
© 2011 IBM Corporation

IBM System z Technology Summit

What’s new for SQL
optimization in DB2 9 for
z/OS

© 2011 IBM Corporation2

© Copyright IBM Corporation 2011. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 and z/OS are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their
first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

http://www.ibm.com/legal/copytrade.shtml

© 2011 IBM Corporation3

Agenda

Plan Stability

Indexing Enhancements

General Query Performance Enhancements

Histogram Statistics

Global Query Optimization

Generalized sparse index and in-memory data cache

Dynamic Index ANDing

REOPT AUTO

© 2011 IBM Corporation4

Plan Stability Overview

Ability to backup your static SQL packages

At REBIND

– Save old copies of packages in Catalog/Directory

– Switch back to previous or original version

Two flavors
– BASIC

• 2 copies: Current and Previous
– EXTENDED

• 3 copies: Current, Previous, Original
– Default controlled by a ZPARM

– Also supported as REBIND options

© 2011 IBM Corporation5

Plan Stability - BASIC support

Current copy

previous copy

Incoming copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

current copy

previous copy

move

delete

movemove

Chart is to be read from bottom to top

© 2011 IBM Corporation6

Plan Stability - EXTENDED support

current copy

previous copy

REBIND … PLANMGMT(EXTENDED) REBIND … SWITCH(ORIGINAL)

move

delete

current copy

previous copy

original copy

move

clone

Incoming copy

original copy

clone

delete

© 2011 IBM Corporation7

Access Plan Stability Notes

REBIND PACKAGE …
– PLANMGMT (BASIC)
2 copies: Current and Previous
– PLANMGMT (EXTENDED)
3 copies: Current, Previous, Original

REBIND PACKAGE …
– SWITCH(PREVIOUS)
Switch between current & previous
– SWITCH(ORIGINAL)
Switch between current & original

Most bind options can be changed at REBIND
– But a few must be the same …

FREE PACKAGE …
– PLANMGMTSCOPE(ALL) – Free

package completely
– PLANMGMTSCOPE(INACTIVE) –

Free old copies

Catalog support
– SYSPACKAGE reflects active copy
– SYSPACKDEP reflects dependencies

of all copies
– Other catalogs (SYSPKSYSTEM, …)

reflect metadata for all copies

Invalidation and Auto Bind
– Each copy invalidated separately3 important updates:

1. APAR PK80375 – SPT01 Compression
2. APAR PM09354 – Support DBPROTOCOL change
3. Article – Search for “Escaping the REBIND blues in DB2 9 for z/OS”

© 2011 IBM Corporation8

Agenda

Plan Stability

Indexing Enhancements

General Query Performance Enhancements

Histogram Statistics

Global Query Optimization

Generalized sparse index and in-memory data cache

Dynamic Index ANDing

REOPT AUTO

© 2011 IBM Corporation9

Index on Expression

SELECT *
FROM CUSTOMERS
WHERE YEAR(BIRTHDATE) = 1971

DB2 9 supports “index on expression”
– Can turn a stage 2 predicate into indexable

Previous FF = 1/25
Now, RUNSTATS collects
frequencies. Improved FF accuracy

CREATE INDEX ADMF001.CUSTIX3
ON ADMF001.CUSTOMERS

(YEAR(BIRTHDATE) ASC)

© 2011 IBM Corporation10

Index Enhancement - Tracking Usage

Additional indexes require overhead for
– Utilities

• REORG, RUNSTATS, LOAD etc
– Data maintenance

• INSERT, UPDATE, DELETE
– Disk storage

– Optimization time
• Increases optimizer’s choices

But identifying unused indexes is a difficult task
– Especially in a dynamic SQL environment

© 2011 IBM Corporation11

Tracking Index Usage

RTS records the index last used date.
– SYSINDEXSPACESTATS.LASTUSED

• Updated once in a 24 hour period
– RTS service task updates at 1st externalization interval (set by STATSINT)

after 12PM.
• if the index is used by DB2, update occurs.
• If the index was not used, no update.

"Used", as defined by DB2 as:
– As an access path for query or fetch.

– For searched UPDATE / DELETE SQL statement.

– As a primary index for referential integrity.

