
10 August 2010

Improve and Automate IMS Backup and Recovery

- Using IMS Recovery Expert V2.1

Agenda

Information Management

- Trends and Directions
- IMS Recovery Expert V2.1
- System Level Backup Overview
- Intelligent Recovery Manager
 - System level backup recovery
 - Application recovery from a system level backup
- Intelligent Disaster Recovery Manager
 - Image copy method
 - System level backup method
- System Level Backup Usage Considerations

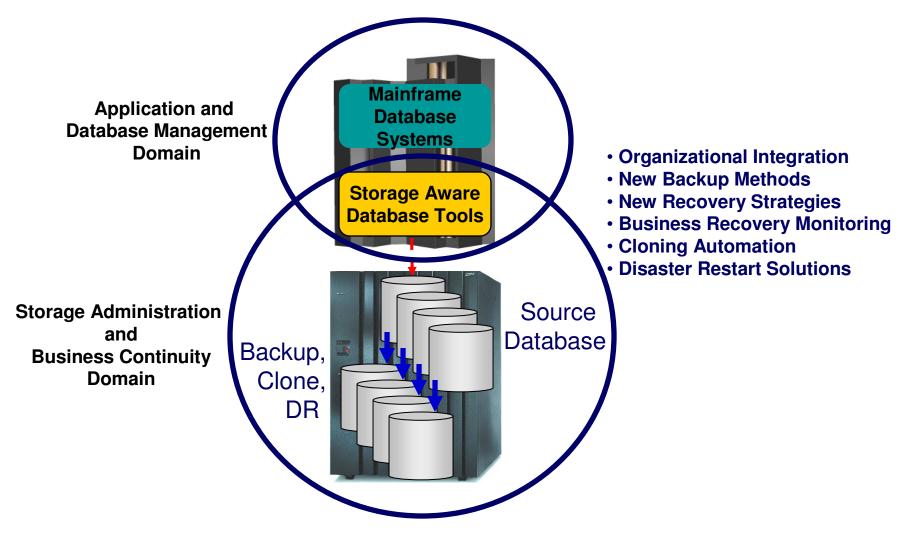
Database and Storage Administration Trends and Directions

Information Management

Large DB2 and IMS systems require high availability

- Fast and non-intrusive backup and cloning facilities are required
- Fast recovery capabilities are required to minimize downtime and promote high availability
- Most backup, recovery and cloning solutions do not leverage storage-based fast-replication facilities

Storage-based fast-replication facilities are under-utilized


- Tend to be used by storage organizations
- Tend not to be used by database administrators (DBAs)

Storage aware database products

- Allow DBAs to use fast-replication in a safe and transparent manner
- Provide fast and non-intrusive backup and cloning operations
- Simplify recovery operations and reduces recovery time
- Simplify disaster recovery procedures

Information Management I Ware for a marter planet

Database and Storage Integration

Database and Storage Integration Operational Advantages

Information Management

- Reduce backup, recovery, and cloning administration costs
- Reduce host CPU and I/O resource utilization
- Perform backups and create clone copies instantly
- Fast restore and parallel recovery reduces recovery time
- Simplify disaster recovery operations and procedures
- DBMS and storage-based fast-replication integration
 - Leverage storage processors and fast-replication investments
 - IBM, EMC, HDS, STK
 - Expose fast-replication capabilities to the DBAs *safely and transparently* using "*storage-aware*" database utilities
- Provide a sophisticated infrastructure and metadata to manage the DBMS and storage processor coordination

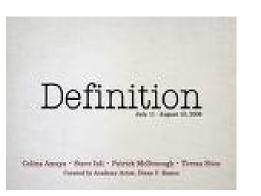
IMS Recovery Expert V2.1

- Announced: August 10, 2010
- Generally available: August 20, 2010
- Database and Storage-aware backup and recovery tool

Definitions

Information Management

Restore


- Restoring database environment to a previous copy
 - Database, index, application, system

Recover

- Explicit application of database logs to a point of consistency
 - Database, index, application, system

Restart

- Implicit application of database logs that happens during the normal database initialization process
- Implicit backout of uncommitted changes performed by IMS during emergency restart
 - System

Backing Up IMS Data

IMS Databases

- Image Copies

IMS Systems and Application Libraries

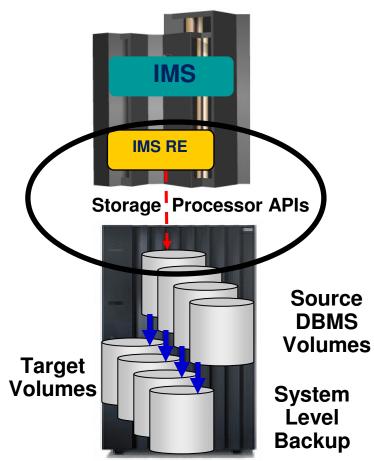
- Volume Dumps
- DFSMSdss data set copies
- DFSMShsm

Remote Mirroring/Replication

- XRC, PPRC, SRDF
- Disaster Recovery only
- New with IMS Recovery Expert V2.1!
 - IMS System Level Backup
 - IMS Databases, IMS Systems, Recovery Structures, and Application Libraries in one backup at same point in time
 - Automated offloading and encryption of data
 - Meta-data repository to maintain information on system level backups

