
© 2010 IBM Corporation

The future runs on System z

Developing Web 2.0
applications using
Mashup Tools

Updated Feb, 10 2010

© 2010 IBM Corporation2

08:40 - 09:40 - Build a smarter foundation for future investments
09:40 - 09:50 - Break (10 min)
09:50 - 10:50 - Smart Reuse- Transform green screens to Web, SOA,

mobile, and portal
10:50 - 11:00 - Break (10 Min)
11:00 - 12:00 - Speed the development of multiplatform applications

12:00 - 01:00 - Lunch (1 hour)

1:00 - 2:00 - Developing Web 2.0 applications using Mashup Tools
2:00 - 2:10 - Break (10 Min)
2:10 - 3:10 - Smart Work on System z: Enhance teamwork with

multiplatform SCM tools
3:10 - 3:20 - Break (10 Min)
3:20 - 4:20 - Let’s tie it all together and play in the sandbox
3:20 - 4:30 - Close

Agenda

© 2010 IBM Corporation3

Agenda

EGL Overview

Support for Web 2.0 and Rich User Interfaces

EGL CE

© 2010 IBM Corporation4

EGL – Simplify Innovation

EGL is a modern, higher-level programming language
designed for quickly developing new business applications
and workload

– The goal is to shield developers from complexities typically associated
with modern application development

– Spend more time innovating and less time fighting with technology

A true cross-platform, cross-tier language targeted at all
types of developers

Flexible deployment options
– Compiles to Java, COBOL, or JavaScript

– Deploy to JEE environments, CICS, IMS, IBM i, and more

Web 2.0 and SOA built-in

Eclipse-based tools

EGL is also an excellent target language for migrated
traditional applications

© 2010 IBM Corporation5 5

Benefits of EGL

Flexibility: Affords maximum platform independence and architecture support

Rich user interfaces: Enables business developers (COBOL, RPG, VB, 4GL programmers) to create
extremely rich, Web 2.0 user interfaces, along with Service-Oriented, multi-platform applications
with a very short learning curve

Integration: Enables developers to easily connect to, wrapper and extend trusted, valuable assets

Productivity: Encourages developers focus on business
problems, not technology problems

Adaptability: Delivers a modern language that
adapts more easily to changing
technologies

Migration: EGL is ideally suited for migration of COBOL, RPG, apps and developers

Applications

Teams People

© 2010 IBM Corporation6

Hello World
Basic EGL Program Comments

Declare program type and name

Declare a variable and assign a value

EGL Function

EGL Built-in Function

Literal VariableEnd of Program

EGL Language Example

© 2010 IBM Corporation7 7

Evolution of Computing

Client Server
Mainframe computing
“Dumb” green screen clients
Omnipotent big mainframe servers

Client-server computing
“Smart” Personal Computer clients
Simple file and database servers

Web (1.0) computing
Light Web Browser clients
Rich application and database servers

Web 2.0 computing
Rich Internet Application clients
Lighter application and database servers

© 2010 IBM Corporation8

Web Applications Today

Web applications are no longer static, server-
generated collections of pages

Web 2.0 and Rich Internet Applications (RIAs)
represent the next generation of Web applications

– Provides capabilities of a desktop application, but with the
manageability of a Web application

– Enabled by technology like JavaScript and Ajax

– Lightweight and built on open standards

Provides a richer user experience, compared to
traditional Web 1.0 applications

– Simplified, but powerful user interfaces

– Mashed up, related data from multiple sources

– More processing happening on the client (e.g. validation)

– Collaborative

Provides a new vehicle for delivering richer, more
powerful business applications

– Web 2.0 and RIAs are not just for college kids

http://www.google.com/financeExample Web 2.0

http://www.google.com/finance

© 2010 IBM Corporation9 9

Challenges

Why is it difficult to build Web 2.0 Rich Internet
Applications (RIA) today?
– Currently domain of “tech heads”

– Developer must learn multiple complex technologies
• JavaScript, Ajax, JSON, SOAP

– Compound the skill/tool silos and fragmentation

– Most solutions are either front-end or back-end
focused, but not both
• Results in code duplication and manual efforts to keep code

in sync

– Most solutions are built on Web 1.0 style architectures
• Not an ideal programming model for building RIAs

RIA creation typically required lots of time, tools,
and languages … until now.

