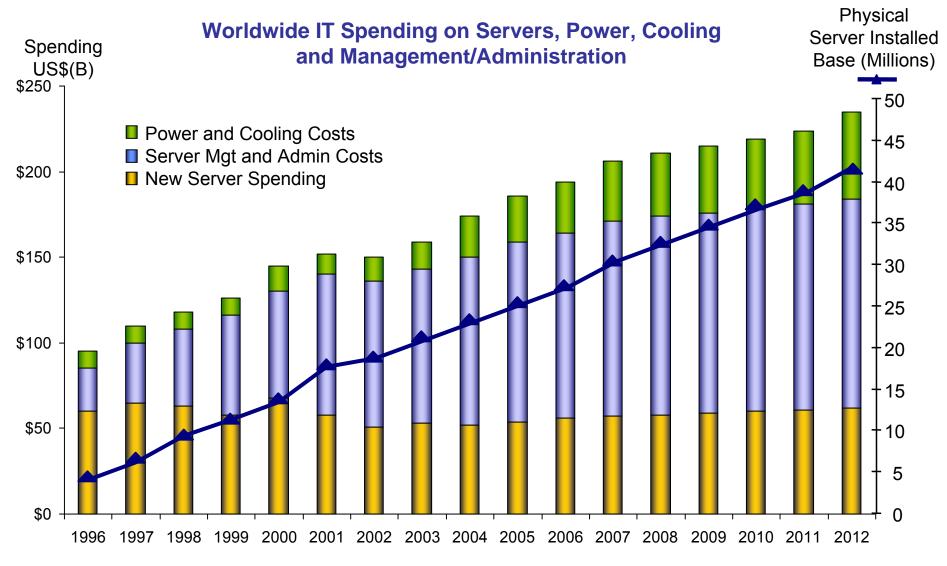


System z Enables Solutions For A Smarter Planet

Dynamic Infrastructure With System z

Dynamic Infrastructure Requirements

IBM

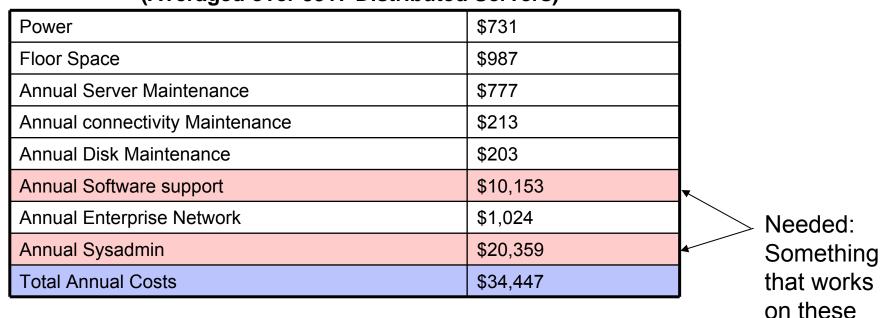

05 - Dynamic Infrastructure with System z v1.100.ppt

CIO

Complexity Is Growing

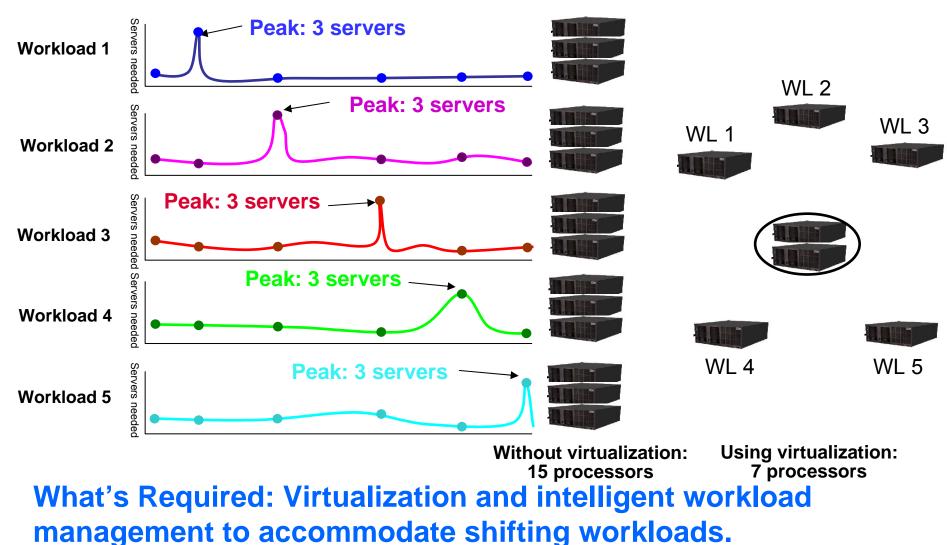
Annual Operating Costs Are Out Of Control

