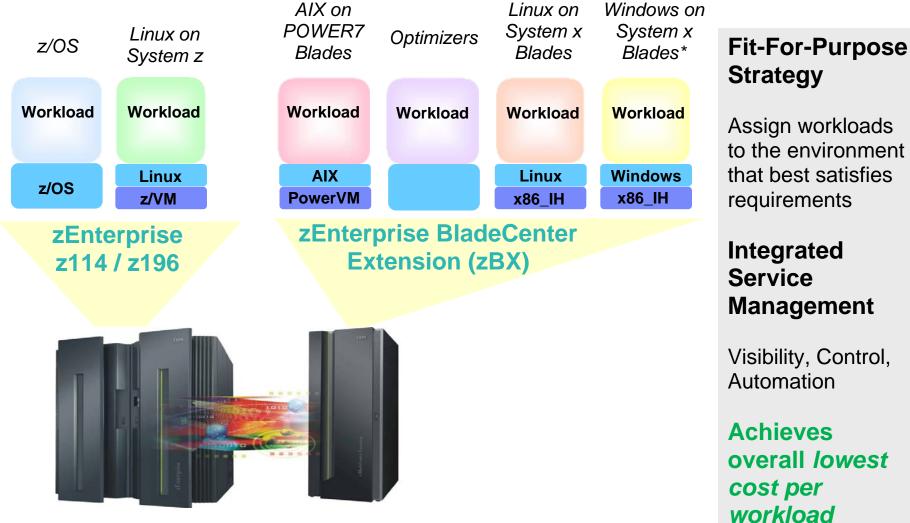

Smarter Computing With zEnterprise

© 2011 IBM Corporation


Smarter Computing

New metric for the age of Smarter Computing

COST PER WORKLOAD

© 2010 IBM Corporation

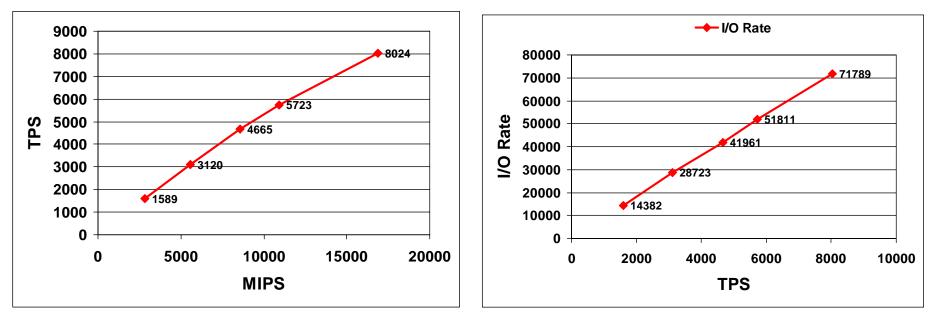
*All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represents goals and objectives only.

© 2010 IBM Corporation

Fit For Purpose Example – Which Environment Is Best For Transaction Processing?

An Interesting Relationship

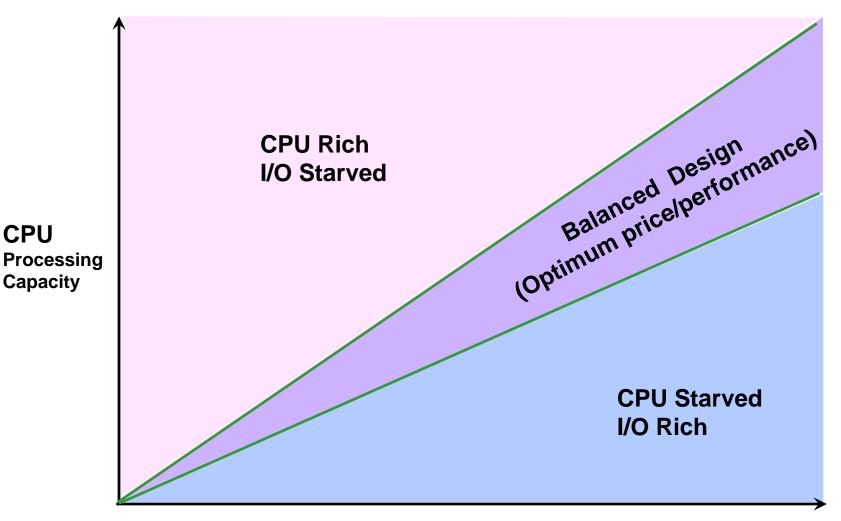
CPU processing power and IOPS capacity in top 30% Best Optimized TPC-C Benchmarks



^{© 2010} IBM Corporation

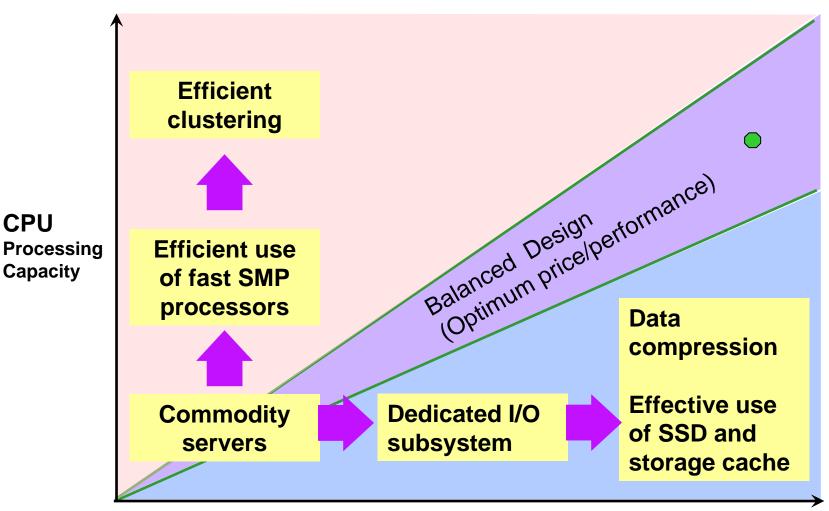
Bank Of China Benchmark Demonstrates Linear Relationship Between I/O Rate And Processing Capacity

Complex banking transactions (BaNCS – CICS/DB2 z/OS workload)


Add MIPS as needed to increase transaction rate

I/O rate scales to sustain transaction rate

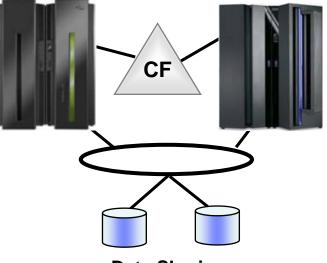
Environments Optimized For Transaction Processing Must Balance Processing Power And I/O Bandwidth



IOPS (Input Output Operations per Second)