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas

<head>
<meta http-equiv="content-type" content="text/html; charset=

<title>Google Maps API Example: Simple Geocoding</title>

<script src="http://maps.google.com/maps?file=api&v=2.x

<script type="text/javascript">
var map = null;var geocoder = null;

function initialize() {if (GBrowserIsCompatible()) {map = new GMap2(document.getElementById("map_canvas"));

map.setCenter(new GLatLng(37.4419, -122.1419), 13);

geocoder = new GClientGeocoder();
}

}

function showAddress(address) {
if (geocoder) {
geocoder.getLatLng(address,
function(point) {map.setCenter(point, 13);var marker = new GMarker(point);
map.addOverlay(marker);marker.openInfoWindowHtml(address);

}

);
}

}

</script>
</head>

<body onload="initialize()" onunload="GUnload()">

<form action="#" onsubmit="showAddress(this.address.value); return false"

<p>

<input type="text" size="60" name="address" value="1600 Pennsylvania

Washington DC" />
<input type="submit" value="Go!" />

</p>
<div id="map_canvas" style="width: 500px; height: 300px"></div>

</form>
</body>

</html>

© 2010 IBM Corporation10

Rich User Interfaces with EGL

Simplify creation of Rich Internet Applications
– Deliver end-to-end Web 2.0 quickly in a single language
– Build rich user interfaces to modernize existing applications

Generates standard JavaScript and Ajax
– EGL does NOT replace HTML or JavaScript

Easy-to-learn language

Fully open and extensible

Use a rich, extensible widget library
– Including support for Dojo

Eclipse-based development, testing, and debugging

Consume all types of Web services

© 2010 IBM Corporation11

EGL + Rich UI - Open and Extensible

Fully open and extensible
– Utilize existing Java or JavaScript libraries if needed

Rich UI based on Web Standards
– REST, SOAP, JSON, OpenAjax, Dojo, etc

UI Libraries at the EGL Café
– Download third-party libraries

– Write your own and upload them

– Import into the visual editor palette

Plans for open implementation
– Allow third parties to extend EGL, develop their own version

© 2010 IBM Corporation12

Dojo Support

Dojo is a popular and powerful open source JavaScript
library used throughout the Web

IBM has created a sample EGL Dojo widget library that
enables developers to easily use Dojo widgets within their
EGL applications

– No knowledge of Dojo or JavaScript required
– Fits within the EGL programming model
– Demonstrates extensibility of EGL architecture
– Enables faster development
– Available as a sample on the EGL Café and is included in EGL

Community Edition

Provided Widgets

Accordion Container

Bar Graph

Bubble Chart

Button

Check Box

Color Palette

Combo Box

Content Pane

Context Menu

Currency Text Box

Date Text Box

Dialog

Grid

Horizontal Slider

Line Graph

Menu

Pie Chart

Progress Bar

Radio Group

Tab Container

Time Text Box

Title Pane

Tree

Code sample showing creation of a rich bubble chart:

© 2010 IBM Corporation14

EGL Rich UI Development and Deployment

Developer
Workbench

(RDz with EGL)

System z
CICS / DB2

Service calls to existing CICS Web,
EGL, PHP, SOAP, or REST services

are made using Ajax

PreviewPreview

Other /
Third-Party
Services

Internet / Intranet
 Developer uses Eclipse-
based EGL tooling (such as
RDz with EGL IDE) to code,
test, and debug application on
their workstation.

 Developer uses Eclipse-
based EGL tooling (such as
RDz with EGL IDE) to code,
test, and debug application on
their workstation.

© 2010 IBM Corporation15

EGL Rich UI Development and Deployment

Developer
Workbench

(RDz with EGL)
Application or Web Server

(WAS, Tomcat, or
Apache)

 Developer runs Deployment
wizard to create a Web
application containing HTML
and JavaScript (generated from
EGL code). Application is
deployed to an application
server.

 Developer runs Deployment
wizard to create a Web
application containing HTML
and JavaScript (generated from
EGL code). Application is
deployed to an application
server.

JavaScript, HTML, CSS,
images, etc. packaged
as a Web application

(e.g. WAR or EAR) and
deployed on the server

© 2010 IBM Corporation16

EGL Rich UI Development and Deployment

Application or Web Server
(WAS, Tomcat, or

Apache)

System z
CICS / DB2

Service calls to existing CICS Web,
EGL, PHP, SOAP, or REST services

are made using Ajax

Other /
Third-Party
Services

Internet / Intranet

 End user uses standard
Web browser from desktop,
notebook, or mobile device
to access the application.

 End user uses standard
Web browser from desktop,
notebook, or mobile device
to access the application.

