

#### A Fresh Look at the Mainframe When the Mainframe Really IS the Lowest Cost Platform

*Ray Jones WW Vice President, z Software* 



© 2006 IBM Corporation



# Let's Break Down the Elements of Cost

# Total Cost of Ownership =

Hardware/Maintenance

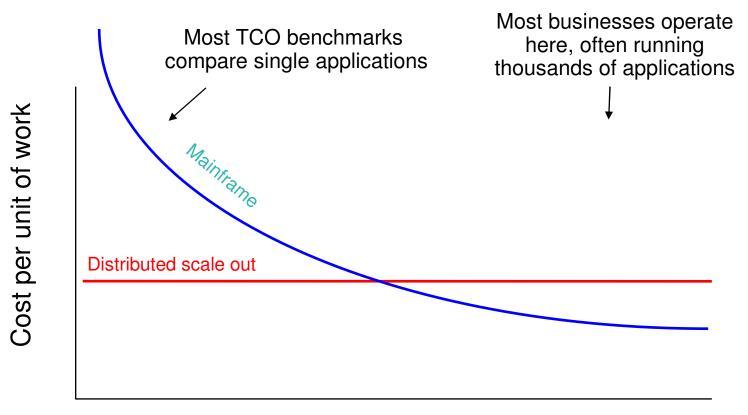
+ IBM Software

+ Environmentals

+ Labor

+ required Quality-of-Service

(Availability, Security, Disaster/Recovery...)

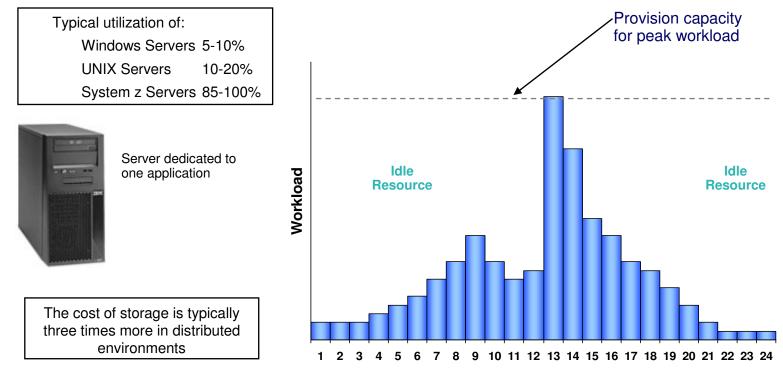

+ other Elements

(Chargeback)

The total cost requires a total picture of your I/T assets and expenses



#### Mainframe Cost/Unit of Work Decreases as Workload Increases




Data Center Workload

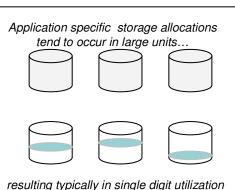




# **Utilization of Distributed Servers & Storage**



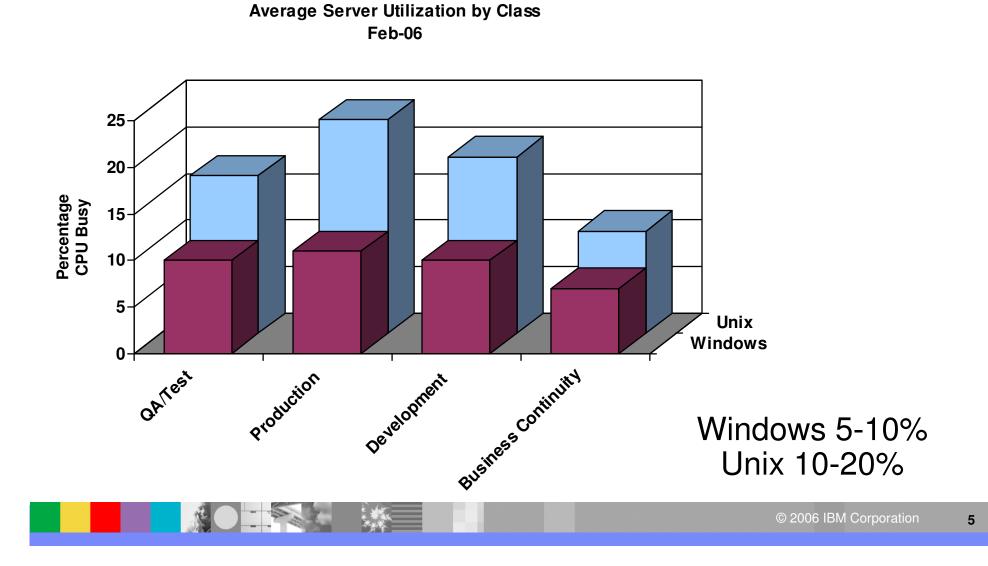
#### Storage Allocation


- Application-specific resulting in over-allocations
- Fine grained storage allocation mechanisms characteristic of mainframe storage are uncommon in distributed environments.