© 2010 IBM Corporation

Optimization Technologies Take You Much Further Into The Balanced Region



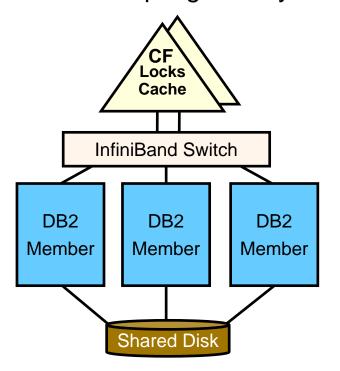
IOPS (Input Output Operations per Second)

z/OS Sysplex - Optimized For Efficient Clustering

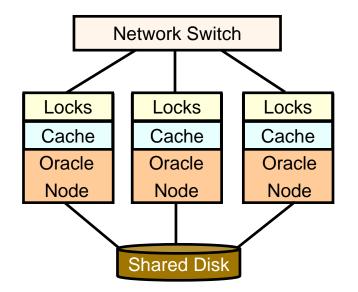
- Specialized hardware Coupling Facility
 - Dedicated processor with specialized microcode to coordinate shared resources
 - High speed inter-connect to clustered systems
 - Hardware invalidation of local cache copies
 - Special machine instructions
- Exploited by IMS, CICS, DB2, MQ, and other middleware on z/OS for transaction processing scale

Data Sharing

A single 80-way zEnterprise delivers 52,286 transaction processing MIPs. Up to 32 of these can be clustered in a parallel sysplex, delivering ultimate scalability and availability.



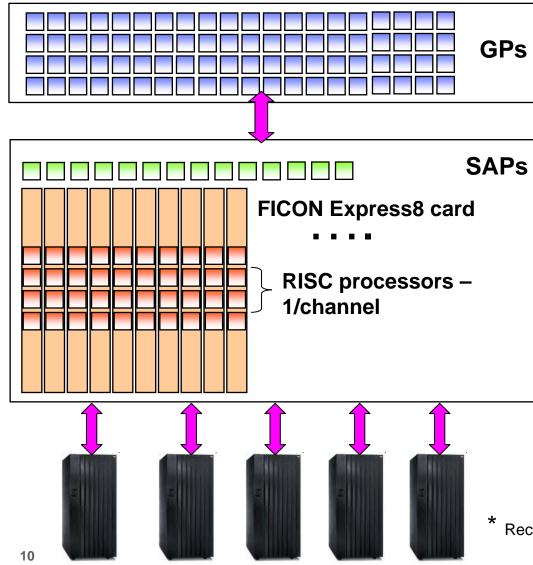
Clusters Grow Database Processing Power Beyond Single Server Solutions


DB2 for z/OS Centralized Coupling Facility Design

Oracle RAC

Distributed Design

Efficient lock and buffer management achieve near linear scalability



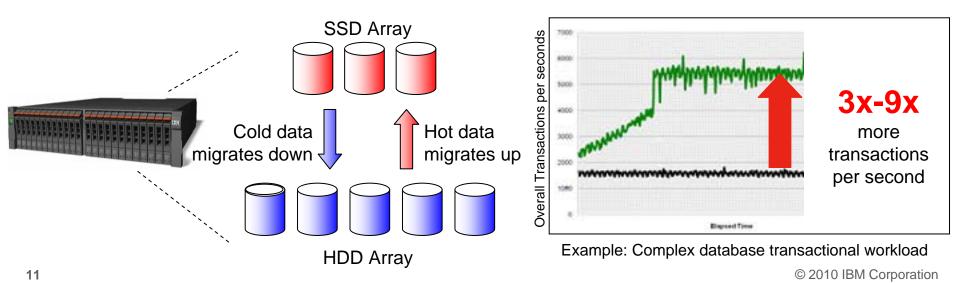
Inefficient distributed locking and buffer management limits scaling

Z196 Dedicated I/O Subsystem - Optimized For High I/O Bandwidth

 Up to 80 General Purpose (GP) or Specialty Engine processors

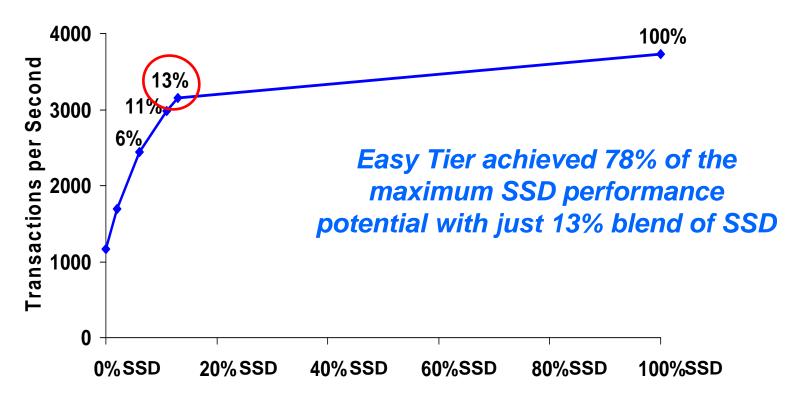
- Execute business logic

 Up to 14 System Assist Processors (SAP) to manage I/O requests


- Can sustain up to 2.2M IOPS* operations per second
- Up to 84 physical FICON cards for I/O transfers
 - Up to 336 RISC channel I/O processors
 - Up to 1024 logical channels
- IBM DS8800 Storage System
 Up to 440K IOPS capability

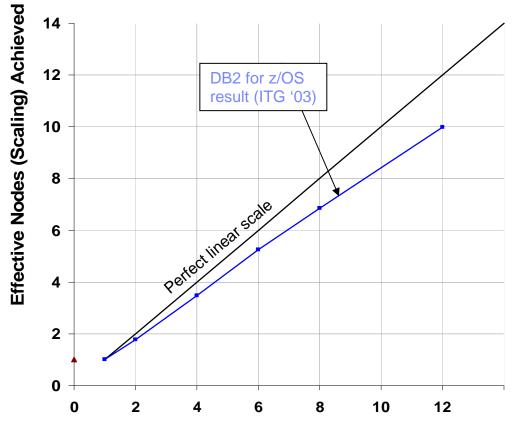
Recommend 70% max SAP Utilization - 1.5M IOPS

DS8000 – Optimized For Automatic Exploitation Of Solid State Storage


- Easy Tier migrates data extents between solid state drives and hard disk drives
 - Automatic hotspot detection
- Virtualized SSD is shared across all workloads using the pool
 - Most effective use of SSD resource
- Transparent to applications, no code changes required

Improve Storage Performance

Transactional Database Performance as Blend of SSD is increased

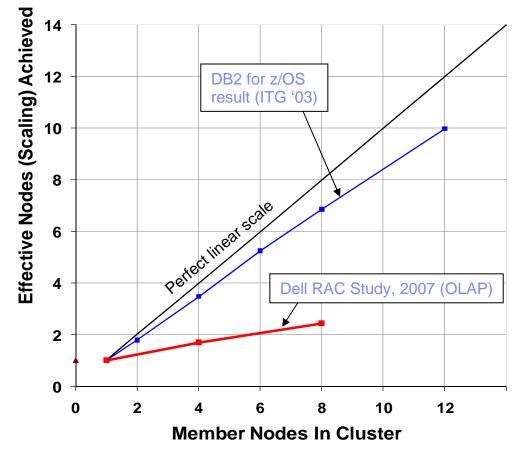

Source: IBM Internal Study of Benchmark Factory transactional database workload performance as Easy Tier migrates data to SSD. The performance data contained herein was obtained in a controlled, isolated environment. Actual results that may be obtained in other operating environments may vary.

