

IBM Software Group

Best Practices for IMS Database Reorganization

Janet LeBlanc IBM Corporation

@business on demand software

© 2008 IBM Corporation

Best Practices for IMS Database Reorganization

Janet LeBlanc

IBM Corporation leblancj@ca.ibm.com

Agenda

- Why Reorganization?
- Performance
- Reorganization Criteria
- Reducing Reorganization Frequency

Reorganization Performance Opportunities

Are Reorganizations a Luxury or a Necessity?

- Andrew

What is the purpose of Reorganizations

• What is it?

Process of changing the physical storage and/or structure of a database to better achieve the application's performance requirements

Two types of Reorganization

- Physical Reorganization
 - Optimize the physical storage of the database
- Re-structure Reorganization
 - Alter the structure of the database

Reasons for Physical Reorganization

- To reclaim and consolidate free space that has become fragmented due to repeated insertion and deletion of segments.
- To optimize the physical storage of the database segments for maximum performance
 - get dependent segments that are in distant blocks, increasing physical I/O, back in the same block as the parent and/or root).
 - this situation is normally the result of high update activity on the database

What stops us from doing Reorganizations??

- Perceived Costs
 - People time
 - Computer costs
- No one is complaining about performance so reorganization must not be needed
- Availability
 - 24 X 7 no time to do it

But what is the REAL Reason for Reorganization??

APPLICATION PERFORMANCE!!!

Performance

Definition - A performance problem is generally noted as bad or erratic response times or an unacceptable amount of resource usage

What causes us to investigate Performance

- Service level objectives not being met
- Users complaining about slow response
- Unexpected changes in response times or resource utilizations
- z/OS operating system showing signs of stress
- The throughput on the system is erratic
- Changes in workload which were not anticipated
- Changes in the profile of transactions

How to justify

- Where are my performance opportunities
 - What is the potential improvement
 - CPU time
 - Elapsed time
 - EXCPs
 - Processes not needed
- Track before/after statistics to prove value of reorganization and performance tuning
- Proof of Concept of reorganization to justify time and expense

Application Performance

Performance Preliminaries ...Defining a Service Level Agreement

- Performance objectives must be defined as part of an service level agreement (SLA) with the relevant business unit.
- The SLA must define the following:
 - Acceptable response times to the business
 - Expected current volumes of transactions
 - Growth strategy and anticipated future volumes
 - Details of transactions and their usage
 - Application availability

Performance Preliminaries ...Defining Transaction Profiles

- A transaction profile typically covers the following:
 - Host response times:
 - Input queue time measurement
 - Total elapsed time measurement
 - The CPU time required to process the transaction
 - The number of database (DL/I and SQL) calls performed by the transaction
 - The type of database calls performed:
 - By database or table listing each database or table and the type of call
 - Number of I/Os required to perform this transaction

Performance Preliminaries ...Tracking and Trending

- Track and Trend Workload
- Understand Future Capacity Requirements
 - Capacity Planning
- Full-Time Performance Expert

What do I need?

- Application Details
- Baseline Statistics & Historical Statistics
 - Baseline can be different things depending on what you are trying to do
 - Peak load
 - Quiet times
 - Above just after a database reorg
 - Before/After Performance Tuning
- Current Statistics
- Database Definition

Performance Reporting

- Daily monitoring
 - Transit response time reports
 - Management exception report
- Performance problem? Look into the details!
 - Bad response time? Transit reports
 - IMS resource constraint? Resource Utilization reports
- Long-term capacity planning and service levels
 - Transaction History File daily transaction performance
 - Load into DB2 to build a Performance Database
 - Report on host or workstation using your favorite SQL reporting tool

IMS V10 - The 56FA log record

- One record per transaction rather than per schedule (type 07)
- Additional information including:
 - OSAM and VSAM read and write counts
 - Database IO counts and elapsed times
 - Database lock elapsed times
 - External subsystem call counts
 - UOR elapsed and CPU times

