
© 2011 IBM Corporation

IBM System z Technology Summit

DB2 9 & DB2 10 for z/OS Optimizer

James Guo, DB2 for z/OS Performance

guojw@us.ibm.com

3/08/2011

© 2011 IBM Corporation2

© Copyright IBM Corporation 2011. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 and z/OS are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their
first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

http://www.ibm.com/legal/copytrade.shtml

© 2011 IBM Corporation3

Agenda

Bind/Prepare

– Plan management

– Hints/Bind options

– Explain

– Dynamic Statement Caching

– REOPT

Optimizer costing

Runtime query performance

Indexing

Complex queries

© 2011 IBM Corporation4

Plan Management Overview

Ability to backup your static SQL packages (DB2 9)

At REBIND

– Save old copies of packages in Catalog/Directory

– Switch back to previous or original version

Two flavors

– BASIC

• 2 copies: Current and Previous

– EXTENDED

• 3 copies: Current, Previous, Original

– Default controlled by a ZPARM

– Also supported as REBIND options

© 2011 IBM Corporation5

Plan Management - BASIC support

Current copy

previous copy

Incoming copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

current copy

previous copy

move

delete

move
move

Chart is to be read from bottom to top

© 2011 IBM Corporation6

Plan Management - EXTENDED support

current copy

previous copy

REBIND … PLANMGMT(EXTENDED) REBIND … SWITCH(ORIGINAL)

move

delete

current copy

previous copy

original copy

move

clone

Incoming copy

original copy

clone

delete

© 2011 IBM Corporation7

DB2 10 Updates to Plan Management

SYSIBM.SYSPACKCOPY

– New catalog table

– Hold SYSPACKAGE-style metadata for any previous or original
package copies

– No longer need to SWITCH to see information on inactive copies

• Complaint from DB2 9

APRETAINDUP option of REBIND

– Default YES

• Retain duplicate for BASIC or EXTENDED

– Optional NO

• Do not retain duplicate access path as PREVIOUS or ORIGINAL
– PREVIOUS/ORIGINAL must be from DB2 9 or later

DB2 10 for z/OS

© 2011 IBM Corporation8

What-if? BIND

BIND package to see what new

Bind package EXPLAIN(ONLY) and/or SQLERROR(CHECK)

– Existing package copies are not overwritten

• Performs explain or syntax/semantic error checks on SQL

– Requires BIND, BINDAGENT, or EXPLAIN privilege.

– Supported for BIND only

• Not REBIND
• Targeted to application changes

– Eg. Development environment is DB2 LUW, production DB2 for z/OS

DB2 10 for z/OS

© 2011 IBM Corporation9

Retrieving Access Path with EXPLAIN(NO)
EXPLAIN PACKAGE

– Extract existing PLAN_TABLE information for packages

• NOT a new explain
• The package/copy must be created on DB2 9 or later

– Useful if you didn’t BIND with EXPLAIN(YES)

• Or PLAN_TABLE entries are lost

• COPY-ID can be ‘CURRENT’, ‘PREVIOUS’, ‘ORIGINAL’

>>-EXPLAIN----PACKAGE----------->

>>-----COLLECTION--collection-name--PACKAGE--package-name--------->

>----+--------------------------+----+-------------------+-------->
| | | |
+---VERSION-version-name---+ +---COPY--copy-id---+

DB2 10 for z/OS

© 2011 IBM Corporation10

Access Path Stability with statement level hints

Current limitations in hint matching

– QUERYNO is used to link queries to their hints – a bit fragile

– For dynamic SQL, require a change to apps – can be impractical

New mechanisms:

– Associate query text with its corresponding hint … more robust

– Hints enforced for the entire DB2 subsystem

• irrespective of static vs. dynamic, etc.

– Hints integrated into the access path repository

PLAN_TABLE isn’t going away

Only the “hint lookup” mechanism is being improved.

DB2 10 for z/OS

© 2011 IBM Corporation11

Access Path Repository – Hints/Statement level

SYSQUERYPLAN

SYSQUERY

Options &
Overrides

access path
copy 1

access path
copy N

SYSQUERYOPTS

REOPT, STARJOIN, etc.

New SYSIBM tables

© 2011 IBM Corporation12

Statement level hints (cont.)

Steps to use new hints mechanism

– Populate a user table DSN_USERQUERY_TABLE with query text

– Populate PLAN_TABLE with the corresponding hints

– Run new command BIND QUERY

• To integrate the hint into the repository.

– FREE QUERY can be used to remove the hint.