#### Storage Utilization

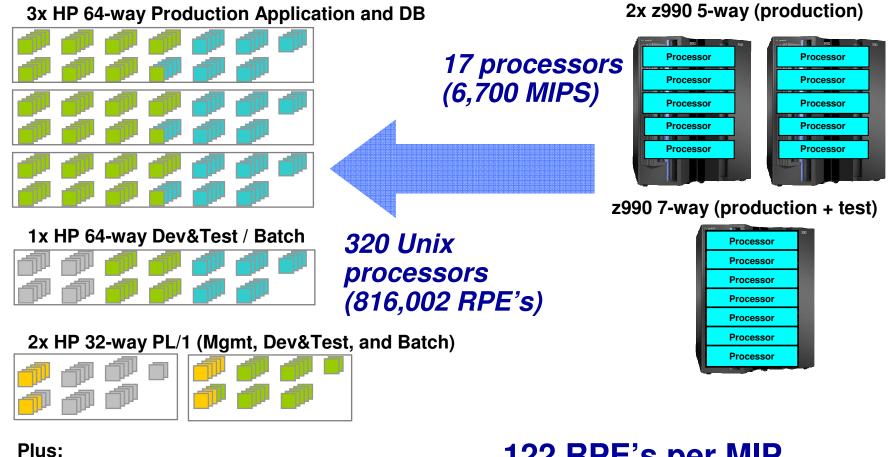
- > Single digit utilization for distributed environments is not uncommon
- > Storage utilization of 80% + is typical for mainframe

#### Storage Management


> Data disaster recovery, synchronization, and transfer requirements add complexity and cost



4



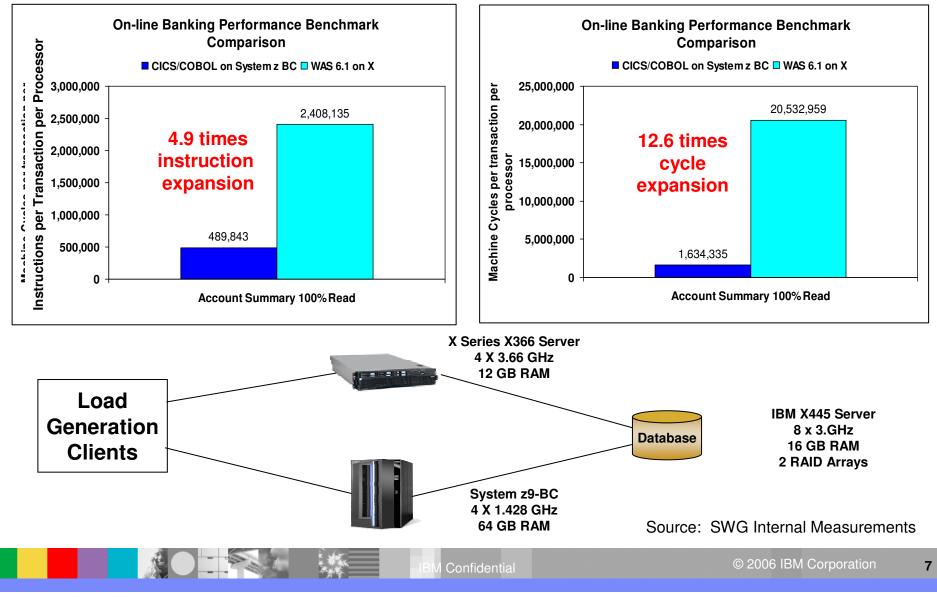

## Server Utilization at a Large Financial Institution





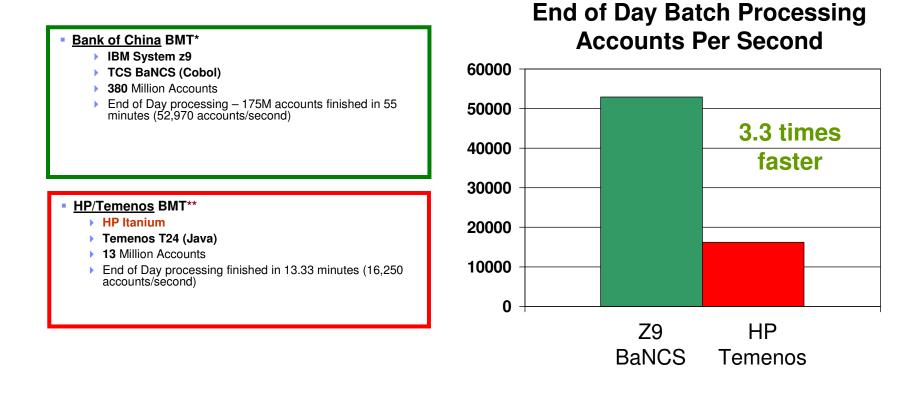
#### This Was a Real Project – Why Couldn't The Same Workload Be Done With Faster Processors?