05 - Dynamic Infrastructure with System z v1.100.ppt

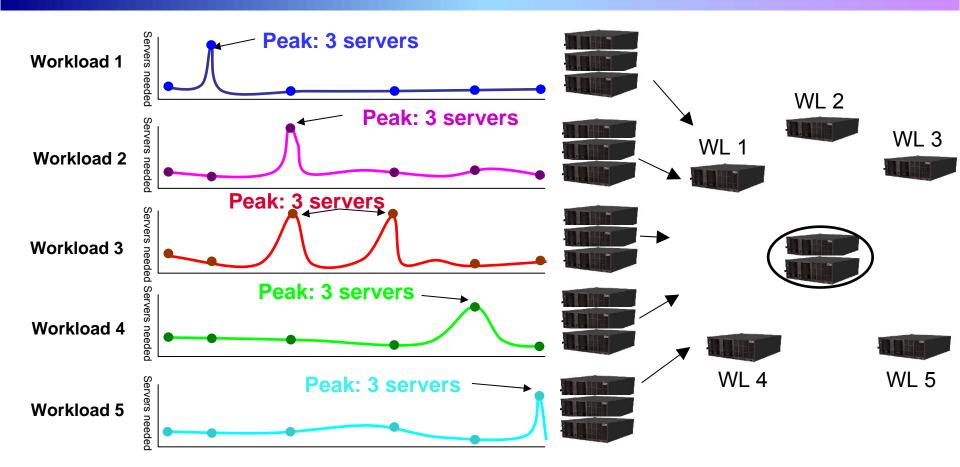

Dynamic Infrastructure For A Smarter Planet

 Virtualization and Consolidation is a proven way to save money

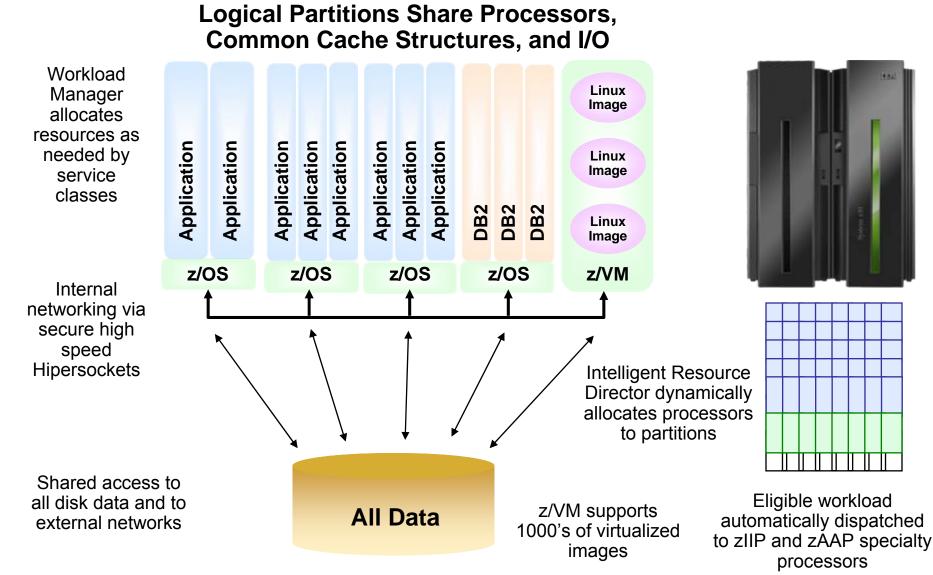
Understand All The Operational Costs


Annual Operations Cost Per Server (Averaged over 3917 Distributed Servers)

The largest cost component was labor for administration 7.8 servers per headcount @ \$159,800/yr/headcount


Source: IBM internal study

Example: Improve Efficiency And Reduce Costs

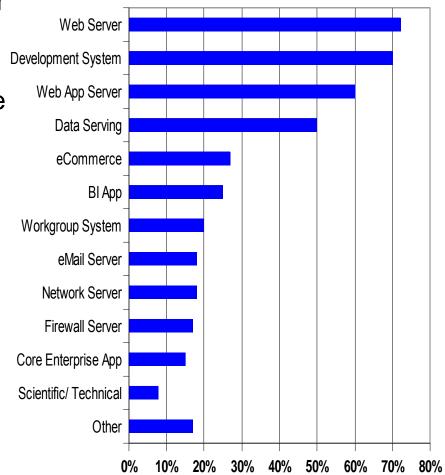

But this is automatic on the mainframe!

What Happens When Two Workloads Unexpectedly Peak at the Same Time?

What's Required: Intelligent Workload Management can accommodate unexpected shifting in workloads based on Service Policies. In this case WL 3 has a higher priority, at this particular time of day, than WL 1 and WL 5.

System z Is Designed For Extreme Virtualization

Linux Server Consolidation On System z Takes Cost Out Because...


- System z IFL processor is deeply discounted
- IBM (and many other vendors) only charge per IFL processor fees for software, not per image
- Consolidation reduces most other annual operations costs
- Simplify networks by removing physical implementation
- Benefit from System z virtualized storage and hierarchical management
- Leverage mainframe systematic disaster recovery
- Consistently use RACF security
- z/VM can provision new virtual servers quickly
- Disk copy of preconfigured images eliminates software install
- z/VM can handle the consolidation of 1,000's of images

Workloads That Can Be Consolidated In Linux On A Mainframe

What	Where	Specialty Processor	How
Linux Applications	Linux on z/VM	IFL	Recompile
Linux Middleware - IBM Brands (DB2, WebSphere, Lotus, Rational, Tivoli) - Oracle Database - etc.	Linux on z/VM	IFL	Rehost
Linux Packaged Applications - SAP - Oracle - etc.	Linux on z/VM	IFL	Rehost