DB2 10 for z/OS

© 2011 IBM Corporation13

Statement-level BIND options

Statement-level granularity may be required rather than:

– Subsystem level ZPARMs (STARJOIN, SJTABLES, MAX_PAR_DEGREE)

– Package level BIND options (REOPT, DEF_CURR_DEGREE)

For example

– Only one statement in the package needs REOPT(ALWAYS)

New mechanism for statement-level bind options:

– Similar to mechanism used for hints

– DSN_USERQUERY_TABLE can also hold per-statement options

DB2 10 for z/OS

© 2011 IBM Corporation14

Literal Replacement

Dynamic SQL with literals can now be re-used in the cache

– Literals replaced with &

• Similar to parameter markers but not the same

To enable either you:-

– Put CONCENTRATE STATEMENTS WITH LITERALS in the PREPARE
ATTRIBUTES clause

– Or set LITERALREPLACEMENT in the ODBC initialization file

– Or set the keyword enableLiteralReplacement=’YES’ in the JCC Driver

Lookup Sequence

– Original SQL with literals is looked up in the cache

– If not found, literals are replaced and new SQL is looked up in the cache

• Additional match on literal usability
• Can only match with SQL stored with same attribute, not parameter marker

– If not found, new SQL is prepared and stored in the cache

DB2 10 for z/OS

© 2011 IBM Corporation15

Literal Replacement …

Example:

WHERE ACCOUNT_NUMBER = 123456

– This would be replaced by

WHERE ACCOUNT_NUMBER = &

Performance Expectation

– Using parameter marker still provides best performance

– Biggest performance gain for repeated SQL with different literals

– NOTE: Access path is not optimized for literals

• True for parameter markers/host variables today

• Need to use REOPT for that purpose

DB2 10 for z/OS

© 2011 IBM Corporation16

Agenda

Bind/Prepare

Optimizer costing

– RUNSTATS

– Cost model enhancements

– Subquery costing

Runtime query performance

Indexing

Complex queries

© 2011 IBM Corporation17

Histogram Statistics

RUNSTATS will produce equal-depth histogram

– Each quantile (range) will have approx same number of rows

• Not same number of values

– Another term is range frequency

Example

• 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 (sequenced)

– Lets cut that into 3 quantiles.

• 1, 3, 3, 4 ,4 6,7,8,9 10,12,15

Seq No Low Value High Value Cardinality Frequency

1 1 4 3 5/12

2 6 9 4 4/12

3 10 15 3 3/12

© 2011 IBM Corporation18

Histogram Statistics Notes

RUNSTATS

– Maximum 100 quantiles for a column

– Same value columns WILL be in the same quantile

– Quantiles will be similar size but:

• Will try to avoid big gaps inside quantiles
• Highvalue and lowvalue may have separate quantiles

• Null WILL have a separate quantile

Supports column groups as well as single columns

Think “frequencies” for high cardinality columns

© 2011 IBM Corporation19

Histogram Statistics Example

SAP uses INTEGER (or VARCHAR) for YEAR-MONTH

• Assuming data for 2006 & 2007
– FF = (high-value – low-value) / (high2key – low2key)

– FF = (200612 – 200601) / (200711 – 200602)

– 10% of rows estimated to return

Data Distribution - Even Distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

200601 200712

Year/Month

WHERE YEARMONTH BETWEEN 200601 AND 200612

Data assumed as evenly
distributed between low
and high range

© 2011 IBM Corporation20

Histogram Statistics Example

Data Distribution - Histograms

0

200000

400000

600000

800000

1000000

1200000

1400000

2006 01-12 200613 -----> -----> 200700 2007 01-12

Year/Month

• Example (cont.)
– Data only exists in ranges 200601-12 & 200701-12

• Collect via histograms
– 45% of rows estimated to return

No data between
200613 & 200700

WHERE YEARMONTH BETWEEN 200601 AND 200612

© 2011 IBM Corporation21

Autonomic Statistics Solution Overview

Autonomic Statistics is implemented though a set of Stored Procedures

– Stored procedures are provided to enable administration tools and
packaged applications to automate statistics collection.

• ADMIN_UTL_MONITOR
• ADMIN_UTL_EXECUTE

• ADMIN_UTL_MODIFY

– Working together, these SP’s

• Determine what stats to collect
• Determine when stats need to be collected

• Schedule and Perform the stats collection
• Records activity for later review

– See Chapter 11 "Designing DB2 statistics for performance" in the DB2 10 for z/OS Performance
Monitoring and Tuning Guide for details on how to configure autonomic monitoring directly within DB2.

