
© 2008 IBM Corporation

Snehal S. Antani
antani@us.ibm.com

WebSphere XD Technical Lead

SOA Technology Practice, ISSW, SWG, IBM

http://snehalantani.googlepages.com

Batch Processing with WebSphere
Technical Overview of WebSphere XD Compute Grid

Chris Vignola
cvignola@us.ibm.com

STSM, Compute Grid Lead Architect
WebSphere XD Development, SWG, IBM

http://chris.vignola.googlepages.com

2© 2008 IBM Corporation

Agenda

• WebSphere XD Compute Grid product goals

• Compute Grid Infrastructure

– Topology
– Performance (Parallel Processing, Proximity to Data)

– ‘ilities (Availability, Scalability, etc)

• Batch Applications

– Batch Data-stream (BDS) Framework and other tooling

– Design patterns for sharing services across batch and OLTP
– Example application architecture

– Performance optimizations (caching, parallelization, etc)

• Short-term objectives and strategy

3© 2008 IBM Corporation

Goal

To Deliver a Modern Batch Processing Platform for the Enterprise

Platform: runtime components (schedule, dispatch, govern), e-2-e

Development Tooling, workload management integration, operational

control with external scheduler integration

Enterprise: Platform-neutral applications, Standardized Application

Architecture, Standardized Operational Procedures

Modern: 24x7 Batch, Sharing business services across batch and OLTP,
parallel-processing and caching, container-managed QoS, design patterns

4© 2008 IBM Corporation

Compute Grid Infrastructure

5© 2008 IBM Corporation

8 am 8 pm 8 am

Online Batch

Current Batch Processing Technique

24x7 Batch and OLTP

Modern Batch Processing Technique

8 am

Batch

8 am

Batch

Batch

Batch
Batch

Batch

Batch

Batch

Batch

Batch
Batch

Online

6© 2008 IBM Corporation

Message
Driven
Bean

msg queuejob definition

The “Maverick” Batch Environment

• Roll Your Own (RYO)

• Seems easy – even tempting ☺

• Message-driven Beans or

• CommonJ Work Objects or …

But …

• No job definition language

• No batch programming model

• No checkpoint/restart

• No batch development tools

• No operational commands

• No OLTP/batch interleave

• No logging

• No job usage accounting

• No monitoring

• No job console

• No enterprise scheduler integration

• No visibility to WLM

• No Workload throttling/pacing/piping

• …

CommonJ
Work

job definition
Web

Service

create

7© 2008 IBM Corporation

OLTP and Batch Interleave

DB

public void doBatch() {
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
for (int i=0; i<100000; i++) {

Customer customer = new Customer(.....);
Cart cart = new Cart(...);
customer.setCart(cart) // needs to be persisted as well
session.save(customer);
if (i % 20 == 0) { //20, same as the JDBC batch size

//flush a batch of inserts and release memory:
session.flush();
session.clear();

}
}
tx.commit();
session.close();
}

Source: some Hibernate Batch website

public Customer getCustomer() {
….
}

-Batch application’s hold on DB locks can

adversely impact OLTP workloads

-OLTP Service Level Agreements can be

breached

-How do you manage this?

-WLM will make the problem worse!

BATCH

OLTP

X

8© 2008 IBM Corporation

Solution: Container-Managed Services

- Container-Managed Checkpoint Strategies

- Keep track of the current input and output positions on behalf of the

batch step

- Store these values as part of the same global transaction as the
business logic

- Provide flexible options: Time-based, Record-based, Custom algorithms

- Container-Managed Restart Capabilities

- Seek to the correct positions in the input and output streams

- Restart should be transparent to the application

- Dynamically adjust the checkpoint strategies based on Workload

Management metrics, OLTP load, and application priorities

9© 2008 IBM Corporation

Operational Control in “Maverick” Batch

Process 10 mil.
records

Queue

MDB
Async
Batch
“Job”

Application Server

How do you stop this batch “job” ?

Problem
Ticket

Queue

Systems

Administrator

IT Operations

Kill - 9

Abend
address
space

10© 2008 IBM Corporation

Solution: Integrated Operational Control

-Provide an operational infrastructure for starting/stopping/canceling/restarting/etc

batch jobs.

