
© 2008 IBM Corporation

The future runs on System z

Fast Track to Optimal
DB2 Performance

© 2009 IBM Corporation1

Agenda

� Insert/Update/Delete Performance

� Virtual Storage Constraint Relief

� Query Performance Enhancements

– Plan Stability

– REOPT(AUTO)

– Improved Optimizer Statistics

– Subquery Optimization

– Generalized Sparse Index and In-Memory Workfile

© 2009 IBM Corporation2

Insert/Update/Delete Performance

DB2 9 offers improved Scalability and Performance

– Especially in data sharing environments

� Reduced Latch contention

– Reduced Log Latch (Latch 19) Contention

– Reduced LRSN Spin

� Asymmetric leaf page split

� Randomized index key

� Larger index page sizes

� Increased index look-aside

� Table space APPEND option (can ALTER on and off)

� Not logged tablespaces

© 2009 IBM Corporation3

Asymmetric Index Page Split (NFM)

� Index split roughly 50/50 (prior to DB2 9)

� Sequential inserts � ~50% free space

� New algorithm dynamically accommodates
a varying pattern of inserts

� Up to 90/10 split

� Effective across multiple inserting threads
(due to tracking at the page level).

� Improve space utilization and reduce
contention.

© 2009 IBM Corporation4

Randomized Index Key (NFM)

� Cannot support order

� Can provide dramatic improvement or degradation!

� Recommend making randomized indexes bufferpool resident

� Lock contention relief

� Additional getpages

� Additional read/write I/Os

� Increased lock requests

Vs.

© 2009 IBM Corporation5

Larger Index page Sizes (NFM)

� 8K, 16K, or 32K page

– Up to 8 times less index split

� Good for heavy inserts to reduce index splits

– Especially recommended if high LC6 contention in data sharing

• 2 forced log writes per split in data sharing

– Or high LC254 contention in non data sharing shown in IFCID57

� Lower NLEAF & NLEVELS

� Exploitation of larger page sizes (> 8K) more likely without

index compression

© 2009 IBM Corporation6

Index Compression (NFM)

25 - 75% (3)10 - 90%‘Typical’ Comp Ratio CR

No (2)YesComp Dictionary

NoYesComp in BP and Log

YesYesComp in DASD

In Acctg and/or

DBM1 SRB

In AcctgCPU overhead

Page (1)RowLevel of compression

Index Data

Difference between data and index compression

Use DSN1COMP utility to predict index compression ratio.

© 2009 IBM Corporation7

Index Look-aside (CM)

� In V8

– Insert – clustering index only

– Delete – no index lookaside

� In V9,

– Insert & Delete – now possible for additional indexes where
CLUSTERRATIO >= 80%

� Potential for big reduction in the number of index getpages with
substantial reduction in CPU time

– Benchmark Example - Heavy insert

• Large table, 3 indexes, all in ascending index key sequence,

• 0+6+6=12 index Getpages per average insert in V8

• 0+1+1=2 in V9

© 2009 IBM Corporation8

2 GB

Virtual Storage Constraint Relief

SKCT/SKPT

CT/PT

Local DSC

Remaining portion of

CT/PT (70%)

Remaining portion of

Local DSC (50%)

Global DSC

DBD

SKCT/SKPT

Portion of CT/PT

Portion of local
DSC

Thread/Stack storage Thread/Stack storage

Global DSC

DBD

2GB

DBD

SKCT/SKPT

CT/PT

Local DSC

(Global DSC in

dataspace)

V7 DB2 9V8

© 2009 IBM Corporation9

Virtual Storage Constraint Relief (contd.)

� Each statement bound on V9 now has a below-the-bar portion

and an above-the-bar portion.

– Actual above the bar portion varies by statement, can be 5-90%

� For static statements, must REBIND plans and packages to get

this benefit

� Dynamic statements have a larger portion above the bar than

– DSC statement text moved above the bar

� 40-60% reduction in below the bar EDMPOOL size observed for

lab workloads

� Almost 300 MB reduction in below-bar storage for SAP tests

© 2009 IBM Corporation10

Query Plan Stability (CM)
Safeguard against regressions

� REBIND PACKAGE …
– PLANMGMT (BASIC)
2 copies: Current and Previous
– PLANMGMT (EXTENDED)
3 copies: Current, Previous, Original

� REBIND PACKAGE …
– SWITCH(PREVIOUS)
Switch between current & previous
– SWITCH(ORIGINAL)
Switch between current & original