– To support foreign key access

© 2011 IBM Corporation12

Tracking Index Usage Implications

What can you do with this information?
– LAST_USED only shows when the index was last used

• Cannot predict future use

– Assume you decide to DROP an index due to lack of usage
• Is the index UNIQUE?

– Is there another index that can guarantee that UNIQUEness?
• Related statistics will be dropped

– Same issue as “What If?” Optimization
– For index on C1, C2, C3

> RUNSTATS options to collect statistics

COLGROUP (C1) FREQVAL COUNT 10
COLGROUP (C1, C2, C3)

© 2011 IBM Corporation13

Agenda

Plan Stability

Indexing Enhancements

General Query Performance Enhancements

Histogram Statistics

Global Query Optimization

Generalized sparse index and in-memory data cache

Dynamic Index ANDing

REOPT AUTO

© 2011 IBM Corporation14

GROUP BY Sort Avoidance

Improved sort avoidance for GROUP BY
– Reorder GROUP BY columns to match available index

– Remove 'constants' from GROUP BY ordering requirement

• ordering requirement reduced to just C1

SELECT … FROM T1
GROUP BY C2, C1

Index 1 (C1, C2)

GROUP BY in C2, C1 sequence
Index in C1, C2 sequence

SELECT … FROM T1
WHERE C2 = 5
GROUP BY C2, C1

C2 Constant

© 2011 IBM Corporation15

GROUP BY Sort Avoidance

Continued….
– Allow swapping of ordering columns using transitive closure

• ordering requirement changed to T2.C1, T2.C3

– Improvement for 'partially ordered' cases with unique index

• if we have unique index on C4, C1
– Sort can be avoided

SELECT … FROM T1, T2
WHERE T1.C1 = T2.C1
GROUP BY T1.C1, T2.C3 Contains T1 & T2

SELECT C1, C2+C3, C4 FROM T1
GROUP BY 1, 2, 3

© 2011 IBM Corporation16

GROUP BY Sort Avoidance Implications

Implications of improved sort avoidance for GROUP BY
– May improve query performance!!!

– Data may be returned in a different order
• Always been true in any DB2 release

– Also true in other DBMSs

• Relational theory states that order is NOT guaranteed without ORDER BY

© 2011 IBM Corporation17

Sort Improvements

Reduced workfile usage for very small sorts
– Final sort step requiring 1 page will NOT allocate workfile

More efficient sort with FETCH FIRST clause
– V8 and prior,

• Sort would continue to completion
• Then return only the requested ‘n’ rows

– From V9,
• If the requested ‘n’ rows will fit into a 32K page,

– As the data is scanned,
> Only the top ‘n’ rows are kept in memory
> Order of the rows is tracked
> No requirement for final sort

© 2011 IBM Corporation18

FETCH FIRST V8 Example

Sort is not avoided via index
– Must sort all qualified rows

C1
9
6
4

10
1
3
7
8
2
5

Sort

Scan
C1
1
2
3
4
5
6
7
8
9

10

Fetch

SELECT C1
FROM T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

10 row table.
Who cares? But,
1 million rows?

© 2011 IBM Corporation19

FETCH FIRST DB2 9 Example

Sort is not avoided via index
– But in-memory swap avoids sort

• Pointers maintain order

C1
9
6
4

10
1
3
7
8
2
5

Scan

1st Fetch

SELECT C1
FROM T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

Suggestion: Add
FETCH FIRST
when subset is

required.

9
6
4
1
3
2 2nd Fetch

3rd Fetch

Memory

© 2011 IBM Corporation20

Dynamic Prefetch Enhancements

Seq. Pref. cannot fall back to Dyn. Pref. at run time

Plan table may still show ‘S’ for IX + Data access

Sequential Prefetch Dynamic Prefetch
Chosen at bind/prepare time Detected at runtime
Requires hit to a triggering page Tracks sequential access pattern
Only prefetch in one direction Prefetch forward or backward
Used for tablespace scan & LOBs Used for index & index+data access

• ET reductions between 5-50% measured at SVL
• 10-75% reduction in synchronous I/O’s

© 2011 IBM Corporation21

Clusterratio Enhancement

New Clusterratio formula in DB2 9

– Including new DATAREPEATFACTOR statistic
• Differentiates density and sequential