- Integrate that operational infrastructure with existing enterprise schedulers such as

Tivoli Workload Scheduler

- Provide log management and integration with archiving and auditing systems

- Provide resource usage monitoring

- Integrate with existing security and disaster recovery procedures

11© 2008 IBM Corporation

Batch Processing with WebSphere XD Compute Grid

• Compute Grid design has been influenced by a number of domains

• Most important: Customer collaborations and partnerships
– Continuous cycle of Discovery and Validation

– Discover new features by working directly with our clients

– Validate ideas, features, and strategy directly with our clients

12© 2008 IBM Corporation

WebSphere XD Compute Grid summary

• Leverages J2EE Application Servers
(WebSphere today… more tomorrow)

– Transactions

– Security

– high availability including dynamic servants

– Leverages the inherent WAS QoS

– Connection Pooling

– Thread Pooling

• Platform for executing transactional java batch applications
• Checkpoint/Restart

• Batch Data Stream Management

• Parallel Job Execution

• Operational Control

• External Scheduler Integration

• SMF Records for Batch

• zWLM Integration

13© 2008 IBM Corporation

XD Compute Grid Components

• Job Scheduler (JS)

– The job entry point to XD Compute grid

– Job life-cycle management (Submit, Stop, Cancel, etc) and monitoring

– Dispatches workload to either the PJM or GEE

– Hosts the Job Management Console (JMC)

• Parallel Job Manager (PJM)-

– Breaks large batch jobs into smaller partitions for parallel execution

– Provides job life-cycle management (Submit, Stop, Cancel, Restart) for the

single logical job and each of its partitions

– Is *not* a required component in compute grid

• Grid Endpoints (GEE)
– Executes the actual business logic of the batch job

14© 2008 IBM Corporation

XD Compute Grid Components

User

Load Balancer

- EJB

- Web Service

- JMS

- Command Line

- Job Console

GEE

WAS

GEE

WAS

PJM

WAS

JS

WAS xJCL

15© 2008 IBM Corporation

Parallel
Job

Manager

Job
Dispatcher

xJCL
Repository

Job
Template

GEE

Submit
Parallel Job

1.

2.
3.

Grid

1. Large, single job is submitted to the Job Dispatcher of XD Compute Grid

2. The Parallel Job Manager (PJM), with the option of using job partition templates stored in a repository,
breaks the single batch job into many smaller partitions.

3. The PJM dispatches those chunks across the cluster of Grid Execution Environments (GEE)

4. The cluster of GEE’s execute the parallel jobs, applying qualities of service like checkpointing, job
restart, transactional integrity, etc.

Parallel
Jobs

4.

Submitting a job to the Parallel Job Manager

16© 2008 IBM Corporation

Enterprise Scheduler Integration

Tivoli Workload Scheduler

JES

JCL

WSGrid

In Queue

Out Queue

Job
Scheduler

xJCL

msg

GEE

Job

GEE

Job

Dynamic Scheduling

- enterprise scheduler for operational control

- Jobs and commands are submitted from WSGRID

- Jobs can dynamically schedule ES via its EJB interface

1.

2. 3. 4.
5.

6.

7.

17© 2008 IBM Corporation

Key Influencers for HPC Grids

• Proximity to the Data
– Bring the business logic to the data: co-locate on the same platform

– Bring the data to the business logic: in-memory databases, caching

• Data-aware Routing
– Partitioned data with intelligent routing of work

• Divide and Conquer
– Highly parallel execution of workloads across the grid

• On-Demand Scalability

18© 2008 IBM Corporation

Compute Grid + XTP = eXtreme Batch

Bringing the data closer to the business logic

-Proximity of the business logic to the data significantly influences performance

-Bring data to the business logic via caching

-Bring business logic to the data via co-location

- Increase cache hits and reduce data access through affinity routing

- Data is partitioned across the cluster of workers

- Work requests are divided into partitions that correspond to the data

- Work partitions are intelligently routed to the correct work with the data preloaded.

Dispatcher

Worker w/
A-M Data

Worker w/
N – Z Data

Large
Work Request

Records
A-M

Records
N-Z

A-M

N-Z

19© 2008 IBM Corporation

Proximity of Data - Options

System z

DB2 z/OS
z/OS

WAS

z/Linux WAS

T2

T4 w/SSL over hyper socket

Distributed OS

WAS

T4 w/SSL over network

Distributed OS

WAS

Cache + T4 w/SSL over network

WXS

1.

2.

3.

4.

1. WAS z/OS using optimized mem-to-mem JDBC Type-2 Driver

2. WAS z/Linux using JDBC Type-4 driver and SSL over optimized z network stack

3. WAS distributed (unix/linux/windows/etc) using JDBC Type-4 driver and SSL over

traditional network stack

4. WAS distributed coupled with WebSphere eXtreme Scale cache

If the data is on z/OS, the batch application should run on z/OS.