� Most bind options can be changed at
REBIND
– But a few must be the same …

� FREE PACKAGE …
– PLANMGMTSCOPE(ALL) – Free

package completely
– PLANMGMTSCOPE(INACTIVE) –

Free old copies

� Catalog support
– SYSPACKAGE reflects active

copy
– SYSPACKDEP reflects

dependencies of all copies
– Other catalogs (SYSPKSYSTEM,

…) reflect metadata for all copies

� Invalidation and Auto Bind
– Each copy invalidated separately

� PK80375 – SPT01 Compression

Preserve old static SQL access paths. Restore when needed

© 2009 IBM Corporation11

Query Plan Stability - BASIC support

Current copy

previous copy

Incoming copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

current copy

previous copy

move

delete

move
move

Chart is to be read from bottom to top

© 2009 IBM Corporation12

Query Plan Stability - EXTENDED support

REBIND … PLANMGMT(EXTENDED) REBIND … SWITCH(ORIGINAL)

current copy

previous copy

move

delete

Incoming copy

original copy

clone
current copy

previous copy

original copy

move

clone

delete

© 2009 IBM Corporation13

REOPT(AUTO) for Dynamic SQL (CM)

� V8 REOPT options

– Dynamic SQL

• REOPT(NONE, ONCE, ALWAYS)

– Static SQL

• REOPT(NONE, ALWAYS)

� DB2 9 Addition for Dynamic SQL

– Bind option REOPT(AUTO)

© 2009 IBM Corporation14

REOPT(AUTO) for Dynamic SQL (contd.)

� For dynamic SQL with parameter markers

– DB2 will automatically re-optimize the SQL when

• Filtering of one or more of the predicates changes dramatically

– Such that table join sequence or index selection may change

• Some statistics cached to improve performance of runtime
check

– Newly generated access path will replace the global
statement cache copy.

� First optimization is the same as REOPT(ONCE)

– Followed by analysis of the values supplied at each
execution of the statement

© 2009 IBM Corporation15

� RUNSTATS will produce equal-depth histogram

– Each quantile (range) will have approx same number of rows

– Address data skew across ranges of data values

� Example - 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 is cut into 3
quantiles

3/12315103

4/124962

5/12 5411

FrequencyCardinalityHigh ValueLow ValueSeq No

Improved Optimizer Statistics - Histograms

© 2009 IBM Corporation16

RUNSTATS Histogram Statistics Notes

� RUNSTATS

– Maximum 100 quantiles for a column

– Same value columns WILL be in the same quantile

– Quantiles will be similar size but:

• Will try to avoid big gaps inside quantiles

• Null WILL have a separate quantile

� Supports column groups as well as single columns

� Think “frequencies” for high cardinality columns

© 2009 IBM Corporation17

Histogram Statistics – An Example

� SAP uses INTEGER (or VARCHAR) for YEAR-MONTH

• Assuming data for 2006 & 2007

– FF = (high-value – low-value) / (high2key – low2key)

– FF = (200612 – 200601) / (200711 – 200602)

– 10% of rows estimated to return

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

200601 200712

Data Distribution - Even Distribution

Year/Month

WHERE YEARMONTH BETWEEN 200601 AND 200612

Data assumed as evenly

distributed between low

and high range

© 2009 IBM Corporation18

Histogram Statistics – An Example

Data Distribution - Histograms

0

200000

400000

600000

800000

1000000

1200000

1400000

2006 01-12 200613 -----> -----> 200700 2007 01-12

Year/Month

� Example (cont.)

– Data only exists in ranges 200601-12 & 200701-12

• Collect via histograms

– 45% of rows estimated to return

No data between

200613 & 200700

WHERE YEARMONTH BETWEEN 200601 AND 200612

© 2009 IBM Corporation19

Improved Optimizer Statistics

CLUSTERRATIO and DRF
� New ZPARM, STATCLUS, in DB2 9

– Default STATCLUS = ENHANCED

– New CLUSTERRATIO formula

• Better awareness of prefetch range

• More accurate value for lower cardinality indexes

– New statistic, DATAREPEATFACTOR

• Differentiates density and sequential

� Recommend RUNSTATS before mass REBIND in DB2 9

Dense (and sequential) Sequential (not dense)

© 2009 IBM Corporation20

Dynamic Prefetch Enhancements

� Aligned with new cluster ratio formula

DB2 9 uses for other access pathsDB2 9 uses for tablespace scan

Prefetch forward or backwardOnly prefetch in one direction

Tracks sequential access patternRequires hit to a triggering page

Detected at runtimeChosen at bind/prepare time

Dynamic PrefetchSequential Prefetch

© 2009 IBM Corporation21

Optimizing Complex Queries

Improved Subquery Optimization (CM)

� Semantically equivalent queries

– Performance could vary drastically!