A System Level Backup is a backup of the entire DBMS environment at a point in time

- Recorded in IMS Recovery Expert Meta data repository
- Leverages storage-based fast replication to drive the volume backup
 - Backup in seconds

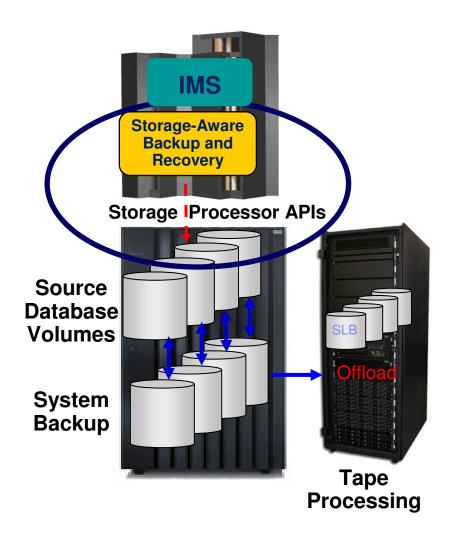

Information Management

- Offloading data copy process to the storage processor saves CPU and I/O resources
- Significantly faster than data set copies

System Level Backup Overview

Backup DBMS without affecting applications

- Backup windows reduced by replacing image copies
- Extends processing windows
- Data consistency ensures data is dependent-write consistent
 - Database Suspend Process
 - Storage-based consistency functions
 - Equivalent to a power failure

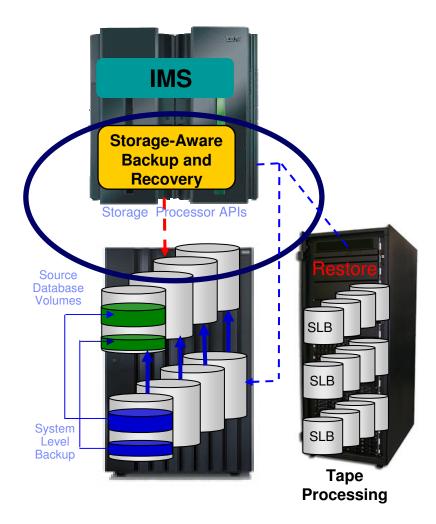


© 2010 IBM Corporation © 2010 Rocket Software

System Level Backup Overview - System Level Backup

Information Management

- Backup validation each time ensures successful recoveries
 - Insurance that a backup is available
- Automated backup offload (archive/recall)
 - Copies system backup from fast replication disk to tape for use at either local or disaster site (or both)
- Can be used in combination with other backups (image copies)


© 2010 IBM Corporation © 2010 Rocket Software

System Level Backup - System and Application Recovery

- Recover IMS systems, applications, or database from disk or tape automatically
- Intelligent Recovery Manager invoked to optimize recovery plans
 - Integrates with traditional recovery tools
- Faster recovery

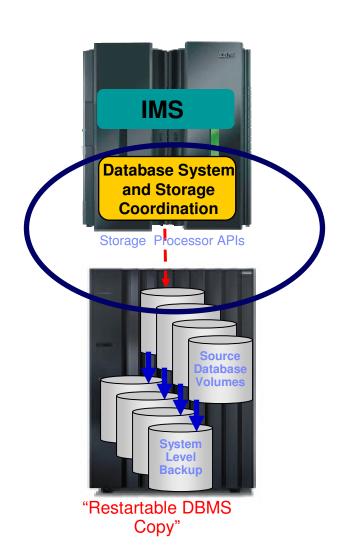
Information Management

- Instantaneous system or application restore process
- Parallel recovery minimizes downtime
- System backup can be used for database or application recovery
 - Data set fast-replication used to restore data
 - Parallel log apply reduces recovery time
- One system backup used for system, application, and disaster recovery

System Level Backup - Disaster Recovery

Information Management

Simplifies disaster recovery operations

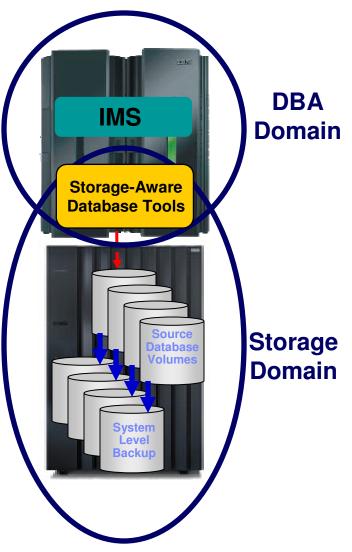

- System level backup for restart
- System level backup and roll forward

System backup is "restartable"

- Restore volumes containing the last SLB
- Performs recovery during normal database initialization or emergency restart process
- Disaster recovery is as simple as restarting from a power failure

Intelligent Disaster Recovery Manager

- Prepares recovery assets and manages remote restore and recovery operations
- Reduced recovery time at a DR site
- Transform disaster recovery procedures into a tape-based disaster restart process
 - Similar benefits as storage-based remote replication solutions

