
151

®

IMS Version 12

151

IMS Repository – Part 2
Commands, Usage and Management

®

IMS Version 12

Now that we understand the repository infrastructure and required setup, we now move to part 2 of the IMS repository
session, which focuses on how to use the repository in your business operations.

152

IMS Version 12

152

Topics

 IMS repository commands

– IMS and RM IMSplex commands issued from SPOC

– Batch ADMIN commands

– Repository Server commands issued through z/OS modify interface

 Comparison of DRD use with RDDS versus repository

 Using DRD with the IMS repository in an online environment

 Managing the IMS repository in an offline batch environment

 Migration to repository

 Security considerations

 DRD user interface enhancements

 IVP enhancements for repository

 Summary

 Appendix

153

IMS Version 12

153

IMS Repository Commands

154

IMS Version 12

154

IMS and RM IMSplex
Commands Issued from SPOC

This section describes the new and enhanced commands in IMS 12 that apply to repository DRD. These commands are
“IMSplex” commands, which are also known as type-2 commands, which can be issued to one or more IMS systems in
an IMSplex through an Operations Manager (OM) interface. We will cover when it is appropriate to issue each
command, describe how they are useful in different scenarios and show syntax for reference.

155

IMS Version 12

155

New RM Commands

 UPDATE RM

– Dynamically enables/disables repository usage for the RM address space

• Make CSLRIxxx changes first if enabling usage

– Dynamically changes the audit level setting and overrides the
AUDIT_DEFAULT originally set in FRPCFG member

• Optionally audit security failures or member update, read and system read
attempts

 QUERY RM

– Determines whether or not RM is enabled for repository usage

– Shows RM status of connection to repository

– Shows information about repositories being managed by RM such as audit
access level

Use the new UPDATE RM command to dynamically enable the RM address space to use the repository, or change the
audit access level that was originally specified in the FRPCFG member.

Notice that the command must be issued with TYPE(REPO) and REPOTYPE(IMSRSC) to indicate that a repository
resource type and an “IMSRSC” type of repository is being updated. These are the only valid values for these
parameters.

To dynamically enable RM for repository usage, specify SET(REPO(Y)) and command processing will reread and re-
process the REPOSITORY section within the CSLRIxxx member. This is why it is important to add repository definitions
to the CSLRIxxx member before issuing this command. Also during command processing, RM registers to the
Repository Server (RS) if RM is not already registered. RM connects to the repository name specified in the
REPOSITORY section of the CSLRIxxx member. If the command is successful at the command master RM, the
command master RM communicates the changes to other active RMs in the IMSplex. All RMs in the IMSplex will have
the same repository settings. If RM is defined to use the resource structure, the command master RM will update the
resource structure with the repository name and repository type that it is connected to. Subsequent RMs that are
restarted after the change will ensure that they are connected to the same repository name and repository type as read
from the resource structure.

On the other hand, if RM repository usage is already enabled, you can dynamically disable it by specifying
SET(REPO(N)). The CSLRIxxx member is not reread/re-processed in this case like it is when SET(REPO(Y)) is
specified. Therefore, as part of the repository disabling process, you can remove the repository definitions from
CSLRIxxx either before or after UPDATE RM is issued with SET(REPO(N)). Note that if the repository definitions
specified on the REPOSITORY= statement are still present in CSLRIxxx, any RMs that start after the UPDATE
RM … SET(REPO(N)) command is issued will re-connect to the repository during the RM startup.

The AUDITACCESS() parameter allows you to dynamically change the audit level settings and override what was
originally specified on the AUDIT_DEFAULT parameter in the FRPCFG member.

156

IMS Version 12

156

UPDATE IMS Command Enhancements

 Dynamically enables IMS to use the repository

– RM must be repository-enabled

– DFSDFxxx must contain valid repository definitions

 Dynamically disables automatic export

– Take this step after migration to repository, otherwise system RDDS will
continue to be updated at system checkpoint

Dynamically enable an IMS system to use the repository by issuing the UPDATE IMS command, or use it to disable the
automatic export capability (covered on next slide). Note that before you issue this command to dynamically enable
IMS for repository usage, you must add repository definitions to the DFSDFxxx member and RM must already
be repository-enabled.

157

IMS Version 12

157

QUERY IMS Command Enhancements

 Determines whether IMS is enabled for

– Repository usage

– Automatic export

 Displays repository attributes

To determine whether an IMS system is enabled for repository usage, issue the QUERY IMS command. You can also
use this command to determine whether automatic export is enabled for an IMS system. These enhancements were
added to existing QUERY IMS functionality – essentially, to display the information about the possible actions that were
added with the UPDATE IMS command (dynamically enabling repository usage and/or automatic export).

158

IMS Version 12

158

How Do I Know If Repository is Currently Enabled?

 Issue QUERY RM command to determine if RM is enabled for
repository usage

 Issue QUERY IMS command to determine if IMS is enabled for
repository usage

– Ad hoc or after an UPDATE RM or UPDATE IMS command is issued to
enable repository usage

The RM address space and IMS need to separately be enabled to use the repository, which we will discuss later in the
“Migration to Repository” section. However, since we just introduced the commands it is worth mentioning here that the
QUERY RM and QUERY IMS commands can each be issued to determine whether RM and IMS are repository-enabled
(respectively). For example, after an UPDATE RM or UPDATE IMS command is issued to enable repository usage –
you can confirm that the repository is now enabled with the QUERY commands. But of course, if RM or IMS was not
able to be enabled for repository usage for some reason, you would see this in a non-zero UPDATE command
completion code.

Information besides whether repository usage is enabled is also displayed in the QUERY command output, as we just
discussed.

159

IMS Version 12

159

IMS Resource Lists

 Each IMS can have its own unique set of resource definitions

– Resources that the IMS is capable of processing are contained in an IMS
resource list, which has all resource names and types defined in it

 Repository can contain one or more IMS resource lists (one for each
IMS that is using the repository)

 Resources in an IMS resource list can have unique attribute values
among different IMS systems

 Several commands can work with resource definitions that are specific
to a particular IMS system

– QUERY

– EXPORT

– DELETE DEFN

– IMPORT

In understanding the IMS repository, an important concept to grasp is that of the IMS resource list. For each repository-
enabled IMS, a IMS resource list exists for it within the repository. This list contains the resources that the IMS is
capable of processing, specifically, the names and resource types. The resources that exist within each of these lists
can have attribute values that differ from one another per IMS system. There are several IMS type-2 commands that
work with the stored definitions associated with these resources, which we will now discuss…

160

IMS Version 12

160

QUERY Command Enhancements

 Now displays:

– Stored IMS resource definitions in the repository

– Runtime IMS-specific resource definitions

– The IMS systems that have the specified resources defined

The QUERY command has been enhanced to display IMS resource/descriptor definitions (names and attribute values)
in the repository and also at each IMS system. In addition, QUERY can now display specific IMSIDs that have the
resource names included in the command. Note that this slide only shows the enhancement made to the QUERY
command, not the full possible syntax for the command.

161

IMS Version 12

161

EXPORT Command Enhancements

 Hardens runtime resource adds/changes to repository for one or more
IMS systems (active or inactive)

– Can export resources changed within a specified timeframe, or only those
have changed since last EXPORT, or resources that you specify explicitly

 Populates an empty repository for the first time, discussed later

Issue the EXPORT command when resources and/or descriptors have been either created or updated, and they need to
be hardened to the repository. If hardening changes to offline stored definitions is part of your change management
process, use the EXPORT command when definitional changes occur or at regular intervals during operations.

The EXPORT command is processed by a single command master IMS (the benefits of this are discussed in a few
slides) and will write valid specified resources/descriptors to the repository.

The EXPORT command can also use data included in QUERY command output. If QUERY is issued with the
OPTION(TIMESTAMP) parameter included, you can determine the exact time that a resource was created or updated
(see the TimeCreate and TimeUpdate column header output). You are then able to use those timestamp values for the
EXPORT STARTTIME() and/or ENDTIME() parameters. The STARTTIME() and ENDTIME() parameters can be as
specific as tenths and hundredths of a second, and matches the timestamp granularity displayed in QUERY
SHOW(TIMESTAMP) command output, so copying the exact values is facilitated in this way. Note that the
STARTTIME() and ENDTIME() parameters are optional.

162

IMS Version 12

162

EXPORT Command Considerations

 All resource definitions are exported as a single unit of work

– Export will fail if one resource is in error and no other resources will be
exported

 Processed by one command master IMS

– Writing to one shared repository is beneficial because EXPORT will succeed
for all specified IMSs or none

– Different than RDDS DRD, where EXPORT can be processed by multiple
IMS systems, possibly succeeding on some and failing on others

 Certain resources/descriptors cannot be exported

– System-defined descriptors

– HALDB partitions

The EXPORT command writes all of the definitions to the repository as a single unit of work, as is the case with RDDS
DRD. So in either case, the export will fail if one resource is in error, and no other resources will be exported. The
difference between these two DRD types is that when exporting to the repository, only one command master IMS
processes the command. This command master IMS creates/updates the definitions contained in each IMS resource list
specified on SET(IMSID()). With RDDS DRD, each IMS that receives the command will process it. In this case, the
command could succeed on some systems and fail on others.

In some cases, resources/descriptors cannot be exported -- such as when they are IMS system-defined descriptors,
HALDB partitions, or invalid. Validation is done by RM before export occurs.

163

IMS Version 12

163

EXPORT Command Considerations

 In a cloned environment, use EXPORT with SET(IMSID(*)) so all IMS
resources lists will be updated

– IMS resource list(s) must exist in repository when using SET(IMSID(*)) -- if
first time exporting to repository, must specify individual IMSID(s)

 In a non-cloned environment, issue EXPORT with no SET(IMSID())
parameter at each IMS, so default IMSID of the IMS command master
is taken

– Route command to individual IMS systems without changing syntax

 For best performance, only export updated resources to minimize
unnecessary resource access within repository

– If updated resource/descriptor names are unknown, use:

• OPTION(CHANGESONLY) to export only the resources/descriptors that
have been created or modified since the last export

• STARTTIME() to only export resources that have changed or created since
a specific time

The EXPORT command should be used in different ways depending on whether you have a cloned or non-cloned IMS
environment. Specifically, in a cloned environment it is recommended to always specify the SET(IMSID())
parameter on the EXPORT command with an ‘*’ to ensure that all IMS resource lists are exported to. This will keep the
definitions contained in each of the cloned IMS’s resource lists consistent with one another. Keep in mind that if the
repository is empty, you must specify one or more individual IMSIDs on the EXPORT command to first create the IMS
resource list(s). These IMS resource list(s) can later be updated with EXPORT … SET(IMSID(*)).

On the other hand, in a non-cloned environment the IMS systems may have differing attribute values for their
resources and therefore it is recommended to omit the SET(IMSID()) parameter so that each IMS resource list can
be updated one at a time, separately and the IMS-specific attribute values can be maintained. When omitting the
SET(IMSID()) parameter, remember to route the command to the correct IMS. Since there is no IMS-specific
information in the command syntax, you can easily re-issue this command without modifying the command itself.

For best performance, export only the resources and descriptors that have been changed since they were last hardened
to the repository with an EXPORT command. You can more easily pinpoint the changed resource/descriptors by
including OPTION(CHANGESONLY). Another method of minimizing the total number of resources/descriptors to be
exporting is including the STARTTIME() parameter to target only those that have been created or updated after the
specified time.

164

IMS Version 12

164

New DELETE DEFN Command

 Deletes stored resource definitions from the repository

 Use this command to harden runtime definition deletes to the repository

– Runtime definitions are deleted with the DELETE command

– Stored definitions are deleted with the DELETE DEFN command

Issue the DELETE DEFN command to delete stored resource definitions from one or more IMS resource lists contained
in the repository. If runtime resource definitions have been deleted from an online IMS system with the DELETE
command, these deletes can be hardened to the repository with the DELETE DEFN command. In this situation, take
care to specify the same resources or descriptors in this command whose runtime definitions were deleted from the
online system. Note that only one resource or descriptor type can be specified and therefore, the command may need to
be issued multiple times if multiple resource/descriptor types were deleted from the online system.

165

IMS Version 12

165

IMPORT Command Enhancements

 Reads resource/descriptor stored resource definitions from the
repository into IMS, where they become runtime resource definitions

 Use this command to percolate definitional changes made to the offline
repository to 1+ running IMS systems, for example:

– Coldstart an IMS with no resources defined, issue IMPORT to read in its
definitions

– Make changes to repository then roll them out to 1+ running IMS systems

 Can now replace an existing runtime resource definition with a stored
resource definition that exists in the repository (or RDDS)

• Work in progress cannot exist for the resource that IMPORT is attempting
to update

The IMPORT command reads stored definitions that exist in the repository into running IMS systems. This command
can be used if an IMS is coldstarted with no resources defined to populate the control region with runtime resource
definitions. Or if changes were made to the repository offline and you’d like to roll the changes to the systems in
IMSplex, the IMPORT command can be used to accomplish this. An example of when this scenario is when the “RDDS
to Repository”, or CSLURP10 utility (introduced in part one of this session) is used to populate a repository with
definitions, which haven’t been read into any IMS system yet.

Make sure that SOURCE(REPO) is specified, so the repository is the data set that is read, and indicate which resources
should be imported using the other parameters shown on this slide.

166

IMS Version 12

166

New Type-2 Command RACF (or SAF equivalent)
Definitions for OM

IMS.CSLplxname.DEL.DEFNUPDATEDEFNDELETE

IMS.CSLplxname.QRY.RMREADRMQUERY

UPDATE

RACF Access
Auth

RM

Resource
Keyword

IMS.CSLplxname.UPD.RMUPDATE

Resource NameCommand

 Note: the IMSplex name must begin with the characters CSL

 Define in RACF OPERCMDS class

If you want to restrict access to the new type-2 Repository DRD commands, use the resource name format shown here
when defining the resource profiles to RACF (or another SAF interface). If you use RACF, the OPERCMDS class is
used to contain resource profiles representing the commands. Note the resource names associated with the new
DELETE DEFN, QUERY RM, and UPDATE RM commands that would need to be added to the RACF OPERCMDS
class to prevent unauthorized access. The required RACF permissions are also shown, and note that the IMSplex name
must begin with the characters “CSL”.

167

IMS Version 12

167

Batch ADMIN Commands

Batch ADMIN commands are available to manage user repositories. The user repository data sets must be defined
before the repository is started. The commands provide ability to add a repository, list repository details like status, data
set names, start and stop repository for operations, rename or delete a repository, update repository-specific attributes
or change the disposition of a repository’s data sets. As we will discuss in this section, user repositories are defined to
the Repository Server catalog repository (hereafter referred to as “RS catalog repository”) using the batch ADMIN ADD
command, and are started with the batch ADMIN START command.

Batch ADMIN commands focus on managing the individual user repository, whereas in the next section we will discuss
z/OS modify interface commands that have similar function, but that are geared toward managing the Repository
Server.

168

IMS Version 12

168

Repository Server Batch ADMIN Utility

 Invoked via JCL statements with FRPBATCH

 Enables repository administration

 Commands issued from utility

Rename an existing user repository in the RS catalog repositoryRENAME

Update user repository definition in the RS catalog repositoryUPDATE

Request the Repository Server to stop a user repositorySTOP

Request the Repository Server to start a user repositorySTART

Add a user repository to the Repository Server catalogADD

List status information for all user repositories or detailed
information for a single user repository

LIST

Change data set dispositionDSCHANGE

Remove a user repository from the RS catalog repositoryDELETE

FunctionCommand

Batch ADMIN commands are available by invoking the FRPBATCH utility with JCL statements. This slide summarizes
the batch ADMIN commands that are available for managing a user repository.

169

IMS Version 12

169

 Defines a newly allocated repository data set to the RS catalog
repository

– Use during initial repository setup after allocating repository data sets

– Specifies primary, secondary, and (optional) spare repository data set names

 Determines whether or not the repository data sets will be opened
automatically when the repository is started

 Defines security class to be used to restrict access to the repository
(optional)

ADD Command

To define a user repository to the RS catalog repository, use the batch ADMIN ADD command using the syntax shown
on this slide. Here, you must specify the user repository name as well as the names of the user repository
primary/secondary index and member data sets. Note that the user repository name will be converted to upper-case if it
is specified with anything else.

170

IMS Version 12

170

UPDATE Command

 Updates attributes of either the primary, secondary, or spare
repository data set:

– Auto-open feature (whether the repository data sets are opened when
repository is started)

– Security class being used to restrict repository access

 Repository must be stopped before it can be updated

Use the Batch ADMIN UPDATE command to modify a user repository definition within the RS catalog repository

datasets (specifically, to change the data sets, auto-open option or security class associated with a specific
repository). The only required parameter for this command is the REPOSITORY parameter. The parameters associated
with this command have the same meaning as they do when issued with the batch ADMIN ADD command.

Note that a user repository must be stopped before it can be updated. We will cover how to stop a repository later in the
session.

171

IMS Version 12

171

RENAME Command

 Changes the name of a repository

Use the batch ADMIN RENAME command to rename a user repository name defined within the RS catalog repository.

172

IMS Version 12

172

 Removes a repository from the RS catalog repository
– Physical data sets are not deleted (use the z/OS Access Method Services

(IDCAMS) utility or a similar method)

DELETE Command

Use the batch ADMIN DELETE command to remove a user repository from the RS catalog repository. Note that once
you have deleted the user repository, you must delete its associated physical data sets in a separate step using the
IDCAMS utility or similar method.

173

IMS Version 12

173

 Changes a repository data set’s disposition to one of two possibilities:

– DISCARD

– SPARE

 Use this command after a primary or secondary repository data set fails
as part of recovery process

– If spare defined:

• RS will drive recovery and replace the failed data set with the spare, leaving
user with two RDSs: the primary and secondary (one of which the spare
just replaced)

• User must then allocate a new spare RDS and assign the ‘SPARE’
disposition to it

– If no spare defined:

• Failed RDS is automatically stopped and user must manually assign a
‘DISCARD’ disposition to it

• User must then allocate a new RDS pair, then start the repository

DSCHANGE Command

There are certain times when it is appropriate to change the disposition of a repository data set (RDS) to either SPARE
or DISCARD, which can be done using the batch ADMIN DSCHANGE command.