20© 2008 IBM Corporation

Divide and Conquer
highly parallel grid jobs

GEE GEE GEE

Controller

Servant Servant Servant

GEE GEE GEE

Controller

Servant Servant Servant

WSXD - CG WSXD - CG

System z

DB2

PJM

Large Grid Job

21© 2008 IBM Corporation

Data-aware Routing
partition data with intelligent workload routing

GEE

Job Scheduler

GEE GEE

Controller

Servant Servant Servant

GEE GEE GEE

Controller

Servant Servant Servant

WSXD - CG WSXD - CG

System z

Records A-M Records N-Z

A-D E-I J-M N-Q R-T W-Z

DB2 Data
Sharing Partition

DB2 Data
Sharing Partition

Records A-M Records N-Z

22© 2008 IBM Corporation

eXtreme Transaction Processing
coupling DB2 data partitioning and parallel processing

GEE GEE GEE

Controller

Servant Servant Servant

GEE GEE GEE

Controller

Servant Servant Servant

WSXD - CG WSXD - CG

System z

Records A-M Records N-Z

A-D E-I J-M N-Q R-T W-Z

DB2 Data
Sharing Partition

DB2 Data
Sharing Partition

Records A-M Records N-Z

PJM

Large Grid Job

23© 2008 IBM Corporation

Job

Scheduler

On-Demand

Router
Parallel Job

Manager

Parallel Job

Manager

Job

Scheduler

1

2

3

5

Bringing it all together
batch using CG, HPC and XTP on z/OS

WS - VE

WSXD - CG

DB2 Data
Sharing Partition

DB2 Data
Sharing Partition

CR

SR SR SR

Grid Endpoint

CR

SR SR

Grid Endpoint

CR

SR SR

Grid Endpoint

SR SR4

24© 2008 IBM Corporation

Batch Application Design

25© 2008 IBM Corporation

Components of an XD Compute Grid Application

Input

BDS

Step 1

Output

BDS

-Where does the data come from?

- How should the business

logic process a record?

- Where should the data be written to?

- How should the Step be:

- Check pointed?

- Results processed? Etc…

… Step N

Input

BDS
Input

BDS

Output

BDS
Output

BDS

Complete

Batch Job

Start

Batch Job

- Execute Step N if Step N-1 rc = 0

26© 2008 IBM Corporation

Input OutputBatch
Job Step

Fixed Block Dataset
Variable Block Dataset

JDBC
File

IBATIS
More to come…

Fixed Block Dataset
Variable Block Dataset
JDBC
JDBC w/ Batching
File
IBATIS
More to come….

How to think about batch jobs

-Customer implements pattern interfaces for input/output/step

-Pattern interfaces are very lightweight.

-They follow typical lifecycle activities:

-I/O patterns: initialize, map raw data to single record, map single record to raw data, close

-Step pattern: Initialize, process a single record, destroy.

Map Data
to Object

Transform
Object

Map Object
to Data

27© 2008 IBM Corporation

Compute Grid

Pojo-based App

End-to-end Development tooling

CG BDS
Framework

Eclipse-based

CG Batch Simulator

RAD-Friendly

CG Batch Unit Test

Environment

CG Batch Packager

Common

Deployment Process

Compute Grid

Infrastructure

-Customer develops
business service POJO’s

-Applications are

assembled via IOC

Container

-XD BDS Framework

acts as bridge between

job business logic and

XD Compute Grid

programming model

-XD Batch Simulator for

development

-XD Batch Unit test

environment for unit

testing

-XD batch packager for

.ear creation

Business

Services

Java IDE

Business Services

Testing Infrastructure

RAD-Friendly
Unit-testing

for OLTP

28© 2008 IBM Corporation

Application Design Considerations

• Strategy Pattern for well structured batch applications
– Use the BDS Framework!!!

– Think of batch jobs as a record-oriented Input-Process-Output task

– Strategy Pattern allows flexible Input, Process, and Output objects
(think “toolbox” of input BDS, process steps, and output BDS)

• Designing “services” shared across OLTP and Batch
– Cross-cutting Functions (Logging, Auditing, Authorization, etc)

– Data-injection approach, not Data-acquisition approach

– POJO-based “services”, not heavy-weight services

– Be aware of transaction scope for OLTP and Batch.
TxRequiresNew in OLTP + TXRequires in Batch => Deadlock Possible

• Designing the Data Access Layer (DAL)
– DAO Factory pattern to ensure options down the road

– Context-based DAL for OLTP & Batch in same JVM

– Configuration-based DAL for OLTP & Batch in different JVM’s

29© 2008 IBM Corporation

SwissRe Application Architecture for

Shared OLTP and Batch Services

OLTP

EJB

Exposed
Services

Exposed
Services

CG Batch
Application

Batch

Private
Services

Data Access Layer (DAL)

kernel

Transaction, Security
Demarcation

DB

Hibernate JDBC SQLJ

-J2EE and XD manage
Security, transactions

- Spring-based
application
Configuration

- Custom authorization
service within kernel
for business-level
rules

- Initial data access
using Hibernate.
Investigating JDBC,
SQLJ, etc

30© 2008 IBM Corporation

Batch Application Design

Input DS Processor

Validation 1 Validation 2

Validation… Validation N

Output DS

Input

Dom. Obj
Output

Dom. Obj

1. Batch Input Data Stream (Input DS) manages acquiring data and creating domain objects

2. Record processor applies business validations, transformations, and logic on the object

3. Batch Output Data Stream (Output DS) persists the output domain object

4. Processor and OutputDS are not dependent on Input method (file, db, etc)

5. Processor and OutputDS only operate on discrete business records

6. Customers can use favorite IOC container to assemble the Kernel, and use xJCL to wire

the batch flow (input -> process -> output) together.