Controlled by zparm STATCLUS
– ENHANCED is default

– STANDARD disables, and is NOT recommended

Recommend RUNSTATS before mass REBIND in DB2 9

Dense (and sequential) Sequential (not dense)

© 2011 IBM Corporation22

Clusterratio Impacts

Clusterratio may be
– Higher for indexes

• With many duplicates (lower colcardf)
– In recognition of sequential RIDs

• On smaller tables
– Less clusterratio degradation from random inserts

• Indexes that are reverse sequential
– Lower for random indexes

• No benefit from dynamic prefetch

Clusterratio(CR)/DataRepeatfactor (DRF) patterns

High DRF Low DRF
High CR Sequential but not dense Density matching clustering or small table

Low CR Random index Unlikely

© 2011 IBM Corporation23

Parallelism Enhancements

In V8
– Lowest cost is BEFORE parallelism

In DB2 9
– Lowest cost is AFTER parallelism

• Only a subset of plans are considered for
parallelism

Optimizer

Parallelism

One Lowest
cost plan
survives

How to
parallelize

these
plans?

© 2011 IBM Corporation24

Additional Parallelism Enhancements

In V8
–Degree cut on leading table (exception star join)

In DB2 9
–Degree can cut on non-leading table

• Benefit for leading workfile, 1-row table etc.

–Histogram statistics exploited for more even distribution
• For index access with NPI

–CPU bound query degree <= # of CPUs * 4
• <= # of CPUs in V8

© 2011 IBM Corporation25

Agenda

Plan Stability

Indexing Enhancements

General Query Performance Enhancements

Histogram Statistics

Global Query Optimization

Generalized sparse index and in-memory data cache

Dynamic Index ANDing

REOPT AUTO

© 2011 IBM Corporation26

RUNSTATS Histogram Statistics

RUNSTATS will produce equal-depth histogram
– Each quantile (range) will have approx same number of rows

• Not same number of values
– Another term is range frequency

Example
• 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 (sequenced)

– Lets cut that into 3 quantiles.
• 1, 3, 3, 4 ,4 6,7,8,9 10,12,15

Seq No Low Value High Value Cardinality Frequency
1 1 4 3 5/12
2 6 9 4 4/12
3 10 15 3 3/12

© 2011 IBM Corporation27

RUNSTATS Histogram Statistics Notes

RUNSTATS
– Maximum 100 quantiles for a column

– Same value columns WILL be in the same quantile

– Quantiles will be similar size but:
• Will try to avoid big gaps inside quantiles
• Highvalue and lowvalue may have separate quantiles
• Null WILL have a separate quantile

Supports column groups as well as single columns

Think “frequencies” for high cardinality columns

© 2011 IBM Corporation28

Histogram Statistics Example

SAP uses INTEGER (or VARCHAR) for YEAR-MONTH

• Assuming data for 2006 & 2007
– FF = (high-value – low-value) / (high2key – low2key)
– FF = (200612 – 200601) / (200711 – 200602)

– 10% of rows estimated to return
Data Distribution - Even Distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

200601 200712

Year/Month

WHERE YEARMONTH BETWEEN 200601 AND 200612

Data assumed as evenly
distributed between low
and high range

© 2011 IBM Corporation29

Histogram Statistics Example

Data Distribution - Histograms

0

200000

400000

600000

800000

1000000

1200000

1400000

2006 01-12 200613 -----> -----> 200700 2007 01-12

Year/Month

• Example (cont.)
– Data only exists in ranges 200601-12 & 200701-12

• Collect via histograms
– 45% of rows estimated to return

No data between
200613 & 200700

WHERE YEARMONTH BETWEEN 200601 AND 200612

© 2011 IBM Corporation30

Agenda

Plan Stability

Indexing Enhancements

General Query Performance Enhancements

Histogram Statistics

Global Query Optimization

Generalized sparse index and in-memory data cache

Dynamic Index ANDing

REOPT AUTO

© 2011 IBM Corporation31

Problem Scenario 1

V8, Large Non-correlated subquery is materialized*
SELECT * FROM SMALL_TABLE A
WHERE A.C1 IN

(SELECT B.C1 FROM BIG_TABLE B)