Summary report – transaction activity statistically summarized

			1	MS Perio	rmance Anal Transact:	yzer ion Transit	: Summary
		t 15:16:04 07Feb2007		9 07Feb2(007		
	Tran	Avg InputQ	Avg Process	Avg CPU	Avg Total IO	Avg DB IO	Avg DB Lock
Trancode	Count	Time	Time	Time	Count	Time	Time
IVTNO	52	521.346	295.452	1.158	0	2.056	0.000
TATINO	20	254.697	685.690	1.555	237	217.394	0.000
IVINO	36	234.077					

V10 allows
microsecond
precision

Count Count Count Count Count 0 0 0 0 6 0 0 3 234 8 0 0 0 4 7	Avg OSAMRead Count 0 0 0	Avg OSAMWrit Count 0 0 0	Avg VSAMRead Count 0 3 0		Avg ESAFcall Count 6 8 7	
---	---	---	---	--	---	--

IBM Software Group | DB Information Management Software Form-based reporting

- > Summarize transaction activity based on any criteria, for example Region Type
- > Statistical functions include average and peak percentile (to measure SLA adherence)

-	ummarizati y Region T				T	ransactio	n Das	hboard					
DASH	/ Pri	inted a	t 14:34:	54 05May2	2006	Data fi	rom 10	5.03.39	29Dec20	05 to 16	.17.33	29Dec200	5
		Transi	t time break	down (averaç	jes)					Transit time breakdown (90% SLA)			
	▶	Avg	Avg	Avg	Avg	Avg	Avg	90 %	90 %	90 %	90%	90 %	90 %
Reg	Tran	InputQ	Process	OutputQ	Total	IMS Resp	CPU	InputQ	Process	OutputQ	Total	IMS Resp	CPU
Тур	Count	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time
BMP	287	200	409	0	607	0	0	819	1282	0	1543	0	0
DBC	1	0	5	0	5	0	0	0	5	0	5	0	0
MPP	47017	118	63	8	189	183	18	3550	982	26	3827	3908	227
MSC	204	0	97	14	111	111	Q	0	267	35	280	280	0
	Transae	ction for the day	v			[CPU tin	ne					

Design a report to meet your needs

Database Performance

Database IWAIT Analysis

Report	from QU	8Jun2996	13.06.12.71	L	IMS 8.1.0 <u>D</u>	IMS F latabase Di		ce Analyzer <u>ysts</u>	4.1	Report to 08Jun2006 13.10.39.26
Region T	otals	Fro	n 08Jun2006 Elap/IMAIT		1.86 To 98Ju Max IMAIT	n2006 13. Calls	09.52.04 IMAITs	Elapsed= Pct Tot	0 Hrs	4 Mins 26.545.110 Secs Pet Tot Pet Tot Pet Tot Pet Tot
DDname	Туре	IMAITs	Sc.Mil.Mic			Waiting	/Ca11	Calls		IWAITS INTELP DLAELP
DB23AR9	DÉDB	5	3.517	.787	5.827	Š	1.99	. 68%		3.82% 4.955% .059%
DB23AR1	DEDB	12	4.263	1.382	12.751	9	1.33	1.23		9.16% 14.414% .172%
DB23AR2	DEDB	34	0.631	3.471	9.482	34	1.99	4.64%		25.95% 6.042% .072%
DB23AR3	DEDB	16	1.652	2.507	12.726	16	1.99	2.19%		12.21% 7.449% .089%
DB23AR4	DEDB	3	19.386	.781	19.950	3	1.00	. 41%		2.29% 8.779% .105%
DB23AR5	DEDB	31	2.635	1.754	11.386	21	1.48	2.87%		23.66% 23.016% .275%
DD91AR9	DEDB	28	3.958	1.230	14.039	21	1.33	2.87%		21. 37 % 31. 231 % . 373 %
DIMS01D1	YSAN	1	14.541	. 888	14.541	1	1.69	.148		.76% 4.697% .649%
SHMSG	QUE	1	0.055	.000	0.055	1	1.00	. 145		.76% .015% .099%
**Grand*	*Tot	131	2.709	1.761	19.950	111	1.18	15.16%		100.00% 100.00% 1.194%
DEDB	•Grp	129	2.638	1.776	19.950	109	1.18	14.89%		98.47% 95.887% 1.144%
VSAM	*Grp	1	14.541	.000	14.541	1	1.99	. 14%		.76% 4.097% .049%

