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Plan Stability Overview



 

Ability to backup your static SQL packages



 

At REBIND

– Save old copies of packages in Catalog/Directory

– Switch back to previous or original version



 

Two flavors
– BASIC

• 2 copies: Current and Previous
– EXTENDED

• 3 copies: Current, Previous, Original
– Default controlled by a ZPARM

– Also supported as REBIND options
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Plan Stability - BASIC support

Current copy

previous copy

Incoming copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

current copy

previous copy

move

delete

movemove

Chart is to be read from bottom to top



© 2011 IBM Corporation6

Plan Stability - EXTENDED support

current copy

previous copy

REBIND … PLANMGMT(EXTENDED) REBIND … SWITCH(ORIGINAL)

move

delete

current copy

previous copy

original copy

move

clone

Incoming copy

original copy

clone

delete
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Access Plan Stability Notes


 

REBIND PACKAGE …
– PLANMGMT (BASIC)
2 copies: Current and Previous
– PLANMGMT (EXTENDED)
3 copies: Current, Previous, Original



 

REBIND PACKAGE …
– SWITCH(PREVIOUS)
Switch between current & previous
– SWITCH(ORIGINAL)
Switch between current & original



 

Most bind options can be changed at REBIND 
– But a few must be the same …



 

FREE PACKAGE  …
– PLANMGMTSCOPE(ALL) – Free 

package completely
– PLANMGMTSCOPE(INACTIVE) – 

Free old copies



 

Catalog support
– SYSPACKAGE reflects active copy
– SYSPACKDEP reflects dependencies 

of all copies
– Other catalogs (SYSPKSYSTEM, …) 

reflect metadata for all copies



 

Invalidation and Auto Bind
– Each copy invalidated separately3 important updates:

1. APAR PK80375 – SPT01 Compression
2. APAR PM09354 – Support DBPROTOCOL change
3. Article – Search for “Escaping the REBIND blues in DB2 9 for z/OS”
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Index on Expression

SELECT *
FROM CUSTOMERS  
WHERE YEAR(BIRTHDATE) = 1971



 

DB2 9 supports “index on expression”
– Can turn a stage 2 predicate into indexable

Previous FF = 1/25
Now, RUNSTATS collects 
frequencies. Improved FF accuracy

CREATE INDEX ADMF001.CUSTIX3                         
ON ADMF001.CUSTOMERS 

(YEAR(BIRTHDATE) ASC)
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Index Enhancement - Tracking Usage



 

Additional indexes require overhead for
– Utilities 

• REORG, RUNSTATS, LOAD etc
– Data maintenance

• INSERT, UPDATE, DELETE
– Disk storage

– Optimization time
• Increases optimizer’s choices



 

But identifying unused indexes is a difficult task
– Especially in a dynamic SQL environment
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Tracking Index Usage


 

RTS records the index last used date.
– SYSINDEXSPACESTATS.LASTUSED

• Updated once in a 24 hour period
– RTS service task updates at 1st externalization interval (set by STATSINT) 

after 12PM.
• if the index is used by DB2, update occurs.  
• If the index was not used, no update.



 

"Used", as defined by DB2 as:
– As an access path for query or fetch.

– For searched UPDATE / DELETE SQL statement.

– As a primary index for referential integrity.

– To support foreign key access
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Tracking Index Usage Implications



 
What can you do with this information?
– LAST_USED only shows when the index was last used

• Cannot predict future use

– Assume you decide to DROP an index due to lack of usage
• Is the index UNIQUE?

