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Plan Management Overview

Ability to backup your static SQL packages (DB2 9)

At REBIND

– Save old copies of packages in Catalog/Directory

– Switch back to previous or original version

Two flavors

– BASIC

• 2 copies: Current and Previous

– EXTENDED

• 3 copies: Current, Previous, Original

– Default controlled by a ZPARM

– Also supported as REBIND options
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Plan Management - BASIC support

Current copy

previous copy

Incoming copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

current copy

previous copy

move

delete

move
move

Chart is to be read from bottom to top
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Plan Management - EXTENDED support

current copy

previous copy

REBIND … PLANMGMT(EXTENDED) REBIND … SWITCH(ORIGINAL)

move

delete

current copy

previous copy

original copy

move

clone

Incoming copy

original copy

clone

delete
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DB2 10 Updates to Plan Management

SYSIBM.SYSPACKCOPY

– New catalog table

– Hold SYSPACKAGE-style metadata for any previous or original 
package copies

– No longer need to SWITCH to see information on inactive copies

• Complaint from DB2 9

APRETAINDUP option of REBIND

– Default YES

• Retain duplicate for BASIC or EXTENDED

– Optional NO

• Do not retain duplicate access path as PREVIOUS or ORIGINAL
– PREVIOUS/ORIGINAL must be from DB2 9 or later

DB2 10 for z/OS
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What-if? BIND 

BIND package to see what new 

Bind package EXPLAIN(ONLY) and/or SQLERROR(CHECK)

– Existing package copies are not overwritten

• Performs explain or syntax/semantic error checks on SQL

– Requires BIND, BINDAGENT, or EXPLAIN privilege.

– Supported for BIND only

• Not REBIND
• Targeted to application changes

– Eg. Development environment is DB2 LUW, production DB2 for z/OS

DB2 10 for z/OS
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Retrieving Access Path with EXPLAIN(NO)
EXPLAIN PACKAGE

– Extract existing PLAN_TABLE information for packages

• NOT a new explain
• The package/copy must be created on DB2 9 or later

– Useful if you didn’t BIND with EXPLAIN(YES)

• Or PLAN_TABLE entries are lost

• COPY-ID can be ‘CURRENT’, ‘PREVIOUS’, ‘ORIGINAL’

>>-EXPLAIN----PACKAGE----------->

>>-----COLLECTION--collection-name--PACKAGE--package-name--------->

>----+--------------------------+----+-------------------+-------->
|                          |    |                   |
+---VERSION-version-name---+    +---COPY--copy-id---+

DB2 10 for z/OS
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Access Path Stability with statement level hints

Current limitations in hint matching

– QUERYNO is used to link queries to their hints – a bit fragile

– For dynamic SQL, require a change to apps – can be impractical

New mechanisms:

– Associate query text with its corresponding hint … more robust

– Hints enforced for the entire DB2 subsystem

• irrespective of static vs. dynamic, etc.

– Hints integrated into the access path repository

PLAN_TABLE isn’t going away

Only the “hint lookup” mechanism is being improved.

DB2 10 for z/OS
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Access Path Repository – Hints/Statement level 

SYSQUERYPLAN

SYSQUERY

Options & 
Overrides

access path 
copy 1

access path 
copy N

SYSQUERYOPTS

REOPT, STARJOIN, etc.

New SYSIBM tables
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Statement level hints (cont.)

Steps to use new hints mechanism

– Populate a user table DSN_USERQUERY_TABLE with query text 

– Populate PLAN_TABLE with the corresponding hints 

– Run new command BIND QUERY

• To integrate the hint into the repository. 

– FREE QUERY can be used to remove the hint.