If an error occurs on the primary or secondary repository data set (RDS), recovery is driven by the Repository Server
automatically if a spare RDS is present. Once this occurs, the user must then allocate and define a new RDS to replace
the one that had the failure. This new RDS should be designated as the spare RDS, which can be done using the batch
ADMIN DSCHANGE command with ACTION(SPARE) specified. This will change the disposition of a repository data set
pair (RDS) to SPARE. More detail about recovery in the event of an RDS error will be covered later in the
session.

If you want to replace an existing RDS with a different RDS, you must first stop the repository and change the
disposition/status of the RDS to DISCARD. This can be done by issuing the batch ADMIN DSCHANGE command with
ACTION(DISCARD) specified. Once an RDS has a disposition of DISCARD, it can be replaced with a newly defined
data set.

174

IMS Version 12

174

LIST Command

 Display details associated with a single repository or all repositories that
are defined to the RS catalog repository:

– Repository name

– Repository status

– Date of last update

– USERID that last updated user repository

Use the batch ADMIN LIST command to display the details of a single repository, including its status, or display all user
repository names. The information that will be shown if a user repository is specified for the REPOSITORY parameter is
listed on this slide. Note that you can also issue the command as just LIST STATUS (without specifying the
REPOSITORY parameter) to see only a list of user repository names defined to the RS catalog repository.

175

IMS Version 12

175

START Command

 Use this command to start a repository after defining it to the
RS catalog repository with ADD command

Use the batch ADMIN START command to start a specific user repository, for example after it has been defined to the
RS catalog repository with the batch ADMIN ADD command. Note that with the optional OPEN() parameter, you can
override the AUTOOPEN= parameter value that was originally specified when the repository was added to or last
updated in the RS catalog repository (with batch ADMIN ADD or UPDATE commands, respectively). This parameter
value indicates whether the user repository’s RDSs will be open when it is started (with OPEN(YES)), or when a user
first connects to it (with OPEN(NO)). Note that you can only override the AUTOOPEN= parameter if it was
originally specified as AUTOOPEN=NO.

You can optionally include the MAXWAIT parameter to indicate how many seconds should elapse before a particular
action that you also specify is taken. You can specify a wait time of up to 9999 seconds and opt to have the command
continue processing with a return code of either 0 or 4, or opt to have it terminate with a return code of 8. By default, if 5
seconds has elapsed once this command has been issued, the command will continue processing and will give a return
code of 4. The specific parameter values for the MAXWAIT() syntax are shown on this slide.

176

IMS Version 12

176

STOP Command

 Use this command in preparation for updating user
repository definitions within a RS catalog repository with
UPDATE command

– A stopped repository rejects connection attempts and is
deallocated/closed by the Repository Server

Use the batch ADMIN STOP command to stop a specific user repository that is defined to the RS catalog repository. A
stopped repository will reject user connection attempts. The command also results in the repository being closed and
deallocated by the Repository Server. Note that this command has the same MAXWAIT() parameter value as the batch
ADMIN START command.

Much like a /DBR command that prevents programs and transactions from accessing a database, the batch ADMIN
STOP command, when issued with MAXWAIT(xx,IGNORE or CONTINUE), can continue processing after xx seconds
have elapsed. At this point, the command continues processing (just like the /DBR command) and a specific return code
is received, determined by whether IGNORE (rc=0) or CONTINUE (rc=4) was specified. Of course, if ABORT was
specified instead of IGNORE or CONTINUE, the command would terminate processing and a rc=8 would be received
when xx seconds has elapsed.

177

IMS Version 12

177

z/OS Modify Interface Commands

Repository Server parameters are able to be displayed and dynamically updated via z/OS modify interface commands.

178

IMS Version 12

178

Repository Server z/OS Modify Interface Commands

 Enables repository administration

 Commands issued from z/OS console

 See Appendix for command syntax and more detailed description

Administrative functions – change repository data set
disposition, display repository data set attributes,
start/stop repositories

ADMIN

Stop/shutdown specific repository serverSTOP

Shutdown one or more repository server address spacesSHUTDOWN

Refresh RACF profile definitionsSECURITY

Dynamically change audit level originally specified in
FRPCFG member

AUDIT

FunctionCommand

This slide summarizes the different z/OS modify interface commands that available to administer the user repositories
from a Repository Server perspective.

179

IMS Version 12

179

Batch ADMIN and z/OS Modify Interface Commands

AUDIT (change audit level)

SECURITY (refresh in-storage profiles)

SHUTDOWN

UPDATE

ADMIN DSCHANGEDSCHANGE

DELETE

RENAME

ADD

STOP (stops Repository Server)

ADMIN STOP (repository, not Repository Server)STOP

ADMIN STARTSTART

ADMIN DISPLAYLIST

Repository Server z/OS Modify InterfaceBatch ADMIN

This slide displays all batch ADMIN commands and Repository Server commands and if applicable, their equivalents.

180

IMS Version 12

180

Comparison of DRD Use with the RDDS
Versus the Repository

Let’s now compare RDDS DRD with repository DRD and examine their similarities and differences.

181

IMS Version 12

181

Deleting Resources – RDDS Versus Repository DRD

 RDDS DRD deleting

– To delete a resource, issue a DELETE command at each IMS system that
contains the runtime resource definition

• Example: DELETE TRAN NAME(TRANA)
– Automatic export will occur at system checkpoint and remove the deleted

resource from the system RDDS

– EXPORT with OPTION(OVERWRITE) can be issued at an IMS that deletes
were performed on, to remove the deleted resource from the system/non-
system RDDS

• Example: EXPORT DEFN TARGET(RDDS) … OPTION(OVERWRITE)

 Repository DRD deleting

– To delete a resource, issue a DELETE command at each IMS system that
contains the runtime resource definition (same as RDDS DRD)

– Issue a DELETE DEFN command to remove the deleted resource from
repository, specifying FOR(IMSID()) to indicate which IMS systems that the
deletes were performed on

– EXPORT command cannot harden deleted resources to repository

To delete a resource with RDDS DRD, the runtime definition is deleted with a DELETE command. This deletion is
hardened to the IMS’s system RDDS at system checkpoint via automatic export (if it is enabled) or with an EXPORT
command including OPTION(OVERWRITE). The resource is then removed from the system RDDS’s stored resource
definitions. With repository DRD, the runtime resource definition is also deleted with the DELETE command, just like
with RDDS DRD. However, since automatic export is not supported with repository DRD and the EXPORT command
cannot be used to harden deletions to the repository, a different step needs to be taken to accomplish this. The DELETE
DEFN command must be used to remove stored resource definitions from the IMS resource list associated with the
runtime resource deletions that occurred in the running system.

182

IMS Version 12

182

Importing Resources – RDDS Versus Repository DRD

 RDDS DRD importing

– IMPORT DEFN SOURCE(RDDS) is processed at each IMS it is routed to,
and each IMS reads in definitions from the specified RDDS data set

 Repository DRD importing

– IMPORT DEFN SOURCE(REPO) is processed at each IMS it is routed to,
and each system reads in stored definitions from its IMS resource list within
the shared repository

– SCOPE(ALL) new parameter for IMPORT only applies to repository DRD

• Recommendation: if specifying routing -- route to all IMSs in IMSplex when
including this parameter value (route will supersede SCOPE(ALL))

 Both RDDS DRD and repository DRD can create new and update
existing runtime resource definitions using an IMPORT command…

When you issue an IMPORT command in an RDDS DRD environment, each IMS system that receives the command
will read the stored resource definitions from the specified RDDS into the control region where they become runtime
resource definitions.

With repository DRD, each IMS that receives the IMPORT command will read the stored resources definitions from its
respective IMS resource list contained in the repository into the control region. Also with repository DRD you can use
the SCOPE() parameter to specify whether the IMPORT command should be applied to only active IMS systems, or to
both active and inactive IMS systems. This was covered earlier in the session when the IMPORT command
enhancements were being discussed.

183

IMS Version 12

183

Updating Resources with IMPORT Command

 New enhancement in IMS 12

 Applies to both RDDS DRD and repository DRD

 New OPTION(UPDATE) parameter value

– Allows existing runtime resource definitions to be updated via IMPORT
command

– If resource does not exist, it will be created as a runtime resource definition in
the IMS system

As mentioned previously, the IMPORT command can now be used to refresh runtime resource definitions in an IMS
system with stored resource definitions contained in an RDDS or repository. This action is taken when the IMPORT
command is issued with OPTION(UPDATE) included. If the resource doesn’t exist as a runtime definition, the stored
resource definition will be created in the running system.

184

IMS Version 12

184

IMPORT Command with UPDATE Option

 Imports resource and descriptor definitions from an RDDS or
repository

 UPDATE applies to all definitions affected by IMPORT command

 Resource definitions can be created or updated with the IMPORT
command using OPTION(UPDATE)

 Now for an example scenario…

Runtime definition createdYesNo

Runtime definition updatedYesYes

IMPORT DEFN failsNoYes

Runtime definition createdNoNo

IMPORT DEFN ResultOPTION(UPDATE)
Specified?

Existing Runtime
Definition Exists?

The IMPORT command imports resource and descriptor definitions from an RDDS or user repository.
If the UPDATE option is specified it applies to all of the resources/descriptors being imported.

The table shown on this slide summarizes the following scenarios:

If the imported definition is for a resource or descriptor that is unknown to IMS, IMS creates the
runtime definition for the resource, whether or not OPTION(UPDATE) is specified.

If the imported definition is for a resource or descriptor for which IMS already has a runtime definition
(the resource or descriptor already exists in IMS) and OPTION(UPDATE) is not specified, the
definition is not imported and the command fails.

If the imported definition is for a resource or descriptor for which IMS already has a runtime definition
and OPTION(UPDATE) is specified, the existing runtime definition is updated with the attributes from
the imported definition.

185

IMS Version 12

185

 Example scenario

– An IMS application program exists on a test IMS (IMST) and on a development IMS (IMSD) that are
in the same IMSplex

– Changes are made to this application program, requiring new/changed resource definitions on both
IMS systems

– Testing required on test IMS system before definitions are ported to development IMS

– On test IMS system, IMST:

• Dynamically add new resources with DRD CREATE
• Dynamically update existing resources with DRD UPDATE
• EXPORT these new/updated runtime resource definitions to update IMST’s IMS resource list

and stored resource definitions in repository
– EXPORT DEFN TARGET(REPO) NAME(rsc-names) SET(IMSID(IMST)), route command to IMST

– Complete successful testing on IMST

– Port definitions to development IMS, IMSD:

• EXPORT IMST’s updated runtime resource definitions to update IMSD’s IMS resource list and
stored resource definitions in repository

– EXPORT DEFN TARGET(REPO) NAME(rsc-names) SET(IMSID(IMSD)), route command to IMST

• Update IMSD’s runtime resource definitions
– IMPORT DEFN SOURCE(REPO) NAME(rsc-names) OPTION(UPDATE), route command to IMSD

• New runtime resource definitions are added to development IMS
• Existing runtime resource definitions are updated in development IMS

Updating Resources with IMPORT Command

Let’s take a look at how the IMPORT command can be useful when issued with the UPDATE option
specified. The example scenario outlined on this slide illustrates the flexibility of the command in that
it can create or update runtime resource definitions depending on whether a runtime definition exists
for a resource being imported or not. In the example, we assume that a repository is being used
instead of an RDDS.

We begin by dynamically creating new and updating existing runtime resource definitions on IMST
with CREATE and UPDATE commands. We then capture these definitions and harden them to the
repository with an EXPORT command.

Next, all testing occurs on IMST and when successful, we are ready to port the definitions to IMSD.

We first update IMSD’s repository information by issuing an EXPORT command and routing it to
IMST. Remember, the resource changes were made on IMST so we must route the command to that
IMS system to capture the changes, but have it reflected in IMSD’s repository information.
Specifically, IMSD’s IMS resource list is updated to include the new definitions and its stored
definitions are updated with the updated resource definitions, which all occurred in the runtime
environment for IMST.

Now we are ready to import these new/changed resources to IMSD runtime environment, so we
issue an IMPORT command with OPTION(UPDATE). The resources are read into IMSD where they
become runtime resource definitions, and are created if they don’t yet exist or are updated if they do.

As you can see, the EXPORT command hardens runtime resource definitional changes to the
repository. This can be useful in ensuring that a user repository is not empty, so that when an IMS
coldstarts, it will have definitions to read in via automatic import.

186

IMS Version 12

186

Considerations for IMPORT with OPTION(UPDATE)

 When updating an existing runtime resource definition, the resource
cannot be in use or the IMPORT will fail

– Example: access to database must be stopped before database definition is
updated

• UPD DB NAME(xxx) STOP(ACCESS)
• /DBR DB xxx
• This applies to changing the resident value and to changing the access

type

 Recommendations

– Review stored resource definitions to determine if IMPORT would result in
updating (versus creating) runtime definition

• RDDS Extraction Utility (DFSURDD0) can be used to display definitions
stored in RDDS

• QUERY with SHOW(DEFN) can be used to display definitions stored in
repository

– Ensure runtime resources to be updated are not in use

• Use the SHOW(WORK) filter on the QUERY command to determine if the
resources to be updated are in use

When using the IMPORT command with the UPDATE option, a runtime definition is created if one does
not already exist and an existing runtime definition is updated with the new attributes.

When updating an existing runtime resource definition, the resource cannot be in use or the IMPORT
will fail. If a database definition is to be updated by the IMPORT command, access to the database
must be stopped before the import is done. This applies to changing the resident value and to changing the
access type. When updating the resident value with the UPDATE DB command, you must stop access to the
database before you issue the command. You do not, however, have to stop access to the database when
using the UPDATE DB command to update the access type. With the IMPORT command you must always
stop access to the database before a database definition is to be updated, even if the import is just updating the
access type.

187

IMS Version 12

187

 Performance

– When the IMPORT command is specified with the UPDATE option,
existing resources affected by the update are quiesced

• e.g. Updating a tran quiesces tran and associated program

• Resource cannot be scheduled

• Resource cannot be updated or deleted

– Certain latches are held which will prevent:

• Resources from being scheduled

• System checkpoint

 Recommendation to minimize performance impact

– If a large number of resource definitions are to be updated with the
IMPORT command, avoid issuing the command during peak processing
periods

Considerations for IMPORT with OPTION(UPDATE)

When the IMPORT command is specified with the UPDATE option, all existing resources affected by
the update are quiesced. For example, if the import is updating a transaction definition, the
transaction and the associated program are quiesced.

While quiesced, work cannot be run against the resource. The resource cannot be scheduled. The
resource cannot be updated or deleted.

Certain latches are held during the import process that prevent work from being done. No resources
can be scheduled while the resources to be updated are being quiesced. A system checkpoint is not
allowed while an import is in progress.

188

IMS Version 12

188

Exporting Resources – RDDS Versus Repository DRD

 RDDS DRD exporting

– Handles resource additions, changes and deletions

– Automatic export can occur at system checkpoint, which overwrites entire
contents of oldest system RDDS with the IMS’s definitions

– EXPORT DEFN TARGET(RDDS) command can overwrite an entire
system/non-system RDDS or append to it

– Each IMS has its own system RDDS that contains its entire set of definitions

• When IMS clones exist together in an IMSplex, EXPORT command must
be routed to each of the IMSs
– Command could fail on some IMSs and succeed on others
– Manual coordination is required to keep system RDDSs associated with different

IMS clones consistent with same contents

– EXPORT only applies to active IMS systems

• No way of applying DRD activity occurring in IMSplex to an inactive IMS

When exporting in an RDDS DRD environment, resources that have been newly created, changed, or deleted can all be
hardened to the RDDS via automatic export if it is enabled. They can also be hardened to the RDDS by issuing an
EXPORT command, which can overwrite the entire contents of an RDDS (EXPORT can also append added and
changed resources/descriptors to the RDDS).

With RDDS DRD, each IMS system has its own dedicated pair of system RDDSs that contain the system’s entire
collection of MODBLKS definitions. When an EXPORT command is issued in a cloned environment, it should be routed
to all of the IMS systems in the IMSplex so that their system RDDSs remain synchronized with the same set of
definitions. In this case, each IMS system that receives the command will process it and perform export. There is
potential here for one IMS system to fail the EXPORT command, whereas others could succeed. This would require the
user to manually re-synchronize the system RDDSs by correcting the error and re-issuing the EXPORT on the IMS that
failed. Manual coordination is not always straightforward and is not recommended since it requires more effort on the
part of the user.

In addition, RDDS DRD exporting only applies to active IMS systems and there is no way for an inactive IMS’s stored
resource definitions to be updated.

189

IMS Version 12

189

Exporting Resources – RDDS Versus Repository DRD

 Repository DRD exporting

– Handles only resource additions and changes (no deletions)

– Automatic export not supported

• To achieve same effect within repository, issue:

– EXPORT to repository with CHANGESONLY option or STARTTIME/ENDTIME,
routing command to targeted IMS -- omitting SET(IMSID()) parameter

– DELETE DEFN with NAME() specifying runtime resources that have been deleted
with DELETE command and FOR(IMSID()) specifying which IMS resource lists
should remove these resources

– Each IMS has its own IMS resource list within one shared repository that
contains its entire set of definitions

Repository DRD exporting only allows added and changed resources/descriptors to be written to the repository. As
previously mentioned, automatic export is not supported with this type of DRD and in order to export to a specific IMS
resource list within the repository, an EXPORT command is required. To export the IMS’s runtime resources definitions
that have been added or changed since the previous EXPORT command was issued, include the
OPTION(CHANGESONLY) parameter omitting the SET(IMSID()) parameter so only the targeted IMS’s resource list is
updated with the changes. If any runtime resource definitions were deleted from the IMS, issue a DELETE DEFN
command with the correct FOR(IMSID()) parameter to remove the associated stored resource definitions from the IMS’s
resource list in the repository.