� DB2 9 optimizer considers both contexts

SELECT *

FROM TABLEA A
WHERE A.C1 IN

(SELECT B.C1

FROM TABLEB B)

SELECT *

FROM TABLE A
WHERE EXISTS

(SELECT 1

FROM TABLEB B

WHERE B.C1 = A.C1)

Non-Correlated Correlated

© 2009 IBM Corporation22

Improved Subquery Optimization

Scenario 1: Non-correlated � Correlated
� DB2 V8, Large Non-correlated subquery is materialized*

SELECT * FROM SMALL_TABLE A

WHERE A.C1 IN

(SELECT B.C1 FROM BIG_TABLE B)

– “BIG_TABLE” is scanned and put into workfile

– “SMALL_TABLE” is joined with the workfile

� DB2 9 may rewrite non-correlated subquery to correlated
– Much more efficient if scan / materialisation of BIG_TABLE was avoided

– Allows matching index access on BIG_TABLE

SELECT * FROM SMALL_TABLE A

WHERE EXISTS

(SELECT 1 FROM BIG_TABLE B WHERE B.C1 = A.C1)

* Assumes subquery is
not transformed to join

© 2009 IBM Corporation23

Improved Subquery Optimization

Scenario 2: Correlated � Non-Correlated
� DB2 V8, Large outer table scanned rather than using matching

index access*

SELECT * FROM BIG_TABLE A

WHERE EXISTS

(SELECT 1 FROM SMALL_TABLE B WHERE A.C1 = B.C1)
– “BIG_TABLE” is scanned to obtain A.C1 value

– “SMALL_TABLE” gets matching index access

� DB2 9 may rewrite correlated subquery to non-correlated

SELECT * FROM BIG_TABLE A

WHERE A.C1 IN

(SELECT B.C1 FROM SMALL_TABLE B)

– “SMALL_TABLE” scanned and put in workfile

– Allows more efficient matching index access on BIG_TABLE

* Assumes subquery is
not transformed to join

© 2009 IBM Corporation24

Improved Subquery Optimization

Representing Subqueries as Virtual Tables

�A new way to internally represent subqueries

– Represented as a Virtual table

• Allows subquery to be considered in different join sequences

• May or may not represent a workfile

• Apply only to subqueries that cannot be transformed to joins

Correlated or non-correlated?......I shouldn’t have to care!

© 2009 IBM Corporation25

Improved Subquery Optimization

Subqueries in EXPLAIN Output
� Additional row for materialized “Virtual Table”

– Table type is "W" for "Workfile".

• Name includes an indicator of the subquery QB number

– Example � “DSNWF(02)”

– Non-materialized Virtual tables will not be shown in EXPLAIN output.

� Additional column PARENT_PLANNO

– Used with PARENT_QBLOCKNO to connect child QB to parent

– V8 only contains PARENT_QBNO

• Not possible to distinguish which plan step the child tasks belong to.

© 2009 IBM Corporation26

Sparse Indexes
A timeline

� V4 introduced sparse index

– for non-correlated subquery workfiles

� V7 extended sparse index

– for the materialized work files within star join

� V8 replaced sparse index

– with in-memory data caching for star join

• Runtime fallback to sparse index when memory is insufficient

© 2009 IBM Corporation27

Compensating for missing indexes

Generalized sparse indexes and IMWF

� If DB2 query optimizer

doesn’t find efficient
indexes to support a join, it

can create:

– An “in-memory work file”
(IMWF) to cache the
entire inner table, OR

– A “sparse index” atop a
materialized workfile.

� Previously only available
for Star Join

© 2009 IBM Corporation28

RID

T1 T2 (WF)
NLJ

... ...

t1.c = t2.c

Key
Binary Search of sparse index

to look up “approximate “

location of qualified key

Sparse Index

sorted in t2.c order

Workfile sorted

in t2.c order

T2

(WF)

How does Sparse Index work?
� Sparse index may be a subset of workfile (WF)

– Example, WF may have 10,000 entries

• Sparse index may have enough space (240K) for 1,000 entries

• Sparse index is “binary searched” to find target location of search key

• At most 10 WF entries are scanned

© 2009 IBM Corporation29

T1 T2 (WF)
NLJ

t1.c = t2.c
Binary Search of WF to look up

exact location of qualified key Workfile sorted

in t2.c order

How does In-Memory WF work?

� Whereas sparse index may be a subset of WF

– IMWF contains the full result (not sparse)

– Example, WF may have 10,000 entries

• IMWF is “binary searched” to find target location of search key

T2

(WF)

LocalGlobal

MXDTCACHSJMXPOOL

DB2 9DB2 v8

© 2009 IBM Corporation30

Star Join Enhancements

The Index ANDing Challenge

� Filtering may come from
multiple dimensions

� In DB2 8, star join processing

relies on the presence of

multi-column indexes.

� However, creating multi-

column indexes to support all

useful combinations is often
impractical.