2x HP 16-way servers : external, HP rx8620 3x IBM P570 servers : Web Appl server

#### 122 RPE's per MIP

Some disaster recovery

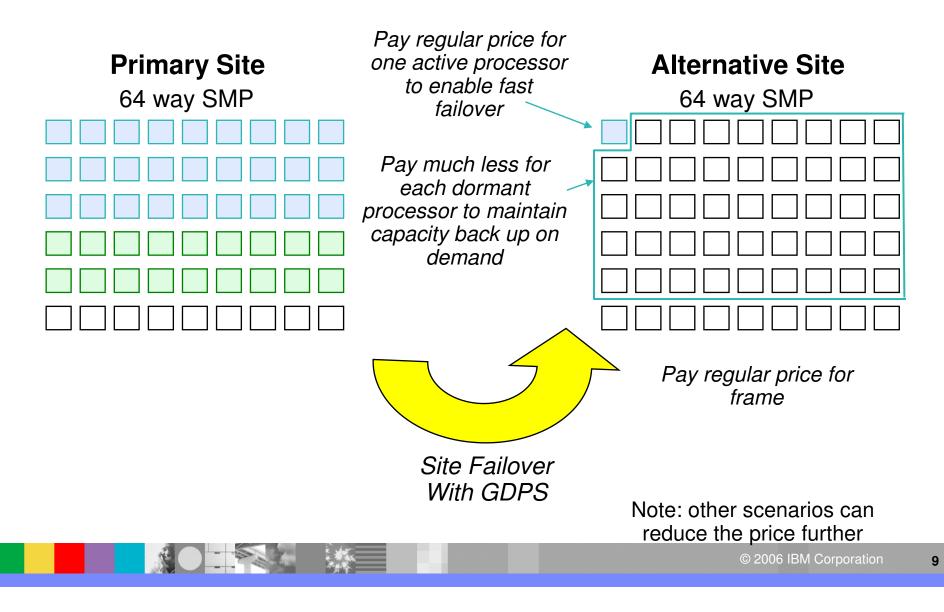



# Benchmark - Code Expansion When Moving From CICS/Cobol To Java On Wintel (Higher Is Worse)





#### **System z Batch Processing Performance**




**SOURCE**:\*http://www.enterprisenetworksandservers.com/monthly/art.php?2976 **Source**: InfoSizing FNS BANCS Scalability on IBM System z – Report Date: September 20, 2006 **SOURCE**:\*\*TEMENOS BENCHMARKS; http://h71028.www7.hp.com/enterprise/downloads/TemenosBenchmark.pdf





#### **Disaster Recovery – Fast Failover For Less**





## **TCO Case Studies – Core Proliferation Defeats** Offload Savings

| Scenarios                                                                                                                        | Cost of I                                | Distribu             | ted vs. z                              | Distributed Cost<br>Ratio    |                         | s vs.<br>essor       | 122 522 522 522 522 522 522 5 | Core Ratio                           | Performance<br>Units per MIP     |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|----------------------------------------|------------------------------|-------------------------|----------------------|-------------------------------|--------------------------------------|----------------------------------|
| Offloading cases                                                                                                                 |                                          |                      |                                        |                              |                         |                      |                               |                                      |                                  |
| <ul> <li>Banking Benchmark</li> <li>NA financial company</li> <li>European financial</li> <li>Asian financial company</li> </ul> | \$43.3M<br>\$84.7M<br>\$17.9M<br>\$119 M | VS<br>VS<br>VS<br>VS | \$18.2M<br>\$24.2M<br>\$4.9M<br>\$53 M | 2.4x<br>3.5x<br>3.7x<br>2.2x | 560<br>264<br>52<br>408 | VS<br>VS<br>VS<br>VS | 7<br>6<br>2<br>17             | 80 : 1<br>44 : 1<br>26 : 1<br>24 : 1 | 187:1<br>482:1<br>670:1<br>122:1 |
| Offloading studies<br>– European agency<br>– Restaurant chain                                                                    | €386M<br>\$56.3M                         | VS<br>VS             | €204 M<br>\$23.3M                      | 1.9x<br>2.4x                 | 568<br>32               | VS<br>VS             | 30<br>4                       | 19 : 1<br>8 : 1                      | 185:1<br>116:1                   |
| Offloading studies pending<br>– US Utility<br>– US Manufacturer                                                                  | \$13.4M<br>\$64.0M                       | VS<br>VS             | \$6.2M<br>\$43.3M                      | 2.2x<br>1.5x                 | 112<br>96               | VS<br>VS             | 3<br>6                        | 37 : 1<br>16 : 1                     |                                  |
|                                                                                                                                  |                                          |                      |                                        |                              |                         |                      |                               |                                      |                                  |
|                                                                                                                                  |                                          |                      |                                        | 2 5 v                        |                         |                      |                               | 32 • 1                               | 20/1-1                           |

**IBM** Confidential

**2.5x** 

32:1 294:1



## Trade-In Value Reduces Mainframe Net Present Value Costs

- Upgrade to next generation mainframe
  - Specialty processors are upgraded to next generation free of charge
  - Growing customers typically receive credit for existing MIPS investment when upgrading to new generation
  - Full trade-in value applied to upgrade and growth MIPS
- Upgrade to next generation distributed systems
  - Life time of 3 to 5 years
  - Must repurchase existing processor capacity plus any growth
- Long term TCO implications can be important



