

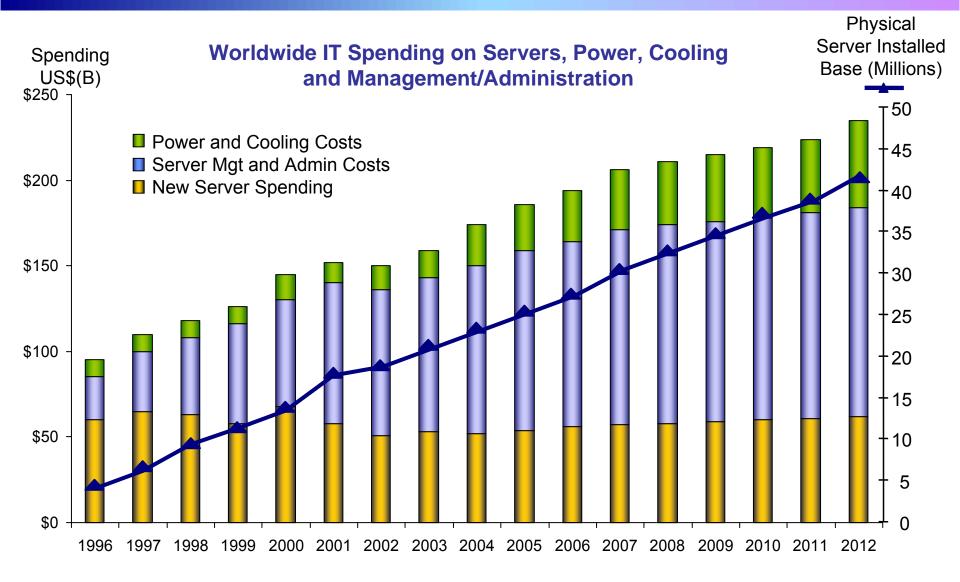
System z Enables Solutions For A Smarter Planet

Dynamic Infrastructure With System z

Dynamic Infrastructure Requirements

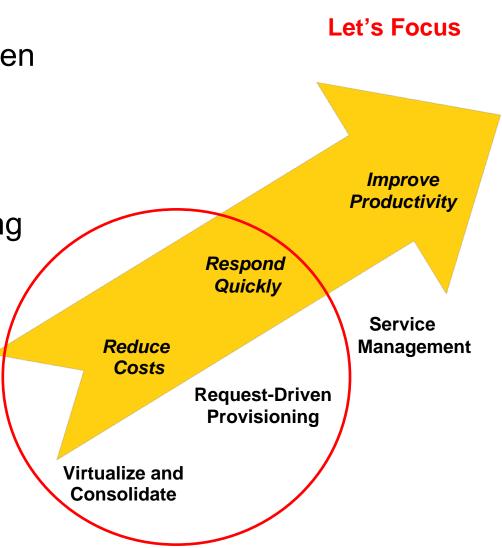


IBM


05 - Dynamic Infrastructure with System z v2.0.ppt

CIO

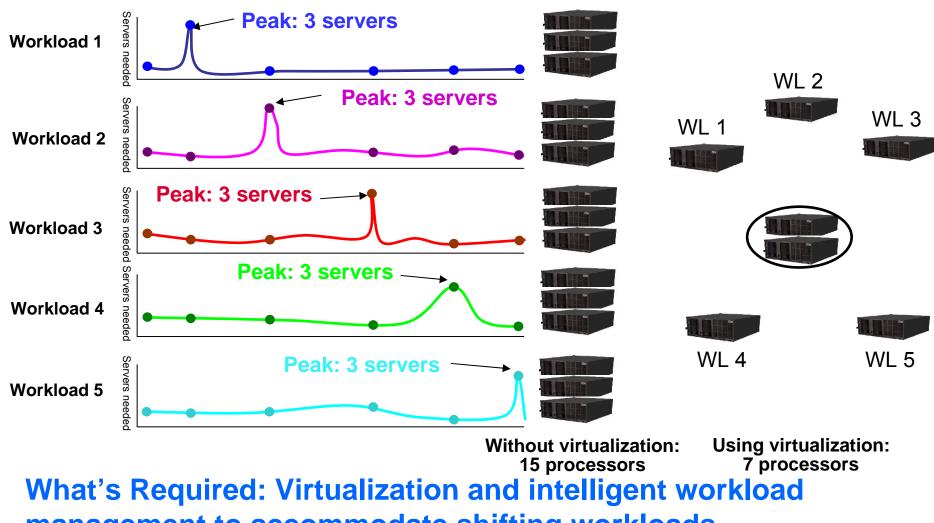
Complexity Is Growing


Annual Operating Costs Are Out Of Control

Dynamic Infrastructure For A Smarter Planet

- Virtualization and Consolidation is a proven way to save money
- Request Driven, or Automated, Provisioning increases agility and lowers labor costs