Kernel

select account … from t1 insert balance into …

31© 2008 IBM Corporation

Input DS Processor

Validation… Validation N

Output DS

Input

Dom. Obj
Output

Dom. Obj

Kernel

select account … from t1
where acount > X and account < Y

insert balance into …

Multi-threaded
Validation

Cached
Validation

Compute Grid

Parallel Job Manager

X=000
Y=299

X=300
Y=699

X=700
Y=999

Job Instance 1

Job Instance 2

Job Instance 3

Batch Application Design - Performance

32© 2008 IBM Corporation

Shared Service Example -
“Data Injection” Pattern

agnostic to source and destination of the data

33© 2008 IBM Corporation

Execution Agnostic Application “Kernel”

34© 2008 IBM Corporation

Compute Grid (Batch) Wrapper to the Shared Service

35© 2008 IBM Corporation

OLTP Wrapper to the Shared Service
Data is injected into the shared service

36© 2008 IBM Corporation

OLTP Wrapper to the Shared Service

37© 2008 IBM Corporation

Conclusions

38© 2008 IBM Corporation

WebSphere XD Compute Grid Summary

• IBM WebSphere XD Compute Grid delivers a complete batch platform
– End-to-end Application Development tools

– Application Container with Batch QoS (checkpoint/restart/etc)

– Features for Parallel Processing, Job Management, Disaster Recovery, High Availability

– Scalable, secure runtime infrastructure that integrates with WebSphere Virtual Enterprise and WLM on z/OS

– Designed to integrate with existing batch assets (Tivoli Workload Scheduler, etc)

– Supports all platforms that run WebSphere, including z/OS.

– Experienced Services and Technical Sales resources available to bring the customer to production

• Is ready for “prime time”. Several customers in production on Distributed and z/OS today
1.Swiss Reinsurance, Public Reference, Production 4/2008 on z/OS

2.German Auto Insurer, Production 7/2008 on Distributed

3.Turkish Bank, Production on Distributed

4.Japanese Bank, Production on Distributed

5.Danish Bank, Pre-production on z/OS

6.Wall Street Bank (two different projects), Pre-production on Distributed

7.South African Bank, Pre-production on Distributed

8.Danish business partner selling a core-banking solution built on Compute Grid.

– > 20 customers currently evaluating the product (PoC, PoT)

–Numerous other customers in pre-production

•Vibrant Customer Community
–Customer conference held in Zurich in September, 2008. 6 customers and > 50 people attended

–User group established for sharing best practices and collecting product requirements

–Over 30,000 hits in the Compute Grid developers forum since January 22nd, 2008.

39© 2008 IBM Corporation

What’s next for Compute Grid?

1. ‘ilities: Continue to Harden Compute Grid.

• end-to-end HA, Scalability, Reliability

• Further improve consumability: simplify xJCL, more BDSFW Patterns

• Public and shared Infrastructure Verification Tests (IVT)

2. 24x7 Batch: Enterprise Workload Management.

• Job Pacing, Job Throttling, Dynamic Checkpoint Intervals

3. Operational Control and Integration: Collaborations across IBM

• High-performance WSGrid, TWS Integration

4. High Performance

• Parallel Job Manager improvements, Daemon Jobs for Real-time Processing,

Data pre-fetching BDSFW patterns

5. Ubiquity

• JEE Vendor Portability (Portable Batch Container)

• Multi-programming model support (Spring Batch, JZOS)

40© 2008 IBM Corporation

The Batch Vision

- Portable Batch applications across platforms and J2EE vendors

- Location of the data dictates the placement of the batch application

- Centrally managed by your enterprise scheduler

- Integrating with existing: Disaster Recovery, Auditing, Logging, Archiving

Enterprise Scheduler

Existing Business Processes

Common Batch Application Architecture and Runtime

App 1 App 2 App 3 App 4 …. App N

WAS DistrWAS CEJEE Server WAS z/OS

DB2 z/OSDB2 UDBWXSNon-DB2

41© 2008 IBM Corporation

References
• WebSphere Extended Deployment Compute Grid ideal for handling

mission-critical batch workloads
http://www.ibm.com/developerworks/websphere/techjournal/0804_antani/0804_antani.html

• Enterprise Java Batch with Compute Grid WebCast
http://www-306.ibm.com/software/os/systemz/telecon/nov15/

• WebSphere XD Technical Overview Podcast
http://www.ibm.com/developerworks/podcast/dysmf/dysmf-2007-ep5txt.html?ca=dwpodcastall

• Java Batch Programming with XD Compute Grid
http://www.ibm.com/developerworks/websphere/techjournal/0801_vignola/0801_vignola.html

• WebSphere Compute Grid Frequently Asked Questions
http://www-128.ibm.com/developerworks/forums/thread.jspa?threadID=228441&tstart=0

• CCR2 article on SwissRe and Compute Grid
coming in the November 2008 issue.