DB2 10 for z/OS

© 2011 IBM Corporation22

RUNSTATS Simplification/Performance Overview

RUNSTATS options to SET/UPDATE/USE a stats profile

– Integrate specialized statistics into generic RUNSTATS job

• RUNSTATS … TABLE tbl COLUMN(C1)… SET PROFILE
– Alternatively use SET PROFILE FROM EXISTING STATS

• RUNSTATS … TABLE tbl COLUMN(C5)… UPDATE PROFILE
• RUNSTATS … TABLE tbl USE PROFILE

New option for page-level sampling

– But what percentage of sampling to use?

• RUNSTATS … TABLE tbl TABLESAMPLE SYSTEM AUTO

DB2 10 for z/OS

© 2011 IBM Corporation23

Optimizer Validation with Realtime Stats

Index Probing & RTS lookup

– Estimate # of rids within a given start/stop index key range at bind/prepare

Exploited when these two conditions are met.

– Query has matching index-access local predicate

– Predicate contain literals, or REOPT(ALWAYS|ONCE|AUTO)

And 1 of the following is also true

– Predicate is estimated to qualify no rows

– Stats indicate the table contains no rows

– Table is defined as VOLATILE or qualifies for NPGTHRSH

New EXPLAIN table to externalize runtime estimates

– User managed DSN_COLDIST_TABLE

DB2 10 for z/OS

© 2011 IBM Corporation24

DB2 10 - Minimizing Optimizer Challenges

Potential causes of sub-optimal plans

– Insufficient statistics

– Unknown literal values used for host variables or parameter markers

DB2 10 Optimizer will evaluate the risk for each predicate

– For example: WHERE BIRTHDATE < ?

• Could qualify 0-100% of data depending on literal value used

– As part of access path selection

• Compare access paths with close cost and choose lowest risk plan

DB2 10 for z/OS

© 2011 IBM Corporation25

Extending VOLATILE TABLE usage

DB2 10 for z/OS

VOLATILE TABLE support added in DB2 V8

– Targeted to SAP Cluster Tables

• Use Index access whenever possible
• Avoids list prefetch

– Can be a problem for OR predicates or UPDATEs at risk of loop

DB2 10 provides VOLATILE to general cases

– Tables matching SAP cluster tables will maintain original limitations

• Table with 1 unique index

– Tables with > 1 index will follow NPGTHRSH rules

• Use Index access whenever possible
• No limitation on list prefetch
• Less chance of getting r-scan when list-prefetch plan is only alternative

© 2011 IBM Corporation26

Global Optimization - Problem Scenario 1
V8, Large Non-correlated subquery is materialized*

SELECT * FROM SMALL_TABLE A

WHERE A.C1 IN

(SELECT B.C1 FROM BIG_TABLE B)

– “BIG_TABLE” is scanned and put into workfile
– “SMALL_TABLE” is joined with the workfile

V9 may rewrite non-correlated subquery to correlated
– Much more efficient if scan / materialisation of BIG_TABLE was avoided
– Allows matching index access on BIG_TABLE

SELECT * FROM SMALL_TABLE A

WHERE EXISTS

(SELECT 1 FROM BIG_TABLE B WHERE B.C1 = A.C1)

© 2011 IBM Corporation27

Global Optimization - Problem Scenario 2
V8, Large outer table scanned rather than using matching index
access*

SELECT * FROM BIG_TABLE A

WHERE EXISTS

(SELECT 1 FROM SMALL_TABLE B WHERE A.C1 = B.C1)
– “BIG_TABLE” is scanned to obtain A.C1 value
– “SMALL_TABLE” gets matching index access

V9 may rewrite correlated subquery to non-correlated

SELECT * FROM BIG_TABLE A

WHERE A.C1 IN

(SELECT B.C1 FROM SMALL_TABLE B)
– “SMALL_TABLE” scanned and put in workfile
– Allows more efficient matching index access on BIG_TABLE

© 2011 IBM Corporation28

Global Optimization

Global opt internally represent subqueries as virtual tables

– Allows subquery to be considered in different join sequences

– May or may not represent a physical workfile

• Additional row added to PLAN_TABLE for non-correlated subq
– PM30425 adds this new row for correlated

– Apply only to subqueries that cannot be transformed to joins

• SELECT only (not INSERT/SELECT, UPDATE, DELETE)

Correlated or non-correlated?......I shouldn’t have to care!

