
600600

®

IMS Version 12

Database

601601

IMS Version 12

601601

Database Enhancements

 Dynamic Full Function Database Buffer Pools

 Miscellaneous Enhancements

 HALDB Enhancements

602602

IMS Version 12

602602

Dynamic Full Function Database Buffer Pools

603603

IMS Version 12

603603603603

Dynamic Full Function Database Buffer Pools

 IMS 12 adds dynamic buffer pool support for full function databases

– Users can dynamically manage full function buffer pools

– Buffer pool definitions can change without taking IMS down

– Application activity is internally quiesced

• Allows new buffer pools to be created

• Allows existing buffer pools to be changed or deleted

 Benefits

– Improved buffer pool management

• Provides type-2 commands for better usability

• Eliminate system down time for modifications to buffer pool definitions

• Improve application performance with improved buffer pool specifications

With IMS 12, users can add, change and delete full function buffer pools. This support is provided using new
specifications in the DFSDFxxx proclib member in conjunction with the UPDATE POOL command. With this support, full
function buffer pools can be managed without restarting IMS. IMS is able to internally quiesce application read and
update activity to allow the UPDATE POOL command to complete with very little disruption to transaction workloads.
Finally, with the ability to dynamically update full function buffer pool specifications, there can be better application
performance when the buffer pools are sufficient to avoid unnecessary I/O.

604604

IMS Version 12

604604604

Overview of Dynamic Full Function Dynamic Buffer Pools

IMS Proclib

DFSVSMxx

POOLID=VCCC
2048,10000
4096,10000

System Initialization

2048,10000
4096,10000

IMS CONTROL REGIONIMS CONTROL REGION

UPDATE POOL TYPE(DBAS) SECTION(VSAM111)

IMS Proclib

DFSDFxxx

<SECTION=VSAM111>
POOLID=VCCC

2048,30000
4096,30000

Define OSAM and VSAM Changes in DFSDFxxx

2048,30000
4096,30000

IMS CONTROL REGIONIMS CONTROL REGION

1

2

3

At system initialization, the full function buffer pool specifications are loaded from the DFSVSMxx member in the IMS
PROCLIB data set. These buffer pool specifications can be changed dynamically by specifying new definition
sections for OSAM and VSAM in the DFSDFxxx member of the IMS PROCLIB data set. An UPDATE POOL
TYPE(DBAS) SECTION(OSAMxxx,VSAMxxx) must be issued to bring these full function buffer pool definitions into
affect. These dynamic changes are retained across an Emergency Restart because they are stored in the Restart
Data Set. However, the changes are lost with a subsequent Cold or Warm Start. To make the changes permanent, it
is necessary to change the DFSVSMxx proclib member, too.

605605

IMS Version 12

605605605605

Full Function Database Buffer Pools (Prior to IMS 12)

 VSAM and OSAM definitions stored only in DFSVSMxx proclib member

• IMS processes DFSVSMxx once during system initialization

• No facility to change buffer pool definitions with online commands

• Buffer pool modifications required an IMS system restart

In IMS 11 and earlier releases, the VSAM and OSAM buffer pool definitions were only stored in the DFSVSMxx proclib
member. This member is only loaded once during IMS initialization. There is no facility to change the buffer pool
definitions without changing the DFSVSMxx member in proclib and restarting IMS.

606606

IMS Version 12

606606606

VSAM Buffer Pools (as Defined in DFSVSMxx)

 VSAM Buffer Pool Specification

– POOLID= (One for each shared resource pool)

id, (shared resource pool user id)

FIXDATA=NO|YES, (long-term page-fixing -- Data)

FIXINDEX=NO|YES, (long-term page-fixing -- Index)

FIXBLOCK=NO|YES, (long-term page-fixing – I/O Control Blocks)

STRINGNM=n (max VSAM I/O requests concurrently active)

– VSRBF= (One/more to define subpools within shared pool)

buffersize, (buffer size for subpool)

number of buffers, (Number of buffers in this subpool)

type, (Index (I) subpool vs. Data (D) subpool)

HSO|HSR, (Specifies action if Hiperspace unavailable)

HSn (Number of hiperspace buffers for subpool)

606

In the DFSVSMxx proclib member, there are three parts to the VSAM buffer pool specification: 1) POOLID, 2) VSRBF,
and 3) DBD. These are the keywords for the POOLID and VSRBF statements.

607607

IMS Version 12

607607607

VSAM Buffer Pools (as Defined in DFSVSMxx)

 VSAM Buffer Pool Specification (Continued)

– DBD= (Optionally assigned to POOLID shared pool id)

DBDname((DBD from NAME= keyword on DBD macro)

dataset number, (Specific data set of data set group)

id, (Shared resource pool identifier)

ERASE=YES|NO, (Treatment of deleted logical records)

FREESPACE=NO|YES) (Treatment of defined free space % in KSDS)

 Example VSAM Specification in DFSVSMxx:
POOLID=VCCC

VSRBF=2048,8000,I

VSRBF=2048,26000,D

VSRBF=4096,32000,D

VSRBF=8192,104000,I

DBD=PVHDJ5B(B,VCCC,ERASE=YES,FREESPACE=YES)

607

These are the keywords for the DBD statement which allows a DBD to be assigned to a specific POOLID.

608608

IMS Version 12

608608608

OSAM Buffer Pools (as Defined in DFSVSMxx)

 OSAM Buffer Pool Specification

– IOBF= (One for each OSAM subpool definition)

length, (length of buffers in subpool)

number, (number of buffers in subpool)

fix1, (long-term page-fixing – buffers + prefixes)

fix2, (long-term page-fixing – prefixes + headers)

id, (subpool identifier)

co (caching option)

– DBD= (Optionally assigned to POOLID shared pool id)

DBDname((DBD from NAME= keyword on DBD macro)

dataset number, (Specific data set of data set group)

id) (Subpool identifier)

 Example OSAM Specification in DFSVSMxx
IOBF=(8192,8000,N,N,OCCC)

DBD=POHIDKA(B,OCCC)
608

In the DFSVSMxx proclib member, the OSAM Buffer Pool specifications have two statements: 1) IOBF, and 2) DBD.

609609

IMS Version 12

609609609

Dynamic Full Function Database Buffer Pools

609

With IMS 12, there is a new feature for dynamically adding, updating and deleting VSAM and OSAM buffer pools. The
initial VSAM and OSAM buffer pool specifications still exist in the DFSVSMxx proclib member and they are loaded
during normal restart. However, new VSAM and OSAM buffer pools can be added and existing buffer pools can be
changed using specifications in one or more DFSDFxxx proclib members in conjunction with the type-2 UPDATE POOL
command.

610610

IMS Version 12

610610610

Full Function Database Buffer Pools (DFSDFxxx)

 Buffer Pool Specifications use <SECTION=section_name>

– <SECTION=OSAMxxx>

• IOBF =(bufsize,bufnum,fix1,fix2,id,co)

• DBD=(DBDname,dsid,id)

– or, DBD(DBDname,dsid,id)

– <SECTION=VSAMxxx>

• POOLID=(id,FIXDATA=,FIXINDEX=,FIXBLOCK=,STRINGNM=,

VSRBF=(buffersize,buffer number,type,HSO|HSR,HSn))

• DBD=(DBDname,dataset number,id,ERASE=,FREESPACE=)

– Or, DBD(DBDname,dataset number,id,ERASE=,FREESPACE=)

610

The OSAM buffer pool specifications in the DFSDFxxx proclib member are under Section headings. For example, the
OSAM section is <SECTION=OSAMxxx> where xxx is any alphanumeric characters. Similarly, the VSAM buffer pool
specifications are under the section heading <SECTION=VSAMxxx>.

611611

IMS Version 12

611611611

VSAM Buffer Pools (Changed Specification)

 VSAM Buffer Pool Specification Example

– Example VSAM Specification in DFSVSMxx:

POOLID=VCCC

VSRBF=2048,8000,I

VSRBF=2048,26000,D

VSRBF=4096,32767,I,HSO,HS40000

VSRBF=8192,32767,I,HSR,HS40000

DBD=PVHDJ5B(B,VCCC,ERASE=YES,FREESPACE=YES)

– Example of changed VSAM Specifications in DFSDFxxx
<SECTION=VSAMEXM>

POOLID=(VCCC,

VSRBF=(2048,12000,I),

VSRBF=(2048,12000,D),

VSRBF=(4096,32767,I,HSO,HS80000),

VSRBF=(8192,32767,I,HSR,HS80000))

DBD=(PVHDJ5B,B,VCCC,ERASE=YES,FREESPACE=YES)
611

This example shows the VSAM buffer pool specifications in DFSVSMxx and how they could be dynamically changed
using buffer pool specifications in the DFSDFxxx proclib member in IMS 12 together with the UPDATE command.

612612

IMS Version 12

612612612

OSAM Buffer Pool (Changed Specification)

 OSAM Buffer Pool Specification Example

– Example OSAM Specification in DFSVSMxx:

IOBF=(8192,8000,N,N,OCCC)

DBD=POHIDKA(B,OCCC)

– Example of changed OSAM Specification in DFSDFxxx
<SECTION=OSAMEXM>
IOBF=(8192,12000,N,N,OCCC)
DBD=(POHIDKA,B,OCCC)

612

This example shows the OSAM buffer pool specifications in DFSVSMxx and how they could be dynamically changed
using buffer pool specifications in the DFSDFxxx proclib member in IMS 12 together with the UPDATE command.