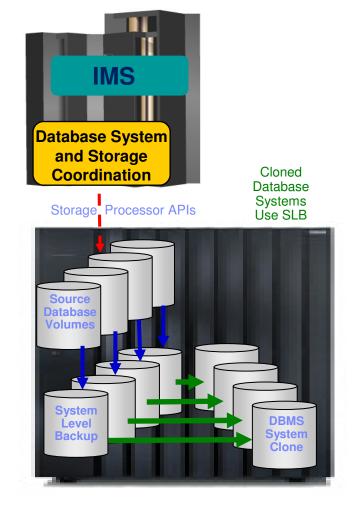

marter and

System Level Backup - Storage

Information Management

- Reduce storage and processing costs by utilizing one backup for multiple purposes
 - Local system recovery
 - Local application recovery
 - Disaster restart/recovery
- Leverages storage-processor and fast-replication software investments
 - Saves CPU, I/O, and processing resources
- Expose fast copy capabilities to the DBAs safely and transparently using "storage-aware" database utilities
- Provides a sophisticated infrastructure and metadata to manage DBMS and storage processor coordination
- Multiple storage vendor support
 - IBM FlashCopy
 - EMC TimeFinder/Mirror/Clone/Snap, FlashCopy

 - Hitachi ShadowImage, FlashCopy
 IBM RAMAC Virtual Array, STK SnapShot
- Perform IMS system cloning operations from a system level backup



Scharter planet (

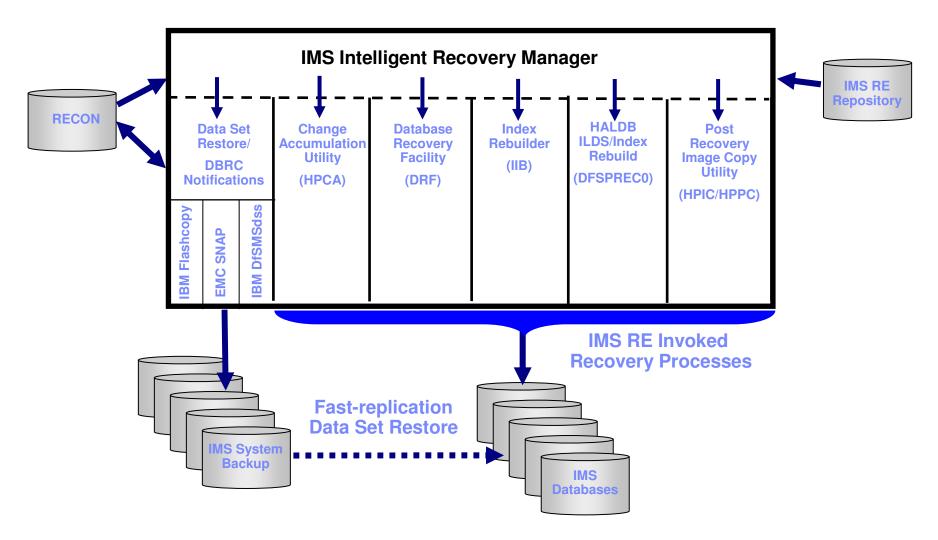
Information Management

Clone from a System Level Backup

- Full system-level backup created using full volume fast-replication
- Database clone operations performed using SLB volumes as source
- Storage-aware database tools provides infrastructure and metadata to manage database and storage processor coordination

Intelligent Recovery Manager

Intelligent Recovery Manager


Performs efficient local recoveries using available recovery resources and tools

- IBM IMS backup and recovery utilities look like a single product from the end-users perspective
 - Centralizes backups and recovery processes
 - Only one product is needed for all recovery processes (local recovery, disaster recovery, rebuilding damaged index, application relationship analysis, etc.)
 - Sophisticated ISPF interface

Simplifies and automates recovery processes:

- Related databases (application) can be grouped and saved (in advance)
- Recovery JCL can be built in advance
- Run-time analysis to determine recovery resources available
 - Combination of SLB and other IMS recovery assets
 - Can be directed to use IMS recovery assets only
- Run-time analysis of what recovery utility to invoke and in what order
- Spawns jobs to perform recovery tasks
- Takes the technical knowledge out of having to create complex recovery JCL

System and Application Recovery IMS Intelligent Recovery Manager

Intelligent Recovery Manager Overview

- System Level Recovery
- Analyzes system backup and DBMS that will restore/recover the system in quickest way possible
- Automates volume restore process from either fast replication disk or from tape copy
- Full DBMS Restore

Information Management

- Restore Entire DBMS
 - Includes active and archive logs, IMS RECON, ICF catalogs and z/OS control datasets
 - · Can be used for disaster restart or local restart of an entire DBMS

Data Only Recover

- Restore volumes that contain IMS databases and indexes
- Recovery of all databases is performed to a specified point in time after the SLB
- Detects objects that had a non-recoverable event occur in recovered log range
 - Automatically runs recovery using Image Copies and rebuild indexes for those objects
- Can be used at disaster site to replace traditional image copy recovery methods
 - SLB volumes are restored at DR site from a system backup on tape

Information Management

Intelligent Recovery Manager Overview

- Application Recovery

Enables recovery of an application or individual databases or indexes to a point-in-time