1

End 14Jun2006 10.16.09.09 PAGE

Database Update Activity

Start 14Jun2006 10.15.00.00

24

IMS Performance Analyzer Data Base Update Activity-IMSM

Database	DDname			Update Cou		DB Open	••••First	Updat errer	•••••Last	Update****
		Updated Ins	erts Del	letes Rep	aces	Calls	Date	Time	Dat e	Tine
DATTENT		2	8	8	θ	9	14Jun2006	10.15.03.90	14Jun2006	10.15.39.40
DBURAUX	DBURAUX	0	9	6	0	9				
DCOMPTE		2	2	0	5	9	14Jun2006	10.15.03.90	14Jun2006	10.15.19.80
		2	4	6	0	9	14Jun2996	10.15.03.90	14Jun2006	10.15.19.80
DECNTXT		32	64	0	17	9	14Jun2006	10.15.00.50	14Jun2006	10.15.56.90
DHISTOR		1	5	0	0	9	14Jun2006	10.15.03.70	14Jun2006	10.15.03.70
		1	1	0	9	9	14Jun2006	10.15.03.70	14Jun2006	10.15.03.70
DIDXATT		23	9	2	9	9	14Jun2006	10.15.03.90	14Jun2006	10, 15, 39, 40
DIDX CON		17	1	1	0	9	14Jun2006	10.15.03.70	14Jun2006	10.15.03.70
DIDXNOM		17	9	0	2	9	14Jun2006	10.15.39.40	14Jun2006	10.15.39.40
DMATQSD	DMATQSD	0	9	0	0	9				
DMATQSI	DMATQSI	9	0	8	0	9				
DMEMOIR		61	82	ê	14	ê	14Jun2006	10.15.01.20	14Jun2006	10.15.59.70
DRECRSS	DRECRSS	0	9	0	0	9				
DRPETAT	DRPETAT	0	9	0	0	9				
	DRPETAT2	9	ē	8	0	9				
DRPJOB	DRPJOB	0	ê	ê	ē	ê				
	DRPJOB2	9	ē	ē	ē	ē				
DSAISIE		43	3	ê	ĩ	Â	14.Jun2666	10.15.67.40	14.Jun2666	10.15.39.70
DSOCIET		7	3	2	21	Â		18.15.63.76		
The second for the life it		1	ĩ	ē	- ê	ě		10.15.03.70		
DSOCTXT		2	â	õ	õ	ě		10.15.39.10		
DSTBUR		2?	ī	ĕ	ĭ	ů ů		10.15.02.90		
			-	~	-	Ň	and a second time for both the		the formation of the best of the	
Total		121	171	13	61	θ				

Database Updates by Program

Start 12Ju12006 05.47.12.73						ormance Ana pdate Activ		End 12Ju12006 11.02.17.78 Page 1			
Database	Program	DOnane		•• Genera Inserts	ted Update Deletes	Counts ** Replaces	DB Open Calls	••••Firs Date	t Update**** Tine		Update**** Tine
QDBINDXD	KDSCPDD	QDBINDXD	9	0	9	. 0	1				
QDB1NDXX	KDSCPDD	QDB INDXX	8	0	9	9	1				
QDINDEXD	KDSCPDD	QDINDEXD	9	0	9	0	1				
QDINDEXX	KDSCPDD	QDINDEXX	8	8	9	0	1				
QESUEOKD	KDSCPDD	QESUEOKD	8	8	9	0	1				
QGJIGTXD	KDSCPHH	QGJ I GTX D	48	141	21	0	1	12Ju1200	6 68.55.19.68	\$ 12Ju12096	10.57.59.93
QGJ1GTXX	KDSCPHH	QGJ I GTXX	697	48	21	0	1	12Ju1200	6 08.55.19.68	5 12Ju12696	10.57.59.93
QGKAITRD	KDSCPFF		136	37.2	9	8	0	12Ju1200	6 09.03.20.45	i 12Ju12006	10.48.54.86
	KDSCPHH	QGKAITRD	33	84	0	0	1	12Ju1200	6 08.55.17.91	12Ju12006	10.57.59.93
QGKAITRX	KDSCPFF		128?	134	9	0	0	12Ju1200	6 09.03.20.45	i 12Ju12006	10.48.54.86
	KDSCPHH	QSKATTRX	29?	29	9	0	1	12Ju1200	6 08.55.17.91	12Ju12006	10.57.59.93
QGKAKEID	KDSCPFF		4	8	9	1	0	12Ju1200	6 09.44.36.75	i 12Ju12006	10.28.38.72
	KDSCPHH	QGKAKEID	28	0	0	28	1	12Ju1200	6 08.55.17.91	12Ju12006	10.57.59.93