613613

IMS Version 12

613613613

DFSDFxxx Considerations

 Multiple DFSDFxxx proclib members may be used

– DFSDFMON

– DFSDFTUE

 DFSDFxxx may have multiple section definitions
<SECTION=OSAMMON>
IOBF=(8192,8000,N,N,OAAA)
DBD=(POHIDKA,B,OAAA)
<SECTION=VSAMMON>
POOLID=(VAAA,

VSRBF=(4096,32000,I,HSO,HS10))
DBD=(PVHDJ5B,B,VAAA,ERASE=YES,FREESPACE=YES)
<SECTION=OSAMTUE>
IOBF=(8192,104000,N,N,OBBB)
DBD=(POHIDKA,B,OBBB)
<SECTION=VSAMTUE>
POOLID=(VBBB,

VSRBF=(4096,10320,I,HSO,HS10))
DBD=(PVHDJ5B,B,VBBB,ERASE=YES,FREESPACE=YES)

613

The VSAM and OSAM buffer pool specifications can be placed into different DFSDFxxx members in proclib since the
UPDATE POOL command allows the user to specify the MEMBER keyword identifying the suffix of the DFSDFxxx
proclib member in the proclib data set. Alternatively, the user can specify multiple VSAM and OSAM sections within
one or more DFSDFxxx members.

614614

IMS Version 12

614614614

UPDATE POOL Command Support

 UPDATE POOL Commands used to Add and Change buffer pools

– Add and Change Commands:

• Add or Change VSAM or OSAM buffer pool definitions:
– UPDATE POOL TYPE(DBAS) SECTION(OSAMxxx)

– UPDATE POOL TYPE(DBAS) SECTION(VSAMxxx)

• Or in one command:
– UPDATE POOL TYPE(DBAS) SECTION(OSAMxxx,VSAMxxx)

• Add or Change definitions in an alternate DFSDFyyy proclib member
– UPDATE POOL TYPE(DBAS) SECTION(OSAMxxx) MEMBER(yyy)

– Example: Add (8) 8K OSAM buffers, (24) 8K VSAM buffers

– DFSDFxxx
<SECTION=OSAMMON>
IOBF=(8192,8000,N,N,OAAA)
<SECTION=VSAMMON>
POOLID=(VAAA,VSRBF=(8192,24000,I))

– Issue: UPDATE POOL TYPE(DBAS) SECTION(OSAMMON,VSAMMON)
614

The ability to add or change VSAM and OSAM buffer pools requires both the DFSDFxxx proclib member specifications
along with the type-2 UPDATE POOL command identifying the statement sections. The UPDATE POOL command can
be issued individually for specific VSAM and OSAM sections, or the command can be issued for both VSAM and OSAM
sections in the same command. The UPDATE POOL command can also reference a specific DFSDFxxx proclib
member in the proclib data set using the MEMBER(yyy) keyword. In this case, yyy is the suffix used in DFSDFyyy. The
default for yyy is 000.

615615

IMS Version 12

615615615

Deleting VSAM Buffer Pools

 UPDATE POOL Commands required to Delete subpools

– Deleting VSAM Subpool:

• Specify a POOLID=() statement with a bufnum parm of 0

• UPDATE POOL TYPE(DBAS) SECTION() activates subpool deletion

• Example: Delete VSAM 4K subpool
– DFSDFxxx

<SECTION=VSAMTUE>
POOLID=(VBBB,

VSRBF=(4096,0)
VSRBF=(8192,20000))

– Command issued:

• UPDATE POOL TYPE(DBAS) SECTION(VSAMTUE)

615

It is possible to delete a VSAM buffer pool by specifying a POOLID in a VSAM section with the VSRBF statement for the
size of the buffer and a “0” for the number of buffers. The UPDATE POOL command is needed to complete the deletion
of the VSAM buffer pool.

The database data set association with a subpool is established when the database data set is opened. If there is a
database data set using a subpool that is to be deleted, the UPDATE POOL command must wait until the access to the
subpool is completed before it can delete the subpool.

When the subpool is deleted, there is no association between the subpool and the database data set and the database
data set can be associated with a new subpool by simply creating a new DBD= statement.

616616

IMS Version 12

616616616

Deleting OSAM Buffer Pools

 UPDATE POOL Commands required to Delete buffer pools

– Deleting OSAM Buffer Pool:

• Specify a IOBF=() statement with a bufnum parm of 0

• UPDATE POOL TYPE(DBAS) SECTION() activates subpool deletion

• Example: Delete OSAM 4K subpool
– DFSDFxxx

<SECTION=OSAMTUE>
IOBF=(4096,0,N,N,OCCC)

– Command issued:

• UPDATE POOL TYPE(DBAS) SECTION(OSAMTUE)

616

It is possible to delete an OSAM buffer pool by specifying the IOBF statement in the OSAM section using “0” for the
number of buffers. The UPDATE POOL command is needed to complete the deletion of the OSAM buffer pool.

As with VSAM, the database data set association with a subpool is established when the database data set is opened. If
there is a database data set using a subpool that is to be deleted, the UPDATE POOL command must wait until the
access to the subpool is completed before it can delete the subpool.

When the subpool is deleted, there is no association between the subpool and the database data set and the database
data set can be associated with a new subpool by simply creating a new DBD= statement.

617617

IMS Version 12

617617617

Querying VSAM and OSAM Buffer Pools

617

The QUERY POOL command is used to query information about the new and changed VSAM and OSAM buffer pools.
The user can specifically limit the output to: 1) OSAM or VSAM buffer pools, 2) buffers of a particular size, or 3) specific
pool ids. The options for the SHOW allows the user to show only statistical information that is similar to the current /DIS
POOL DBAS command. Alternatively, the user can show the proclib member information used to add or update a buffer
pool specification. It is also possible to show both statistical and member information using the ALL parameter.

618618

IMS Version 12

618618618

Querying VSAM and OSAM Buffer Pools (Example)

 QUERY POOL Commands Query Example 1:

• QRY POOL TYPE(DBAS) SUBTYPE(OSAM,VSAM)

Response for: QRY POOL TYPE(DBAS) SUBTYPE(OSAM,VSAM)

Subpool MbrName CC BufSize PoolId NBuf ProcMbr Section FixOpt

OSAM IMS1 0 512 10000 DFSDFGS1 OSAM001 N/N

OSAM IMS1 0 1024 OSM1 16000 DFSDFGS1 OSAM001 N/N

VSAM-D IMS1 0 1024 VSM1 20000 DFSVSMGS N/Y/N

VSAM-I IMS1 0 512 VSM1 30000 DFSDFGS1 VSAM001 N/N/N

• Note: Some columns not shown

618

This example shows both VSAM and OSAM buffer pool specifications. It shows the proclib members used to create the
various buffer pools and the VSAM and OSAM sections within each proclib member. There were other columns in the
output of this command that are not shown here. There are: 1) LctReq/Rrba, 2) NewBlk/Rkey, 3) AltReq/BfAlt, 4)
PurgRq/Nrec, 5) FndIpl/SyncPt,) BfSrch/VRds, 6) RdReq/Found, 7) BfStlW/VWts, 8) PurgWr/HSR-S, 9) WBsyId/HSW-
S, 10) WBsyWr/HSNBuf, 11) WBsyRd/HS-R-F, 12) WRlseO/HS-W-F, and 13) NumErrors.

It should be noted that the /DIS POOL DBAS command will also show the dynamically added buffer pools.

619619

IMS Version 12

619619619

Querying VSAM and OSAM Buffer Pools (Example)

 Type-2 Commands Query Example 2:

• QRY POOL TYPE(DBAS) POOLID(VSM1) SIZE(1024)

Response for: QRY POOL TYPE(DBAS) POOLID(VSM1) SIZE(1024)

Subpool MbrName CC BufSize PoolId NBuf ProcMbr Section FixOpt

VSAM-D IMS1 0 1024 VSM1 8000 DFSVSMGS N/N/N

• Note: Some columns not shown

619

This example shows how the QUERY POOL command can be limited to a specific POOLID and a specific buffer pool
size. There were other columns in the output of this command that are not shown here. There are: 1) LctReq/Rrba, 2)
NewBlk/Rkey, 3) AltReq/BfAlt, 4) PurgRq/Nrec, 5) FndIpl/SyncPt,) BfSrch/VRds, 6) RdReq/Found, 7) BfStlW/VWts, 8)
PurgWr/HSR-S, 9) WBsyId/HSW-S, 10) WBsyWr/HSNBuf, 11) WBsyRd/HS-R-F, 12) WRlseO/HS-W-F, and 13)
NumErrors.

620620

IMS Version 12

620620620

UPD POOL TYPE(DBAS) Command Execution

 UPD POOL TYPE(DBAS) can not be Cancelled or Aborted

– Two execution possibilities:

1) UPD command completes before SPOC Timeout

– Reason codes (displayed in SPOC) show results of command
changes

2) UPD command completes after SPOC Timeout

– Use QRY POOL TYPE(DBAS) commands to determine

OR….

– Use OM Audit Trail to determine changes made

• Token “rqsttkn1” ties issued commands to command responses

– Command may produce unintended or partial results

620

The UPD POOL TYPE(DBAS) command can not be cancelled or aborted once it is issued. There are two execution
possibilities for this command. It can complete before the TSO SPOC timeout occurs or it can complete after the TSO
SPOC timeout occurs. When the TSO SPOC timeout has occurred, the UPD POOL TYPE(DBAS) command continues
to run in the background. If the UPD POOL TYPE(DBAS) command completes prior to the TSO SPOC timeout, then the
results are shown on the TSO SPOC with reason codes next to each requested change. If the command completes
after the TSO SPOC timeout, a series of targetted QRY POOL TYPE(DBAS) commands can be issued to determine the
success or failure of the requested changes. It is also possible to use the OM Audit Trail to determine which changes
succeeded, which changes failed, and which changes succeeded partially. The token “rqsttkn1” can be used to tie the
commands in the OM Audit Trail to the command responses. The next several charts explain some issues with this
command and how the command result might have unintended or partial results.

