
© 2008 IBM Corporation

The future runs on System z

DB2 9 for z/OS
Performance Highlights

© 2009 IBM Corporation1

Outline
� General Enhancements

– Synergy with hardware and O/S
– Modest overall CPU improvements

– Significant CPU time reduction in utilities
– Improved virtual storage usage

– High-performance INSERT / UPDATE /
DELETE

– Index “Look-aside”

� SQL Performance Enhancements
– Query Plan Stability
– DISTINCT and GROUP BY
– Dynamic Prefetch
– Improved Subquery Optimization
– Generalized sparse indexes and data-caching
– Star Join improvements
– Query Re-optimization (REOPT)
– Indexes on Expressions
– Improved statistics (RUNSTATS)
– Enhanced query parallelism

� Other Enhancements
– Native SQL procedures

� And more enhancements ...
– WLM assisted buffer pool management
– Reordered row format

– Buffer manager enhancements
– Enhanced preformatting
– Universal table space
– Index Compression
– Clone table

– Object-level recovery
– Log I/O enhancements
– WORKFILE database enhancements
– Optimistic locking

– MERGE and SELECT FROM MERGE
– SELECT FROM UPDATE or DELETE
– FETCH FIRST and ORDER BY in subselect

and fullselect
– TRUNCATE SQL statement
– INTERSECT and EXCEPT
– INSTEAD OF triggers
– BIGINT, VARBINARY, BINARY, and

DECFLOAT
– LOB performance enhancements

+++

© 2009 IBM Corporation2

-6

-5

-4

-3

-2

-1

0

%
 I
m

p
ro

v
e
m

e
n
t

V8 V9 CM V9 NFM + Use

CPU

DB2 9 CPU Usage: A typical scenario
z10, z9, z890 and z990

� Moving to V9 CM
– Many performance enhancements available in CM

– Instant CPU savings

� Moving to V9 NFM and using new function
– Make database changes (such as use of large index pages)

– Make application changes (such as use of native SQL procedures)

� Perform REORGs, collect statistics, adjust DSNZPARMs
� REBIND plans/packages

© 2009 IBM Corporation3

DB2 9 Utilities Performance Improvements

Broad-based CPU reductions in utilities

20 – 30% overall reduction reported in the field

� 10 to 20% in Image Copy (even with forced CHECKPAGE YES)

� 5 to 30% in Load, REORG, REORG Partition, Rebuild Index

� 20 to 40% in Load

� 20 to 60% in Check Index

� 35% in Load Partition

� 30 to 40% in RUNSTATS Index

� 40 to 50% in REORG Index

� +++

� Improved index processing a significant contributor

– Reduced path length in index manager

– Improved index key generation

– Avoid row movement between batch and DBM1 address spaces

© 2009 IBM Corporation4

Insert/Update/Delete Performance

DB2 9 addresses several traditional problem areas for
high bandwidth INSERT/UPDATE/DELETE
workloads.

� Log latch (LC19) contention relief

� Asymmetric leaf page split

� Larger index page sizes

� Randomized index key

� Increased index look-aside

� Table space APPEND option (can ALTER on and off)

� Not logged tablespaces

• 10x reduction in LC19 waits
• Up to 2x increased logging rate
• May need to increase LOGBUFF

© 2009 IBM Corporation5

Asymmetric Index Page Split

DB2 V8

� Index split roughly 50/50 (prior to DB2 9)

� Sequential inserts � ~50% free space

DB2 9

� New algorithm dynamically accommodates
a varying pattern of inserts

� Up to 90/10 or 10/90 split

� Effective across multiple inserting threads
(due to tracking at the page level).