DB2 10 for z/OS
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Statement-level BIND options

Statement-level granularity may be required rather than:

– Subsystem level ZPARMs (STARJOIN, SJTABLES, MAX_PAR_DEGREE)

– Package level BIND options (REOPT, DEF_CURR_DEGREE)

For example

– Only one statement in the package needs REOPT(ALWAYS)

New mechanism for statement-level bind options:

– Similar to mechanism used for hints

– DSN_USERQUERY_TABLE can also hold per-statement options

DB2 10 for z/OS



© 2011 IBM Corporation14

Literal Replacement

Dynamic SQL with literals can now be re-used in the cache 

– Literals replaced with & 

• Similar to parameter markers but not the same

To enable either you:-

– Put CONCENTRATE STATEMENTS WITH LITERALS in the PREPARE 
ATTRIBUTES clause

– Or set LITERALREPLACEMENT in the ODBC initialization file

– Or set the keyword enableLiteralReplacement=’YES’ in the JCC Driver

Lookup Sequence

– Original SQL with literals is looked up in the cache

– If not found, literals are replaced and new SQL is looked up in the cache

• Additional match on literal usability
• Can only match with SQL stored with same attribute, not parameter marker

– If not found, new SQL is prepared and stored in the cache

DB2 10 for z/OS
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Literal Replacement …

Example:

WHERE ACCOUNT_NUMBER = 123456

– This would be replaced by

WHERE ACCOUNT_NUMBER = &

Performance Expectation

– Using parameter marker still provides best performance

– Biggest performance gain for repeated SQL with different literals 

– NOTE: Access path is not optimized for literals

• True for parameter markers/host variables today

• Need to use REOPT for that purpose

DB2 10 for z/OS
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Histogram Statistics

RUNSTATS will produce equal-depth histogram 

– Each quantile (range) will have approx same number of rows

• Not same number of values

– Another term is range frequency

Example

• 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 (sequenced)

– Lets cut that into 3 quantiles.

• 1, 3, 3, 4 ,4 6,7,8,9 10,12,15

Seq No Low Value High Value Cardinality Frequency

1 1 4 3 5/12 

2 6 9 4 4/12

3 10 15 3 3/12
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Histogram Statistics Notes

RUNSTATS 

– Maximum 100 quantiles for a column

– Same value columns WILL be in the same quantile

– Quantiles will be similar size but:

• Will try to avoid big gaps inside quantiles
• Highvalue and lowvalue may have separate quantiles

• Null WILL have a separate quantile

Supports column groups as well as single columns

Think “frequencies” for high cardinality columns
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Histogram Statistics Example

SAP uses INTEGER (or VARCHAR) for YEAR-MONTH

• Assuming data for 2006 & 2007
– FF = (high-value – low-value) / (high2key – low2key)

– FF = (200612 – 200601) / (200711 – 200602)

– 10% of rows estimated to return

Data Distribution - Even Distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

200601 200712

Year/Month

WHERE YEARMONTH BETWEEN 200601 AND 200612

Data assumed as evenly 
distributed between low 
and high range
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Histogram Statistics Example

Data Distribution - Histograms

0

200000

400000

600000

800000

1000000

1200000

1400000

2006 01-12 200613 -----> -----> 200700 2007 01-12

Year/Month

• Example (cont.)
– Data only exists in ranges 200601-12 & 200701-12

• Collect via histograms
– 45% of rows estimated to return

No data between 
200613 & 200700

WHERE YEARMONTH BETWEEN 200601 AND 200612
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Autonomic Statistics Solution Overview

Autonomic Statistics is implemented though a set of Stored Procedures 

– Stored procedures are provided to enable administration tools and 
packaged applications to automate statistics collection.

• ADMIN_UTL_MONITOR
• ADMIN_UTL_EXECUTE

• ADMIN_UTL_MODIFY

– Working together, these SP’s 

• Determine what stats to collect 
• Determine when stats need to be collected

• Schedule and Perform the stats collection
• Records activity for later review

– See Chapter 11 "Designing DB2 statistics for performance" in the DB2 10 for z/OS Performance 
Monitoring and Tuning Guide for details on how to configure autonomic monitoring directly within DB2.

DB2 10 for z/OS
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RUNSTATS Simplification/Performance Overview

RUNSTATS options to SET/UPDATE/USE a stats profile

– Integrate specialized statistics into generic RUNSTATS job

• RUNSTATS … TABLE tbl COLUMN(C1)… SET PROFILE
– Alternatively use SET PROFILE FROM EXISTING STATS

• RUNSTATS … TABLE tbl COLUMN(C5)… UPDATE PROFILE
• RUNSTATS … TABLE tbl USE PROFILE

New option for page-level sampling

– But what percentage of sampling to use?

