
DB2 for z/OS Utilities Update:
Best Practices

Haakon Roberts, IBM Silicon Valley Lab
haakon@us.ibm.com

Mar 2009

2

Agenda

• Availability

• Performance

• Features & function

• Best practices

• Summary

3

Availability – what has changed
recently?

• Online create or rebuild of non-unique indexes
• REBUILD INDEX SHRLEVEL CHANGE

• Eliminate outage for partition-level REORGs
• Eliminate BUILD2 phase

• Avoid need for REORG to get compressed data
• LOAD COPYDICTIONARY
• PK63324 & PK63325 (V9)

• Online data consistency checking and repair
• CHECK DATA SHRLEVEL CHANGE
• CHECK LOB SHRLEVEL CHANGE
• REPAIR LOCATE… SHRLEVEL CHANGE

• Run data consistency checks without impacting BACKUP SYSTEM or disk
mirroring
• PK41711 (V9)

4

Availability – what has changed
recently?

• Replace data with virtually no outage
• CLONEs effectively provide LOAD REPLACE SHRLEVEL

CHANGE
• UTS only

• Read LOB data during REORG
• REORG SHRLEVEL REFERENCE for LOBs

• RECOVER to point in time with consistency
• Avoid need for QUIESCEs

UR 1

UR 2

Update

Update

Update

Recovery point

5

Performance – what has changed
recently?

• Faster REORGs
• Parallel unload of partitions
• Parallel reload of partitions
• Parallel log apply

• Greater likelihood of REORG keeping up with logging rates

• Faster CHECK INDEX SHRLEVEL REFERENCE
• Parallel index processing

• Up to 40% faster COPY & RECOVER RESTORE phase to/from tape
• Support Large Block Interface for image copies to tape

• Reduced impact on applications when running COPY
• COPY uses MRU for buffers to improve BP hit ratio for online applications

• Reduced impact on applications when running LOAD & REORG
• Auto-invalidate of cached dynamic statements on completion of LOAD &

REORG
• PK47083 (V8 & V9)

6

Performance – what has changed
recently?

• Greater utility parallelism with SORTNUM elimination
• PK45916 (V8), PK41899 (V9)
• Major improvement in utility sort processing
• Simpler, more efficient, more reliant on RTS

• SORTBLD performance improvement
• PK60956 (V8 & V9)
• Up to 20X performance improvement in SORTBLD for indexes with small

SECQTY

• LOAD & REORG performance improvement
• PK61759 (V8 & V9)
• 10% CPU & elapsed time improvement in RELOAD phase
• 10% CPU reduction in SORT phase

• COPY performance improvement
• PK74993 (V9)
• 20% elapsed time improvement for copy of multiple small datasets to tape

• COPY performance with large LISTDEF lists
• PK78865 (V8 & V9)
• Reduce writes to SYSUTILX

7

Performance – what has changed
recently?

• Crossloader performance improvement for CCSID data conversion
• PK76860 (V8 & V9)

• LOAD/UNLOAD LOB file reference variable performance
• PK75216 (V9)
• PDS only, not HFS

• UNLOAD performance for multi-table table spaces
• UTILINIT phase – use DBD rather than catalog lookup
• PK77313 (V8 & V9)

• REORG PART of empty partition performance
• Avoid NPI scan for non-clustering indexes
• PK67154 (V8 & V9)

8

Performance – what has changed
recently?

• LOAD and UNLOAD to/from virtual file
• USS named pipe support with templates
• PK70269 (V8 & V9)

• DSN1COPY performance
• Improved VSAM buffer allocation for page sets with cylinder allocation
• PK78516 (V8 & V9)

• RUNSTATS histogram statistics
• Improved query optimization for non-uniform distribution
• Example - 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 (sequenced), cut into 3 quantiles

Seq No Low Value High Value Cardinality Frequency

1 1 4 3 5/12

2 6 9 4 4/12

3 10 15 3 3/12

9

Performance – what has changed
recently?

• CPU cost reduction in V9
• 10-20% for COPY & RECOVER
• 5-30% for LOAD, REORG, REBUILD INDEX
• 20-60% for CHECK INDEX
• 35% for LOAD partition
• 30-40% for RUNSTATS INDEX
• 40-50% for REORG INDEX
• 70% for LOAD REPLACE partition with dummy input

• zIIP enablement for utility index processing in V8

10

Features & function – what has changed
recently?