� Improved space utilization (i.e. less
REORGs) and reduced contention

Internal lab benchmarks indicate:

•Up to 50% reduction in IX page splits

• Up to 20% reduction in DB2 CPU

• Up to 30% reduction in DB2 ET

© 2009 IBM Corporation6

Larger Index Page Sizes

� V8 only support 4K index pages

� DB2 9 supports 8K, 16K, or 32K page

– Specified via CREATE or ALTER INDEX statement

– Lower NLEAF & NLEVELS (more keys per page)

– Up to 8 times less index split (~16x with asymmetric page splits)

� Good for heavy inserts to reduce index splits

– Especially recommended if high LC6 contention in data sharing

• 2 forced log writes per split in data sharing

– Or high LC254 contention in non data-sharing

– In data sharing, a tradeoff exists between the page splits and
potential higher index page physical lock (P-lock) contention.

� Better IX look-aside and getpage avoidance

• Up to 50% CPU & 40% ET reduction in DS

• Up to 20% CPU & 30% ET reduction in non DS

© 2009 IBM Corporation7

Index Look-aside (CM)

� DB2 optimizes the lookup of keys on the same page / nearby pages

� Minimizes the number of index getpages with substantial reduction in CPU time

� Big winner for sequential insert, update or delete patterns

In V8
INSERT – for clustering

index only

UPDATE & DELETE –

no index look-aside

In V9

INSERT, UPDATE &

DELETE – index look-

aside possible for

additional indexes where
CLUSTERRATIO >=

80%

© 2009 IBM Corporation8

2 GB

Virtual Storage Constraint Relief

SKCT/SKPT

CT/PT

Local DSC

Remaining portion of

CT/PT

Remaining portion of

Local DSC

Global DSC

DBD

SKCT/SKPT

Portion of CT/PT

Portion of local
DSC

Thread/Stack storage Thread/Stack storage

Global DSC

DBD

2GB

DBD

SKCT/SKPT

CT/PT

Local DSC

(Global DSC in

dataspace)

V7 DB2 9V8

Thread/Stack storage

© 2009 IBM Corporation9

Virtual Storage Constraint Relief (contd.)

� Each statement bound on V9 now has a below-the-bar portion

and an above-the-bar portion.

– Actual above the bar portion varies by statement, can be 5-90%

– For static statements, must REBIND plans and packages to get

this benefit

� Dynamic statements now have a larger portion above the bar

– DSC statement text moved above the bar

� Short-term optimizer working memory also above-the-bar

– Includes parse tree, scratch plans, etc.

� The EDMPOOL reduction will vary based on workload mix

� 40-60% reduction in below-the-bar EDMPOOL size observed

for lab workloads

© 2009 IBM Corporation10

DB2 9 for z/OS Performance Overview
� DB2 Subsystem Enhancements

– Synergy with hardware and O/S
– Modest CPU improvements in OLTP workloads

– Significant CPU time reduction in utilities
– High-performance INSERT / UPDATE /

DELETE
– Index “Look-aside”
– Improved virtual storage usage

� SQL Performance Enhancements
– Query Plan Stability
– DISTINCT and GROUP BY
– Dynamic Prefetch
– Improved Subquery Optimization
– Generalized sparse indexes and data-caching
– Star Join improvements
– Query Re-optimization (REOPT)
– Indexes on Expressions
– Improved statistics (RUNSTATS)
– Enhanced query parallelism

� Other Enhancements
– Native SQL procedures

© 2009 IBM Corporation11

Query Plan Stability (CM)
Safeguard against regressions

� REBIND PACKAGE …
– PLANMGMT (BASIC)
2 copies: Current and Previous
– PLANMGMT (EXTENDED)
3 copies: Current, Previous,

Original

� REBIND PACKAGE …
– SWITCH(PREVIOUS)
Switch between current &

previous
– SWITCH(ORIGINAL)
Switch between current & original

� FREE PACKAGE …
– PLANMGMTSCOPE(ALL) –

Free package completely
– PLANMGMTSCOPE(INACTI

VE) – Free old copies

� Catalog support
– SYSPACKAGE reflects active

copy
– SYSPACKDEP reflects

dependencies of all copies
– Other catalogs

(SYSPKSYSTEM, …) reflect
metadata for all copies

Preserve old static SQL access paths, Restore when needed

© 2009 IBM Corporation12

Query Plan Stability - Recommended Usage
� For DASD-constrained environments

– Use PLANMGMT(BASIC) for the first REBIND after migration to DB2 9

– For subsequently REBINDs, use PLANMGMT(OFF) <= IMPORTANT!
• Using PLANMGMT(BASIC) multiple times will destroy older V8 packages