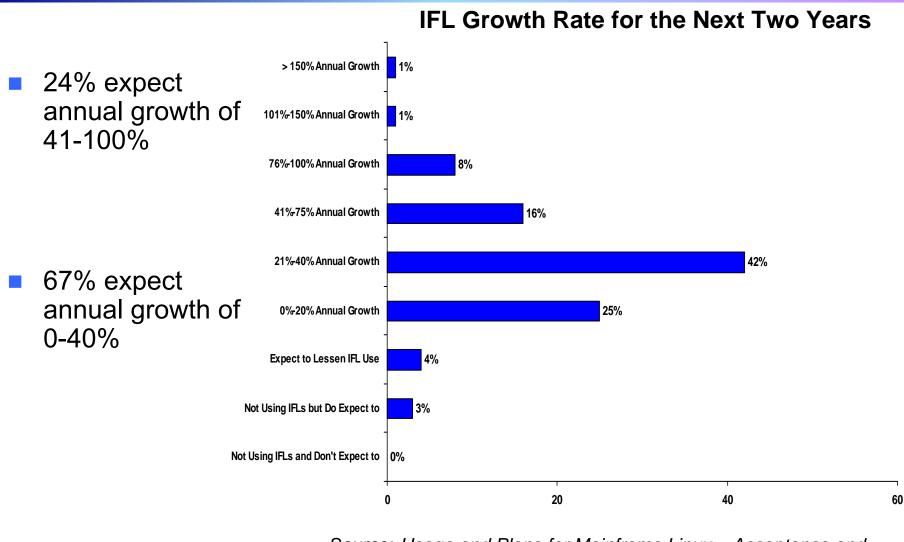
Linux Workloads On System z

- Clients are deploying Linux on z for a broad set of applications
- Almost 2,500 applications available for Linux on System z
- Leading applications for Linux on System z:
 - WebSphere
 - SAP
 - Domino
 - Cognos
 - Oracle

Linux on System z Workloads 2H08

Customers Have Compelling Reasons For Adopting Linux On System z

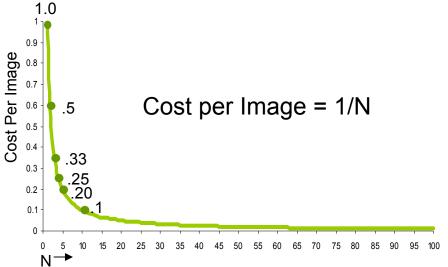
Reasons for Initial and Ongoing Use of Mainframe Top Reasons Linux Available mainframe Avail. Mainframe capacity, traditional central processors 48% capacity: Want cost/time savings from consolidation, fewer suppliers 44% Central 35% Trying "green" environ. Considerations with consolidations Processor 30% An overall cost-of-ownership advantage vs. non-mainframe IFL 30% Taking advantage of available IFL capacity 28% See mainframe Linus as strategic, altern. To trad. Distrib. Apps. Cost Reduction vs. 26% other platforms: Benefit from robust tools for work mgmt. and tech support Consolidation 23% Have in-house skills to enable low-cost expansion of Linux savings 10% Front end for mainframe non-Linux apps. **Overall TCO** 6% A Dev.Platform For Traditional, Distributed Apps. advantages vs. 3% We're In Proof-of-Concept Mode non-MF


0% 10% 20% 40% 50% 60% 30%

Source: Usage and Plans for Mainframe Linux – Acceptance and Challenges: TheInfoPro, Inc., 2009

05 - Dynamic Infrastructure with System z v1.100.ppt

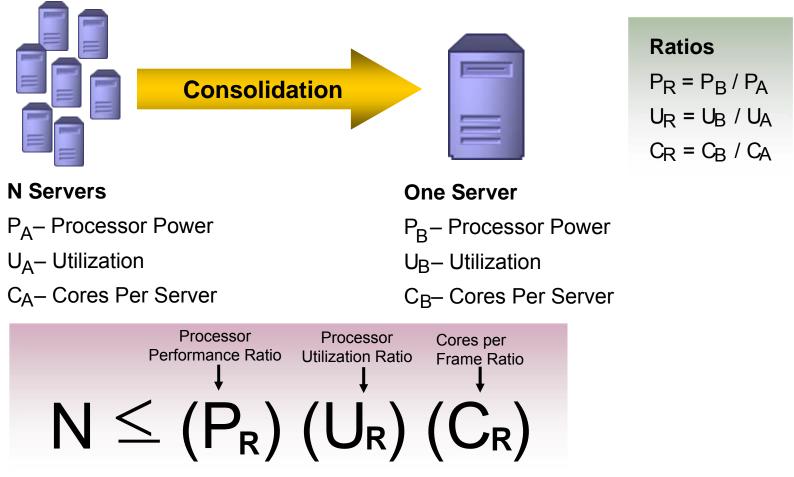
Going Green


Customers' Near Term IFL Capacity Growth Expected To Be Strong

Source: Usage and Plans for Mainframe Linux – Acceptance and Challenges: TheInfoPro, Inc., 2009

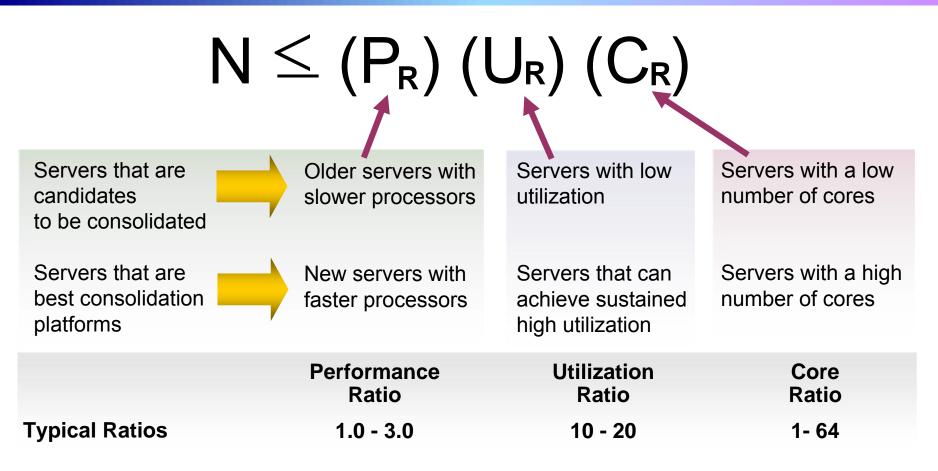
How Much Money Can You Save?