Result: z/OS Is Uniquely Optimized To Support Large Scale Transaction Processing

- More processors, memory and cache than other enterprise servers
- I/O offloaded to dedicated subsystem
- Sysplex clustering designed for near linear scaling
- DS8000 Easy Tier can boost performance even further for some workloads

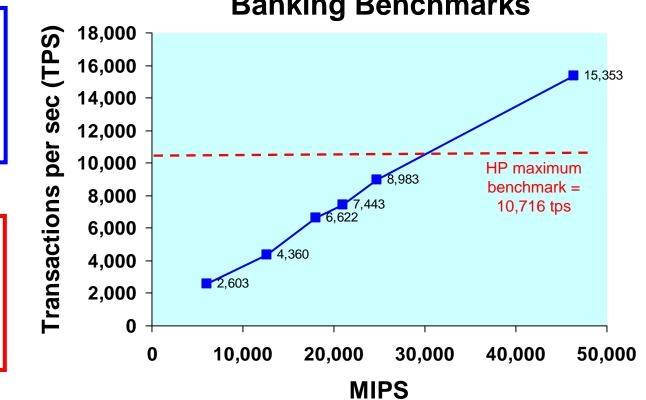
Example of near-linear scalability:

Member Nodes In Cluster



Without Application Changes And Database Tuning, Oracle RAC Does Not Scale

Inefficient design


- Scaling requires data partitioning and complex tuning
- Published studies demonstrate poor scalability
 - Dell (shown in chart): Poor scalability despite using InfiniBand for interconnect
 - CERN: Four month team effort to tune, change database, change application
 - Insight Technology: Even a simple application on two node system requires complex tuning and partitioning to scale

Example of near-linear scalability:

z/OS Beats The Best HP Benchmark

System z and BaNCS Online Banking Benchmarks

¹ Source: http://www.enterprisenetworksandservers.com/monthly/art.php?2976 and InfoSizing FNS BANCS Scalability on IBM System z – Report Date: September 20, 2006

² Standard benchmark configuration reached 8,024 tps, a modified prototype reached 9,445 tps

³ SOURCE:**Clement Report; <u>http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA1-4027ENW.pdf</u> Feb 2010

15

Kookmin Bank

TCS BaNCS

50 Million Accounts

State Bank of India ³
 HP Superdome

TCS BaNCS

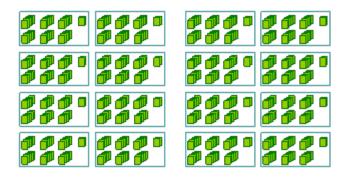
IBM System z9 and DB2

15,353 Transactions/second

IBM benchmark for customer

DB2 V9, CICS 3.1, z/OS V1.8

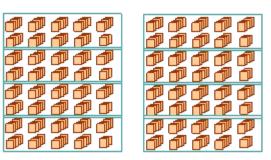
10,716 Transactions/second


 Largest banking benchmark performance claimed by HP

500 Million Accounts

Compare Processors Needed To Achieve Same Throughput (10,716 tps)

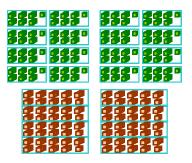
BaNCS Application Servers: 16x HP Superdome (16ch/32co)


56 processors 47 GPs + 9 zIIPs 40,313 MIPS

TCS BaNCS 1x z196-756

BaNCS Database Servers: 8x HP Superdome (24ch/48co)

Oracle on HP-UX


896 processors 3,668,608 Performance Units

DB2 on z/OS

NOTE: Benchmarks configurations were for production only. To cover DEV/QA capacity, 100% capacity was added to distributed server configuration, and 25% MIPS (8,000) were added to System z for a total of 39,811 MIPS. Model z196-756 provides 40,313 MIPS.

Compare The 5-Year Platform Acquisition Costs

HP-UX, Oracle

HP Superdome Servers

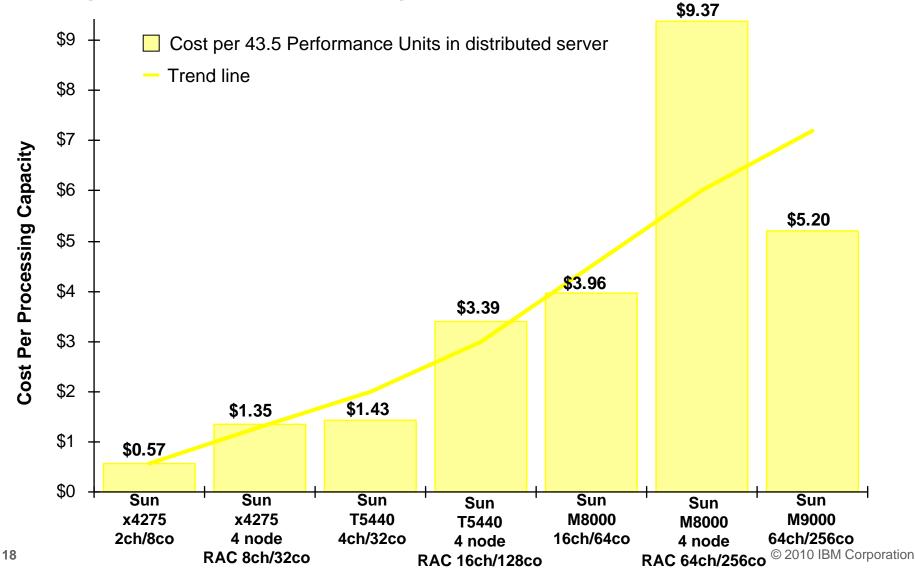
Total (5yr TCO)

\$194.93M

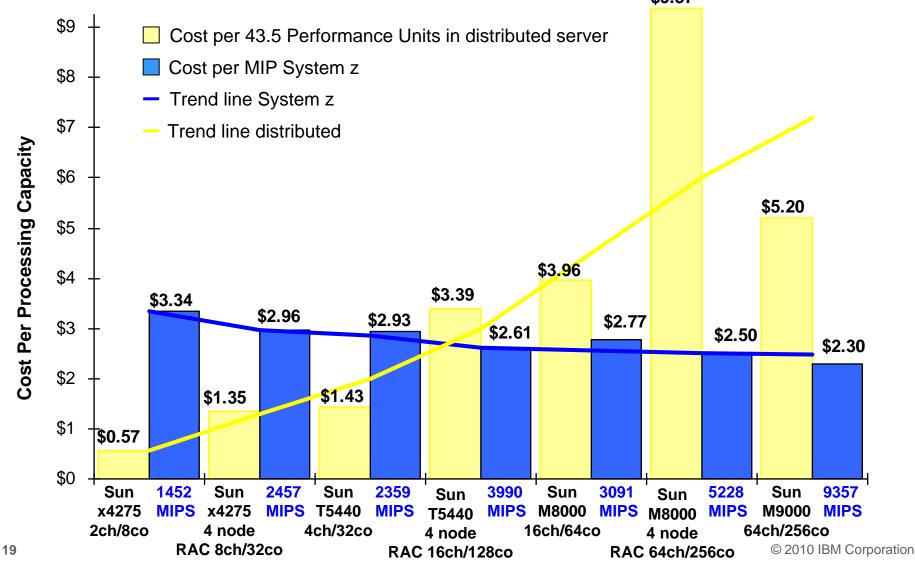
Hardware	\$113,215,984
Software	\$78,185,950
Networking	\$948,000
Space	\$1,061,710
Energy	\$1,522,488