When to Reorganize

Classic Reasons:

- 1. Extents
- 2. Freespace Statistics
- 3. CI/CA Splits
- 4. HDAM % of roots in home block.
- But does that tell the true story:
 - Is the area of the database that is "out of order" accessed by applications?
 - Is it affecting application performance?
 - Gather stats post-reorg so you can tell if a reorg did make a difference
 - Application performance deteriorating
 - Too many physical I/Os to DASD
 - Check buffers TOO!

IMS HP Pointer Checker

orporation

Space Exception Reporting

IMS HIGH PERFORMANCE POINTER CHECKER FOR Z/OS - SPMN 5655-K53						SPMN	"SPACE MONITOR EXCEPTION REPORT" PAGE: DATE: 97/11/2996 TINE: 15.49.18 FABKSPMN - V2.R						PAGE: 1 SPMIN - V2.R2		
	NAME :		-												
TYP	PRI DATASET	SEC EXT I SIZE	AEXT %SZ		OC %FS	P &MRUS	TOTBLK	BLKSZ	LRECL	MXSEG	ACTHK	ROOTS	CASP UNIT TOTALSEG VO	LSER EXT	ALLOC RUSE
HISAMD	81	HISAND	S1	TESTDS.	PUBLIC	SANPLE.	.HISAMOS1			HIS	SAN KS-U	θ	0 3390-3 584 SY	97/96/2996	87/18/2886
	73 NORE TH			5 *****											
HISAMD Cyl	B1 50	HISAND 20 1)52 118	TESTDS.	PUBLIC 50 6	. Sanple. B* N/A*	HISAMOS2. 1419	8192	512	HI: N/A	SAM ES-U N/A	N/A 9	N/A 3390-3 106017 SY	07/06/2006≭ S004 1	07/10/2006≭ 50 32
** ***		24,448 DPC RUN		THAN O	DAYS	* * * * *									
CYL	50	50 1	118	TESTDS. θ% *	59 43	77	.TPFOH1.A9	0001 512	505	РНІ 246	DAM ES-U 246	N/A 11000	N/A 3390-3 80037 SY	07/06/2006 5004 1	07/10/2006 50 54
** ***	DATASET	HANI 50 FSIZE 4	% FRE	E SPACE 2 Exceed 5 1 M	S G	k *****									
TPFOH2 Cyl	50	TPF0H2 50 1	AA 118	TESTDS.	PUBLIC 50 8	SAMPLE. 97	. TPFOH2.A9 4419	0091 512	505	PHII 122	DAN ES-U 122	N/A 9000	N/A 3390-3 18178 SY	07/06/2006 502D 1	07/10/2006 50 12
	2,25 LAST RE				NORE	THAN 2	2 DAYS BEF	ORE *	****						
TPFOX 1 CYL	10	TPF0X1 10 1	AA 118	TESTDS.	PUBLIC 10 8	. Sanple. 7 N/A	. TPFOX 1.49 1479	0091 512	54	PS1/ N/A	NDX KS-U N/A	9 N/A	0 3390-3 9178 SY	07/06/2006 S02F 1	97/19/2996 19 20
*****	75 CA SPLI CI SPLI	ITŜ &	0 EXC	EEDS 0	थ , T थ , T	DTAL CA DTAL CI	# # 14	2 ** 70 **	***						

