
Teleconference • January 26, 2010

Hints and Tips to Get Most out of DB2 for z/OS

Namik Hrle
IBM Distinguished Engineer
hrle@de.ibm.com

2

© Copyright IBM Corporation 2009. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 and DB2 for z/OS are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked
on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered
or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

http://www.ibm.com/legal/copytrade.shtml

3

DB2 9 – A Rich, Features Filled Release
SHRLEVEL(REFERENCE) for REORG
of LOB tablespaces
Online RENAME COLUMN
Online RENAME INDEX
Online CHECK DATA and CHECK LOB
Online REBUILD INDEX
Online ALTER COLUMN DEFAULT
More online REORG by eliminating
BUILD2 phase
Faster REORG by intra-REORG
parallelism
Renaming SCHEMA, VCAT, OWNER,
CREATOR
LOB Locks reduction
Skipping locked rows option
Tape support for BACKUP and
RESTORE SYSTEM utilities
Recovery of individual tablespaces
and indexes from volume-level
backups
Enhanced STOGROUP definition
Conditional restart enhancements
Histogram Statistics collection and
exploitation
WS II OmniFind based text search
DB2 Trace enhancements
WLM-assisted Buffer Pools
management
Plan stability
. . .

Global query optimization
Generalizing sparse index and in-
memory data caching method
Optimization Service Center
Autonomic reoptimization
Logging enhancements
LOBs network flow optimization
Faster operations for variable-length
rows
NOT LOGGED tablespaces
Index on expressions
Universal Tablespaces
Partition-by-growth tablespaces
APPEND option at insert
Autonomic index page split
Different index page sizes
Support for optimistic locking
Faster and more automatic DB2
restart
RLF improvements for remote
application servers such as SAP
Preserving consistency when
recovering individual objects to a prior
point in time
CLONE Table: fast replacement of one
table with another
Index compression
Index key randomization
. . .

DECIMAL FLOAT
BIGINT
VARBINARY, BINARY
TRUNCATE TABLE statement
MERGE statement
FETCH CONTINUE
ORDER BY and FETCH FIRST n ROWS
in sub-select and full-select
ORDER OF extension to ORDER BY
INTERSECT and EXCEPT Set
Operations
Instead of triggers
Various scalar and built-in functions
Cultural sort
LOB File Reference support
XML support in DB2 engine
Enhancements to SQL Stored
Procedures
SELECT FROM
UPDATE/DELETE/MERGE
Enhanced CURRENT SCHEMA
IP V6 support
Unified Debugger
Trusted Context
Database ROLEs
Automatic creation of database
objects
Temporary space consolidation
‘What-If’ Indexes
. . .

Continuous OperationsTCO Reduction Performance Scalability SQL Portability

4

SELECT FROM UPDATE/DELETE/MERGE

• Identity columns
• Sequence values
• User-defined defaults
• Expressions
• Columns modified by BEFORE

INSERT trigger
• ROWIDs

V8
SELECT FROM INSERT

Retrieves columns values
created by INSERT in a single
SELECT statement including:

Avoids possible expensive
access path that separate
SELECT might be using

V9

SELECT FROM INSERT
UPDATE
DELETE
MERGE

One SQL call to DB2 modifies the
table contents and returns the
resultant changes to the
application program.

E.g. we can now code destructive
read from a table when a SELECT
FROM DELETE statement is
included. This feature is
particularly useful when a table is
used as a data queue.

5

ORDER BY and FETCH FIRST in Subselect

V8

ORDER BY and FETCH FIRST
can be specified only as part of
select-statement, i.e. one can
write:
SELECT * FROM T1
ORDER BY C1
FETCH FIRST 1 ROW ONLY

but not the following:
INSERT INTO T2
(SELECT * FROM T1
ORDER BY C1
FETCH FIRST 1 ROW ONLY)

V9

The restriction has been removed –
the clauses can be specified in either
a subselect or fullselect.

Interesting example: a loop over the
statement followed by a commit
deletes rows without acquiring too
many locks

loop …
DELETE FROM T1 X
WHERE EXISTS

(SELECT * FROM T1 Y
WHERE X.KEY1=Y.KEY1

AND X.KEY2=Y.KEY2
AND delete_predicate

FETCH FIRST 10000 ROWS ONLY
COMMIT

end loop

6

Skipping Locked Rows

New SQL clause: SKIP LOCKED DATA

Applies to:
• select-statements, SELECT INTO,

PREPARE, searched UPDATE, searched
DELETE, UNLOAD utility

• Isolation levels CS or RS
• Row or page level locking

It allows a transaction to skip over rows
that are incompatibly locked by other
transactions, without being blocked.