• BACKUP SYSTEM & RESTORE SYSTEM enhancements
• Support for tape
• Support for incremental FlashCopy

• Object-level recovery from system-level backup

• RECOVER to any point in time with consistency

• SORTNUM elimination
• Simplified utility invocation

• Remove restriction on REORG of >254 compressed parts
• ZPARM restricts LOAD in V9 – restriction removed in X

• Better information for DPROPR/QRep or other IFI 306 readers
• Write diag log record at utility termination so IFCID 306 readers can

trigger refresh
• PK78558 (V9)

11

Features & function – what has changed
recently?

• MODIFY RECOVERY simplification & safety

• Template switching for COPY utility
• E.g. copy to disk if small, to tape if large

DELETE AGE integer

DATE

(*)

integer

RETAIN LAST

(*)

(integer)

LOGLIMIT

GDGLIMIT

GDGLIMIT LAST (integer)

GDGLIMIT LOGLIMIT

Queries SYSCOPY
Queries BSDS

Queries GDG

For mixed lists

TEMPLATE LRG DSN &DB..&TS..D&DA..T&TI. UNIT=TAPE
TEMPLATE SML DSN &DB..&TS..D&DA..T&TI. UNIT=SYSALLDA LIMIT(20 CYL, LRG)
COPY TABLESPACE SMALL.TS COPYDDN(SML)
COPY TABLESPACE LARGE.TS COPYDDN(SML)

12

Features & function – what has changed
recently?

• Permit use of ALIASes for LOAD, RUNSTATS and UNLOAD
• PK77061 (V9)

• New DSNACCOX stored procedure to gather statistics from catalog and
make utility recommendations
• See PK44133
• DSNACCOR still supported

• More information
• All utility messages in job output have julian date & timestamp
• -DISPLAY UTILITY enhanced to show progress of logapply
DSNU116I csect-name RECOVER LOGAPPLY PHASE DETAILS:

STARTING TIME = timestamp
START RBA = ss START LRSN = rr
END RBA = ee END LRSN = nn
LAST COMMITTED RBA = cc LAST COMMITTED LRSN = ll
ELAPSED TIME = hh:mm:ss

13

What’s coming?
• Remove usability restrictions for REORG

• LOBs, PBG, catalog/directory, rebalancing,…

• REORG avoidance

• Remove UTSERIAL lock for greater utility concurrency

• RTS enhancements & greater reliance upon RTS

• Intelligent & autonomic statistics gathering

• BACKUP SYSTEM / RESTORE SYSTEM enhancements

• FlashCopy exploitation

• LOAD & UNLOAD enhancements
• Improved LOB/XML processing
• Improved UTF-16 support

• CHECK utility enhancements
• XML, availability, data correction,…

• Faster point in time recovery

• Faster & better COPY processing
• Incremental, CHANGELIMIT, FlashCopy

14

COPY Best Practices

• COPY
• PARALLEL keyword provides parallelism for lists of objects (including

partitions)
• CHECKPAGE YES incorporated into V9 - look for RC=8!
• Maximize other utilities’ access to objects while copying a list with

SHRLEVEL CHANGE and OPTIONS EVENT(ITEMERROR,SKIP)
• Keeps objects in the list in UTRW state *only* as each object is being copied instead of for

the duration of the COPY utility
• UTRW – utility allows read/write access by applications, but no access for exclusive utilities

• Incremental copy rule-of-thumb: Consider using incremental image copy if
• <5% of pages are randomly updated (typically means less than 1% of rows updated)
• <80% of pages are sequentially updated
• Incremental image copies use list prefetch, so monitor for rid list pool full conditions

• Copy indexes on your most critical tables to speed up recovery

• MERGECOPY – consider using it

15

RECOVER/QUIESCE Best Practices

• RECOVER
• PARALLEL keyword provides parallelism for lists of objects (including

partitions)
• Compressed pagesets result in faster restore phase
• Enable Fast Log Apply (which can use dual-copy logs) and PAV

� <=10 jobs/member with LOGAPSTG=100MB, up to 99 objects per RECOVER

• For recovery to a prior point in time
• Always recover related sets of objects together (same RECOVER utility statement)

• DB2 9 for z/OS: recover to PIT with consistency
• Backs out uncommitted changes for the objects specified on the RECOVER utility statement
• Significantly reduces the need to run QUIESCE, which can be disruptive to applications

• QUIESCE
• WRITE NO is less disruptive (no quiescing of COPY=NO indexes)
• Use TABLESPACESET
• Do you still need it in V9?