- Costs shared by all "N" consolidated images
 - Hardware
 - Software
 - Power
 - Floor Space
 - Local Network Connectivity
- Costs not shared by consolidated images
 - Migration cost per image
 - Off premise network cost
 - Labor cost per image


Fixed cost per image

Fixed cost per image, but typically less than unconsolidated labor cost

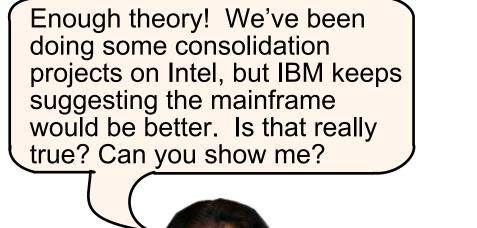
The more workloads you can consolidate, the lower the cost per image


Consolidation Math For Processors

What is the theoretical maximum number of servers that can be consolidated?

Implementation variations from average and practical considerations will constrain this theoretical number This theoretical maximum assumes a worst-case scenario where all workloads peak at the same time

Identify Consolidation Opportunities


Maximize N!

The more servers you can consolidate, the more money you will save

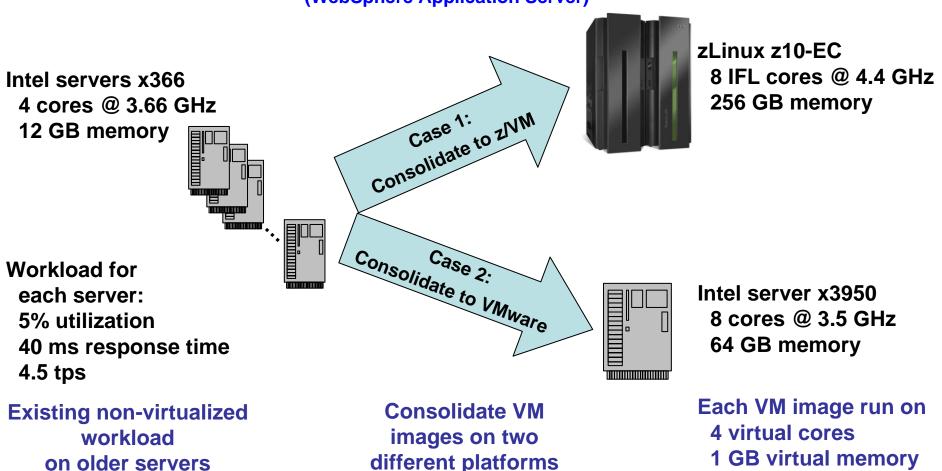
Consolidation Math Sets Upper Limit But Other Factors Reduce That Upper Bound

$$\mathsf{N} \leq (\mathsf{P}_{\mathsf{R}}) \left(\mathsf{U}_{\mathsf{R}}
ight) \left(\mathsf{C}_{\mathsf{R}}
ight)$$

- Efficiency of the platform hypervisor can reduce the consolidation ratios achievable
 - Different efficiency in each major dimension
 - CPU utilization
 - Memory footprint and over-commit overhead
 - I/O demand
- Service Level Agreements set further thresholds
 - Random variability of workloads
 - Response time norms and maximums

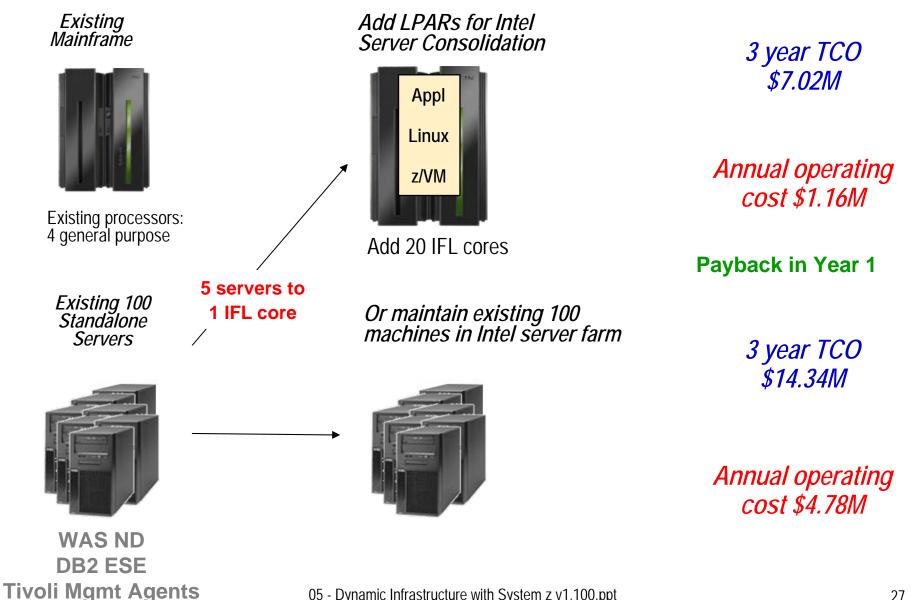
Service Oriented Finance CIO

05 - Dynamic Infrastructure with System z v1.100.ppt


Consolidating workloads on the mainframe provides the best economy of scale. Let's see why!