– Is there another index that can guarantee that UNIQUEness?
• Related statistics will be dropped

– Same issue as “What If?” Optimization
– For index on C1, C2, C3

> RUNSTATS options to collect statistics

COLGROUP (C1) FREQVAL COUNT 10
COLGROUP (C1, C2, C3)
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GROUP BY Sort Avoidance



 

Improved sort avoidance for GROUP BY
– Reorder GROUP BY columns to match available index

– Remove 'constants' from GROUP BY ordering requirement 

• ordering requirement reduced to just C1

SELECT … FROM T1
GROUP BY C2, C1

Index 1 (C1, C2)

GROUP BY in C2, C1 sequence
Index in C1, C2 sequence

SELECT … FROM T1
WHERE C2 = 5
GROUP BY C2, C1

C2 Constant 
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GROUP BY Sort Avoidance



 

Continued….
– Allow swapping of ordering columns using transitive closure

• ordering requirement changed to T2.C1, T2.C3

– Improvement for 'partially ordered' cases with unique index

• if we have unique index on C4, C1 
– Sort can be avoided

SELECT … FROM T1, T2
WHERE T1.C1 = T2.C1
GROUP BY T1.C1, T2.C3 Contains T1 & T2

SELECT C1, C2+C3, C4 FROM T1
GROUP BY 1, 2, 3
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GROUP BY Sort Avoidance Implications



 
Implications of improved sort avoidance for GROUP BY
– May improve query performance!!!

– Data may be returned in a different order
• Always been true in any DB2 release

– Also true in other DBMSs

• Relational theory states that order is NOT guaranteed without ORDER BY
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Sort Improvements



 

Reduced workfile usage for very small sorts
– Final sort step requiring 1 page will NOT allocate workfile



 

More efficient sort with FETCH FIRST clause
– V8 and prior, 

• Sort would continue to completion
• Then return only the requested ‘n’ rows

– From V9, 
• If the requested ‘n’ rows will fit into a 32K page,

– As the data is scanned, 
> Only the top ‘n’ rows are kept in memory
> Order of the rows is tracked
> No requirement for final sort
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FETCH FIRST V8 Example



 

Sort is not avoided via index
– Must sort all qualified rows

C1
9
6
4

10
1
3
7
8
2
5

Sort

Scan
C1
1
2
3
4
5
6
7
8
9

10

Fetch

SELECT C1
FROM  T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

10 row table. 
Who cares? But, 
1 million rows?
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FETCH FIRST DB2 9 Example



 

Sort is not avoided via index
– But in-memory swap avoids sort

• Pointers maintain order

C1
9
6
4

10
1
3
7
8
2
5

Scan

1st Fetch

SELECT C1
FROM  T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

Suggestion: Add 
FETCH FIRST 
when subset is 

required.

9
6
4
1
3
2 2nd Fetch

3rd Fetch

Memory
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Dynamic Prefetch Enhancements



 
Seq. Pref. cannot fall back to Dyn. Pref. at run time



 
Plan table may still show ‘S’ for IX + Data access

Sequential Prefetch Dynamic Prefetch
Chosen at bind/prepare time Detected at runtime
Requires hit to a triggering page Tracks sequential access pattern
Only prefetch in one direction Prefetch forward or backward
Used for tablespace scan & LOBs Used for index & index+data access

• ET reductions between 5-50% measured at SVL
• 10-75% reduction in synchronous I/O’s 
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Clusterratio Enhancement



 

New Clusterratio formula in DB2 9

– Including new DATAREPEATFACTOR statistic
• Differentiates density and sequential



 

Controlled by zparm STATCLUS
– ENHANCED is default

– STANDARD disables, and is NOT recommended



 

Recommend RUNSTATS before mass REBIND in DB2 9

Dense (and sequential) Sequential (not dense)
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Clusterratio Impacts



 

Clusterratio may be 
– Higher for indexes

• With many duplicates (lower colcardf)
– In recognition of sequential RIDs

• On smaller tables
– Less clusterratio degradation from random inserts

• Indexes that are reverse sequential
– Lower for random indexes

• No benefit from dynamic prefetch



 

Clusterratio(CR)/DataRepeatfactor (DRF) patterns

High DRF Low DRF
High CR Sequential but not dense Density matching clustering or small table

Low CR Random index Unlikely
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Parallelism Enhancements


 

In V8
– Lowest cost is BEFORE parallelism



 

In DB2 9 
– Lowest cost is AFTER parallelism

• Only a subset of plans are considered for 
parallelism

Optimizer

Parallelism

One Lowest 
cost plan 
survives

How to 
parallelize 

these 
plans?
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Additional Parallelism Enhancements



 

In V8
–Degree cut on leading table (exception star join)



 

In DB2 9 
–Degree can cut on non-leading table

• Benefit for leading workfile, 1-row table etc.