16

MODIFY RECOVERY Best Practices

• Base your MODIFY strategy on your backup strategy and not
vice versa

• REORG SYSLGRNX regularly

• Run MODIFY RECOVERY regularly to clean up old records in
SYSCOPY and SYSLGRNX

• DB2 9 has RETAIN LAST n, GDGLIMIT and BSDS options

• Also resets “ALTER_ADD_COLUMN” flag in OBD when
deleting image copies with previous row versions

• MODIFY RECOVERY DELETE AGE/DATE to delete everything before the
REORG that follows the ALTER

• Will make next REORG more efficient if no more old row versions exist

• Remember that MODIFY RECOVERY works on day boundaries

17

LOAD Best Practices

• LOAD
• LOG NO reduces log volume; if REPLACE, then take inline copy
• KEEPDICTIONARY (track dictionary effectiveness with history

statistics PAGESAVE) - small performance impact if loading lots of
data

• 254 partition limit for compressed table spaces can be lifted by DBA
• PK51853 shipped new ZPARM MAX_UTIL_PARTS (watch virtual

storage)
• Load Partition Parallelism (V7)

• Not individual LOAD part level jobs
• Enable Parallel Access Volume (PAV)

• Index parallelism (SORTKEYS)
• Provide value for SORTKEYS when input is tape/PDS mbr or

variable length
• SORTKEYS is the sum of ALL indexes (and foreign keys) on the

table
• Remove SORTWKxx / UTPRINxx, and turn on UTSORTAL=YES

18

LOAD Best Practices contd.

• LOAD
• Inline COPY & Inline STATISTICS
• Use REUSE to logically reset and reuse DB2-managed data sets

without deleting and redefining them (affects elapsed time)
• When using DISCARD, try to avoid having the input on tape

�Input is re-read to discard the errant records

• Avoid data conversion, use internal representation if possible
• Sort data in clustering order (unless data is randomly accessed via

SQL)
• LOAD RESUME SHRLEVEL CHANGE instead of batch inserts
• “LOAD REPLACE SHRLEVEL CHANGE” can be achieved by

loading into clone table and then exchanging the tables on DB2 9
• LOAD via Batchpipes or USS pipes to load data that is transferred

via FTP from clients – see PK70269

19

REORG Best Practices

• REORG
• Use SHRLEVEL REFERENCE or SHRLEVEL CHANGE
• Inline COPY & Inline STATISTICS
• KEEPDICTIONARY (track dictionary effectiveness with history

statistics PAGESAVE) – large performance impact
• 254 partition limit for compressed table spaces in V8

�PK51853 shipped new ZPARM MAX_UTIL_PARTS (watch virtual storage)
�DB2 9 for z/OS no longer has this limit and uses virtual storage more effectively

• Index parallelism (SORTKEYS is default and ignored in V8)
�Remove SORTWKxx / UTPRINxx, and turn on UTSORTAL=YES
�Run REORG against as many partitions as possible in the same job or against the

whole table space

20

REORG Best Practices contd.

• REORG
• Partition parallelism in DB2 9 and NPI processing

�Parallel REORG jobs for same table space but different partitions
no longer supported if NPIs defined

�After REORG PART with no BUILD2 phase, no need for REORG
NPI

�Watch out for LISTDEFs at partition level with NPIs - full REORG
might be more efficient

• SHRLEVEL NONE if constrained for disk space
�LOG NO reduces log volume; requires an image copy (inline is a

good choice)
�NOSYSREC to avoid I/O (forced for SHRLEVEL CHANGE)

�Take full image copy before REORG SHRLEVEL NONE
�Use REUSE to logically reset and reuse DB2-managed data sets

without deleting and redefining them (improves elapsed time)

21

REORG Best Practices contd.