A Benchmark Comparison

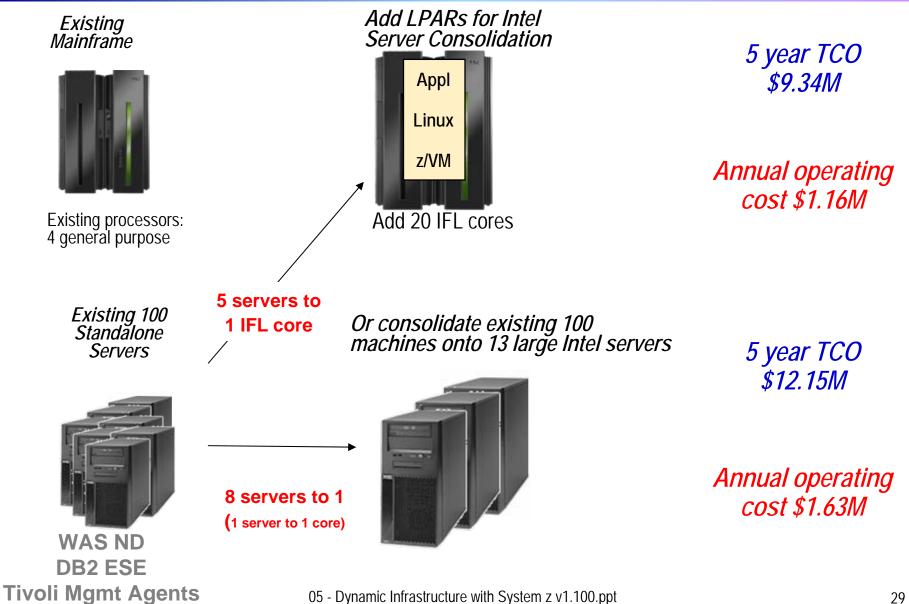
We ran a benchmark to compare how many images can be consolidated in practice


Friendly Bank online banking benchmark (WebSphere Application Server)

Adjust Benchmark Data For Service Level Agreements

- These benchmark results compare mean measurements when the workload has no variability
 - Variations in workload demand will exceed the mean
- Service level agreements anticipate variations
 - Specify that the workload demand will exceed the capacity of the machine in no more than approximately 5% of the measured utilization intervals
- If the variation of each workload is Sigma = 2.5*Mean then the service level agreement is satisfied when
 - z/VM runs 40 workloads
 - VMware runs 8 workloads

Case Study: Consolidate On Mainframe vs. **Keeping Existing Dedicated Servers**

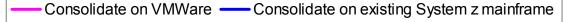


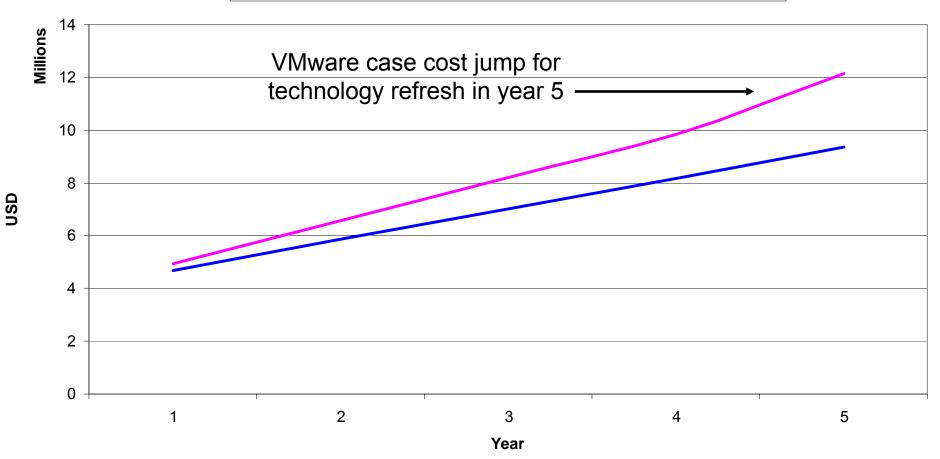
Case Study: Consolidate On Mainframe vs. Keeping Existing Dedicated Servers (3 Yrs)

Mainframe Incremental Hardware				Mainframe Software				
0	DTC DTC	ANNUAL		OTC		ANNUAL		
20 IFL	\$1,500,000	Power/Space	\$12,060	z/VM	\$328,500	z/VM	\$82,198	
Processors		Hardware ¹ Maintenance	\$350,160			DB2 S&S	\$194,400	
RAM (80GB)	\$180,000					WAS S&S	\$83,520	
		Systems Admin	\$239,679			Linux S&S	\$180,000	
Disk Acq.	\$182,832	Disk Maintenance	\$5,712					
Migration	\$1,685,100					Mgmt S&S	\$15,600	
TOTAL	\$3,547,932	TOTAL	\$607,611 (yr 2,3)	TOTAL	\$328,500	TOTAL	\$555,718	
	Dedicate	ed Hardware			Dedicat	ed Softwar	re	
0	OTC	ANN	UAL	OTC		A	ANNUAL	
Sunk Cost	\$0	Power/Space	\$171,700	Sunk Cost	\$0	WAS S&S	\$696,000	
		Hardware Maintenance	Sunk Cost			Linux S&S	\$129,900	
						DB2 S&S	\$1,620,000	
		Systems Admin	\$2,032,300					
		Disk Maintenance	Sunk Cost					
						Mgmt S&S	\$130,000	
TOTAL	\$0	TOTAL	\$2,204,000	TOTAL	\$0	TOTAL	\$2,575,900	