621621

IMS Version 12

621621621

Effect of Long-Running BMPS on UPD POOL Command

 Long-running BMP can prevent UPD POOL TYPE(DBAS) completion

– Two execution possibilities:

1) Subpool is eventually freed up for change:

– OSAM waits for target subpool to be “Not Owned”

• See OSAM Buffer Pool Quiesce Processing

– VSAM waits for DL/I activity to reach commit points

• Note: All PSTs with affected subpools held until UPD completes

• Advised to spread databases across multiple subpools

• See VSAM Buffer Pool Quiesce Processing

2) Subpools are not “freed up” for change

– UPD command waits indefinitely

621

A long-running BMP can affect the ability of an UPD POOL TYPE(DBAS) command to complete since it can not be
cancelled or aborted. There are two execution possibilities: 1) The subpool is eventually freed up by the BMP and the
command can complete, and 2) the subpool is not “freed up” by the BMP and the UPD POOL TYPE(DBAS) command
waits indefinitely for the subpool to become available for the change. OSAM and VSAM have different mechanisms for
“freeing up” the target subpool and these are described in the more detail by the charts entitled “OSAM Buffer Pool
Quiesce Processing” and “VSAM Buffer Pool Quiesce Processing” respectively. At a high level, OSAM waits for the
target subpool to become “unowned”, while VSAM waits for DL/I activity for the target subpool to reach commit points. It
should be noted that since there is no timeout for this command, all PSTs with subpools affected by this command will
wait until the UPD POOL TYPE(DBAS) command completes. Spreading database data sets across many subpools will
tend to lessen the impact of a change to any one of these subpools.

622622

IMS Version 12

622622622

UPD POOL TYPE(DBAS) can Have Partial Success

 UPD POOL TYPE(DBAS) change requests are processed Serially

– UPD command can have partial success and partial failures

– Failed changes can be located anywhere in update sections

– Determining partial success and failure of command:

• Two possibilities:

1) Failure occurred prior to SPOC Timeout

2) Failure occurred after SPOC Timeout

622

There can be multiple change requests in a OSAM or VSAM section. The UPD POOL TYPE(DBAS) command
processes the change requests serially. When the UPD POOL TYPE(DBAS) command is completed, the results may
be total success, partial success, or total failure. There are two ways to determine whether an UPD POOL TYPE(DBAS)
command worked and they depend on whether the command completed before or after the TSO SPOC timeout.

623623

IMS Version 12

623623623

UPD POOL TYPE(DBAS) can Have Partial Success

 Failures occurred Prior to SPOC Timeout

– Reason codes are displayed on SPOC

623

CC CCText Code

x’EA’ Dynamic buffer pool failure N/A

x’EB’ Resource unable to be quiesced N/A

x’EC’ Reduced buffer allocation ICC_REDBUF

x’ED’ Minimum buffer allocation ICC_MINBUF

x’1C0’ Poolid error in DFSDFxxx member ICC_POOLID

x’1C1’ DBD error in DFSDFxxx member ICC_INVDBD

x’1C2’ Lock request failed ICC_LOCKFAIL

When the UPD POOL TYPE(DBAS) command completes before the SPOC timeout, then reason codes are displayed
next to each change indicating whether the change request was completely or partially successful or whether the
change request failed.

624624

IMS Version 12

624624624

UPD POOL TYPE(DBAS) can Have Partial Success

 Failures occurred After SPOC Timeout

– SPOC no longer available to show reason codes

– Use targetted QRY POOL TYPE(DBAS) commands

• Determine which changes were made partially or completely

624

When the UPD POOL TYPE(DBAS) command completes after the SPOC timeout, then the TSO SPOC is no longer
available to display the reason codes for each change requested by the command. In this event, a series of targetted
QRY POOL TYPE(DBAS) commands can be issued to show how each change request was performed.

625625

IMS Version 12

625625625

Satisfying UPD POOL Command if Storage is Unavailable

 When UPD POOL TYPE(DBAS) can not satisfy storage request

– IMS attempts to complete command with “less storage” than requested

• OSAM

– Attempts to allocate a smaller amount of storage

• First attempt is 90% of requested amount

• Second attempt is another smaller percentage

• Threshold is reached at 4 buffers

• VSAM

– Attempts to allocate a smaller amount of storage

• First attempt is 50% of requested amount

• Second attempt is another smaller percentage

• Threshold is reached at 3 buffers

– Reason codes indicate requested storage was reduced

• x’EC’ = ICC_REDBUF = Reduced buffer allocation

625

There are circumstances where the storage requested by the UPD POOL TYPE(DBAS) command can not be satisfied.
Since IMS can not cancel or abort the command, it attempts to find the next best “working solution” to satisfy the UPD
POOL TYPE(DBAS) command which means less storage for each requested subpool change. For OSAM, IMS will
attempt to find a smaller amount of storage. The first attempt will be for 90% of the requested amount. If this is still
unavailable, IMS continually tries to find a slightly smaller amount until the threshold of 4 buffers is reached. For VSAM,
IMS will also try to find a smaller amount of storage to satisfy the change requested by the UPD POOL TYPE(DBAS)
command. The first attempt will be for 50% of the requested amount of storage. The second attempt will be for a slightly
smaller amount until the threshold of 3 buffers is reached. For both OSAM and VSAM, the x’EC’ reason code will be
displayed indicating that a reduced buffer allocation was needed to satisfy the UPD POOL TYPE(DBAS) command.

626626

IMS Version 12

626626626

VSAM Buffer Pool Quiesce Processing

 Activity against affected subpools is quiesced, subpool is destroyed

– IMS looks at PSTs to find PSBs with intent (read or update) on databases

• If intent found, PST is quiesced at commit point

– When all PSTs are quiesced

• Buffer pools are purged

• Open database data sets are closed and reopened

• New applications with sensitivity to database
– Held until UPDATE POOL command completes

– Applies to both READ and UPDATE access

• Old subpool is deleted and new subpool is created

– Assigning a database data set to a new pool

• Will not trigger quiesce processing

– No TIMEOUT parameter for UPDATE POOL command

• No ability to interrupt the command once issued

626

For VSAM, when the UPDATE POOL command is issued to add, change or delete one or more VSAM buffer pools, IMS
must internally quiesce application activity against the affected buffer pools. The UPDATE POOL command must wait
until all update activity has been committed and hardened to the database data sets. During quiesce processing, IMS
looks at each PST to determine if it has read or update intent on a database affected by the UPDATE POOL command.
If intent is found, the PST is quiesced at the next commit point. When all of the PSTs are quiesced, the buffer pools are
purged to DASD. All open database data sets affected by the UPDATE POOL command are closed and reopened.
When the UPDATE POOL command is in process, new applications with either READ or UPDATE intent are forced to
wait until the command completes before they can use the desired VSAM buffer pool. Once the UPDATE POOL
command has control of the affected buffer pool, it destroys the old buffer pool and creates the new buffer pool using the
new specifications. If the only change is to assign a database data set to a new buffer pool, IMS will not perform quiesce
processing. Unlike the DB QUIESCE command, there is no TIMEOUT parameter for the UPDATE POOL command.
Once the command is issued, there is no way to interrupt it until it completes.

627627

IMS Version 12

627627627

OSAM Buffer Pool Quiesce Processing

 When subpool ownership goes to zero, subpool is destroyed

– Applications can own one OSAM (or VSAM) buffer at a time

– UPDATE POOL command quiesces buffers

• Only after application ownership of buffer goes to zero

– After buffer is quiesced

• Applications must wait for buffer to be reconfigured

– Buffer reconfiguration causes:

• Subpool to be purged and altered buffers to be committed

• Subpool and buffer prefixes are released

• Fixed pages and CF resources are released

• Local cache is released

• Sequential Buffers are invalidated

– After reconfiguration of buffers

• Applications requesting buffer resume processing

627

For OSAM, when the UPDATE POOL command is issued to add, change or delete one or more OSAM buffer pools,
IMS must wait for the use of the affected buffers by applications to go down to zero. Before the usage count is zero,
applications can use the buffers affected by the UPDATE POOL command. Once the usage count goes to zero, the
buffer can be reconfigured. The reconfiguration process starts by purging the subpools causing any altered buffers to be
committed. This causes the subpools, the buffer prefixes, the fixed pages, the CF resources and the local cache to be
release. It also causes the Sequential Buffers to be invalidated. After the reconfiguration of the buffers is complete,
applications may request the affected buffers and resume processing.

628628

IMS Version 12

628628628

Buffer Pool Statistics and Database Data Set Reassignment

 Buffer Pool statistic handling differs for VSAM and OSAM

– VSAM statistics are reset

• Old statistics are not carried over

– OSAM statistics are accumulated

• Old statistics are carried over

 Database data set reassignment

– OSAM

• Reassignment occurs after database data set is closed and reopened

• Close of data set is explicit (not part of command)

– VSAM

• Reassignment occurs after database data set is closed and reopened

• Close of data set is implicit (if target subpool is also changed)
– If no change to target subpool, close of data set is explicit

628

The buffer pool statistics are handled differently for VSAM and OSAM following an UPDATE POOL command. For
VSAM, the buffer pool statistics are reset and the old statistics are not carried over. It is advisable to do a QUERY
POOL for the VSAM buffer pool statistics prior to issuing the UPDATE POOL command. The OSAM statistics are
carried over and are not reset with the UPDATE POOL command.