© 2011 IBM Corporation29

Agenda

Bind/Prepare

Optimizer costing

Runtime query performance

– Sort/sort avoidance

– Sparse index

– Predicate application

Indexing

Complex queries

© 2011 IBM Corporation30

GROUP BY Sort Avoidance

Improved sort avoidance for GROUP BY

– Reorder GROUP BY columns to match available index

– Remove 'constants' from GROUP BY ordering requirement

• ordering requirement reduced to just C1

SELECT … FROM T1
GROUP BY C2, C1

Index 1 (C1, C2)

GROUP BY in C2, C1 sequence

Index in C1, C2 sequence

SELECT … FROM T1
WHERE C2 = 5
GROUP BY C2, C1

C2 Constant

© 2011 IBM Corporation31

GROUP BY Sort Avoidance Implications

Implications of improved sort avoidance for GROUP BY

– May improve query performance!!!

– Data may be returned in a different order
• Always been true in any DB2 release

– Also true in other DBMSs

• Relational theory states that order is NOT guaranteed without ORDER BY

© 2011 IBM Corporation32

Sort Performance Enhancements

FETCH FIRST n ROWS ONLY (FFnR) and Sort

– DB2 9 added in-memory replacement for FFnR to avoid sort

• Provided (n * (sort key + data)) < 32K

– DB2 10 extends this to 128K

Avoid workfile usage for small sorts

– DB2 9 avoided allocating WF for final sort only

• If <= 255 rows and result < 32K (sort key + data)

– DB2 10 extends this to intermediate sorts also

• Except for parallelism or SET function

DB2 9 & 10 for z/OS

© 2011 IBM Corporation33

Improving sort with FETCH FIRST

DB2 V8 example

– Sort is not avoided via index

• Must sort all qualified rows

C1

9

6

4

10

1

3

7

8

2

5

Sort

Scan

C1

1

2

3

4

5

6

7

8

9

10

Fetch

SELECT C1
FROM T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

10 row table.
Who cares? But,
1 million rows?

© 2011 IBM Corporation34

DB2 9 example

– New algorithm for in-memory swap avoids (traditional) sort

• Pointers maintain order

C1

9

6

4

10

1

3

7

8

2

5

Scan

1st Fetch

SELECT C1
FROM T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

Suggestion: Add
FETCH FIRST
when subset is

required.

9
6
4
1
3
2 2nd Fetch

3rd Fetch

Memory

Improving sort with FETCH FIRST

© 2011 IBM Corporation35

Improvements to predicate application
Major enhancements to OR and IN predicates

– Improved performance for AND/OR combinations and long IN-lists

• General performance improvement to stage 1 predicate processing

– IN-list matching

• Matching on multiple IN-lists

• Transitive closure support for IN-list predicates
• List prefetch support

• Trim IN-lists from matching when preceding equals are highly filtering

– SQL pagination

• Single index matching for complex OR conditions

Many stage 2 expressions to be executed at stage 1

– Stage 2 expressions eligible for index screening

• Not applicable for list prefetch

– Externalized in DSN_FILTER_TABLE column PUSHDOWN

DB2 10 for z/OS

© 2011 IBM Corporation36

IN-list Table - Table Type 'I' and Access Type 'IN'

The IN-list predicate will be represented as an in-memory table if:

– List prefetch is chosen, OR

– More than one IN-list is chosen as matching.

– The EXPLAIN output associated with the in-memory table will have:

• New Table Type: TBTYPE – ‘I’
• New Access Type: ACTYPE – ‘IN’

SELECT *
FROM T1
WHERE T1.C1 IN (?, ?, ?);

QBNO PLANNO METHOD TNAME ACTYPE MC ACNAME QBTYPE TBTYPE PREFETCH

1 1 0 DSNIN001(01) IN 0 SELECT I
1 2 1 T1 I 1 T1_IX_C1 SELECT T L

DB2 10 for z/OS

© 2011 IBM Corporation37

IN-list Predicate Transitive Closure (PTC)

Without IN-list PTC (DB2 9)

– Optimizer will be unlikely to consider T2 is the first table accessed

With IN-list PTC (DB2 10)

– Optimizer can choose to access T2 or T1 first.

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1
AND T1.C1 IN (?, ?, ?)

AND T2.C1 IN (?, ?, ?) Optimizer can generate
this predicate via PTC

DB2 10 for z/OS

© 2011 IBM Corporation38

SQL Pagination

Targets 2 types of queries

– Cursor scrolling (pagination) SQL

• Retrieve next n rows
– Common in COBOL/CICS and any screen scrolling application

• Not to be confused with “scrollable cursors”

– Complex OR predicates against the same columns

• Common in SAP

In both cases:

– The OR (disjunct) predicate refers to a single table only.