- Recover to current
- Recover to a timestamp
- Application profile created in advance
 - Single database or group of databases
 - Supports wildcards to select multiple databases
 - Supports DBRC groups
 - Saves recovery time because related applications are defined ahead of time and used when application needs recovery
- Analyzes all datasets in the profile and generates the most appropriate recovery method for each data set
 - Logically related databases and indexes can automatically be included
 - Can restore datasets from either IC or SLB
 - Indexes that cannot be restored are rebuilt
 - Recovery (log apply) occurs in single step eliminating multiple passes of the logs
 - Access to databases is automatically stopped and restarted at end of recovery

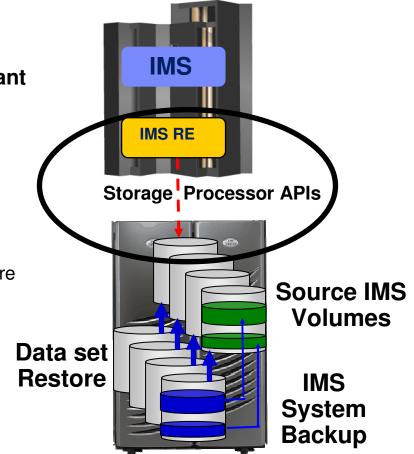
Storage-based fast-replication is used to perform restore (if available)

- Performs an instantaneous data set restore process
- Fast replication from SLB is available even if data set has moved or was deleted or after SLB
- Recovery (log apply) is performed in parallel with data set restore process if fast replication is used

Define an Application

BSY\$0 Optic		==>				Update	e Applicat	ion Pr Scro	ofile Display 11 ===> CSR	
Line Commands: A - Add E - Explode D - Delete										
Creator: PDBISCName: IAA HDAMUser: PDBISCShare Option: U(Upd,View,No)Description: HDAM CA GROUPIMS System/Group: IAAUpdate Recovery Options: N(Yes/No)										
Cmd	Type GC DB DB			Process Logical N Y Y	Include/ Exclude INC INC INC	Group/DB Name HDAM DBHDO02 DBHI*	Area/ Part	DDN tom of	< Last Updated> Userid Timestamp PDBISC 04/27/2010 14:03:26 PDBISC 02/04/2009 12:35:24 PDBISC 04/27/2010 14:02:44 Data *******************************	

Information Management of tware for a sharter planet O South of tware


Define Recovery Utilities and Options

BSY\$DRFO V2R1 Application Recovery Options										
Creator: PDBISC Na Share Option: U (Upd,	me: IAA HDAM View,No) Description: HD	SSID: IAA AM CA GROUP								
	ions to associate with this $\implies 1$ (1 To Current, 2 To	More: +								
Verify before recovery Recovery Utility Index Rebuild Utility HALDB PINDEX/ILDS Rbld Change Accum Utility	<pre>=> Y (Yes/No) =>> D (Drf/User) =>> I (Iib/User/None) =>> I (Ims/User/None) =>> H (Hpca/User/None) =>> H (Hpic/User/None)</pre>	Edit Options N (Yes/No) Edit Options N (Yes/No)								
Recovery Resources From Offload Parallel Tasks Number of Tape units Action on Warnings	==> <u>A</u> (A]]/S]b/Ic)									
Datasets for GENJCL	=>> SIR.IAA.JCLPDS =>> =>>									
	==>									

Information Management

Steps to Perform an Application Recovery

- Create an Application profile (*in advance*)
 - Define recovery options
 - Recovery utilities / Recover to point
- 'Build' JCL for the application profile you want to recover (*in advance*)
- Execute JCL:
 - IMS Intelligent Recovery Manager
 - Information from DBRC and DBR for IMS repository analyzed
 - What are the most recent backups
 - What recovery utilities to use
 - Storage-based fast-copy is used to perform restore
 - Instantaneous data restore process
 - Parallel recovery to roll-forward logs

Intelligent Disaster Recovery Manager

Information Management There for a smarter planet Constrained Sector 200 IEM

Intelligent Disaster Recovery Manager

Performs:

- Local site procedures to prepare for offsite disaster recovery or disaster restart
 - Image copy method
 - System level backup method
- Remote site restore operations and appropriate recovery or restart procedures
- Simplifies and automates disaster recovery processes

Disaster recovery or disaster restart creation of jobs to:

- Perform traditional disaster recovery process
- Restore system level backup and restart DBMS
- Restore system level backup, restore RECON, run recovery to point in time, restart DBMS

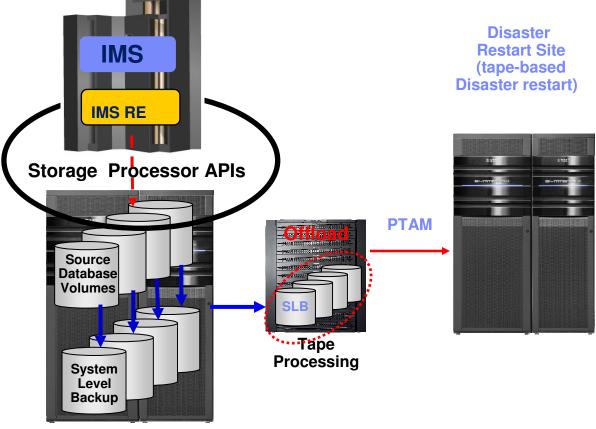
Local Site Preparation for DR

- Run IMS Intelligent *Disaster* Recovery Manager on some schedule

 Based on the desired recover to time
 - - After SLB is offloaded?
 - After log is archived?
 - Certain time of day?

