



### The IMS Common Service Layer -Can You Live Without It?

Alan Cooper alan\_cooper@uk.ibm.com IMS Consultant





### Introduction

- The IMS Common Service Layer (CSL) was introduced as an option in IMS 8
- In IMS 8 and IMS 9, many customers thought that there was insufficient benefit to be gained by implementing the CSL
- IMS 10 adds extra CSL function and greatly increases the attractiveness of CSL
  - It provides the operator interface "of choice"
  - It is no longer just for the large IMSplex user, but for the single IMS system user as well
  - It is the prerequisite for several new major functions
- The IMS Developers assume that the CSL is in place when designing new features and enhancements
  - IMS 11 illustrates the point!
- This presentation reviews the CSL and discusses the range of features available in IMS 10 that exploit the CSL



### Agenda

#### What is the CSL?

Enhanced Operations Management

#### Enhanced Resource Management

- Dynamic Resource Definition
- Enhanced Online Change Functions
- Sysplex Terminal Management

#### Other CSL Facilities

- DBRC ARLN and PRA
- Transaction Level Statistics
- Global Status
- MSC Bandwidth Statistics
- Serial Programs in SQ Environment
- LE Dynamic Runtime Options
- Queue Control Facility (QCF)
- Command Control Facility (CCF)

#### IMS 11 and CSL



# What is the Common Service Layer?





## **Common Service Layer**

### Common Service Layer (CSL)

- An architecture, not an address space
- Introduced in IMS 8
- Three\* new types of address space built on the Base Primitive Environment (BPE)
  - Structured Call Interface (SCI)
  - Operations Manager (OM)
  - Resource Manager (RM)

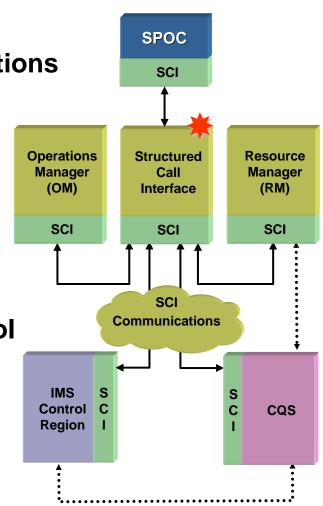
Not all new functions require all three

### Purpose

- Infrastructure for system management tasks in one or multiple IMS systems within an IMSplex
- Foundation for new IMS functions as well as Parallel Sysplex enhancements

IMS 11 adds ODBM as a new CSL address space

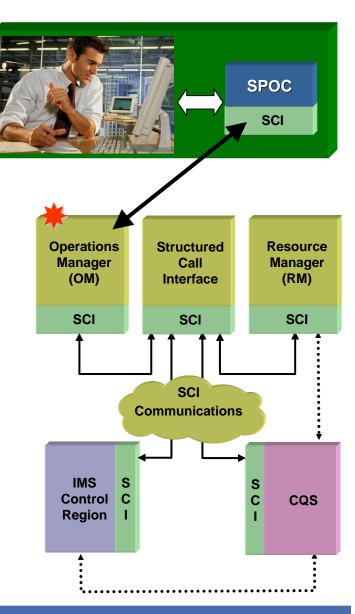





# Structured Call Interface (SCI)

- SCI provides a high performance communications facility between IMS address spaces
  - Within a single z/OS
  - Across z/OS systems, using XCF

### The code sits in the SCI Address Space


- Executed in cross-memory mode
- An SCI AS must exist on every z/OS where there is an IMS address space (including SPOCs)
- Used, for example, by a Single Point of Control (SPOC) talking to an Operations Manager, and by an Operations Manager talking to an IMS Control Region
- Each IMS address space registers with SCI to join a named IMSplex
  - Security check performed

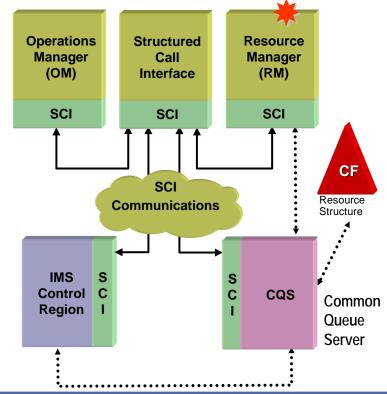




# **Operations Manager (OM)**

- Accepts IMS commands from a Single Point of Control (SPOC)
- Routes the command to one or more IMS Control Regions
- Can perform command security
  - Typically instead of in each IMS Control Region
  - RACF and/or user exit
- Gets back all the command responses and consolidates them into a single response to the SPOC
  - In XML format
  - SPOC is responsible for interface to user
- An IMSplex can contain one or more OMs





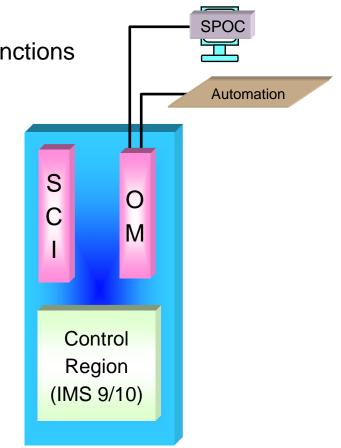

### Resource Manager (RM)

- Responsible for managing global resource status (e.g. VTAM terminal status) and IMSplex-wide processes (e.g. global online change)
- You can have one or multiple RMs in an IMSplex
- When there is more than one RM, global information is maintained in a Resource Structure in the CF
- The RM uses CQS to manage the Resource Structure