• REORG
• SORTDATA NO only if data is already in or near perfect clustering

order and disk space is an issue
• Set appropriate PRIQTY/SECQTY to minimize extend processing

�PK60956 helps to improve SORTBLD elapsed time up to 20x for
indexes with small SECQTY!!!

�SORTBLD elapsed up to 20x improvement!!!
�Affects all utilities that are (re-)building indexes

• Run MODIFY RECOVERY some time after ALTER TABLE … ADD
COLUMN

22

REORG Best Practices contd.

• REORG SHRLEVEL CHANGE (sometimes called online REORG)
�TIMEOUT TERM frees up the objects if timeouts occur in getting

drains
�DRAIN ALL (better chance of entering SWITCH phase)
�(DRAIN_WAIT+MAXRO)<(IRLMRWT -5 or 10 seconds)

�Avoid application timeouts
�But don’t set MAXRO too low

�RETRY = utility lock timeout multiplier (6 by default)
�RETRY_DELAY = DRAIN_WAIT*RETRY
�Enable detection of long running readers (zparm) and activate

IFCID 0313 (it’s included in STATS CLASS(3))
�This will report readers that may block command and utilities

from draining
�It includes “well-behaved” WITH HOLD cursors which a drain

cannot break-in on
�More Joys of Commitment by Bonnie Baker

�http://www.db2mag.com/db_area/archives/2003/q1/programme
rs.shtml

23

REORG Best Practices contd.

• REORG SHRLEVEL CHANGE
● Consider scheduling SWITCH phase in a maintenance window to

avoid concurrent workloads that may prevent the utility from
breaking in:
�MAXRO DEFER and LONGLOG CONTINUE will let REORG do

its job except for the last log iteration and the switching
�REORG will continue applying log until MAXRO is changed with

the ALTER UTILITY command
�Many log iterations might reduce the “perfect” organization of

the table space, so keep the time until MAXRO is changed to
allow final processing down to a minimum

24

REORG LOB Best Practices

• DB2 V8 only REORG LOBs if performance degraded because
of bad LOB chunking

• DB2 9 - use SHRLEVEL REFERENCE
• Reclamation of unused space
• Full read access to LOBs except during SWITCH phase
• Inline imagecopy required to maintain recoverability
• No restart capability

• Shadow pageset discarded in event of failure

• SHRLEVEL NONE still supported
• Remains default, but will be deprecated in future

25

A word about PBGs

• No utility parallelism

• No pruning of partitions in V9

• No load at partition level

• REORG of single part
• No new part creation
• Rows must fit back into part, but may not!

• REORG of part range
• Data can flow from one part to another within

range
• If LOB column exists then rows will not move

between parts

• Recommendation:
• View as single table and REORG as a whole

Part 1

Part 2
UTRW

UTRW/UTRO

PBG

Part 3
UTRW

26

REBUILD INDEX Best Practices

• REBUILD INDEX
• Indexes are built in parallel
• Remove SORTWKxx / UTPRINxx and use SORTDEVT/SORTNUM or

UTSORTAL=YES
• Inline STATISTICS
• Use REORG INDEX SHRLEVEL CHANGE to move index data sets to

different volumes
• CREATE INDEX DEFER followed by REBUILD INDEX

• As of V8, dynamic SQL will not select the index until it is built

• DB2 9 allows SHRLEVEL CHANGE
• Unique indexes are put in RBDP because uniqueness can not be checked during

rebuild process, so no INSERT/ UPDATE/DELETE allowed that affects unique index
• No parallel jobs on different indexes of the same table space -> use single job with

multiple indexes specified

27

Dynamically Allocated Sort Work Data Sets

• DB2/DFSORT determined DS sizes without DDs

• Single JCL (template) can be used for most utility jobs

• DB2 determines degree of parallelism according to available
resources

• BUT:
• Need to specify SORTNUM, but one size does NOT fit all

• Different objects being processed by same job template
• Different sorts within same utility, e.g. REORG with data and index sorts

• DASD situation varies, SORTNUM 4 might work today, but tomorrow even
SORTNUM 8 might fail