With repository DRD, instead of each IMS having its own set of system RDDSs, each IMS has its own IMS resource list
that contains its entire collection of MODBLKS definitions within the shared repository.

190

IMS Version 12

190

Exporting Resources – RDDS Versus Repository DRD

 Repository DRD exporting

– EXPORT DEFN TARGET(REPO) command updates IMS resource lists
(additions) and stored definitions (changes) within the repository by
specifying SET(IMSID()) parameter

• Processed by one command master IMS as a single unit of work
• Definitions will be written only if there were no errors updating the IMS

resource list(s) (all or nothing written)
– When clones exist together in an IMSplex, the possibility of the export succeeding

on some IMSs and failing on others is eliminated, as coordination is automatic

– Can export definitions to an IMS that is inactive – resource changes will be
applied when the IMS restarts

• Issue EXPORT with SET(IMSID()) specified, including the IMSID of the
inactive IMS

• The inactive IMS’s stored resources definitions within the repository will be
updated with the definitional changes (additions and changes only)
– If there have been deletions that should be reflected in the inactive IMS system,

issue DELETE DEFN specifying the name on FOR(IMSID())

When an EXPORT command is issued in a repository DRD environment, the SET(IMSID()) parameter determines
which IMS resource list in the repository will be updated with new or changed definitions. Unlike RDDS DRD where
each IMS that receives the EXPORT command will process it, a repository DRD EXPORT will only be processed by one
command master IMS. Since the command is processed as a single unit of work, either all of the specified IMS resource
lists are updated by the export or none of them are if an error occurs. The possibility of some IMS’s stored resource
definitions being different than the others is eliminated since only one IMS is processing the command as a single unit of
work, writing to the shared repository. RDDS DRD export also processes the command as a single unit of work, but the
difference is that multiple IMSs are each processing the command separately, updating different RDDSs, which as
previously stated can succeed or fail at the different systems resulting in desynchronization.

Repository DRD export can update the stored definitions of an IMS that is inactive, unlike RDDS DRD export. These
updated stored definitions can be applied when the IMS restarts, but remember, export does not handle resource
deletions – only additions/changes. To deleted stored resource definitions from the repository, a DELETE DEFN
command is required.

191

IMS Version 12

191

Exporting Resources – RDDS Versus Repository DRD

 Repository DRD exporting

– RM performs resource validation for transactions/routing codes being added
to repository to ensure that an associated program exists (or that the program
is also being added via EXPORT)

• EXPORT fails if associated program is not present
– RM performs resource attribute validation for programs, transactions, and

routing codes being added to the repository to ensure they do not conflict with
associated resources’ attributes

• Example: a transaction updated to FP(E) will cause RM to check that the
associated program is defined as FP exclusive

• If conflict, EXPORT fails
• This and additional functionality provided by APAR PM32805 (see APAR

for more detail)

When you export a newly created transaction or routing code to the repository using EXPORT, RM will validate that
there is a program associated with the transaction or routing code in the repository. RM checks the EXPORT command
to determine if the associated program is being exported as well. If the program is not present in the repository or is not
included in the EXPORT command, EXPORT fails. This validation is only performed with repository DRD using RM. It is
not needed with RDDS DRD, because IMS performs this validation when a transaction or routing code is CREATEd. If
the associated program does not exist at this time, the CREATE fails. Therefore, a system RDDS will always contain
transactions/routing codes that have associated programs since any lack of a program is caught at CREATE time, and
automatic export with RDDS hardens all definitions the system RDDS. When repository DRD is enabled, this same
checking occurs when a transaction or routing code is created, but because you have the ability to export individual
resources to the repository – this extra layer of checking is required to ensure that the program is present.

RM also checks the attribute values of resources being added to the repository via EXPORT, to ensure that they do not
conflict with attributes associated with other resources. An example of conflicting attribute values is shown here. Note
that this functionality was added to IMS 12 via APAR PM32805.

192

IMS Version 12

192

Exporting Resources – RDDS Versus Repository DRD

 New parameters only applicable to repository DRD

– STARTTIME() and ENDTIME()

– OPTION(CHANGESONLY)

 Parameters applicable to RDDS DRD

– OPTION(APPEND)

– OPTION(OVERWRITE)

This slide shows the EXPORT parameter values that are specific to RDDS DRD and those that are specific to repository
DRD.

193

IMS Version 12

193

Using DRD with the IMS Repository in an
Online Environment

Let’s now explore a few repository DRD usage scenarios that occur in an online environment.

194

IMS Version 12

194

IMPORT Command Usage with Repository DRD

 IMPORT DEFN SOURCE(REPO) reads stored resource definitions into
active IMS systems in an IMSplex, where they become runtime
resource definitions in the control region

 Changes can be made offline to the repository and then rolled out to
active IMS systems, for example:

– CSLURP10 can populate a repository with definitions from an RDDS

– IMPORT command can read in these new definitions to active IMS systems

 RDDS DRD does not have ability to make changes to stored resource
definitions offline and roll them out to active systems

In IMS 12, you have the ability to import stored resource definitions from the repository at active IMS systems in an
IMSplex by issuing the IMPORT command. One distinct difference between repository DRD and RDDS DRD is that
repository DRD allows a user to make offline changes to the stored definitions for an IMS, that can later be imported at
an active IMS using the IMPORT command. RDDS DRD does not allow a user to make offline changes to the stored
definitions within an RDDS.

195

IMS Version 12

195

Indoubt Work in Progress After IMPORT/EXPORT

 If IMS, RM or the Repository Server address space terminates while an
IMPORT/EXPORT command is processing, work in progress can have
“indoubt” status

 Point of failure will determine whether IMPORT/EXPORT must be re-
issued

– If termination occurred before UOW was completed, changes will be backed
out

– If termination occurred during UOW commit, issue QUERY with
SHOW(DEFN, TIMESTAMP) to determine whether IMPORT/EXPORT
completed

 Check the following in the QUERY command output to confirm whether
work in progress was committed before failure occurred

– Definitional attribute values

– Timestamps shown in:

• TimeCreate
• TimeUpdate
• TimeImport

It is possible that IMS, RM or the Repository Server can unexpectedly terminate during IMPORT or EXPORT command
processing. In this case, it will be uncertain if the unit of work (UOW) command processing actually completed, thereby
being “indoubt”.

The point of failure is important in determining whether the command needs to be re-issued. Use the QUERY
SHOW(DEFN TIMESTAMP) command to display the definitional attribute values of the resources/descriptors involved
in the IMPORT or EXPORT, as well as when they were last created, updated or imported. Then compare the
timestamps shown in either the TimeCreate, TimeUpdate or TimeImport columns to the point of failure. This should
indicate whether the IMPORT or EXPORT command should be issued again.

196

IMS Version 12

196

 Example 1
– EXPORT DEFN TARGET(REPO) TYPE(TRAN) NAME(TRANA,TRANB)

– IMS terminates during command processing

– Work in progress of EXPORT is indoubt

– QUERY TRAN NAME(TRANA,TRANB) SHOW(DEFN,TIMESTAMP)

– Check stored resource definition attribute values and TimeCreate or TimeUpdate
column in command response data (IMS command master displays repository
stored resource definitions)

 Example 2
– IMPORT DEFN SOURCE (REPO) TYPE(TRAN) NAME(TRANA,TRANB)

– IMS terminates during command processing

– Work in progress of IMPORT is indoubt

– QUERY TRAN NAME(TRANA,TRANB) SHOW(DEFN,TIMESTAMP)

– Check runtime definition attribute values and TimeImport column in command
response data associated with each IMS

 If QUERY command indicates that work in progress was not committed,
reissue IMPORT/EXPORT command

Indoubt Work in Progress After IMPORT/EXPORT

This slide shows two example scenarios which involve EXPORT and IMPORT command processing that is “indoubt”
and the steps that would be taken in each case to resolve it.

197

IMS Version 12

197

Resources with Unique Attribute Values in Repository

 Some resources require unique attribute values across IMS systems

– SIDR and SIDL values for remote transactions in MSC environment

– Transaction class

 To export resources that have unique values, issue EXPORT DEFN
TARGET(REPO) command, doing one of the following:

– Specify the target IMS system using the SET(IMSID()) parameter

– Omit the SET(IMSID()) parameter to default to the command master as the
selected IMSID (important: ROUTE command to appropriate IMS system via
OM API)

 The stored resource definitions within the repository will be updated
with these unique attribute values for the specified IMS’s resource list

In order to modify the SIDR and SIDL values for remote transactions and transaction descriptors, the EXPORT
command with the specific IMSID specified on SET(IMSID) or the default SET(IMSID()) must be issued routing the
command to the IMS whose definitions are to be exported.

198

IMS Version 12

198

Resources with Unique Attribute Values in Repository

 Note: EXPORT with SET(IMSID(*)) will not export SIDR/SIDL values to
each IMS resource list

 All other attribute values will be exported and each IMS resource list will
be updated with these other values

 To modify SIDR and SIDL values for remote transaction resources and
descriptors

– Issue EXPORT command with the single IMSID on SET(IMSID())

• If omitting SET(IMSID()), route command to correct IMS

 How SIDR/SIDL values are stored in repository

– Local transaction resource and descriptor SIDR/SIDL values are saved as 0
in repository generic section

• Import will set SIDR/SIDL values to lowest local SID value of the IMS
system where the runtime definition is imported

– Remote transaction resources and descriptor SIDR/SIDL values of each IMS
are saved as unique in the respective IMS’s specific section

When EXPORT is issued with SET(IMSID(*)), all other attributes besides SIDR/SIDL will be collapsed in the repository,
meaning that no IMS resource list will have its own unique values for these attributes.

Once again, in order to modify the SIDR and SIDL values for remote transactions and transaction descriptors, issue the
EXPORT command with the specific IMSID specified on SET(IMSID). If SET(IMSID()) is omitted, the command must be
routed to the IMS whose SIDR and SIDL definitional values are to be exported.

For local transactions, SIDR and SIDL values are the same but for remote transactions they are different. This is
reflected in the transactions’ stored definitions in the repository in the following way. For local transactions and
transaction descriptors, the SIDR and SIDL values are saved as 0 in the repository in the generic section. When the
stored resource definition is imported from the repository either during AUTOIMPORT processing or during processing
of the IMPORT command, the SIDR and SIDL values are set to the lowest local SID value of the IMS system where the
runtime resource definition is imported. In the case of remote transactions and transaction descriptors, the SIDR and
SIDL values are maintained for each individual system’s IMS specific section.

Stored definitions within the repository’s generic section apply to all IMS systems, whereas definitions in an IMS specific
section in the repository only apply to that specific IMS system, and is different from the other IMS’s definitions.

199

IMS Version 12

199

Exporting Resources Created
with DFSINSX0 to Repository

 DFSINSX0 user exit used to dynamically create a transaction resource
to process a message sent to IMS with an unknown destination

 In order to export these dynamically created resources to repository

– Set TRNQ_FC_EXPORT=1 on exit input parameter list

– Issue an EXPORT DEFN TARGET(REPO) command including either

• NAME() parameter specifying names of dynamically created transactions
• STARTTIME() and ENDTIME() parameters that encompass timeframe the

exit dynamically created the transaction resources in
– Use this if resource names are unknown

The Destination Creation (DFSINSX0) user exit can be used to dynamically create transaction resources that will
process messages that come into IMS with an unknown destination. To export these dynamically created transactions
to the repository, set the TRNQ_FC_EXPORT as shown in this slide and issue the EXPORT command with either the
NAME() or STARTTIME()/ENDTIME() parameters.

Keep in mind that when using DRD with the repository, no automatic export will occur at system checkpoint, as is the
case with RDDS DRD. So to harden transactions that are dynamically created with the DFSINSX0 exit to the repository,
they must be exported with an EXPORT command.

200

IMS Version 12

200

Managing the IMS Repository in an Offline
Batch Environment

Let’s now look at some scenarios in which the repository can be managed in an offline environment, namely, for security
updates and recovery procedures.

201

IMS Version 12

201

Offline Repository Management - Examples

 Updating security settings to protect repository from unauthorized
access

– Changing RACF security class name associated with a user repository in RS
catalog repository with batch ADMIN UPDATE command

• UPDATE REPOSITORY(REPO1) SECURITYCLASS(XFACILIT)
– Changing RACF definitions

• RDEFINE XFACILIT FRPREP.REPO1 UACC(NONE)
• PERMIT FRPREP.REPO1 CLASS(XFACILIT) ID(ANGIE) ACCESS(READ)

– Refreshing RACF in-storage profiles with z/OS modify interface SECURITY
command

• F REPOSVR1,SECURITY REFRESH

The above example illustrates the use of both batch admin and z/OS modify interface commands being used to specify
security settings. The SAF class name the REPO1 repository will use is XFACILIT, which is then defined to RACF to
prevent unauthorized user access. A userid named ANGIE is then permitted to read it within the RACF definitions.
Finally, the in-storage RACF profiles are refreshed to reflect these updates. Note: the z/OS modify interface SECURITY
command must be used any time the RACF definitions are updated.

202

IMS Version 12

202

Offline Repository Management - Recovery

 If a write error occurs on a primary or secondary data set pair within
repository, its disposition status is changed to DISCARD

 Repository Server manages recovery process if SPARE data set
present

 User’s only task is to allocate/define a new spare data set and assign it
to SPARE disposition with DSCHANGE command

A repository data set pair (hereafter referred to as the RDS) that is identified by the server as having lost integrity is
discarded. If an RDS is discarded due to a write error, then the repository will be stopped at this time to enable recovery.
In this event, the Repository Server will drive recovery automatically if a spare RDS is available. If no spare RDS is
available, the user repository is stopped and administrator intervention is required to restart the user repository.

203

IMS Version 12

203

Offline Repository Management - Recovery

 Example: a repository named REPO1 contains a primary (COPY1),
secondary (COPY2) and spare (SPARE) data set

 Write error occurs on the primary and Repository Server drives recovery

– Primary data set is automatically changed to disposition of DISCARD

– Secondary data set’s definitions are copied to spare

– Repository Server changes spare to primary

– Issue command to determine which RDS has been discarded (with batch
ADMIN LIST or z/OS modify interface ADMIN,DISPLAY command)

– Delete and define the discarded primary data sets to replace old spare (best
practice: new spare should be larger than previous)

– Change disposition of this new data set to SPARE

• Batch ADMIN command: DSCHANGE REPOSITORY(REPO1) RDS((1)
ACTION(SPARE))

• z/OS modify interface command: F REPOSVR1,ADMIN DSCHANGE
(REPO1,S,1)

This slide shows an example scenario in which we begin with three RDSs that each have different dispositions/statuses
of COPY1 (primary RDS), COPY2 (secondary RDS), and SPARE (spare RDS). A write error then occurs on the primary
RDS. The Repository Server will set change disposition of the primary RDS from COPY1 to DISCARD and copy the
contents of the secondary RDS to the spare RDS automatically (if a spare is available). At this point, the existing spare
in our example shown becomes the new primary data set that replaces the repository data set that failed.

The batch ADMIN LIST command or z/OS modify interface command F xx,ADMIN DISPLAY() command can be issued
to show the dispositions, or statuses, of each repository data set. You must then delete the bad repository data set
whose disposition is now DISCARD. Allocate and define a new repository data set (ideally, the size should be larger
than the previous spare) and assign a disposition of SPARE to this new data set using either the batch ADMIN or z/OS
modify interface commands shown here. Notice that in each command, a “1” is specified. In our example scenario, the
primary data set failed and so a “1” representing the old primary data set is specified to set its disposition to SPARE.

204

IMS Version 12

204

Migration to Repository

We’ll now discuss the steps required to migrate to using repository DRD. The scenarios presented include migration
when:

•IMS is active

•IMS is inactive

•RDDS DRD is currently enabled

•MODBLKS online change is currently enabled

We’ll also discuss various ways of populating the repository for the first time, as well as fallback to RDDS DRD and
MODBLKS online change.

205

IMS Version 12

205

Migration/Coexistence

 IMS 12 RM is required for the repository

– IMS 10 and IMS 11 RM cannot support the repository

 Apply the following maintenance to IMS 10 or IMS 11 RM before
implementation of the repository

– IMS 10: PM19025

– IMS 11: PM19026

– With these APARs IMS 10 or IMS 11 RM will abend U0010-0300 if a
repository is enabled when they are initialized

 Refer to IMS 12 Release Planning manual, GC19-3019

IMS 10 and IMS 11 RMs cannot support the repository. APARs PM19025 for IMS 10 and PM19026 for IMS 11 cause
IMS 10 and IMS 11 RMs to check for an enabled repository when they are initialized. If the repository is enabled, the
RM will abend with U0010 and subcode X’0300’. If the repository is not enabled, the IMS 10 or IMS 11 RM will initialize
normally.

206

IMS Version 12

206

Migration from RDDS DRD to Repository DRD

 Assumptions

– Physical data sets that will store the repository contents have been created

– Repository Server has been defined in the FRPCFG member (including the
RS catalog repository primary/secondary data sets)

– Repository Server address space has been initialized

 Issue a batch ADMIN ADD command to define a user repository to the RS
catalog repository

 Issue a batch ADMIN START command to request the Repository Server
to start the user repository and make it available for use

 Edit CSLRIxxx to define repository-specific information in
<SECTION=REPOSITORY>

 Edit DFSDFxxx to define valid repository definitions in
<SECTION=REPOSITORY>

 Next steps vary, depending on whether IMS being migrated is active or
inactive…

The next few slides cover the steps needed to migrate to using repository DRD from RDDS DRD. Note that each part
of the setup covered here only needs to be done once, during initial migration. Note the assumptions that list
steps that should have already been completed before proceeding with the next migration steps shown on this slide.