**Resource Manage** 

• As for shared queues, the resource structure is a List Structure



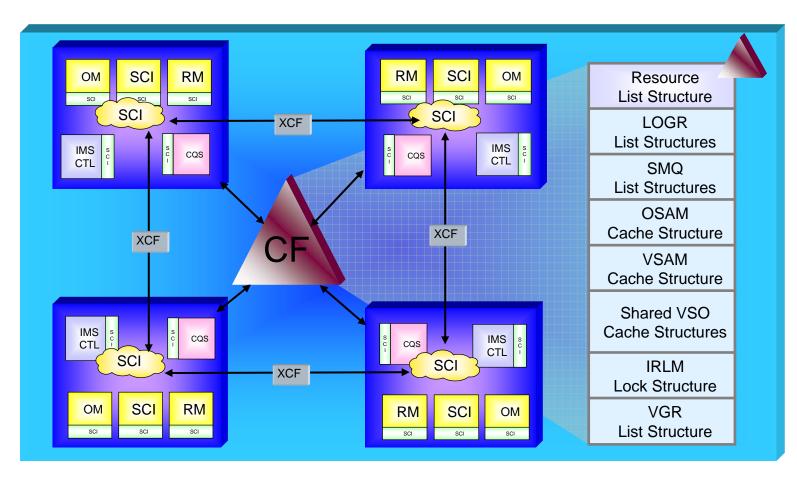

Page 8

TAKE BACK CONTROL

# Single-IMS IMSplex Configuration

 Allows Single-IMS-System user (i.e. no data base sharing and no queue sharing) to exploit new facilities

- SPOCs and the new operations interface and functions
- DBRC Automatic RECON Loss Notification
- Dynamic Resource Definition (IMS 10)
- ACB Member Online Change (IMS 10)
- Dynamic LE Runtime Options
- etc. etc. etc.
- Might be first step in migration to a more robust IMSplex
- IMS 9/10 has a system parameter to request this configuration
  - In this case, IMS can automatically start the SCI and OM address spaces




IMS 8 always requires a RM as part of the CSL



IBM INFORMATION ON DEMAND

# Multi-IMS IMSplex Configuration



 Provides "the ultimate" configuration for operation and management of capacity, performance and availability



IBM INFORMATION ON DEMAND

### Enhanced Operations Management



IBM INFORMATION ON DEMAND



I remember the MTO

# **Traditional IMS Operations**

- Traditionally, IMS online systems have been operated from an IMS Master Terminal and/or a zOS Console
  - Primary MT = display terminal formatted by MFS
  - Secondary MT = printer acting as a "hard copy" journal of key activity



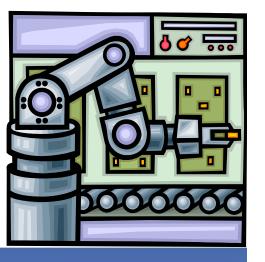
- Over the years, about 60 different operator commands have evolved
  - /START, /DBR, /ASSIGN, etc.
- These are referred to as "Type 1" commands
  - Not necessarily designed with usability in mind
  - Lacking consistency and standards
  - Not intuitive especially for a new breed of young operators
  - Mostly entered and executed on a single IMS system
    - Not convenient for operation of multiple IMSs as a single system image





# Operations with the CSL

- CSL enables the use of a completely new Operations Interface
  - Single Point of Control (SPOC)
  - A SPOC is a program that enters commands to an Operations Manager




### Some SPOCs provide an interface for human operators

- TSO SPOC (an ISPF application)
- IMS Control Center (a PC-based operator interface)

### Some SPOCs are components of automated operations

- REXX SPOC
- Batch SPOC (IMS 10)
- SPOCs can use traditional type-1 or the new type-2 commands
- Commands can be routed to one or multiple IMS systems (via an OM)
- SPOC receives back a consolidated response





### Type 2 Commands

Provide simpler, intuitive, user-friendly resource management

- QUERY and UPDATE
  - Alternatives for /DIS, /START, /STOP, /ASSIGN, /DBR, etc
- Resources managed in IMS 10
  - TRAN, RTC, PGM, DB, AREA, DATAGRP, and MSPLINK, MSLINK, MSNAME
- Many commands include wildcard and filter support to identify target resources
- Some UPDATE commands provide function not possible with a single type-1 command
  - E.g. Starting a DEDB and all its AREAs
- Other type-2 commands provide support for new facilities
  - INIT, TERM, DELETE, CREATE, IMPORT, EXPORT, QUEUE





# The TSO SPOC

- Type-2 Command replies especially result of QUERY command – are displayed as a table
  - Can sort on different columns
- Can enter commands to multiple IMS systems and get back a consolidated response
- Can look back at earlier commands and their responses, and edit and re-enter the commands
- Can set up short cuts for frequently used commands
- Special support for new functions such as Dynamic Resource Definition
  - To simplify the command interface
- SPOCs are needed for several new systems management functions
  - DRD, ACB Member Online Change, MSC statistics, etc

