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ObjectivesObjectives

� Understand typical performance bottlenecks 

� How to design and optimise for high 

performance performance 

� How to tune for optimum performance 

� Understand the new features of DB2 V9 

� Understand how to best apply and use new 

features 
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AgendaAgenda

� Typical Performance Bottlenecks and Tuning
– Read and Write I/O for Index and Data

– Active Log Write

– CPU Time

– Lock/Latch Contention and Service Task Waits

– IDENTITY Column, SEQUENCE Object, GENERATE_UNIQUE()

– Use of Multi Row Insert 

� DB2 9 Performance Enhancements� DB2 9 Performance Enhancements
– Reduced LRSN Spin and Log Latch Contention

– Larger Index page size

– Increased Index Look aside

– Asymmetric Index Leaf Page Split

– Randomized Index Key

– Identifying unreferenced indexes

– Table APPEND option

� Summary
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Key Physical Design Key Physical Design 

QuestionsQuestions
� Design for maximum performance throughput or 

space reuse?

� Random key insert or sequential key insert?

� Store rows in clustering sequence or insert at the 

end?

� Input records sorted into clustering key sequence?

� What are indexing requirements and are they 

justified?
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Choice: Performance or Choice: Performance or 

Space ReuseSpace Reuse

� High performance, than less space reuse

� Better space reuse, than less performance

� Classic partitioned table space

– Usually better performance especially in data 

sharing environment

� Segmented or Universal Table Space

– Usually better space management due to more 

space information in space map pages
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Typical Performance Typical Performance 

Bottlenecks Bottlenecks 

and and 

Tuning Tuning ObservationsObservationsTuning Tuning ObservationsObservations

6



Read and Write I/O for Index Read and Write I/O for Index 

and Dataand Data
� Random key insert to index

– N sync read I/Os for each index 

� N depends on # index levels, # leaf pages, and buffer pool 
availability

� Index read I/O time = N * #indexes * ~1-2 ms

– Sync data read I/O time = ~1-2 ms per page (0 if insert 
to the end)

– Deferred async write I/O for each page

� ~1-2 ms for each row inserted

� Depends on channel type, device type, I/O path utilisation, and 
distance between pages

– Recommend keeping the number of indexes to a 
minimum

� Challenge the need for low value indexes
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Read and Write I/O for Index Read and Write I/O for Index 

and Data and Data ……
� Sequential insert to the end of data set

– For data row insert, and/or ever-ascending or 
descending index key insert

– Can eliminate sync read I/O– Can eliminate sync read I/O

– Deferred async write I/O only for contiguous pages

� ~0.4 ms per page filled with inserted rows

� Time depends on channel type, device type and I/O path 
utilisation
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Read and Write I/O for Index Read and Write I/O for Index 

and Data and Data ……

� Recommendations on deferred write thresholds

– VDWQT = Vertical (dataset level) Deferred Write 
Threshold

� Default: when 5% of buffers updated from one dataset, a � Default: when 5% of buffers updated from one dataset, a 
deferred write is scheduled

– DWQT = buffer pool level Deferred Write Threshold

� Default: when 30% of buffers updated, a deferred write is 
scheduled

– Want to configure for continuous ‘trickle’ write activity 
in between successive system checkpoints

� VDWQT and DWQT will typically have to be set lower for 
very intensive insert workloads
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Read and Write I/O for Index Read and Write I/O for Index 

and Data and Data ……
� With high deferred write thresholds, write I/Os for 
data or index entirely resident in buffer pool can be 
eliminated except at system checkpoint or STOP 
TABLESPACE/DATABASE time

� Use VDWQT=0% for data buffer pool with low hit � Use VDWQT=0% for data buffer pool with low hit 
ratio (1-5%) if single thread insert

– Else VDWQT=150 + # concurrent threads (e.g., 100) if 
sequential insert to the end of pageset/partition  

– When 250 buffers are updated for this dataset, 128 LRU 
buffers are scheduled for write 

� Use VDWQT=0% for sequential index insert

� Use default if not sure, also for random index insert
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Distributed Free Space Distributed Free Space 

� Use distributed free space – PCTFREE and/or 
FREEPAGE

– For efficient sequential read of index

– For efficient sequential read of data via clustering index – For efficient sequential read of data via clustering index 

– To minimize index split

� Carefully calculate settings

� Default distributed free space

– 0 FREEPAGE

– 5% PCTFREE within data page 

– 10% PCTFREE within index page 
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Distributed Free Space Distributed Free Space ……
� For best insert performance