Configure the Repository Server configuration parameter member, ensuring that the primary and secondary RS catalog
repository index and member data sets are included. Define PRIMARY_CATALOG_REPOSITORY_INDEX= and
PRIMARY_CATALOG_REPOSITORY_MEMBER= for the primary RS catalog repository data set and SECONDARY_
CATALOG_REPOSITORY_INDEX= and SECONDARY_CATALOG_REPOSITORY_INDEX= for the secondary RS
catalog repository data set within the FRPCFG member.

Next, define the user repository to the RS catalog repository using the batch ADMIN ADD command and start the user
repository with the batch ADMIN START command. Then add the REPOSITORY section to both the RM initialization
(CSLRIxxx) and system definition (DFSDFxxx) members, specifying the appropriate repository definitions.

The next steps assume that the RM address space is already running.

207

IMS Version 12

207

Migration from RDDS DRD to Repository DRD

 If IMS is active (and RM is active)

– Issue the following command to refresh RM address space and dynamically
enable repository usage

• UPDATE RM TYPE(REPO) REPOTYPE(IMSRSC) SET(REPO(Y))
– Issue the following command to enable IMS to use the repository

• UPDATE IMS SET(LCLPARM(REPO(Y) REPOTYPE(IMSRSC))
– Populate the repository for the first time by issuing the following command:

• EXPORT DEFN TARGET(REPO) TYPE(ALL) NAME(*)
– Route command to the IMS being migrated, since SET(IMSID()) will default to that

IMS

If IMS is active, dynamically enable both the RM address space and IMS to use the repository with the commands
shown. The user repository should currently be empty at this point since the previous steps just defined it to the RS
catalog repository for the first time and started it. To capture all of the IMS’s definitions and populate the user repository
for the first time with them, issue an EXPORT command as shown, specifying that all resources should be exported to
the repository. This ensures that the next time this IMS coldstarts, it will have definitions to read in from the repository,
assuming that AUTOIMPORT=AUTO or AUTOIMPORT=REPO is set in the DFSDFxxx member. Note the importance
of routing the command to the specific IMS being migrated. Either omit the SET(IMSID()) parameter as shown, and
ROUTE it to the IMS using the OM API routing capability, or take care to specify the correct IMSID on the SET(IMSID())
parameter if it must be included in the command.

208

IMS Version 12

208

Migration from RDDS DRD to Repository DRD

 If IMS is inactive (and RM is active)

– Issue the following command to refresh RM address space and dynamically
enable repository usage

• UPDATE RM TYPE(REPO) REPOTYPE(IMSRSC) SET(REPO(Y))
– Populate the repository for the first time by running the RDDS to Repository

utility (CSLURP10), using the most current system RDDS

– Restart the IMS system using either:

• Coldstart (ensure that AUTOIMPORT=AUTO or AUTOIMPORT=REPO in
DFSDFxxx so that definitions are read from repository)
– Alternative: coldstart with no resources defined (AUTOIMPORT=NO) and IMPORT

definitions after coldstart complete

• Warmstart or emergency restart (must have already completed migration to
IMS 12)

If IMS is inactive, dynamically enable the RM address space to use the repository with the command shown. The
technique used in populating the repository for the initial time is different than what was shown on the previous slide
when IMS is active. In this case, populate the repository offline using the CSLURP10 (RDDS to Repository) utility. Note
that it is recommended to use the IMS system’s most recently updated system RDDS, which can be determined
by running the DRD “Extract RDDS Contents” utility against each of the IMS’s system RDDSs and viewing the
timestamp in the output that reflects when the RDDS was last updated.

Once the repository has been populated with the IMS’s definitions by way of the CSLURP10 utility, coldstart the IMS. If
automatic import has been enabled, IMS will read in the definitions contained in the repository. If automatic import is
disabled, an IMPORT command can be issued once coldstart has completed, to read the definitions into the control
region. A coldstart is not required however – a warmstart or emergency restart can be used as well as long as IMS V12
has already been migrated to.

209

IMS Version 12

209

After Migration from RDDS DRD to Repository DRD

 Remove RDDS DRD elements

– Issue the following command to reduce unnecessary I/O associated with
automatic export at system checkpoints

• UPDATE IMS SET(LCLPARM(AUTOEXPORT(N)))
• Otherwise, automatic export will continue to export to the system RDDS at

system checkpoint despite repository being enabled
– Remove RDDS definitions from DFSDFxxx to cleanup for next IMS coldstart

– If AUTOIMPORT=RDDS, update to AUTOIMPORT=AUTO

• AUTOIMPORT=REPO also valid

 EXPORT/IMPORT command syntax that will be issued to reference
REPO instead of RDDS (may need to update automation)

 Note: no coldstart required to migrate to repository DRD!

Once RM and IMS have been enabled to use the repository and sufficient testing has been completed, the RDDS DRD
components are no longer needed. If automatic export is enabled, disable it with the command shown. Otherwise, IMS
will export definitions to the oldest system RDDS at system checkpoint if there have been definitional changes made
since the previous checkpoint.

Modify the DFSDFxxx member to delete the RDDS-related definitions such as the AUTOEXPORT=, RDDSERR= and
RDDSDSN=() parameters and change the AUTOIMPORT= value to the recommended setting AUTOIMPORT=AUTO (if
not already done).

Note that any automation may need to be updated with the new EXPORT DEFN TARGET(REPO) and IMPORT
DEFN SOURCE(REPO) command syntax to replace EXPORT DEFN TARGET(RDDS) and IMPORT DEFN
SOURCE(RDDS), respectively.

Also note that migration to repository DRD does not require a coldstart. All of the migration steps can be
completed without having to take an outage.

210

IMS Version 12

210

Migration from MODBLKS OLC to Repository DRD

 Follow same steps as migration from RDDS to repository

– DFSDFxxx will require additional editing since enabling DRD for first time
(see IMS V12 System Definition manual)

 Create a temporary RDDS (used only for migration purposes) for use
with RDDS to Repository utility CSLURP10

– Generate this RDDS with definitions using one of the following

• Create RDDS from MODBLKS utility (DFSURCM0)
• Create RDDS from Log Records utility (DFSURCL0)
• Issue an EXPORT with TYPE(ALL) and NAME(*) command to populate a

non-system RDDS

If RDDS DRD was never enabled, migration to repository DRD is still possible, with some extra steps. For example, the
Common Service Layer (CSL) must be enabled and the DFSDFxxx member will require some additional editing to
specify that DRD will now be used to manage MODBLKS resources instead of online change. The documentation
shown here contains instructions on both of these required steps. Migration from MODBLKS online change to DRD
requires an IMS coldstart.

Once the CSL has been implemented and DRD has been specified to manage the MODBLKS resources instead of
online change, the steps for migration to repository DRD (when an IMS is inactive) are the same as for RDDS DRD,
with the exception of one item. A temporary RDDS for the sole purpose of populating the repository is required. DRD
utilities are available to simplify this step, as shown on the slide. Once the temporary RDDS has been generated using
the utility, the steps are the same as those specified for enabling an IMS for repository usage when it is inactive.

211

IMS Version 12

211

Merging Multiple RDDS Data Sets in Repository

 Consolidating multiple RDDS data sets’ contents into the repository

– For each RDDS, run RM utility CSLURP10 using the desired RDDS name as
input

– One RDDS can be specified each time utility is run

– Definitions contained in the input RDDS will be copied to the repository

– IMS resource lists and stored definitions within repository are updated based
on the IMSIDs specified on CSLURP10’s SYSIN DD statement:
IMSPLEX(NAME=plexname IMSID(imsid))

• RM performs resource validation for transactions/routing codes being
added to repository to ensure that an associated program exists (or that the
program is also being added via CSLURP10)

• RM performs resource attribute validation for programs, transactions, and
routing codes being added to the repository to ensure they do not conflict
with associated resources’ attributes
– Example: a transaction updated to FP(E) will cause RM to check that the

associated program is defined as FP exclusive
– If associated program is not present or if attribute values conflict, CSLURP10 fails

with RC=8 and CSL2616E issued

The RDDS to Repository utility (hereafter referred to as CSLURP10) can be run against one or more IMS systems to
copy RDDS contents to the repository, thereby merging multiple RDDS contents together, divided into respective IMS
resource lists.

When the CSLURP10 utility tries to write a transaction or routing code to the repository, RM will validate that there is a
program associated with the transaction or routing code in the repository. RM checks whether CSLURP10 is attempting
to write the associated program is being exported as well. If the program is not present in the repository or is not
included in the CSLURP10 utility, the utility fails. RM also checks the attribute values of resources being added to the
repository via CSLURP10, to ensure that they do not conflict with attributes associated with other resources. An
example of conflicting attribute values is shown here.

212

IMS Version 12

212

Creating IMS Definitions in Repository
from a Single IMS (Non-Cloned Environment)

 Offline: select an RDDS that reflects the most recent snapshot of an
IMS system’s definitions and use it as input to the CSLURP10 utility

– RDDS selection

• Can use latest system RDDS, updated at last system checkpoint
• Can EXPORT all definitions to an RDDS

– Run CSLURP10 utility

• Specify IMSPLEX(NAME=plexname IMSID(imsid)) to designate which
specific IMS resource list will be updated in repository

 Online: export definitions to repository for a single IMS using EXPORT
DEFN TARGET(REPO) NAME(*) TYPE(ALL) command

– ROUTE command to the IMS whose definitions should be exported so it is
selected as command master

– IMS resource list of the command master will be updated within repository

 Above steps can be repeated for each IMS that has its own unique set
of definitions that needs to be written to the repository

To create definitions in a repository in a non-cloned environment offline, run the CSLURP10 utility, specifying an RDDS
and a single IMSID on the IMSPLEX statement shown in this slide. This will copy the contents of the RDDS specified in
the utility to the IMS’s resource list repository.

An online alternative is issuing the EXPORT command with TYPE(ALL) and NAME(*) specified, omitting the
SET(IMSID()) parameter and routing the command to the IMS whose definitions should be exported to the repository.

Repeat these steps for each IMS whose stored definitions in the RDDS should be copied to the repository.

213

IMS Version 12

213

 Offline: Run CSLURP10 utility and specify IMSPLEX(NAME=plexname
IMSID(imslist)) to designate which IMS resource lists will be updated in
repository

– Select RDDS associated with a single IMS that reflects most recent snapshot of
the system’s definitions as input to CSLURP10

 Online: export definitions to repository for multiple IMSs using EXPORT
DEFN TARGET(REPO) NAME(*) TYPE(ALL) SET(IMSID(imslist)))

– Specify IMSIDs in SET(IMSID(imslist))

– An IMS resource list containing the definitions is created in the repository for
each IMS listed in the imslist

Creating IMS Definitions in Repository
from a Single IMS -- Cloned Environment

In a cloned environment, run the CSLURP10 utility, specifying the input RDDS and the appropriate IMSIDs on the
IMSPLEX statement shown in this slide. This will copy the contents of the specified RDDS to each of the IMS’s resource
lists belonging to the respective IMSIDs in the repository.

An online alternative is issuing the EXPORT command with TYPE(ALL) and NAME(*) specified, specifying all of the
IMSIDs whose resource lists should be created in the repository using the SET(IMSID()) parameter.

214

IMS Version 12

214

Fallback from Repository to RDDS DRD

 Shutdown the IMS system that is falling back

 Generate an RDDS matching the contents of the repository by running
“Repository to RDDS utility” (CSLURP20), using repository as input

– If repository is not available:

• Run the “Create RDDS from Log Records” utility
• Run the “Create RDDS from MODBLKS” utility (if MODBLKS available)
• EXPORT to RDDS to capture existing IMS definitions, which can be read in

at next coldstart

 Edit DFSDFxxx to remove <SECTION=REPOSITORY> definitions

 Coldstart IMS, using automatic import to read stored resource
definitions from RDDS into control region

– AUTOIMPORT=AUTO or AUTOIMPORT=RDDS in DFSDFxxx
<SECTION=DYNAMIC_RESOURCES> portion

 Edit CSLRIxxx to remove <SECTION=REPOSITORY> definitions

 Issue UPDATE RM … SET(REPO(N)) command to disable repository
usage

In order to fall back to using RDDS DRD from repository DRD, follow the steps recommended on this slide. While you
are able to dynamically enable IMS to use the repository with the UPDATE IMS command, you cannot dynamically
disable repository usage with the command and instead must shutdown the IMS system as a first step.

The next step is re-generating a system RDDS that the IMS that is falling back will use for automatic import when it
coldstarts next. In order to generate an RDDS, use the CSLURP20 utility to read the repository to copy the IMS’s
definitions from it to the RDDS. The JCL that executes the utility includes a statement that allows you to specify the
IMSID of the system that is falling back (specifically, it is IMSPLEX(NAME=plexname IMSID(imsid)). The CSLURP20
utility will copy the resource definitions associated with the IMSID that you specify for this parameter from the repository
to the RDDS.

If you do not have a repository available to use with the CSLURP20 utility, use the DRD utilities to create the RDDS
from other data you have in your shop such as log records or MODBLKS contents. You could also allocate a non-
system RDDS data set and EXPORT the IMS’s definitions to it before shutting it down.

Once you’ve generated an RDDS, ensure that AUTOIMPORT=AUTO (AUTOIMPORT=RDDS can also be used) is
defined in the DFSDFxxx member and that RDDSDSN() (also in DFSDFxxx) is set to the RDDS name that you
generated in the previous steps. Note that other system RDDSs defined for the RDDSDSN() parameter should either be
empty or have an earlier timestamp reflecting when they were last updated. This will ensure that the RDDS generated in
the previous steps will be the one that is read by automatic import when the IMS coldstarts.

Assuming that only one IMS in the IMSplex has been enabled for repository usage and therefore will be the only one
falling back, disable repository usage for the RM address space by removing the repository definitions from the
CSLRIxxx member and issuing the UPDATE RM command with SET(REPO(N)) specified. Note: the UPDATE RM
command processing is the mechanism that disables RM from repository usage. This is different than issuing UPDATE
RM to enable repository usage, where the re-reading/re-processing of the REPOSITORY section in CSLRIxxx is the
mechanism enabling repository usage (the command can not enable it on its own without reading the member). For the
disabling scenario, you can remove the repository definitions in CSLRIxxx after the UPDATE RM command is issued.
However, keep in mind that any other RM address spaces that start after the UPDATE RM command is issued with
SET(REPO(N)) before you have had a chance to remove the repository definitions from CSLRIxxx will re-connect to the
repository.

215

IMS Version 12

215

Fallback from Repository to RDDS DRD

 Once previous steps have been completed for all repository-enabled
IMSs and RMs, shutdown Repository Server address spaces using
either:

– P reposervername (single Repository Server)

– F reposervername,SHUTDOWN ALL (multiple Repository Servers)

 Delete repository data sets

 Delete RS catalog repository data sets

After all of the repository-related components have been removed and disabled, shut down all Repository Server
address spaces and delete the user repository and RS catalog repository data sets.

216

IMS Version 12

216

Fallback from Repository to MOBDLKS Global OLC

 Follow same steps as fallback to RDDS DRD

– Disabling DRD will require additional steps (see IMS V12 System Definition
manual)

 Generate a MODBLKS data set

– Run CSLURP20 to copy repository contents to a temporary RDDS (or use
steps on previous slides if repository not available)

– Use this RDDS as input to DRD utility (DFSURDD0) to generate Stage 1
macros

– Use Stage 1 macros to generate MODBLKS

To fall back from repository to global online change, follow the same steps just described on the previous slides that
described fallback to RDDS DRD using a temporary RDDS. Since Dynamic Resource Definition is a prerequisite to
enabling repository usage, it too has a fallback process which is documented in the IMS V12 System Definition manual
in a section entitled “Disabling dynamic resource definition”.

In order to generate a MODBLKS data set, you can create a temporary RDDS that can used as input to the DRD utilities
to generate Stage 1 macro statements, which can then be used to generate a MODBLKS.

217

IMS Version 12

217

Uses for CSLURP10 and CSLURP20 RM Utilities

 CSLURP10

– Migration

• Generate a repository with contents equivalent to a specified RDDS

 CSLURP20

– Fallback

– During migration

• Maintain an RDDS containing equivalent repository definitions for backup
purposes in case fallback to RDDS is required

– Generate a non-system RDDS whose definitions can be IMPORTed by an
IMS or which can be used as input into “Extract RDDS Contents” utility

 Use utilities together

– Migrate definitions in one repository to another repository
– Use CSLURP20 to generate an RDDS
– Use this newly generated RDDS as input to CSLURP10 to populate the other

repository

As we’ve seen, the CSLURP10 utility is useful during migration to the repository and the CSLURP20 utility is useful for
fallback or for backup during migration. But the utilities can also be used in other ways – for example, together to copy
resource definitions from one repository to another repository: the CSLURP20 can generate a non-system RDDS, which
can then be used as input to the CSLURP10 utility to generate another repository, thereby copying the contents of the
original repository to it. The definitions contained in the non-system RDDS generated by CSLURP20 can also be
imported by an IMS system with an IMPORT command. Finally, this same non-system RDDS could be used as input to
the Extract RDDS Contents utility (DFSURDD0), which could in turn generate equivalent Stage 1 macro statements,
type-2 CREATE commands or a query report displaying resource information.

The CSLURP10 and CSLURP20 RM utilities provide offline, batch access to the repository without requiring IMS to be
active, and therefore they can be useful in operations and resource management.

218

IMS Version 12

218

Security Considerations

We’ll now discuss how to secure access to Repository Server resources.

219

IMS Version 12

219

 Access to a user repository can be gained through RM by either of
the following types of RM callers

– Authorized RM caller

• IMS via commands such as:
– EXPORT TARGET(REPO)
– IMPORT SOURCE(REPO)
– DELETE DEFN
– QUERY with SHOW(DEFN)

– Non-authorized RM callers

• CSLURP10 (RDDS to Repository RM utility)
• CSLURP20 (Repository to RDDS RM utility)

 Access to a Repository Server can be gained directly by either of the
following

– Batch ADMIN utility
– z/OS modify interface

Repository Access

A user repository can be accessed either through RM or directly. If going through RM, the caller will
be considered either “authorized” or “non-authorized”. IMS is an authorized caller and therefore has
access to all repository contents via commands, so long as RM is authorized. On the other hand, the
RM utilities are non-authorized RM callers. In this case, the utilities will not automatically have
authorization for repository access just because RM is authorized, as is the case with IMS.
Therefore, the RM utilities require separate authorization to access the repository as we will see on
the following slide.