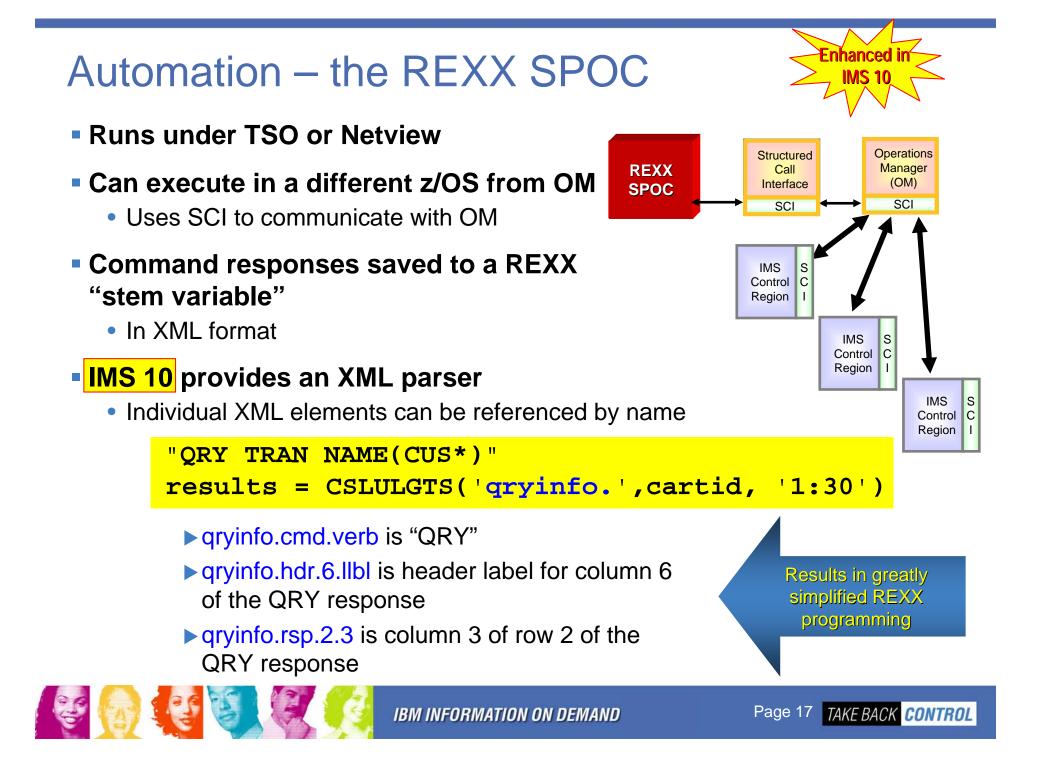




Page 15 TAKE BACK CONTROL

# **Additional Operations Facilities**

Operation of an IMS system or IMSplex requires more than just an operator interface


It requires additional functions in the areas of -

- Automation
- Entering of automation transactions
- Command auditing
- Viewing of unsolicited system messages

### These facilities are all available in IMS 10



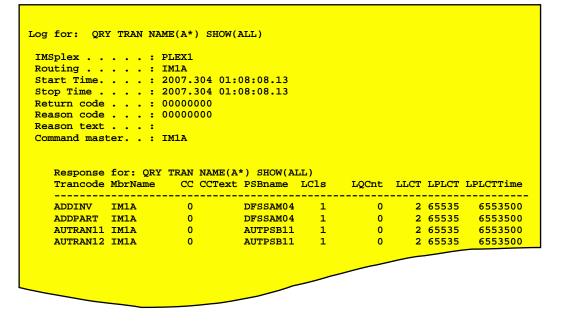




### Automation - Batch SPOC Utility

- Provides a capability to submit IMS commands from a batch job
  - Uses the Operations Manager (OM) interface
  - Supports both Type-1 and Type-2 commands

### IMSplex environment defined in execution parameters


• IMSplex name, Command routing, and Wait time

### Commands defined in SYSIN file

- Multiple commands allowed
- Commands executed serially

### Output to SYSPRINT

 Responses formatted to look like TSO SPOC screen format



Page 18 TAKE BACK CONTROL

New ir

# **QUEUE Command**

- QUEUE command (type 2 via a SPOC) can be used to:
  - Enter a transaction
    - Intended for automation transactions
  - Enter an LTERM message
  - Dequeue first or all messages queued to Transaction
    - New function for non-shared queues users
  - Dequeue first or all messages queued to an LTERM

QUEUE TRAN NAME(xxx) OPTION(ENQ) DATA(message-data) QUEUE LTERM NAME(xxx) OPTION(ENQ) DATA(message-data) QUEUE TRAN NAME(xxx) OPTION(DEQ1 | DEQALL) QUEUE LTERM NAME(xxx) OPTION(DEQ1 | DEQALL)

Reply (if any) from QUEUEd transaction is sent to Audit Trail

• Can be viewed at TSO SPOC





New ir

**IMS 10** 

# **OM Audit Trail**

- OM can use z/OS System Logger to log -
  - Commands entered via OM, ...
  - ... and their Responses
  - Unsolicited messages from IMS and CSL address spaces
  - ... to an "audit trail log stream"
  - Tailoring of which unsolicited messages get logged is possible
- Multiple OMs can share the same log stream
- Audit trail can be viewed directly from a TSO SPOC
- Audit trail can be printed with enhanced DFSERA10
- REXX SPOC (for example) can dynamically subscribe to the audit trail
  - Receive audit trail log messages in real time
- Use of Secondary Master to journal unsolicited messages can also be controlled
  - Disabled by command / SMCOPY MSG OFF
  - Dynamic selection by enhanced Type-2 AOI Exit (DFSAOE00)