Application does not scale well
due to increased lock
contention.
&
Application semantics requires
committed and available rows
only.

An example of such an
application is a messaging
system:

• only committed and
available messages can
be processed

• those locked at the time
will be processed later.

An interesting usage scenario is serializing
access to any kind of object:

• Create a table and insert a row for each
object to be controlled

• Code: SELECT … FOR UPDATE OF …
SKIP LOCKED DATA

• The object unavailability is identified by
return code +100 (without any wait)

V8 V9

7

New Techniques to Retrieve LOBs: FETCH CONTINUE

Fetch into pre-allocated buffer
using max size buffer
results in best
performance, but inefficient
storage utilization
Using smaller buffer results
in truncation which is not
accompanied by the actual
LOB size

Using LOB locators
storage efficient but
requires multiple trips to
DB2

FETCH WITH CONTINUE when retrieving base row
followed by
FETCH CURRENT CONTINUE if LOB is truncated

Existing techniques to
retrieve entire LOBs with a
large maximum length are
not optimal New techniques to retrieve LOBs:

1. Fetch into moderately sized buffer,
expected to fit most values. If it does
not:

Allocate larger buffer using the actual
LOB length returned on the FETCH
FETCH CURRENT CONTINUE to retrieve
the rest

2. Fetch through a streaming, relatively
small buffer (e.g. 32KB)

move and reassemble data pieces into a
larger buffer or pipe it to an output file

These techniques apply to XML as well

V8 V9

8

New Data Types: BINARY and VARBINARY

BINARY fixed-length binary string
– 1 to 255 bytes

VARBINARY variable-length binary string
– 1 to 32704 bytes; maximum length determined by the maximum record

size associated with the table

Unlike FOR BIT DATA the new BINARY and VARBINARY use x’00’
as a padding character
Comparison rule:

– If two strings are equal up to the length of the shorter string , the shorter
string is considered less than the longer string.

9

APPEND
V8 V9

• The APPEND YES results in a fast
insert at the end of the table or
appropriate partition at the expense of
data organization and rapid table
space growth.

• After populating with the APPEND
option in effect, clustering can be
achieved by running the REORG utility
providing a clustering index has been
explicitly defined.

• Make sure PK81471 is applied
• Note that MC00 is still valid, but make

sure that PK81470 is applied

CREATE TABLE … APPEND YES | NO

ALTER TABLE … APPEND YES | NO• Critical, high insert rate workload
needs better performance and all
the conventional tuning steps
have already been applied.

• Clustering is either not beneficial
or more frequent reorganizations
are acceptable

• MC00 insert algorithm is still not
fast enough or the prerequisites
cannot be satisfied:

MEMBER CLUSTER
FREEPAGE=PCTFREE=0

All of the following applies:

10

Reordered Row Format

Remember tuning recommendations for rows with variable-length columns?
– Define fixed-length columns preceding variable-length columns

DB2 9 implements this recommendation internally
– New Reordered Row Format provides for direct access to variable length columns

• Potential for significant CPU reduction
– For all newly created tables, at REORG and LOAD REPLACE

• With some exceptions

Rarely leading to increased logging volume
LOAD REPLACE and REORG convert rows into RRF

– KEEPDICTIONARY ignored when the utilities run for the first time in DB2 9
Related service

– PK87348
• REORG option (ROWFORMAT BRF | RRF) to convert a tablespace from RRF to BRF and vice versa
• Support for BRF by UTS
• Introducing public zparm RRF instead of hidden SPRMRRF

– PK78958 – conversion to RRF suppressed for compressed pagesets
• Namely, RRF can lead to lower compression ratio

Prefix Fixed Length Cols Varchar Pointers Varying Length Cols

11

Virtual Indexes a.k.a. ‘What If’ Indexes

V8 V9
• Virtual i.e. hypothetical indexes can be

specified and made visible to statement
EXPLAIN STATEMENT FOR

• Table DSN_VIRTUAL_INDEXES is used to
specify virtual indexes

• Table columns include selected columns
from SYSINDEXES and SYSKEYS

• Users need to create the table manually,
unless tooling such as Index Advisor does it
automatically. Appropriate script is provided.