As previously mentioned, the batch ADMIN utility runs as a JCL job. Therefore, the user ID specified
in the JCL can be used for authorization checking to determine whether repository access is allowed.
Security for commands entered through the z/OS modify interface can be implemented using
standard console security.

220

IMS Version 12

220

 Connection security

– Used by both authorized and non-authorized RM callers when they
attempt to connect to the repository

– RM specifies its USERID on its startup JCL, to be used in RACF
authorization

• If RM is authorized to access the repository, so is IMS since it is an
authorized RM caller

– RM Utilities specify their USERIDs in JCL, to be used for SCI registration
and for RACF authorization

 Member-level security

– Only used with non-authorized RM callers that access individual
members within the repository

• CSLURP10

• CSLURP20

Types of Repository Security

Repository security can be at the connection or member level.

Connection security applies to both authorized and non-authorized RM callers, which we mentioned
were IMS and the RM utilities (respectively) on the previous slide. In either case, the caller must
specify a user ID in the JCL, which will be checked in RACF to determine whether access to the
repository is allowed. We will cover how to restrict access to the user repository, as well as other
Repository Resources, in the next few slides.

Security can also be implemented at the member level within a user repository, which only applies to
the RM utilities. In this case, you can restrict access to individual members, and separately authorize
the user ID associated with the RM utility (again, specified in the JCL) being used to access these
members. We will also cover how to do this in the next few slides.

Use member-level security if you want to restrict the RM utilities to accessing only certain resources.
Once you have protected the individual resources in a RACF class (covered next a few slides from
here), permit the user ID specified in the utility’s JCL to access these resources accordingly. For
example, the CSLURP20 utility reads repository resources and copies them to an RDDS. If you want
to prevent the utility from reading certain resources from the repository and then copying them to the
RDDS, restrict access to them and only permit the utility to access (read/copy) the desired resources.
Examples of restricting access to individual resources and permitting user IDs to access them are
shown later.

221

IMS Version 12

221

Repository Security Implementation

 Repository Server resources can be restricted from unauthorized
access, including:

– User repository

– RS catalog repository

– Members within a user repository

– Audit levels associated with an individual repository

 Choose a class to protect Repository Server resources in

– FACILITY or

– User-defined class (recommended if using member-level security due to
39-character profile name length restriction of FACILITY class)

• Add new class to RACF Class Descriptor Table (ICHRRCDE)
• Update RACF Router Table (ICHRFR01) with new class

 Protect resources by defining general resource profiles

 Grant access to users using defined resource profiles

There are several resources associated with the Repository Server that can be protected in RACF or
other SAF interface, shown here. The process of restricting access to these resources is three-
fold:

1. Define the security class that will protect the resources. If using RACF, the FACILITY class will
suffice unless individual resources within the repository need protection. In this case, a user-
defined class is better since it allows for longer profile names, which can become lengthy due to
the required format.

2. Restrict access to the resources.

3. Grant permissions to selected user IDs.

222

IMS Version 12

222

Protecting Repository Server Resources

 Define profiles to restrict access to Repository Server resources to
authorized users

 User repository

– Format for defining resource profile

• FRPREP.repositoryname

– Example

• RDEFINE XFACILIT FRPREP.REPO1 UACC(NONE)
• RDEFINE XFACILIT FRPREP.* UACC(NONE)

 RS catalog repository

 Repository users can access/update with batch ADMIN commands

– Format for defining resource profile

• FRPREP.CATALOG

– Example

• RDEFINE XFACILIT FRPREP.CATALOG UACC(NONE)

In this and the following examples, assume that XFACILIT is a user-defined RACF class. This slide
shows the specific formats that must be used when restricting both a user repository and a
Repository Server catalog repository from unauthorized access.

223

IMS Version 12

223

 Members within a repository (for non-authorized RM callers only)

– FRPMEM.repositoryname.DFS.RSC.membername

– RDEFINE XFACILIT
FRPMEM.REPO1.DFS.RSC.CSLPLEX1.TRAN.PART UACC(NONE)

Protecting Repository Server Resources

plexname rsctype rscname+ +

plexname 8-byte CSL plexname where repository is
defined (MUST start with characters “CSL”)

8-byte resource type:
DB,DBDESC,PGM,PGMDESC,
TRAN,TRANDESC,RTC,RTCDESC

rscname

Example

rsctype 8-byte resource name to be secured

When defining profiles for individual resources, there is a particular format that must be used which is
shown here. Note that the part of the profile definition containing the resource name actually
consists of 3 items: the IMSplex name, the resource type and the resource name. All of these are
8-bytes long.

224

IMS Version 12

224

 Audit levels associated with an individual repository

– Format for defining resource profile

– FRPAUD.repositoryname.DFS.RSC.TYPE

– Example

• RDEFINE XFACILIT FRPAUD.REPO1.DFS.RSC.TYPE UACC(NONE)

Protecting Repository Server Resources

As previously discussed, there can be different audit levels associated with the repository that track
various types of resource/member access. Only certain users should be able to change the
repository’s audit level. Access can be restricted by defining a resource profile for the audit level
using the format shown on this slide. Appropriate users would then be granted access to change
the audit level, which we will discuss shortly.

225

IMS Version 12

225

Granting User Access to Repository Server Resources

 After defining resource profiles, grant access to appropriate users

 User repository

– RDEFINE XFACILIT FRPREP.REPO1 UACC(NONE)

– PERMIT FRPREP.REPO1 CLASS(XFACILIT) ID(VIEWER1)
ACCESS(READ)

– PERMIT FRPREP.REPO1 CLASS(XFACILIT) ID(ADMIN1)
ACCESS(ALTER)

 RS catalog repository

– RDEFINE XFACILIT FRPREP.CATALOG UACC(NONE)

– PERMIT FRPREP.CATALOG CLASS(XFACILIT) ID(ADMIN1)
ACCESS(ALTER)

Once all of the resource profiles have been defined for the RS resources, the next step is granting
access to specific users. This slide shows examples of granting access to a user repository as
well as a Repository Server catalog repository using RACF.

226

IMS Version 12

226

Granting User Access to Repository Server Resources

 Members with a repository

– RDEFINE XFACILIT
FRPMEM.REPO1.DFS.RSC.CSLPLEX1.TRAN.PART UACC(NONE)

– PERMIT FRPREP.REPO1 CLASS(XFACILIT) ID(USRUTL10)
ACCESS(UPDATE)

– PERMIT FRPMEM.REPO1.DFS.RSC.CSLPLEX1.TRAN.PART
CLASS(XFACILIT) ID(USRUTL10) ACCESS(UPDATE)

– PERMIT FRPMEM.*.*.*.*.*.**
CLASS(XFACILIT) ID(USRUTL20) ACCESS(READ)

 Repository audit levels

– RDEFINE XFACILIT FRPAUD.REPO1.DFS.RSC.TYPE UACC(NONE)

– PERMIT FRPAUD.REPO1.DFS.RSC.TYPE CLASS(XFACILIT)
ID(USRZOSMI) ACCESS(UPDATE)

Here, we show examples of granting access to individual members within a repository. Note that if a
user ID needs RACF UPDATE access for individual members that have been restricted from
unauthorized access, the user ID also needs RACF UPDATE access for the repository that these
members are contained in. Therefore a separate RACF PERMIT statement would be required to
ensure this access. The example accounts for this, as you can see.

This slide also shows an example of granting a user ID permission to change the audit access level
associated with a user repository.

227

IMS Version 12

227

 Able to group several user IDs together for higher efficiency when defining
resource profiles and granting access to them

– PERMITs will reference RACF group rather than each individual user ID

 Example
RDEFINE XFACILIT FRPREP.REPO1 UACC(NONE)

ADDGROUP FRPVIEW

ADDGROUP FRPEDIT

PERMIT FRPREP.REPO1 CLASS(XFACILIT) ID(FRPVIEW) ACCESS(READ)

PERMIT FRPREP.REPO1 CLASS(XFACILIT) ID(FRPEDIT) ACCESS(UPDATE)

CONNECT <VIEWER1> GROUP(FRPVIEW)

CONNECT <VIEWER2> GROUP(FRPVIEW)

CONNECT <VIEWER3> GROUP(FRPVIEW)

CONNECT <UPDATER4> GROUP(FRPEDIT)

CONNECT <UPDATER5> GROUP(FRPEDIT)

RACF Groups

When using RACF and working with a large number of user IDs that have similar permissions to
access protected resources, it is more efficient to group them together. This way, when granting
permissions, group names can be referenced instead of individual user IDs. Using this method
results in less overhead when dynamically managing permission changes. This slide shows an
example of aggregately granting permission to several user IDs contained in the same group.

228

IMS Version 12

228

DRD User Interface Enhancements

All new and enhanced DRD commands in IMS 12 were incorporated into the DRD User Interface (UI). The DRD UI is a
ISPF panel driven interface which assists you in entering various DRD commands. It is contained in the IMS
application called Manage Resources, which can be invoked from the IMS application menu.

229

IMS Version 12

229

DRD UI Enhancements (Manage Resources Application)

 New panels
– EXPORT DEFN initial TARGET panel

– EXPORT DEFN (REPO)

– IMPORT DEFN initial SOURCE panel

– IMPORT DEFN (REPO)

– DELETE DEFN

 Enhanced panels
– IMPORT DEFN (RDDS)

– QUERY DB

– QUERY TRAN

– QUERY TRAN DESC

– QUERY DBDESC

– QUERY PGM

– QUERY PGMDESC

– QUERY RTC

– QUERY RTCDESC

New panels were added to the DRD UI and existing panels were enhanced, shown on this slide. The
next series of slides show example screenshots for various commands in “list view” unless otherwise
noted. The alternative view is “syntax view” for more experienced IMS users that are familiar with
command format. As you will see in the next series of slides, we’ve only included screenshots for
new panels and panels that were enhanced with additional parameter information. Panels that were
not changed, but that now apply to repository DRD (in addition to RDDS DRD), are not shown.

230

IMS Version 12

230

DRD UI Enhancements (Manage Resources Application)

 New DRD utilities that create a repository using either of the following
as input:

– MODBLKS data set

– IMS log

 Available via service stream with APAR PM41281

231

IMS Version 12

231

Enhanced EXPORT DEFN TARGET() Panel

232

IMS Version 12

232232

New EXPORT DEFN TARGET(REPO) Panel

233

IMS Version 12

233233

New EXPORT DEFN TARGET(REPO) Panel

234

IMS Version 12

234234

New EXPORT DEFN TARGET(REPO) Panel – Syntax View

235

IMS Version 12

235235

Enhanced IMPORT DEFN SOURCE() Panel

236

IMS Version 12

236236

Enhanced IMPORT DEFN SOURCE() Panel

237

IMS Version 12

237237

Enhanced IMPORT DEFN SOURCE() Panel

238

IMS Version 12

238

Enhanced IMPORT DEFN SOURCE() Panel – Syntax View

239

IMS Version 12

239

Enhanced IMPORT DEFN SOURCE(RDDS) Panel

240

IMS Version 12

240

Enhanced DELETE Panel

241

IMS Version 12

241

New DELETE DEFN Panel

242

IMS Version 12

242

New DELETE DEFN Panel – Syntax View

243

IMS Version 12

243

Enhanced QUERY Panel

244

IMS Version 12

244

Enhanced QUERY Panel – Syntax View

245

IMS Version 12

245

Installation Verification Program (IVP)
Enhancements for Repository

The next section describes how the IMS IVP application was enhanced to support repository DRD.

246

IMS Version 12

246

 IVP has been enhanced to include sample JCL to create the RS
catalog repository data sets and a user repository

– Repository Server configuration file

– Repository Server startup procedure

– JCL to execute the following:

• Start a Repository Server

• Add a user repository to the RS catalog repository

• List user repository status information

• Populate a user repository

• Rename a user repository in the RS catalog repository

• List detailed information for a single user repository

• Modify and update user repository definitions

• Delete a user repository in the RS catalog repository

• Delete actual RS catalog repository and user repository data sets

IVP Repository Enhancement

Here is a list of new jobs/tasks that were added to the IVP for repository DRD.

247

IMS Version 12

247

 Enhancement contained within O series of steps within IVP

 No change to IVP system definition process (C series)

 Updated jobs/tasks

– IV_D201T and IV_D202T: updated to APF-authorize and place the
FPQCSSI2/FPQCXCF2 modules into LPA (if required)

– Job IV_E302J: updated to add the new user repository server procedure
and the server configuration member into PROCLIB

– Job IV_O101J: updated to create RS catalog repository data sets and
user repository data sets

 New jobs/tasks

– IV_O200J: starts the Repository Server

– IV_O223J: adds a user repository to the RS catalog repository

– IV_O224J: lists user repository status information

– IV_O225J: populates the user repository

IVP Repository Enhancement

248

IMS Version 12

248

 New jobs/tasks

– IV_O226J: renames a user repository in the RS catalog repository

– IVPO227J: lists detailed information for a single user repository

– IVPO228J: modifies and updates definitions for a user repository

– IVPO229J: deletes a user repository in the RS catalog repository

– IVPO230J: requests the Repository Server to start a user repository
already deleted

– IVPO252T: stops Repository Server

– IV3O401J: deletes RS catalog repository and user repository data sets

IVP Repository Enhancement

249

IMS Version 12

249

Summary

250

IMS Version 12

250

Topics Covered

 Repository overview, functions and setup

– IMS Repository Function Infrastructure

– IMS Repository set-up and access

 Repository use and management

– IMS repository commands

– Comparison of DRD use with RDDS versus repository

– Using DRD with the IMS repository in an online environment

– Managing the IMS repository in an offline batch environment

– Migration to repository

– DRD user interface enhancements

– IVP enhancements for repository

251

IMS Version 12

251

DRD Configurations for IMS 12 Users

 No DRD (MODBLKS OLC)

 RDDS DRD with system/non-system RDDSs

 Repository and RDDS DRD together

 Repository DRD

252

IMS Version 12

252

Value of the IMS 12 repository for DRD

 Full support for populating, managing, storing, sharing, and retrieving a
consistent set of DRD stored resource definitions for multiple-IMS
IMSplexes and single-IMS IMSplexes in a single place

 Provides improved availability

– Repository can be enabled/disabled without an IMS outage via command

– Duplexing of data plus spare capability improves data availability

 Provides single source consistency for DRD stored resource definitions

– No need for multiple sets of RDDSs in a multiple-IMS IMSplex

– No need for coordinating multiple sets of RDDSs in a multiple-IMS IMSplex

– Repository architecture controls consistency and integrity of data

253

IMS Version 12

253

Value of the IMS 12 Repository for DRD

 Provides improved functionality and flexibility for managing resources
across an IMSplex

– Generic resource definition plus IMS-specific resource definitions

– EXPORT process is a single unit or work for entire IMSplex, all succeeds or
all fails

– EXPORT process controlled by user (no AUTOEXPORT)

• Can select CHANGESONLY or by time periods

– DELETE of stored resource definitions controlled by user

– Can UPDATE an existing runtime definition via IMPORT

– EXPORT reflected in all IMSs in an IMSplex, whether up or down at the time

– QUERY will display stored resource definitions from repository

– DFSINSX0 (Destination Creation Exit) supports export to repository

254

IMS Version 12

254

Value of the IMS 12 Repository for DRD

 Provides support for both test and production environments

– Repository Server can include data from different IMSplexes though one per
IMSplex recommended

– Multiple IMSRSC repositories can exist within one Repository Server though
one per Repository Server recommended

– Migration and fallback utilities available based on RDDSs

• Previously available DRD RDDS utilities can be used in backup/recovery
scenarios

– IVP available to assist with installation of repository

– Supported by TSO SPOC Manage Resources application

255

IMS Version 12

255

Value of the IMS 12 Repository for DRD

 Provides security capabilities for auditing and compliance

– Full support for RACF (SAF) interfaces

– Repository audit log (optional)

• Includes both online and batch access

– OM type-2 repository commands optionally found in OM Audit Trail

 Provides comprehensive set of repository administration tools

– Includes batch utilities and command interfaces for repository management

• Can be performed when IMS is down

 A strategic IMS architectural direction

– Based upon BPE, CSL, IMSplex architecture

256

IMS Version 12

256

Appendix

257

IMS Version 12

257

Example Use Case Scenarios

Let’s now take a look at some example scenarios that involve using the repository with DRD.

258

IMS Version 12

258

Use Case 1: Cloned Environment…

 Handling runtime resource definition updates in a cloned 3-way
IMSplex, where IMSA and IMSB are active and IMSC is inactive

– CREATE PGM NAME(PGMCAR) routed to IMSA and IMSB

– EXPORT DEFN TARGET(REPO) TYPE(PGM) NAME(PGMCAR)
SET(IMSID(*)), take default routing to one command master IMS

• Newly created program PGMCAR is added to IMSA’s, IMSB’s and IMSC’s
IMS resource lists and the stored definition is written to the repository

– DELETE PGM NAME(PGMBUS) routed to IMSA and IMSB

– DELETE DEFN TARGET(REPO) TYPE(PGM) NAME(PGMBUS)
FOR(IMSID(*)), take default routing to one command master IMS

• Program PGMBUS deleted from IMSA’s, IMSB’s and IMSC’s IMS resource
lists and the stored definition is also deleted from the repository

In this first use case, we’ve got 3 IMS systems that are clones of one another. Two of the IMS systems are active while
the other is inactive. There are 2 assumptions for this use case:

Assumption 1: IMSA, IMSB and IMSC have been defined to the repository and each have entries within the repository
from either an EXPORT or from the CSLURP10 utility having been run.