What IMS Intelligent *Disaster* Recovery Manager does

- Create copy of RECON
- Identify image copies, change accumulations, and archive logs for transport to DR site
 - Copy any recovery assets if specified
 Tapes can be identified from pick list
- Condition copy of RECON with any logs, change accums and image copies being sent to DR site
 - Removes the requirement to modify the RECON at the DR site
 - If logs and change accums aren't required, they are marked in error in the conditioned recon so they won't be pulled in
- IMS RE repository backed up and sent offsite
- Recovery JCL is created, backed up, and sent offsite

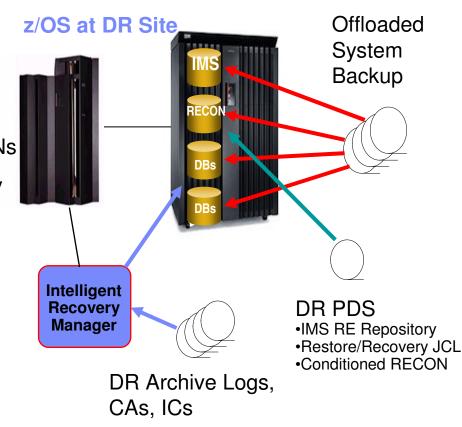

© 2010 IBM Corporation © 2010 Rocket Software

Steps to Perform a Disaster Restart to System Backup

1. Restore IMS RE DR PDS

Information Management

- 2. Run JCL to restore IMS RE Repository
- 3. Run JCL to restore SLB
- 4. IMS emergency restart


© 2010 IBM Corporation © 2010 Rocket Software

Steps to Perform a Disaster *Restart* with Image Copies and Logs

1. Restore IMS RE DR PDS

Information Management

- Contains all JCL needed to run remaining steps
- 2. Run JCL to restore IMS RE Repository
 - Contains information on SLB
- 3. Run JCL to restore SLB
 - Restores IMS, Application Libraries, Databases
- 4. Run JCL to restore pre-conditioned RECONs
- 5. Run JCL to invoke IMS Intelligent Recovery Manager to recover databases
- 6. Cold start IMS

System Level Backup Usage and Implementation Considerations

Implementation Planning Considerations

System level backup usage

- Determine how SLB(s) will be used
- SLB type
 - Determine full, data-only, or partial SLB requirements

Backup frequency and space utilization

- Determine backup frequency, performance, and space efficient fast-replication requirements

Disaster restart considerations

 Determine offsite disaster restart resources and preferences (RTO, RPO) to define appropriate disaster recovery profiles

Copy blade selection

- Determine storage processor capabilities, available facilities and fast-replication preferences

Information Management Ware for a smarter planet Construction of the second sec

System Level Backup Usage and Data Set Layout Considerations

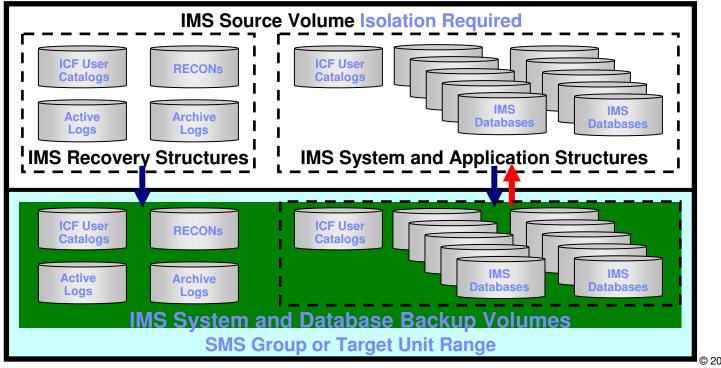
SLB used for local system recovery

- Database data and recovery structure isolation required
- Database system isolation may be required
 - Non-database data sets will get restored when IMS system is restored
 - User catalogs will get restored

SLB used for IMS application or database recovery only

- Data and recovery structure isolation is not required

SLB used for remote disaster restart operations

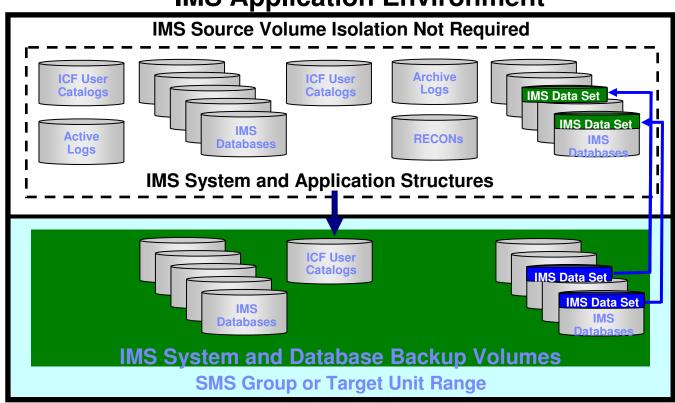

- Recovery structure isolation is not required
- Database system isolation may be required
 - Non-database data sets will get restored when IMS system is restored
 - User catalogs will get restored