• Development Tooling Summary for XD Compute Grid
http://www.ibm.com/developerworks/forums/thread.jspa?threadID=190624

• Compute Grid Discussion forum
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1240

• Compute Grid Trial Download
http://www.ibm.com/developerworks/downloads/ws/wscg/learn.html?S_TACT=105AGX10&S_CMP=ART

• Compute Grid Wiki (product documentation)
http://www.ibm.com/developerworks/wikis/display/xdcomputegrid/Home?S_TACT=105AGX10&S_CMP=ART

42© 2008 IBM Corporation

Backup

43© 2008 IBM Corporation

WebSphere Compute Grid- Quick Summary

- Provide container-managed services such as checkpoint strategies, restart capabilities, and

threshold policies that govern the execution of batch jobs.

- Provides a parallel processing infrastructure for partitioning, dispatching, managing and

monitoring parallel batch jobs.

- Enables the standardization of batch processing across the enterprise; stamping out

homegrown, maverick batch infrastructures and integrating the control of the batch

infrastructure with existing enterprise schedulers, disaster recovery processes, archiving, and

auditing systems.

- Delivers a workload-managed batch processing platform, enabling 24x7 combined batch

and OLTP capabilities.

- Plain-old-Java-Object (POJO)-based application development with end-to-end development

tooling, libraries, and patterns for sharing business services across OLTP and batch execution

paradigms.

44© 2008 IBM Corporation

Competitive Differentiation

• Spring Batch
– Only delivers an application container (no runtime!)

– Spring Batch applications can not be workload-managed on z/OS

– Competes with the Batch Data Stream (BDS) Framework, which is part of Compute Grid’s FREE application
development tooling package.

– Lacks operational controls like start/stop/monitor/cancel/etc

– No parallel processing infrastructure

• Datasynapse, Gigaspaces, Gridgain:
– No batch-oriented container services like checkpoint/restart

– Does not support z/OS

• Java Batch System (JBS) and related technologies (Condor, Torque, etc)
– No batch-oriented container services like checkpoint/restart

– Not intended for concurrent Batch and OLTP executions

– Does not support z/OS

• Note: If the data is on z/OS, the batch application should run on z/OS

45© 2008 IBM Corporation

Development Tooling Story for

WebSphere XD Compute Grid

• 1. The Batch Datastream (BDS) Framework. This is a development toolkit that implements the Compute
Grid interfaces for accessing common input and output sources such as files, databases, and so on. The following
post goes into more details.

2. a Pojo-based application development model. As of XD 6.1, you only have to write Pojo-based
business logic. Tooling executed during the deployment process will generate the necessary Compute Grid
artifacts to run your application. The following developerworks article goes into more details: Intro to Batch
Programming with WebSphere XD Compute Grid

3. The Batch Simulator. A light-weight, non-J2EE batch runtime that exercises the Compute Grid
programming model. This runs in any standard Java development environment like Eclipse, and facilitates simpler
application development since you're only dealing with Pojo's and no middleware runtime. The Batch Simulator is
really for developing and testing your business logic. Once your business logic is sound, you would execute
function tests, system tests, and then deploy to production. You can download this from batch simulator download

4. The Batch Packager. This utility generates the necessary artifacts for deploying your Pojo-based business
logic into the Compute Grid runtime. The packager is a script that can be integrated into the deployment process
of your application. It can also be run independently of the WebSphere runtime, so you don't need any heavy-
weight installs in your development environment.

5. The Unit-test environment (UTE). The UTE package is described in the following post. The UTE runs
your batch application in a single WebSphere server that has the Compute Grid runtime installed. It's important to
function-test your applications in the UTE to ensure that it behaves as expected when transactions are applied.

46© 2008 IBM Corporation

XD Compute Grid makes it easy for developers to encapsulate input/output data

streams using POJOs that optionally support checkpoint/restart semantics.

The anatomy of an transactional batch application – batch data stream
Simple Programming Model …

Job Start

Batch

Container

open()

positionAtInitialCheckpoint()

externalizeCheckpoint()

close()

1

2

3

4

Job Restart

Batch

Container

open()

internalizeCheckpoint()

positionAtCurrentCheckpoint()

externalizeCheckpoint()

close()

1

2

3

5

4

47© 2008 IBM Corporation

WebSphere XD Compute Grid

BDS Framework Overview

• BDS Framework implements XD batch programming model for common use-cases:
– Accessing MVS Datasets, Databases, files, JDBC Batching

– Provides all of the restart logic specific to XD Batch programming model

• Customer’s focus on business logic by implementing light-weight pattern interfaces; doesn’t

need to learn or understand the details of the XD Batch programming model

• Enables XD Batch experts to implement best-practices patterns under the covers

• XD BDS Framework owned and maintained by IBM; will be reused across customer

implementations to provide stable integration point for business logic.