• To create/drop an index, the table needs to
be populated with a row that provide an
appropriate description of index

• At EXPLAIN time, during query optimization,
the virtual indexes compete with regular
indexes on the tables in a cost-based
fashion and the dropped indexes are not
considered

• In many cases predicting based on
modeling is not reliable due to query
complexity

• Indiscriminate adding of indexes
creates permanent overhead for
most operations (SQL and utilities)

• Creating a new index is obtrusive for
concurrent operations

• Using a test system for
experimenting lacks potentially
crucial environmental factors that
affect access path selection

How to determine that a new index
would benefit a given dynamic SQL
query?

How to determine that dropping an index
will not negatively affect a given query?

12

TBCREATOR Authorization ID of owner (or schema in V9) of table on which the index is being created/dropped

TBNAME Name of the table on which the index is being created or dropped

IXCREATOR Authorization ID (or schema in V9) of the owner of the index

IXNAME Name of the index

ENABLE Whether this index specification will be processed ('Y') or not ('N').

MODE Whether the index is being created ('C') or dropped ('D')

UNIQUERULE Whether the index is unique: D for No (duplicates are allowed); U for Yes

COLCOUNT The number of columns in the key

CLUSTERING Whether the index is clustered ('Y' or 'N')

NLEAF Number of active leaf pages in the index. If unknown, the value must be -1.

NLEVELS Number of levels in the index tree. If unknown, the value must be -1.

INDEXTYPE The index type: '2' - NPSI; 'D' - DPSI

PGSIZE Size, in bytes, of the leaf pages in the index: 4K, 8K, 16K, 32K

FIRSTKEYCARDF Number of distinct values of the first key column. If unknown, the value must be -1.

FULLKEYCARDF Number of distinct values of the key. If unknown, the value must be -1.

CLUSTERRATIOF Clustering ratio. . If unknown, the value must be -1.

PADDED Indicates whether keys within the index are padded for varying-length column data ('Y' or 'N')

COLNO1 Column # of the first column in the index key

ORDERING1 Ordering ('A' or 'D') of the first column in the index key

... ...

COLNO64 Column # of the last column in the index key. Needs to be populated only when # index keys = 64

ORDERING64 Ordering ('A' or 'D') of the last column in the index key.

D
S

N
_V

IR
TU

A
L_IN

D
E

X
E

S
 Table

13

Identifying Unused Indexes

V8 V9
• For each index, a new real-time statistics

column (LASTUSED) is maintained in table
SYSIBM.SYSINDEXSPACESTATS

• It is updated whenever the index is used in
- SELECT/FETCH
- searched UPDATE/DELETE
- Referential Integrity checking

• The column is not updated for INSERT,
LOAD, etc.

• If an index has not been used for a period
that covers the entire applications life-cycle
(e.g. do not forget periodic processes such
as period closing), it can be safely dropped

• Be careful with indexes that enforce
uniqueness

• In order to improve the
performance of different types of
queries, some customers create
many indexes just in case one of
them can be useful.

• However, there is a significant
cost in maintaining such indexes
during Insert, Delete, Load,
Reorg, ...

• Some of the indexes are no longer
needed and they could be
dropped, but how can we be sure
that they have not been used for a
very long time?

14

TRUNCATE TABLE

• DELETE without WHERE
clause is not fast enough as
the table includes delete
triggers

• Using LOAD REPLACE with
empty input data set (even
when called via DSNUTILS) is
not DBMS agnostic

• Storage occupied by deleted
rows should be released
faster

New DML statement:

TRUNCATE table
DROP | REUSE STORAGE
IGNORE | RESTRICT DELETE TRIGGERS
IMMEDIATE

Under the cover it’s DELETE
without WHERE clause, but
without delete triggers processing
overhead.
Therefore it is fast for tables in
segmented and universal
tablespaces for which there are no
CDC, MLS and VALIDPROC enabled
attributes.