Page 20 TAKE BACK CONTROL

### Audit Trail Display from TSO SPOC

| PLEX1   | IMSplex Audit Trail |             |                 |                    |           |          |           |                   |  |
|---------|---------------------|-------------|-----------------|--------------------|-----------|----------|-----------|-------------------|--|
| Command | ===>                |             |                 |                    |           |          |           |                   |  |
|         |                     |             |                 | Members            | • •       | 1        | Type      |                   |  |
|         |                     |             |                 |                    |           |          | More:     | +>                |  |
| MbrName | Time                |             | Message         |                    |           |          |           |                   |  |
| IM1A    | 2007.298            | 09:25:49.60 | DFS3499I        | ACTIVE DDNA        | AMES: MOI | DBLKSA I | Click or  | n this to see the |  |
| IM1A    | 2007.298            | 09:25:49.61 | DFS3804I        | LATEST REST        | FART CHKE | PT: 0729 | actu      | al command        |  |
| COUGHTA | 2007.298            | 09:33:32.60 | Cmd input       | . : DIS OI         | LDS       |          |           | esponse           |  |
| COUGHTA | 2007.298            | 09:33:32.60 | Response        | for: DIS OI        | LDS       |          | · · · · · | coponoc           |  |
| COUGHTA | 2007.298            | 10:26:29.28 | Cmd input       | . : QRY TH         | RAN NAME( | (*) SHOW | TIM       | 4P)               |  |
| COUGHTA | 2007.298            | 10:26:29.28 | Response        | for: <u>QRY TH</u> | RAN NAME( | (*) SHOW | TIMESTAN  | 4P)               |  |
| COUGHTA | 2007.298            | 10:26:51.44 | Cmd input       | . : QRY TH         | RAN NAME( | (*) SHOW | TIMESTAN  | 4P)               |  |
| COUGHTA | 2007.298            | 10:26:51.44 | Response        | for: <u>QRY TH</u> | RAN NAME( | (*) SHOW | TIMESTAN  | 4P)               |  |
| COUGHTA | 2007.298            | 12:52:56.87 | Cmd input       | • : QUEUE          | TRAN NAM  | IE(PART) | DATA(ans  | 960c10)           |  |
| COUGHTA | 2007.298            | 12:52:56.87 | Response        | for: <u>QUEUE</u>  | TRAN NAM  | IE(PART) | DATA(ans  | 960c10)           |  |
| IM1A    | 2007.298            | 13:00:01.07 | <b>DFS3257I</b> | ONLINE LOG         | NOW SWIT  | CHED - F | ROM DESC  | DLPOO T           |  |
| IM1A    | 2007.298            | 13:00:01.08 | DFS058I 1       | 4:00.              |           | Click    | on DFS    |                   |  |
| IM1A    | 2007.298            | 13:00:01.10 | <b>DFS3257I</b> | ONLINE LOG         | No.       | messa    | ge to ga  | in <sup>I</sup>   |  |
| IM1A    | 2007.298            | 13:00:01.29 | DFS2484I        | JOBNAME=IVE        | PGNJCL    |          | access    | T                 |  |
| IM1A    | 2007.299            | 11:30:49.53 | DFS28641        | EXTERNAL TH        | RACE D    |          |           | M                 |  |
| IM1A    | 2007.299            | 13:00:01.08 | DFS32571        | ONLINE LOG         | NOW S     |          | manual    | Г                 |  |

• Unsolicited messages are colour coded (I, W, A)



IBM INFORMATION ON DEMAND



### **Enhanced Resource Management**

- Dynamic Resource Definition (DRD)
- Global Online Change





# **Without** Dynamic Resource Definition

### Each IMS system must have a definition of its resources

- Databases, Transactions, Programs and Fastpath Routing Codes
  - The "MODBLKS resources"
- Created in the MODBLKS dataset by the IMS System Definition process
  - Stage 1 input (Assembler Macros) can be very large and requires careful management

### The definitions can be changed with Online Change, but:

- Requires the complete set of resource definitions to be re-built every time
  - Even for a change of one attribute of one resource!
- Requires all system processing to be quiesced for the MODBLKS library switch
  - Impacts service availability



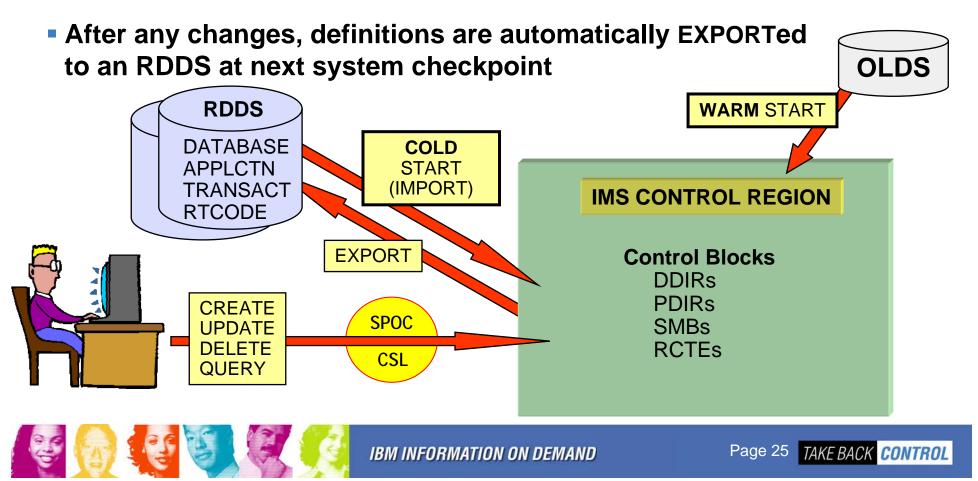
# Why Dynamic Resource Definition?

- When DRD is enabled, resources need only ever be created once
  - Kept in a Resource Definition Dataset (RDDS)
- Resources are NOT defined in IMS System Definition
  - Stage 1 input especially with ETO will be very small
  - IMS System Definition process will rarely be required ...
  - ... and will be much quicker
- Resources are updated at a SPOC with UPDATE commands, added with CREATE commands, and deleted with DELETE commands
  - No impact on availability of unchanged resources
  - All resources written to oldest RDDS at next system checkpoint
- Resource definitions are portable between RDDSs
  - Using EXPORT and IMPORT commands





New


IMS 10

TAKE BACK CONTROL

Page 24

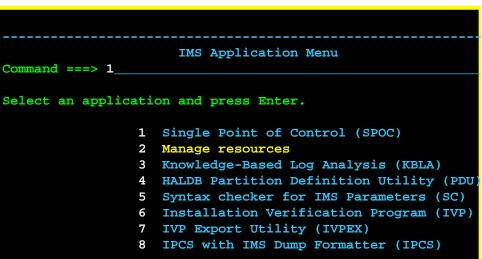
### **DRD** Overview

- During IMS Cold Start processing, resource definitions are IMPORTed from last used Resource Definition Data Set (RDDS)
- Type-2 commands used to dynamically CREATE, UPDATE, or DELETE MODBLKS resources



# Entry Point for DRD Commands

- Commands to CREATE, UPDATE, DELETE or QUERY resources and descriptors (resource templates) are entered through OM interface
  - TSO SPOC, BATCH SPOC or other Operations Manager interface