¹ First year maintenance free

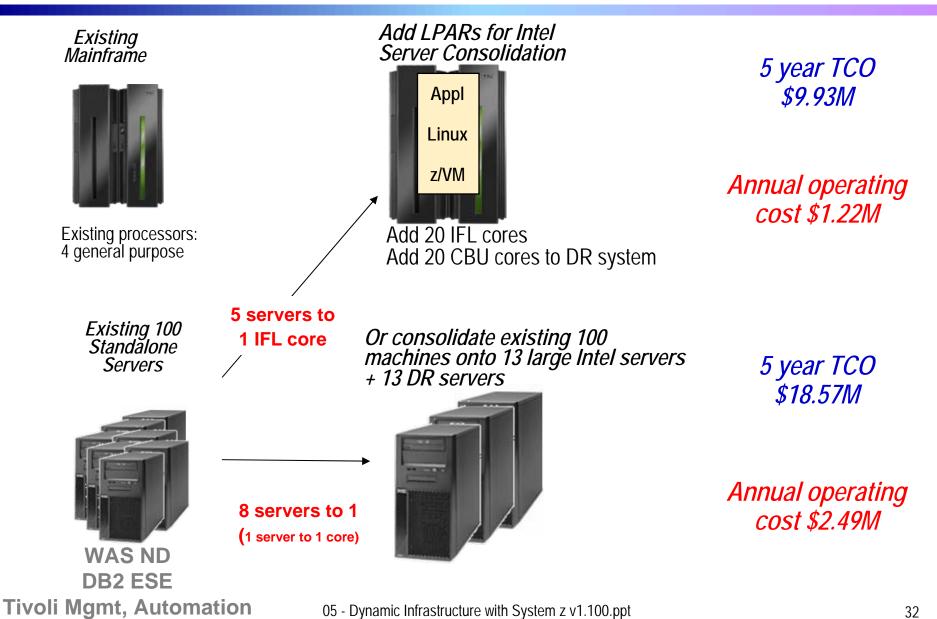
Case Study: Consolidate On Mainframe vs. Consolidate On VMware (5 Years)




Case Study: Consolidate On Mainframe vs. Consolidate On VMware (5 Years)

Mainframe Incremental Hardware				Mainframe Software				
OT		ANNUAL			OTC		ANNUAL	
20 IFL	\$1,500,000	Power/Space	\$12,060	z/VM		\$328,500	z/VM	\$82,198
Processors		Hardware ¹ Maintenance	\$350,160				DB2 S&S	\$194,400
RAM (80GB)	\$180,000						WAS S&S	\$83,520
		Systems Admin	\$239,679				Linux S&S	\$180,000
Disk Acq.	\$182,832	Disk Maintenance	\$5,712					
Migration	\$1,685,100						Mgmt S&S	\$15,600
TOTAL	\$3,547,932	TOTAL	\$607,611 (yr 2-5)	TOTAL		\$328,500	TOTAL	\$555,718
	VMware Hardware			VMware Software				
OT	OTC ANNUAL			OTC		A	NNUAL	
New Servers	\$673,205	Power/Space	\$27,313	VMware		\$299,000	VMware S&S	1 \$74,750
Tech Refresh	\$673,205	Hardware	Paid in acq.					
(yr 5)		Maintenance					WAS S&S	\$180,960
	AF (4 (00		*00 (0 (0				Linux S&S	\$32,487
Disk Acq.	\$561,600	Systems Admin	\$836,860				DB2 S&S	\$421,200
Migration	\$1,853,610	Disk Maintenance	\$26,160					
							Mgmt S&S	\$33,800
TOTAL	\$3,761,620	TOTAL	\$890,333	TOTAL		\$299,000	TOTAL	\$743,197 (yr 2-5)
¹ Eirst year maintananae free 05 Dynamic Infrastructure with System z v1 100 ppt 20								

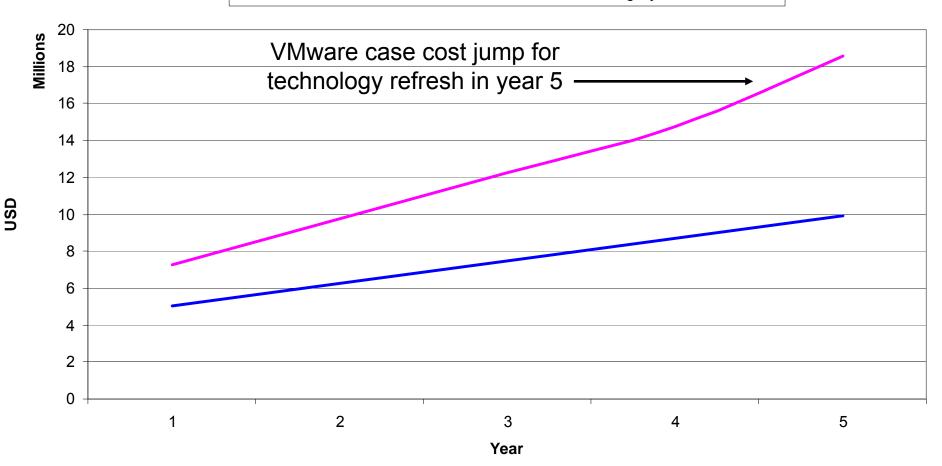
¹ First year maintenance free


Comparative cost case (Cumulative)

05 - Dynamic Infrastructure with System z v1.100.ppt

What Happens If We Add Disaster Recovery?