% Roots in Home Block

IMS HIGH PERFORMANCE POINTER CHECKER FOR z/OS - DBHDA 5655-K53

"HD ANALYSIS REPORT" DATE: 07/10/2006 TIME: 17.37.25 PAGE: 2 FABGHIST - V2.R2

PREVIOUS DATA

SPECIFIED DATA

		DATE: 07/1	0/2006	DATE:	NONE
HD TUNING STATISTICS		TIME: 17			
		(CREATED BY:	HDPC)	(CREA TED	BY: MONE)
DIRECT ALGORITHM NAME	-		SHDC40		
EXHALST REALERT TH SALVE RET	-		246		
HIGH BLOCK NUMBER IN RAA			4500		
RAPS PER BLOCK			1		
TOTAL RAPS	-		4500		
	-		N/A		
AVG. DATABASE RECORD LENGTH			793		
FREE SPACE SCAN CYLINDERS			8		
FSPC BLK. EVERY N BLKS			8		
% FSPC WITHIN EACH BLK			8		
NO. KEY RECORDS WRITTEN			9		
ROOTS IN HOME BLOCK	_	2003	97 L		
NOTE IN HOME DEDGE		2991			
	-	35 1244			
ROOTS IN OVERELOW	-	1244			
RUUIS IN OVERFLOW	-	0730	01 5		
BLOCKS WITHOUT ROOTS IN RAA		1436	31.4		
AVG. COUNT OF ROOTS PER ACT. BLK IN RAA		2400	1.3		
AVG. COUNT OF ROOTS PER ACTIVE RAP	-		2.6		
COUNT OF RAPS NOT USED		410			
		-74 W			

When should you reorganize

- 1. Database performance has deteriorated.
- 2. There are too many physical I/Os to DASD.
- 3. The database structure has changed.
 - For example, you should reorganize a HALDB partition after changing its boundaries or high key.
 - The (P)HDAM randomizer has changed.
 - The HALDB Partitions Selection exit routine has changed.
- 4. When the OSAM or VSAM data set goes into extents.
- 5. When the data portion of a VSAM data set High-Used RBA keeps increasing.
- 6. When the index portion of a VSAM data set keeps having CI and CA splits.
- 7. When you start to run out of free space in the database.
- 8. When roots start not to randomize to the home block in a (P)HDAM database, and start to go to the beyond area or to overflow

Reorganizations

Reorganization Process

- Use of Standard IMS Utilities
- Other Options
 - Faster utilities
 - Read-Only Reorg
 - High Availability Reorgs
 - Zero Outage Reorgs
 - Conversion Reorgs moving to HALDB

Reducing Frequency of Reorgs

Know your applications

- ----

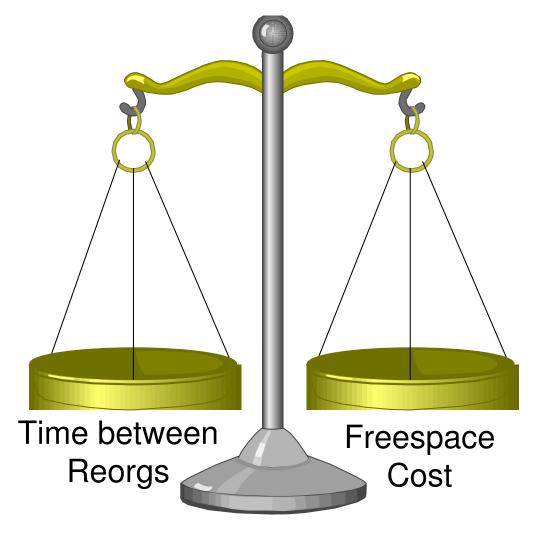
Growth Pattern

- What is the key based on?
 - Customer account number?
 - State
 - Date
- Growth
 - Random
 - At the end?

What else?