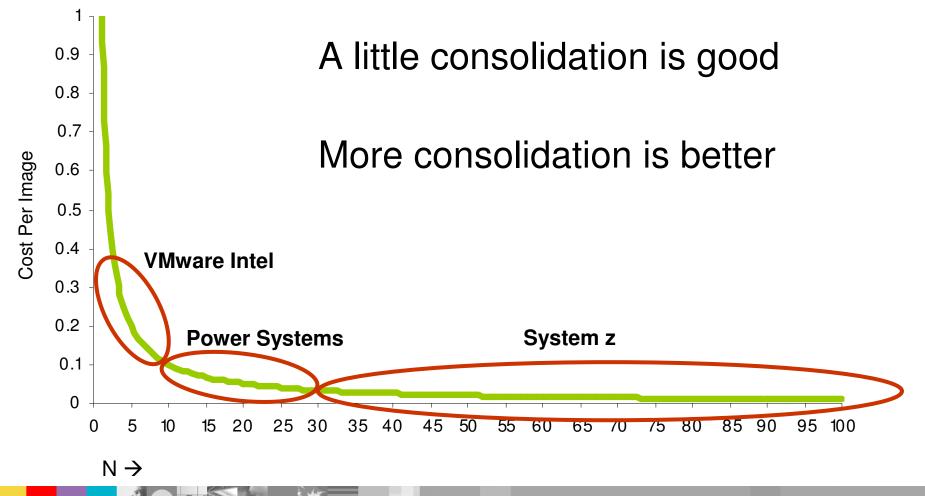


## Case Study: Government Runs Oracle At IFL Prices

- Running 292 server instances on one z9-EC with 5 IFLs
  - > 200 Oracle, 80 WebSphere, 12 WebSphere messaging
  - Reduced cost of hardware and software by 30%
    - Saved \$800,000 in licensing cost in the first year
  - Used RACF for consistent security
  - Each administrator can manage 100 consolidated Linux images
  - Fast provisioning
    - Create new Linux server in 30 min (vs. 1 week 3 months)
    - Clone Oracle DB instance in 30-45 min (vs. 10 14 hours)
  - Inherited benefits of z platform workload management, availability, disaster recovery, I/O bandwidth

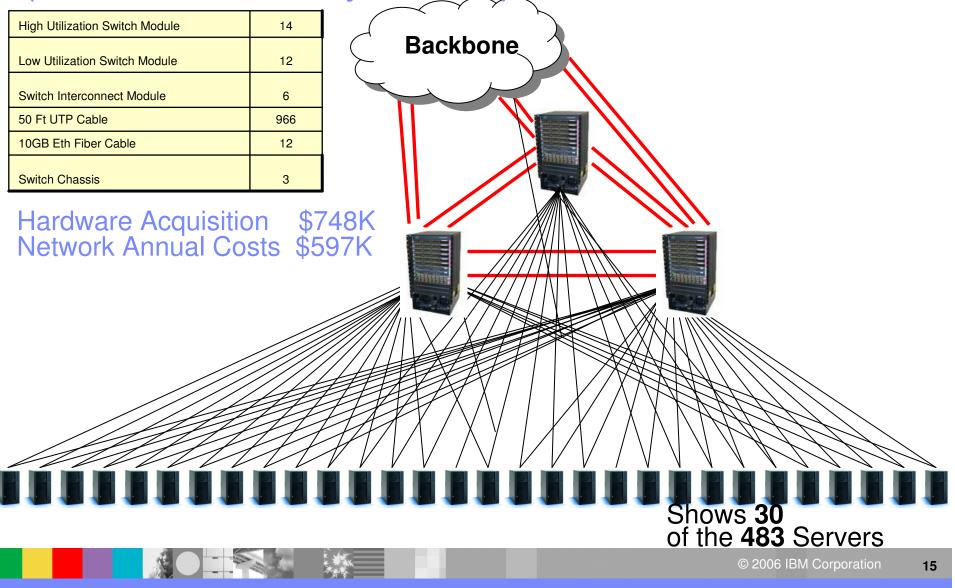





## **Other Benefits Of Virtualization**

- Fast provisioning of pre-installed and configured images
  - Minutes instead of days or weeks
  - No additional space, electric connections or network cables
- Compatible with the data center practice of standardizing on strategic software stacks
  - Pre-tested stacks
  - Consistent release levels and maintenance approach
  - A management approach to achieve better stability
  - Jukebox selection of standard enterprise images