• DB2’s estimates sometimes not good enough

28

DB2 Allocated Sort Work Data Sets
• PTFs shipped 02/2008 to enable DB2 to dynamically allocate sort work

data sets in utilities:
• DB2 for z/OS V8: PK45916 / UK33692
• DB2 9 for z/OS: PK41899 / UK33636
• Enable with UTSORTAL=YES
• Used for all sorts in utilities: LOAD, REORG, CHECK INDEX,

REBUILD INDEX, CHECK DATA, RUNSTATS
• Message “DSNU3340I - UTILITY PERFORMS DYNAMIC ALLOCATION OF SORT

DISK SPACE” indicates use
• New behavior ignored if hard coded DD cards are found

• No more need to specify SORTNUM. Existing SORTNUM specification
can be honored or ignored (IGNSORTN=YES)

• Data sets for largest sorts are allocated first

• Attempts to allocate data sets as large as possible (starting with 2 data
sets per sort task, more data sets allocated if necessary)

SORTNUM

29

DB2 Allocated Sort Work Data Sets

• Uses Real-Time statistics for size estimates
• Start using RTS on V8 if not already done (always active in DB2 9)

• RTS can benefit you in many ways

• Required values in RTS are initialized by REORG TABLESPACE and
REBUILD INDEX

• If replacing DB2 objects outside DB2’s control then notify DB2 that RTS
information isn’t accurate:
• Set TOTALROWS to NULL in SYSIBM.(SYS)TABLESPACESTATS or TOTALENTRIES to NULL

in SYSIBM.(SYS)INDEXSPACESTATS to invalidate existing statistics if replacing with significantly
different data

30

DB2 Allocated Sort Work Data Sets

• Recommended maintenance:
• APAR PK64624: LOAD with multiple INTO TABLE
• APAR PK64915: Improve estimates for REBUILD and CHECK INDEX with segmented

table spaces with missing RTS
• APAR PK66597: LOAD ABEND0C4 RC00000011 when SYSTEMPL DD specified but

not used
• APAR PK70001: ICE046A SORT CAPACITY EXCEEDED when REORG is restarted in

UNLOAD phase, improved fall back estimates for multi table table spaces

• DFSORT APAR PK63409: ICE046A SORT CAPACITY EXCEEDED when estimate is
slightly below actual value

31

CHECK INDEX Best Practices

• CHECK INDEX
• Indexes are checked in parallel
• Use SHRLEVEL CHANGE

• Uses dataset-level FlashCopy2 if available
• Else, traditional media copy – still smaller r/o outage than SHR REF

• PK41711 allows specification of storage class for shadow data sets
• Useful in PPRC environments that shadow data sets can be placed on non-PPRC volumes
• Defined in ZPARM UTIL_TEMP_STORCLAS

32

CHECK DATA/LOB Best Practices

• CHECK DATA
• If large volumes of delete data (e.g. after REORG DISCARD)

• LOG NO to avoid log archive and log latch contention
• Image COPY will be required

• CHECK DATA & CHECK LOB
• DB2 9 adds SHRLEVEL CHANGE support:

• Short term drain of writers to allow flashcopy to shadow
• Usual drain parameters supported

• CHKP/ACHKP/AUXW no longer set if errors detected
• Not reset either – use REPAIR
• Look for messages and generated REPAIR statements

• CHECK DATA SHRLEVEL CHANGE cannot delete rows or mark LOBs invalid, it will write REPAIR statements to
PUNCHDDN
• REPAIR LOCATE DELETE statements instead of RI discard
• REPAIR LOCATE VERIFY/REPLACE statements to invalidate LOBs

• PK41711 for non-PPRC volumes to be used for shadow data sets

33

LOB integrity checking

Aux index
CHECK INDEX

�

Base table space

LOB table space

Row

Row

LOB

LOB

CHECK DATA

�

�

CHECK LOB

34

DSN1COPY – what you need to know

• DSN1COPY is an essential part of the utilities portfolio

• DSN1COPY runs standalone and cannot ensure that data matches
definition at target

• All target datasets must be preallocated for multi-piece tablespaces

• Areas to watch out for
• BRF-RRF mismatch

• Tolerated by SQL, but not REORG
• Convert pagesets to ensure copy is RRF-RRF
• No method exists today to convert RRF to BRF

