock contention

� A randomized index key can reduce lock contention

� CREATE/ALTER INDEX … column-name RANDOM,
instead of ASC or DESCinstead of ASC or DESC

� Careful trade-off required between lock contention relief
and additional getpages, read/write I/Os, and increased
number of lock requests

� This type of index can provide dramatic improvement or
degradation!

� Recommend making randomized indexes only when
buffer pool resident

40

Identifying Unreferenced Identifying Unreferenced

IndexesIndexes
� Additional indexes require overhead for

– Data maintenance

� INSERT, UPDATE, DELETE

– Utilities – Utilities

� REORG, RUNSTATS, LOAD etc

– DASD storage

– Query optimization time

� Increases DB2 Optimizer’s choices to consider

� But identifying unused indexes is a difficult task

– Especially in a dynamic SQL environment

41

Identifying Unreferenced Identifying Unreferenced

Indexes Indexes ……
� RTS records the index last used date

– SYSINDEXSPACESTATS.LASTUSED

� Updated once in a 24 hour period

– RTS service task updates at first externalization interval (set by – RTS service task updates at first externalization interval (set by
STATSINT) after 12PM

� If the index is used by DB2, update occurs

� If the index was not used, no update

� “Used” as defined by DB2 means:

– As an access path for query or fetch

– For searched UPDATE / DELETE SQL statement

– As a primary index for referential integrity

– To support foreign key access
42

Table APPEND OptionTable APPEND Option
� New APPEND option is provided for INSERT

– CREATE/ALTER TABLE … APPEND YES

� Always use with MEMBER CLUSTER in data sharing

� Will reduce longer chain of spacemap page search as table
space keeps getting bigger

� But will drive need for more frequent table space � But will drive need for more frequent table space
reorganization

� Degraded query performance until the reorganization is
performed

� Behaviour the same as ‘pseudo append’ with “MC00”

– MEMBER CLUSTER and PCTFREE=FREEPAGE=0

– Will switch between append and insert mode

– Success depends on deletes and inserts being spread across DB2
members of data sharing group 43

SummarySummary

44

Summary Summary –– Key PointsKey Points
� Decide whether the data rows should be clustered/appended at the end

� Sort inserts into clustering key sequence

� Use classic partitioned table space and index partitioning

� Keep the number of indexes to a minimum and drop low value indexes

� Tune deferred write thresholds and distributed free space to drive ‘trickle
write’

� Use large PRIQTY/SECQTY and large SEGSIZE to reduce frequency of
exhaustive space search

� Use data compression to minimise log record size

� Use faster channel, faster device, DFSMS striping for active log write
throughput

� Use MEMBER CLUSTER and TRACKMOD NO to reduce spacemap
page contention and when using LOCKSIZE ROW to reduce data page
contention

� Use Identity column, sequence object, GENERATE_UNIQUE() built-in
function with caching to efficiently generate a unique key

� Important new DB2 9 new feature functions such as large index page size
45

DB2 for z/OS Optimising Insert Performance

John Campbell

Distinguished Engineer

DB2 for z/OS DevelopmentDB2 for z/OS Development

Email: CampbelJ@uk.ibm.com

46