– Random key insert to index

� Use non-zero index PCTFREE and/or FREEPAGE

– To reduce index leaf page splits 

– For efficient sequential index read

� Use default PCTFREE and FREEPAGE unless you know better

Sequential key insert to index – Sequential key insert to index 

� Immediately after LOAD, REORG, or 

CREATE/RECOVER/REBUILD INDEX

– Use 0% PCTFREE to reduce the number of index pages and possibly index 

levels by populating each leaf page 100%

– Use PCTFREE=FREEPAGE=0 for data to reduce both sync 

read and async write I/Os for each row insert

� Possible performance penalty for query in terms of sync single page I/O 

when reading multiple rows via clustering index
12



Distributed Free Space Distributed Free Space ……

� Trade-off in free space search

– Insert to the end of pageset/partition

� To minimize the cost of insert by minimising 

– Read/Write I/Os, Getpages, Lock requests

– Search for available space near the optimal page – Search for available space near the optimal page 

� To store data rows in clustering index sequence

� To store leaf pages in index key sequence

� To minimize dataset size

– Search for available space anywhere within the allocated area 

� To minimise dataset size

� Can involve exhaustive space search which is expensive 

� Use large PRIQTY/SECQTY and large SEGSIZE to minimize 
exhaustive space search
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Insert Insert -- Space Search Steps        Space Search Steps        
(Segmented (Segmented TablespaceTablespace))
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Segmented TablespaceSegmented Tablespace

� Segmented tablespace provides for more efficient 
search in fixed length compressed and true 
variable length row insert

– Spacemap contains more information on available 
space so that only a data page with guaranteed available space so that only a data page with guaranteed available 
space is accessed

� 2 bits per data page in non segmented tablespace (2**2=4 
different conditions)

� 4 bits per data page in segmented tablespace (2**4=16 
different conditions)

– But more spacemap page updates

� Possible performance penalty with data sharing
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Segmented Tablespace Segmented Tablespace ……
� SEGSIZE

– General recommendation is to use large SEGSIZE value consistent 
with size of pageset

� Typical SEGSIZE value 32 or 64

– Large SEGSIZE 

� Provides better opportunity to find space in page near by to candidate 
page and therefore maintain clusteringpage and therefore maintain clustering

� Better chance to avoid exhaustive space search

– Small SEGSIZE

� Can reduce spacemap page contention

� But less chance of hitting ‘False Lead Threshold’ of 3 and looking for 
space at the end of pageset/partition

– ‘False Lead’ is when spacemap page indicates there is a data page with 
room for the row, but on visit to the respective data page this is not the 
case

� Also applies to Universal Table Space (DB2 9)
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MAXROWS nMAXROWS n
� Optimisation to avoid wasteful space search on 
partitioned tablespace in fixed length compressed and 
true variable length row insert

� Must carefully estimate ‘average’ row size and how 
many ‘average’ size rows will fit comfortably in a 
single data page

� When MAXROWS n is reached the page is marked � When MAXROWS n is reached the page is marked 
full

� But introduces on going maintenance challenges
– Could waste space?

– What happens if compression is removed?

– What happens if switch from uncompressed to compressed?

– What happens when new columns are added?
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PartitioningPartitioning

� Use page range partitioning by dividing tablespace 
into partitions by key range

� Spread insert workload across partitions

� Can reduce logical and physical contention to 
improve concurrency and reduce costimprove concurrency and reduce cost

� Separate index B-tree for each index partition of 
partitioned index (good for concurrency)

� Only one index B-tree for non-partitioned index 
(bad for concurrency) 

� Over wide partitioning has potential to reduce 
number of index levels to reduce performance cost
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Data Page SizeData Page Size

� Use large data page size for sequential 

inserts to

– Reduce # Getpages– Reduce # Getpages

– Reduce # Lock Requests

– Reduce # CF requests

– Get better space use
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Active Log Write Active Log Write 

� Log data volume

– From DB2 log statistics, minimum MB/sec of writing 
to active log dataset can be calculated as

#CIs created in Active Log * 0.004MB#CIs created in Active Log * 0.004MB
----------------------------------------------------

statistics interval in seconds

– Pay attention to log data volume if >10MB/sec

� Consider use of DB2 data compression

� Use faster device as needed

� Consider use of DFSMS striping
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Insert CPU Rough Rule of Thumb Insert CPU Rough Rule of Thumb 