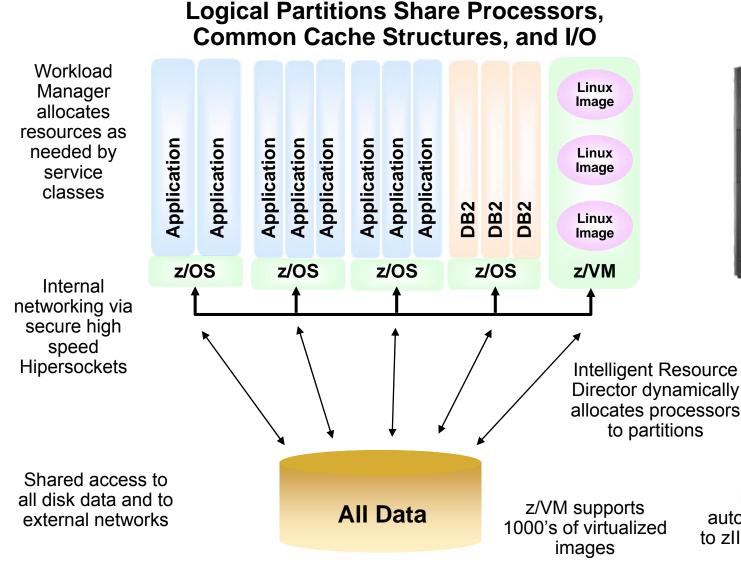
Understand All The Operational Costs


Annual Operations Cost Per Server (Averaged over 3917 Distributed Servers)

Power	\$731	
Floor Space	\$987	
Annual Server Maintenance	\$777	
Annual connectivity Maintenance	\$213	
Annual Disk Maintenance	\$203	
Annual Software support	\$10,153	
Annual Enterprise Network	\$1,024	Needed:
Annual Sysadmin	\$20,359	Something
Total Annual Costs	\$34,447	that works
		on these

The largest cost component was labor for administration 7.8 servers per headcount @ \$159,800/yr/headcount

Source: IBM internal study


Example: Improve Efficiency And Reduce Costs

management to accommodate shifting workloads. But this is automatic on the mainframe!

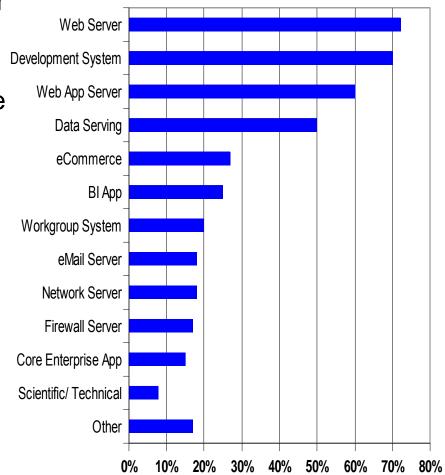
05 - Dynamic Infrastructure with System z v2.0.ppt

System z Is Designed For Extreme Virtualization

05 - Dynamic Infrastructure with System z v2.0.ppt

Eligible workload automatically dispatched to zIIP and zAAP specialty processors

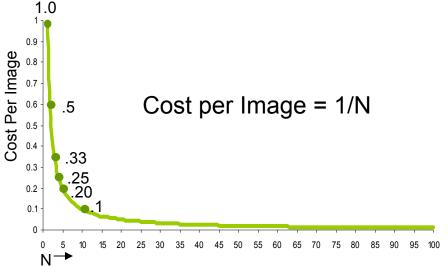
Linux Server Consolidation On System z Takes Cost Out Because...