Application is delivered
as pure HTML and

JavaScript to the client

Client browsers
connect to

services via
proxy

© 2010 IBM Corporation17

EGL in Action (Side-by-Side Comparison)

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-
com:vml">

<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8"/>
<title>Google Maps API Example: Simple Geocoding</title>
<script src="http://maps.google.com/maps?file=api&v=2.x
<script type="text/javascript">

var map = null;
var geocoder = null;

function initialize() {
if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map_canvas"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);
geocoder = new GClientGeocoder();

}
}

function showAddress(address) {
if (geocoder) {

geocoder.getLatLng(
address,
function(point) {

map.setCenter(point, 13);
var marker = new GMarker(point);
map.addOverlay(marker);
marker.openInfoWindowHtml(address);

}
);

}
}
</script>

</head>

<body onload="initialize()" onunload="GUnload()">
<form action="#" onsubmit="showAddress(this.address.value); return

false">
<p>

<input type="text" size="60" name="address" value="1600 Pennsylvania
Ave, Washington DC" />

<input type="submit" value="Go!" />
</p>
<div id="map_canvas" style="width: 500px; height: 300px"></div>

</form>
</body>

</html>

handler MyRuiHandler type RUIhandler { initialUI = [addressForm,
map] }

addressField TextField { text = "1600 Pennsylvania Ave, Washington
DC", width = 250 };

goButton Button { text = "Go!", onClick ::= goButton_clicked };
addressForm Box { children = [addressField, goButton] };

map GoogleMap { width = "500px", height = "300px" };

function goButton_clicked (e Event in)
addresses String[] = [addressField.text];
map.showAddresses(addresses, addresses);

end
end

HTML and JavaScriptEGL Rich UI

All code, including UI
and controller logic, is
written completely in

EGL.

The complexity of the
Google Map APIs are

hidden from the developer,
so the developer can focus

on the actual business
requirement and not

technical complexities.

Developing RIAs by hand
requires developers to

become experts in multiple
technologies – HTML and
JavaScript. Neither was
designed for the kinds of

applications being
developed today!

© 2010 IBM Corporation18

EGL Rich UI Example (Server Side)

EGL has a service
keyword that

enables developers
to define services,

which are then
compiled into Java
and deployed as a

REST or SOAP
service.

Functions declared in
services are available to be

called externally. In this
example, the getRecords
function returns an array of

all employee records.

EGL makes it simple to interact with
databases. In this example, the

“get” keyword is used to populate
an array of employee records from
a database (connection settings are

stored outside the code). Other
keywords (like “add” and “update”)
are used to easily add new records

to the database or update an
existing record.

Records are EGL parts that
represent data. In this example, the
EmployeeRecord part is an SQL
record, which means it is tied to a
table (or tables) in a database. As

you can see, the table name is
specified and fields within the record
are bound to columns in the table.

© 2010 IBM Corporation19

EGL Rich UI Example (Browser Side)

The user interface is
written completely in

EGL (not HTML).
This code is

compiled into
JavaScript and
HTML on-the-fly

during development.

EGL uses a
declarative

programming style
to make creating new
objects (in this case,
UI widgets) easy. In

this example, a
simple button and

Dojo grid are defined.

Notice how functions
are bound to event

types on UI widgets. In
this example, when this

button is clicked, the
displayButton_onClick

function is called.

Notice how columns are
declared on the Dojo
grid. The “name” field
tells EGL which field in
the record (in this case,
“EmployeeRecord”) to
display in the column.

Notice how an instance of the
previously-created service is

declared directly in our UI code.
Also, notice the call statement

that asynchronously invokes the
getRecords method. This

statement will be compiled into
a JavaScript Ajax statement.

The array of employee record is passed directly to the
Dojo grid widget (although this record is defined in our
service code, it will be compiled into JavaScript since it

is referenced by the UI code). The grid widget will
automatically populate the grid based on the columns

defined earlier and the data in the records.

© 2010 IBM Corporation20

EGL Rich UI Example (End Result)

Clicking the Display button will
cause a Web service to be invoked
on the server. This service will pull
records out of a database table and
return them to the client. Once
returned, the records will be
displayed in the Dojo grid.

Key points:
– Data can be represented the same way

in both server and client code.

– Web services can be easily created and
invoked from the client side.

– EGL makes it simple to interact with a
database.

– EGL does not replace HTML or
JavaScript!

EGL allows you to spend more time
innovating and less time fighting with
technology!