Information Management

System Level Backup Usage Considerations - Data Set Layout for Local System Recovery

SLB used for local system recovery and disaster restart Database data and recovery structure isolation required Non-database data sets will get restored when database system is restored

- ICF User catalogs will get restored
- System level recovery must have IMS recovery structures isolated on separate volumes from those that support the IMS system and application data sets
- Separation ensures system and application data can be restored from the backup volumes while allowing roll-forward recovery using the source volumes that support the recovery structures


IMS System and Database Environment

© 2010 IBM Corporation © 2010 Rocket Software Information Management Ware for a smarter planet Company System Level Backup Usage Considerations

- Data Set Layout for Application Recovery Only

SLB used <u>only</u> for application, or database recovery

- Data and recovery structure isolation is not required
- Does not require data set separation as only IMS data sets will be restored from the system level backup

IMS Application Environment

Partial System Level Backup

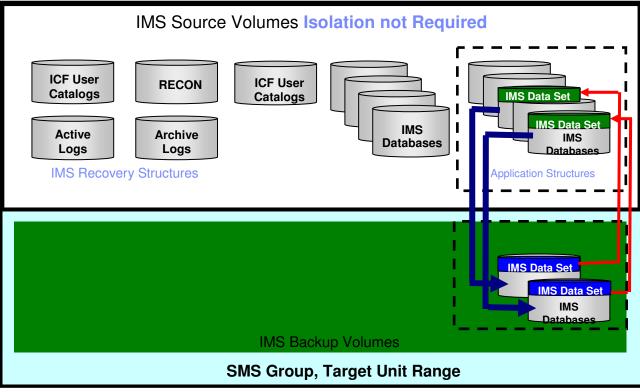
Partial system level backup (PSLB) Backup volumes representing a subset of the database system PSLB's used for database or application recovery <u>only</u> Data set fast replication used to restore data Log and data isolation not required

- Desired application database data should be grouped on volumes as a best practice

PSLB <u>cannot</u> be used for system recovery System recovery requires all volumes in SLB

PSLB usage

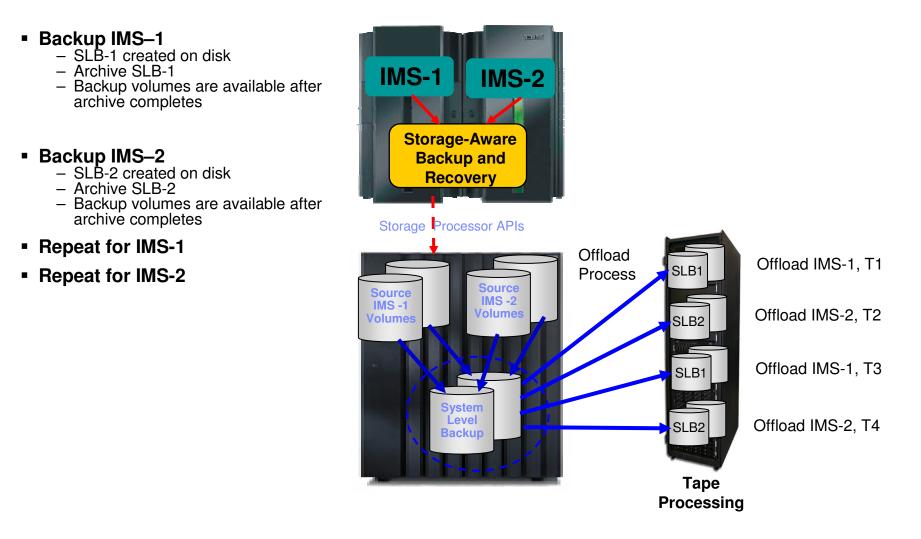
- Large databases or applications having unique backup requirements
- Creating image copies from a PSLB
- Reduce disk utilization
- Support more backup generations


Information Management

IMS System Level Backup Usage Considerations - Data Set Layout for Partial SLB / Application Recovery

- Partial system level backup (PSLB)

 Backup volumes represent a subset of the database system
 Does not require data set separation as only IMS data sets will be restored from the partial system


 level backup

IMS System and Database Environment

Information Management of two are for a sharter planet in the second sec

One Set of Backup Volumes for Multiple IMS Systems

System Level Backup Implementation Considerations - Use of Space Efficient Fast-replication Technologies

• Consider:

- Incremental fast-replication options to reduce background copy time and resources
- Space efficient methods to save space
- Cloning database systems to space efficient volumes using a full volume clone or SLB as the source