– Each OR predicate can be mapped to the same index.

– Each disjunct has at least one matching predicate.

DB2 10 for z/OS

© 2011 IBM Corporation39

• Scroll forward to obtain the next 20 rows
– Assumes index is available on (LASTNAME, FIRSTNAME)
– WHERE clause may appear as:

– DB2 10 supports
• Single matching index access with sort avoided

– DB2 9 requires
• Multi-index access, list prefetch and sort
• OR, extra predicate (AND LASTNAME >= ‘JONES’) for matching

single index access and sort avoidance

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY')

OR (LASTNAME>'JONES')

ORDER BY LASTNAME, FIRSTNAME;

Simple scrolling – Index matching and ORDER BY

DB2 10 for z/OS

© 2011 IBM Corporation40

• Given WHERE clause
– And index on one or both columns

WHERE (LASTNAME=‘SMITH' AND FIRSTNAME=‘JOHN')

OR (LASTNAME=‘JONES’);

Complex OR predicates against same index

DB2 10 for z/OS

QBlockno Planno Accessname Access_Type Matchcols Mixopseq

1 1 IX1 NR 2 1

1 1 IX1 NR 1 2

© 2011 IBM Corporation41

Minimizing impact of RID failure

RID overflow can occur for

– Concurrent queries each consuming shared RID pool

– Single query requesting > 25% of table or hitting RID pool limit

DB2 9 will fallback to tablespace scan*

DB2 10 will continue by writing new RIDs to workfile

– Work-file usage may increase

• Mitigate by increasing RID pool size (default increased in DB2 10).
• MAXTEMPS_RID zparm for maximum WF usage for each RID list

* Hybrid join can incrementally process. Dynamic Index ANDing will use WF for failover.

DB2 10 for z/OS

© 2011 IBM Corporation42

Agenda

Bind/Prepare

Optimizer costing

Runtime query performance

Indexing

– Index on expression

– Tracking index use

– Sparse index

– Include columns

Complex queries

© 2011 IBM Corporation43

Index on Expression

SELECT *
FROM CUSTOMERS
WHERE YEAR(BIRTHDATE) = 1971

DB2 9 supports “index on expression”

– Can turn a stage 2 predicate into indexable

Previous FF = 1/25
Now, RUNSTATS collects
frequencies. Improved FF accuracy

CREATE INDEX ADMF001.CUSTIX3
ON ADMF001.CUSTOMERS

(YEAR(BIRTHDATE) ASC)

© 2011 IBM Corporation44

Data Caching and Sparse Index
Data Caching

– Built at runtime
• Is a runtime enhancement to sparse index

– Extended to non-star join in DB2 9

New ZPARM MXDTCACH

– Maximum extent in MB, for data caching per thread

– If memory is insufficient
• Fall-back to sparse index at runtime

Considered when lacking an index on join column(s):

– Temporary tables

– Subqueries converted to joins

– …..any table

© 2011 IBM Corporation45

T1 T2 (WF)NLJ

t1.c = t2.cBinary Search of WF to look up
exact location of qualified key Workfile sorted

in t2.c order

How does Data Caching WF work?
– Data Cache contains the full result of materialized result

– Sparse index will be a subset of WF entries

– Example, WF may have 10,000 entries
• Cache is “binary searched” to find target location of search key

T2

(WF)

© 2011 IBM Corporation46

Index Include Columns

Index INCLUDE columns

– Create an Index as UNIQUE, and add additional columns

– Ability to consolidate redundant indexes

INDEX1 UNIQUE (C1) Consolidate to
INDEX2 (C1,C2) INDEX1 UNIQUE (C1) INCLUDE (C2)

DB2 10 for z/OS

© 2011 IBM Corporation47

Agenda

Bind/Prepare

Optimizer costing

Runtime query performance

Indexing

Complex queries

– Parallelism

– BI/DW

© 2011 IBM Corporation48

Parallelism Enhancements

In V8

– Lowest cost is BEFORE parallelism

In DB2 9

– Lowest cost is AFTER parallelism

• Only a subset of plans are considered for
parallelism

Optimizer

Parallelism

One Lowest
cost plan
survives

How to
parallelize

these
plans?