48© 2008 IBM Corporation

Batch Container

B
a
tc

h
D

a
ta

S
tre

a
m

 In
te

rfa
c
e

initialize(props)

open()

externalize
Checpoint()

internalize
Checkpoint()

close()

JobStepInterface

d
e

s
tro

y
J
o
b

S
te

p
()

p
ro

c
e
s
s
J
o
b
S

te
p()

c
re

a
te

J
o
b

S
te

p

s
e

tP
ro

p
e

rtie
s
()

Batch

Record

Processor
in

itia
liz

e
()

p
ro

c
e

s
s
R

e
c
o

rd
()

c
o

m
p

le
te

R
e

c
o

rd
()

F
ile

R
e

a
d
e
rP

a
tte

rn

initialize(props)

fetchRecord()

process
Header()

B
a
tc

h
D

a
ta

S
tre

a
m

 In
te

rfa
c
e

initialize(props)

open()

externalize
Checpoint()

internalize
Checkpoint()

close()

F
ile

W
rite

rP
a
tte

rn

initialize(props)

writeRecord()

write
Header()

B
y
te

R
e
a
d

e
rP

a
tte

rn
A

d
a
p
te

r

GenericXDBatchStep B
y
te

W
rite

rP
a
tte

rn
A

d
a

p
te

r

The BDS Framework

49© 2008 IBM Corporation

SwissRe Batch and Online Infrastructure

TWS

JES

JCL

WSGrid
JCL

CG z/OS
Grid Endpoint

CG z/OS
Grid Endpoint

CG Job
Scheduler

- Maintains close
proximity to the data for
performance

- Common:

-Security

-Archiving

-Auditing

-Disaster
recovery

WAS z/OS
OLTP

JES
Initiators

IHS

DB2 z/OS

OLTP

Batch

System Z with z/OS

50© 2008 IBM Corporation

Wall St. Bank
High Performance, Highly-Parallel Batch Jobs with XD Compute Grid and

eXtreme Scale on Distributed Platforms

DatabaseObject Grid

Chunk

Execution

Endpoint(s)

Init (Stream Input from File)

Validate/Entitle

Output Results

Long

Running

Scheduler

Select File/

Chunker/

Status

File on

Shared Store

Major Wall St. Bank uses the

Parallel Job Manager for highly

parallel XD Compute Grid jobs

with eXtreme Scale for high-

performance data access to

achieve a cutting edge grid

platform

Applying the Pattern at the bank

51© 2008 IBM Corporation

On-Demand Scalability
with WebSphere z/OS

GEE

Job Scheduler

GEE GEE

Controller

Servant Servant Servant

GEE GEE GEE

Controller

Servant Servant Servant

WS – XD CG

DB2 on z/OS

System z

zWLM zWLM

WS – XD CG

52© 2008 IBM Corporation

wsgri� d Job

Scheduler

Grid

Endpoint

jzos

db21 2
3Job

Scheduler

Grid

Endpoint
Grid

Endpoint
Grid

Endpoint

4 5

End-to-end:

6. Monitoring

7. Security

8. Workload Management

9. Disaster Recovery

10. Life-cycle (application, xJCL, etc)

1. WSGrid to Job Scheduler

2. Job Scheduler to Grid Endpoint

3. Grid Endpoint to resources (DB2, JZOS)

4. Job Scheduler High Availability

5. Grid Endpoint High Availability

53© 2008 IBM Corporation

End-to-end Failure Scenarios

1. GEE servant fails (z/OS)

A:

- Job status is restartable.
- wsgrid ends with non-zero return code
- rc should be 0, 4, 8, 12, 16

B:
- WLM starts a new servant
- servant failure is transparent to WSGrid

- Job restarted transparently on available servant.

2. GEE CR fails (z/OS, but synonymous to Server failure on Distributed)

- Job is in restartable state

- WSGrid receives non-zero return code.

54© 2008 IBM Corporation

End-to-end Failure Scenarios

3. Job Scheduler SR fails (z/OS)

A: Jobs in execution (dispatched from this Scheduler)

- WSGrid continues running
- Job continues to run.
- Failure is scheduling tier is transparent to job execution.

B: New jobs being scheduled
- New SR starts, business as usual.
- SR fails to start, job should be available for other scheduler to manage.
- if any Job Scheduler SR is available in the system, the job must be scheduled! Failure should

be transparent to the job submitter.

4. Job Scheduler CR fails (z/OS, but synonymous to Server failure on Distributed)

- WSGrid and Job continue to run. Any failure in scheduler tier is transparent to job and user. (goal)

- Interim: WSGrid fails with non-zero RC; job managed by this JS should be canceled

55© 2008 IBM Corporation

End-to-end Failover Scenarios

5. Scheduler Messaging Engine (Adjunct) fails (z/OS)

- Jobs managed by this JS are canceled. WSGrid fails with non-zero RC.