9672-Z17 CPU time

No index 40 to 80us

To get the CPU time for other processor models, see 

http://www-03.ibm.com/systems/z/advantages/management/lspr/

on Internal Throughput of various IBM processors

No index 40 to 80us

One index with no index read I/O 40 to 140us

One index with index read I/O 130 to 230us

Five indexes with index read I/O 500 to 800us
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Insert CPU Rough Rule of Insert CPU Rough Rule of 

Thumb Thumb ……
� 9672-Z17 CPU time = 40 to 80us 

+ 30 to 50us * number of indexes

+ 40us * number of I/Os

� Examples

– If 1 index and no read I/O because of sequential index 
insert

� 40 to 80us + 30 to 50us = 70 to 130us

� CPU cost for write I/O can be ignored because of sequential 
write of contiguous pages

– If 3 indexes and 1 random read I/O for each index

� 40 to 80us + (30 to 50us)*3 + 40us*3*2 (read +write) = 370 to 
470us 
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Lock/Latch and Service Task Lock/Latch and Service Task 

WaitsWaits
� Rule-of-Thumb on LOCKSIZE 

– Page lock (LOCKSIZE PAGE|ANY) as design default 

and especially if sequentially inserting many rows/page

Page P-lock contention in data sharing � Page P-lock contention in data sharing 

environment

– Index page update 

– Spacemap page update

– Data page update when LOCKSIZE ROW
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MEMBER CLUSTERMEMBER CLUSTER

� Member-private spacemap and corresponding data 
pages

� Beneficial in data sharing environment to reduce 
page P-lock and page latch contention especially 
when data is inserted at end of pageset/partition

– Spacemap page

– Data page if LOCKSIZE(ROW)

� Inserted rows are not clustered 

� May want to use LOCKSIZE ROW and larger 
data page size with MEMBER CLUSTER

– Better space use

– Reduce working set of buffer pool pages
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MEMBER CLUSTER MEMBER CLUSTER ……

� Rows inserted by Insert SQL are not 

clustered by clustering index 

– Instead, rows stored in available space in 

member-private areamember-private area

� Option not available on segmented table 

space or UTS
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TRACKMOD NOTRACKMOD NO

� Reduces spacemap contention in data sharing 
environment

� DB2 does not track changed pages in the 
spacemap pagesspacemap pages

� It uses the LRSN value in each page to determine 
whether a page has been changed since last copy

� Trade-off as degraded performance for 
incremental image copy because of tablespace 
scan
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DB2 Latch Contention in Heavy Insert ApplicationDB2 Latch Contention in Heavy Insert Application
� Latch Counters LC01-32 in DB2 PM/PE Statistics Report Layout Long

� Rule-of-Thumb on Internal DB2 latch contention rate

– Investigate if > 10000/sec

– Ignore if < 1000/sec

� Class 6 for latch for index tree P-lock due to index split  - Data sharing 
only

– Index split is painful in data sharing - results in 2 forced physical log writes

– Index split time can be significantly reduced by using faster active log device – Index split time can be significantly reduced by using faster active log device 

– Index splits in random insert can be reduced by providing non-zero PCTFREE

� Class 19 for logical log write latch - Both non-data sharing and data 
sharing

– Use LOAD LOG NO instead of SQL INSERT

– Make sure Log Output Buffer fully backed up by real storage

– Eliminate Unavailable Output Log Buffer condition

� If >1K-10K contentions/sec, disabling Accounting Class 3 trace helps to 
significantly reduced CPU time as well as elapsed time
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Service Task Waits Service Task Waits 

� Service task waits most likely for preformatting

– Shows up in Dataset Extend Wait in Accounting Class 
3 Trace

– Typically up to 1 second each time, but depends on 
allocation unit/size and device typeallocation unit/size and device type

– Anticipatory and asynchronous preformat in DB2 V7 
significantly reduces wait time for preformat

– Can be eliminated by LOAD/REORG with 
PREFORMAT option and high PRIQTY value

– Do not use PREFORMAT on MEMBER CLUSTER 
tablespace with high PRIQTY

30



Identity Column and Sequence ObjectIdentity Column and Sequence Object

� DB2 to automatically generate a guaranteed-unique 
number for sequencing each row inserted into table

� Much better concurrency, throughput, and response time 
possible
– Compared to application maintaining a sequence number in 
one row table, which forces a serialisation (one transaction at a 
time) from update to commit time) from update to commit 

– Potential for 5 to 10 times higher insert/commit rate

� Option to cache (default of 20), saving DB2 Catalog
update of maximum number for each insert
– Eliminating GBP write and log write force for each insert in 
data sharing