#### Manage Resources User Interface

- Subfunction of the TSO SPOC
- Removes the user's need to -
  - format CREATE, DELETE, UPDATE, and QUERY commands, or ...
  - know names and valid values for attributes

#### Provides two views

- List View for less skilled operators
  - Requires more screens
- Command Syntax View for more skilled operators
  - Generally requires a single screen





Abend Search and Notification (ASN)

Page 26 TAKE BACK CONTROL

#### DRD GUI Interface – Manage Resources Example using CREATE TRAN "LIST" View - requires more screens in most cases File Action Manage resources SPOC View Options help IMS Create Transactions Command ===> Plex.. Route.. Wait.. Press Enter to continue More: \* NAME Transaction name . . TESTRAN SET AOCMD AOI command option . . . . . N CMD, N, Tran, Y CLASS Class.....11-999 Sngl, Mult CONV Conversational . . . . . . . . N Y, N Log write-ahead option . . . . Y DCLWA Y, N DIRROUTE MSC direct routing option. . . . N Y, N Input edit routine . . . . . . EDITRTN Edit to uppercase. . . . . . . $\underline{Y}$ EDITUC Y, N EMH buffer size. . . . . . . . . 12-30720 EMHBSZ

IBM INFORMATION ON DEMAND

| DRD Interface – Manage Resources                                                                                                                                                                                                  |                 |                      |           |                                       |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|-----------|---------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                   |                 |                      |           | "COMMAND SYNTAX<br>View" - one screen |  |  |  |  |  |
| File Action                                                                                                                                                                                                                       | Manage resour   |                      |           |                                       |  |  |  |  |  |
| Command ===>                                                                                                                                                                                                                      | IMS Create :    |                      | 18        | TOP OT data                           |  |  |  |  |  |
|                                                                                                                                                                                                                                   | Plex            | Route                | • •       | Wait                                  |  |  |  |  |  |
| Press Enter to continue                                                                                                                                                                                                           |                 |                      |           |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                   |                 |                      |           |                                       |  |  |  |  |  |
| CREATE TRAN NAME( TESTRAN )                                                                                                                                                                                                       |                 |                      |           |                                       |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                              |                 |                      |           |                                       |  |  |  |  |  |
| FP(N) INQ(N) LCT(65535) LPRI(1) MAXRGN(0) MSGTYPE(MULTSEG)                                                                                                                                                                        |                 |                      |           |                                       |  |  |  |  |  |
| MSNAME() NPRI( 1 ) PARLIM( 65535 ) PGM()                                                                                                                                                                                          |                 |                      |           |                                       |  |  |  |  |  |
| PLCT( $\underline{65535}$ ) PLCTTIME( $\underline{6553500}$ ) RECOVER( $\underline{Y}$ ) REMOTE( $\underline{N}$ ) RESP( $\underline{N}$ )                                                                                        |                 |                      |           |                                       |  |  |  |  |  |
| SEGNO(0)SEGSZ(0)SERIAL(N)SIDL(0))SPASZ()))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) |                 |                      |           |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                   | ) DIAIRONC() II | (ANDIAI ( <u>N</u> ) |           |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                   |                 |                      |           |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                   |                 |                      |           |                                       |  |  |  |  |  |
| F1=Help                                                                                                                                                                                                                           | F3=Exit F       | 4=Showlog            | F6=Expand | F9=Retrieve                           |  |  |  |  |  |
|                                                                                                                                                                                                                                   |                 |                      |           |                                       |  |  |  |  |  |



# **Online Change Options**

- In IMS 10, for online changing of MODBLKS resources, you either use DRD or MODBLKS Online Change
  - Choice determined at cold start
- But in IMS 10, Online Change is still necessary for changing ACBs or MFS formats online
- There are two flavours of Online Change (set at cold start)
  - Local Online Change
    - No requirement for CSL
    - Library status kept in MODSTAT dataset (one per IMS)
  - Global Online Change
    - Requires CSL with a SPOC
    - Library status for IMSplex kept in OLCSTAT dataset
    - Coordinated across all IMSs in IMSplex

### Global Online Change offers two options for changing ACBs

- TYPE(ACBLIB) full library switch technique (IMS 8/9/10)
- TYPE(ACBMBR) ACB Member Online Change (IMS 10)