© 2010 IBM Corporation21

EGL and IMS

Integrate Web services from IMS SOAP Gateway to
build rich Web 2.0 user interfaces that incorporate
popular widget libraries like Dojo.

Generated COBOL code can run in:
– Message Processing regions

– Batch Message Processing (BMP) regions

– IMS Fast Path (IFP) regions

Quickly build new Text UIs (TUIs)

Use EGL data access keywords such as get, add,
replace, delete to easily work with data.

– DL/I support with tooling to customize DL/I statements

Full transaction support

Invokes IMS programs remotely
– EGL handles transaction invocation and data conversion

Work with serial and print files

Use a single IDE (Rational Developer for System z
with EGL) to develop EGL and IMS solutions.

IMS
App

IMS
Connect

IMS SOAP
Gateway

IMS
DB

DB2

Web 2.0 UI
with EGL

SOAP

© 2010 IBM Corporation22

Application transformation tools and services

Reduce maintenance and support costs, enable platform flexibility, and move to
a modern language and tool set with Rational Migration Extension

– Enable modern development with EGL’s built-in support for Web 2.0 and SOA
– Gain the benefits of integration with other modern tools from Rational

Conversion
Tooling

EGL

Testing, Remediation,
Deployment

System z – CICS
System z – IMS
System z – Linux*
System z – Batch
System z – WAS*
System z – VSE
IBM i - WAS
IBM i - Native
AIX
HP - UX
Solaris
Linux
Windows

*Eligible to run on
IFL and zAAP

Rational Migration Extension for Natural
Rational Migration Extension for CA Technologies
Rational Migration Extension for Rich UI

© 2010 IBM Corporation23

EGL Community Edition

Simplify development of Web 2.0 solutions – for free!
– Code client and server side code is in one language

(EGL)

Eclipse-based development environment
– WYSIWYG visual editor
– Instant previewing without deploying to a server
– Full debug for client and server-side code
– Small download, simple install

Rich Web user interfaces using Dojo
– Fully extensible architecture

Build Java-based Web services without the Java
– Take advantage of EGL’s powerful keywords for

accessing data in most popular databases, including
MySQL

Fully functional, but no-cost

Spend more time innovating and less time fighting with
technology!

Download EGL Community Edition today!
http://www.ibm.com/software/rational/cafe/community/egl/ce

Statistics
• 1,200 downloads in the first 5 days!
• Thousands of views of “Hello World with EGL”

video on YouTube
• Press coverage: InfoWorld, SearchSOA, The

Register, InternetNews.com, Dr. Dobb’s, System i
Network, D’Technology, and others.

Statistics
• 1,200 downloads in the first 5 days!
• Thousands of views of “Hello World with EGL”

video on YouTube
• Press coverage: InfoWorld, SearchSOA, The

Register, InternetNews.com, Dr. Dobb’s, System i
Network, D’Technology, and others.

Check out the EGL CE
video on YouTube!

© 2010 IBM Corporation24 24

EGL Café

Online community for EGL
developers, partners, and
clients

Discussion forums

Gallery of sample applications
and widgets

Presentations, videos, and
articles

Blogs by IBMers and partners

Success stories

Become part of the community
today!

Resources: Download, Learn, Presentations, Video/viewlet, Sample Code
Community: Clients, Partners, Influencers, Press, News and Events

Collaboration: Blogs, Forums, Tips and Techniques Comments, Ratings
Testimonials: Case Studies, Celebrations!

http://ibm.com/rational/eglcafe

© 2010 IBM Corporation25

Proof Of technology
Discovering the value of EGL to develop cross-platform applications
and accelerate the adoption of Web 2.0

POT Link

Duration : 2 days

Free of Charge

http://nasoftware.ibm.com/tec/assets.nsf/doc/BCUO-7P8M9D

http://nasoftware.ibm.com/tec/assets.nsf/doc/BCUO-7P8M9D

© 2010 IBM Corporation26

Questions?