� Recycling or wrapping of identity column and sequence 
value
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GENERATE_UNIQUE() GENERATE_UNIQUE() 
� Built-in function with no arguments

� Returns a bit data character string 13 bytes long 

� Provides a unique value which is not sequential
– Unique compared to any other execution of the same function 

� Allocation does not involve any CF access

� Based exclusively on STCK value

� DB2 member number and CPU number are embedded for � DB2 member number and CPU number are embedded for 
uniqueness

� Example
CREATE TABLE EMP_UPDATE

(UNIQUE_ID CHAR(13) FOR BIT DATA,

EMPNO CHAR(6),

TEXT VARCHAR(1000)) ;

INSERT INTO EMP_UPDATE VALUES (GENERATE_UNIQUE(), ’000020’, 
’Update entry...’) ;
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Multi Row Insert (MRI) Multi Row Insert (MRI) 
� INSERT INTO TABLE for N Rows Values (:hva1,:hva2,…)

� Up to 40% CPU time reduction by avoiding SQL API 
overhead for each INSERT call

– % improvement lower if more indexes, more columns, and/or fewer 
rows inserted per call

� ATOMIC (default) is better from performance viewpoint as 
create of multiple SAVEPOINT log records can be avoidedcreate of multiple SAVEPOINT log records can be avoided

� Implication for use in data sharing environment (LRSN spin)

� Dramatic reduction in network traffic and response time 
possible in distributed environment

– By avoiding message send/receive for each row 

– Up to 8 times faster response time and 4 times CPU time reduction
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DB2 9 Performance DB2 9 Performance 

EnhancementsEnhancements
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Reduced LRSN Spin and Log Reduced LRSN Spin and Log 

Latch Contention Latch Contention 
� Available in NFM and automatic

� For data sharing

� Less DB2 spin for TOD clock to generate unique LRSN 
for log stream for a given DB2 member

– Unique LRSN only required as it pertains to a single index or – Unique LRSN only required as it pertains to a single index or 
data page

� No longer holds on to log output buffer latch (LC19) 
while spinning 

� Potential to reduce LC19 Log latch contention

� Potential to reduce CPU time especially when running on 
faster processor
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Large Index Page Size Large Index Page Size 
� Available in NFM

� Potential to reduce the number of index leaf page 
splits, which are painful especially for GBP-
dependent index (data sharing)

– Reduce index tree lotch contention

– Reduce index tree p-lock contention – Reduce index tree p-lock contention 

� Potential to reduce the number of index levels

– Reduce the number of getpages for index traversal

– Reduce CPU resource consumption 

� Possibility that large index page size may 
aggravate index buffer pool hit ratio for random 
access
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Large Index Page Size ExamplesLarge Index Page Size Examples

Rows In Table 1,000,000,000

Key Length 4 8 16 32 64 128 256 512 1024

Page Size

4096
Entries/Leaf 336 252 168 100 56 29 15 7 3

Leafs 2,976,191 3,968,254 5,952,381 10,000,000 17,857,143 34,482,759 66,666,667 142,857,143 333,333,334

Non-Leaf fanout 331 242 158 93 51 26 13 7 3

Index Levels 4 4 5 5 6 7 9 11 19

8192
Entries/Leaf 677 508 338 203 112 59 30 15 7

Leafs 1,477,105 1,968,504 2,958,580 4,926,109 8,928,572 16,949,153 33,333,334 66,666,667 142,857,143

Non-Leaf fanout 666 488 318 187 103 54 27 14 7Non-Leaf fanout 666 488 318 187 103 54 27 14 7

Index Levels 4 4 4 4 5 6 7 8 11

16,384
Entries/Leaf 1360 1020 680 408 226 120 61 31 15

Leafs 735,295 980,393 1,470,589 2,450,981 4,424,779 8,333,334 16,393,443 32,258,065 66,666,667

Non-Leaf fanout 1,336 980 639 376 207 108 55 28 14

Index Levels 3 4 4 4 4 5 6 7 8

32,768
Entries/Leaf 2725 2044 1362 817 454 240 123 62 31

Leafs 366,973 489,237 734,215 1,223,991 2,202,644 4,166,667 8,130,082 16,129,033 32,258,065

Non-Leaf fanout 2,676 1,963 1,280 755 414 218 111 56 28

Index Levels 3 3 3 4 4 4 5 6 7
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Increased Index Look Aside Increased Index Look Aside 