- System z IFL processor is deeply discounted
- IBM (and many other vendors) only charge per IFL processor fees for software, not per image
- Consolidation reduces most other annual operations costs
- Simplify networks by removing physical implementation
- Benefit from System z virtualized storage and hierarchical management
- Leverage mainframe systematic disaster recovery
- Consistently use RACF security
- z/VM can provision new virtual servers quickly
- Disk copy of preconfigured images eliminates software install
- z/VM can handle the consolidation of 1,000's of images

Workloads That Can Be Consolidated In Linux On A Mainframe

What	Where	Specialty Processor	How
Linux Applications	Linux on z/VM	IFL	Recompile
Linux Middleware - IBM Brands (DB2, WebSphere, Lotus, Rational, Tivoli) - Oracle Database - etc.	Linux on z/VM	IFL	Rehost
Linux Packaged Applications - SAP - Oracle - etc.	Linux on z/VM	IFL	Rehost

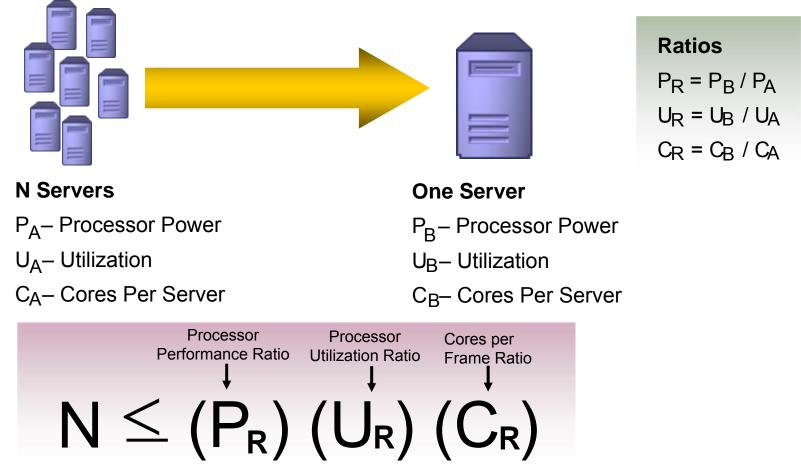
Linux Workloads On System z


- Clients are deploying Linux on z for a broad set of applications
- Almost 2,500 applications available for Linux on System z
- Leading applications for Linux on System z:
 - WebSphere
 - SAP
 - Domino
 - Cognos
 - Oracle

Linux on System z Workloads 2H08

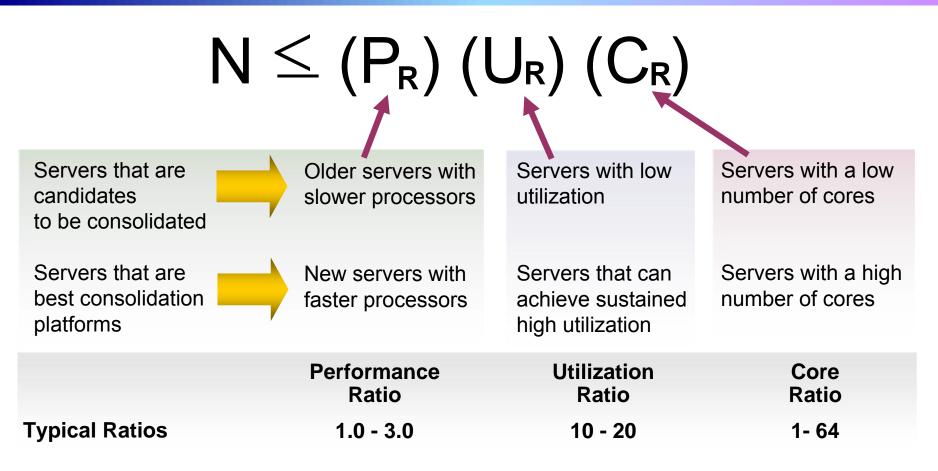
How Much Money Can You Save?

- Costs shared by all "N" consolidated images
 - Hardware
 - Software
 - Power
 - Floor Space
 - Local Network Connectivity
- Costs not shared by consolidated images
 - Migration cost per image
 - Off premise network cost
 - Labor cost per image


Fixed cost per image

Fixed cost per image, but typically less than unconsolidated labor cost

The more workloads you can consolidate, the lower the cost per image

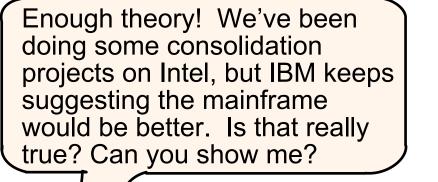

Consolidation Math For Processors

What is the theoretical maximum number of servers that can be consolidated?

Implementation variations from average and practical considerations will constrain this theoretical number This theoretical maximum assumes a worst-case scenario where all workloads peak at the same time

Identify Consolidation Opportunities

Maximize N!