Scalability Not Demonstrated Energy (kWh) 3,045K per yr

Note: Cost of platform infrastructure for production. Cost of packaged application software not included. List prices used.


Hardware	\$61,163,580
Software	\$48,349,448
Networking	\$39,500
Space	\$78,067
Energy	\$131,400

Excellent Scalability Energy (kWh) 263K per yr


Data Base Cost Per Processing Capacity Increases With Size For Distributed Servers

Data Base Cost Per Processing Capacity Decreases With Size For DB2 For z/OS

Some Typical Eagle Studies Under 3,000 MIPS - All Stayed on System z

	_	· · · · · · · · · · · · · · · · · · ·	- -		
		distributed			
Customer	z (MIPS)	(RPE)	Z	distributed	z/dist %
Average	1,166	218,472	9,050,451	16,325,492	
SA Government Agency	475	241,291	19,773,442	25,261,624	78.27%
German Financial	1,200	263,177	3,939,889	4,701,033	83.81%
NA Financial Servieces	2,526	308,144	3,456,611	5,939,476	58.20%
US utility company	456	163744	6,157,295	13,380,866	46.02%
European Insurance	904	171,062	13,019,980	15,877,484	82.00%
US Manufacturor	900	453,168	11,277,266	16,019,269	70.40%
Asian Bank	1,416	136,013	2,342,300	7,237,681	32.36%
US Retailer	1,700	215,124	3,543,154	8,951,851	39.58%
US County Government	88	43,884	4,717,394	8,108,668	58.18%
US Retailer	1,500	184,732	9,254,186	20,861,515	44.36%
AP bank	1,336	168,113	17,300,000	27,200,000	63.60%
AP bank	300	24,162	5,200,000	11,500,000	45.22%
US Manufacture	1,917	261,040	4,758,313	7,350,216	64.74%
US Food Services	1,600	424,952	21,966,475	56,167,206	39.11%

Typical Decision Factors: Cost and Risk

5-Year TCO

Typical Eagle TCO Offload Study For A Financial Services Customer

4 HP Proliant DL 980 G7 servers

Production

Development

256 cores total

Hardware	\$1,594,801
Software	\$80,617,966
Labor (additional)	\$8,250,000
Power and cooling	\$43,756
Space	\$79,385
Disaster Recovery	\$4,210,728
Migration Labor	\$24,000,000
Parallel Mainframe costs	\$31,474,052
Total (5yr ⊤CO)	\$150,270,688

System z z/OS Sysplex

Hardware	\$1,408,185
Software	\$49,687,845
Labor	Baseline
Power and cooling	\$31,339
Space	\$79,385
Disaster recovery	\$1,250,000
Total (5yr TCO)	\$52,456,754

IBM Confidential

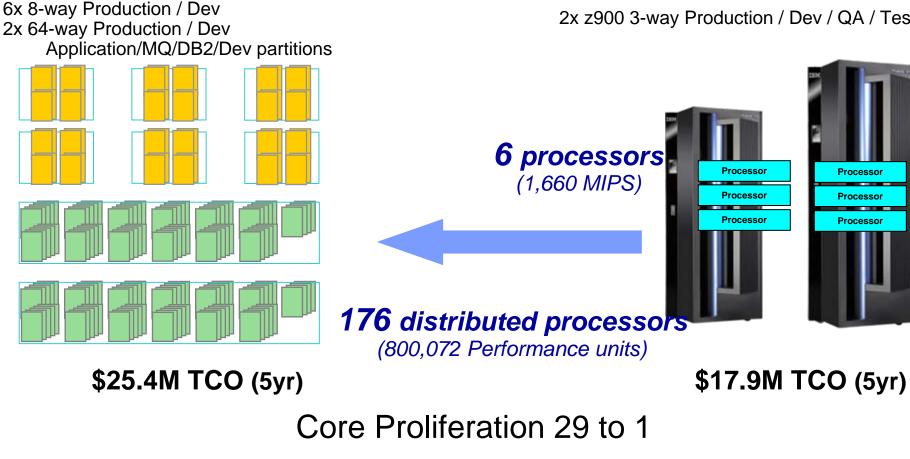
Why Do Distributed Alternatives Cost More?

De-consolidation of applications to dedicated servers

- Separate servers for production, development, quality assurance test
- Dedicated servers for functional roles application, database, security, batch, systems management
- Low utilization due to provisioning for the peak on each server and pre-provisioning for growth

Disaster Recovery

- 100% coverage doubles the number of cores required


Processing comparisons

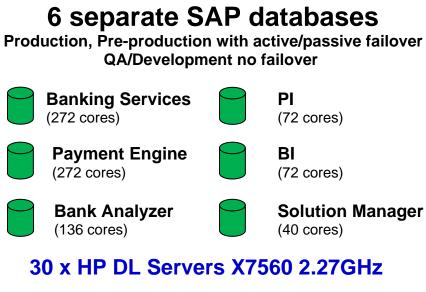
- Language expansion (IMS/CICS/COBOL path lengths are highly optimized)
- Networking drives up cycles spent on protocols
- Mainframe has dedicated processors for I/O operations, distributed does not
- Converting IMS hierarchical database to relational typically results in a 3x expansion

Resulting in *core proliferation!*

482 Performance Units per MIPS

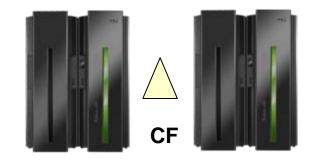
A Customer Offload Project

2x z900 3-way Production / Dev / QA / Test


How To Achieve Lowest Cost Per Workload With zEnterprise

- Most existing z/OS workloads are already best-fit
 - Spinning off these workloads increases cost
 - zEnterprise environments enable a different strategy
- Consolidate peripheral workloads into zEnterprise
 - Use fit for purpose assignments to reduce cost of acquisition
 - Managed as one system to reduce operational costs
- Distributed databases and data marts
- Hybrid workload front ends
- Standalone workloads

Consolidating SAP Databases On z196 Reduces Total Cost Of Acquisition By 88%



864 cores

Total (5yr TCA)	\$97.2M
Hardware	\$3,097,858
Software	\$92,908,752
Networking	\$1,185,000