• Data definition changes, e.g. columns added
• Use REPAIR VERSIONS at target site
• For alterations prior to V8, REORG at source before DSN1COPY

• Different tablespace types or different segsizes
• Not policed, abends will occur

• XML
• Data-dependent information kept in catalog table XMLSTRINGS
• Cannot DSN1COPY XML tablespace from one subsystem/group to another
• DSN1COPY within a subsystem/group is fine
• Solution is UNLOAD/LOAD/CROSSLOADER

35

RUNSTATS Best Practices

• RUNSTATS
• SHRLEVEL CHANGE for availability
• Collect only column stats on columns used in SQL predicates

• Use the Statistics Advisor to detect which stats to collect
• SAMPLE reduces CPU time when gathering column stats

• KEYCARD provides valuable info for little processing cost (see next slide)

36

Utilities On Demand

• Run utilities only when necessary and not on fixed schedules

• Information on the current status of all objects is contained in
Real-Time Statistics (RTS) tables

• Stored Procedure DSNACCOR applies our suggested
thresholds and formulas against a list of objects and
recommends utility actions

• DB2 9 NFM adds Stored Procedure DSNACCOX (PK44133)
with additional real-time statistics being used and improved
recommendations

37

IBM’s UNLOAD Products

• Two UNLOAD utilities from IBM
• DB2 UNLOAD Utility (in the IBM DB2 Utilities Suite)
• DB2 High Performance Unload (HPU) Utility
• (DSNTIAUL is only a sample!)

• HPU was delivered before the UNLOAD utility – had this not been the
case, we would never have used the words “High Performance”

• In elapsed time, they are comparable (sometimes UNLOAD is faster,
sometimes HPU is faster)

• In CPU time, HPU consumes approximately half the CPU in many
situations (but not always)

• UNLOAD is geared towards user of DB2 Utilities (Utilities interface)

• HPU is geared towards application developers (SQL interface)

38

LOB Handling in LOAD/UNLOAD w/FRVs

• Requirement is to move LOBs from one z/OS system to another z/OS system

• Need to support millions of rows

• Typical LOB sizes are 25K, 200K, 1MB

• Need to allow user to limit LOAD at target with WHEN clause

• LOB column values will be stored as separate PDS member, PDS/E member,
or HFS directory member.

• LOB column values from each row will have identical member names in each
PDS, PDS/E, or HFS

• Data set name stored in output record

• Design fits well with application support for File Reference Variables in V9

• Apply PK75216 for significant performance enhancement for PDS FRVs

39

LOB Handling in LOAD/UNLOAD w/FRVs

• LOAD is changed to allow an input field value to contain the name of file
containing a LOB column value. The LOB is loaded from that file.

//SYSREC DD *

"000001","UN.DB1.TS1.RESUME(AI3WX3JT)","UN.DB1.TS1.PHOTO(AI3WX3JT)"

"000002","UN.DB1.TS1.RESUME(AI3WX5BS)","UN.DB1.TS1.PHOTO(AI3WX5BS)"

"000003","UN.DB1.TS1.RESUME(AI3WX5CC)","UN.DB1.TS1.PHOTO(AI3WX5CC)"

"000004","UN.DB1.TS1.RESUME(AI3WX5CK)","UN.DB1.TS1.PHOTO(AI3WX5CK)"

LOAD DATA FORMAT DELIMITED

INTO TABLE MY_EMP_PHOTO_RESUME

(EMPNO CHAR,

RESUME VARCHAR CLOBF,

PHOTO VARCHAR BLOBF)

new syntax

40

LOB Handling in LOAD/UNLOAD w/FRVs

• UNLOAD is changed to store the value of a LOB column in a file and
record the name of the file in the unloaded record of the base table.