• RUNSTATS … TABLE tbl TABLESAMPLE SYSTEM AUTO

DB2 10 for z/OS
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Optimizer Validation with Realtime Stats

Index Probing & RTS lookup

– Estimate # of rids within a given start/stop index key range at bind/prepare

Exploited when these two conditions are met.

– Query has matching index-access local predicate 

– Predicate contain literals, or REOPT(ALWAYS|ONCE|AUTO)

And 1 of the following is also true

– Predicate is estimated to qualify no rows

– Stats indicate the table contains no rows 

– Table is defined as VOLATILE or qualifies for NPGTHRSH

New EXPLAIN table to externalize runtime estimates

– User managed DSN_COLDIST_TABLE

DB2 10 for z/OS
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DB2 10 - Minimizing Optimizer Challenges

Potential causes of sub-optimal plans 

– Insufficient statistics 

– Unknown literal values used for host variables or parameter markers

DB2 10 Optimizer will evaluate the risk for each predicate

– For example: WHERE BIRTHDATE < ?

• Could qualify 0-100% of data depending on literal value used

– As part of access path selection

• Compare access paths with close cost and choose lowest risk plan

DB2 10 for z/OS
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Extending VOLATILE TABLE usage

DB2 10 for z/OS

VOLATILE TABLE support added in DB2 V8

– Targeted to SAP Cluster Tables

• Use Index access whenever possible
• Avoids list prefetch

– Can be a problem for OR predicates or UPDATEs at risk of loop

DB2 10 provides VOLATILE to general cases

– Tables matching SAP cluster tables will maintain original limitations

• Table with 1 unique index

– Tables with > 1 index will follow NPGTHRSH rules

• Use Index access whenever possible
• No limitation on list prefetch
• Less chance of getting r-scan when list-prefetch plan is only alternative
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Global Optimization - Problem Scenario 1
V8, Large Non-correlated subquery is materialized*

SELECT * FROM SMALL_TABLE A

WHERE A.C1 IN

(SELECT B.C1 FROM BIG_TABLE B)

– “BIG_TABLE” is scanned and put into workfile
– “SMALL_TABLE” is joined with the workfile

V9 may rewrite non-correlated subquery to correlated
– Much more efficient if scan / materialisation of BIG_TABLE was avoided
– Allows matching index access on BIG_TABLE

SELECT * FROM SMALL_TABLE A

WHERE EXISTS

(SELECT 1 FROM BIG_TABLE B WHERE B.C1 = A.C1)
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Global Optimization - Problem Scenario 2
V8, Large outer table scanned rather than using matching index 
access*

SELECT * FROM BIG_TABLE A

WHERE EXISTS 

(SELECT 1 FROM SMALL_TABLE B WHERE A.C1 = B.C1)
– “BIG_TABLE” is scanned to obtain A.C1 value
– “SMALL_TABLE” gets matching index access

V9 may rewrite correlated subquery to non-correlated

SELECT * FROM BIG_TABLE A

WHERE A.C1 IN

(SELECT B.C1 FROM SMALL_TABLE B)
– “SMALL_TABLE” scanned and put in workfile
– Allows more efficient matching index access on BIG_TABLE



© 2011 IBM Corporation28

Global Optimization 

Global opt internally represent subqueries as virtual tables

– Allows subquery to be considered in different join sequences

– May or may not represent a physical workfile

• Additional row added to PLAN_TABLE for non-correlated subq
– PM30425 adds this new row for correlated

– Apply only to subqueries that cannot be transformed to joins

• SELECT only (not INSERT/SELECT, UPDATE, DELETE)

Correlated or non-correlated?......I shouldn’t have to care!
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GROUP BY Sort Avoidance

Improved sort avoidance for GROUP BY

– Reorder GROUP BY columns to match available index

– Remove 'constants' from GROUP BY ordering requirement 

• ordering requirement reduced to just C1

SELECT … FROM T1
GROUP BY C2, C1

Index 1 (C1, C2)

GROUP BY in C2, C1 sequence

Index in C1, C2 sequence

SELECT … FROM T1
WHERE C2 = 5
GROUP BY C2, C1

C2 Constant 
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GROUP BY Sort Avoidance Implications

Implications of improved sort avoidance for GROUP BY

– May improve query performance!!!