© 2010 IBM Corporation27

Moving legacy COBOL/CICS/VSAM to iPhone

http://testiphone.com/?url=http://zserveros.demos.ibm.com:9080/iPhone/CICS-en_US.html

http://testiphone.com/?url=http://zserveros.demos.ibm.com:9080/iPhone/CICS-en_US.html

© 2010 IBM Corporation28

EXEC CICS LINK LAB3POT

z/OS Texas
ZSERVEROS

COBOL Client

EXEC CICS READ
FILE (‘POTVSAM')

INTO (WORK)

EXEC CICS RETURN VSAM

Existing COBOL/CICS 3270 Application

COBOL Server

Link to PCOM

© 2010 IBM Corporation29

Using COBOL/CICS/VSAM

VSAM

EXEC CICS READ
FILE (‘POTVSAM')

INTO (WORK)

EXEC CICS RETURN

Existing CICS/COBOL

COBOL
Wrapper

Generated by RDz

WSDL

z/OS CICS

Ajax Proxy
and EGL Rich UI

code
on

Application Server

zserveros.demos.ibm

System z

rbarosa@us.ibm.com

More at:
http://www.ibm.com/developerworks/websphere/techjournal/0909_barosa/0909_barosa.html

Invoking CICS Web services from iPhone

http://zserveros.demos.ibm.com:9080/iPhone/egl.html

9 Minutes

http://zserveros.demos.ibm.com:9080/iPhone/egl.html

© 2010 IBM Corporation30

EXEC CICS LINK LAB3POT

z/OS Texas

COBOL Client

EXEC CICS READ
FILE (‘POTVSAM')

INTO (WORK)
VSAM

COBOL Server

PART #1. Create a CICS Web Service and WSDL
using Rational Developer for System z (RDz)

PART #2. Create a Web 2.0 Interface using Rational
Developer for System z with EGL (RDz/EGL) z/OS Texas

EXEC CICS READ
FILE (‘POTVSAM')
INTO (WORK) VSAM

COBOL Server

http://zserveros.demos.ibm.com:9080/iPhone/CICS-en_US.html

© 2010 IBM Corporation31

(Real iPhone screen captures)Invoking CICS Web services from iPhone

http://zserveros.demos.ibm.com:9080/zos/egl.html

© 2010 IBM Corporation32

Thank You

© 2010 IBM Corporation33

Agenda

08:40 - 09:40 - Build a smarter foundation for future investments
09:40 - 09:50 - Break (10 min)
09:50 - 10:50 - Smart Reuse- Transform green screens to Web, SOA,

mobile, and portal
10:50 - 11:00 - Break (10 Min)
11:00 - 12:00 - Speed the development of multiplatform applications

12:00 - 01:00 - Lunch (1 hour)

1:00 - 2:00 - Developing Web 2.0 applications using Mashup Tools
2:00 - 2:10 - Break (10 Min)
2:10 - 3:10 - Smart Work on System z: Enhance teamwork with

multiplatform SCM tools
3:10 - 3:20 - Break (10 Min)
3:20 - 4:20 - Let’s tie it all together and play in the sandbox
3:20 - 4:30 - Close

© 2010 IBM Corporation34

Orginal Slides - Backup

© 2010 IBM Corporation35

EGL Rich UI Example

Objective: create a simple Web 2.0 style application to display data from a
database in a Dojo grid.

© 2010 IBM Corporation36 36

EGL Rich UI and Services

Services are the key to any modern, flexible IT architecture

EGL Rich UI is built on services
– All interaction from the client (browser) to the server is performed via Web

service calls

EGL includes first-class support for creating and consuming Web
services
– EGL provides a “service” keyword – a developer simply codes the

functions/methods desired for the service
• The type of service (REST, SOAP, CICS, etc) does not need to be decided up-front

– Existing services can be easily consumed in EGL
• All without requiring the developer to learn the details of SOAP and HTTP messaging

Rational provides tool to expose existing logic on enterprise
systems as services
– Services from existing RPG programs can be created with Rational Developer

for i for SOA Construction

	Developing Web 2.0 applications using �Mashup Tools
	Slide Number 2
	Agenda
	EGL – Simplify Innovation
	Benefits of EGL
	EGL Language Example
	Evolution of Computing
	Web Applications Today
	Challenges
	Rich User Interfaces with EGL
	EGL + Rich UI - Open and Extensible
	Dojo Support
	EGL Rich UI Development and Deployment
	EGL Rich UI Development and Deployment
	EGL Rich UI Development and Deployment
	EGL in Action (Side-by-Side Comparison)
	EGL Rich UI Example (Server Side)
	EGL Rich UI Example (Browser Side)
	EGL Rich UI Example (End Result)
	EGL and IMS
	Application transformation tools and services
	EGL Community Edition
	EGL Café
	Proof Of technology�Discovering the value of EGL to develop cross-platform applications and accelerate the adoption of Web 2.0
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	EGL Rich UI Example
	EGL Rich UI and Services