Case Study: Consolidate On Mainframe vs. Consolidate On VMware (5 Years, with DR)


Mainframe Incremental Hardware				Mainframe Software					
ΟΤΟ			IUAL		OTC			ANNUAL	
20 IFL Processors	\$1,500,000	Power/Space	\$12,060	z/VM	\$3	328,500	z/VM		\$82,198
Processors		Hardware ¹ Maintenance	\$390,160				DB2 S&S		\$194,400
RAM (144GB)	\$324,000						WAS S&S		\$83,520
		Systems Admin	\$239,679				Linux S&S		\$180,000
Disk Acq.	\$365,663	Disk Maintenance	\$11,424						
Migration	\$1,685,100						Mgmt S&S		\$29,424
TOTAL	\$3,874,763	TOTAL	\$653,323 (yr 2-5)	TOTAL	\$3	328,500	TOTAL		\$569,542
VMware Hardware				VMware Software					
010		ANN	IUAL	OTC ANNUAI		ANNUAL			
New Servers	\$1,346,410	Power/Space	\$54,626	VMware	\$E	598,000	VMware S&	ίS 1	\$149,500
Tech Refresh	\$1,346,410	Hardware	Paid in acq.						
(yr 5)		Maintenance					WAS S&S		\$361,920
							Linux S&S		\$64,974
Disk Acq.	\$1,123,200	Systems Admin	\$836,860				DB2 S&S		\$842,400
Migration	\$1,853,610	Disk Maintenance	\$52,320						
							Mgmt S&S		\$127,504
TOTAL	\$5,669,630	TOTAL	\$943,806	TOTAL	\$5	598,000	TOTAL	\$1,546,29	98 (yr 2-5)
IUIAL	\$5,669,630	TUTAL	\$943,806	TOTAL	\$5	598,000	TOTAL	\$1,546,29	98 (yr 2-5)

¹ First year maintenance free

VMware TCO Result With Disaster Recovery

Comparative cost case (Cumulative)

- Consolidate on VMWare ---- Consolidate on existing System z mainframe

05 - Dynamic Infrastructure with System z v1.100.ppt

Why Did zLinux Cost Less Than VMware?

- Software per core pricing and fewer IFL cores mean lower software cost
- Lower labor cost of set up
- IFL processor discount
- DR cost much lower on mainframe than distributed
- IFL's are upgraded for free when upgrading
- Incremental cost case (not new footprint)

System z Provides Additional Advantages

- System z provides better qualities of service
 - Better platform reliability and serviceability
 - Higher I/O bandwidth
 - Opportunity to use RACF for consistent security
 - Systematic disaster recovery for zLinux workloads
- And there are additional System z cost advantages not yet discussed
 - System z storage virtualization
 - Smooth predictable growth of z capacity as workloads grow
 - Lower cost for systems management hardware and software on System z

Bank Of New Zealand Consolidated Their Front-End Sun Servers To A Single Mainframe

Combination of z/VM and Red Hat Linux enabled BNZ to virtualize a largely distributed Sun environment, which incorporates all of its front-end systems, down to just one box

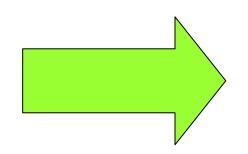
- Consolidated workload of 100's of Sun SPARC systems to the new mainframe system
- Reduced front-end systems datacenter footprint by 30%
- Reduced front-end power consumption by nearly 40%
- 39% reduction in carbon dioxide emissions
- 20% annual ROI expected over the life of the platform

Bank Of New Zealand Scenario

	FROM	то		
Competing HW infrastructure	Sun SPARC (e10K, v440, 280R)	z10 EC		
Footprints	Tens of machines	1 machine		
Cores / Memory	131 cores* Thousands of GB	3 IFLs, 160 GB Storage		
Application	Front-end IT environment, incl. the internet banking and back teller functions through to backend data			
OS	Solaris (multiple versions)	Linux + z/VM		
Energy / Space / Other: Power (kWhr) Heat (kBTUs/hr) Space (racks) CO2 (tonnes)	36 kWhr 110 kBTUs/hr 6.5 racks 66 tonnes	22 kWhr -> 38% less 74 kBTUs/hr -> 33% less 4.5 racks -> 31% less 40 tonnes -> 39% less		

Summary of Benefits:

- Maximize space, keep costs down and reduce carbon footprint
- Boost the speed of new deployments


*Customer estimate

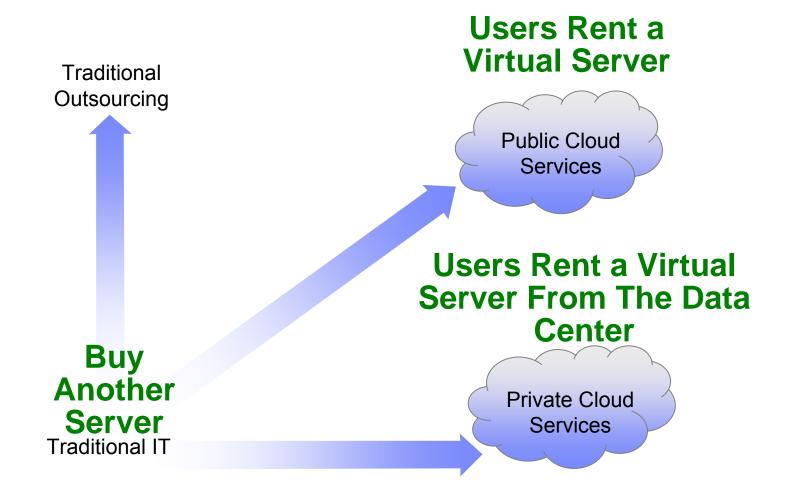
Server Consolidation And Migration Services Offering – May 2009 – NEW

Initiative to make it easier for Sun and HP Customers to join the move to IBM System z

