
© 2009 IBM Corporation

IBM Software Group

An IBM Proof of Technology
Powered by IMS Development at Silicon Valley Lab, California

Application Development for IMS

Integrating COBOL with Java in the IMS environment

Richard Tran – richtran@us.ibm.com

Application Development for IMS © 2009 IBM Corporation 2

IBM Software Group

Presentation Agenda

●The benefits of integrating COBOL with Java

●Object-Oriented COBOL: Everything you probably
already know

●Extending COBOL to Java

●Using SQL in Java for IMS Database access

●Define system requirements for interoperability

Application Development for IMS © 2009 IBM Corporation 3

IBM Software Group

Why does Java matter to me?

●COBOL code invoking Java code

�Leverage a larger pool of resources and technology!

�Reduce redundant development

●Java code invoking COBOL code

�Leverage a larger pool of resources and technology!!

�COBOL developers can be freed up to focus on high
performance applications or new application development

Application Development for IMS © 2009 IBM Corporation 4

IBM Software Group

The benefits of integrating COBOL and Java

●Preserving COBOL code makes good business sense

�Saving $100 per line of code

●No need for “Rip and Replace”

�COBOL applications can be extended to Java

●Java is well known to new programmers

�Taught in 87% of universities in 2000, Gartner

�High School Computer Science Advance Placement exams are in Java

●Makes COBOL application programming more relevant

�Allows Java developers to bring back value in existing COBOL
applications

Application Development for IMS © 2009 IBM Corporation 5

IBM Software Group

What is object-oriented COBOL?
● A COBOL syntax that enables COBOL and Java interoperation within

an address space. This means that:

� Java can invoke COBOL class methods

� COBOL can invoke Java

● Implementation is based on the Java Native Interface (JNI)

� COBOL INVOKE statement maps onto Java JNI calls

� COBOL class methods definitions define Java native methods

● Documentation and assistance in mapping Java data types to and
from COBOL

● Support for JNI programming in COBOL

� COBOL COPY file is analogous to jni.h and enables access to JNI
callable services

Application Development for IMS © 2009 IBM Corporation 6

IBM Software Group

COBOL and Enterprise Java
● Java developers can define enterprise applications

through Enterprise Java Beans (EJBs)

�Persistence

�Transaction processing

�Concurrency control

�Events

�Security

�Remote Procedure Calls

● Object-oriented COBOL can access EJBs to
leverage these Java enterprise applications

Application Development for IMS © 2009 IBM Corporation 7

IBM Software Group

COBOL and Java interoperability: not just IMS

● z/OS Unix

� Including WebSphere Application Server

● z/OS Batch

● IMS Java dependent regions

�JMP - Java Message Processing region

�JBP - Java Batch Processing region

● Windows

�Windows COBOL component of Rational Developer for z/Series

● AIX

� IBM COBOL for AIX

Application Development for IMS © 2009 IBM Corporation 8

IBM Software Group

What is an Object?

●An object (sometimes called a class) is a collection of attributes
and methods

�A attribute is a characteristic of the object

�A method is the action an Object can perform

Attributes:

Salary

Department

Methods:

Work

Eat lunch

Employee Class

Application Development for IMS © 2009 IBM Corporation 9

IBM Software Group

COBOL client-side syntax
● Declare referenced class and full external class name:

Configuration section.

Repository paragraph.

Class Employee is 'com.acme.Employee'.

● Declare object reference:

01 anEmployee usage object reference Employee.

● Create instance object:

Invoke Employee New using by value id

returning anEmployee

● Invoke instance method:

Invoke anEmployee 'payRaise'

using by value amount

● Invoke static method:

Invoke Employee 'getNbrEmployees'

returning totalEmployees

Application Development for IMS © 2009 IBM Corporation 10

IBM Software Group

Class Inheritance

●A way of forming new classes based on existing classes

●New class inherits attributes and methods of base class

●Example: Manager class based on an Employee class

Attributes:

Salary

Department

Methods:

Work

Eat lunch

Employee Class

Attributes:

Salary

Department

Methods:

Work

Eat lunch

Manager Class

Hire

Application Development for IMS © 2009 IBM Corporation 11

IBM Software Group

COBOL native method - syntax

Identification Division.