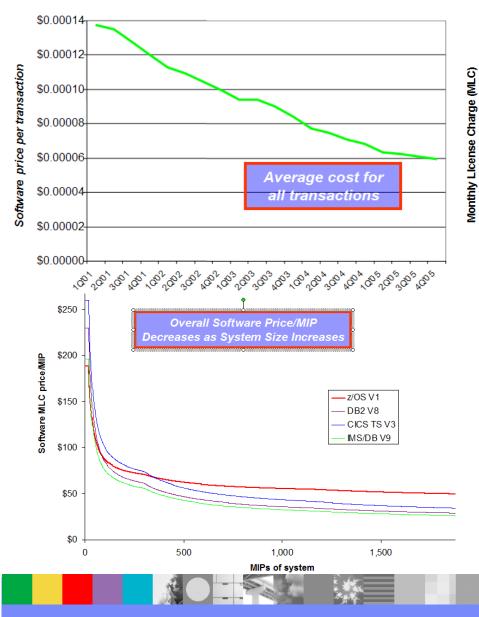

## **Observed Consolidation Ratios**

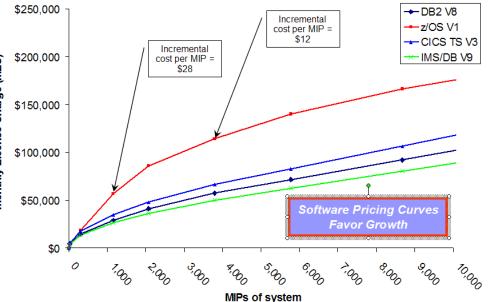




# Case Study: Network Costs –Before Consolidation (483 Servers to 2 System z's)







# Case Study: Network Costs – After Consolidation (483 Servers to 2 System z's)

New Hardware Acquisition \$0 (reuse some of old network hardware) "After" Network Annual Cost \$253K Network Annual Cost Savings \$344K



#### **IBM Software Price Per Transaction is Going Down**





#### **Putting This in Perspective**

- For a typical system of 1,400 MIPS, MLC software stack costs \$59 per incremental MIP
- If a transaction is 1 million instructions, an incremental MIP can perform >2½ million additional transactions per month for Δ\$59 software cost (44K transactions per dollar)
- If these are credit card transactions of average \$100 with a commission of 2%, the business makes \$5.2M per month for a software cost of \$59 per month (88,000 times return)
- If this is a bank account averaging 3 transactions a day, the business can do 40 years of account management for a software cost of \$1



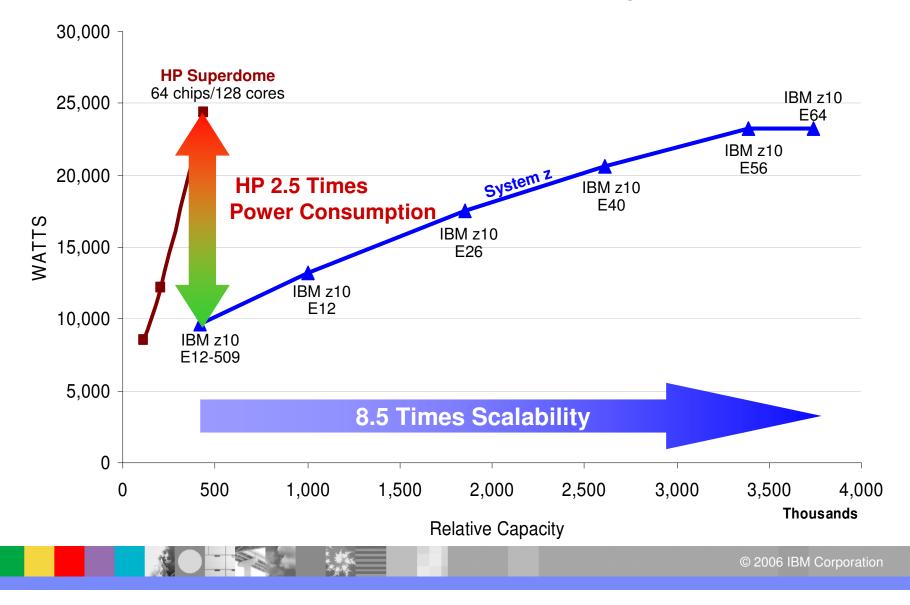
## International Restaurant Chain Avoids High Cost Software

- Existing environment of 1600 MIPS included high cost ISV system management software
- Competitor's proposal was only a partial offload
  - Complete offload projected to cost 2.3x more
  - \$56M vs \$24M over 5 years
- System management software costs more in the offload case
  - Mainframe systems management
    - \$2.0M Stream per year (48 products, mostly third party)
  - Distributed systems management
    - \$2.6M Yearly Maintenance (26 products)
    - \$13.3M One Time Charge
- Better: Replace higher cost System z ISV software with lower cost IBM Software



#### **Portfolio Review and Analysis**

#### "PRA" - a study for IBM zSeries customers


- helps understand the potential impact of processing growth on future software budgets by developing predictive costs models.
- provides you with a comparison of your current portfolio cost structure with those of other zSeries/S390 customers.
- analyzes your software portfolio to identify redundant or underutilized software products.
- > identifies product alternatives and their cost/ benefit impact.
- provides you with negotiation leverage with incumbent product vendors.
- provides you with the latest Software Asset Management tips to help proactively manage your zSeries/S390 software portfolio

http://www-3.ibm.com/software/solutions/softwaremigration/sps.html Or contact Linda Beckner at (614) 659-7192 or at Becknel@us.ibm.com.