When a database data set is reassigned from one buffer pool to a different buffer pool, the database data set must be
closed and reopened. For OSAM, the closing and reopening of the database data set must be done explicitly. In other
words, it is not performed as part of the UPDATE POOL command. For VSAM, the database data set must also be
closed and reopened. However, if there is a corresponding change to the target buffer pool along with the reassignment
of the database data set (ex. Increase in buffers), then the closing and opening of the database data set is done
implicitly by the UPDATE POOL command.

629629

IMS Version 12

629629629

Initialization and IMS Restart for Buffer Pools

 Buffer Pool Initialization

– During IMS initialization, buffer pools are created using DFSVSMxx

– Buffer pools are dynamically modified using DFSDFxx and UPDATE POOL

 IMS Restart

– Committed buffer pool changes are written to Restart Data Set (RDS)

• Emergency Restart will restore buffer pools using RDS

• Normal Restart will initialize buffer pools from DFSVSMxx

– XRF Takeover load committed changes from RDS

– RSR and FDBR do not track committed changes

 Log Records

– UPDATE command changes are logged with x’22’ record

• Log record is for information only

• Non-recoverable command

629

As in IMS 11 and earlier versions, the buffer pools are initially created during IMS initialization using the buffer pool
definitions in the DFSVSMxx proclib member. These specifications are also read during a normal restart of IMS. In IMS
12, full function buffer pools can be added or changed using VSAM and OSAM definitions specified in the DFSDFxxx
proclib members in conjunction with the UPDATE POOL command identifying the sections containing the new and
changed buffer pool specifications.

IMS stores the new and changed buffer pool specifications in the Restart Data Set (RDS) and during an emergency
restart, IMS restores these definitions from the RDS. The RDS is also used to restore definitions during an XRF
takeover. However, RSR and FDBR do not read the RDS and therefore can not restore the new and changed buffer
pool specifications. FDBR has its own buffer pools and they are not affected by this new feature. If an UPDATE POOL
command is issued for RSR or FDBR, it is ignored.

The UPDATE POOL command logs information in the x’22’ log record for information purposes only. The UPDATE
POOL command itself is non-recoverable.

630630

IMS Version 12

630630630630

Dynamic Full Function Database Buffer Pools Summary

 IMS 12 adds dynamic buffer pool support for full function databases

 Users can dynamically manage full function buffer pools

 Buffer pool definitions can change without taking IMS down

 For VSAM, application activity is internally quiesced at commit

 For OSAM, buffer activity is quiesced when application usage is zero

 Benefits

– Improved buffer pool management

• Provides ability to change specifications dynamically for better usability

• Eliminate system down time for modifications to buffer pool definitions

With IMS 12, users can add, change and delete full function buffer pools. This support is provided using new
specifications in the DFSDFxxx proclib member in conjunction with the UPDATE POOL command. With this support, full
function buffer pools can be altered without restarting IMS. IMS is able to internally quiesce application update activity
to allow the UPDATE POOL command to complete with very little disruption to transaction workloads.

631631

IMS Version 12

631631

Miscellaneous Database Enhancements

 Miscellaneous Enhancements
– Display status of randomizers and partition selection exit routines

– Retry after lock timeouts

– Improved information with lock timeouts

– Batch Data Sharing Abend Elimination

– Increased VSAM pools from 16 to 255

– CA Reclaim Support

– New command codes for sequential search

– CICS threadsafe support

– IRLM 2.3

632632

IMS Version 12

632632

Miscellaneous Database Enhancements

 Miscellaneous Enhancements
– Reuse of Local DMB Numbers

– Display status of randomizers and partition selection exit routines

– Retry after lock timeouts

– Improved information with lock timeouts

– Batch Data Sharing Abend Elimination

– RACF userid in Data Capture batch log records

– Increased VSAM pools from 16 to 255

– Temporary close of VSAM data sets when acquiring new extents

– Elimination of OSAM U0080 Open/Close/EOV Abends

– DFS993 sent to system console

– CA Reclaim Support

– New command codes for sequential search

– CICS threadsafe support

– IRLM 2.3

633633

IMS Version 12

633633

Reuse of Local DMB Numbers

 IMS creates controls blocks for each database in the system

– Created by DATABASE macro or CREATE DATABASE command

– There is a limit of 32,767 of these control blocks

 IMS 12 allows these numbers to be reused

– After a database definition has been deleted by DRD or Online Change

• Previous versions did not reuse the numbers

 Benefit

– Cold start of IMS is not required when these numbers reach 32,767

The local database number (DMB number) is an internal value assigned by IMS when a database is defined to an IMS
online system. Prior to IMS 12, this local database number is never reused when its database is deleted by online
change or DRD. A cold start is required when the local database number reaches the limit of 32K-1. In IMS 12 the local
database numbers deleted by online change or DRD can be reused when databases are added by online change or
DRD.

This change only affects local DMB numbers. Global DMB numbers are reused in previous versions of IMS. A global
DMB numbers is assigned to a database when it is registered with DBRC. The reuse of global DMB numbers was
introduced in IMS 9.

634634

IMS Version 12

634634

Status Messages for DB Exit Routines

 Status message issued for randomizer when (P)HDAM database is
opened by command

DFS2842I RANDOMIZER name FOR database IS LOADED|SHARED

• ‘LOADED’ appears when routine is loaded from library

• ‘SHARED’ appears when routine is already resident due to use by another
database

 Status message issued for randomizer when (P)HDAM database is
closed by command

DFS2838I RANDOMIZER name FOR database IS DELETED AND
GONE|SHARED

• ‘GONE’ appears when routine is deleted from memory

• ‘SHARED’ appears when routine remains in memory and used by another
database

If an HDAM or PHDAM database is opened as the result of a command, message DFS2842I is issued. Either LOADED
or SHARED appears in the message. LOADED appears when the routine is loaded as a result of the open of the
database. SHARED appears when the routine is already in memory due to its use by another database. When the
database is closed as the result of a command, either GONE or SHARED appears in the message. GONE appears
when the routine is deleted from memory. SHARED appears when the routine remains in memory due to its use by
another database.

The DFS2842I message is issued for full function databases as a result of the following commands:
/START DB dbname OPEN
UPDATE DB NAME(dbname) START(ACCESS) OPTION(OPEN)

The DFS2838I message is issued for full function databases as a result of the following commands:
/DBR DB dbname
/DBD DB dbname
/STO DB dbname
/STA DB dbname
UPDATE DB NAME(dbname) STOP(ACCESS\UPDATES\SCHD)
UPDATE DB NAME(dbname) START(ACCESS)

The dbname in these commands may be a HALDB partition name.

635635

IMS Version 12

635635

Status Messages for DB Exit Routines

 Status message issued for partition selection exit routine when HALDB
database is opened or closed by a command

DFS2406I THE HALDB PARTITION SELECTION EXIT ROUTINE rname
FOR THE HALDB dbname IS LOADED|GONE|SHARED

• ‘LOADED’ appears when routine is loaded from library

• ‘GONE” appears when the routine is deleted from memory

• ‘SHARED’ appears when routine is already resident or remains in memory
due to use by another database

 Benefit

–Allows users to easily determine that an exit routine has been unloaded or a
new one has been loaded when replacing the exit routine

If a HALDB database uses a partition selection exit routine the DFS2406I message is issued when the database is
opened or closed as the result of a command. When the database is opened, either LOADED or SHARED appears in
the message. LOADED appears when the routine is loaded as a result of the open of the database. SHARED appears
when the routine is already in memory due to its use by another database. When the database is closed, either GONE
or SHARED appears in the message. GONE appears when the routine is deleted from memory. SHARED appears
when the routine remains in memory due to its use by another database.

Commands which might cause the DFS2406I message to be issued include:
/START DB HALDBmaster OPEN
UPDATE DB NAME(HALDBmaster) START(ACCESS) OPTION(OPEN)
UPDATE DB NAME(HALDBmaster) STOP(ACCESS|UPDATES|SCHD)
/DBR DB HALDBmaster
/DBD DB HALDBmaster

These messages are especially useful when replacing a shared exit routine. They clearly indicate if the old routine has
been deleted and if a new routine has been loaded.

636636

IMS Version 12

636636

Retry After Lock Timeouts

 Transaction is retried after a U3310 lock timeout abend

– Exceptions for IFP, CPI-C driven programs, and protected conversations

• These messages are discarded

– Retry can be overridden by DFSNDMX0 exit routine

– Previous IMS versions always discarded input message after a timeout

• Unless DFSNDMX0 indicated that a retry should be done

 Benefit

– Default is to attempt to process the input message

Lock timeouts occur when the IRLM is used as the lock manager and the IMS LOCKTIME value is exceeded.
Installations may choose whether lock timeouts produce a ‘BD’ status code for the DL/I call or a U3310 abend. Previous
versions of IMS discarded the input message if a transaction was abended due to a lock timeout. In this case, there
was no retry of the transaction. The Non-Discardable Messages exit routine (DFSNDMX0) may be used to override the
discard decision. There is no retry for IFP regions, CPI-C driven applications, and protected conversations. IFP region
messages are not retried for performance reasons. CPI-C driven applications receive messages directly from APPC-
MVS and IMS does not manage the messages. The RRMS context token in no longer valid after the abend of an RRS
protected conversation.

IMS 12 changes the default processing after a U3310 due to a lock timeout. With IMS 12 the input message is not
discarded and the transaction is retried. This may be changed by the Non-Discardable Messages exit routine
(DFSNDMX0).