Alternative way of deleting the
entire table is needed for any
of these reasons:

V8 V9

15

MERGE Example

account AS T

MERGE INTO account AS T
USING VALUES (:hv_id, :hv_amt) FOR 5 ROWS AS S (id, amt)
ON T.id = S.id
WHEN MATCHED THEN UPDATE SET balance = T.balance + S.amt
WHEN NOT MATCHED THEN INSERT (id, balance) VALUES (S.id, S.amt)
NOT ATOMIC CONTINUE ON SQLEXCEPTION

id amt

1 30

5 10

10 40

5 20

1 50

id balance

1 1000

10 500

200 600

300 300

315 100

500 4000

id balance

1 1080

5 30

10 540

200 600

300 300

315 100

500 4000

account AS TVALUES AS S

MERGE

16

Unique DPSI

V8

• Data-Partitioned Secondary
Index cannot be created as
UNIQUE

• The reason:
Avoiding scanning all the
partitions of DPSIs in case
when uniqueness need to be
enforced.

• An obstacle for wider usage
of DPSIs

V9

• If the columns by which the table
is partitioned are contained in the
DPSI, only the corresponding
DPSI partition need to be
checked for uniqueness

• So, in DB2 9, DPSI can be unique
subject to fullfilling the above
condition

17

Universal Tablespaces
V8 V9

• A hybrid between partitioned
and segmented organization

• One table per UTS only
• Two types:

CREATE TABLESPACE …
SEGSIZE integer
NUMPARTS integer

• it’s larger than 64GB
• inter-partition parallelism or

independent processing is
needed

• partition scope operations
(ADD,ROTATE) apply

• rows are variable in length
and optimal space utilization
is preferred

• mass delete operations should
be fast

A tablespace needs both
partitioned and segmented
organization:

1. Partitioned-by-growth
− always UTS
− described on the next page

2. Partitioned-by-range
− traditional partitioned

tablespaces
− optionally UTS

• Incompatible with MEMBER
CLUSTER

18

Partition By Growth
V8 V9

CREATE TABLESPACE …
MAXPARTITIONS integer

A table’s growth is
unpredictable (it could
exceed 64GB) and there
is no convenient key for
range partitioning.

Partitioning by a ROWID
column introduces
additional tablespace
administration overhead:

• estimating optimal
number of partitions

• ADDing partitions if
necessary

• less then optimal space
utilization)

CREATE TABLE …
PARTITIONED BY SIZE EVERY integer G

explicit specification

Associated SYSTABLESPACES columns
MAXPARTITIONS = max number of partitions
PARTITIONS = actual number of partitions
TYPE = G

implicit specification

• Only single-table tablespace
• Universal Tablespace organization: although

the table space is partitioned, the data within
each partition is organized according to
segmented architecture

• Incompatible with MEMBER CLUSTER, ADD
PARTITION, ROTATE PARTITION

• REORG considerations

19

Larger Index Page Sizes
V8 V9

• Additional 8K, 16K and 32K index page sizes
• Advantages

+ It can reduce index page splits by up to 2x, 4x
or 8x respectively

+ Traversing shallow index needs less getpages
+ Faster index scans

• Disadvantages
- Larger pages require larger buffer pools

- If access predominantly random, buffer pool
might need to be 2x, 4x or 8x larger

- For data sharing it can result in more P-lock
contentions

• Rule of thumb:
4K index page and larger PCTFREE for
indexes with random insert patterns
larger size index page for indexes with
sequential insert patterns.

• In heavy insert applications frequent
index pages splitting creates scaling
bottleneck

• In a data sharing environment, the
indicators are:

Large Accounting Class 3
synchronous log write suspension

- Each GBP-dependant index page
split requires 2 forced log writes

- Note that these suspensions
include also waits for phase 1 of 2-
phase commit and P-lock
negotiation

High number of latch class 6
contentions

• For non-data sharing, the indicator is
large number of latch class 254
contentions (reported in IFCID 57)

20

Comparing Tablespace vs. Index Compression

Tablespace Compression Index Compression Remarks

Unit of compression Row Page Index non-leaf pages are not compressed, but that‘s
typically less than 5% of the entire index

Where is data
compressed

on DASD, in buffer pools,
in logs on DASD only

When does
compression happen at insert and fetch at I/O

Hence, CPU overhead affected by BP hit ratio.
Larger buffer pools strongly recommended for
compressed indexes.
Do not use page-fix for these buffer pools