- Note: use of messaging engine (SIB generally) is just an interim solution. Shared queues, etc needed.

6. WSGrid is terminated

- Job is canceled

7. Quiesce the LPAR/Node (for rolling IPL and system maintenance)

1. No new work should be scheduled to JS on that node. Work should be routed to other JS

2. no new work should be submitted to GEE on that node. Work should be routed to other GEE's
3. After X time interval (3.5 hours in SwissRe's case), jobs running in that GEE should be stopped.
4. After Y time interval (4 hours in SwissRe's case), where x < y, jobs still running in the GEE

should be canceled.
5. WSGrid gets non-zero RC for steps 3 and 4.

© 2008 IBM Corporation

Execution Environment – z/OS WLM Integration

• WAS uses WLM to control the number of Servant Regions

• Control Regions are MVS started task

• Servant Regions are started automatically by WLM an a as-needed basis

• WLM queues the user work from the Controller to the Servant region according to service
class

• WLM queuing places user requests in a servant based on same service class

• WLM ensures that all user requests in a given servant has been assigned to the same service
class

• A Servant running no work can run work assigned to any service class

• WLM and WAS Worker thread : WLM dispatch work as long as it has worker threads

• Behavior of WAS Worker Threads (ORB workload profile)

– ISOLATE : number of threads is 1. Servants are restricted to a single application thread

– IOBOUND : number of threads is 3 * Number of CPUs)

– CPUBOUND : number of threads is the Number of CPUs)

– LONGWAIT : number of threads is 40

• XD service policies contain one or more transaction class definition

• XD service policies create the goal, while the job transaction class connects the job to the goal

• XD service policy transaction class is propagated to the Compute Grid Execution Environment

• Transaction class is assigned to a job during by the Scheduler during dispatch/classification
phase

• When a job dispatch reaches GEE the Tclass is extracted from the HTTP request

• Tclass is mapped to WLM service class. An enclave is created.

• XD Service policies are not automatically defined in the z/OS WLM.

© 2008 IBM Corporation

Execution Environment – z/OS Security Considerations

• Compute Grid runs jobs under server credential by default

• In order to run jobs under user credential:

– WAS security must be enabled

– Application security must be enabled

– WebSphere variable RUN_JOBS_UNDER_USER_CREDENTIAL must be set

to “true”

– Enable z/OS thread identity synchronization

– Enable RunAs thread identity

© 2008 IBM Corporation

• SMF accounting records for J2EE batch jobs

– SMF 120 (J2EE) records tailored to jobs

– Record includes: job id, user, accounting string, CPU time

• Dynamic Servants for J2EE batch job dispatch

– XD v6.1.0.0 uses pre-started servants (min=max, round-robin
dispatch)

– XD v6.1.0.1 New support will exploit WLM to start new servants
to execute J2EE batch jobs on demand

• Service policy classification and delegation

– Leverages XD job classification to select z/OS service class by
propagating transaction class from Job Entry Server to z/OS
app server for job registration with WLM

Compute Grid – z/OS Integration Summary

© 2008 IBM Corporation

Compute Grid – Job Management Console

• Web Interface to Scheduler
� Hosted in same server (cluster) that hosts scheduler function
� Replaces job management function formerly found in admin

console

• Essential job management functions
� job submission
� job operations

� cancel, stop
� suspend, resume
� restart, purge

� job repository management
� save, delete job definitions

� job schedule management
� create, delete job schedules

• Basic Security Model
� userid/password login
� lrsubmitter, lrAdmin roles

© 2008 IBM Corporation

Compute Grid – Jog Management Console

61© 2008 IBM Corporation

Infrastructure Design Considerations

• High Availability practices
– Job Scheduler can be made highly available (as of 6.1)

– Cluster GEE’s

• Disaster Recovery practices
– Today, Active/Inactive approach

– Tomorrow, Active/Active approach

• Security
– Job Submitter and Compute Grid Admin roles

– Options for using Job Submitter identity or Server’s identity
(Performance degradation today!)

• Connecting Compute Grid to the Enterprise Scheduler
– JMS Client connector bridges enterprise scheduler to Job Scheduler

– JMS best practices for securing, tuning, etc apply

62© 2008 IBM Corporation

High Availability

63© 2008 IBM Corporation

Topology Questions…

• First, is the Parallel Job Manager (PJM) needed, will you run highly-
parallel jobs?

• What are the high availability requirements for the JS, PJM, and GEE?
– Five 9’s? Continuous?

• What are the scalability requirements for the JS, PJM, GEE?
– Workloads are predictable and system resources are static?

– Workloads can fluctuate and system resources are needed on-demand?

• What are the performance requirements for the batch jobs themselves?
– They must complete within some constrained time window?

• What will the workload be on the system?
– How many concurrent jobs? How many highly-parallel jobs? Submission rate of jobs?