Works with a single IMS or a multi-IMS IMSplex



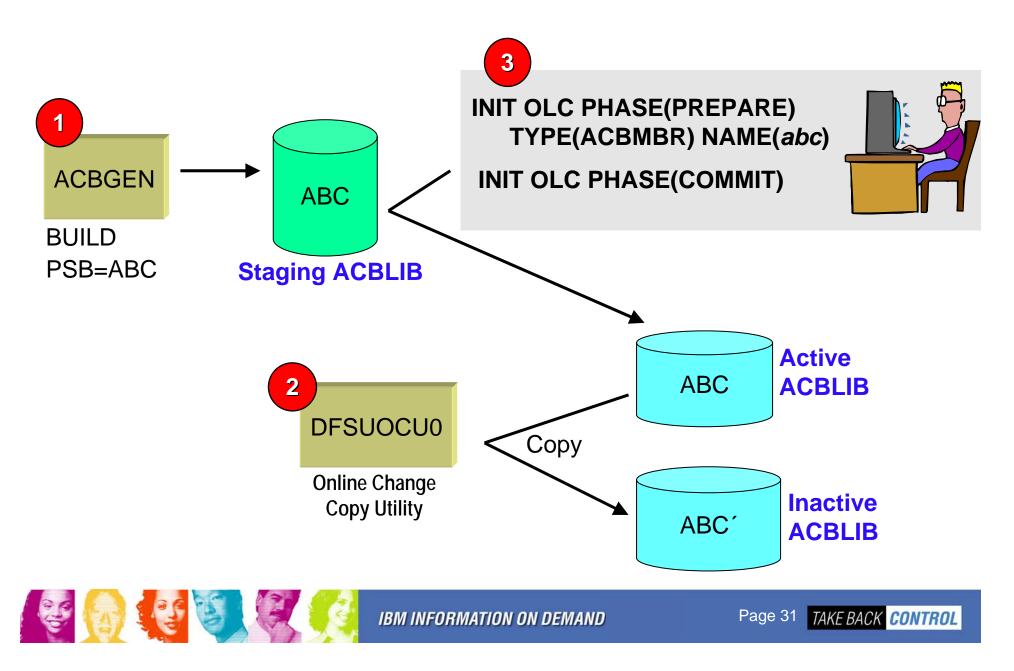
# **ACB Member Online Change**

- Complements DRD by providing a non-disruptive online change facility for ACBs
- Capability to add/change specified ACBs by only quiescing resources that are affected by the online change
- Uses INIT commands, entered at a SPOC
  - INIT OLC PHASE(PREPARE) TYPE(ACBMBR) NAME(list)
    - From the names specified, IMS builds the complete set of indexes, logically related DBs, and PSBs related to changed DBDs

New in

IMS 10

Page 30 TAKE BACK CONTROL


• ACBGEN is done into the staging ACBLIB (as usual)

But ...

 Member-OLC copies modified ACBs into the <u>active</u> ACBLIB



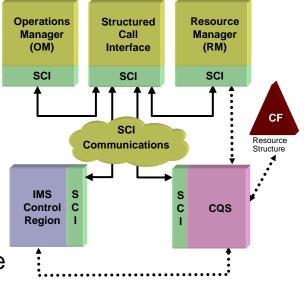
### Process for ACBLIB Member OLC



### Sysplex Terminal Management






# Sysplex Terminal Management (STM)

- Creates a single system image for SNA terminal users in a Shared Queues environment
- Enforce global resource type consistency
  - Prevent naming inconsistencies between IMSs
- Enforce global resource name uniqueness
  - Prevent multiple logon / signon within the IMSplex
- Enable Terminal and USER resource status recovery across IMSplex
  - Resume significant status on another IMS after failure
    - Command status (stopped, being traced, etc)
    - User status (Conversation status, STSN sequence numbers)

### Exploits CSL Resource Manager with a Resource Structure

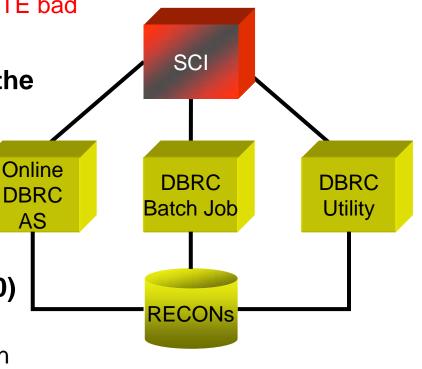
 Structure used to hold Resource Names (LTERMs, Trancodes, USERIDs, etc) and Resource Status (of Terminals and ETO USERs)

IBM INFORMATION ON DEMAND



Page 33 TAKE BACK CONTROL

### **Other CSL Facilities**






# Automatic RECON Loss Notification

- If a RECON "goes bad", RECON reconfiguration is performed on that system
  - Operators can not DELETE/DEFINE bad RECON until all active IMS systems have accessed RECONs and performed reconfiguration themselves
    - Only then will bad RECON be deallocated by z/OS
  - DBRC with the problem immediately issues a list of all active DBRCs
  - Problem is knowing when it is OK to DELETE bad RECON and DEFINE a new SPARE
- With CSL, the DBRC that experiences the problem, will notify all other DBRCs
  - uses Structured Call Interface (SCI)
  - all other systems immediately perform RECON reconfiguration
- Implementation is done by coding a DBRC SCI Registration Exit (DSPSCIX0)
  - Exit is passed name of a RECON
  - Exit returns IMSplex name for DBRC to join





Page 35 TAKE BACK CONTROL

# Parallel RECON Access (PRA)

- Customers (with or without data sharing) sometimes experience RECON contention problems
  - typically when running multiple batch/utilities concurrently with online IMS or when restarting multiple online systems
- IMS 10 Solution (Optional)
  - Exploit Transactional VSAM (TVS)\* to provide data sharing of the RECON data set
    - TVS: System facility that provides locking, logging, caching, and commit for concurrent updates to VSAM data sets (RECONs)
- DBRC requests from multiple systems (one request per system online, batch, or utility) are processed in parallel

### Automatic RECON Loss Notification is clearly essential!

• Hence CSL (specifically SCI) is a prerequisite

\* TVS is a chargeable feature of DFSMS – but with a specially reduced price when used just for RECON sharing





New in

IMS 10

## **Transaction Level Statistics**

- IMS TM logs transaction statistics (type '07' log record) for the whole program schedule
  - Enhanced in IMS 10 to contain I/O statistics, previously only available with IMS Monitor
- Optionally in IMS 10 these statistics can additionally be logged at the transaction level for easier performance analysis or chargeback purposes
  - System Default specified in DFSDFxxx PROCLIB member
  - TRANSACT macro can specify (APPLCTN for Non-message driven BMP)
  - Dynamically activated/deactivated by UPDATE type-2 command
    - UPDATE TRAN NAME(xyz) SET(TRANSTAT(Y))