Hardware assist Yes No Index compression uses sophisticated software
compression algorithms

Page size restrictions No Only for 8K, 16K and
32K-page indexes

Page size on DASD:
for tablespaces, equivalent to page size in the
associated buffer pool
for indexes, always 4K

Compression
dictionary used Yes No

When does
compression start

After the first Reorg or
Load

At the first insert or
update

Compression CPU
cost reported in Accounting Accounting and/or

DBM1 SRB Statistics
No changes in accounting CPU time if index pages
brought in by prefetch

Typical
Compression Ratio 10 – 90% 25 – 75%

Maximum CR limited by index page size: 50% for
8K, 75% for 16K and 87.5% for 32K
Use DSN1COMP to predict compression ratio

21

More Efficient Workfiles Usage
V8 V9

• 32K-page workfiles are used much more
aggressively

• 4K-page workfiles are now used only for
small records

- where the limit of 255 rows per page results
in waste of space

- e.g. over 90% wasted space on 32K page for
10-byte records

• Recommendations
Assign a larger 32K workfile buffer pool
Allocate more 32K workfile data sets
If 4K workfile buffer pool activity is
significantly lower, then the corresponding
buffer pool size and work file datasets can
be reduced.
Monitor new statistics on how often more
optimal 32K workfiles ran out and 4K
workfiles had to be used instead, or vice
versa

• 4K-page workfiles are used
whenever row is smaller than 4KB

• Since work file access is often
sequential, using larger page size
can be more efficient

• E.g. for 2050-byte records:
15 records on one 32K page

vs.
8 records on eight 4K pages

22

BACKUP and RESTORE SYSTEM Enhancements
V8 V9

• Full integration of tape into
- BACKUP SYSTEM as the target for saving

system-level backups
- RESTORE SYSTEM as the source for

restoring previously saved system-level
backups

• Automatic using of system-level backups as
alternative sources for recovering individual
tablespaces and indexes

• BACKUP SYSTEM supports Incremental
FlashCopy functionality

• DB2 can be restarted in System Point-in-
Time Recovery mode without truncating the
logs to a prior log point. RESTORE SYSTEM
can then be used to recover DB2 to the
current end of log.

• MODIFY RECOVERY enhanced to support
system-level backups as the primary means
of backing up DB2 data

• Off-loading system-level backups to
tape and restoring it from tape is a
manual process that is not driven by
the BACKUP and RESTORE
SYSTEM utilities

• Despite availability of system-level
backup many sites produce
tablespace and index image copies
for simpler recoveries of the
individual objects

• Physical background copy phase of
FlashCopy can take long and impact
overall I/O performance

• RESTORE SYSTEM can be used for
prior point in time recoveries only

23

Online REBUILD INDEX

V8 V9

• During rebuilding of an
index the tablespace is
unavailable for all data
modifying operations

• This is especially restrictive
for very large tables where
the rebuild process
typically takes considerable
amount of time

REBUILD INDEX …
SHRLEVEL REFERENCE
DRAIN_WAIT integer
RETRY integer
RETRY_DELAY integer

REBUILD INDEX …
SHRLEVEL CHANGE
DRAIN_WAIT integer
RETRY integer
RETRY_DELAY integer
MAXRO integer | DEFER
LONGLOG CONTINUE | TERM |DRAIN
DELAY 1200 | integer

24

Renaming SCHEMA, VCAT, OWNER and CREATOR

V8
Some administrative operations (such as cloning a DB2 system) often
includes the need to change any or all of the following:
VCAT, SCHEMA, OWNER, CREATOR
These are error prone, time consuming and risky operations:
− The changes are spread throughout DB2
− Preserving coherency between the catalog, the dictionary and actual physical

objects is absolutely crucial

CATMAINT UPDATE …
SCHEMA SWITCH (schema_name) TO (new_schema_name)
VCAT SWITCH (vcat_name) TO (new_vcat_name)
OWNER FROM (owner_name) TO ROLE

V9

Performs authorization/semantics checking and serialization
Updates catalog and directory to reflect the new names
Invalidates plan, packages and statement cache
Names to be changed must not have view, function, MQT and trigger
dependencies, cannot be ‘SYSIBM’
Use SCHEMA option to change owner, creator and schema names

25

Resource Limit Facility Improvements

V8
The qualifiers used by RLF to
identify processes for which
CPU time is governed are not
specific enough for most
‘middleware’ servers such as
SAP:

• Plan name is fixed to DISTSERV
• CLI and JDBC drivers use a

common set of packages
• Authorization ID is typically the

same for the entire workload

V9
• RLF governed processes can be

now qualified by typical ‘client-
side’ identifiers:

• End-User ID
• Transaction name
• Workstation name

• Additionally, the process can be
qualified by the IP address of the
server that initiated request

• This applies to both the
predictive and reactive governor

• The existing CLI and JDBC APIs
are used to set the client-side
identifiers.