637637

IMS Version 12

637637

Lock Timeout Message and Logging

 IMS 12 adds optional DFS2291I diagnostic messages for lock timeouts

– Timeouts occur only with IRLM and IMS LOCKTIME specified

– Previous IMS releases provide information only via RMF reports

 IMS 12 writes log record x’67D0’ subtype x’1B’ for lock timeouts

– Contains same information as the DFS2291I message

 Benefit

– Information on lock conflicts is more readily accessible

The RMF II ILOCK (IRLM Long Lock Detection) Report includes information about the waiters and blockers when a lock
request exceeds the IRLM TIMEOUT value. If the wait for a lock exceeds the IMS LOCKTIME value when using the
IRLM, the waiter is abended with a U3310 or a ‘BD’ status code is returned to the program. The U3310 or ‘BD’ is
determined by the “STATUS’ or “ABEND’ specification on the LOCKTIME specification in IMS. IMS 12 adds an IMS
message to provide more readily available diagnostic information.

Long lock timeouts cause IMS to write a x’67D0’ subtype x‘1B’ log record. This log record contains the same
information that is included in the DFS2291I message. This message is documented on the next page.

638638

IMS Version 12

638638

Lock Timeout Message

 New DFS2291I message issued with U3310 abend or ‘BD’ status code

– U3310 or ‘BD’ indicates that waiter has exceeded the specified wait time

– DFS2291I is either a multiple line message

DFS2291I LOCKNAME=0900004288800201D7

DFS2291I DBNAME=DLVNTZ02 LOCKFUNC=GET LCL AND GBL ROOT LOCKS

DFS2291I BLOCKER PST=0001 TRAN=NQF1 PSB=PMVAPZ12 TYPE=MPP

DFS2291I BLOCKER TRANELAPSEDTIME=00:01:11 IMSID=IMS1

DFS2291I BLOCKER RECOVERY TOKEN=IMS1 0000000200000000

DFS2291I VICTIM PST=0002 TRAN=SHF1 PSB=PMVAPZ13 TYPE=MPP

DFS2291I VICTIM TRANELAPSEDTIME=00:00:49 IMSID=IMS1

DFS2291I VICTIM RECOVERY TOKEN=IMS1 000000300000000

– Or a “short” one line message

DFS2291I BLOCKER PST=0001 TRAN=NQF1 PSB=PMVAPZ12 TYPE=MPP

This shows examples of the DFS2291I message. The first example is for the multiple line message. If there are other
waiters for the same lock, they are also listed with the word “WAITER” where “VICTIM” appears in this example. The
second example is for the single line or “short” message. The IMSID= field is added by IMS 12 APAR PM30851. For
batch jobs the IMSID value is blanks.

In this example transaction NQF1 using PSB PMVAPZ12 holds a local and global root lock in database DLVNTZ02.
This transaction’s elapsed time is now 1 minute and 11 seconds. Transaction SHF1 using PSB PMVAPZ13 is waiting
on this lock. Its elapsed time is now 49 seconds.

639639

IMS Version 12

639639

Lock Timeout Message

 Installation chooses whether the DFS2291I messages are issued

– Parameter in DIAGNOSTIC section of DFSDFxxx

• SUPPRESS is the default

• ISSUE creates multiline messages

• SHORT creates one line messages

 Number of messages is limited for one U3310 situation

– Message is issued only for the first five U3310s for a transaction

<SECTION=DIAGNOSTIC>
MSG2291I=ISSUE | SHORT | SUPPRESS

The DFS2291I messages are only issued if they are requested by specifying MSG2291I=ISSUE or MSG229I=SHORT
in the DIAGNOSTIC section of the DFSDFxxx member. ISSUE causes multiple line messages to be issued. SHORT
causes one line messages to be issued.

It is possible that the retry of a transaction after a timeout will result in another timeout. This could occur multiple times.
The DFS2291I message will be issued only for the first five U3310 abends for an input message.

640640

IMS Version 12

640640

Batch Data Sharing Abend Elimination

 Batch Data Sharing jobs survive CF cache structure access failures

–Previous releases produced U3303 abends when access to OSAM or VSAM
cache structures failed

–IMS 12 causes batch data sharing job to wait for a resolution of the structure
problem

• Message issued:
– DFS2404A AN ERROR WAS ENCOUNTERED WHEN ACCESSING THE
COUPLING FACILITY. STRUCTURE xxxxxxxxxxxxxxxx RSN yyy

 Benefit

–Improved availability and ease of use for batch data sharing jobs

–Users may move and rebuild OSAM and VSAM structures while batch jobs are
executing

In previous versions of IMS a batch data sharing job would abend with a U3303 when an OSAM or VSAM cache
structure access failed. For example, an access attempt while a structure was being rebuilt would fail. This problem did
not occur with online systems. They survived access failures. They waited for the resolution to the structure access
problem. IMS 12 allows batch jobs to survive when these structure accesses fail. Like online systems, they wait for the
resolution to the problem. When the problem is resolved, the batch jobs continue processing. For example, when a
rebuild of a structure completes, the batch jobs continue.

If the batch job detects the failure, it issues the new DFS2404A message. The reason code in the message is used to
identify the type of failure that occurred when the batch job attempted to access the structure.

This enhancement allows users to rebuild their OSAM and VSAM cache structures while their data sharing batch jobs
are executing. This may be done to address coupling facility failures or to move structures between coupling facilities
for reconfigurations. In previous versions of IMS, batch jobs did not survive these rebuilds.

This enhancement does not eliminate all U3303 abends for batch jobs. It only eliminates those caused by cache
structure access failures.

641641

IMS Version 12

641641

RACF userid in Data Capture batch log records

 The RACF userid is added to the Data Capture log records for batch
jobs

– Log record x’9904’

 Benefit

– Asynchronous changed data capture users have access to RACF userid in
log records

In previous versions of IMS, the RACF userid only appears in changed data capture log records (type x’9904’) when the
log is produced by an online system. IMS 12 adds the RACF userid to these log records when they are produced by
batch (DLI or DBB) jobs. Changed data capture writes log records when the LOG (asynchronous) option is chosen in
the DBDGEN.

The RACF userid is specified by including the USER= parameter on the JOB statement of the batch job.

642642

IMS Version 12

642642

Increased VSAM Pools

 IMS 12 allows up to 255 VSAM database buffer pools

– Previous versions were limited to 16 pools

 Requires IMS 12 APAR PM28721

 Requires DFSMS APAR OA32318

– PTF UA57797 for z/OS V1R11 and PTF UA57798 for z/OS V1R12

 Implementation

– Users may specify up to 255 POOLID statements in DFSVSMxx member or
DFSVSAMP data set

 Benefits

– More VSAM pools and subpools may be specified

• Increases capabilities to tune VSAM pools for database performance

Previous versions of IMS allowed only 16 VSAM full function database buffer pools to be defined for an IMS online
system, batch job, or utility. IMS 12 expands this to 255 for online systems and 254 for batch jobs and utilities. Each
buffer pool may have separate subpools for different buffer sizes and for data and index components.

VSAM buffer pools are defined with POOLID statements in the DFSVSMxx member or DFSVSAMP data set. IMS 12
allows users to specify up to 255 of these POOLID statements.

The additional buffer pools give users more flexibility in tuning their systems for full function database performance.

643643

IMS Version 12

643643

Temporary Close of VSAM Data Sets with New Extents

 IMS 12 issues a temporary close (CLOSE TYPE=T) when a new extent
is taken on a VSAM database data set

– CLOSE TYPE=T updates the catalog but leaves the data set open

– Jobs which open the database data set but do not do verifies will be aware of
the new extent

 Benefit

– Tools which read a database while it is open in online systems or batch jobs
are aware of the new extents

APAR PM29094 for IMS 12 changes the actions of IMS when a new extent for a VSAM database data set is created.
IMS issues a temporary close of the data set. This is a CLOSE with TYPE=T. The temporary close leaves the data set
open but updates the catalog with the information about the new extent.

The temporary close is important for some tools. They may open the database data set without a verify. If the open is
done while the data set is in use by an online system or batch job and the online system or batch job has extended the
data set, the open by the tool previously would not be aware of the new extent. The temporary close makes the new
extent information available to the tool. When the tool was unaware of the new extent, it might produce erroneous
information about the database.

Unlike some tools, IMS batch jobs (DLI or DBB) and online systems do not need the temporary close. They always do a
verify when opening a VSAM database data set. The verify makes the new extent information available to them.

644644

IMS Version 12

644644

Elimination of OSAM U0080 Open/Close/EOV Abends

 IMS 12 eliminates IMS U0080 abends for OSAM Open, Close, and EOV
processing

– Previous versions caused IMS system abends

– IMS 12 closes the database and marks it ‘recovery needed’

– IMS 12 issues message DFS0730I:

DFS0730I UNABLE TO OPEN|CLOSE DATASET WITH DDNAME ddname
FOR REASON X, yy, z DATABASE dbdname programid

– When data set cannot be extended, enhanced DFS0842I message is sent:

DFS0842I OSAM DATASET CANNOT BE EXTENDED, REASON=x, z dbdname

DFS0842I ddname, dsname

 Benefit

– Improved system availability

– Improved diagnostic information

In previous versions of IMS there were some problems in OSAM open, close or end-of-volume processing that could
result in U0080 abends. These were rare. When they occurred, the entire IMS system terminated with the U0080
abend. IMS 12 has changed this processing. When such problems occur, the database is closed and marked ‘recovery
needed’. The abend does not occur. Additionally, message DFS0730I is issued for open or close problems. ‘X’ is
included as the first character in the reason code. The ‘yy’ and ‘z’ values identify the actual problem. In previous
versions, the DFS0730I message was not issued with the U0080 abend. This made it more difficult to determine the
database and data set with the problem. When the data set cannot be extended as part of EOV processing, message
DFS0842I is issued. This message is enhanced in IMS 12 to include a subcode (z) to further explain the reason for
extension failure.

Even though IMS 12 eliminates abend U0080 for OSAM open, close and EOV processing, it may still be issued for
OSAM entry and termination processing.