▶ Requires CSL and SPOC

 IMS Performance Analyzer (IBM Tool) exploits these new log records



New

IMS 10



## **Online Resource Global Status**

- This IMS 10 enhancement is for the multi-IMS IMSplex customer
- As an option, IMS can maintain the operational status within the online systems of DBs, Partitions, DEDB AREAs and Transactions
  - Kept in the Resource Structure in the Coupling Facility
  - Can change (UPDATE IMS ...) which resource-types are tracked
- Global status is used at <u>online-system start-up</u>
  - If Cold Start, global status is applied to relevant DBs and transactions
  - If Warm Start, global status is applied if it was changed while this IMS was down
- Global Status can only be set by a Global Command, e.g. -
  - Type 1 database commands with GLOBAL parameter
    - /DBR DB CUSTDB01 GLOBAL
  - Type 2 UPDATE with SCOPE(ALL) (the default)
    - UPD DB NAME(DEDBMST) STOP(ACCESS) SCOPE(ALL)
    - UPD TRAN CUSTTR02 START(Q,SCHD) SCOPE(ALL)

Protection of DBs from misuse by <u>batch</u> or <u>utilities</u> should use DBRC PFA and READONLY flags

New in

**IMS 10** 



## **MSC Bandwidth Statistics**



- IMS 10 introduces several enhancements for MSC
  - Use of VTAM Generic Resources for a group of IMS systems in an IMSplex
  - UPDATE of all attributes of physical and logical links and MSNAMEs
  - Bandwidth Mode a higher performance option, set at the logical link level
    - Bandwidth Mode changes MSC message protocol, but without loss of integrity
    - Multiple messages, if available, can be placed in a SEND buffer, and sent with a single Log Write and a single SEND
- Bandwidth Mode is enabled/disabled by command (type 1 or 2) /UPD MSLINK NAME (name) SET((BANDWIDTH(ON | OFF) BUFSIZE(xxxxx)) UPDATE MSLINK NAME (name) SET((BANDWIDTH(ON | OFF) BUFSIZE(xxxxx))

### IMS maintains statistics of MSC performance

Reset by

UPD MSLINK NAME(name) START(STATISTICS) OPTION(RESET)

Displayed by

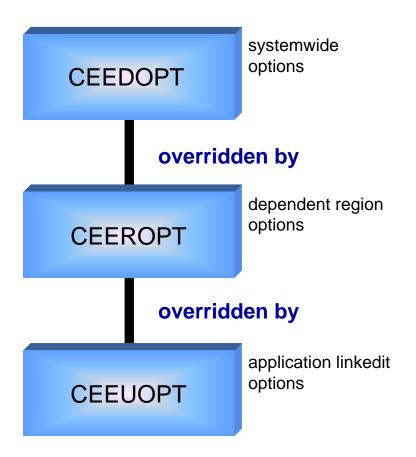
**QUERY MSLINK NAME(name) SHOW(STATISTICS)** 

Allows easy monitoring of performance with different buffer sizes



**Requires** 

the CSL


# SERIAL Program Management with SQ

- IMS 10 provides support for SCHDTYPE=SERIAL programs across an IMSplex with Shared Queues
- The CSL Resource Manager uses the Resource Structure to track usage of Serial Programs and ensures only one schedule at a time within the IMSplex
  - Previously it required a customer solution to guarantee that SCHDTYPE=SERIAL programs processed messages serially within an IMSplex
- This function is automatically enabled when CSL Resource Manager and Resource Structure exist
- Support for <u>Serial Transactions</u> is unchanged
  - Transaction gets processed serially in the local IMS which receives the message
  - Appropriate, for example, for automated operator transactions that must run on the IMS that creates them



# LE Dynamic Runtime Options

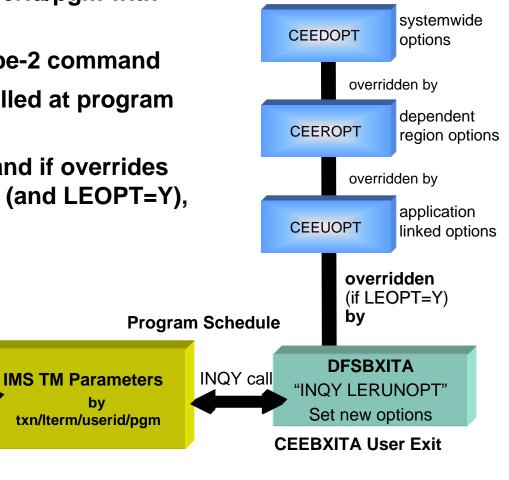
## Without CSL...



### Changing runtime options is sometimes needed

 eg. to get diagnostic information

Changing options is not trivial!




## LE Dynamic Runtime Options with CSL

- The LE allows an exit (CEEBXIT) to be called at program start-up to set runtime options, and IMS provides such an exit - DFSBXITA
- user sets overrides for txn/lterm/userid/pgm with type-2 commands
- user turns LEOPT on or off with type-2 command
- CEEBXITA (IMS supplied) exit is called at program schedule
- Exit issues INQY LERUNOPT call, and if overrides found for this txn/lterm/userid/pgm (and LEOPT=Y), then exit sets the override options