- Regular transactions
 - Types of updates
 - Inserts?
 - Updates
 - Delete
 - Regular archival process?
- Where are the updates
 - Which segments
 - One segment growth?
- Regular Cyclic activity
 - Massive insert
 - Massive delete

Read Pattern

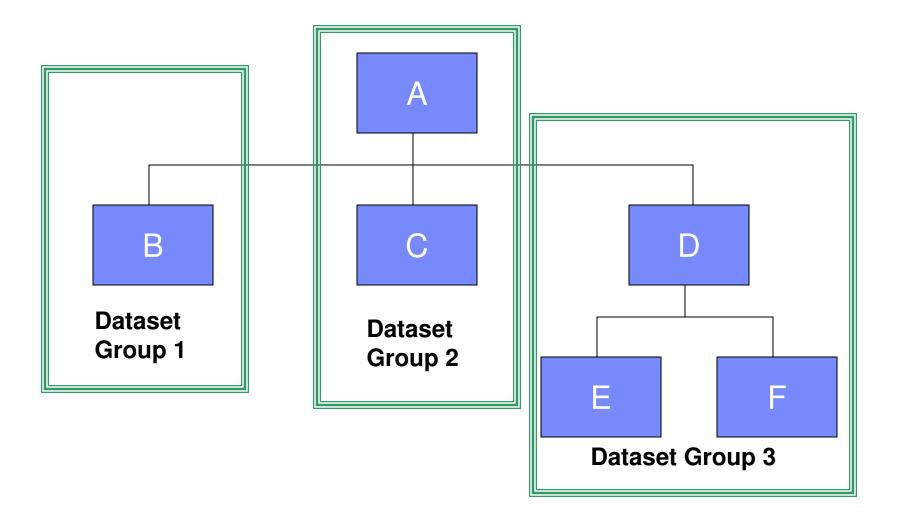

- Random
- Sequential
- Individual Segments
- Large Sequential areas or entire database

- Most frequent transactions
- Most critical transactions

AS.

Freespace Percentages

IBM


Growth Patterns & Freespace

- No additions:
 - No need for FREESPACE.
- Few additions:
 - ▶ No FREESPACE or some FREESPACE in the CI.
- Evenly distributed additions:
 - FREESPACE in the CA or FREESPACE in both CI and CA.
- Unevenly distributed additions:
 - > Specify a small amount of FREESPACE.
- Additions all at the end
 - No FREESPACE EXTRA SPACE INSTEAD

Reduce number of reorgs by getting this right

Multiple Dataset Groups

Reorganization Performance Opportunities

© 2008 IBM Corporation

Database Performance

- Access Methods
- Block sizes, CI sizes and Record sizes
- Free Space
- Randomization Parameters
- Fixed Length vs. Variable Length
- Pointer Options
- SCAN parameter on the DATASET statement
- Multiple data set groups
- Compression
- Encryption
- Secondary Indexes
- Fast Path considerations
- Non-Recoverable databases
- OSAM vs. VSAM
- Buffer Life Concept

Database Access Methods – performance

To choose an IMS access method:

- What type of processing is done (Choices are shown in preferred order)?
 - Direct: Use DEDB, HDAM, HIDAM, or HISAM.
 - Sequential: Use DEDB (Seq Rand), HDAM (Seq Rand), HIDAM, or HISAM.
 - Both: Use DEDB (Seq Rand), HDAM (Seq RAND), or HIDAM.
- Is the data volatile? Yes, use DEDB, HDAM, or HIDAM.
- Do the database records vary in length? Yes, use DEDB, HDAM, or HIDAM.
- Are logical relationships needed? Yes, use HDAM or HIDAM.
- Are secondary indexes needed? Yes, use HDAM or HIDAM.
- Is there a need for a journaling capability? Yes, use DEDB.

Note: Wherever HDAM or HIDAM is shown, partitioning (HALDB) is preferred. Seq Rand means using a Randomizer that maintains the key sequence.

Block or CI Size

Larger CIs or blocks:

- Improve sequential processing.
- Reduce the number of IWAITS.
- Increase IWAIT time per IWAIT.
- Decrease total IWAIT time.