64© 2008 IBM Corporation

Topology Considerations…

• If the Job Scheduler (JS) does not have system resources available when

under load, managing jobs, monitoring jobs, and using the JMC will be

impacted.

• If the PJM does not have system resources available when under load,
managing highly parallel jobs and monitoring the job partitions will be

impacted.

• If the GEE does not have system resources available when under load, the

execution time of the business logic will be impacted.

• The most available and scalable production environment will have:
– Redundant JS. JS clustered across two datacenters.

– Redundant PJM. PJM clustered across two datacenters.

– n GEE’s, where n is f(workload goals). Clustered across two datacenters

65© 2008 IBM Corporation

Cost Considerations…

• GEE will most likely require the most CPU resources. The total number of

CPU’s needed is dependent on:
• the workload goals

• max number of concurrent jobs in the system.

• PJM will require fewer CPU’s than the GEE. The total number of CPU’s

needed is dependent on:
• Rate at which highly-parallel jobs are submitted

• Max number of concurrent parallel partitions running in the system.

• Job Scheduler will require fewer CPU resources than the GEE, and perhaps

the PJM too. The total number of CPU’s needed is dependent on:
• Rate at which jobs will be submitted

• Max number of concurrent jobs in the system

66© 2008 IBM Corporation

Example Production Topology-
Highly Available/Scalable Compute Grid

GEE

JVM

LPAR

JS

JVM

CPU

LPAR

Frame 1

CPU CPU

PJM

LPAR

CPU CPU

GEE

JVM

LPAR

JS

CPU

LPAR

Frame 2

CPU CPU

PJM

LPAR

CPU CPU

DB

Load Balancer

JVM

JVMJVM

67© 2008 IBM Corporation

GEE

JVM

LPAR

Frame 1

CPU CPU

PJM

JVM

LPAR

CPU CPU

GEE

JVM

LPAR

Frame 2

CPU CPU

DB

Load Balancer

JS

PJM

JVM

LPAR

CPU CPU

JS

Pro: Faster interaction between JS and PJM due to co-location and ejb-local-home optimizations

Con: Possibility of starving JS or PJM due to workload fluctuations

Example Production Topology-
Co-locate the Job Scheduler and PJM

68© 2008 IBM Corporation

Frame 1 Frame 2

DB

Load Balancer

PJM

JVM

LPAR

JS

Con: Possibility of starving JS, PJM, and GEE due to workload fluctuations

Con: Not scalable

Example Production Topology-
Co-locate the Job Scheduler, PJM, and GEE

GEE

CPU CPU

PJM

JVM

LPAR

JS

GEE

CPU CPU

69© 2008 IBM Corporation

High Availability –

Summary & Key Considerations

• Clustered Job Scheduler
– Configure Job Schedulers on clusters

– Multiple active Job Schedulers (since XD 6.1)

– Jobs can be managed by any scheduler in your cluster

• Clustered Endpoints
– Batch applications hosted on clusters

• Network Database

• Shared File System

70© 2008 IBM Corporation

Disaster Recovery

71© 2008 IBM Corporation

Disaster Recovery

• DR Topology
– Build separate cells for geographically dispersed sites

– Limit Compute Grid scheduling domains to endpoints within a cell

– Use Active/Inactive DR domains

• Jobs cannot be processed on primary and back domains simultaneously

– Active/Active DR Topology is through a pair of Active/Inactive DR domains

• Host backup (inactive) domain on a remote site

• DR Activation Process
– Use CG provided DR scripts to prepare the inactive domain for takeover

– Complete takeover by activating the inactive domain

72© 2008 IBM Corporation

Active/Active Multi-site Disaster Recovery

Topology

LRS

PJM PJM

GEE GEE

CG Domain A1

LRS

PJM PJM

GEE GEE

CG Domain A2

LRS

PJM PJM

GEE GEE

CG Domain B2

LRS

PJM PJM

GEE GEE

CG Domain B1

Database D1

failover failover
Site1 Site2

Database D2

73© 2008 IBM Corporation

© IBM Corporation 2008. All Rights Reserved.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided for

informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any participant.

While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is provided AS IS without

warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this

presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the effect of, creating any warranties or

representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of

IBM software.

References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.

Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market

opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in

these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales,

revenue growth or other results.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or

performance that any user will experience will vary depending upon many factors, including considerations such as the amount of

multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance

can be given that an individual user will achieve results similar to those stated here.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have

achieved. Actual environmental costs and performance characteristics may vary by customer.

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of

IBM trademarks, see www.ibm.com/legal/copytrade.shtml

AIX, CICS, CICSPlex, DB2, DB2 Universal Database, i5/OS, IBM, the IBM logo, IMS, iSeries, Lotus, MQSeries, OMEGAMON, OS/390, Parallel Sysplex,

pureXML, Rational, RACF, Redbooks, Sametime, Smart SOA, System i, System i5, System z , Tivoli, WebSphere, zSeries and z/OS.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