645645

IMS Version 12

645645

Message DFS993I Sent to System Console

 Message DFS993I is sent to both the master terminal and the system
console

DFS993I (CSA PSB|DLS PSB|PSBW) POOL TOO SMALL, UNABLE TO
SCHEDULE PSB PSBNAME

– Previous versions sent the message only to the Master Terminal

• Some systems (e.g. DBCTL) do not have a Master Terminal

 Benefit

– Message identifying the problem is readily available to all users

IMS 12 sends the DFS993I message to both the system console and the Master Terminal. Previous versions of IMS
sent this message only to the Master Terminal. Since DBCTL systems do not have a Master Terminal, they did not
receive the message.

The DFS993I message is issued when the PSB Work, CSA PSB or DLI PSB pool is too small. IMS 12 allows DBCTL
users to easily determine why a PSB schedule failure occurs because of insufficient space in one of these pools.

646646

IMS Version 12

646646

CA Reclaim Support

 IMS may use CA reclaim support for KSDSs with z/OS 1.12

– z/OS 1.11 does not include a CA reclaim capability

• CI reclaim does not reclaim the empty CI with the highest key in the CA

• The index structure is maintained for these CAs with no records

– z/OS 1.12 provides CA reclaim support

• All CIs in a CA may be reclaimed
– When all CIs in a CA are empty, the CA is reclaimed

– The index structure is reduced by eliminating this CA

– The CA may be reused for records with other keys

When IMS database KSDS records are erased with z/OS 1.11 and previous releases, VSAM CI reclaim does not
reclaim the empty CI that has the highest key of the CA. This otherwise empty CA occupies the index structure as if it
was not empty. If an application re-inserts records with the erased keys or keys of nearby values, those empty CAs are
reused. However, if the application erases a range of keys and does not reuse those keys or only inserts records with
ever higher keys, VSAM does not reclaim or reuse those empty CAs with lower keys. The failure to reclaim the CAs not
only results in wasted disk space but also could cause performance problems in index search because much of the
index structure could be populated with those empty index records.

The CA Reclaim feature in z/OS 1.12 allows free CA space to be reused. With CA Reclaim, space fragmentation
caused by erasing records from a KSDS will be minimized to reduce the need to reorganize the data set. When the
freed CAs are placed in a free chain to be reused, the index structure can be shrunk to facilitate quicker data accesses.
When space is needed for a new CA, a CA from the free chain is reused so there will be fewer calls to EOV to extend
the KSDS.

There is no requirement for all of the systems in a sysplex to be at the same z/OS release level. z/OS 1.10 and z/OS
1.11 have compatibility maintenance so that they may process data sets for which CA reclaim is being used with z/OS
1.12. However, CA reclaim is only processed on systems that have z/OS 1.12.

647647

IMS Version 12

647647

CA Reclaim Support

 The problem without CA reclaim

– Typically occurs with increasing key values and deletion of old records

– Empty CAs cannot be reused

– Index points to empty CAs

• Reorganization is required to use the empty space and optimize the index

CA CA CACA

Data

Component

Index

Component

This slide illustrates a problem that may occur when CA reclaim is not available. The problem typically occurs when
new records have increasing key values and old records are deleted. The CAs which contained the old records become
empty in the sense that they contain no records. CIs in the CA are reclaimed when all of their records are deleted with
one exception. The reclaimed CIs are available for the insertion of records in the same CA. They are not available for
use by another CA. The exception is that the CI with highest key in the CA is not reclaimed. The index entry pointing to
this CI is maintained.

When many records with low valued keys are deleted, many CAs may be unused. Nevertheless, they cannot be
reused. This may consume a lot of space as new records are inserted and old records are deleted. Even though the
total number of records in the data set does not grow, the data set must grow. The index continues to point to these
empty CAs. Sequential processing from the beginning of the data set may have to read many index entries before it
finds an actual record.

Without CA reclaim the solution to this problem is to reorganize the data set. This requires a database outage with the
exception of HALDB Online Reorganization for PHIDAM primary indexes. HALDB Online Reorganization allocates a
new primary index.

648648

IMS Version 12

648648

CA Reclaim Support

 Specification of CA reclaim

– CA reclaim may be specified by data class

• CA Reclaim is invoked for a data set when the data class has it specified
– May be overridden for individual data sets with the ALTER command

– There is no specification in IMS

 CA Reclaim may be used with any version of IMS

 CA Reclaim statistics are available with LISTCAT output and in SMF
type 64 records.

 Benefits

– Fewer reorganizations required

– Improved disk space usage

– Especially useful when new keys have increasing values

CA reclaim is invoked under z/OS 1.12 when the data set is defined with a data class for which CA reclaim is specified.
No IMS external is required to exploit this function. It occurs automatically for all IMS versions when they execute under
z/OS 1.12 or later and CA reclaim is specified for the data set.

The SYS1.PARMLIB IGDSMSxx member determines if CA reclaim may be used by a system. CA_RECLAIM(NONE) is
the default and disables CA reclaim in the system. CA_RECLAIM(DATACLASS) allows CA Reclaim for data sets.
When CA Reclaim is allowed for a system it is used for a KSDS if its data class has CA_Reclaim(Y) specified when the
KSDS is defined. CA_Reclaim(Y) is the default for data classes. CA Reclaim is disabled for KSDSs when they are
defined when CA_Reclaim(N) is specified for the data class.

CA Reclaim may be enabled or disabled for individual data sets with the ALTER RECLAIMCA or ALTER
NORECLAIMCA command. The ALTER command will take effect at the first OPEN following the CLOSE of all open
ACBs for the data set.

CA Reclaim statistics are included with IDCAMS LISTCAT output in z/OS V1R12. The number of CAs reclaimed (REC-
DELETED) and reused (REC-INSERTED) are in the INDEX component of a LISTCAT. Without CA Reclaim support,
these numbers were always 0. CA Reclaim statistics are also available in SMF type 64 records.

The benefits of CA Reclaim include:

Fewer reorganizations are required. They are not needed since CA reclaim is able to use the space from the CAs with
deleted records for CAs with other keys.

Disk space usage is improved. Data sets for which large ranges of keys are deleted do not have to grow to provide
space for new records which can use the old space.

These benefits are especially useful for databases where new records with increasing key values are added while old
records are deleted. They also apply to other data sets where all of the records in the key range for a CA are deleted.

649649

IMS Version 12

649649

New Command Codes for Sequential Search

 IMS 11 SPE and IMS 12 provide two new command codes for GN and
GHN calls for root segments

– A: clears positioning and causes call to start at the beginning of database

– G: prevents randomization for HDAM, PHDAM, and DEDB calls and does not
call the partition selection exit routine for PHDAM and PHIDAM.

• Causes a sequential search of database when used with SSA which
specifies a range of values for the root key
– Successive calls do not return results in key sequence

 Recommendation

– Do not use these commands codes with DL/I calls

• Alternative explained on next page

 Benefit

– Used by JDBC with Open Database to provide results comparable to
relational

An SPE for IMS 11 adds two new command codes for use with GN and GHN calls for root segments. These new
command codes are also included in IMS 12.

Command code A clears positioning and causes the GN or GHN call to start at the beginning of the database.

Command code G is used with GN and GHN calls qualified on the root segment key. It prevents the use of the
randomizer routine for DEDB, HDAM, and PHDAM databases. It also prevents the use of the partition selection exit
routine for a PHDAM or PHIDAM databases. Instead of using these routines, the call processes the next records in the
database until one satisfying the SSAs is found or the end of the database is reached. This changes the actions that
would otherwise occur for calls qualified on the key of the root segment. Consider a call qualified with key >= 1000 and
key <=2000. Without the A or G command codes the call randomizes using key=1000. It returns the first segment
found if it satisfies the SSAs. Otherwise, it returns a ‘GE’ (not found) status code. If a segment is returned, successive
calls using the same SSAs would move forward in the database. If a segment not satisfying the call is encountered, a
‘GE’ status code is returned. On the other hand, the use of the A command code causes the call to begin at the
beginning of the database. The G command code causes the call to ignore roots which do not satisfy the SSAs and
continue to following roots until one is found that satisfies the SSAs.

If one uses these new command codes, one should use the A command code on the first GN or GHN call and not use it
on the successive calls. If A were used on every call, the calls would always start at the beginning of the database and
return the same segment.

These command codes should not be used with DL/I calls. There is a much more efficient alternative which is explained
on the next page.

The new command codes are added to IMS to provide support for JDBC use with Open Database. JDBC users expect
to get the same results with IMS and relational databases. The JDBC drivers use these command codes to provide the
same results.

650650

IMS Version 12

650650

New Command Codes for Sequential Search

 JDBC driver uses these command codes when converting call to DL/I

– Without these command codes a search on a range of keys does not return
all values for DEDB, HDAM, or PHDAM databases or for PHDAM and
PHIDAM databases with a PSE routine

• Search begins with the low key value and ends when key greater than high
key value is found

• With these command codes the search is for the entire database

• Call returns expected results
– With a performance cost

 A better alternative

– Create a secondary index on this key

– Use PCB with PROCSEQ=secondaryindex for full function databases

– Use PCB with PROCSEQD=secondaryindex for DEDBs

– Avoids sequential scan of database

The JDBC driver uses the new command codes when converting a JDBC call to a DL/I call. This is done so that the
JDBC call will return the same results with an IMS database that it would return with a relational database.