– This mechanism will preserve DB2 V8 packages but not any older DB2 9 packages

– Use SWITCH(PREVIOUS) to restore DB2 V8 packages

� For environments without DASD constraints
– Use PLANMGMT(EXTENDED)

– Use SWITCH(ORIGINAL) to restore V8 packages

� Reclaiming DASD space
– Once your packages have reached “steady state” …

– Use FREE PACKAGE … PLANMGMTSCOPE(INACTIVE) to delete old copies

� APAR PK80375
– Supports compression of SPT01

– Field tests show 60-70% reduction in SPT01 usage

– Enabled via an online changeable ZPARM (‘COMPRESS_SPT01)

– APAR due to close in Sep 09, usermod available

© 2009 IBM Corporation13

Improved DISTINCT and GROUP BY (CM)

� Sort avoidance for DISTINCT
– A DISTINCT query can avoid sorting when using a non-unique index

/* Non-unique index exists on P_PARTNAME */
SELECT DISTINCT(P_PARTNAME) FROM PART
ORDER BY P_PARTNAME
FETCH FIRST 10 ROWS ONLY;

� Group collapsing for GROUP BY
– In V8, grouping is done after sort input processing.

– In V9, DB2 applies the group collapsing optimization for the GROUP BY query
without a column function. The result is fewer workfile getpages and less CPU.

SELECT COVGTYPE FROM COVERAGE
GROUP BY COVGTYPE

� Sort avoidance for GROUP BY
– Order of GROUP BY columns re-arranged to match index (data may be returned in

a different order)
• GROUP BY C2, C1 <= GROUP BY in C2, C1 sequence
• Index 1 (C1, C2) <= Index in C1, C2 sequence

– Relational theory states that order is NOT guaranteed without ORDER BY

© 2009 IBM Corporation14

Dynamic Prefetch Enhancements (CM)

� Aligned with new cluster ratio formula

� Seq. Pref. cannot fall back to Dyn. Pref. at run time

� Plan table may still show ‘S’ for IX + Data access

“Adaptive” – Can turn on/off“Static” – Doesn’t change

DB2 9 uses for other access pathsDB2 9 uses for tablespace scan

Prefetch forward or backwardOnly prefetch in one direction

Tracks sequential access patternRequires hit to a triggering page

Detected at runtimeChosen at bind/prepare time

Dynamic PrefetchSequential Prefetch

• ET reductions between 5-50% measured at the lab
• 10-75% reduction in synchronous I/O’s

© 2009 IBM Corporation15

Optimizing Complex Queries

Improved Subquery Optimization (CM)

� Semantically equivalent queries
– Performance could vary drastically!

� DB2 9 optimizer considers both variants

– Irrespective of how the query is written

SELECT *

FROM OUTER A
WHERE A.C1 IN

(SELECT B.C1

FROM INNER B)

SELECT *

FROM OUTER A
WHERE EXISTS

(SELECT 1

FROM INNER B

WHERE B.C1 = A.C1)

Non-Correlated Correlated

© 2009 IBM Corporation16

Improved Subquery Optimization

Scenario 1: Non-correlated � Correlated
� DB2 V8, Large Non-correlated subquery is materialized*

SELECT * FROM SMALL_RELATION A

WHERE A.C1 IN

(SELECT B.C1 FROM BIG_RELATION B)

– “BIG_RELATION” is scanned and put into workfile

– “SMALL_RELATION” is joined with the workfile

� DB2 9 may rewrite non-correlated subquery to correlated
– Much more efficient if scan / materialisation of BIG_RELATION was avoided