© 2011 IBM Corporation49

Parallelism Enhancements - Effectiveness

Previous Releases of DB2 may use Key Range Partitioning

– Key Ranges Decided at Bind Time

– Based on Statistics (low2key, high2key, column cardinality)

• Assumes uniform data distribution

• Histograms can help
– But rarely collected

– If Statistics are outdated or data is not uniformly distributed what
happens to performance?

DB2 10 for z/OS

© 2011 IBM Corporation50

Key range partition - Today
Large_T

10,000,000 rows
C2 C3

Workfile

SELECT *
FROM Medium_T M,
 Large_T L
WHERE M.C2 = L.C2
 AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

M.C1 is date column, assume currentdate is 8-31-2007, after the
between predicate is applied, only rows with date between
06-03-2007 and 8-31-2007 survived, but optimizer chops up the key
ranges within the whole year after the records are sorted :-(

SORT
ON C2

2,500 rows

3-degree parallelism

Partition the
records according
to the key ranges

25%

12-31-2007

09-30-2007
08-31-2007

01-01-2007

05-01-2007
04-30-2007

Medium_T
10,000 rows
C1 C2

5,000,000 rows

DB2 10 for z/OS

© 2011 IBM Corporation51

Parallelism Effectiveness – Record range

DB2 10 can use Dynamic record range partitioning

– Materialize the intermediate result in a sequence of join processes

– Results divided into ranges with equal number of records

– Division doesn't have to be on the key boundary

• Unless required for group by or distinct function

– Record range partitioning is dynamic

• no longer based on the key ranges decided at bind time

– Now based on number of composite records and parallel degree

• Data skew, out of date statistics etc. will not have any effect on performance

DB2 10 for z/OS

© 2011 IBM Corporation52

Dynamic record range partition

DB2 10 for z/OS

Large_T
10,000,000 rows

C2 C3

Workfile

SELECT *
FROM Medium_T M,

Large_T L
WHERE M.C2 = L.C2

AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

SORT
ON C2

2,500 rows

3-degrees parallelism

Partition the records -
each range has same
number of records

Medium_T
10,000 rows
C1 C2

© 2011 IBM Corporation53

Parallelism Effectiveness - Straw Model

Previous releases of DB2 divide the number of keys or pages by the
number representing the parallel degree

– One task is allocated per degree of parallelism

– The range is processed and the task ends

– Tasks may take different times to process

DB2 10 can use the Straw Model workload distribution method

– More key or page ranges will be allocated than the number of parallel
degrees

– The same number of tasks as before are allocated (same as degree)

– Once a task finishes it’s smaller range it will process another range

– Even if data is skewed this new process should make processing faster

DB2 10 for z/OS

© 2011 IBM Corporation54

STRAW Model
SELECT *
FROM Medium_T M
WHERE M.C1 BETWEEN 20 AND 50

100

Medium_T
10,000 rows
C1 C2

index on C1

50
47
44
41
38
35
32
29
26
23
20

0

degree=3
#ranges=10

100

Medium_T
10,000 rows
C1 C2

index on C1

50

0

20

30

40

degree = 3

Divided in key ranges with Straw ModelDivided in key ranges before DB2 10

T a s k 1

T a s k 3

T a s k 2

DB2 10 for z/OS

© 2011 IBM Corporation55

Dynamic Index ANDing Challenge

Filtering may come from
multiple dimensions

•Creating multi-column indexes
to support the best combinations
is difficult

F

D5

D4

D2

D1

D3

© 2011 IBM Corporation56

Index ANDing – Pre-Fact

Pre-fact table access

–Filtering may not be (truly) known until runtime

F

D1
Filtering dimensions
accessed in parallel

Join to respective fact table
indexes

Build RID lists

F

D3

F

D5

RID
list 1

RID
list 2

RID
list 3

Runtime optimizer may terminate parallel leg(s) which
provide poor filtering at runtime

© 2011 IBM Corporation57

Index ANDing – Fact and Post-Fact

Fact table access

–Intersect filtering RID lists

–Access fact table

•From RID list

Post fact table

–Join back to dimension tables

Remaining RID lists are
“ANDed” (intersected)

RID
list 2

RID
list 3

Using parallelism

RID
list 2/3

Final RID list used for parallel fact table access

© 2011 IBM Corporation58

Dynamic Index Anding Highlights

Pre-fact table filtering
– Filtering dimensions accessed concurrently

Runtime optimization
– Terminate poorly filtering legs at runtime

More aggressive parallelism

Fallback to workfile for RID pool failure
– Instead of r-scan

APAR PK76100 – zparm to enable EN_PJSJ