– “BIG_TABLE” is scanned and put into workfile
– “SMALL_TABLE” is joined with the workfile

V9 may rewrite non-correlated subquery to correlated
– Much more efficient if scan / materialisation of BIG_TABLE was avoided
– Allows matching index access on BIG_TABLE

SELECT * FROM SMALL_TABLE A
WHERE EXISTS

(SELECT 1 FROM BIG_TABLE B WHERE B.C1 = A.C1)

* Assumes subquery is
not transformed to join

© 2011 IBM Corporation32

Problem Scenario 2

V8, Large outer table scanned rather than using matching index
access*

SELECT * FROM BIG_TABLE A

WHERE EXISTS

(SELECT 1 FROM SMALL_TABLE B WHERE A.C1 = B.C1)
– “BIG_TABLE” is scanned to obtain A.C1 value
– “SMALL_TABLE” gets matching index access

V9 may rewrite correlated subquery to non-correlated
SELECT * FROM BIG_TABLE A

WHERE A.C1 IN

(SELECT B.C1 FROM SMALL_TABLE B)
– “SMALL_TABLE” scanned and put in workfile
– Allows more efficient matching index access on BIG_TABLE

* Assumes subquery is
not transformed to join

© 2011 IBM Corporation33

Virtual Tables

A new way to internally represent subqueries
– Represented as a Virtual table

• Allows subquery to be considered in different join sequences
• May or may not represent a workfile

• Apply only to subqueries that cannot be transformed to joins

Correlated or non-correlated?......I shouldn’t have to care!

© 2011 IBM Corporation34

Agenda

Plan Stability

Indexing Enhancements

General Query Performance Enhancements

Histogram Statistics

Global Query Optimization

Generalized sparse index and in-memory data cache

Dynamic Index ANDing

REOPT AUTO

© 2011 IBM Corporation35

Pre-V9 Sparse Index & in-memory data cache

V4 introduced sparse index
– for non-correlated subquery workfiles

V7 extended sparse index
– for the materialized work files within star join

V8 replaced sparse index
– with in-memory data caching for star join

• Runtime fallback to sparse index when memory is insufficient

© 2011 IBM Corporation36

RID

T1 T2 (WF)NLJ

... ...

t1.c = t2.c

KeyBinary Search of sparse index
to look up “approximate “
location of qualified key

Sparse Index
sorted in t2.c order

Workfile sorted
in t2.c order

T2
(WF)

How does Sparse Index work?

• Sparse index may be a subset of workfile (WF)
– Example, WF may have 10,000 entries

• Sparse index may have enough space for 1,000 entries
• Sparse index is “binary searched” to find target location of search key
• At most 10 WF entries are scanned

© 2011 IBM Corporation37

Data Caching vs Sparse Index

Data Caching
– Also known as In-Memory WF
– Is a runtime enhancement to sparse index

Sparse Index/In-Memory WF
– Extended to non-star join in DB2 9

New ZPARM MXDTCACH
– Maximum extent in MB, for data caching per thread
– If memory is insufficient

• Fall-back to sparse index at runtime

© 2011 IBM Corporation38

T1 T2 (WF)NLJ

t1.c = t2.cBinary Search of WF to look up
exact location of qualified key Workfile sorted

in t2.c order

How does In-Memory WF work?
• Whereas sparse index may be a subset of WF

– IMWF contains the full result (not sparse)
– Example, WF may have 10,000 entries

• IMWF is “binary searched” to find target location of search key

T2
(WF)

© 2011 IBM Corporation39

Benefit of Data Caching

All tables lacking an index on join column(s):
– Temporary tables

– Subqueries converted to joins

– …..any table

DB2 9 also supports multi-column sparse index

© 2011 IBM Corporation40

Agenda

Plan Stability

Indexing Enhancements

General Query Performance Enhancements

Histogram Statistics

Global Query Optimization

Generalized sparse index and in-memory data cache

Dynamic Index ANDing

REOPT AUTO

© 2011 IBM Corporation41

Dynamic Index ANDing Challenge

Filtering may come from
multiple dimensions

•Creating multi-column
indexes to support the best
combinations is difficult

F

D5

D4

D2

D1

D3

© 2011 IBM Corporation42

Index ANDing – Pre-Fact

Pre-fact table access
–Filtering may not be (truly) known until runtime

F

D1 Filtering dimensions
accessed in parallel

Join to respective fact table
indexes

Build RID lists

F

D3

F

D5

RID
list 1

RID
list 2

RID
list 3

X Runtime optimizer may terminate parallel leg(s) which
provide poor filtering at runtime