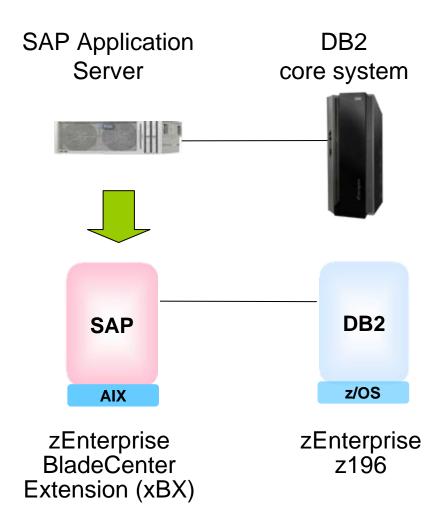
Multi-Tenancy

Consolidated Databases DB2 for z/OS Sysplex

z196-727 + 27 zIIP 39,117 MIPS z196-727 + 27 zIIP 39,117 MIPS

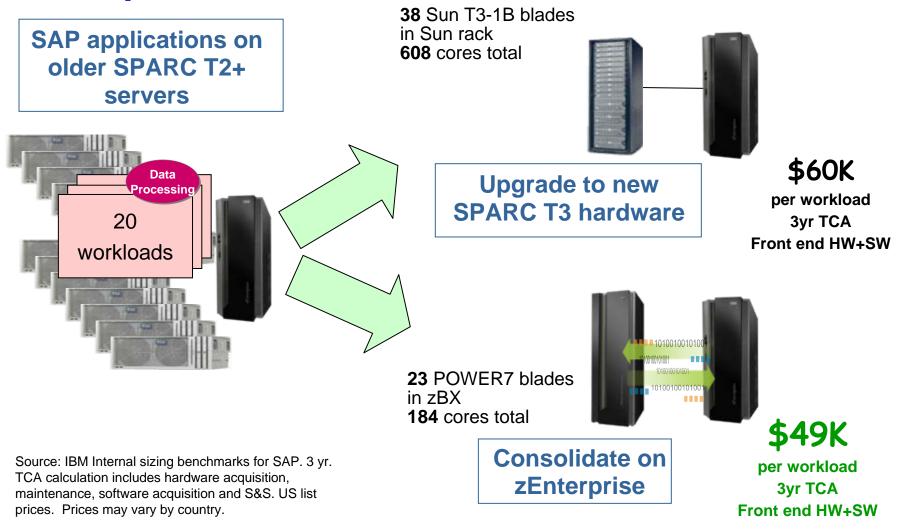
108 cores

Total (5yr TCA) **\$11.8M**

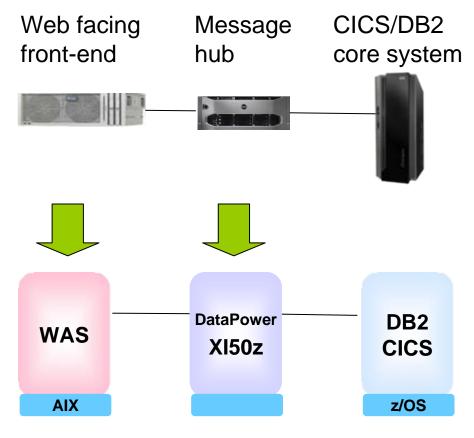

Hardware & Software (Solution Edition SAP)	\$11,699,122
Networking	\$79,000

6 SAP DB Instances with total Prod. DB QuickSizer SAPS = 177,000 consolidated into DB2 z/OS (multi-tenancy), Performance Equivalence = 64, US Prices with System z Solution Edition for SAP DB and List Prices for Oracle SW & HP HW. Does not include cost of SAP software.

Then Collapse SAP Front End Applications Into zEnterprise Platform

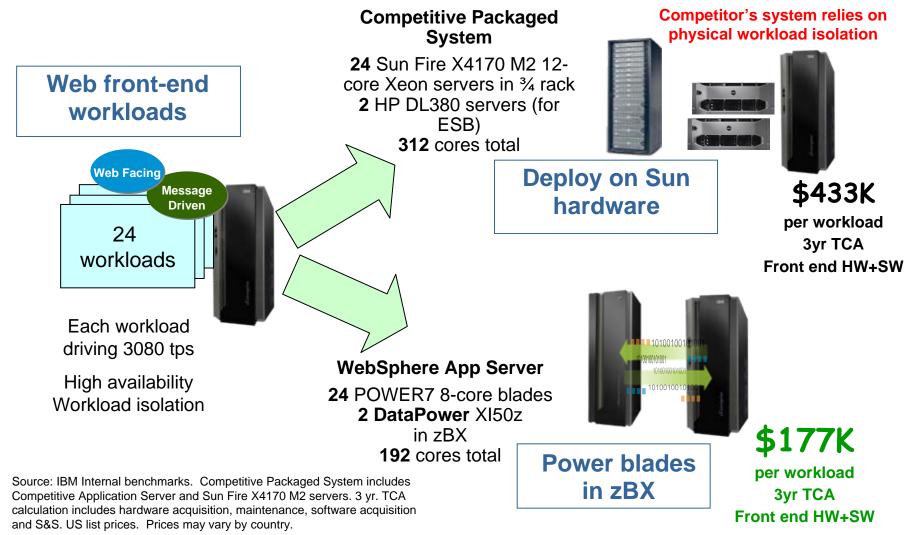


- Run as ensemble of virtual servers
- Unified management of virtual machines
- Manage ensemble as a single workload with service goals
- Assign best fit to Power blade for lowest cost per workload
- Embedded pre-configured data network



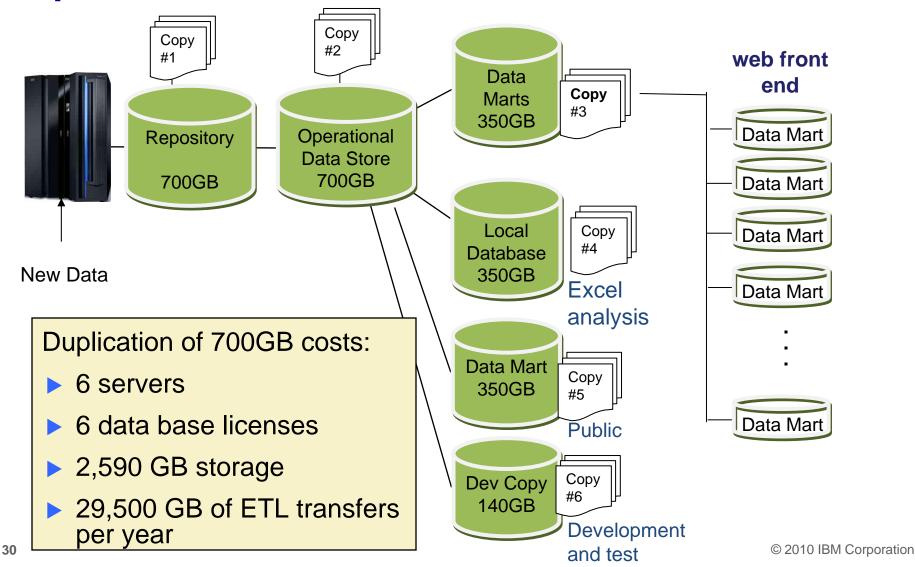
SAP Applications Cost 18% Less On zEnterprise