The more servers you can consolidate, the more money you will save

05 - Dynamic Infrastructure with System z v2.0.ppt

Consolidation Math Sets Upper Limit But Other Factors Reduce That Upper Bound

$N \leq (P_R) (U_R) (C_R) (e)$

- Efficiency (e) of the platform hypervisor can reduce the consolidation ratios achievable, because e < 100%</p>
 - Different efficiency in each major dimension
 - CPU utilization
 - Memory footprint and over-commit overhead
 - I/O demand
- Service Level Agreements set further thresholds
 - Random variability of workloads
 - Response time norms and maximums

Service Oriented Finance CIO

05 - Dynamic Infrastructure with System z v2.0.ppt

Consolidating workloads on the mainframe provides the best economy of scale. Let's see why!

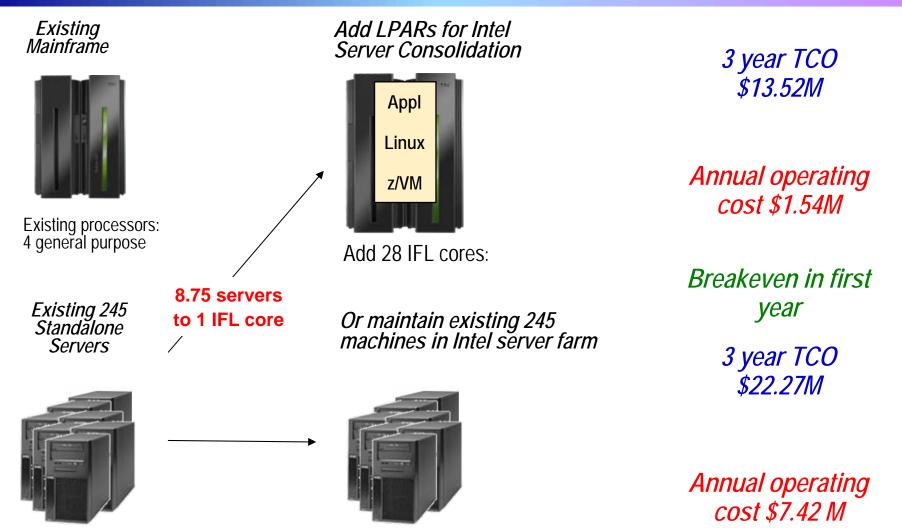
IBM

A Benchmark Comparison

workload

on older servers

We ran a benchmark to compare how many images can be consolidated in practice Friendly Bank online banking benchmark (WebSphere Application Server) zLinux z10-EC 8 IFL cores @ 4.4 GHz Case 1: Consolidate to zVM 256 GB memory Intel servers x366 4 cores @ 3.66 GHz 12 GB memory Workload for each server: Consolidate to VMware 5% utilization Intel server x3950 40 ms response time 8 cores @ 3.5 GHz 4.5 tps 64 GB memory Each VM image run on Consolidate VM **Existing non-virtualized**


images on two different platforms

4 virtual cores 1 GB virtual memory

Apply Service Level Agreement Parameters To Determine Actual Consolidation Ratio

- Response time and throughput objectives can be used
 - Numbers will depend on specific workloads
- One customer tracked average utilization of the consolidation platforms
 - We would like to run utilization high enough to achieve the highest consolidation ratio
 - But less than 100% to allow for statistical peaks caused by variance in the workload
 - From observed customer results, these numbers made sense:
 - Linux on System z maximum 85% utilization
 - VMware/Intel platforms maximum **50%** utilization

Case Study: Consolidate On Mainframe vs. Keeping Existing Dedicated Servers

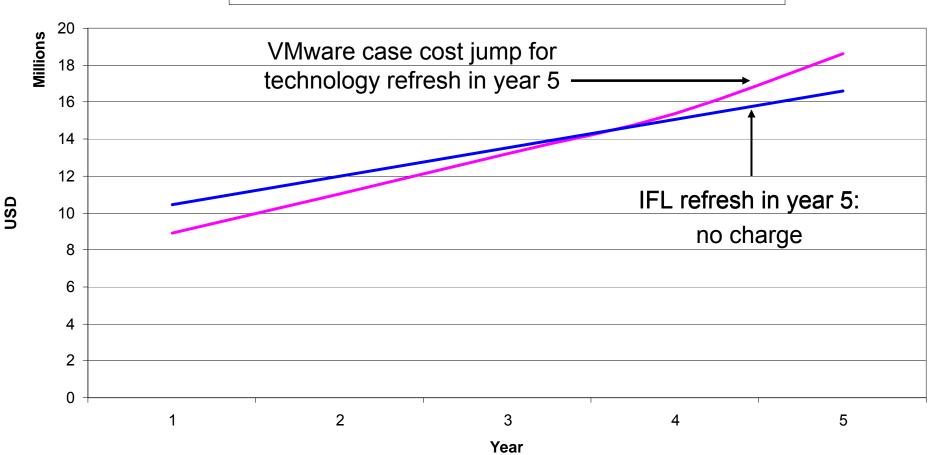
Case Study: Consolidate On Mainframe vs. Keeping Existing Dedicated Servers (3 Yrs)