– Allows matching index access on BIG_RELATION

SELECT * FROM SMALL_RELATION A

WHERE EXISTS

(SELECT 1 FROM BIG_RELATION B

WHERE B.C1 = A.C1)

* Assumes subquery is
not transformed to join

© 2009 IBM Corporation17

Improved Subquery Optimization

Scenario 2: Correlated � Non-Correlated
� DB2 V8, Large outer table scanned rather than using matching

index access*

SELECT * FROM BIG_RELATION A

WHERE EXISTS

(SELECT 1 FROM SMALL_RELATION B WHERE A.C1 = B.C1)

– “BIG_RELATION” is scanned to obtain A.C1 value

– “SMALL_RELATION” gets matching index access

� DB2 9 may rewrite correlated subquery to non-correlated

SELECT * FROM BIG_RELATION A

WHERE A.C1 IN

(SELECT B.C1 FROM SMALL_RELATION B)

– “SMALL_RELATION” scanned and put in workfile

– Allows more efficient matching index access on BIG_RELATION

* Assumes subquery is
not transformed to join

© 2009 IBM Corporation18

Compensating for missing indexes

Generalized sparse indexes and IMWF (CM)
� What if DB2 doesn’t find efficient indexes to support a join?

� Query optimizer considers building-

– An “in-memory work file” (IMWF) to cache the entire inner table,
OR

– A “sparse index” atop a materialized workfile.

� Sparse index / IMWF can be built on

– Base tables

– Temporary tables

– Table expressions

– Materialized views

� Avoids the disaster “NLJ with R-scan of inner table” access path

� Previously only available for star joins

© 2009 IBM Corporation19

Compensating for missing indexes

Generalized sparse indexes and IMWF
In-memory work file
� IMWF caches the full result (not

sparse)

� Is “binary searched” to find target
location of search key

� New ZPARM MXDTCACH controls
memory use

Sparse index
� For insufficient memory (> 240K)

� First, sparse index is “binary
searched” …

� … then, a second lookup in sorted
workfile

� DB2 9 supports multi-column
sparse indexes

© 2009 IBM Corporation20

Improved Star Query Processing

� In star queries, filtering may
come from multiple dimensions

� DB2 8 relies on the presence of
multi-column indexes.

– Requires designing ahead so not

appropriate for adhoc queries

– Too many combinations lead to

too many indexes

� DB2 9 introduces new approach

– Dynamic Index ANDing

– Only requires one fact index per

dimension join column

– Adaptive algorithms avoids

runtime disasters.

SALES

PRODUCT

REGION

PERIOD

CUSTOMER

STORE

© 2009 IBM Corporation21

Index ANDing – Pre-Fact

� Pre-fact table access

–Filtering may not be (truly) known until runtime

SALES

CUSTOMER
Filtering dimensions
accessed in parallel

Join to respective fact
table indexes

Build RID lists

SALES

STORE

SALES

PRODUCT

RID
list C

RID
list S

RID
list P

8 Runtime optimizer may terminate parallel
leg(s) which provide poor filtering at runtime

© 2009 IBM Corporation22

Index ANDing – Fact and Post-Fact

� Fact table access

–Intersect filtering RID lists

–Access fact table

•From RID list

� Post fact table

–Join back to dimension tables

Remaining RID lists are
“ANDed” (intersected)

RID

list S

RID

list P

Using parallelism

RID

list

S/P

Final RID list used for parallel fact table access

© 2009 IBM Corporation23

Index on Expression

� DB2 9 supports “index on expression”

– Can turn a stage 2 predicate into indexable

SELECT *

FROM CUSTOMERS

WHERE YEAR(BIRTHDATE) = 1971

Previous FF = 1/25

Now, RUNSTATS collects
frequencies. Improved FF accuracy

CREATE INDEX ADMF001.CUSTIX3

ON ADMF001.CUSTOMERS

(YEAR(BIRTHDATE) ASC)

• Improved filtering at the IX
• Less CPU to evaluate
• Dramatic perf. improvement for matching SQL
• Trade off for updates and IX maint.