20

#### z10 Consumes Less Power Than Superdome



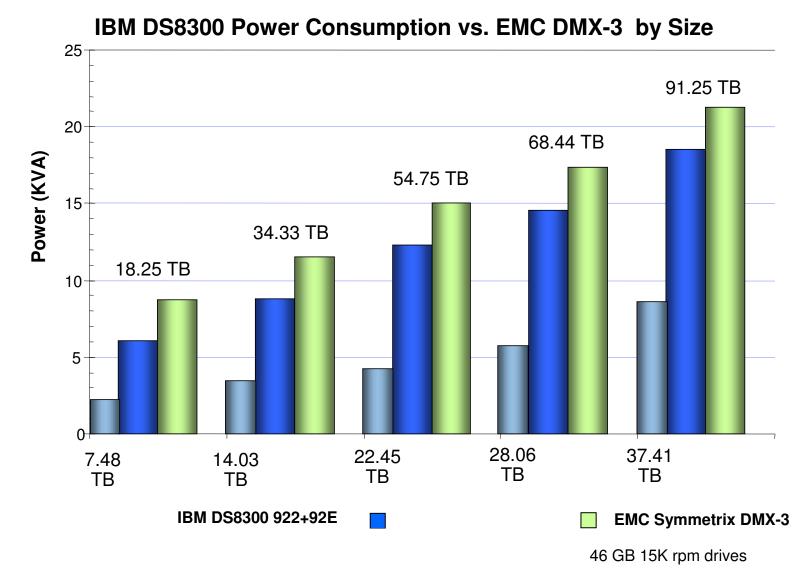


21

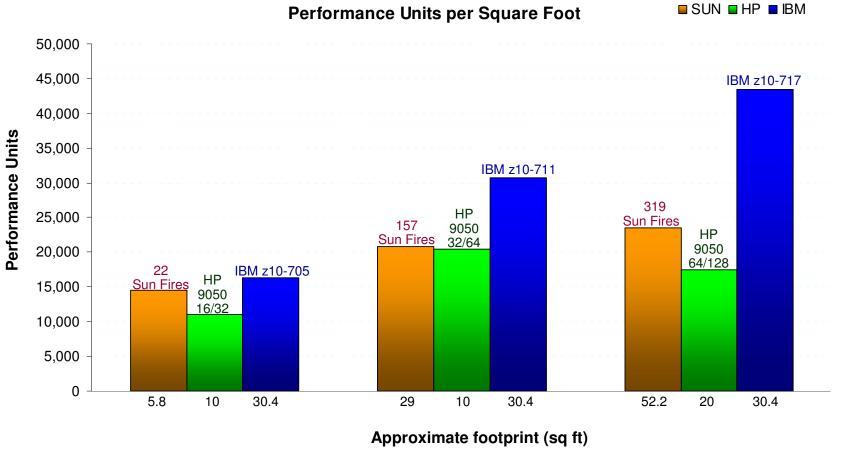
### Do The Math

 HP Itanium 2 Superdome 9050 (64ch/128co)\* consumes a maximum of 24,392 watts

[24,392 X \$.10 X (24 X 365)]/1000 = \$21,367 per year for electricity


- Mainframe with similar computing capacity a System z10 704 machine with 2 I/O cages using 13.26 kW (rated)\*
  - \$11,615 per year for electricity
- Similar savings on cooling capacity
  - Cost of cooling is about 60% additional
  - Superdome total \$34,187 per year vs. Mainframe \$18,585
  - Savings of mainframe power and cooling is \$15,602 per year

\* Performance equivalence determined by IBM TCO study



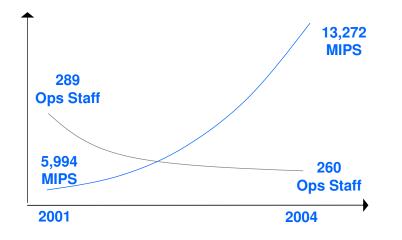



### **IBM Storage Also Saves Energy Costs**

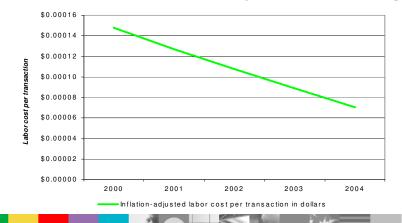


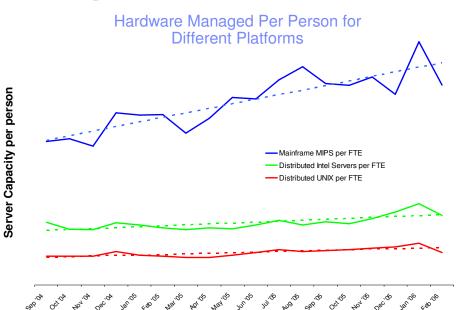
## The Mainframe Also Delivers More Compute Power Per Footprint Unit




Based on 122 performance units per MIP

Mainframe footprint remains constant





### Mainframe Labor Costs Are Going Down

Data Center Staffing Levels for System z Have Not Increased Despite Large Increase in MIPS