ANNUAL			
\$98,525			
\$116,928			
\$252,000			
\$467,453			
Dedicated Software			
\$1,705,200			
\$318,255			
\$2,023,455			

¹ First year maintenance free

05 - Dynamic Infrastructure with System z v2.0.ppt

Case Study: Consolidate On Mainframe vs. Consolidate On VMware (5 Years)


Mainframe Incremental Hardware			Mainframe Software				
OT	С	AN	INUAL		OTC		NUAL
28 IFL Processors	\$3,500,000	Power/Space	\$16,884	z/VM	\$393,750	z/VM	\$98,525
		Hardware ¹ Maintenance	\$490,224				
RAM (160GB)	\$960,000					WAS S&S	\$116,928
Inc. Disk Acq.	\$412,403	Systems Admin	\$551,651			Linux S&S	\$252,000
Migration	\$4,128,495	Disk Maintenance	e \$11,856				
TOTAL	\$9,000,898	TOTAL	\$1,070,615 (y 2-5)	TOTAL	\$393,750	TOTAL	\$467,453
VMware Hardware			VMware Software				
OT	С	AN	NUAL		OTC	A	NNUAL
New Servers	\$1,087,485	Power/Space	\$44,121	VMware	\$483,000	VMware S&S	¹ \$120,750
Tech Refresh	\$1,087,485	Hardware	Paid in acq.				
(yr 5)		Maintenance				WAS S&S	\$292,320
						Linux S&S	\$52,479
Disk Acq.	\$744,432	Systems Admin	\$1,614,393				
Migration	\$4,541,345	Disk Maintenance	e \$31,872				
TOTAL	\$7,460,747	TOTAL	\$1,690,386	TOTAL	\$483,000	TOTAL	\$465,549 (y 2-5)
¹ First year maint	onanco froo	05	- Dynamic Infrastructure v	vith System Z	12 0 ppt		27

First year maintenance free

05 - Dynamic Infrastructure with System z v2.0.ppt

Comparative cost case (Cumulative)

- Consolidate on VMWare - Consolidate on existing System z mainframe

05 - Dynamic Infrastructure with System z v2.0.ppt

In Benchmarks, Linux On System z And VMware Are Close In Total Cost of Ownership

- However, System z provides better Qualities of Service
 - Better platform reliability and serviceability
 - Higher I/O bandwidth
 - Opportunity to use RACF for consistent security
 - Systematic and automated Disaster Recovery for Linux workloads
- And there are additional System z cost savings not yet discussed
 - Low cost of Disaster Recovery (backup capacity on demand) widens the gap when DR is included
 - Specialty processors are upgraded free when growing z/OS
 - Smooth, predictable growth of capacity as workloads grow
 - The richer the software stack, the greater the System z advantage

Bank Of New Zealand Consolidated Their Front-End Sun Servers To A Single Mainframe

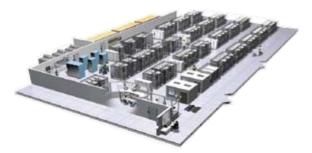
Combination of z/VM and Red Hat Linux enabled BNZ to virtualize a largely distributed Sun environment, which incorporates all of its front-end systems, down to just one box

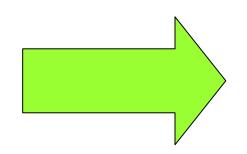
- Consolidated workload of 100's of Sun SPARC systems to the new mainframe system
- Reduced front-end systems datacenter footprint by 30%
- Reduced front-end power consumption by nearly 40%
- 39% reduction in carbon dioxide emissions
- 20% ROI expected over the life of the platform