Assumption 2: The PGMBUS program resource is defined as a runtime resource definition on all IMS systems and
also exists as a stored resource definition for all IMS systems within the repository.

This scenario reviews the commands that would be issued when a user would create a new program resource and
delete another program resource. It also shows the commands that would be issued in order to write these resource
changes to the repository for all 3 IMS systems, even though one is inactive. Note: the first CREATE command creates
the program resource PGMCAR at IMSA and IMSB. It is not created at IMSC, since the command is not routed to it
since IMSC is not active to process the command.

259

IMS Version 12

259

Use Case 1: Cloned Environment

 Continued…

– How will IMSC apply all of these changes?

• Coldstart will automatically import the updated resource definitions
• Warmstart will necessitate user issuing the following commands routed to

IMSC:
– IMPORT DEFN SOURCE(REPO) TYPE(PGM) NAME(PGMCAR)
– DELETE PGM NAME(PGMBUS)

The scenario continues with a consideration for the inactive IMS, and how it would apply the resource changes that
have occurred while it was down. Note that depending on the type of restart for the inactive system, certain additional
actions may need to be taken, and are shown on this slide.

260

IMS Version 12

260

Use Case 2: Non-Cloned Environment (Unique Systems)

 Handling runtime resource definition updates in a 2-way IMSplex, where
IMSA and IMSB are active and have different resource definitions

 Route commands to individual IMS systems, for example:

– Route the following commands to IMSA only
• UPDATE PGM NAME(PGMAAA) SET(TRANSTAT(Y))
• EXPORT DEFN TARGET(REPO) TYPE(PGM) NAME(PGMAAA)
• DELETE PGM NAME(PGMBBB)
• DELETE DEFN TARGET(REPO) TYPE(PGM) NAME(PGMBBB) FOR(IMSID(IMSA))

– Route the following commands to IMSB only
• UPDATE PGM NAME(PGMCCC) SET(TRANSTAT(Y))
• EXPORT DEFN TARGET(REPO) TYPE(PGM) NAME(PGMCCC)
• DELETE PGM NAME(PGMDDD)
• DELETE DEFN TARGET(REPO) TYPE(PGM) NAME(PGMDDD) FOR(IMSID(IMSB))

 Exporting to and deleting from the repository ensures that these changes
are hardened and the updated stored resource definitions are available
for the next coldstart

In the next scenario, we’ve got 2 active IMS systems and this time they are not clones of one another. Therefore each
IMS system has different resource definitions associated with it. This use case illustrates how to handle resource
updates given these circumstances -- specifically, where we are updating certain resource attributes as well as deleting
resources from each system.

The EXPORT and DELETE DEFN commands update the stored resource definitions in the repository for each IMS
system and makes them available for the next coldstart. During a warmstart or emergency restart, IMS builds the
runtime resource definitions from the IMS log. The IMS repository is not accessed during a warmstart or emergency
restart.

261

IMS Version 12

261

Use Case 3: Mixed (Cloned + Unique Systems)…

 Handling runtime resource definition updates in a 5-way IMSplex

– IMSA/IMSB/IMSC are clones (IMSA/IMSB active, IMSC inactive)

– IMSD/IMSE are not cloned and are both active

 For cloned systems (IMSA, IMSB, IMSC):

– CREATE DB NAME(DB123) routed to IMSA and IMSB

– EXPORT DEFN TARGET(REPO) TYPE(DB) NAME(DB123)
SET(IMSID(IMSA IMSB IMSC)) routed to either IMSA or IMSB

• New DB123 database added to IMSA’s, IMSB’s, and IMSC’s resource lists
and stored resource definitions
– IMSC will import DB123 at next coldstart, or if warmstarted user can issue

IMPORT DEFN SOURCE(REPO) TYPE(DB) NAME(DB123)

– DELETE DB NAME(DB456) routed to IMSA and IMSB

– DELETE DEFN TYPE(DB) NAME(DB456) FOR(IMSID(IMSA IMSB IMSC))

• DB456 database deleted from IMSA’s, IMSB’s, and IMSC’s resource lists
and stored resource definitions

• DB456 database will not be imported at these systems at next coldstart
due to deletion (if IMSC warmstarts, user issues DELETE for runtime def)

In our next use case, we have 5 IMS systems with the following scenario:

4 IMS systems are active

1 IMS system is inactive

The IMS systems are a mix of clones and non-clones

Here, we review the steps that would be required in order to both create new resources and delete existing resources
from all of these systems while saving these changes in the repository. This particular slide covers the case where each
IMS system is a clone.

262

IMS Version 12

262

Use Case 3: Mixed (Cloned + Unique Systems)

 For unique systems (IMSD, IMSE), route commands to the individual
IMS systems, for example:

– Route all commands to IMSD only
• CREATE DB NAME(DB345)
• EXPORT DEFN TARGET(REPO) TYPE(DB) NAME(DB345)
• DELETE DB NAME(DB456A)
• DELETE DEFN TARGET(REPO) TYPE(DB) NAME(DB456A) FOR(IMSID(IMSD))

– Route all commands to IMSE only
• CREATE DB NAME(DB789)
• EXPORT DEFN TARGET(REPO) TYPE(DB) NAME(DB789)
• DELETE DB NAME(DB1011)
• DELETE DEFN TARGET(REPO) TYPE(DB) NAME(DB1011) FOR(IMSID(IMSE))

 Exporting to and deleting from the repository ensures that these
changes are hardened and the updated stored resource definitions are
available for the next coldstart

The scenario continues where we again review the steps that would be required in order to both create new resources
and delete existing resources from all of these systems while saving these changes in the repository. This particular
slide covers the case where each IMS system is a non-clone and has differing, unique resources from the other.

The EXPORT and DELETE DEFN commands update the stored resource definitions in the repository for each IMS
system and makes them available for the next coldstart. During a warmstart or emergency restart, IMS builds the
runtime resource definitions from the IMS log. The IMS repository is not accessed during a warmstart or emergency
restart.

263

IMS Version 12

263

Use Case 4: Porting Resource Definitions
(Online Method)

 Copying resource definitions from a development system (IMSA) to a
test system (IMSB)

– Assumptions:

• Each IMS exists in a different IMSplex and is using a different repository
– IMSA in PLEXA uses single point of control SPOCA
– IMSB in PLEXB uses single point of control SPOCB

• Each IMS is active
– Export IMSA’s runtime definitions to a non-system RDDS

• EXPORT DEFN TARGET(RDDS) RDDSDSN(NONSYS.RDDS1)
TYPE(DB) NAME(DB11 DB22) routed to IMSA using SPOCA

– Run CSLURP10 on PLEXB using NONSYS.RDDS1 non-system RDDS as
input and IMSB’s repository as output

– Import stored definitions to IMSB from its repository

• IMPORT DEFN SOURCE(REPO) TYPE(DB) NAME(DB11 DB12) routed to
IMSB using SPOCB

– But what if these IMS systems were inactive…?

Next, we have a use case in which porting resource definitions from one IMS system to another is illustrated. In the
scenario, there are 2 active IMS systems that exist in different IMSplexes. Because the IMS systems exist in separate
IMSplexes, they each have different repositories and also have separate Single Points of Control (or SPOCs) from
which type-2 commands can be entered.

The scenario shows example steps that a user would take to port resource definitions from one IMS to another, using a
combination of the type-2 EXPORT and IMPORT commands with a non-system RDDS as a common midpoint. Once
again, these 2 IMS systems included in the scenario are active. Next, we discuss how the steps would be different if the
IMS systems were inactive.

264

IMS Version 12

264

Use Case 5: Porting Resource Definitions
(Offline Method)

 Copying resource definitions from a development system (IMSA) to a
test system (IMSB) with same assumptions as Use Case 4

– Run CSLURP20 on PLEXA using IMSA’s repository as input and a non-
system RDDS as output

– Run CSLURP10 on PLEXB using the non-system RDDS as input and IMSB’s
repository as output

– When IMSB is active, import stored definitions from its repository

• IMPORT DEFN SOURCE(REPO) TYPE(DB) NAME(DB11,DB12)

You are able to port resource definitions from the repository that one IMS is using to a completely different repository
that another IMS is using. Simply run the CSLURP20 and CSLURP10 utilities using a non-system RDDS as a common
midpoint to move the stored resource definitions from one repository to the other. Once the stored definitions have been
successfully ported to the targeted IMS system’s repository, they can then be imported for use in the active system as
runtime resource definitions using the type-2 IMPORT command.

265

IMS Version 12

265

Use Case 6: Displaying and Printing
Stored Definitions in Repository

 When IMS systems are active

– Issue QUERY command with SHOW(DEFN) specified to display list of
resources (and their attribute values) within repository

• Includes a display of which IMS systems have specific resources defined
• Example: QUERY DB NAME(*) SHOW(DEFN) to display all databases

– Tip: For the best command output results view, opt to group lines by either
column or resource (not wrap) under SPOC preferences:

 When IMS systems are inactive

– Run CSLURP20 “Repository to RDDS” utility to generate non-system RDDS
with repository contents

– Run DFSURDD0 “Extract RDDS contents” utility to generate a query report
containing a list of resources with attribute values

– Follow this process for each IMS that is using the repository, one at a time

A common question that users ask is how to view repository contents. There are two ways, depending on whether or not
any repository-enabled IMS systems are active. If at least one repository-enabled IMS is active, you can issue a type-2
QUERY command with specific resources names to determine whether they exist in the repository. Or to determine the
names of all resources of a particular type that exist in the repository, an “*” can be specified for the name as long as the
resource type is included in the command. For example, to determine which databases are currently defined in the
repository, as well as which IMS systems have these databases defined to them, issue a QUERY DB NAME(*)
SHOW(DEFN,IMSID) command. Note that the default listing format in the TSO SPOC application is “wrap individual
lines”. A better choice for viewing command output would be grouping by either column or resource, so be sure to
specify one of these settings in the SPOC preferences (accessed from the “SPOC” menu).

If no IMS systems are active, you can run utilities offline to determine repository contents. First, run the CSLURP20
utility using the desired repository as input and specify the name of a non-system RDDS for the output data set. Next,
run the DFSURDD0 utility using the non-system RDDS used in the previous step as input, and designate that a query
report should be generated. The query report will display a list of all resources along with their attribute values for the
particular IMS system specified in the utility JCL. If there are multiple IMS systems that are using the repository, repeat
this process for each IMS that you would like to view the stored resource definitions for.

266

IMS Version 12

266

Use Case 7: Copying Repositories…

 To copy the contents of one repository to another in a cloned
environment:

– Capture all stored resource definitions in the initial repository by running
CSLURP20 “Repository to RDDS” utility against it, specifying any one IMSID
in the JCL, and using a non-system RDDS as output

– Transfer these stored definitions to a different repository by running
CSLURP10 “RDDS to Repository” utility specifying all IMSIDs in the JCL,
using the non-system RDDS as input, and the new repository as output

Repository
2

Repository
1

Non-System
RDDS

CSLURP20
with

IMSID(IMS1)

CSLURP10
with

IMSID(IMS1,
IMS2, IMS3)

IMS1 IMS2 IMS3

In order to copy the contents of one repository to another, the steps vary depending on whether the user has a cloned
environment or not. This slide discusses a cloned environment, in which a user would run CSLURP20 for one IMS
system, creating one non-system RDDS. Then they'd run CSLURP10 and specify multiple IMSIDs (for each of the
cloned IMSs) on the utility's SYSIN DD, for example:

//SYSIN DD *
IMSPLEX(NAME=PLEX1 IMSID(IMS1,IMS2,IMS3))

Note: You can create a backup of Repository-1 and use the steps to restore the backup at Repository-2 after
Repository-2 is started with empty datasets.

267

IMS Version 12

267

IMS1

IMS2

IMS3

Repository
1

CSLURP20
with

IMSID(IMS1)

CSLURP20
with

IMSID(IMS2)

CSLURP10
with

IMSID(IMS1)
only

Non-
System
RDDS1

Non-
System
RDDS2

Non-
System
RDDS3

CSLURP10
with

IMSID(IMS2)
only

Repository
2

CSLURP20
with

IMSID(IMS3)

CSLURP10
with

IMSID(IMS3)
only

Use Case 7: Copying Repositories

 To copy the contents of one repository to another in a non-cloned
environment:

– Capture all stored resource definitions in the initial repository by running
CSLURP20 “Repository to RDDS” utility against it for each IMS, each time
using a different non-system RDDS as output

– Transfer these stored definitions to a different repository by running
CSLURP10 “RDDS to Repository” utility once for each IMS, using the non-
system RDDS as input and the new repository as output

For a non-cloned environment: a user would run CSLURP20 for each IMS system, creating a different RDDS for each
one. Then they'd run CSLURP10 for each RDDS that was created, and the repository would be preserved each time to
allow for multiple updates.

Note: You can create a backup of Repository-1 and use the steps to restore the backup at Repository-2 after
Repository-2 is started with empty datasets.

268

IMS Version 12

268

Use Case 8: Creating Repositories
from MODBLKS or IMS Log
 To create a repository from the contents of a MODBLKS data set, run

the Create Repository from MODBLKS utility

 To create a repository from the contents of the IMS log, run the Create
Repository from Log Records utility

 The new options for Manage Resources panels to be able to populate
the repository will be available with APAR PM41281

Create
Repository

from
MODBLKS

utility

RepositoryMODBLKS

Create
Repository
from Log
Records

utility

RepositoryIMS Log

You can use existing data in your shop such as the MODBLKS data set or the IMS log data sets to generate a
repository with equivalent contents. APAR PM41281 is enhancing the Manage Resources panels to write to the
repository using existing DRD and RM utilities. Until APAR PM41281 is available, you can perform a two step process
to populate the repository from MODBLKS or the IMS log:

-Create a non-system RDDS from MODBLKS or the IMS log
- Use DRD utility DFSURCM0 to create a non-system RDDS from MODBLKS
- Use DRD utility DFSURCL0 to create a non-system RDDS from the IMS log

-Run CSLURP10 to populate the repository with the RDDS created in the above step

269

IMS Version 12

269

Commands

270

IMS Version 12

270

New UPDATE RM Command

 Use command to dynamically enable/disable repository usage for the
RM address space

– Make CSLRIxxx changes first if enabling usage

 TYPE(REPO)

 REPOTYPE(IMSRSC)

 SET(REPO(Y)) dynamically enables RM repository usage and
<SECTION=REPOSITORY> is reprocessed

 SET(REPO(N)) dynamically disables RM repository usage

 AUDITACCESS() dynamically changes the audit level setting and
overrides the AUDIT_DEFAULT originally set in FRPCFG member

UPDATE RM TYPE(REPO) REPOTYPE(IMSRSC)
SET(REPO(Y|N) AUDITACCESS())

Use the new UPDATE RM command to dynamically enable the RM address space to use the repository, or change the
audit access level that was originally specified in the FRPCFG member.

Notice that the command must be issued with TYPE(REPO) and REPOTYPE(IMSRSC) to indicate that a repository
resource type and an “IMSRSC” type of repository is being updated. These are the only valid values for these
parameters.

To dynamically enable RM for repository usage, specify SET(REPO(Y)) and command processing will reread and re-
process the REPOSITORY section within the CSLRIxxx member. This is why it is important to add repository definitions
to the CSLRIxxx member before issuing this command. Also during command processing, RM registers to the
Repository Server (RS) if RM is not already registered. RM connects to the repository name specified in the
REPOSITORY section of the CSLRIxxx member. If the command is successful at the command master RM, the
command master RM communicates the changes to other active RMs in the IMSplex. All RMs in the IMSplex will have
the same repository settings. If RM is defined to use the resource structure, the command master RM will update the
resource structure with the repository name and repository type that it is connected to. Subsequent RMs that are
restarted after the change will ensure that they are connected to the same repository name and repository type as read
from the resource structure.

On the other hand, if RM repository usage is already enabled, you can dynamically disable it by specifying
SET(REPO(N)). The CSLRIxxx member is not reread/re-processed in this case like it is when SET(REPO(Y)) is
specified. Therefore, as part of the repository disabling process, you can remove the repository definitions from
CSLRIxxx either before or after UPDATE RM is issued with SET(REPO(N)). Note that if the repository definitions
specified on the REPOSITORY= statement are still present in CSLRIxxx, any RMs that start after the UPDATE
RM … SET(REPO(N)) command is issued will re-connect to the repository during the RM startup.

The AUDITACCESS() parameter allows you to dynamically change the audit level settings and override what was
originally specified on the AUDIT_DEFAULT parameter in the FRPCFG member.

271

IMS Version 12

271

New UPDATE RM Command

 Valid values for AUDITACCESS() are:

– NOAUDIT for no auditing of member access

– SECURITY for auditing security failures only

– UPDATE for auditing member access with update intent

– READ for auditing member access with read and update intent

– SYSTEMREAD for auditing member access with system-level read, read, or
update intent

• A “system-level read” is a read that occurs as part of the process for
updating a resource

UPDATE RM TYPE(REPO) REPOTYPE(IMSRSC)
SET(REPO(Y|N) AUDITACCESS())

Here are the valid values for the AUDITACCESS() parameter. Notice that they are in ascending order of the amount of
auditing that will occur when different types of member access are attempted.

272

IMS Version 12

272

New QUERY RM Command

 Use command to determine whether or not RM is enabled for repository
usage and to see information about repositories being managed by RM

 SHOW(ATTRIB) returns repository audit access level

– Indicates the type/level of member access auditing -- defined in FRPCFG
member, in CSLRIxxx (RM initialization) member, or with UPDATE RM
command

 SHOW(STATUS) returns RM status information:

– CONNECTED = RM connected to repository

– DISCONNECTED = RM disconnected from repository

– SPARERECOV = repository spare recovery in progress

– SPARERCVERR = repository spare recovery error

– NOTAVAIL = repository unavailable

 SHOW(ALL) returns all RM attribute and status information

QUERY RM TYPE(REPO) SHOW()

Issue the QUERY RM command to determine whether an RM address space is enabled for repository usage, or to view
RM’s audit access level and/or status. The RM can have one of the statuses shown on this slide.