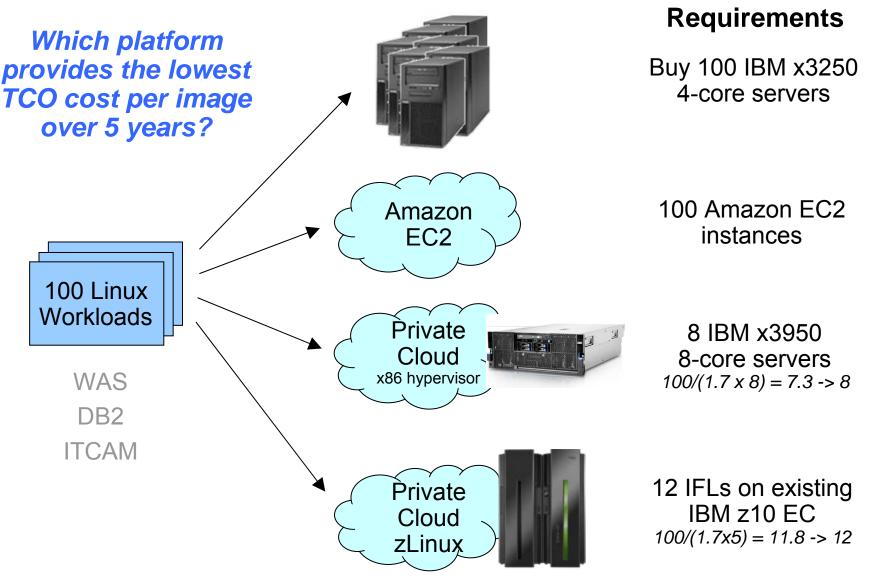
- Dramatically reduce the time/effort in migrating applications
- Based on IBM's own server consolidation experience
- z Rewards
 - Customer financial incentives to take advantage of these services

05 - Dynamic Infrastructure with System z v1.100.ppt

Public Cloud Providers Are A New Challenge To Enterprise Data Centers

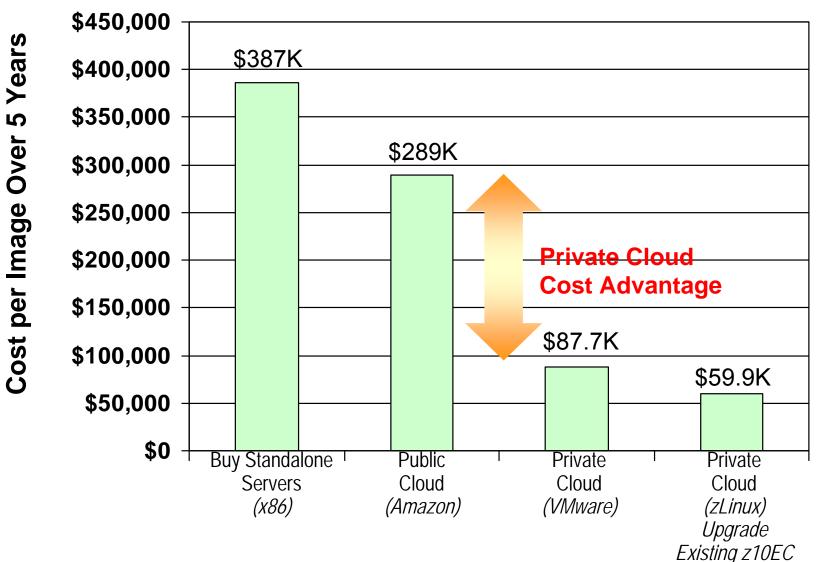

- Line-of-business units can now go to public cloud providers for IT infrastructure services
 - Amazon Web Services (AWS)
 - Microsoft Azure
- Low cost, pay-per-use model seen as more cost-effective
 Amazon EC2¹: \$0.10/hour (small Linux/UNIX instance)
- Near-immediate provisioning enables clients to respond at market speed
 - Pharmaceutical company: 64-node Linux cluster available in 5 minutes on AWS vs. 3 months internally²

Threatens disintermediation of the internal IT team


¹ Virtual server equivalent to 1.2GHz single core Opteron processor

² http://www.informationweek.com/cloud-computing/blog/archives/2009/01/whats_next_in_t.html

Competition From Public Clouds Will Drive Adoption Of Private Cloud Services By IT



Use Case Study To Compare TCO -100 Linux Workloads (1.7 Oversold)

^{05 -} Dynamic Infrastructure with System z v1.100.ppt

You Can Deliver Workloads At The Lowest Cost With A Private Cloud

4 -> 1, 20 -> 1, WAS

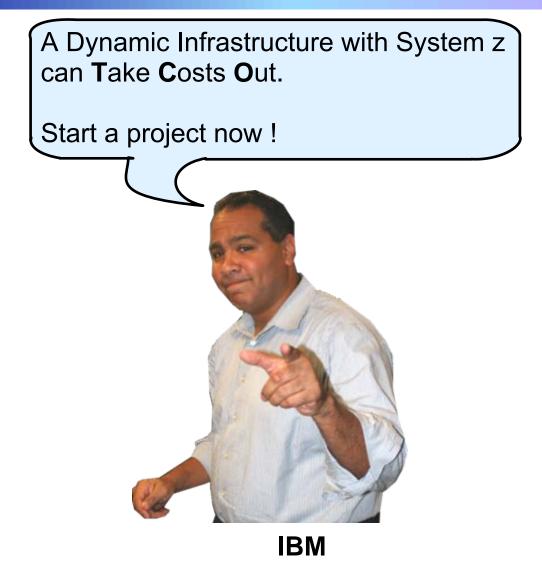
Data Centers Can Leverage The Cost Advantage Of Private Clouds

Eliminate competition from public clouds

Gather in distributed workloads outside the data center

Demonstrable cost savings for the business

A Plan For Consolidation


- Pick Linux workloads that are easy to migrate
 - Middleware and packaged applications
 - Infrastructure
 - C++ (recompile)
 - Open source may not yield same cost savings
- Use consolidation math to identify servers with low utilization, older processors, and few cores per server

Establish expected service levels

- Group workloads to offset expected variability
- For large scale consolidation projects, consider grouping workloads for consolidations on like platforms
 - By location, function, or workload type

Be prepared to compare the cost of consolidation on zLinux vs. consolidation on VMware/Intel

Summary