Bank Of New Zealand Scenario

	FROM	то		
Competing HW infrastructure	Sun SPARC (e10K, v440, 280R)	z10 EC		
Footprints	Tens of machines	1 machine		
Cores / Memory	131 cores* Thousands of GB	3 IFLs, 160 GB Storage		
Application	Front-end IT environment, incl. the internet banking and back teller functions through to backend data			
OS	Solaris (multiple versions)	Linux + z/VM		
Energy / Space / Other: Power (kWhr) Heat (kBTUs/hr) Space (racks) CO2 (tonnes)	36 kWhr 110 kBTUs/hr 6.5 racks 66 tonnes	22 kWhr -> 38% less 74 kBTUs/hr -> 33% less 4.5 racks -> 31% less 40 tonnes -> 39% less		

Summary of Benefits:

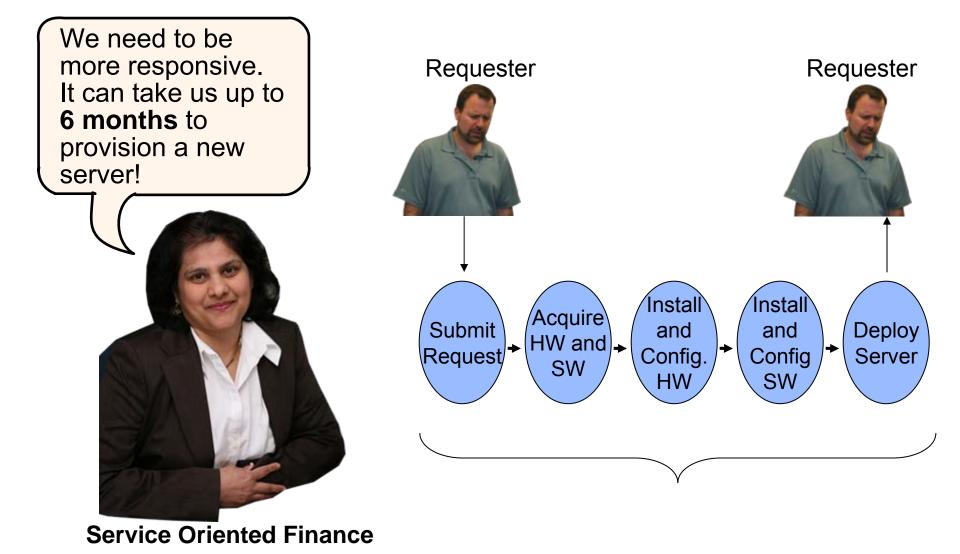

- Maximize space, keep costs down and reduce carbon footprint
- Boost the speed of new deployments


*Customer estimate

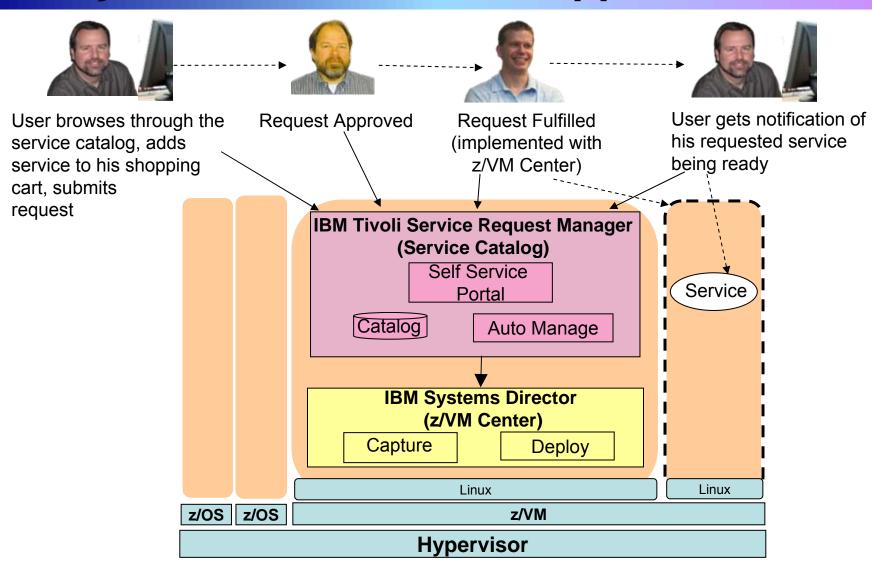
Server Consolidation and Migration Services Offering – May 2009 – NEW

Initiative to make it easier for Sun and HP Customers to join the move to IBM System z