Without these command codes a search on a range of root segment keys is done with logic that assumes the roots are
in key sequence. A call qualified on a range of root segment keys attempts to begin the search with the key at the
bottom of the range. For example, a search for roots with keys >= 1000 and <= 2000 begins my using the partition
selection exit routine and/or the randomizer with key 1000. Subsequent GN or GHN calls with the same qualification
move forward in the database. If a root segment with key>2000 is found, the search ends. The JDBC driver uses the
new command codes to change the logic of the search. With the new command codes all root segments in the
database are examined. This provides the expected results from the JDBC call. Of course, there is a performance cost
for searching the entire database.

The performance cost for the search may be eliminated by using an alternative. If many of these calls might be issued
by a program, one may create a secondary index on this key. Then one may use the secondary index for the calls by
specifying PROCSEQ= referencing the secondary index for full function databases or PROCSEQD= referencing the
secondary index for DEDBs. This will allow the search to be done without examining the root segments which are not in
the key range. It avoids the sequential scan of the database. This is analogous to placing an index on a column in a
relational database. In fact, with a relational database one should create the index when this type of JDBC call is made.

651651

IMS Version 12

651651

CICS Threadsafe Support

 CICS 4.2 adds support for threadsafe IMS database calls with IMS 12

– Eliminates TCB switches for IMS database calls

• Without threadsafe support, IMS call must be done under an IMS TCB
– Requires switch from CICS QR TCB to IMS TCB and back to CICS QR TCB

– If application is running under an OPEN TCB it also requires a switch from OPEN
TCB to QR TCB and back from QR TCB to OPEN TCB

• With threadsafe support, IMS call may be done under a CICS OPEN TCB
– No TCB switch

– CICS has multiple OPEN TCBs

• Multiple DLI calls may be done in parallel under CICS OPEN TCBs

– Enhancement applies to both EXEC DLI and CALL DLI

 Benefits

– Lower CPU use

– Increased throughput

CICS Transaction Server Version 4 Release 2 includes threadsafe support for IMS database calls. This potentially
eliminates TCB switches for IMS calls and saves the CPU usage associated with TCB switches.

Without threadsafe support calls for IMS databases require a switch to an IMS TCB for processing the call and a switch
back to a CICS PCB when IMS completes call processing. Threadsafe support allows the IMS call processing to be
done under the CICS TCB. In fact, without this support many IMS database calls from CICS require four TCB switches.
This depends on the CICS application program execution environment. Without the treadsafe support for IMS, all IMS
calls must be switched from the CICS QR (quasireentrant) TCB to the IMS TCB. If the application is processing under a
CICS OPEN TCB, this requires a switch from the OPEN TCB to the QR TCB to the IMS TCB. When call processing is
completed by IMS there are switches from the IMS TCB to the QR TCB to the OPEN TCB. This is four TCB switches
for an IMS call.

Threadsafe support already exists for DB2, MQ, CICS Sockets, XPLINK and many CICS commands. This support is
provided for applications executing under a CICS OPEN TCB. It provides two benefits. First, it avoids TCB switches for
processing these requests. Second, it allows the concurrent dispatching of these requests. There is only one QR TCB
in a CICS address space. Multiple requests running under a QR TCB cannot be dispatched concurrently. For these
reasons, it may be likely that CICS transactions which use these services along with IMS calls are running under an
OPEN TCB. These transactions are likely to benefit most from the threadsafe support for IMS.

Threadsafe support applies to IMS database access using either the EXEC DLI or the CALL DLI interface in CICS.

652652

IMS Version 12

652652

CICS Threadsafe Support

OPEN TCB

EXEC CICS

process CICS cmd

EXEC SQL

process DB2 call

EXEC DLI

…

QR TCB IMS TCB

process IMS call

OPEN TCB

EXEC CICS

process CICS cmd

EXEC SQL

process DB2 call

EXEC DLI

process IMS call

…

switch
switch

switchswitch

Without IMS Threadsafe Support With IMS Threadsafe Support

This illustrates the difference between accessing IMS from a CICS application without the use of threadsafe support and
with the use of threadsafe support.

On the left you can see a CICS application which invokes a CICS command (a CICS service), accesses DB2, accesses
IMS, invokes another CICS command and accesses DB2 again. The CICS commands and DB2 accesses are done
under the OPEN TCB. Without threadsafe support the IMS call first causes a switch to the QR TCB and then a switch
to an IMS TCB. IMS processes the call under its TCB. After the call is processed, another switch is required to the
CICS QR TCB. Finally, there is a switch to the CICS OPEN TCB.

On the right you can see the same CICS application with threadsafe support. All of the processing is done under the
CICS OPEN TCB. This eliminates four TCB switches for the IMS database call.

653653

IMS Version 12

653653

IRLM 2.3

 IRLM 2.3 and IRLM 2.2 are both shipped with IMS 12

 IRLM 2.3 and IRLM 2.2 may be used with any supported version of IMS

– IRLM 2.3 is required by DB2 Version 10

• IRLM 2.3 has 64-bit caller interface
– IMS continues to use the 31-bit caller interface

– IRLM 2.3 requires z/OS 1.10 or higher

 IRLM 2.3 provides improved performance for some requests

– We do not expect a substantial performance improvement with IRLM 2.3 with
IMS

Both IRLM 2.2 and IRLM 2.3 are delivered with IMS 12. Both of these IRLMs may be used with any supported version
of IMS.

IRLM 2.3 is required by DB Version 10; however, IRLM 2.2 may be used by the IMS database manager when DB2 is
using IRLM 2.3. IRLM 2.3 supplies a 64-bit caller interface that is required by DB2 Version 10. IMS does not use this
interface.

IRLM 2.3 must run under z/OS 1.10 or higher.

IRLM 2.3 provides some improved performance; however, we do not expect substantial performance improvements
with IMS.

654654

IMS Version 12

654654

Miscellaneous Database Enhancements

 Reuse of Local DMB Numbers

 Display status of randomizers and partition selection exit routines

 Retry after lock timeouts

 Improved information with lock timeouts

 Batch Data Sharing Abend Elimination

 RACF userid in Data Capture batch log records

 Increased VSAM pools from 16 to 255

 Temporary close of VSAM data sets when acquiring new extents

 Elimination of OSAM U0080 Open/Close/EOV Abends

 DFS993 sent to system console

 CA Reclaim Support

 New command codes for sequential search

 CICS threadsafe support

 IRLM 2.3

655655

IMS Version 12

655655

HALDB Enhancements

656656

IMS Version 12

656656

HALDB Enhancements

 Parallel Migration to HALDB

 Optional release of HALDB OLR ownership when IMS terminates

 Reuse of HALDB partition DB names for non-HALDB databases

657657

IMS Version 12

657657

HALDB Enhancements

 Parallel Migration to HALDB

 Optional release of HALDB OLR ownership when IMS terminates

 Reuse of HALDB partition DB names for non-HALDB databases

 Reorganization Number Handling by Timestamp Recovery

658658

IMS Version 12

658658

Parallel Migration to HALDB (IMS 10 and IMS 11 SPE)

 HD Unload (DFSURGU0) may be run in parallel for different key ranges

– Unloads for migration to HALDB

– Applies to HIDAM, HDAM and HISAM

 HD Reload may be run in parallel for different key ranges

– Reloads for migration to HALDB

 Benefits

– Migration elapsed time can be reduced significantly

– Especially important with logical relationships

APARs: IMS 10 PM06635; IMS 11 PM06639

The IMS Unload utility (DFSURGU0) has been enhanced in IMS 10, IMS 11 and IMS 12 to allow unloads of key ranges
of an HDAM, HIDAM or HISAM database when migrating to HALDB. Multiple unloads for the same database may be
run in parallel. This can significantly reduce the elapsed time for a migration to HALDB. This is especially important for
databases with logical relationships since their unloads for migration may require a long time.

659659

IMS Version 12

659659

Parallel Migration to HALDB

 The problem before this enhancement

– Migration of databases with many logical relationships could require a very
long elapsed time

• In most cases, when unloading a database each logical relationship
requires a random read of the related database
– These random reads account for almost all of the elapsed time of the unload

– The unload can not be broken into multiple parallel steps

• Unload always reads the entire database

 The solution

– Unload can now read part of a database for a migration unload

– Multiple unloads for different key ranges may be run in parallel

– Multiple reloads for different partitions may be run in parallel

Before this enhancement the migration unload of a logically related database often took a long time. When a logical
child segment is unloaded, its logical parent must be read in most cases. This is a random read. These random reads
account for almost all of the elapsed time of the unload.

The logically related database must be read unless the unload is for the physical logical child of a bidirectional logical
relationship with virtual pairing when the PHYSICAL option was specified the DBD to include the concatenated key in
the physical logical child. The logical related database is always read with the following logical relationships:

 Unidirectional logical relationships

 Physically paired bidirectional relationships

 Virtually paired bidirectional logical relationships when reading the virtual logical child

 Virtually paired bidirectional logical relationships when reading the physical logical child and the VIRTUAL option has
been specified in the DBD (the concatenated key of the logical parent is not stored in the physical logical child)

The solution to this problem is to allow multiple unload jobs to be run in parallel. The enhancement allows an unload job
to unload part of a database. Without the enhancement, an unload always reads an entire database.

For a HIDAM database, the enhancement allows the unload to read only the database records in the key range for the
root segments. For an HDAM database, all of the root segments in the database are read. Even though the unload of
an HDAM database requires the reading of all of the database root segments, it is much faster than unloading the entire
database when there are logical relationships. In almost all cases, the unload of a logical relationship requires the
access to the logically related database. These random reads typically account for almost all of the elapsed time of the
unload. When HD Unload is restricted to a key range, only the relationships from the records in the key range require
the reading of the logically related database.