– Data may be returned in a different order
• Always been true in any DB2 release

– Also true in other DBMSs

• Relational theory states that order is NOT guaranteed without ORDER BY



© 2011 IBM Corporation32

Sort Performance Enhancements

FETCH FIRST n ROWS ONLY (FFnR) and Sort

– DB2 9 added in-memory replacement for FFnR to avoid sort

• Provided (n * (sort key + data)) < 32K

– DB2 10 extends this to 128K

Avoid workfile usage for small sorts

– DB2 9 avoided allocating WF for final sort only

• If <= 255 rows and result < 32K (sort key + data)

– DB2 10 extends this to intermediate sorts also

• Except for parallelism or SET function

DB2 9 & 10 for z/OS
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Improving sort with FETCH FIRST

DB2 V8 example

– Sort is not avoided via index

• Must sort all qualified rows

C1

9

6

4

10

1

3

7

8

2

5

Sort

Scan

C1

1

2

3

4

5

6

7

8

9

10

Fetch

SELECT C1
FROM  T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

10 row table. 
Who cares? But, 
1 million rows?
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DB2 9 example

– New algorithm for in-memory swap avoids (traditional) sort

• Pointers maintain order

C1

9

6

4

10

1

3

7

8

2

5

Scan

1st Fetch

SELECT C1
FROM  T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

Suggestion: Add 
FETCH FIRST 
when subset is 

required.

9
6
4
1
3
2 2nd Fetch

3rd Fetch

Memory

Improving sort with FETCH FIRST
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Improvements to predicate application 
Major enhancements to OR and IN predicates

– Improved performance for AND/OR combinations and long IN-lists

• General performance improvement to stage 1 predicate processing

– IN-list matching

• Matching on multiple IN-lists

• Transitive closure support for IN-list predicates
• List prefetch support 

• Trim IN-lists from matching when preceding equals are highly filtering

– SQL pagination

• Single index matching for complex OR conditions

Many stage 2 expressions to be executed at stage 1

– Stage 2 expressions eligible for index screening

• Not applicable for list prefetch

– Externalized in DSN_FILTER_TABLE column PUSHDOWN

DB2 10 for z/OS
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IN-list Table - Table Type 'I' and Access Type 'IN'

The IN-list predicate will be represented as an in-memory table if:

– List prefetch is chosen, OR

– More than one IN-list is chosen as matching.

– The EXPLAIN output associated with the in-memory table will have:

• New Table Type: TBTYPE – ‘I’
• New Access Type: ACTYPE – ‘IN’

SELECT *
FROM T1
WHERE T1.C1 IN (?, ?, ?); 

QBNO   PLANNO   METHOD TNAME            ACTYPE  MC  ACNAME     QBTYPE     TBTYPE PREFETCH

1          1              0         DSNIN001(01)  IN 0                      SELECT    I          
1          2              1         T1                     I    1    T1_IX_C1  SELECT   T          L

DB2 10 for z/OS
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IN-list Predicate Transitive Closure (PTC)

Without IN-list PTC (DB2 9)

– Optimizer will be unlikely to consider T2 is the first table accessed

With IN-list PTC (DB2 10)

– Optimizer can choose to access T2 or T1 first.

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1 
AND T1.C1 IN (?, ?, ?)

AND T2.C1 IN (?, ?, ?) Optimizer can generate 
this predicate via PTC 

DB2 10 for z/OS
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SQL Pagination

Targets 2 types of queries

– Cursor scrolling (pagination) SQL

• Retrieve next n rows
– Common in COBOL/CICS and any screen scrolling application

• Not to be confused with “scrollable cursors”

– Complex OR predicates against the same columns

• Common in SAP

In both cases:

– The OR (disjunct) predicate refers to a single table only.