#### Labor Cost Per Transaction on System z is Decreasing





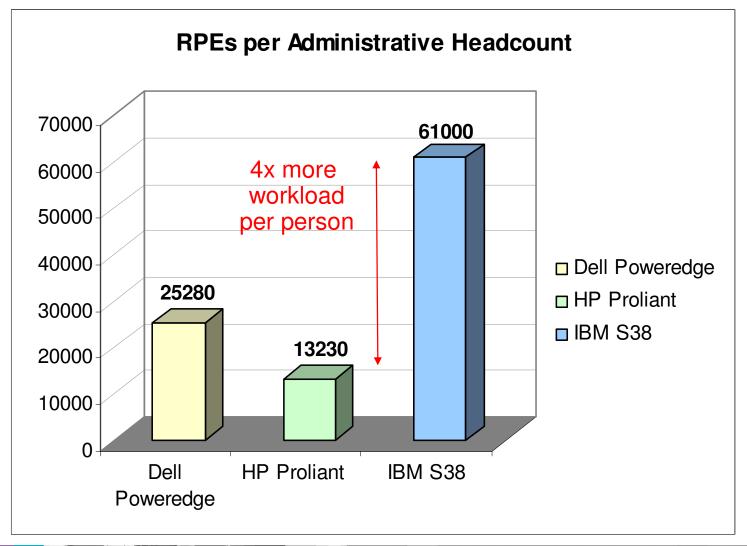
#### First National Bank of Omaha

|                                                                                                                                                | Servers                                                                             | Reliability      | Utilization                                                               | Staff                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------|-------------------------------------|
| First move:<br>Implemented distributed<br>computing architecture<br>that became too<br>difficult to monitor,<br>maintain, upgrade and<br>scale | <ul> <li>30+ Sun<br/>Solaris<br/>servers</li> <li>560+<br/>Intel<br/>ser</li> </ul> |                  |                                                                           | 24 people<br>growing at 30%<br>year |
| <i>Next move:</i><br>Consolidated back on<br>the mainframe                                                                                     | z990                                                                                | Much<br>improved | 84% with<br>additional<br>reserve<br>capacity <b>on-</b><br><b>demand</b> | Reduced to 8 people                 |



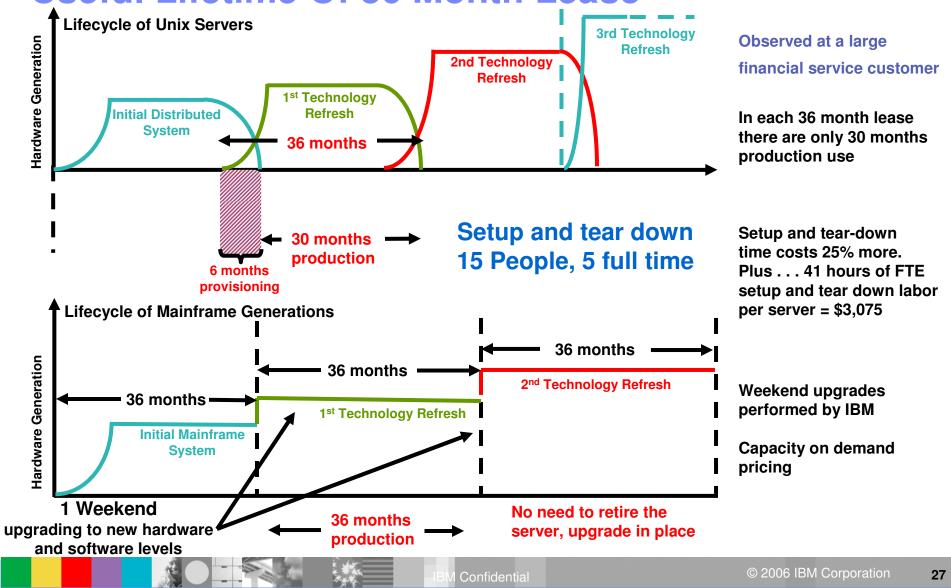
# Customer Survey – How Many People to Manage Servers?

| # NT Servers | # People | Ratio (s/p) |
|--------------|----------|-------------|
| 1123         | 68       | 16.5        |
| 228          | 20       | 14.4        |
| 671          | 51       | 13.1        |
| 700          | 65       | 11.5        |
| 154          | 18       | 8.5         |
| 431          | 61       | 7.1         |
| 1460         | 304      | 4.8         |
| 293          | 79       | 3.7         |
| 132          | 54       | 2.0         |


| # UNIX<br>Servers | # People | Ratio (s/p) |
|-------------------|----------|-------------|
| 706               | 99       | 7.1         |
| 273               | 52       | 5.2         |
| 69                | 15       | 4.6         |
| 187               | 56       | 3.3         |
| 170               | 51       | 3.3         |
| 85                | 28       | 3.0         |
| 82                | 32       | 2.6         |
| 349               | 134      | 2.6         |
| 117               | 50       | 2.3         |
| 52                | 52       | 1.0         |