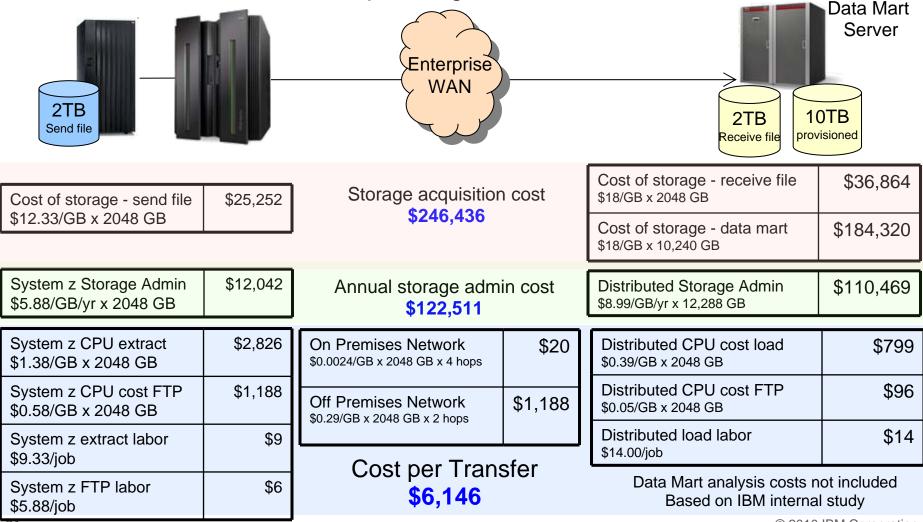
Collapse Web Front End Workloads Into zEnterprise



zEnterprise BladeCenter Extension (zBX) zEnterprise z114

- Run as ensemble of virtual servers
- Unified management of virtual machines
- Manage ensemble as a single workload with service goals
- Assign best fit to Power blade and XI50z for lowest cost per workload
- Embedded pre-configured data network


Web Front Ends Cost 59% Less On zEnterprise

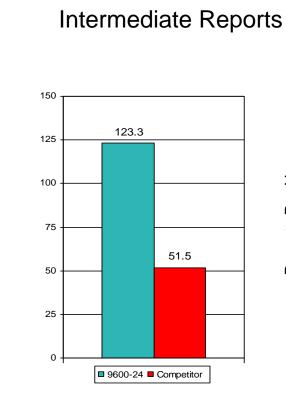

Data Mart Proliferation At A Local Government Department

Duplicating Data Off The Mainframe Is Costly

The Cost Of Duplicating 2TB To A Data Mart

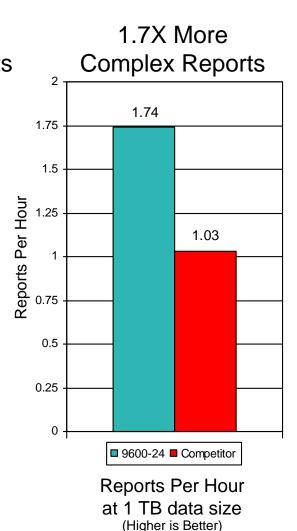
© 2010 IBM Corporation

Transfer Costs Add Up Over One Year


The Cost Of Duplicating 2TB To A Data Mart

2TB Send file		Enterprise WAN		Data Mart Server 2TB Receive file provisioned		
Cost of storage - send file \$12.33/GB x 2048 GB	\$25,252	Storage acquisitior \$246,436	cost	Cost of storage - receive file \$18/GB x 2048 GB	\$36,864	
				Cost of storage - data mart \$18/GB x 10,240 GB	\$184,320	
System z Storage Admin \$5.88/GB/yr x 2048 GB	\$12,042	Annual storage admin cost \$122,511		Distributed Storage Admin \$8.99/GB/yr x 12,288 GB	\$110,469	
System z CPU extract \$1.38/GB x 2048 GB x 365	\$1.03M	On Premises Network \$0.0024/GB x 2048 GB x 4 hops x 365	\$7.1K	Distributed CPU cost load \$0.39/GB x 2048 GB x 365	\$292K	
System z CPU cost FTP \$0.58/GB x 2048 GB x 365	\$434K	Off Premises Network	\$434K	Distributed CPU cost FTP \$0.05/GB x 2048 GB x 365	\$35K	
System z extract labor \$9.33/job x 365	\$3.3K	\$0.29/GB x 2048 GB x 2 hops x 365		Distributed load labor \$14.00/job x 365	\$5.1K	
System z FTP labor \$5.88/job x 365	\$2.2K	Annual Transfer Costs I \$2,243,290		Cost of running Data Mart analysis jobs not included	MCorporation	

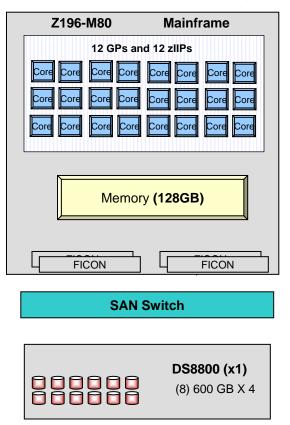
- Meets service levels for timely execution of simple reports
- More than double the number of intermediate reports per hour


 70% better throughput for complex reports

Reports Per Hour

2.4X More

Reports Per Hour at 1 TB data size (Higher is Better)