–Histogram statistics exploited for more even distribution
• For index access with NPI

–CPU bound query degree <= # of CPUs * 4
• <= # of CPUs in V8
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RUNSTATS Histogram Statistics


 

RUNSTATS will produce equal-depth histogram 
– Each quantile (range) will have approx same number of rows

• Not same number of values
– Another term is range frequency



 

Example
• 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 (sequenced)

– Lets cut that into 3 quantiles.
• 1, 3, 3, 4 ,4 6,7,8,9 10,12,15

Seq No Low Value High Value Cardinality Frequency
1 1 4 3 5/12 
2 6 9 4 4/12
3 10 15 3 3/12



© 2011 IBM Corporation27

RUNSTATS Histogram Statistics Notes



 

RUNSTATS 
– Maximum 100 quantiles for a column

– Same value columns WILL be in the same quantile

– Quantiles will be similar size but:
• Will try to avoid big gaps inside quantiles
• Highvalue and lowvalue may have separate quantiles
• Null WILL have a separate quantile



 

Supports column groups as well as single columns



 

Think “frequencies” for high cardinality columns
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Histogram Statistics Example



 

SAP uses INTEGER (or VARCHAR) for YEAR-MONTH

• Assuming data for 2006 & 2007
– FF = (high-value – low-value) / (high2key – low2key)
– FF = (200612 – 200601) / (200711 – 200602)

– 10% of rows estimated to return
Data Distribution - Even Distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

200601 200712

Year/Month

WHERE YEARMONTH BETWEEN 200601 AND 200612

Data assumed as evenly 
distributed between low 
and high range
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Histogram Statistics Example

Data Distribution - Histograms

0

200000

400000

600000

800000

1000000

1200000

1400000

2006 01-12 200613 -----> -----> 200700 2007 01-12

Year/Month

• Example (cont.)
– Data only exists in ranges 200601-12 & 200701-12

• Collect via histograms
– 45% of rows estimated to return

No data between 
200613 & 200700

WHERE YEARMONTH BETWEEN 200601 AND 200612
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Problem Scenario 1


 

V8, Large Non-correlated subquery is materialized*
SELECT * FROM SMALL_TABLE A
WHERE A.C1 IN

(SELECT B.C1 FROM BIG_TABLE B)

– “BIG_TABLE” is scanned and put into workfile
– “SMALL_TABLE” is joined with the workfile



 

V9 may rewrite non-correlated subquery to correlated
– Much more efficient if scan / materialisation of BIG_TABLE was avoided
– Allows matching index access on BIG_TABLE

SELECT * FROM SMALL_TABLE A
WHERE EXISTS

(SELECT 1 FROM BIG_TABLE B WHERE B.C1 = A.C1)

* Assumes subquery is 
not transformed to join



© 2011 IBM Corporation32

Problem Scenario 2



 

V8, Large outer table scanned rather than using matching index 
access*

SELECT * FROM BIG_TABLE A

WHERE EXISTS 

(SELECT 1 FROM SMALL_TABLE B WHERE A.C1 = B.C1)
– “BIG_TABLE” is scanned to obtain A.C1 value
– “SMALL_TABLE” gets matching index access



 

V9 may rewrite correlated subquery to non-correlated
SELECT * FROM BIG_TABLE A

WHERE A.C1 IN

(SELECT B.C1 FROM SMALL_TABLE B)
– “SMALL_TABLE” scanned and put in workfile
– Allows more efficient matching index access on BIG_TABLE

* Assumes subquery is 
not transformed to join
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Virtual Tables



 

A new way to internally represent subqueries
– Represented as a Virtual table 

• Allows subquery to be considered in different join sequences
• May or may not represent a workfile

• Apply only to subqueries that cannot be transformed to joins

Correlated or non-correlated?......I shouldn’t have to care!
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Pre-V9 Sparse Index & in-memory data cache



 

V4 introduced sparse index 
– for non-correlated subquery workfiles



 

V7 extended sparse index 
– for the materialized work files within star join



 

V8 replaced sparse index 
– with in-memory data caching for star join

• Runtime fallback to sparse index when memory is insufficient
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RID

T1 T2 (WF)NLJ

... ...

t1.c = t2.c

KeyBinary Search of sparse index 
to look up “approximate “ 
location of qualified key

Sparse Index 
sorted in t2.c order

Workfile sorted 
in t2.c order

T2
(WF)

How does Sparse Index work?