273

IMS Version 12

273

UPDATE IMS Command Enhancements

 Use command to dynamically enable IMS to use the repository and
disable automatic export

 LCLPARM(REPO(Y) REPOTYPE(IMSRSC))

– Enables IMS to use the repository

– RM must be enabled to use the repository which can be accomplished with
the UPDATE RM command (otherwise, UPDATE IMS will fail)

– Ensure that DFSDFxxx is updated with valid repository definitions before this
command is issued

• DFSDFxxx will be read during UPDATE IMS command processing (if any
errors exist in member, UPDATE IMS will fail)
– Only <SECTION=REPOSITORY> definitions

UPDATE IMS SET(LCLPARM())

Dynamically enable an IMS system to use the repository by issuing the UPDATE IMS command, or use it to disable the
automatic export capability (covered on next slide). Note that before you issue this command to dynamically enable
IMS for repository usage, you must add repository definitions to the DFSDFxxx member and RM must already
be repository-enabled.

274

IMS Version 12

274

UPDATE IMS Command Enhancements

 LCLPARM(AUTOEXPORT(N))

– Disables automatic export to the system RDDS

– Use after migration to repository to eliminate unnecessary processing
overhead associated with automatic export

– Reactivation of automatic export requires an IMS coldstart with
AUTOEXPORT defined in DFSDFxxx

UPDATE IMS SET(LCLPARM())

To dynamically disable automatic export for an IMS system, issue the UPDATE IMS command with
LCLPARM(AUTOEXPORT(N)) included. This is a step that would be taken after migration to the repository has been
completed to reduce I/O overhead that occurs with autoexport.

Note: once automatic export has been disabled with this command, a coldstart is required to re-enable it. This is due to
the possibility that the RDDSs may not exist any longer after migration to the repository has been completed and
therefore would not be available for autoexport if it was re-enabled dynamically.

275

IMS Version 12

275

QUERY IMS Command Enhancements

 Use this command to determine whether IMS is enabled for repository
usage and/or automatic export

 TYPE(LCLPARM) indicates that local IMS information will be displayed

– SHOW(GLOBAL) cannot be specified with this parameter

 SHOW(REPO) shows whether the IMS is enabled to use the
repository + attributes of the repository

 SHOW(AUTOEXPORT) shows whether automatic export is enabled for
the IMS

 SHOW(ALL) and SHOW(LOCAL) will display the same local parameter
information and have been enhanced to include the new SHOW()
parameters listed above

QUERY IMS TYPE() SHOW()

To determine whether an IMS system is enabled for repository usage, issue the QUERY IMS command. You can also
use this command to determine whether automatic export is enabled for an IMS system. These enhancements were
added to existing QUERY IMS functionality – essentially, to display the information about the possible actions that were
added with the UPDATE IMS command (dynamically enabling repository usage and/or automatic export).

276

IMS Version 12

276

QUERY Command Enhancements

 New SHOW() parameters added to QUERY

 Use this command to display generic and IMS-specific definitions

– SHOW(DEFN) returns both repository and local IMS resource definitions

– SHOW(DEFN,GLOBAL) returns only repository IMS resource definitions

– SHOW(DEFN,LOCAL) returns only local IMS resource definitions

– SHOW(IMSID) returns all IMSIDs that have the specified resource defined

– SHOW(DEFN,IMSID) returns all IMSIDs that have the specified resource
defined + a list of the repository resource definitions + any IMS-specific
definitions

 Command output will display an L prefix for the columns containing the
local IMS information

QUERY rsc-type | desc-type NAME() SHOW()

The QUERY command has been enhanced to display IMS resource/descriptor definitions (names and attribute values)
in the repository and also at each IMS system. In addition, QUERY can now display specific IMSIDs that have the
resource names included in the command. Note that this slide only shows the enhancement made to the QUERY
command, not the full possible syntax for the command.

277

IMS Version 12

277

EXPORT Command Enhancements

 Use command to harden runtime resource adds/changes to repository

 Use command to populate an empty repository for the first time, discussed later

 Writes an IMS system’s runtime resources/descriptors definitions to the
repository, where they will kept as stored resource definitions

 TYPE() defines the resource type

– ALL, ALLDESC, ALLRSC, DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN,
TRANDESC

 NAME() defines the names of the resources to export

– NAME(*) is the default

 STARTTIME() indicates the time after which all
created/modified resources will be exported

 ENDTIME() indicates the cut-off time for when
created/modified resources be exported

EXPORT DEFN TARGET(REPO) TYPE() NAME()
STARTTIME() ENDTIME() SET(IMSID()) OPTION()

Local time in yyyy.ddd
hh:mm:ss:th format (only
yyyy.ddd are required)

Issue the EXPORT command when resources and/or descriptors have been either created or updated, and they need to
be hardened to the repository. If hardening changes to offline stored definitions is part of your change management
process, use the EXPORT command when definitional changes occur or at regular intervals during operations.

The EXPORT command is processed by a single command master IMS (the benefits of this are discussed in a few
slides) and will write valid specified resources/descriptors to the repository.

The EXPORT command can also use data included in QUERY command output. If QUERY is issued with the
OPTION(TIMESTAMP) parameter included, you can determine the exact time that a resource was created or updated
(see the TimeCreate and TimeUpdate column header output). You are then able to use those timestamp values for the
EXPORT STARTTIME() and/or ENDTIME() parameters. The STARTTIME() and ENDTIME() parameters can be as
specific as tenths and hundredths of a second, and matches the timestamp granularity displayed in QUERY
SHOW(TIMESTAMP) command output, so copying the exact values is facilitated in this way. Note that the
STARTTIME() and ENDTIME() parameters are optional.

278

IMS Version 12

278

EXPORT Command Enhancements

 SET(IMSID()) specifies one or more IMSIDs whose resource lists will be
updated in the repository as a result of EXPORT being issued

– Wildcards * and % supported

• Examples: IMS*, IMS%A

• If there are no IMS resource lists in the repository, EXPORT will fail

– The specified IMSID does not need to be active in the IMSplex

• EXPORT will create an IMS resource list for this IMSID, to be read when
IMS starts

– If SET(IMSID()) is omitted, the default is the IMSID of the command master

• Command master can be selected using the ROUTE parameter

EXPORT DEFN TARGET(REPO) TYPE() NAME()
STARTTIME() ENDTIME() SET(IMSID()) OPTION()

Indicate which IMS resource lists in the repository should be exported to by listing them on the SET(IMSID()) parameter.
This is an optional parameter and if omitted, the command master IMSID’s runtime resource definitions will be exported
to its IMS own resource list. You can control which IMS is selected as command master by using the ROUTE capability
of the OM interface from which you are entering the command. Wildcards are supported and note that the EXPORT
command will fail if there are no IMS resource lists in the repository.

A benefit of using repository DRD is the ability to update the IMS resource list of an inactive IMS (or create one for it if it
does not exist). When the IMS restarts, it will read these stored definitions that were altered while it was inactive. This is
true for all types of restart (coldstart, warmstart and emergency restart) and details about how this occurs are covered
later in the session.

279

IMS Version 12

279

EXPORT Command Enhancements

 OPTION() controls how much command output is displayed and what
specific resources are exported

– OPTION(ALLRSP) will return a line of output for each successfully exported
resource/descriptor in the command response

– OPTION(CHANGESONLY) specifies that only resources/descriptors created
or updated since the last EXPORT will be exported to the repository

• This option is a new capability that did not exist with RDDS DRD

• OPTION(ALLRSP) automatically included

EXPORT DEFN TARGET(REPO) TYPE() NAME()
STARTTIME() ENDTIME() SET(IMSID()) OPTION()

When issuing the EXPORT command, you can optionally display a line of output for each successfully exported
resource, as well as optionally export only the resources/descriptors that had definitional changes since the last
EXPORT command was issued. Automatic export is not possible when using DRD with the repository, but issuing the
EXPORT command with OPTION(CHANGESONLY) at regular intervals allows you to ensure that definitional changes
are captured and hardened to the repository.

280

IMS Version 12

280

New DELETE DEFN Command

 Deletes stored resource definitions from the repository, and is
processed by one command master IMS

 Use this command to harden runtime definition deletes to the repository

 TYPE() specifies a single resource/descriptor type

– DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN, TRANDESC

 NAME() defines the names of the resources/descriptors to delete

– Wildcard supported (not the default like it is with DELETE command)

DELETE DEFN TARGET(REPO) TYPE()
NAME() FOR(IMSID()) OPTION()

Issue the DELETE DEFN command to delete stored resource definitions from one or more IMS resource lists contained
in the repository. If runtime resource definitions have been deleted from an online IMS system with the DELETE
command, these deletes can be hardened to the repository with the DELETE DEFN command. In this situation, take
care to specify the same resources or descriptors in this command whose runtime definitions were deleted from the
online system. Note that only one resource or descriptor type can be specified and therefore, the command may need to
be issued multiple times if multiple resource/descriptor types were deleted from the online system.

281

IMS Version 12

281

New DELETE DEFN Command

 FOR(IMSID()) indicates the IMS resource list(s) the resources or
descriptors are deleted from within the repository

– Can specify a single IMSID, or a list of multiple IMSIDs (the IMS must be
defined to RM to use the repository and can be either active or inactive)

– Usage example:

QUERY PGM NAME(PGM1) SHOW(WORK)

UPDATE PGM NAME(PGM1) STOP(SCHD)

DELETE PGM NAME(PGM1)

DELETE DEFN TARGET(REPO) TYPE(PGM) NAME(PGM1)
FOR(IMSID(IMS1,IMS2)

DELETE DEFN TARGET(REPO) TYPE()
NAME() FOR(IMSID()) OPTION()

Routed to IMS1 and IMS2

To delete stored definitions from specific IMS resource lists within the repository, specify the IMSIDs associated with the
IMS resource lists with the FOR(IMSID()) parameter. As mentioned on the previous slide, it is appropriate to issue this
command when you want to harden runtime definition deletes to the repository. Before deleting a runtime resource
definition, it is a DRD best practice to first query the resource to determine whether work in progress exists. If there is
not, the resource should then be stopped before attempting to delete it.

An example of this is shown here, when a program is first queried to determine whether any work in progress exists for
it. Then, the scheduling is stopped for the program to prevent any new work in progress from occurring. The example
continues to show that the program is deleted from two online systems with the DELETE command, then deleted from
the IMS resource lists associated with these two systems in the offline repository with the DELETE DEFN command.

282

IMS Version 12

282

New DELETE DEFN Command

 FOR(IMSID()) (…cont’d)

– Wildcards * and % supported

 OPTION(ALLRSP) ensures that the command response displays a line
of output for each resource/descriptor processed by command

– Only valid with NAME(*)

DELETE DEFN TARGET(REPO) TYPE()
NAME() FOR(IMSID()) OPTION()

Wildcard support exists for the FOR(IMSID()) parameter. When issuing the DELETE DEFN command with NAME(*),
you can ensure that a line of output is displayed for each resource/descriptor that was processed.

283

IMS Version 12

283

IMPORT Command Enhancements

 Reads resource/descriptor stored resource definitions from the repository into
the IMS system, where they become runtime resource definitions

 Use this command to percolate definitional changes made to the offline
repository to 1+ running IMS systems, for example:

– Coldstart an IMS with no resources defined, issue IMPORT to read in its definitions

– Make changes to repository then roll them out to 1+ running IMS systems

 New SOURCE(REPO) keyword to read from repository

 TYPE() defines the resource/descriptor type

– ALL, ALLDESC, ALLRSC ,DB, DBDESC, PGM, PGMDESC, RTC, RTCDESC, TRAN,
TRANDESC

 NAME() defines the names of the resources to import

– NAME(*) is the default

IMPORT DEFN SOURCE()
TYPE() NAME() OPTION() SCOPE()

The IMPORT command reads stored definitions that exist in the repository into running IMS systems. This command
can be used if an IMS is coldstarted with no resources defined to populate the control region with runtime resource
definitions. Or if changes were made to the repository offline and you’d like to roll the changes to the systems in
IMSplex, the IMPORT command can be used to accomplish this. An example of when this scenario is when the “RDDS
to Repository”, or CSLURP10 utility (introduced in part one of this session) is used to populate a repository with
definitions, which haven’t been read into any IMS system yet.

Make sure that SOURCE(REPO) is specified, so the repository is the data set that is read, and indicate which resources
should be imported using the other parameters shown on this slide.

284

IMS Version 12

284

IMPORT Command Enhancements

 OPTION() controls how much command output is displayed and what
specific resources are imported

– OPTION(ABORT) will fail the IMPORT command if an error occurs while
importing a resource/descriptor

– OPTION(ALLRSP) will return a line of output for each successfully imported
resource/descriptor in the command response (valid with NAME(*))

– OPTION(UPDATE) will replace an existing resource with the one that exists
in the RDDS or repository

• Required if a resource already exists in a running IMS system, otherwise
IMPORT will fail

• Work in progress cannot exist for the resource that IMPORT is attempting
to replace with the stored definition (recommendation: stop, then query the
resource to determine whether it is currently in use)

IMPORT DEFN SOURCE()
TYPE() NAME() OPTION() SCOPE()

You can control the output displayed by the IMPORT command be specifying the OPTION() parameter accordingly.
Prior to IMS 12, the OPTION(ABORT) and OPTION(ALLRSP) were used with RDDS DRD import are now also used
with repository DRD import. OPTION(ABORT) will terminate command processing if an error occurs during import, and
OPTION(ALLRSP) will return a line of output for each resource that was exported, and is valid if NAME(*) was also
specified in the command. If individual names are specified for the NAME() parameter, a line of output will be returned
for each resource in this case as well.

A new OPTION(UPDATE) parameter has been added for IMPORT, which allows an existing runtime resource definition
to be updated with a stored resource definition being imported from either the RDDS or the repository. We will elaborate
more on this capability later in the session. Note that this parameter is not the default and must be explicitly
specified to update a resource in this way.

285

IMS Version 12

285

IMPORT Command Enhancements

 SCOPE() is a new IMPORT parameter that indicates which IMS
systems the IMPORT will apply to

– This parameter is optional

– SCOPE(ALL) will apply the IMPORT command to each active IMS in the
IMSplex

• Use care when specifying a ROUTE list since this will take precedence
over SCOPE(ALL), since IMS systems not specified on ROUTE will not
receive the command

– SCOPE(ACTIVE) means the same as SCOPE(ALL) in IMS 12 but will have
additional functionality in a future IMS release

IMPORT DEFN SOURCE()
TYPE() NAME() OPTION() SCOPE()

When you issue an IMPORT SOURCE(REPO) command, you are able to indicate with the SCOPE(ALL) parameter that
the import should be performed at each IMS system in the IMSplex.

You may be familiar with the ROUTE capability of the OM API, used to route commands to specific IMS systems.
ROUTE=ALL is recommended when SCOPE(ALL) is included. If a ROUTE list is specified (other than
ROUTE=ALL), the command is processed only by the IMS systems in the list that receive the command. Other IMS
systems that have the resources defined but are not included in the ROUTE list will not receive the command and
therefore will not be synchronized with the repository.

SCOPE(ALL) applies the import to the active IMS systems and is recommended to maintain synchronized definitions
across the IMSplex that match the repository definitions. SCOPE(ACTIVE) means the same as SCOPE(ALL) in IMS 12.

286

IMS Version 12

286

 REPOSITORY = name of the repository to be added

– Can be up to 44 characters long

– Mixed-case not supported, converted to upper-case

 REPDS1RID = primary repository index data set

 REPDS1RMD = primary repository member data set

 REPDS2RID = secondary repository index data set

 REPDS2RMD = secondary repository member data set

ADD REPOSITORY(repository-name)
REPDS1RID(primaryRID-name)
REPDS1RMD(primaryRMD-name)
REPDS2RID(secondaryRID-name)
REPDS2RMD(secondaryRMD-name)
REPDS3RID(NULL | spareRID-name)
REPDS3RMD(NULL | spareRMD-name)
AUTOOPEN(NO | YES)
SECURITYCLASS(NULL | securityclassname)

required
parameters

ADD Command

To define a user repository to the RS catalog repository, use the batch ADMIN ADD command using the syntax shown
on this slide. Here, you must specify the user repository name as well as the names of the user repository
primary/secondary index and member data sets. Note that the user repository name will be converted to upper-case if it
is specified with anything else.

287

IMS Version 12

287

ADD Command

 REPDS3RID = spare repository index data set

 REPDS3RMD = spare repository member data set

 AUTOOPEN = whether repository data sets are opened when the
repository is started (YES, default) or when a user first connects (NO)

 SECURITYCLASS = name of security class to be used for secured
repository access

– Must be 8 bytes long, left-aligned and padded with blanks if necessary

ADD REPOSITORY(repository-name)
REPDS1RID(ds1_rid_dsname)
REPDS1RMD(ds1_rmd_dsname)
REPDS2RID(ds2_rid_dsname)
REPDS2RMD(ds2_rmd_dsname)
REPDS3RID(NULL | ds3_rid_dsname)
REPDS3RMD(NULL | ds3_rmd_dsname)
AUTOOPEN(NO | YES)
SECURITYCLASS(NULL | securityclassname)

optional
parameters

This slide shows the optional parameters for the batch ADMIN ADD command. Notice that you can optionally specify
the spare repository index and member data set names here. If nothing is specified, there will be no spare as the default
is null.

You can also control whether the repository data sets you are specifying with this command are opened when the
repository is started (AUTOOPEN YES, which is the default) or when a user first connects to it (AUTOOPEN NO).

If you are going to be restricting access to the user repository, specify the name of the 8-byte security class that will be
used to restrict access here. This will override the SAF_CLASS= parameter value in the FRPCFG configuration
member, if one was specified. Alternatively, if you wish to deactivate repository security – you can specify
SECURITYCLASS(NULL) on the batch ADMIN ADD command to accomplish this. More detail regarding security
setup will be discussed later in the session, in the “Security Considerations” section.