F

D5

D4

D2

D1

D3

© 2009 IBM Corporation31

Index ANDing – Pre-Fact

� Pre-fact table access

–Filtering may not be (truly) known until runtime

F

D1 Filtering dimensions
accessed in parallel

Join to respective fact
table indexes

Build RID lists

F

D3

F

D5

RID
list 1

RID
list 2

RID
list 3

8 Runtime optimizer may terminate parallel
leg(s) which provide poor filtering at runtime

© 2009 IBM Corporation32

Index ANDing – Fact and Post-Fact

� Fact table access

–Intersect filtering RID lists

–Access fact table

•From RID list

� Post fact table

–Join back to dimension tables

Remaining RID lists are
“ANDed” (intersected)

RID

list 2

RID

list 3

Using parallelism

RID

list 2/3

Final RID list used for parallel fact table access

© 2009 IBM Corporation33

Index on Expression

� DB2 9 supports “index on expression”

– Can turn a stage 2 predicate into indexable

SELECT *

FROM CUSTOMERS

WHERE YEAR(BIRTHDATE) = 1971

Previous FF = 1/25

Now, RUNSTATS collects
frequencies. Improved FF accuracy

CREATE INDEX ADMF001.CUSTIX3

ON ADMF001.CUSTOMERS

(YEAR(BIRTHDATE) ASC)

© 2009 IBM Corporation34

Tracking Index Usage

� Additional indexes require overhead for

– Utilities (REORG, RUNSTATS, LOAD etc)

– Data maintenance (INSERT, UPDATE, DELETE)

– Disk storage

– Optimization time (Increases optimizer’s choices)

� RTS records the index last used date

– SYSINDEXSPACESTATS.LASTUSED

• Updated once in a 24 hour period, but only if index used

– "Used", as defined by DB2 as:

• As an access path for query or fetch.

• For searched UPDATE / DELETE SQL statement.

• As a primary index for referential integrity.

• To support foreign key access

© 2009 IBM Corporation35

Sort Avoidance

Improved DISTINCT and GROUP BY
� Improved Sort avoidance for DISTINCT

– From V9, DISTINCT can avoid sort using duplicate
index

• APAR PK71121 – Avoid WF creation for zero rows

� Sort avoidance for GROUP BY

– Order of GROUP BY columns re-arranged to match
index

• Data may be returned in a different order

– Relational theory states that order is NOT guaranteed without

ORDER BY

GROUP BY C2, C1 <= GROUP BY in C2, C1 sequence

Index 1 (C1, C2)<= Index in C1, C2 sequence

© 2009 IBM Corporation36

Query Parallelism Enhancements
� In V8

– Lowest cost is BEFORE parallelism

� In DB2 9

– Lowest cost is AFTER parallelism

• Only a subset of plans are considered
for parallelism

Optimizer

Parallelism

One Lowest
cost plan
survives

How to
parallelize

these
plans?The end result?

More opportunities
for parallel access
paths!

© 2009 IBM Corporation37

Query Parallelism Enhancements (contd.)

� In V8

–Degree cut on leading table (exception star join)

� In DB2 9

–Degree can cut on non-leading table

•Benefit for leading workfile, 1-row table etc.

–Histogram statistics exploited for more even distribution

•For index access with NPI

–CPU bound query degree <= # of CPUs * 4

•<= # of CPUs in V8

� Increased parallelism results in greater zIIP offload

© 2009 IBM Corporation38

Native SQL Procedures
� Eliminates generated C code and compilation

� Fully integrated into the DB2 engine

� Extensive support for versioning

� Allow nested compound statements within a procedure

Appl pgm

CALL SP1

Appl pgm

CALL SP1

DB2

DBM1

EDM pool

DDF

DB2

directory

SQL PL native logic

SQL

SQL

SP1

SQL PL native logic

SQL

SQL

SP1

zIIP

Enabled

for DRDA

© 2009 IBM Corporation39

Favoring Index-only Access

� Ever created an index to support index-only?

– Only to have optimizer choose index + data?

� ZPARM OPTIXOPREF

– Prioritize index-only over index + data with same index prefix

• V8 APAR PK51734

• V9 APAR PK77426 changes default to ENABLE

SELECT C2

FROM T1

WHERE C1 = ?

Index 1 (C1)

Index 2 (C1, C2)

Index + data
Index-only

© 2009 IBM Corporation40

Reference

� Redbooks at www.redbooks.ibm.com

– DB2 9 for z/OS Technical Overview SG24-7330

�DB2 9 for z/OS Performance Topics SG24-7473

� DB2 for z/OS home page at
www.ibm.com/software/db2zos

– E-support (presentations and papers) at
www.ibm.com/software/db2zos/support.html