© 2009 IBM Corporation24

� RUNSTATS can now collect histogram statistics

– Think of histogram as a mechanism to support “range frequencies”

� Histograms address skews across ranges of data values

� Summarizes data distribution on an interval scale

� DB2 uses equal-depth histograms

– Each quantile has about the same number of rows

– Example - 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 is cut into 3

quantiles

3/12315103

4/124962

5/12 5411

FrequencyCardinalityHigh ValueLow ValueSeq No

Improved Optimizer Statistics

Histograms

© 2009 IBM Corporation25

Improved Optimizer Statistics

Histograms – An Example
SAP uses INTEGER (or VARCHAR) for YEAR-MONTH

• Assuming data for 2006 & 2007

– FF = (high-value – low-value) / (high2key – low2key)

– FF = (200612 – 200601) / (200711 – 200602)

– FF = 11 / 109

– 10% of rows estimated to return

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

200601 200712

Data Distribution - Even Distribution

Year/Month

WHERE YEARMONTH BETWEEN 200601 AND 200612

Data assumed as evenly

distributed between low

and high range

© 2009 IBM Corporation26

Improved Optimizer Statistics

Histograms – An Example (contd.)

Data Distribution - Histograms

0

200000

400000

600000

800000

1000000

1200000

1400000

2006 01-12 200613 -----> -----> 200700 2007 01-12

Year/Month

– Data only exists in ranges 200601-12 & 200701-12

• Collect via histograms

– 45% of rows estimated to return

No data between

200613 & 200700

WHERE YEARMONTH BETWEEN 200601 AND 200612

© 2009 IBM Corporation27

Improved Optimizer Statistics

CLUSTERRATIO and DRF (CM)
� New ZPARM, STATCLUS, in DB2 9

– Default STATCLUS = ENHANCED

– New CLUSTERRATIO formula

• Better awareness of prefetch range

• Considers forward- and backward- clustering

• More accurate value for lower cardinality indexes

– New statistic, DATAREPEATFACTOR

• Differentiates density and sequential

� Recommend RUNSTATS before mass REBIND in DB2 9

Dense (and sequential) Sequential (not dense)

© 2009 IBM Corporation28

REOPT(AUTO) for Dynamic SQL (CM)
� Question: How many rows are returned by this query?

SELECT *
FROM PEOPLE_IN_THIS_ROOM
WHERE AGE BETWEEN ? and ?

� Host variable and parameter markers affect query optimization!
– Many “good” access paths may exist for the same query

• AGE BETWEEN 21 and 100 Tablespace scan
• AGE BETWEEN 0 and 21 Index scan

– When data is skewed, knowing values at BIND/PREPARE becomes important
– Without the values, the optimizer takes a guess
– Query reoptimization (REOPT) comes to the rescue

� V8 REOPT options
– Dynamic SQL

• REOPT(NONE, ONCE, ALWAYS)

– Static SQL
• REOPT(NONE, ALWAYS)

� DB2 9 Addition for Dynamic SQL
– Bind option REOPT(AUTO)

© 2009 IBM Corporation29

REOPT(AUTO) for Dynamic SQL (contd.)

� For dynamic SQL with parameter markers

– DB2 will automatically re-optimize the SQL when

• Filtering of one or more of the predicates changes dramatically

– Such that table join sequence or index selection may change

• Some statistics cached to improve performance of runtime
check

– Newly generated access path will replace the global
statement cache copy.

� First optimization is the same as REOPT(ONCE)

– Followed by analysis of the values supplied at each
execution of the statement

© 2009 IBM Corporation30

Query Parallelism Enhancements

SELECT … FROM PART, SUPPLIER WHERE …

� V8 parallelizes the “cheapest” serial plan

– E.g., PART nested-loop-join SUPPLIER

– This cheapest serial plan may result in a very poor parallel plan

� DB2 parallelizes many “good” serial plans

– E.g.,

• PART nested-loop-join SUPPLIER,

• SUPPLIER nested-loop-join PART, …

– Lowest cost parallel plan is chosen

� The end result?