– Each OR predicate can be mapped to the same index. 

– Each disjunct has at least one matching predicate.

DB2 10 for z/OS
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• Scroll forward to obtain the next 20 rows 
– Assumes index is available on (LASTNAME, FIRSTNAME)
– WHERE clause may appear as:

– DB2 10 supports
• Single matching index access with sort avoided

– DB2 9 requires 
• Multi-index access, list prefetch and sort
• OR, extra predicate (AND LASTNAME >= ‘JONES’) for matching 

single index access and sort avoidance

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY') 

OR (LASTNAME>'JONES')

ORDER BY LASTNAME, FIRSTNAME;

Simple scrolling – Index matching and ORDER BY

DB2 10 for z/OS
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• Given WHERE clause
– And index on one or both columns

WHERE (LASTNAME=‘SMITH' AND FIRSTNAME=‘JOHN') 

OR (LASTNAME=‘JONES’);

Complex OR predicates against same index

DB2 10 for z/OS

QBlockno Planno Accessname Access_Type Matchcols Mixopseq

1 1 IX1 NR 2 1

1 1 IX1 NR 1 2
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Minimizing impact of RID failure

RID overflow can occur for

– Concurrent queries each consuming shared RID pool

– Single query requesting > 25% of table or hitting RID pool limit

DB2 9 will fallback to tablespace scan*

DB2 10 will continue by writing new RIDs to workfile

– Work-file usage may increase

• Mitigate by increasing RID pool size (default increased in DB2 10).
• MAXTEMPS_RID zparm for maximum WF usage for each RID list

* Hybrid join can incrementally process. Dynamic Index ANDing will use WF for failover.

DB2 10 for z/OS
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Index on Expression

SELECT *
FROM CUSTOMERS  
WHERE YEAR(BIRTHDATE) = 1971

DB2 9 supports “index on expression”

– Can turn a stage 2 predicate into indexable

Previous FF = 1/25
Now, RUNSTATS collects 
frequencies. Improved FF accuracy

CREATE INDEX ADMF001.CUSTIX3                         
ON ADMF001.CUSTOMERS 

(YEAR(BIRTHDATE) ASC)
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Data Caching and Sparse Index
Data Caching

– Built at runtime
• Is a runtime enhancement to sparse index

– Extended to non-star join in DB2 9

New ZPARM MXDTCACH 

– Maximum extent in MB, for data caching per thread

– If memory is insufficient
• Fall-back to sparse index at runtime

Considered when lacking an index on join column(s):

– Temporary tables

– Subqueries converted to joins

– …..any table
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T1 T2 (WF)NLJ

t1.c = t2.cBinary Search of WF to look up 
exact location of qualified key Workfile sorted 

in t2.c order

How does Data Caching WF work?
– Data Cache contains the full result of materialized result

– Sparse index will be a subset of WF entries

– Example, WF may have 10,000 entries
• Cache is “binary searched” to find target location of search key

T2

(WF)
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Index Include Columns

Index INCLUDE columns

– Create an Index as UNIQUE, and add additional columns

– Ability to consolidate redundant indexes

INDEX1 UNIQUE (C1) Consolidate to 
INDEX2 (C1,C2) INDEX1 UNIQUE (C1) INCLUDE (C2)

DB2 10 for z/OS
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Parallelism Enhancements

In V8

– Lowest cost is BEFORE parallelism

In DB2 9 

– Lowest cost is AFTER parallelism

• Only a subset of plans are considered for 
parallelism

Optimizer

Parallelism

One Lowest 
cost plan 
survives

How to 
parallelize 

these 
plans?
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Parallelism Enhancements - Effectiveness

Previous Releases of DB2 may use Key Range Partitioning

– Key Ranges Decided at Bind Time

– Based on Statistics (low2key, high2key, column cardinality)

• Assumes uniform data distribution

• Histograms can help
– But rarely collected

– If Statistics are outdated or data is not uniformly distributed what 
happens to performance?