Class-id. Manager inherits Employee.

Environment Division.

Configuration section.

Repository.

Class Manager is 'com.acme.Manager'

Class Employee is 'com.acme.Employee'.

Identification division.

Object.

Procedure Division.

Identification Division.

Method-id. 'Hire'.

Data Division.

Linkage section.

01 anEmployee usage object reference Employee.

Procedure Division using anEmployee.

…

End method 'Hire'.

End Object.

End class Manager.

Nested Divisions

Application Development for IMS © 2009 IBM Corporation 12

IBM Software Group

COBOL methods can be overloaded
Identification Division.

Class-id. Account inherits Base.

…

Identification Division.

Method-id. 'credit'.

Data Division.

Linkage section.

01 amount pic S9(9) binary.

Procedure Division using
amount.

…

End method 'credit'

Identification Division.

Method-id. 'credit'.

Data Division.

Linkage section.

01 amount comp-3.

Procedure Division using
amount.

…

End method 'credit'.

End Object.

End class Account.

Same method name

Different parameter datatypes

Application Development for IMS © 2009 IBM Corporation 13

IBM Software Group

Access to Java from COBOL
● Function pointers for JNI services are in the JNI Environment Structure

Access JNI Environment pointer

● New special register JNIEnvPtr

Access JNI Environment Structure and JNI callable services
Linkage section.

COPY 'JNI.cpy'

Procedure division.

Set address of JNIEnv to JNIEnvPtr

Set address of JNINativeInterface to JNIEnv

Check if an exception has been thrown by a Java routine
Invoke aJavaObject 'someJavaMethod'

Call ExceptionOccurred ����this is a JNI function pointer

using by value JNIEnvPtr

returning exceptionObject

If exceptionObject not = null

Display 'Caught an unexpected exception'

Call ExceptionClear using by value JNIEnvPtr

Invoke exceptionObject 'PrintStackTrace'

Goback

End-if

Application Development for IMS © 2009 IBM Corporation 14

IBM Software Group

JNI services for string data

● Unicode-oriented JNI services for Strings, part of the standard SDK:

NewString GetStringChars

GetStringLength ReleaseStringChars

� Convert between Java String objects and COBOL Unicode data

(PIC N(n) USAGE NATIONAL)

� Access these services with CALL function-pointer statements

� Function pointers are in the JNI Environment Structure

● EBCDIC-oriented services, provided by IBM Java 2 SDK for z/OS:

NewStringPlatform GetStringPlatformLength GetStringPlatform

� Convert between Java String and COBOL alphanumeric data

(PIC X(n) USAGE DISPLAY)

� Access CALL 'literal' statements

� These services are DLLs

Application Development for IMS © 2009 IBM Corporation 15

IBM Software Group

Interoperable data types for method parameters

Usage object reference class-nameclass types (object references)

including strings and arrays

Pic N usage national char

Usage comp-2 double

Usage comp-1 float

Pic S9(18) usage binary or comp-5 long

Pic S9(9) usage binary or comp-5 int

Pic S9(4) usage binary or comp-5 short

Pic X or Pic A byte

01 B pic X.

88 B-false value X'00'.

88 B-true value X'01' through X'FF'.

boolean

COBOLJava

Application Development for IMS © 2009 IBM Corporation 16

IBM Software Group

Accessing existing procedural COBOL code from Java

● What about our preexisting procedural COBOL?

● Write an OO COBOL wrapper class for the existing procedural COBOL program

● Define a Factory method containing a CALL to the COBOL program

● Java client uses a static method invocation to invoke the wrapper, e.g.

rc=Wrapper.callCob1(arg1,arg2);

rc=Wrapper.callCob1(arg1,arg2);

Factory.
Identification division.
Method-id. 'CallCob1'.

Procedure division using by value arg1,arg2.
Call 'Cob1' using arg1, arg2

Identification division.
Program-id. 'Cob1'.