© 2011 IBM Corporation43

Index ANDing – Fact and Post-Fact

Fact table access
–Intersect filtering RID lists

–Access fact table
• From RID list

Post fact table
–Join back to dimension tables

Remaining RID lists are
“ANDed” (intersected)

RID
list 2

RID
list 3

Using parallelism

RID
list 2/3

Final RID list used for parallel fact table access

© 2011 IBM Corporation44

V8 RID Pool failure = TS Scan

SORT

RID List
Tablespace SCAN

Physical or
Logical resource

constraintRID
Processing

© 2011 IBM Corporation45

V9 RID Pool Fallback Plan

SORT

RID List

Workfile

Fall Back plan writes pair
of join result rids into Workfile

Physical or
Logical resource

constraint SORT

Next portion
of Rids

retrieved

© 2011 IBM Corporation46

Dynamic Index Anding Highlights

Pre-fact table filtering
– Filtering dimensions accessed concurrently

Runtime optimization
– Terminate poorly filtering legs at runtime

More aggressive parallelism

Fallback to workfile for RID pool failure
– Instead of r-scan

APAR PK76100 – zparm to enable EN_PJSJ

© 2011 IBM Corporation47

Agenda

Plan Stability

Indexing Enhancements

General Query Performance Enhancements

Histogram Statistics

Global Query Optimization

Generalized sparse index and in-memory data cache

Dynamic Index ANDing

REOPT AUTO

© 2011 IBM Corporation48

REOPT enhancement for dynamic SQL

V8 REOPT options
– Dynamic SQL

• REOPT(NONE, ONCE, ALWAYS)
– Static SQL

• REOPT(NONE, ALWAYS)

V9 Addition for Dynamic SQL
– Bind option REOPT(AUTO)

© 2011 IBM Corporation49

Dynamic SQL REOPT - AUTO

For dynamic SQL with parameter markers
– DB2 will automatically reoptimize the SQL when

• Filtering of one or more of the predicates changes dramatically
– Such that table join sequence or index selection may change

• Some statistics cached to improve performance of runtime check
– Newly generated access path will replace the global statement

cache copy.

First optimization is the same as REOPT(ONCE)
– Followed by analysis of the values supplied at each execution of

the statement

	IBM System z Technology Summit
	Disclaimer
	Agenda
	Plan Stability Overview
	Plan Stability - BASIC support
	Plan Stability - EXTENDED support
	Access Plan Stability Notes
	Agenda
	Index on Expression
	Index Enhancement - Tracking Usage
	Tracking Index Usage
	Tracking Index Usage Implications
	Agenda
	GROUP BY Sort Avoidance
	GROUP BY Sort Avoidance
	GROUP BY Sort Avoidance Implications
	Sort Improvements
	FETCH FIRST V8 Example
	FETCH FIRST DB2 9 Example
	Dynamic Prefetch Enhancements
	Clusterratio Enhancement
	Clusterratio Impacts
	Parallelism Enhancements
	Additional Parallelism Enhancements
	Agenda
	RUNSTATS Histogram Statistics
	RUNSTATS Histogram Statistics Notes
	Histogram Statistics Example
	Histogram Statistics Example
	Agenda
	Problem Scenario 1
	Problem Scenario 2
	Virtual Tables
	Agenda
	Pre-V9 Sparse Index & in-memory data cache
	How does Sparse Index work?
	Data Caching vs Sparse Index
	How does In-Memory WF work?
	 Benefit of Data Caching
	Agenda
	Dynamic Index ANDing Challenge
	Index ANDing – Pre-Fact
	Index ANDing – Fact and Post-Fact
	V8 RID Pool failure = TS Scan
	V9 RID Pool Fallback Plan
	Dynamic Index Anding Highlights
	Agenda
	REOPT enhancement for dynamic SQL
	Dynamic SQL REOPT - AUTO