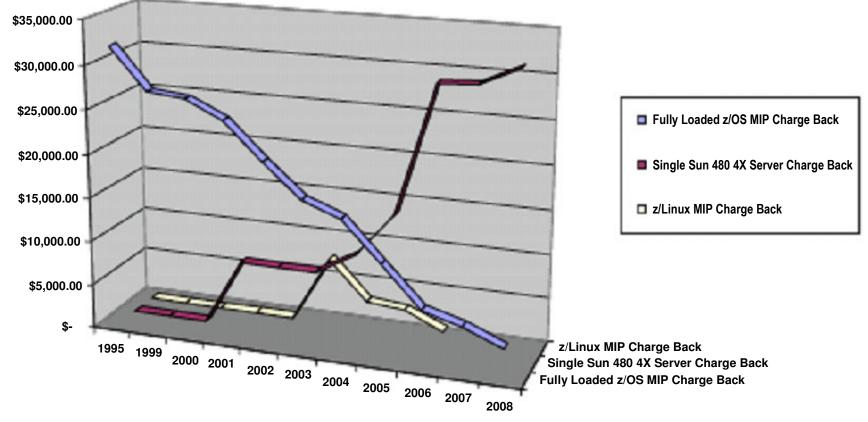
Mainframe administration productivity surveys range 167-625 MIPS per headcount (500 is typical), so...

Source: IBM Scorpion Customer Studies NOTE: Figures for total administration cost




## Manage More Workload Per Headcount






### New York Financial Services Company – Useful Lifetime Of 36 Month Lease





## Charge Back Practices Were Improved Over Time at a Large Financial Institution



#### More Accurate Charge Back Can Correct Perceptions of Relative Costs



## **Understand The Cost Components**

#### Annual Operations Cost Per Server (Averaged over 3917 Distributed Servers)

| Power                           | \$731    |  |
|---------------------------------|----------|--|
| Floor Space                     | \$987    |  |
| Annual Server Maintenance       | \$777    |  |
| Annual connectivity Maintenance | \$213    |  |
| Annual Disk Maintenance         | \$203    |  |
| Annual Software support         | \$10,153 |  |
| Annual Enterprise Network       | \$1,024  |  |
| Annual Sysadmin                 | \$20,359 |  |
| Total Annual Costs              | \$34,447 |  |

The largest cost component was labor for administration 7.8 servers per headcount @ \$159,800/yr/headcount

#### Source: IBM internal study



BM Confidential



# Key Points:

| Mainframe Costs                                                                                           | <b>Distributed Costs</b>                                                                                                                                                          |  |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| The cost of running incremental workload on the mainframe goes down as the total workload grows           | The cost of running additional workload on distributed servers goes up more linearly                                                                                              |  |  |
| Labor costs hold steady as workload grows                                                                 | <ul> <li>Labor is now the highest cost element in<br/>distributed environments</li> <li>Administrative staff costs increase in<br/>proportion to the number of servers</li> </ul> |  |  |
| IBM pricing policies designed to favor the addition of<br>more workload                                   | New workload requires additional servers<br>and licenses                                                                                                                          |  |  |
| Highly Efficient Power and Cooling – Small Footprint                                                      | Energy and Space cost is more linear                                                                                                                                              |  |  |
| Lower software costs per transaction as workload<br>grows – and PRA can lower ISV tool costs              | Cost of software licenses is more linear                                                                                                                                          |  |  |
| High Availability and Security Translate into low cost                                                    | <ul> <li>Fractionally less Availability and Security can<br/>drive Significant downstream costs</li> </ul>                                                                        |  |  |
| Customers have learned that mainframes<br>deliver economies of scale, especially as the<br>workload grows | Result – scale out strategies do not<br>deliver equivalent economies of<br>scale as the workload grows                                                                            |  |  |

This pricing discussion uses published list prices



#### Case Study: Consolidate On Mainframe vs. Keeping Dedicated Servers

**Mainframe Incremental Hardware Mainframe Software** OTC ANNUAL OTC ANNUAL \$52,524 z/VM \$67.500 z/VM<sup>2</sup> \$16.890 Processor<sup>2</sup> Maintenance 3 IFL Processors \$375,000 Power/Space 1 \$47,073 Oracle S&S<sup>2</sup> \$26,400 Conn. + Disk \$639,033 Conn. + Disk Maintenance <sup>1</sup> \$87.480 Acquisition \$45,000 Linux S&S<sup>1</sup> System Admin<sup>1</sup> \$386,518 RAM (190GB) \$1,140,000 **On-Premise Network** \$8,935 Migration \$4,920,492 Maintenance \$67,500 TOTAL \$582,530 (year 2, 3) TOTAL \$88,290 (year 2, 3) TOTAL \$7,074,525 TOTAL **Dedicated Hardware Dedicated Software** ANNUAL OTC OTC ANNUAL Sunk Cost \$0 \$59,276 Disk Maintenance<sup>1</sup> Sunk Costs \$0 Oracle S&S<sup>1</sup> \$2,569,600 Server maintenance 1 \$226,884 \$379,308 Linux S&S<sup>1</sup> Off-Premise Network 1 \$299,008 Power/Floorspace <sup>1</sup> \$501.656 System Admin<sup>1</sup> \$5,944,828 **On-Premise Network** \$62.196 Maintenance TOTAL \$0 TOTAL \$7.093.848 TOTAL \$0 TOTAL \$2,948,908

1 – Needs three years maintenance, 2 – Needs two years maintenance