A.java Wrapper.cbl Cob1.cbl

Application Development for IMS © 2009 IBM Corporation 17

IBM Software Group

Compile and link of COBOL class definition

● Compile of COBOL class definition generates two outputs:

� COBOL object program implementing native method(s)

� Java class source that declares the native methods and manages DLL loading

● COBOL object program is linked to form DLL: libclassname.so

● Java class is compiled (with javac) to form classname.class

Application Development for IMS © 2009 IBM Corporation 18

IBM Software Group

linkedit

Manager.cbl

Identification division.
Class-id. Manager inherits Employee.
 …
End class Manager.

Manager.java

cob2

Manager.o

 public class Manager
extends Employee {
public native void Hire(…);
static {
 System.load Library(…);}
}

javac Manager.class libManager.so

Application Development for IMS © 2009 IBM Corporation 19

IBM Software Group

Key points on COBOL and Java interoperability

● Object Oriented COBOL and Java can be easily integrated

● No need to alter old procedural COBOL to leverage this interoperation

�Can be done with a few lines of code by creating a Object Oriented COBOL wrapper

● Bridges the gap between different skill sets

�Allows more synergy between COBOL and Java developers

● Providing additional value to existing COBOL code repositories

Application Development for IMS © 2009 IBM Corporation 20

IBM Software Group

Why is SQL important?

● Language for querying relational databases

� IMS V11 supports a subset of SQL operations

● Vendor independent

�SQL programs can be moved from one DB to another with minimal conversion

● Portable

�Used in mainframes, workstations, and handheld devices

● Very Popular

�SQL is the 11th most popular programming language (Tiobe Index, June 2009)

Application Development for IMS © 2009 IBM Corporation 21

IBM Software Group

SQL and DLI

● Both are database languages

● SQL is for Java developers and DLI is for COBOL developers

� Line is fuzzy due to Java-COBOL Interoperability

● Most SQL and DLI statements have a one-to-one correspondence

� Meaning one line of SQL is equivalent to one line of DLI

SQL DLI

Application Development for IMS © 2009 IBM Corporation 22

IBM Software Group

Things SQL make easier

● SQL makes manipulating multiple instances of segments easier

● To retrieve all instances of all Employees

� SQL: Select * From Employees

� COBOL: GU Employees, GN Employees, GN Employees, etc.

� SQL requires 1 line of code, COBOL requires n lines where n is the # of employees

● To update all instances of Employees

� SQL: Update Employees Set Location=‘New York’

� COBOL: GHU, REPL, GHN, REPL, GHN, REPL, etc.

� SQL requires 1 line of code, COBOL require 2n lines of code

Segment: Employees

Name: Richard

Name: Evgueni

Name: Maria

Location: California

Application Development for IMS © 2009 IBM Corporation 23

IBM Software Group

Key Points on SQL

● SQL is very popular and well known among developers

● College graduates with Java knowledge will be able to leverage the native Java
support for SQL

● Employees with background in DB2, Oracle, or any other relational database will
have knowledge of SQL

● Great for mixed customer environments as it simplifies database usage

�e.g., IMS and DB2

● Simplifies handling of multiple instances of an IMS data segment compared to DLI

● Brings more value to Java-COBOL interoperability as Java developers can take more
of the tedious data manipulation work off of the COBOL developers.

Application Development for IMS © 2009 IBM Corporation 24

IBM Software Group

Getting started with COBOL and Java interoperability
● Ensure you have the Java 2 Technology Edition SDK installed

� SDK 1.4,

● Ensure that the optional HFS components of Enterprise COBOL V3 have
been installed

● See the sample OO application and makefile shipped with COBOL in
/usr/lpp/cobol/demo/oosample. Try compiling and running this application.

Application Development for IMS © 2009 IBM Corporation 25

IBM Software Group

Presentation summary

●The benefits of integrating COBOL with Java

●Object-Oriented COBOLExtending COBOL to Java

●Using SQL in Java for IMS Database access

●Define system requirements for interoperability

Application Development for IMS © 2009 IBM Corporation 26

IBM Software Group