DB2 10 for z/OS
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Key range partition - Today
Large_T

10,000,000 rows
C2      C3

Workfile

SELECT  *
FROM     Medium_T M, 
                Large_T     L
WHERE   M.C2 = L.C2
     AND    M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

M.C1 is date column, assume currentdate is 8-31-2007, after the 
between predicate is applied, only rows with date between 
06-03-2007 and 8-31-2007 survived, but optimizer chops up the key 
ranges within the whole year after the records are sorted :-(

SORT 
ON C2

2,500 rows

3-degree parallelism

Partition the 
records according 
to the key ranges

25%

12-31-2007

09-30-2007
08-31-2007

01-01-2007

05-01-2007
04-30-2007

Medium_T
10,000 rows
C1       C2

5,000,000 rows

DB2 10 for z/OS
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Parallelism Effectiveness – Record range

DB2 10 can use Dynamic record range partitioning

– Materialize the intermediate result in a sequence of join processes

– Results divided into ranges with equal number of records

– Division doesn't have to be on the key boundary 

• Unless required for group by or distinct function

– Record range partitioning is dynamic

• no longer based on the key ranges decided at bind time

– Now based on number of composite records and parallel degree

• Data skew, out of date statistics etc. will not have any effect on performance 

DB2 10 for z/OS
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Dynamic record range partition

DB2 10 for z/OS

Large_T
10,000,000 rows

C2      C3

Workfile

SELECT  *
FROM     Medium_T M, 

Large_T L
WHERE   M.C2 = L.C2

AND    M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

SORT 
ON C2

2,500 rows

3-degrees parallelism

Partition the records -
each range has same 
number of records

Medium_T
10,000 rows
C1       C2
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Parallelism Effectiveness - Straw Model

Previous releases of DB2 divide the number of keys or pages by the 
number representing the parallel degree

– One task is allocated per degree of parallelism

– The range is processed and the task ends 

– Tasks may take different times to process

DB2 10 can use the Straw Model workload distribution method 

– More key or page ranges will be allocated than the number of parallel 
degrees

– The same number of tasks as before are allocated (same as degree)

– Once a task finishes it’s smaller range it will process another range

– Even if data is skewed this new process should make processing faster  

DB2 10 for z/OS
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STRAW Model
SELECT  *
FROM     Medium_T M
WHERE   M.C1 BETWEEN 20 AND 50

100

Medium_T
10,000 rows
C1       C2

index on C1

50
47
44
41
38
35
32
29
26
23
20

0

degree=3
#ranges=10

100

Medium_T
10,000 rows
C1       C2

index on C1

50

0

20

30

40

degree = 3

Divided in key ranges with Straw ModelDivided in key ranges before DB2 10

T a s k 1

T a s k 3

T a s k 2

DB2 10 for z/OS
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Dynamic Index ANDing Challenge

Filtering may come from 
multiple dimensions

•Creating multi-column indexes 
to support the best combinations 
is difficult

F

D5

D4

D2

D1

D3



© 2011 IBM Corporation56

Index ANDing – Pre-Fact 

Pre-fact table access

–Filtering may not be (truly) known until runtime

F

D1
Filtering dimensions 
accessed in parallel

Join to respective fact table 
indexes

Build RID lists

F

D3

F

D5

RID 
list 1

RID 
list 2

RID 
list 3

Runtime optimizer may terminate parallel leg(s) which 
provide poor filtering at runtime
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Index ANDing – Fact and Post-Fact

Fact table access

–Intersect filtering RID lists

–Access fact table

•From RID list

Post fact table

–Join back to dimension tables

Remaining RID lists are 
“ANDed” (intersected)

RID 
list 2

RID 
list 3

Using parallelism

RID 
list 2/3

Final RID list used for parallel fact table access
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Dynamic Index Anding Highlights

Pre-fact table filtering
– Filtering dimensions accessed concurrently

Runtime optimization
– Terminate poorly filtering legs at runtime

More aggressive parallelism

Fallback to workfile for RID pool failure
– Instead of r-scan

APAR PK76100 – zparm to enable EN_PJSJ 