660660

IMS Version 12

660660

Parallel Migration to HALDB

HD Unload

HD Reload

HD Unload HD Reload

HD Unload
HD Reload

HD Unload

HD Reload

HALDB Partitions

Non-HALDB Database

Keys A-E

Keys F-J

Keys K-P

Keys Q-Z

Keys Q-Z

Keys K-P

Keys F-J

Keys A-E

This picture illustrates the improved process. The four HD Unload jobs process different key ranges in the non-HALDB
database. They are run in parallel. Their individual outputs are fed to four different HD Reload jobs which load the four
partitions in the new HALDB database. The reload jobs are also run in parallel. This significantly reduces the elapsed
time of the migration. It should be approximately one fourth the elapsed time that would be required without the parallel
running jobs.

661661

IMS Version 12

661661

Parallel Migration to HALDB

 Each execution of HD Unload may be limited to a key range

– Unloads of HIDAM and HISAM read only the database records in the key
range

– Unloads of HDAM read all root segments in the database and select only the
records for the specified key range

 SYSIN DD control statements:

 Recommendation: Cut and paste key values from RECON listing

 Example:

MIGRATE=YES

KEYRANGE FROMKEY(F0F0F0F0F0) TOKEY(D2F2F0F0F0) KEYLEN(5)

MIGRATE=YES

KEYRANGE FROMKEY(key value) TOKEY(key value) KEYLEN(key lth)

An execution of HD Unload may be restricted to a range of keys when the MIGRATE=YES control statement is included
for migration to HALDB. The low (FROMKEY) and high (TOKEY) values must be specified in hexadecimal. These
values may be obtained from the output of a LIST.DB DBRC command for the partition.

Multiple executions of HD Unload may be run in parallel. The key ranges should correspond to the key ranges for
HALDB partitions. This allows the subsequent HD Reload executions to be run in parallel. It is highly recommended
that you “cut and paste” the hexadecimal key values from a RECON listing. This potentially avoids typographical errors
would might be tedious to detect.

662662

IMS Version 12

662662

Parallel Migration to HALDB

 Restrictions

– May only be used with the MIGRATE keyword.

• Cannot be used with MIGRATX

– Unload range must match HALDB partition boundaries

• HD Reload accepts only one input data set

– Input data set must contain all of the records for the partition(s) being loaded

• HD Reload accepts only one input data set

• HD Reload can load one or multiple partitions

– Concurrent unloads require DISP=SHR for database data sets

– Concurrent unloads require VSAM share options that allow multiple readers

• SHAREOPTION(3 3) may be used

Note that MIGRATE=YES must be specified. The new capability cannot be used for unloading HALDB databases.
Also, MIGRATX=YES may not be used with the KEYRANGE statement. MIGRATX=YES is used only for databases
with secondary indexes. It cannot be used with the KEYRANGE statement since the key ranges appropriate for a
secondary index would not be those used for the unload of the indexed database. If your database has secondary
indexes you may use MIGRATE=YES and create the secondary indexes with a tool such as IBM IMS Index Builder.

The records unloaded must match the HALDB partition boundaries. This is true because only one output data set from
HD Unload may be used as input to HD Reload. Similarly, all of the records for a partition must be unloaded with one
execution of HD Unload. One can get the key values from a listing of the HALDB partitions in the RECONs.

Parallel execution of the unloads will read the same database data sets. The JCL must specify DISP=SHR for the
unloads to run in parallel. If the data sets are VSAM, you must also specify share options which allow concurrent reads.
SHAREOPTIONS(3 3) may be used for this.

663663

IMS Version 12

663663

HALDB Online Reorganization (OLR) Ownership Release

 IMS 12 adds capability to release ownership of an OLR when IMS
terminates

– IMS termination may be normal or abnormal

• In previous IMS versions, OLR ownership was kept by a terminated IMS
system

– If OLR is owned by an IMS system, it may not be started or restarted on
another IMS system

 Benefit

– OLRs may be restarted on another available IMS

– Caution:

• If an OLR is not owned by a terminated IMS system, it will not be
automatically restarted when the IMS system is restarted

IMS 12 provides an option for the release of ownership of a HALDB Online Reorganization when the IMS system on
which it is executing terminates. The termination may be either a normal or abnormal termination of IMS. If ownership
is released, the OLR may be restarted on another IMS system. If ownership is not released, the OLR cannot be
restarted on another IMS system.

664664

IMS Version 12

664664

HALDB OLR Ownership Release

 Specification of ownership release default

–Determined by parameter in DATABASE section of DFSDFxxx

• RELOLROWNER – specified to release ownership

• Absence of RELOLROWNER specifies that ownership is retained
– As in previous releases

 Default may be overridden by parameter on INIT OLREORG, /INIT
OLREORG, UPD OLREORG or /UPD OLREORG command

• OPTION(REL)

• OPTION(NOREL)

<SECTION=DATABASE>
RELOLROWNER=Y|N

The option is specified by including a RELOLROWNER=Y statement in the DATABASE section of the DFSDFxxx
PROCLIB member. RELOROWNER=N is the default and does not release ownership when the IMS system terminates.
The RELOLROWNER= value may be overridden by specifying OPTION(REL) or OPTION(NOREL) on the INIT
OLREORG, /INIT OLREORG, UPD OLREORG or /UPD OLREORG command.

When RELOLROWNER=Y or OPTION(REL) is not specified, OLR is automatically restarted when the terminated IMS
system is restarted. When RELOLROWNER=Y is specified OLR is not automatically restarted unless it was overridden
with OPTION(NOREL) on the command. If the OLR is not automatically restarted by IMS restart, it must be restarted
with the INIT OLREORG or /INIT OLREORG command.

665665

IMS Version 12

665665

HALDB OLR Ownership Release

 Ownership setting is returned by QUERY and /DISPLAY commands

– /DIS DB OLR

– QRY OLREORG

DATABASE PART RATE BYTES SEGS ROOTS STARTTIME

STATUS

DBHDOJ01 PDHDOJA 10 53330 217 31 32110/143354

WAITRATE, OPTDEL, OPTREL

32110/143356

Partition MbrName CC LclStat Rate Bytes-Moved Segs-Moved

POHIDKA IMS1 0 RUNNING 100 72315678 244597

PVHDJ5A IMS1 0 RUNNING 100 8454630 30029

Roots-Moved Option Resumed StartTime

22511 NODEL Y 2010.320 10:20:21.61

3775 DEL, REL 2010.320 10:20:21.84

The ownership release status is shown in the response to /DIS DB OLR an QRY OLREORG commands as shown on
this slide.

666666

IMS Version 12

666666

Reuse of HALDB partition DB names

 Reuse of HALDB partition DB names for non-HALDB databases

– IMS 12 allows names of deleted partitions to be used as non-HALDB
database names

• Previous versions of IMS did not free the DDIRs for deleted partitions
– Required restart of IMS online system

 Benefit

– More flexibility in the use of database names

Each database and each HALDB partition uses a DDIR control block in the IMS system. In versions previous to IMS 12
the deletion of a HALDB partition did not delete it’s DDIR in an online system. This prevented the reuse of the partition
name as a database name. IMS 12 has changed this. The deletion of the partition will result in the deletion of its DDIR.
This allows the unused partition name to become a database name

667667

IMS Version 12

667667

Reorganization Number Handling by Timestamp Recovery

 IMS 12 Database Recovery utility sets reorganization number of
partition based on value in RECON

– Previous IMS versions did not coordinate the numbers in RECON and
partition data set

• Reorg number in data set was updated from RECON value by first IMS
subsystem which updated the partition

• Index Builder tool created index pointers based on the reorg number in the
data set
– Index entries needed “healing” when reorg number was changed by updater

• Pointer Checker reported errors

 Benefit

– IMS 12 eliminates the Index Builder and Pointer Checker problems

• Reorg number in data set matches the number in RECONs when
timestamp recovery is done

The partition reorganization number is used to ensure that secondary index and logical relationship pointers are
accurate. The reorg number for a partition is stored in the partition data set. It is incremented by each reorganization of
the partition. The reorg number is also stored in the Extended Pointer Set (EPS) of secondary index entries and logical
children. If the value in the EPS does not match the value in the partition data set, the pointer is healed by updating it
from the Indirect List Data Set (ILDS). The reorg number is also stored in the partition database record in the RECON.

When a timestamp recovery is done to a time before the last reorganization, the reorg number in partition data set is
returned to its previous value by the actions of the Database Recovery utility (DFSURDB0) in previous versions of IMS.
IMS 12 changes this. The IMS 12 Database Recovery Utility takes the reorg number from the RECONs, increments it
and stores it in both the RECONs and the partition data set. This makes the reorg numbers in the partition data set and
the RECON match. Previously, a mismatch occurred until the first update job for the partition was executed. An update
batch job or online systems takes the value from the RECON and writes it to the partition data set.

Two problems could occur with previous releases of IMS. First, if a user created indexes using the Index Builder tool
after a timestamp recovery the EPSs in the index entries would contain the reorg values from the partition data set.
These did not match the values in the RECON. After the first update job, the reorg number in the partition data set
would be updated. This caused a mismatch with the values in the EPSs. When the index entries were used, IMS would
“heal” the pointers. This was unnecessary overhead. The new process eliminates this “healing” since the values in the
EPSs will match the values in the partition data set. The second problem occurred with the Pointer Checker tool. When
the values in the pointers do not match those in the partition data set, the Pointer Checker produces error or warning
messages. The new process eliminates these messages.

668668

IMS Version 12

668668

HALDB Enhancements Summary

 Parallel Migration to HALDB

– New capability for HD Unload

 Optional release of HALDB OLR ownership when IMS terminates

– OLRs may be restarted on another available IMS

 Reuse of HALDB partition DB names for non-HALDB databases

– IMS restart is not required

 Reorganization Number Handling by Timestamp Recovery

– Eliminates Index Builder and Pointer Checker problems