Smaller CIs or blocks might:

- Improve random processing.
- Increase number of IWAITS.
- Reduce IWAIT time per IWAIT.

IMS Performance Analyzer

Pointer TidBits

- Use child and twin pointers instead of hierarchic pointers.
- Do not specify twin backward pointers for dependent segments unless you satisfy the criteria for deletes with logical relationships.
- Never specify twin forward only pointers for HIDAM roots.
- Never specify twin forward and backward pointers for HDAM roots.
- Specify no twin pointers for HIDAM and PHIDAM roots.
- If you specify RULES=(,LAST) or use last as the default for segments without sequence fields, you should define a physical child last pointer from the parent if there might be a long twin chain.

Compression Tidbits

The considerations are:

- Improves DASD space utilization (more data in block)
- Improves buffer space utilization
- Might reduce I/O
- Increases CPU time unless you are using Hardware Data Compression

IMS HP Pointer Checker IMS Hardware Compression Ext

Database – OSAM vs VSAM

- Tests were run in a controlled environment in the Silicon Valley Laboratory using 10 HIDAM databases.
- The first set of tests were run with the databases defined with VSAM, and then a second set of tests were run with OSAM using the same workload that was used in the first test.
- Set one
 - three BMPs each executing 2 000 000 total database calls.
 - There were 10 qualified GHU calls performed along with 1 000 000 qualified GHN calls and 1 000 000 replace calls.
- Set two
 - four BMPs each executing 4 500 000 total database calls.
 - There was one qualified GHU call performed along with 1 000 qualified GHN calls, 1 000 replace calls, and 4 000 000 GN calls

Database – OSAM vs VSAM

Туре	Avg CPU Time	Elapsed Time	Delta CPU	Delta Elapsed		
BMP Set One						
VSAM	168	8.71				
OSAM	136	6.01	19.04% reduction	27.59 % reduction		
OSAM SB	138	6.93	18.8% reduction	27.34% reduction		

BMP Set Two						
VSAM	98	5.45				
OSAM	57	3.50	41.83% reduction	35.78% reduction		
OSAM SB	61	1.16	37.75% reduction	78.59% reduction		

OSAM vs VSAM ---- Why??

- OSAM writing of multiple blocks
 - Sorts by physical location
 - Chained writes in parallel
- Shorter processor instruction path length
- OSAM sequential buffering
- OSAM data sets up to 8 Gb
- Reuse OSAM data sets

What other type of Performance Tuning to consider

- Bufferpool Tuning
 - Most important statistic is Buffer Life
 - Changing buffer requires taking IMS Down
 - Need to be able to predict result so multiple outages to correct changes not needed
 - Consider moving most active DBs to their own subpool
 - Run predictive reports before attempting change
 - Often find may subpools can be reduced or removed freeing resources
 - Dramatic performance improvements possible

IMS Performance Analyzer IMS Buffer Pool Analyzer

Where to go for more IMS Hints

Redbooks (www.redbooks.ibm.com):

- IMS Performance and Tuning Guide
 - ▶ SG24-7324-00
- IMS Primer
 - ▶ SG24-5352-00

Reference Book

- An Introduction to IMS: Your Complete Guide to IBM's Information Management System
 - Available from www.amazon.com

Reorganization in Summary

- Prime criteria should be application performance
- Exception performance reports
- Exception database statistic reports
- Use Reorganizations as performance tuning opportunities
- Publish your successes

IBM Performance Tools

- IMS HP Pointer Checker
- IMS Performance Analyzer
- IMS Buffer Pool Analyzer
- IMS Connect Extensions

IBM Reorganization Tools

- IMS Parallel Reorganization
- IMS Online Reorganization Facility
- IMS HP Unload
- IMS HP Load

- IMS Index Builder
- IMS HP Prefix Resolution

Contact me

- Janet LeBlanc
 - leblancj@ca.ibm.com

Q&A

Thank You for Joining Us today!

Go to www.ibm.com/software/systemz to:

- Replay this teleconference
- Replay previously broadcast teleconferences
- Register for upcoming events