– More opportunities for parallel access paths

– Increased zIIP offload

© 2009 IBM Corporation31

Query Parallelism Enhancements (contd.)

� Query parallelism is all about divide and conquer

� DEGREE determines the extent of division (or “cutting”)

� In V8

– Division happens on the leading table

– Star queries an an exception (fact table is divided)

� In DB2 9

– Division can happen on non-leading table

• A leading workfile or 1-row table cannot be divided

• In such cases, inner table could provide a better division of work

– Histogram statistics exploited for more even division

– CPU bound query DEGREE can be <= # of CPUs * 4

� Again, increased parallelism results in greater zIIP offload

© 2009 IBM Corporation32

Native SQL Procedures
� Eliminates generated C code and compilation

� Fully integrated into the DB2 engine

� Extensive support for versioning

� Allow nested compound statements within a procedure

Appl pgm

CALL SP1

Appl pgm

CALL SP1

DB2

DBM1

EDM pool

DDF

DB2

directory

SQL PL native logic

SQL

SQL

SP1

SQL PL native logic

SQL

SQL

SP1

zIIP

Enabled

for DRDA

© 2009 IBM Corporation33

Summary
� DB2 Subsystem Enhancements

– Synergy with hardware and O/S
– Modest CPU improvements in OLTP workloads

– Significant CPU time reduction in utilities
– High-performance INSERT / UPDATE /

DELETE
– Index “Look-aside”
– Improved virtual storage usage

� SQL Performance Enhancements
– Query Plan Stability
– DISTINCT and GROUP BY
– Dynamic Prefetch
– Improved Subquery Optimization
– Generalized sparse indexes and data-caching
– Star Join improvements
– Query Re-optimization (REOPT)
– Indexes on Expressions
– Improved statistics (RUNSTATS)
– Enhanced query parallelism

� Other Enhancements
– Native SQL procedures

© 2009 IBM Corporation34

Reference
� Main DB2 for z/OS page

– http://www.ibm.com/software/data/db2/zos/index.html

� DB2 for z/OS 9
– http://www.ibm.com/software/data/db2/zos/db2zosv91.html

– DB2 9 Performance Monitoring and Tuning Guide

� Redbooks at www.redbooks.ibm.com
– DB2 9 for z/OS Technical Overview SG24-7330
– DB2 9 for z/OS Performance Topics SG24-7473

� Other useful links
– E-support (presentations and papers) at

www.ibm.com/software/db2zos/support.html
– Presentations

ftp://ftp.software.ibm.com/software/data/db2/zos/presentations/

© 2009 IBM Corporation35

Backup Slides

© 2009 IBM Corporation36

Index Compression (NFM)

Recommended when indexes take lot more space than
compressed data.

Difference between data and index compression

25 - 75%10 - 90%‘Typical’ Comp Ratio CR

NoYesComp Dictionary

NoYesComp in BP and Log

YesYesComp in DASD

PageRowLevel of compression

Index Data

Use DSN1COMP utility to predict index compression ratio.

• Always stored as 4k page on disk

• Best with high BP hit ratio

© 2009 IBM Corporation37

Randomized Index Key (NFM)

� Can provide dramatic improvement or degradation!

� Recommend making randomized indexes bufferpool resident
� Can be any one or more columns of an IX key

� Cannot support order

� Lock contention relief

� LC 6 relief

� Additional getpages

� Additional read/write I/Os

� Increased lock requests

Vs.

© 2009 IBM Corporation38

Query Plan Stability - BASIC support

Current copy

previous copy

Incoming copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

current copy

previous copy

move

delete

move
move

Chart is to be read from bottom to top

© 2009 IBM Corporation39

Query Plan Stability - EXTENDED support

REBIND … PLANMGMT(EXTENDED) REBIND … SWITCH(ORIGINAL)

current copy

previous copy

move

delete

Incoming copy

original copy

clone
current copy

previous copy

original copy

move

clone

delete