TEMPLATE LOBFRV1 DSN ‘UN.&DB..&TS..RESUME’ DSNTYPE(PDS) UNIT(SYSDA)

TEMPLATE LOBFRV2 DSN ‘UN.&DB..&TS..PHOTO’ DSNTYPE(PDS) UNIT(SYSDA)

UNLOAD DATA

FROM TABLE DSN8910.EMP_PHOTO_RESUME

(EMPNO CHAR(6),

RESUME VARCHAR(255) CLOBF LOBFRV1,

PHOTO VARCHAR(255) BLOBF LOBFRV2) DELIMITED

Output:

"000001","UN.DB1.TS1.RESUME(AI3WX3JT)","UN.DB1.TS1.PHOTO(AI3WX3JT)"

"000002","UN.DB1.TS1.RESUME(AI3WX5BS)","UN.DB1.TS1.PHOTO(AI3WX5BS)"

"000003","UN.DB1.TS1.RESUME(AI3WX5CC)","UN.DB1.TS1.PHOTO(AI3WX5CC)"

"000004","UN.DB1.TS1.RESUME(AI3WX5CK)","UN.DB1.TS1.PHOTO(AI3WX5CK)"

…

new syntax

41

Provide logic for routine maintenance

• Leverage the ability to invoke utilities programmatically via stored
procedures
• DSNUTILS for EBCDIC parameters
• DSNUTILU for UNICODE parameters

42

Provide logic for routine maintenance
Example (using REXX):

/* REXX */

…

ADDRESS DSNREXX "CONNECT DB2P“

IF SQLCODE ¬= 0 THEN CALL SQLCA

Uid='';Restart=''; Utstmt= ,

‘REORG TABLESPACE’ ,
‘ADHTSTDB.ADHTSTTS’ ,

‘LOG NO KEEPDICTIONARY’ ,

‘SORTDATA SORTKEYS SORTDEVT’ ,

‘STATISTICS’ ,

‘TABLE (T1) SAMPLE 25 COLUMN (C1, C2)’ ,

‘TABLE (T2) SAMPLE 25 COLUMN (C5, C12)’

Utility='REORG TABLESPACE‘

CopyDSN1=‘DSN.FIC.ADHTSTTS.VERSION(+1)‘

CopyDEVT1='SYSDA‘

CopySpace1=1

ADDRESS DSNREXX "EXECSQL" ,
"CALL DSNUTILS(:UID, :RESTART, " ,
" :UTSTMT, " ,
" :RETCODE, " ,
" :UTILITY, " ,
" :RECDSN ,:RECDEVT ,:RECSPACE ," ,
" :DISCDSN ,:DISCDEVT ,:DISCSPACE ," ,
" :PNCHDSN ,:PNCHDEVT ,:PNCHSPACE ," ,
" :COPYDSN1,:COPYDEVT1,:COPYSPACE1," ,
" :COPYDSN2,:COPYDEVT2,:COPYSPACE2," ,
" :RCPYDSN1,:RCPYDEVT1,:RCPYSPACE1," ,
" :RCPYDSN2,:RCPYDEVT2,:RCPYSPACE2," ,
" :WORKDSN1,:WORKDEVT1,:WORKSPACE1," ,
" :WORKDSN2,:WORKDEVT2,:WORKSPACE2," ,
" :MAPDSN ,:MAPDEVT ,:MAPSPACE ," ,
" :ERRDSN ,:ERRDEVT ,:ERRSPACE ," ,
" :FILTRDSN,:FILTDEVT ,:FILTRSPACE)"
IF SQLCODE < 0 THEN CALL SQLCA
…

43

Provide logic for routine maintenance

• Rich logic can be provided to:
• Take an image copy before running REORG with NOSYSREC
• Examine statistics (from RUNSTATS or the Real-time statistics) to

determine when to run a utility (see DSNACCOR/DSNACCOX)
• Examine a control table to determine windows when maintenance

can or cannot be run
• …

• You have full control without needing individual threshold
keywords on each utility

• But, maybe you don’t want to write or maintain this type of logic
yourself… that where products like the DB2 Automation Tool for
z/OS come into play

44

Summary

• Continuing commitment to, & investment in, utilities

• Support core DB2 function from day 1

• Ensure utilities are non-disruptive
�Eliminate outages
�Improve performance
�Reduce CPU cost

• Provide function that adds real value

• Reduce complexity & improve automation

• Revisit your existing utility jobs to benefit from new options

• SORTNUM Elimination can help you to run all your sorting utilities more
effectively

• Use DB2 provided stored procedures to schedule utilities “On-Demand” instead of
invoking them on fixed schedules