• Sparse index may be a subset of workfile (WF)
– Example, WF may have 10,000 entries

• Sparse index may have enough space for 1,000 entries
• Sparse index is “binary searched” to find target location of search key
• At most 10 WF entries are scanned
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Data Caching vs Sparse Index



 

Data Caching
– Also known as In-Memory WF
– Is a runtime enhancement to sparse index



 

Sparse Index/In-Memory WF
– Extended to non-star join in DB2 9



 

New ZPARM MXDTCACH 
– Maximum extent in MB, for data caching per thread
– If memory is insufficient

• Fall-back to sparse index at runtime
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T1 T2 (WF)NLJ

t1.c = t2.cBinary Search of WF to look up 
exact location of qualified key Workfile sorted 

in t2.c order

How does In-Memory WF work?
• Whereas sparse index may be a subset of WF

– IMWF contains the full result (not sparse)
– Example, WF may have 10,000 entries

• IMWF is “binary searched” to find target location of search key

T2
(WF)
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Benefit of Data Caching 



 

All tables lacking an index on join column(s):
– Temporary tables

– Subqueries converted to joins

– …..any table



 

DB2 9 also supports multi-column sparse index
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Dynamic Index ANDing Challenge



 
Filtering may come from 
multiple dimensions

•Creating multi-column 
indexes to support the best 
combinations is difficult

F

D5

D4

D2

D1

D3
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Index ANDing – Pre-Fact 



 

Pre-fact table access
–Filtering may not be (truly) known until runtime

F

D1 Filtering dimensions 
accessed in parallel

Join to respective fact table 
indexes

Build RID lists

F

D3

F

D5

RID 
list 1

RID 
list 2

RID 
list 3

X Runtime optimizer may terminate parallel leg(s) which 
provide poor filtering at runtime
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Index ANDing – Fact and Post-Fact



 

Fact table access
–Intersect filtering RID lists

–Access fact table
• From RID list



 

Post fact table
–Join back to dimension tables

Remaining RID lists are 
“ANDed” (intersected)

RID 
list 2

RID 
list 3

Using parallelism

RID 
list 2/3

Final RID list used for parallel fact table access
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V8 RID Pool failure = TS Scan

SORT

RID List
Tablespace SCAN

Physical or
Logical resource 

constraintRID 
Processing
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V9 RID Pool Fallback Plan

SORT

RID List

Workfile

Fall Back plan writes pair 
of join result rids into Workfile

Physical or
Logical resource 

constraint SORT

Next portion 
of Rids

retrieved
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Dynamic Index Anding Highlights



 

Pre-fact table filtering
– Filtering dimensions accessed concurrently



 

Runtime optimization
– Terminate poorly filtering legs at runtime



 

More aggressive parallelism



 

Fallback to workfile for RID pool failure
– Instead of r-scan

APAR PK76100 – zparm to enable EN_PJSJ 
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REOPT enhancement for dynamic SQL



 
V8 REOPT options
– Dynamic SQL

• REOPT(NONE, ONCE, ALWAYS) 
– Static SQL

• REOPT(NONE, ALWAYS)



 
V9 Addition for Dynamic SQL
– Bind option REOPT(AUTO)
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Dynamic SQL REOPT - AUTO



 

For dynamic SQL with parameter markers 
– DB2 will automatically reoptimize the SQL when 

• Filtering of one or more of the predicates changes dramatically
– Such that table join sequence or index selection may change

• Some statistics cached to improve performance of runtime check
– Newly generated access path will replace the global statement 

cache copy.



 

First optimization is the same as REOPT(ONCE)
– Followed by analysis of the values supplied at each execution of 

the statement
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