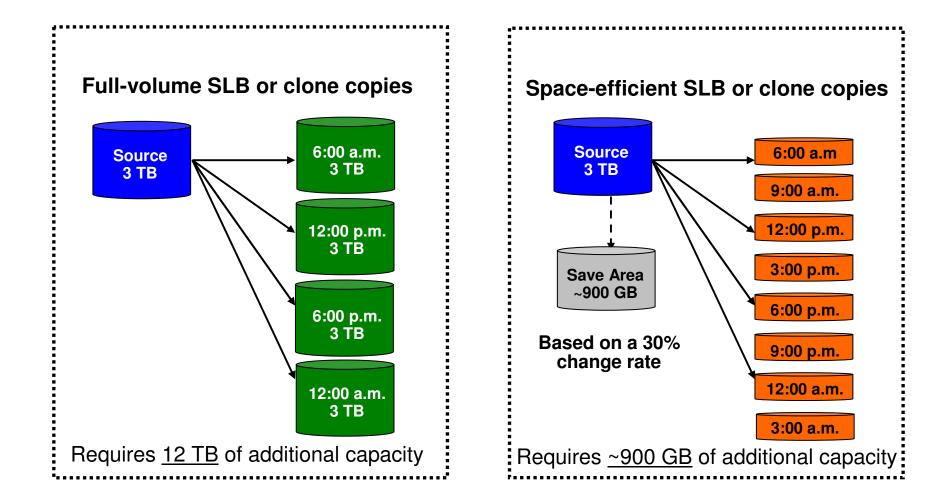
Information Management in ware for a marter planet in the second second

System Level Backup Implementation Considerations

- Use of Space Efficient Fast-Replication Technologies

Volume vs Space Efficient Operations

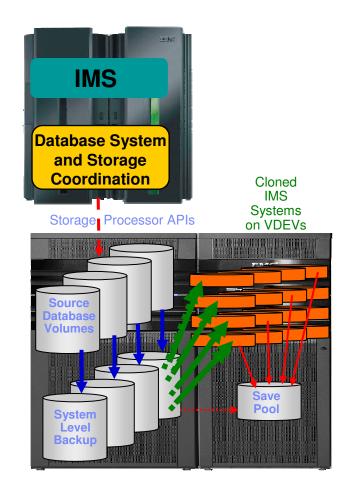
Full volume copy


- Copy requires same amount of storage as the source
- Relationship can be retained with production volume
 - Allows incremental resynchronization
- Full volume restore used for system restore operations
- Fast replication data set level copy used for application or object recovery from non-archived backups

Space Efficient Devices

- Requires minimal additional storage
- Restores changed tracks
- Can have multiple volumes associated with production volume
- Full volume restore used for system restore operations
 - Changed tracks restored from repository in save or extent pool
 - Full volume backup needed for catastrophic loss of source volume because only changed tracks
 are copied back
- DFSMSdss host copy methods used for application or object recovery from non-archived backups
- *Available for EMC TimeFinder/Snap, IBM/STK SnapShot, (IBM FlashCopy coming soon)

Information Management Ware for a Sharter planet Constrained States and the sharter planet Constrained States and


Space Efficient Usage Economics - Enable Frequent SLB or Clone Copies

Information Management of tware for a smarter planet

Space Efficient Cloning Using an SLB

- Full system-level backup created using full volume fast-replication
- DBMS clone operations performed using SLB backup volumes as source
- Cloned DB systems use virtual storage devices (VDEVs)
 - SLB volumes are used to service I/O for DB clone access
 - DB clone writes (few) go to save pool
 - DB SLB writes (noné) go to save pool
- Storage-aware database tools provides infrastructure and metadata to manage database and storage processor coordination
- Operational automation may be required to reinstantiate space efficient clones when the full volume clone is re-instantiated
- *FlashCopy SE, EMC TimeFinder/Snap, STK SnapShot

System Level Backup Implementation - Copy Blade Selection

Know your storage processing infrastructure

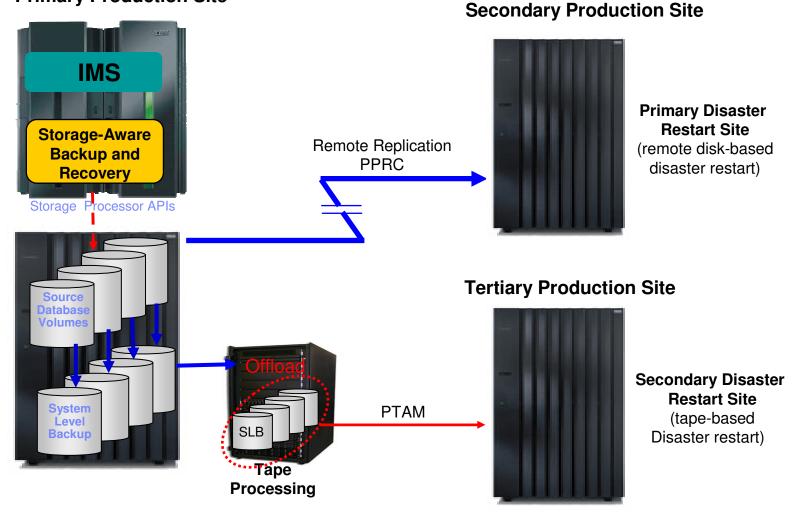
- What storage processors are used (EMC, IBM, HDS)
- What fast-replication facilities are licensed and preferred