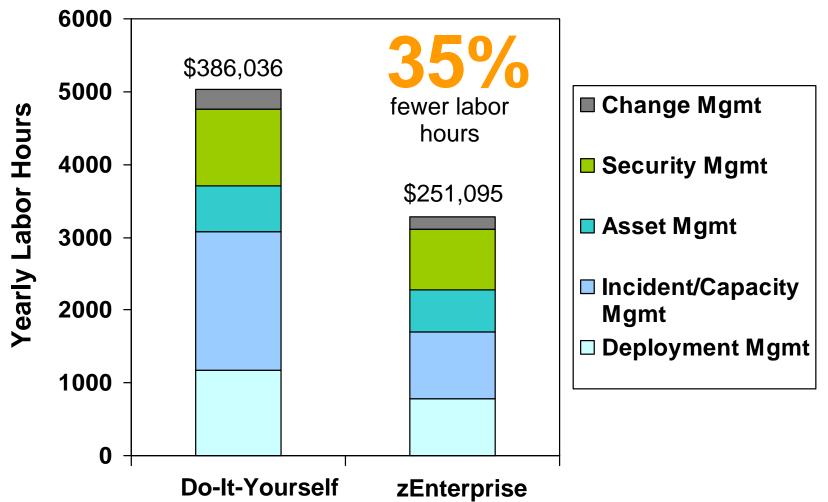


© 2010 IBM Corporation

Competitor Database Machine (2 DBMS Nodes, 3 Storage Devices) Quad-core CPU X86 server Quad-core CPU Quad-core CPU x86 server Quad-core CPU Nehalem EP Nehalem EP Database Core Core Core Core Memory servers (72GB) Core Core Core Core (4) 300GB SAS Disk for OS 1GbE 10GbE Infiniband **Infiniband Switch** Quad-core CPU X86 server **Quad-core CPU** Quad-core CPU x86 server Quad-core CPU Quad-core CPU x86 server **Quad-core CPU** Core Core Core Core Storage Memory (24GB) Devices Core Core Core Core 88888 (12) 600GB SAS2 SSD SSD 96GB 96GB 96GB 96GB used as Infiniband HBA Disk Controller cache **3YR TCA = \$2,857,500** IBM Smart Analytic System 9600 Extra Small Configuration (Custom 24-core config)

3 YR TCA = \$3,600,000 © 2010 IBM Corporation

3 year total cost of acquisition includes hardware, software, service & support. Based on US list prices, prices will vary by country


zManager Provides Platform And Resource Management Across zEnterprise Environments

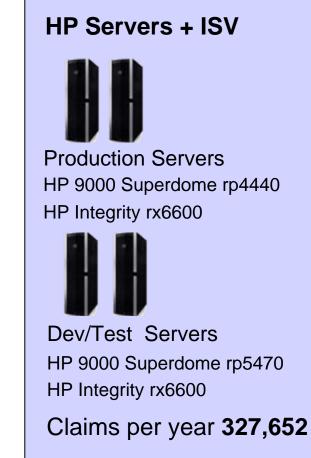
Process	Typical Distributed Management Practices	zManager
Asset Management	 Discover assets with ad hoc methods Manual entitlement management 	Automated discovery and management of entitlement assets
Deployment Management	Manually configure hypervisor and build networks	Automated deployment of hypervisor and attachment to integrated networks
Security Management	Different ways to manage administrator access	Centralized, fine-grained administrator access management
Change Management	No visibility into impact of changes	Track dependencies for change impact
Capacity and Performance Management	 No end-to-end transaction monitoring Manually adjust CPU resources to meet changing workload demands 	 End-to-end transaction monitoring to isolate issues Automatic CPU resource adjustments to meet changing workload demands

Centralized, Structured Management With zEnterprise Cuts Infrastructure Labor Hours

Financial Charge Back Is May Not Be Optimized For Accuracy!

Two Commercial Claims Processing Systems

IBM System z CICS/DB2


Total MIPS 11,302

MIPS Used for commercial claims processing production/dev/test **2418**

Claims per year 4,056,000

Which system costs less for future growth?

> Calculate cost per workload

	Mainframe	Distributed
Hardware	1,302,205	87,806
Hardware Maint	315,548	
Software IBM MLC	4,842,384	
Software Non IBM OTC	647,843	196,468
Software Non IBM MLC	5,027,936	
Storage	877,158	
Network	418,755	
Support Staff	2,324,623	257,289
Platform + Staff Total	15,756,452	541,563
Platform + Staff Claims Allocation	3,371,880	541,563
Billing Center	1,611,650	
Call Center	2,920,090	
Development	1,907,382	
Total	9,811,002	541,563
Claims Processed	4,056,000	327,652
\$ Per Claim	2.42	1.65

Provided by customer finance department

IBM Confidential

© 2010 IBM Corporation

	Mainframe	Distributed
Hardware	1,302,205	87,806
Hardware Maint	315,548	
Software IBM MLC	4,842,384	
Software Non IBM OTC	647,843	196,468
Software Non IBM MLC	5,027,936	
Storage	877,158	
Network	418,755	*
Support Staff	2,324,623	257,289
Platform + Staff Total	15,756,452	541,563
Platform + Staff Claims Allocation	3,371,880	541,563
Billing Center	1,611,650	
Call Center	2,920,090	
Development	1,907,382	
Total	9,811,002	541,563
Claims Processed	4,056,000	327,652
\$ Per Claim	2.42	1.65

Provided by customer finance department

Mainframe costs easily identified, distributed costs difficult to identify

> IBM Confidential © 2010 IBM Corporation

	Mainframe	Distributed
Hardware	1,302,205	87,806
Hardware Maint	315,548	
Software IBM MLC	4,842,384	
Software Non IBM OTC	647,843	196,468
Software Non IBM MLC	5,027,936	
Storage	877,158	
Network	418,755	¥
Support Staff	2,324,623	257,289
Platform + Staff Total	15,756,452	541,563
Platform + Staff Claims Allocation	3,371,880	541,563
Billing Center	1,611,650	
Call Center	2,920,090	
Development	1,907,382	
Total	9,811,002	541,563
Claims Processed	4,056,000	327,652
\$ Per Claim	2.42	1.65

Provided by customer finance department

Mainframe costs easily identified, distributed costs difficult to identify

Billing and Call center costs allocated to mainframe, but would be the same for either option

> IBM Confidential © 2010 IBM Corporation

	Mainframe	Distributed
Hardware	1,302,205	87,806
Hardware Maint	315,548	
Software IBM MLC	4,842,384	
Software Non IBM OTC	647,843	196,468
Software Non IBM MLC	5,027,936	
Storage	877,158	
Network	418,755	₩
Support Staff	2,324,623	257,289
Platform + Staff Total	15,756,452	541,563
Platform + Staff Claims Allocation	3,371,880	541,563
Billing Center	1,611,650	
Call Center	2,920,090	
Development	1,907,382	×
Total	9,811,002	541,563
Claims Processed	4,056,000	327,652
\$ Per Claim	2.42	1.65

Provided by customer finance department

Mainframe costs easily identified, distributed costs difficult to identify

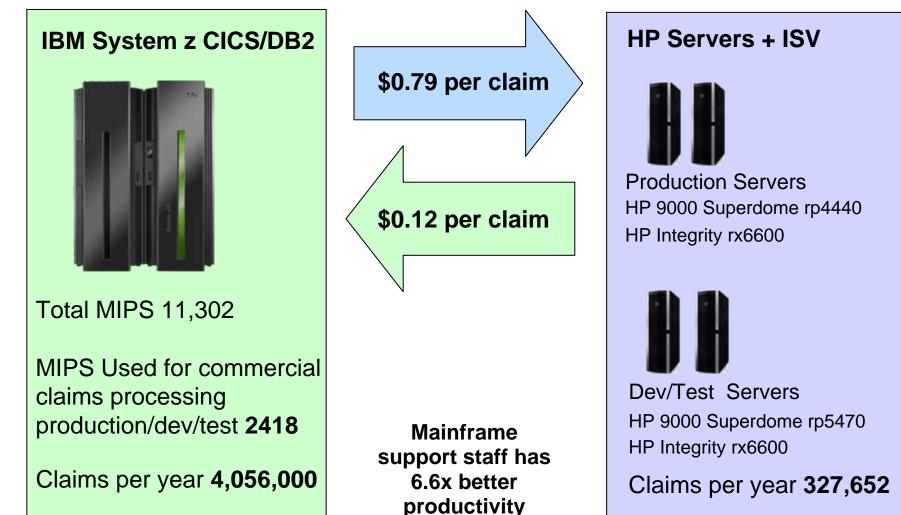
Billing and Call center costs allocated to mainframe, but would be the same for either option