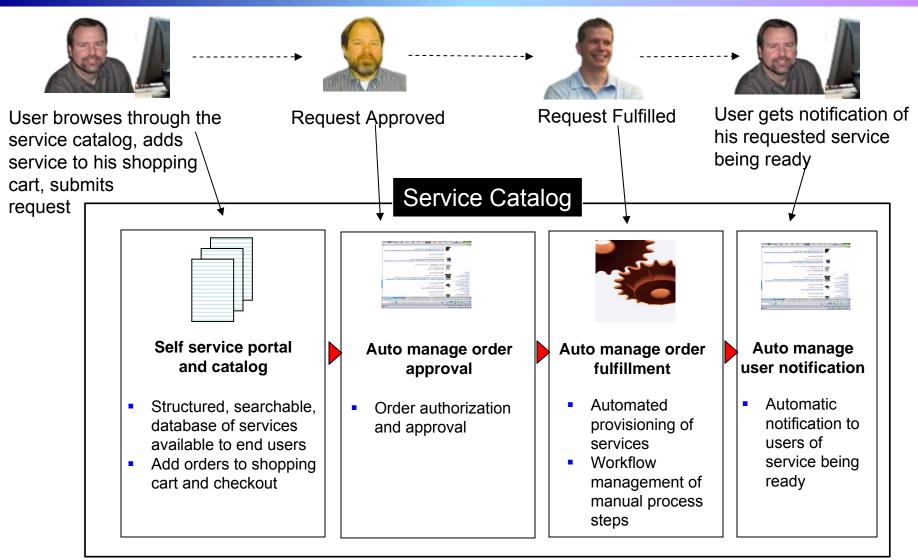
- Dramatically reduce the time/effort in migrating applications
- Based on IBM's own server consolidation experience
- z Rewards
 - Customer financial incentives to take advantage of these services



05 - Dynamic Infrastructure with System z v2.0.ppt


Deploying New Applications And Services Is Difficult And Time-Consuming

05 - Dynamic Infrastructure with System z v2.0.ppt


CIO

Example – User Requests New Virtual Image On System z To Test Loan Application

^{05 -} Dynamic Infrastructure with System z v2.0.ppt

Tivoli Service Request Manager (Service Catalog)

Out-Of-Box Service Catalog Content

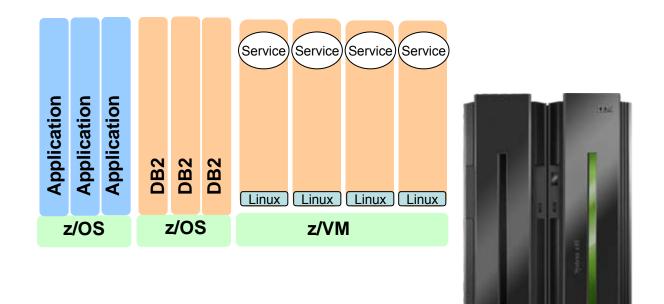
Service Line	Service Line Component	Service Definition	
	Somer Monogoment	Build New Standard Server Image	
Server Systems Management	Server Management	Build New Standard Server Image with Middleware	
		Deploy Server to Floor	
		Perform Initial Build Activities	
		Server Lock Down	
	DB Subsystem Support	DBMS Install and Configure	
		Add Database to Server	
		Remove Database from Server	
	Middleware Support	Middleware Install and Configure	
Distributed Client Services	IMAC	Office Move	
Distributed client Services		Minor Facility Request	
		Lotus Notes ID - Change Password	
Enterprise Security Management	Identity and Assass	Lotus Notes ID - Change User Name or Certifier	
Enterprise Security Management	Identity and Access	Lotus Notes ID – Create/Delete Account	
		ID Request	
Data Network Services	Operations	Firewall Service Request	
		Minor Site Enhancement	
Fixed Cost Service Requests		I&S Network Consulting	
		Bandwidth Analysis Assessment	
Composito Sorvico Examples		Build New Server	
Composite Service Examples		Build New Server with Middleware	

DEMO: Tivoli Service Request Manager

- User browses through Service Catalog
- Adds services to shopping cart
- Submits request