update

query





**Type-2 Commands** 

**QUERY LE** 

**UPDATE LE** 

**DELETE LE** 

IBM INFORMATION ON DEMAND

bv

# IMS Queue Control Facility V3

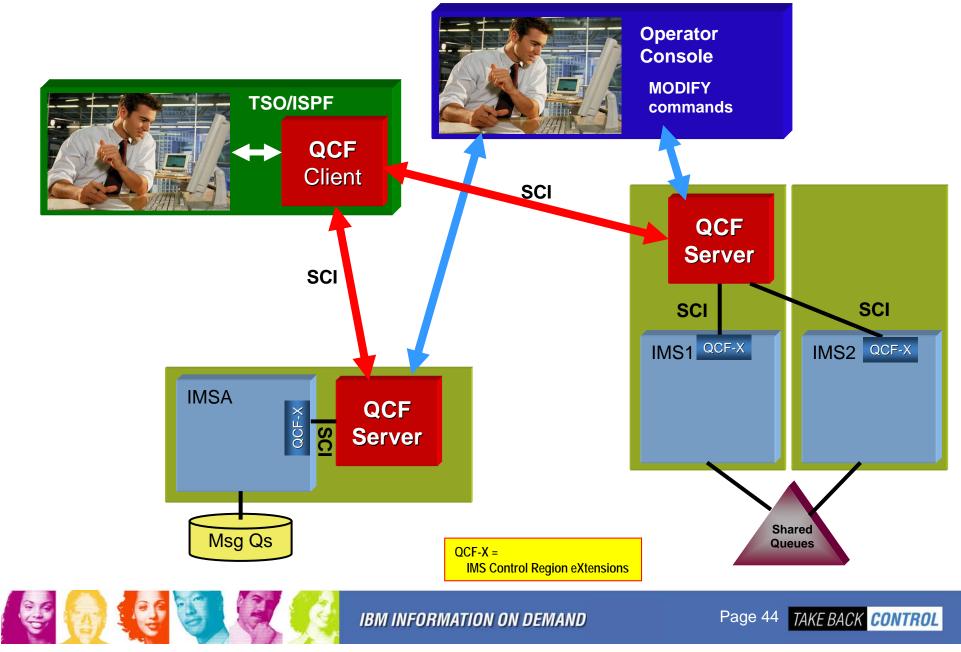
 QCF V3 has been re-architected to exploit the Common Service Layer


- Structured Call Interface (SCI) used for <u>all</u> communications
  - QCF BMP has gone!
- Console can be used to enter QCF commands

#### IMS Queue Control Facility consists of

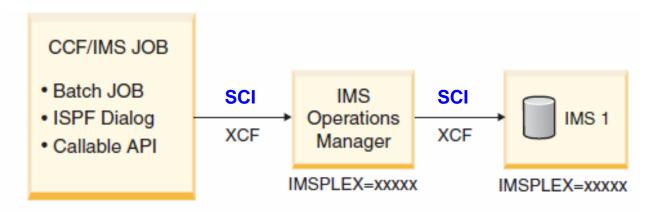
- a TSO client address space
- a server address space
- a batch address space
- an IMS Queue Control Facility extension
  - which runs in the IMS control region address space

#### Note: QCF V3 does not require IMS itself to be using the CSL


No OM or RM is needed








### QCF V3 Architecture



# Command Control Facility (CCF) V2.1

- CCF 2.1 supports multiple techniques for sending commands to "remote" IMS systems
  - (1) APPC/IMS, (2) APPC/MVS to a command-issuing BMP, or
    - (3) SCI to an OM



#### CCF is a SPOC

- Supports type-1 and type-2 commands
- No requirement for APPC
  - No command restrictions (can issue /EXIT, /LOCK and /UNLOCK)
- Using ISPF, CCF provides an "advanced function" TSO SPOC



### CSL with IMS 11





# IMS 11 Adds Even More CSL Function

#### DB Quiesce

• Enhanced UPDATE command, with RM coordination across IMSplex

#### DB Level Trace

Controlled by UPDATE command

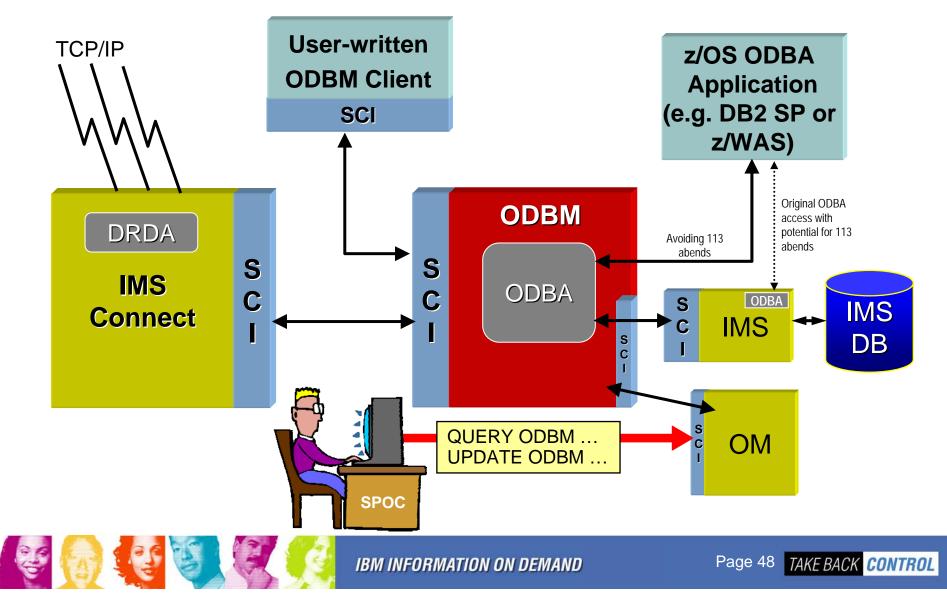
#### 64-bit FP Buffer Pool and ACB Pool support

QUERY POOL TYPE(FPBP64) and TYPE(ACBIN64) commands

#### LTERM, NODE, USER and Userid supported by QUERY

#### • OTMA operation

- Monitoring (QUERY) of Commit Mode 1 queues
- QUERY, UPDATE, CREATE, DELETE OTMA Routing Descriptors
- Support for transaction timeout
  - QUERY, CREATE, and UPDATE TRAN commands


#### • User Exit Support (for exits in DFSDFxxx <SECTION=USER\_EXITS>)

QUERY and REFRESH



### **IMS 11 Open Database Manager**

#### • ODBM is a new Common Service Layer Address Space



### Summary





### Summary

- With IMS 10, the Common Service Layer has really "come of age"
- The CSL is "free" with IMS
- There is so much you can do with it
- There is so much you can't do without it





- The CSL should now be seen as an integral part of any IMS system
  - Whether you use stand-alone IMS systems or shared DB or shared queues
  - For IMS TM or CICS DBCTL
  - The IMS Developers assume the CSL is in place!
    - Used widely in IMS 11