� Prior to DB2 9, for clustering index only

� In DB2 9, now possible for additional 

indexes where CLUSTERRATIO >= 80%indexes where CLUSTERRATIO >= 80%

� Potential for big reduction in the number of 

index getpages with substantial reduction in 

CPU time 
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Asymmetric Leaf Page SplitAsymmetric Leaf Page Split
� Available in NFM and automatic

� Design point is to provide performance relief for classic sequential 
index key problem

� Asymmetric index page split will occur depending on an insert 
pattern when inserting in the middle of key range 

� Instead of previous 50-50 split prior to DB2 9

� Up to 50% reduction in index split

� Asymmetric split information is tracked in the actual pages that are 
inserted into, so it is effective across multiple threads across DB2 

� Asymmetric split information is tracked in the actual pages that are 
inserted into, so it is effective across multiple threads across DB2 
members

� PK62214 introduces changes to the tracking and detection logic, and it 
should work much better for data sharing
– Before: DB2 9 only remembered the last insert position and a counter

– Now: DB2 remembers an insert 'range‘ and tolerates entries being slightly out 
of order

� It may still not be effective for large key sizes (hundreds of bytes), or if 
entries come in very bad order (i.e., they do not look sequential)

� But for simple cases like 3, 2, 1, 6, 5, 4, 9, 8, 7, 12, 11, 10 ... DB2 will be able 
to determine that the inserted entries are ascending
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Randomised Index KeyRandomised Index Key
� Index contention can be a major problem and a limit for 
scalability

� This problem is more severe in data sharing because of 
index page P-lock contention

� A randomized index key can reduce lock contention

� CREATE/ALTER INDEX … column-name RANDOM,
instead of ASC or DESCinstead of ASC or DESC

� Careful trade-off required between lock contention relief 
and additional getpages, read/write I/Os, and increased 
number of lock requests

� This type of index can provide dramatic improvement or 
degradation!

� Recommend making randomized indexes only when 
buffer pool resident 
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Identifying Unreferenced Identifying Unreferenced 

IndexesIndexes
� Additional indexes require overhead for

– Data maintenance

� INSERT, UPDATE, DELETE

– Utilities – Utilities 

� REORG, RUNSTATS, LOAD etc

– DASD storage

– Query optimization time

� Increases DB2 Optimizer’s choices to consider

� But identifying unused indexes is a difficult task

– Especially in a dynamic SQL environment
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Identifying Unreferenced Identifying Unreferenced 

Indexes Indexes ……
� RTS records the index last used date

– SYSINDEXSPACESTATS.LASTUSED

� Updated once in a 24 hour period

– RTS service task updates at first externalization interval (set by – RTS service task updates at first externalization interval (set by 
STATSINT) after 12PM

� If the index is used by DB2, update occurs 

� If the index was not used, no update

� “Used” as defined by DB2 means:

– As an access path for query or fetch

– For searched UPDATE / DELETE SQL statement

– As a primary index for referential integrity

– To support foreign key access
42



Table APPEND OptionTable APPEND Option
� New APPEND option is provided for INSERT

– CREATE/ALTER TABLE … APPEND YES 

� Always use with MEMBER CLUSTER in data sharing

� Will reduce longer chain of spacemap page search as table 
space keeps getting bigger

� But will drive need for more frequent table space � But will drive need for more frequent table space 
reorganization 

� Degraded query performance until the reorganization is 
performed

� Behaviour the same as ‘pseudo append’ with “MC00”

– MEMBER CLUSTER and PCTFREE=FREEPAGE=0

– Will switch between append and insert mode

– Success depends on deletes and inserts being spread across DB2 
members of data sharing group 43



SummarySummary

44



Summary Summary –– Key PointsKey Points
� Decide whether the data rows should be clustered/appended at the end

� Sort inserts into clustering key sequence

� Use classic partitioned table space and index partitioning

� Keep the number of indexes to a minimum and drop low value indexes

� Tune deferred write thresholds and distributed free space to drive ‘trickle 
write’

� Use large PRIQTY/SECQTY and large SEGSIZE to reduce frequency of 
exhaustive space search

� Use data compression to minimise log record size

� Use faster channel, faster device, DFSMS striping for active log write 
throughput

� Use MEMBER CLUSTER and TRACKMOD NO to reduce spacemap
page contention and when using LOCKSIZE ROW to reduce data page 
contention

� Use Identity column, sequence object, GENERATE_UNIQUE() built-in 
function with caching to efficiently generate a unique key

� Important new DB2 9 new feature functions such as large index page size
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