Determine copy blade and fast-replication facilities to use

- IBM DFSMSdss
- IBM FlashCopy

Information Management

- EMC TimeFinder
- HDS ShadowImage


Determine which type of consistency function is best for your environment

- Database suspend process
- Storage-based consistency

Using SLBs for a Tertiary DR Site

Primary Production Site

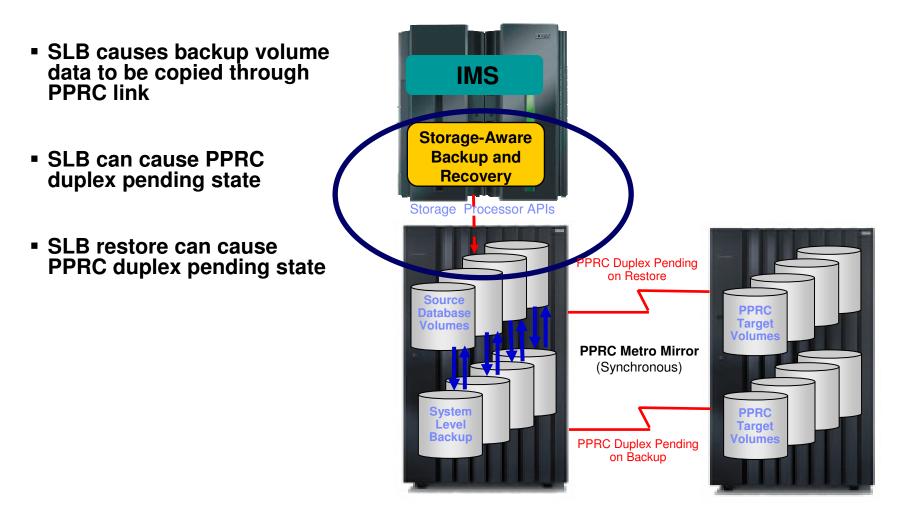
Information Management Ware for a marter planet C

System Level Backup with PPRC Remote Pair FlashCopy

Storage Aware Backup/Recovery and "Remote Pair FlashCopy" Support

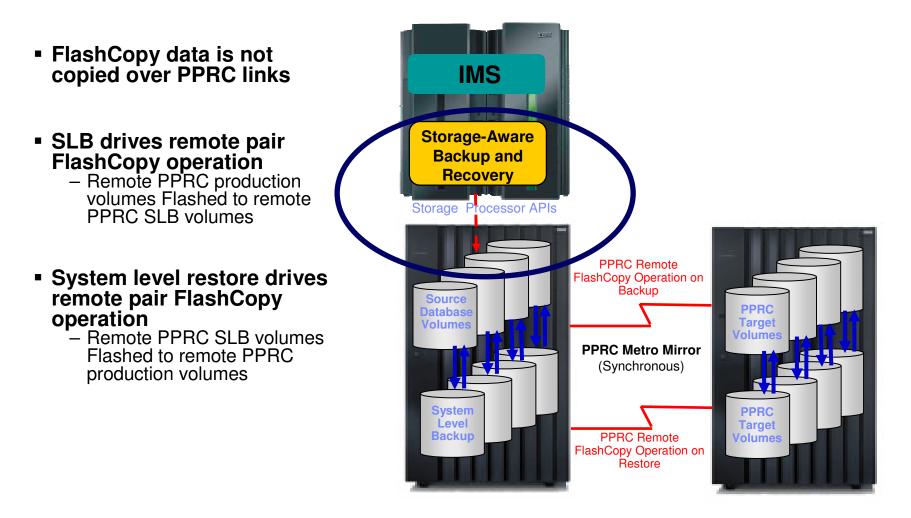
- FlashCopy to PPRC Primary volume while maintaining Full Duplex
- FlashCopy Metro Mirror implementations only

Preserve Mirror support option specified in installation Parmlib (FCTOPPRCP)


- N Do not allow the PPRC primary to become a FlashCopy target
- Y The pair can go into a duplex pending state
- P It preferable that the pair does not go into a duplex pending state.
- R It is required that the pair not go into a duplex pending state

Copy Blade Support

- FlashCopy Blade
- DFSMSdss copy blade



System Level Backup Without Remote Mirror FlashCopy

System Level Backup With Remote Mirror FlashCopy

Information Management Off Ware for a smarter planet

SLBs with XRC and PPRC without Remote Pair FlashCopy

- Assume source volumes are primary volumes in a PPRC metro mirror or XRC relationship
- Backup target volumes must not be in a PPRC or XRC relationship
- Backup volumes cannot be used for DBMS system recovery without duplex pending state
- Application and database recovery allowed
 - RE performs application and database recovery by copying data sets from the backup volumes to the source volumes
 - DFSMSdss used to copy data sets
 - Fast Replication Preferred option used to copy data
 - DFSMSdss uses slow copy methods as data sets cannot be Flashed to source PPRC or XRC volumes.

Information Management

Session Summary

- Storage-aware database utilities provide storage integration to simplify database administration tasks
- System-level backup solutions leverage storage-based fast-replication facilities and investments
 - Fast and non-intrusive backup operations with less administration
 - Reduces host CPU, I/O and storage utilization
 - Backups can be used for system, application, disaster restart
 - Parallel recovery reduces system and application recovery time
- Application recovery can leverage existing products

 Intelligent Recovery Manager can be implemented with or without SLBs
 Implementation of an SLB methodology can be done over time
- Intelligent Disaster Recovery Manager can support image copy or SLB method
- Less skills required to implement advanced backup, recovery, and disaster recovery solutions
- Implementation planning is important to optimize the benefits