Development still required to customize packaged software for each new contract

> BM Confidential © 2010 IBM Corporation

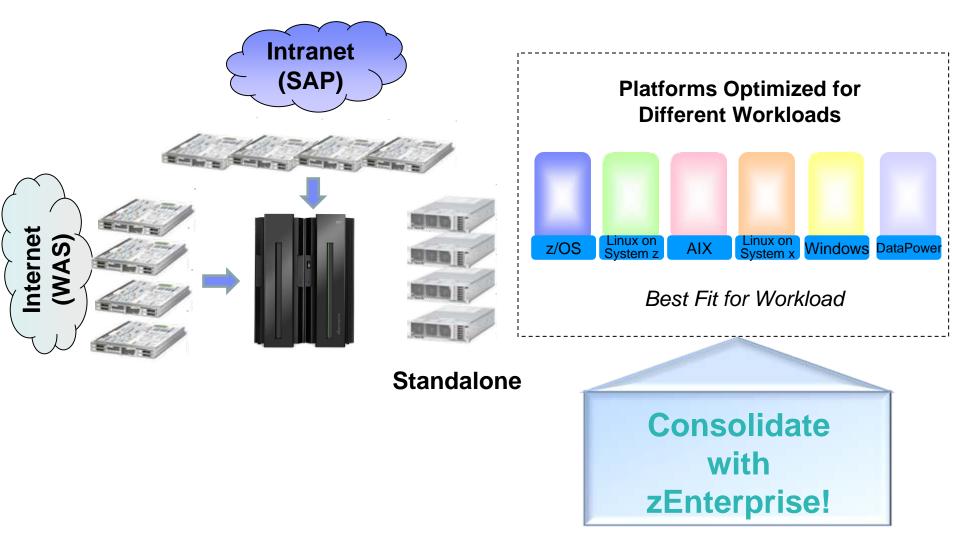
True Costs Per Workload

	Mainframe	Distributed
Hardware	1,302,205	87,806
Hardware Maint	315,548	
Software IBM MLC	4,842,384	
Software Non IBM OTC	647,843	196,468
Software Non IBM MLC	5,027,936	
Storage	877,158	?
Network	418,755	?
Support Staff	2,324,623	257,289
Platform + Staff Total	15,756,452	541,563
Platform + Staff Claims Allocation	3,371,880	541,563
Billing Center	same	same
Call Center	same	same
Development	1,907,382	193,271
Total	5,279,262	734,834
Claims Processed	4,056,000	327,652
\$ Per Claim	1.30	2.24


IBM Confidential

Mainframe has lower cost per workload © 2010 IBM Corporation 42

42

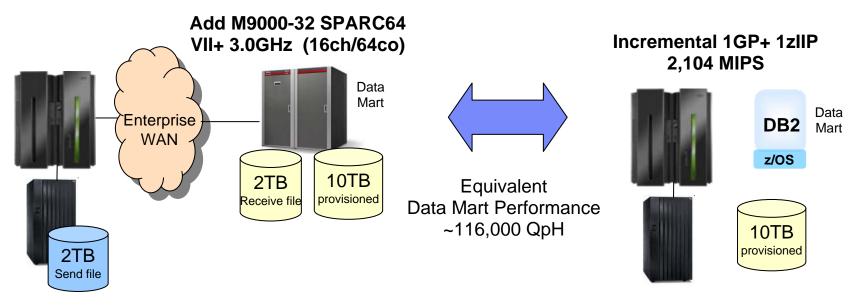


A Note On Support Staff Annual Costs

Workloads Into zEnterprise

Backup

© 2010 IBM Corporation



Compare The Cost Of Database Workloads On System z vs. Intel

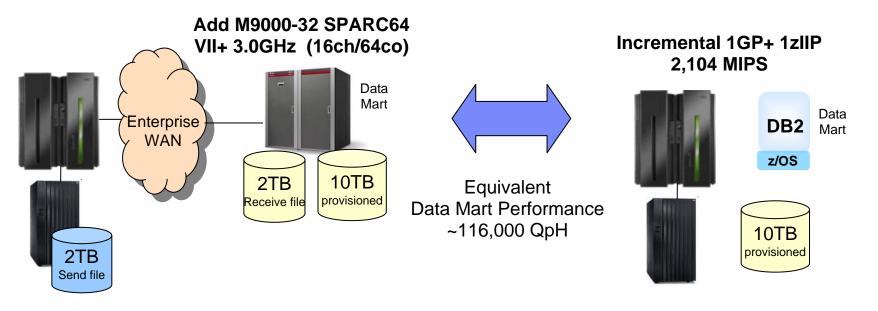
- CPO lab measurements of isolated database workload equivalence
 - 1 MIP = 7.24 RPE
- When deployed in a real world mainframe environment with multiple workloads, the resulting ratio scales by a factor of 6
 - 1 MIP = 43.5 RPE
- Using this equivalence one can estimate the upper limit of database throughput performance on Intel relative to the throughput of DB2 on System z (expressed in MIPS)
- The costs for these two alternatives can be compared at different MIPS levels
- Intel delivers lower costs for database workloads up to about 3000 MIPS
- System z delivers lower costs for DB2 workloads greater than 3000 MIPS
 - System z cost advantage increases as the workload gets larger

Co-locating Data Mart On z196 Costs 89% Less Than Standalone Oracle Data Mart

Total Incremental Cost \$14.94M 3yr TCA

Data Mart Hardware = \$2,552,975 Data Mart Software = \$5,045,440 Data Mart Storage = \$184,320 FTP File Storage = \$62,116 Storage Admin = \$367,533 Transfer Costs = \$6,729,870

Total Incremental Cost \$1.7M 3yr TCA


Data Mart Hardware = \$294,293 Data Mart Software = \$1,107,102 Data Mart Storage = \$117,505

Storage Admin = \$180,630 © 2010 IBM Corporation

Co-locating Data Mart On z196 Costs 90% Less Than Standalone Oracle Data Mart

Total Incremental Cost \$14.6 3yr TCA

Data Mart Hardware = \$2,552,975 Data Mart Software = \$5,045,440 Data Mart Storage = \$184,320 FTP File Storage = \$62,116 Transfer Costs = \$6,729,870

Total Incremental Cost \$1.5M 3yr TCA

Data Mart Hardware = \$294,293 Data Mart Software = \$1,107,102 Data Mart Storage = \$117,505 (Solution Edition for DW pricing)