Shopping Cart		🤑 <u>B</u> ulletins: (1) 🎓 <u>G</u> o	To 🔟 <u>R</u> eports 🕈 Star	t <u>C</u> enter 🏼 A Profile	¥ <u>S</u> ign Out ? <u>H</u> elp	IEM.
somata-sata la						^
Shopping Car	t					
Cart 1025	Build New Server with Middleware	Requested By				
Required Date	B	Requested For SRMSELFSERV	1			
		Priority* 1				
		Total Price 1,125.00				
Please enter Shipping an	d Charge Information, and then submit your request.					
Shipping Information		🖾 Charge Information				
Ship to	PMSCRTPMAIN 🔑	GL Debit Account	P			
Address		Location	/			
City		Asse	1			
State/Province		Card Type	6			
ZIP/Postal Code		Card #				
Drop Point		Card Verification Value				
		Expiration Date				
Items in Cart 🛛 🕨 Filte	r > 🏭 [🚍 + + + 1 - 1 of 1 →				Download	? =
Line 🕈 Quantity	<u>Required Date</u>	Item Description		Line Price		
• 1	1.00 2008-10-03 08:00:00	PMSC_0021A Build New Server w	ith Middleware	1,125.00	+ 🔢 🙀 🕰	×
			Continue Shoppin	g Sybmit	Save (Cancel

Value Of Automated Provisioning


- Automation reduces the labor (time and effort) required
- Time to initial deployment is reduced
- Better image control yields improved stability of systems
- Consistent configurations between test and production minimizes differences across environment
- Critical updates (security, stability, performance) can be automated and scheduled across all systems
- Changes to systems can be automated and scheduled by the support team

Techniques For Automated Provisioning

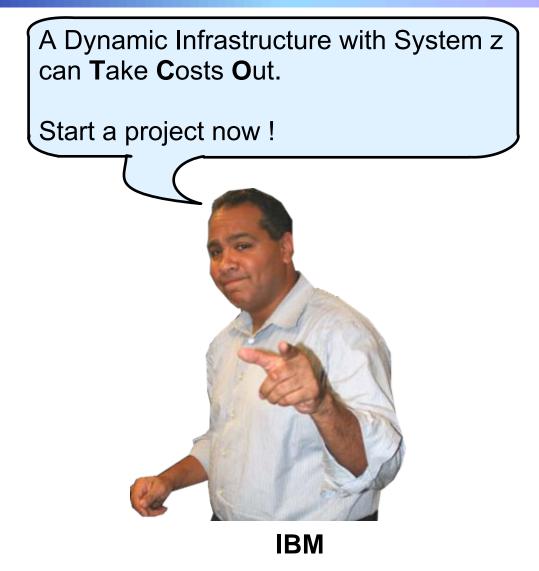
- Clone pre-configured image templates using disk copy
 - z/VM Center
 - Very fast
- Install and configure environments based on pre-built workflows
 - Tivoli Provisioning Manager (TPM)

DEMO: Provisioning Using z/VM Center

Create a new Virtual Server quickly from existing template using disk cloning

IBM Systems Director

- IBM Systems Director Extensions for System z includes z/VM Center
 - Provides functions to deploy new z/VM virtual Linux systems easily using templates
 - Manage an individual virtual server
 - Define and manage individual Linux systems
 - Manage server complexes
 - Define and manage multiple Linux systems in a server complex
 - A server complex has a configuration profile that defines
 - Network settings
 - Linux configuration scripts
 - Disk access
 - VM Resource Manager (VMRM) performance goals
 - Configuration applicable to all Linux systems in the server complex
- IBM Systems Director provides base platform management
 - Included with purchase of IBM Systems
 - Provides common management tools for System z, Power Systems, System x, and BladeCenter


Tivoli Provisioning Manager

- Automates manual tasks of installing and configuring environments
 - Operating systems
 - Patches
 - Middleware
 - Applications
 - Storage and network devices
 - Virtual environments
- Tasks automated through best practice automation workflows
 - Pre-built workflows describe provisioning steps
 - Automation package developer environment to customize for data center best practices and procedures
 - Automatic workflow execution with verification at each step

A Plan For Consolidation

- Pick Linux workloads that are easy to migrate and will save you money
 - Middleware
 - Infrastructure
 - Packaged applications
 - C/C++ (recompile)
 - Open source may not yield same cost savings
- Use consolidation math to identify servers with low utilization, older processors, and few cores per server
- For large-scale consolidation projects, consider grouping workloads for consolidations on different platforms
 - By location
 - By function
 - By workload type
- Investigate the use of automated provisioning in order to start delivering cloud based services on top of a dynamic infrastructure
- Be prepared to compare the cost of consolidation on System z Linux vs. consolidation on VMware/Intel

Summary