26

Not Logged Tablespaces – Use It for Extreme Cases Only

V8
Performance degradation for
workloads involving very large
number of parallel inserts,
updates and deletes due to:

• Log write latching
• Log data sets write bottlenecks

V9
New tablespace attribute that
controls whether Undo and Redo
information for that tablespace
and associated indexes are logged
or not.

CREATE or ALTER TABLESPACE …
LOGGED|NOT LOGGED

Typical process sequence:
1. Take full image copy
2. Turn off logging
3. Make massive changes
4. Ensure that no other concurrent,

non-repeatable changes happen
5. Turn on logging
6. Take full image copy

Very large volume of log data
generated for these workloads

At the same time
recoverability of data is not
required, e.g. the data can be
recreated from its original
source rather than from
backups and logs Get familiar with ramifications to

rollbacks, restarts, lock contentions,
data sharing, long running transactions

27

EDM Statement Pool

The dynamic statements are cached in the EDM Statement Pool which
belongs to EDM storage.

EDM Statement Pool
– Skeleton dynamic statements (SKDS)
– zparm EDMSTMTC
– As of DB2 V8 above-the-bar

EDM DBD Pool
– Database Descriptors (DBDs)
– zparm EDMDBDC
– As of DB2 V8 above-the-bar

EDM Skeleton Pool
– Skeleton Cursor (SKCT) and Package Tables

(SKPT)
– zparm EDM_SKELETON_POOL
– As of DB2 V9 above-the-bar

EDM RDS Pool
– Cursor (CT) and Package Tables (PT)
– zparm EDMPOOL
– As of DB2 V9 partially above-the-bar

DBM1

2GBRDS Pool

Skeleton Pool

DBD Pool

Statement
Pool

28

Thread Virtual Storage

A large portion (up to 50%) of virtual storage that holds locally cached
statements (particularly INSERTs) moved above-the-bar in V9
Changed defaults for two zparms that control thread virtual storage
utilization

– CACHEDYN_FREELOCAL
• Introduced in DB2 V8, APAR PK21861
• Enables freeing cached statement and releasing associated virtual storage upon

statement’s completion, i.e. does not wait for a commit to do that.
• If the statement is re-referenced after being freed, DB2 performs implicit prepare, so

the process is transparent to the applications
– Unless there are concurrent DROPs or ALTERs affecting associated objects, in which case

sqlcode -204 could be returned to the application executing the freed statement
• Applies only to statements bound with KEEPDYNAMIC(YES)
• Possible values

– 0 - Feature is disabled. Default value in DB2 V8.
– 1 - Feature is enabled. Default value in DB2 9.
– 2, 3, 4 are serviceability values

– MINSTOR
• If set to YES, DB2 actively works on reducing thread’s virtual storage footprint
• Default is NO in DB2 V8, but changed to YES in DB2 9

29

DB2 9 for z/OS RedBooks & RedPapers

Powering SOA with IBM Data Servers SG24-7259
LOBs with DB2 for z/OS: SG24-7270
Securing DB2 & MLS z/OS SG24-6480-01
DB2 9 Technical Overview SG24-7330
Enhancing SAP - DB2 9 SG24-7239
Best practices SAP BI - DB2 9 SG24-6489-01
DB2 9 Performance Topics SG24-7473
DB2 9 Optimization Service Center SG24-7421
Index Compression with DB2 9 for z/OS paper
DB2 9 Stored Procedures SG24-7604

	Hints and Tips to Get Most out of DB2 for z/OS
	Disclaimer
	New Data Types: BINARY and VARBINARY
	MERGE Example
	Comparing Tablespace vs. Index Compression
	EDM Statement Pool
	Thread Virtual Storage