288

IMS Version 12

288

UPDATE Command

 REPOSITORY = name of the repository to be updated

 REPDSxRID = index data set name

 REPDSxRMD = member data set name

 AUTOOPEN = determines when data sets are opened

– YES will open data sets when repository is started (default setting)
– NO will open data sets when RM first connects to the repository

UPDATE REPOSITORY(repository-name)
REPDS1RID(ds1_rid_dsname | NULL)
REPDS1RMD(ds1_rmd_dsname | NULL)
REPDS2RID(ds2_rid_dsname | NULL)
REPDS2RMD(ds2_rmd_dsname | NULL)
REPDS3RID(ds3_rid_dsname | NULL)
REPDS3RMD(ds3_rmd_dsname | NULL)
AUTOOPEN (YES | NO)
SECURITYCLASS(securityclassname | NULL)

x = 1/2/3 for primary/secondary/spare

Use the Batch ADMIN UPDATE command to modify a user repository definition within the RS catalog repository

datasets (specifically, to change the data sets, auto-open option or security class associated with a specific
repository). The only required parameter for this command is the REPOSITORY parameter. The parameters associated
with this command have the same meaning as they do when issued with the batch ADMIN ADD command.

Note that a user repository must be stopped before it can be updated. We will cover how to stop a repository later in the
session.

289

IMS Version 12

289

UPDATE Command

 SECURITYCLASS = name of security class to be used for
secured repository access

– Must be 8 bytes long, left-aligned and padded with blanks if necessary

– Default is NULL if not specified (no repository security)

UPDATE REPOSITORY(repository-name)
REPDS1RID(ds1_rid_dsname | NULL)
REPDS1RMD(ds1_rmd_dsname | NULL)
REPDS2RID(ds2_rid_dsname | NULL)
REPDS2RMD(ds2_rmd_dsname | NULL)
REPDS3RID(ds3_rid_dsname | NULL)
REPDS3RMD(ds3_rmd_dsname | NULL)
AUTOOPEN (YES | NO)
SECURITYCLASS(securityclassname | NULL)

290

IMS Version 12

290

RENAME Command

 REPOSITORY (repository-name) = existing repository name to be
changed

 REPOSITORYNEW (repository-newname) = name to replace existing
repository name

RENAME REPOSITORY(repository-name)
REPOSITORYNEW(repository-newname)

Use the batch ADMIN RENAME command to rename a user repository name defined within the RS catalog repository.

291

IMS Version 12

291

 REPOSITORY = name of the user repository to be deleted from the RS
catalog repository

 Physical data sets are not deleted

– Use the z/OS Access Method Services (IDCAMS) utility or a similar method
after issuing batch ADMIN DELETE command

DELETE REPOSITORY(repository-name)

DELETE Command

Use the batch ADMIN DELETE command to remove a user repository from the RS catalog repository. Note that once
you have deleted the user repository, you must delete its associated physical data sets in a separate step using the
IDCAMS utility or similar method.

292

IMS Version 12

292

 REPOSITORY = name of the repository whose data sets are to be changed

 RDS = number representing which repository data set pair will be changed

– 1 for RDS1

– 2 for RDS2

– 3 for RDS3

 ACTION = what disposition the specified RDS will be changed to

– SPARE will change the RDS to the spare data set within repository
• Can only be executed against an RDS with DISCARD status
• Both data sets in the RDS pair must be empty

– DISCARD will prepare an RDS to be replaced with a newly defined data set
• Repository must be stopped if primary or secondary RDS (not required for

spare)
• An RDS must have this disposition in order to be replaced

DSCHANGE Command

DSCHANGE REPOSITORY(repository-name)
RDS(1 | 2 | 3) ACTION(SPARE | DISCARD)

There are certain times when it is appropriate to change the disposition of a repository data set (RDS) to either SPARE
or DISCARD, which can be done using the batch ADMIN DSCHANGE command.

If an error occurs on the primary or secondary repository data set (RDS), recovery is driven by the Repository Server
automatically if a spare RDS is present. Once this occurs, the user must then allocate and define a new RDS to replace
the one that had the failure. This new RDS should be designated as the spare RDS, which can be done using the batch
ADMIN DSCHANGE command with ACTION(SPARE) specified. This will change the disposition of a repository data set
pair (RDS) to SPARE. More detail about recovery in the event of an RDS error will be covered later in the
session.

If you want to replace an existing RDS with a different RDS, you must first stop the repository and change the
disposition/status of the RDS to DISCARD. This can be done by issuing the batch ADMIN DSCHANGE command with
ACTION(DISCARD) specified. Once an RDS has a disposition of DISCARD, it can be replaced with a newly defined
data set.

293

IMS Version 12

293

LIST Command

 REPOSITORY = name of the repository whose details will be displayed

 STATUS = details associated with all of the user repositories defined to
the RS catalog repository

– User repository name

– User repository status

– Date of last update

– USERID that last updated user repository

LIST REPOSITORY(repository-name) | STATUS

Use the batch ADMIN LIST command to display the details of a single repository, including its status, or display all user
repository names. The information that will be shown if a user repository is specified for the REPOSITORY parameter is
listed on this slide. Note that you can also issue the command as just LIST STATUS (without specifying the
REPOSITORY parameter) to see only a list of user repository names defined to the RS catalog repository.

294

IMS Version 12

294

Offline Repository Management - Examples
* --- *
LIST REPOSITORY(IMSRSC_REPOSITORY)

Repository Name . : IMSRSC_REPOSITORY

Last updated date/time : 2010/07/27 00:52:46 USRT001
Status : STOPPED
Auto-open : YES
Security Class : NOT DEFINED

Repository Data Set pair 1
Index (RID) . . : IMSTESTS.FRP1.IMSPRI.RID
Member (RMD) . : IMSTESTS.FRP1.IMSPRI.RMD
Status : COPY1

Repository Data Set pair 2
Index (RID) . . : IMSTESTS.FRP1.IMSSEC.RID
Member (RMD) . : IMSTESTS.FRP1.IMSSEC.RMD
Status : COPY2

Repository Data Set pair 3
Index (RID) . . : IMSTESTS.FRP1.IMSSPR.RID
Member (RMD) . : IMSTESTS.FRP1.IMSSPR.RMD
Status : SPARE

FRP4750I - LIST command processing completed successfully
* -------END-OF-JOB-- *

This slide shows an example of the output that would be received from a batch ADMIN LIST command when a user
repository name is specified. Notice that you can see detailed information about this user repository, such as its status,
its auto-open value, and the different RDSs that it contains as well as their statuses (dispositions).

295

IMS Version 12

295

START Command

 Use this command after adding a repository to the RS catalog
repository with ADD command

 REPOSITORY = name of repository to be started

 OPEN = whether or not the repository data sets should be
opened/allocated when repository is started
– YES means that the data sets will be opened when it is started

– NO means that data sets will be opened when a user first attempts to
connect (unless AUTOOPEN=YES has been specified on a batch
ADMIN ADD or UPDATE command for this repository)

 MAXWAIT = how many seconds to wait for start command to
complete and which action to take when time elapsed
– Seconds

• 0-9999 valid range
• IGNORE will continue command processing and set rc=0
• CONTINUE will continue command processing and set rc=4
• ABORT will terminate command processing and set rc=8

– MAXWAIT(5,CONTINUE) is the default

START REPOSITORY(repository-name) OPEN(YES | NO)
MAXWAIT(seconds,IGNORE | CONTINUE | ABORT)

optional
parameters

Use the batch ADMIN START command to start a specific user repository, for example after it has been defined to the
RS catalog repository with the batch ADMIN ADD command. Note that with the optional OPEN() parameter, you can
override the AUTOOPEN= parameter value that was originally specified when the repository was added to or last
updated in the RS catalog repository (with batch ADMIN ADD or UPDATE commands, respectively). This parameter
value indicates whether the user repository’s RDSs will be open when it is started (with OPEN(YES)), or when a user
first connects to it (with OPEN(NO)). Note that you can only override the AUTOOPEN= parameter if it was
originally specified as AUTOOPEN=NO.

You can optionally include the MAXWAIT parameter to indicate how many seconds should elapse before a particular
action that you also specify is taken. You can specify a wait time of up to 9999 seconds and opt to have the command
continue processing with a return code of either 0 or 4, or opt to have it terminate with a return code of 8. By default, if 5
seconds has elapsed once this command has been issued, the command will continue processing and will give a return
code of 4. The specific parameter values for the MAXWAIT() syntax are shown on this slide.

296

IMS Version 12

296

STOP Command

 Use this command in preparation for updating user repository
definitions within a RS catalog repository with UPDATE command
– A stopped repository rejects connection attempts and is

deallocated/closed by the Repository Server

 REPOSITORY = name of user repository defined to the RS
catalog repository to be stopped

 MAXWAIT = how many seconds to wait for stop command to
complete and which action to take when time elapsed
– Seconds

• 0-9999 valid range
• IGNORE will continue command processing and set rc=0
• CONTINUE will continue command processing and set rc=4
• ABORT will terminate command processing and set rc=8

– MAXWAIT(5,CONTINUE) is the default

STOP REPOSITORY(repository-name)
MAXWAIT(seconds,IGNORE | CONTINUE | ABORT)

optional
parameter

Use the batch ADMIN STOP command to stop a specific user repository that is defined to the RS catalog repository. A
stopped repository will reject user connection attempts. The command also results in the repository being closed and
deallocated by the Repository Server. Note that this command has the same MAXWAIT() parameter value as the batch
ADMIN START command.

Much like a /DBR command that prevents programs and transactions from accessing a database, the batch ADMIN
STOP command, when issued with MAXWAIT(xx,IGNORE or CONTINUE), can continue processing after xx seconds
have elapsed. At this point, the command continues processing (just like the /DBR command) and a specific return code
is received, determined by whether IGNORE (rc=0) or CONTINUE (rc=4) was specified. Of course, if ABORT was
specified instead of IGNORE or CONTINUE, the command would terminate processing and a rc=8 would be received
when xx seconds has elapsed.

297

IMS Version 12

297

Example JCL
for Batch ADMIN

Commands

//FRPBAT EXEC PGM=FRPBATCH,PARM='XCFGROUP=FRP2PLEX'

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

//*

ADD REPOSITORY(IMS_REPOS) -

REPDSN1RID(IMSTESTS.REPO.IMSPRI.RID) -

REPDSN1RMD(IMSTESTS.REPO.IMSPRI.RMD) -

REPDSN2RID(IMSTESTS.REPO.IMSSEC.RID) -

REPDSN2RMD(IMSTESTS.REPO.IMSSEC.RMD) -

AUTOOPEN(NO)

//*

START REPOSITORY(IMS_REPOS) MAXWAIT(30,CONTINUE)

//*

LIST REPOSITORY(IMS_REPOS)

//*

STOP REPOSITORY(IMS_REPOS) MAXWAIT(30,CONTINUE)

//*

RENAME REPOSITORY(IMS_REPOS) REPOSITORYNEW(IMS_PROD_REPOS)

//*

UPDATE REPOSITORY (IMS_PROD_REPOS) -

REPDS1RID(IMSTESTS.PRODREPO.IMSPRI.RID) -

REPDS1RMD(IMSTESTS.PRODREPO.IMSPRI.RMD) -

AUTOOPEN(NO)

//*

DELETE REPOSITORY(IMS_PROD_REPOS)

This slide shows an example of the batch ADMIN utility which issues the commands just discussed.

298

IMS Version 12

298

ADMIN Command

 ADMIN command performs repository administrative tasks

 DSCHANGE = change the disposition of a repository data set pair

– Specify the name of the repository that contains the target data set pair

– New disposition specified by

• S for a new disposition of SPARE

• D for a new disposition of DISCARD

– The target repository data set pair is indicated by

• 1 for RDS1

• 2 for RDS2

• 3 for RDS3

F reposervername,ADMIN
DSCHANGE(repositoryname, S|D, 1|2|3)
DISPLAY(repositoryname | <blank>)
START(repositoryname)
STOP(repositoryname)

Use the z/OS modify interface ADMIN command to perform various administrative tasks. Use it with the DSCHANGE
parameter to change the disposition of a data set contained in a repository to DISCARD or SPARE status. The
circumstances under which this would be appropriate were explained in the previous section when the batch ADMIN
DSCHANGE command was covered and will also be discussed later in the session when repository data set recovery is
covered.

299

IMS Version 12

299

ADMIN Command

 DISPLAY = show the user repository names defined to the RS catalog
repository with the respective data set names they contain

– Specify the name of the repository that contains primary, secondary and
spare data set pairs

– If left blank, only a list of repository names are shown

– Similar to batch ADMIN LIST STATUS command

F reposervername,ADMIN
DSCHANGE(repositoryname, S|D, 1|2|3)
DISPLAY(repositoryname | <blank>)
START(repositoryname)
STOP(repositoryname)

Use the ADMIN command with the DISPLAY parameter to display a list of user repository names defined to the RS
catalog repository. If a repository name is specified for the DISPLAY() parameter, other details such as the RDS names
and statuses will be shown. This command is similar to the batch ADMIN LIST STATUS command.

300

IMS Version 12

300

F REPO1,ADMIN DISPLAY(IMSRSC_REPOSITORY)

/**/
/* Display the IMSRSC_REPOSITORY via the ADMIN cmd */
/* FRP2100I - ADMIN DISPLAY repository IMSRSC_REPOSITORY */
/* - Last updated date/time : USRT001 */
/* - Status : OPEN */
/* - Auto-open : YES */
/* - Security Class : NOT DEFINED */
/* FRP2101I - ADMIN DISPLAY repository RDS1: */
/* - Index (RID) . . : IMSTESTS.FRP1.IMSPRI.RID */
/* - Member (RMD) . : IMSTESTS.FRP1.IMSPRI.RMD */
/* - Status : COPY1 */
/* FRP2101I - ADMIN DISPLAY repository RDS2: */
/* - Index (RID) . . : IMSTESTS.FRP1.IMSSEC.RID */
/* - Member (RMD) . : IMSTESTS.FRP1.IMSSEC.RMD */
/* - Status : COPY2 */
/* FRP2101I - ADMIN DISPLAY repository RDS3: */
/* - Index (RID) . . : */
/* - Member (RMD) . : */
/* - Status : NONE */
/**/

ADMIN Command - Example

This slide shows an example of the output that would be received from a z/OS modify interface ADMIN,DISPLAY
command when a user repository name is specified. Notice that you can see detailed information about this user
repository, such as its status, its auto-open value, and the different RDSs that it contains as well as their statuses
(dispositions).

301

IMS Version 12

301

ADMIN Command

 START = start the specified repository

 STOP = stop the specified repository

F reposervername,ADMIN
DSCHANGE(repositoryname, S|D, 1|2|3)
DISPLAY(repositoryname | <blank>)
START(repositoryname)
STOP(repositoryname)

Use the ADMIN command with the START or STOP parameters to start and stop a repository, respectively.

302

IMS Version 12

302

AUDIT Command

 AUDIT command dynamically changes the AUDIT_LEVEL setting
originally specified in FRPCFG member

 LEVEL determines whether or not repository log records are written to
the log

– NONE deactivates writing log records

– HIGH activates writing log records

 RESTART resumes audit logging after logging was suspended due to
an error when Repository Server was initializing and trying to connect to
the log stream

– Used with AUDIT_FAIL=CONTINUE in FRPCFG member (indicates that the
Repository Server will continue starting despite an error connecting to the log
stream, but logging is suspended)

F reposervername,AUDIT LEVEL(NONE|HIGH) | RESTART

Use the AUDIT command to dynamically change the audit level setting specified on the AUDIT_LEVEL parameter in the
FRPCFG configuration member. To activate the writing of log records, specify LEVEL(HIGH) and to deactivate, specify
LEVEL(NONE).

When the Repository Server is starting and attempting to connect to the log stream, an error can occur. Depending on
what value you specified for AUDIT_FAIL in the FRPCFG member, the Repository Server can either continue starting or
can terminate. As covered in Part 1 of this session, if you specify AUDIT_FAIL=CONTINUE, logging will be suspended
in the event that the Repository Server encounters an error while attempting to connect to the log stream. You can later
activate the logging of records by issuing the z/OS modify interface AUDIT command with RESTART included.

303

IMS Version 12

303

SECURITY Command

 SECURITY command refreshes in-storage RACF profiles when
changes have been made to them

– FRPCFG member is not re-read

– Repository definitions are not re-read

 Example

F REPOSVR1,SECURITY REFRESH
FRP2105I - In-core user security profiles refreshed

F reposervername,SECURITY REFRESH

For repository security, if you need to make changes to your RACF (or SAF equivalent) definitions, they will only be
active if you refresh the RACF in-storage profiles. Use the z/OS modify interface SECURITY command to accomplish
this. The command will refresh the RACF profiles contained in storage to reflect the updated profile definitions. More
detail on when this command should be issued will be discussed later in the session in the “Security Considerations”
section.

304

IMS Version 12

304

SHUTDOWN Command

 SHUTDOWN command performs shutdown for a specified Repository
Server or all Repository Server address spaces

 ALL parameter is optional

– If included, all Repository Servers within the same XCF group as the
Repository Server specified in the command are shut down

– If not included, only the individual Repository Server will be shut down

• If the specified Repository Server is the master, one of the existing
subordinate servers will become the master

– Repository Server name specified on command can be either master or
subordinate

F reposervername,SHUTDOWN ALL

To shut down one or more Repository Server(s), issue the z/OS modify interface SHUTDOWN command. Including the
optional ALL keyword will target all Repository Servers contained within the same XCF group, whereas omitting this
keyword will just target the specified Repository Server for shutdown. If the master Repository Server is shutdown, one
of the subordinate servers will become the new master.

305

IMS Version 12

305

STOP Command

 STOP command will stop and shut down a single specified Repository
Server

– If the specified repository server is the master, one of the existing subordinate
servers will become the master

P reposervername

The z/OS modify interface STOP command is also available to shut down a single Repository Server. Here again, if the
master Repository Server is shutdown, one of the subordinate servers will become the new master.

