
© 2013 IBM Corporation

IBM zEnterprise Technology Summit

Presenter – Title
Date

© 2013 IBM Corporation2

Add your name

Thanks to
Akiko Hoshikawa
STSM, DB2 for z/OS Performance
Silicon Valley Lab, IBM

IBM DB2 10 for z/OS
Performance Best Practice
Session Number

© 2013 IBM Corporation3

Please note
IBM’s statements regarding its plans, directions, and intent are subject to change
or withdrawal without notice at IBM’s sole discretion.
Information regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing decision.
The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality.
Information about potential future products may not be incorporated into any
contract. The development, release, and timing of any future features or
functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM
benchmarks in a controlled environment. The actual throughput or performance
that any user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user’s job stream,
the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve results
similar to those stated here.

© 2013 IBM Corporation4

Topics
–DB2 and zEC12
–DB2 10 Performance Tips and Lessons

Learned
–RELEASE (DEALLOCATE) and High

Performance DBATs
–DB2 10 NFM
–UTS (PBG/PBR) Usage Tips

© 2013 IBM Corporation55

DB2 for z/OS and zEC12

© 2013 IBM Corporation6

zEnterprise EC12 and DB2 for z/OS

zEC12 Latest generation IBM zEnterprise System
– ‘EC’ = an enterprise class machine.

– ‘12’ = Twelfth generation of CMOS processors since 1994

Faster CPU compared to z196
– 5.5GHz, up to 101 processors, up to 3 TB real storage
– Observed around 25% (20-28% range) of CPU reductions with various DB2 workloads

© 2013 IBM Corporation7

DB2 10 Performance Tips and Lessons Learned

© 2013 IBM Corporation8

DB2 10 Migration Performance – (1)

Agent CPU time reduction
– With equivalent or better access paths are taken
– Good improvement from heavy SELECT from SYSDUMMYx users

• Example : SELECT CURRENT TIMESTAMP FROM SYSIBM.SYSDUMMY1
• DB2 10 can bypass table look up for simple SYSDUMMY1 queries

DB2 DBM1 SRB time reduction or cost reduction
– zIIP usage for prefetch and deferred write
– Buffer pool scan avoidance

Concurrent insert throughput and CPU improvement
– Algorithm change
– Log latch reduction
– LRSN Spin avoidance

Good DBM1 virtual storage reduction

No more slowdown reported because of DB2 latch contention

© 2013 IBM Corporation9

DB2 10 Performance Experience – (2)

No.1 reason of less improvement than expected or
degradation
– Vender products online monitoring

Less hit in package authorization cache (CACHEPAC)

• Higher BP0 getpages for index for SYSPACKAUTH
– CACHEPAC is applied to non RACF users in DB2 10 and need

more entries
• Default CACHEPAC is changed to 5MB from 100KB which solves

most of customer issues, some needed to be 10MB

PKG-AUTH SUCC-W/O CATALOG 1368.4K
PKG-AUTH SUCC-PUB-W/O CAT 124.9K
PKG-AUTH UNSUCC-CACHE 1011.5K
PKG CACHE OVERWRT - AUTH ID 0.00
PKG CACHE OVERWRT - ENTRY 1002.7K

PKG-AUTH SUCC-W/O CATALOG 1368.4K
PKG-AUTH SUCC-PUB-W/O CAT 124.9K
PKG-AUTH UNSUCC-CACHE 1011.5K
PKG CACHE OVERWRT - AUTH ID 0.00
PKG CACHE OVERWRT - ENTRY 1002.7K

© 2013 IBM Corporation10

DB2 10 Migration Performance – (3)

High rate of Package Table NOT FOUND in steady state
– V8->DB2 10 migration using default EDM_SKELTON_POOL (10MB)

– Increase EDM_SKELETON_POOL

LAST USED PACKAGE in Real Time Stats
– PM31614 less frequently checked to reduce the overhead
– PM37672 to disable LAST USED package checking
– New zparm DISABLE_EDMRTS YES

Index Probing
– Real Time Stats lookup and index probing to choose better access

path
• Empty Runstats, literal predicates or REOPT is used

– Unnecessary index probing can cause performance issues
– PM54059, PM56542, PM60233 and PM60236

QUANTITY /SECOND /THREAD /COMMIT
PT REQUESTS 639224 10.7K 60.15 9.01
PT NOT FOUND 64538 1075.54 6.07 1.00

QUANTITY /SECOND /THREAD /COMMIT
PT REQUESTS 639224 10.7K 60.15 9.01
PT NOT FOUND 64538 1075.54 6.07 1.00

© 2013 IBM Corporation11

DB2 10 Migration Performance – (4)

DB2 system CPU time
– High DB2 MSTR SRB

• PM65360 : Eliminate unnecessary z/OS DISCARD requests
– High DB2 MSTR TCB during idle time

• Monitoring activity issuing z/OS COUNTPAGES
• PM49816 (DB2) and OA37821 (z/OS) to reduce CPU usage

DB2 directory space increase (SPT01/DBD01) in NFM
– Space increase observed in both base table space as well as

LOB space
• IN_LINE LOBs for SPT01 as ZPARM (PM27073/PM27811)

– Default SPT01_INLINE_LENGTH (32K)
• Externalized zparm COMPRESS_SPT01 with default NO

– PM64426 (OPEN) addressing LOB growth in DB2 directory
– PM74659 (OPEN) addressing base table growth in DB2

directory

© 2013 IBM Corporation12

DB2 CPU Time and RELEASE(DEALLOC)

DB2 CPU time
= Setup time + SQL execution + Clean up

Majority of DB2 10 CPU improvement is in SQL
execution

REL(DEALLOCATE) or KEEPDYNAMIC could reduce
setup and cleanup cost

Copy PT Free PT

Choose the candidate programs understanding the
impact and continue to monitor

DB2 10 improvement

© 2013 IBM Corporation1313

RELEASE DEALLOCATE

© 2013 IBM Corporation14

RELEASE - BIND and REBIND Option

Determines when to release resources that a program uses
– RELEASE (COMMIT) : Releases resources at commit
– RELEASE (DEALLOCATE) : Releases resources when the

program terminates (deallocation)
– RELEASE (INHERITFROMPLAN) : Added by PM07087 only

for package to inherit the value from plan

Default value
– BIND PLAN : COMMIT
– BIND PACKAGE : value from plan
– REBIND PLAN/PACKAGE : existing value
– DB2Binder Utility for JDBC and SQLJ 9.7

• COMMIT is default with DB2 9 and earlier release
• DEALLOCATE is default with DB2 10

Catalog
– Column RELEASE of tables SYSPACKAGE and SYSPLAN

14

© 2013 IBM Corporation15

What Are Resources Kept With REL(DEALLOC) ?

Packages

Statements

Table space or partition level locks (parent locks)

Information related with the objects accessed by SQL
statements
– Lookaside buffer, dynamic prefetch tracking, etc.

15

© 2013 IBM Corporation16

Thread Reuse and REL(DEALLOC)

CICS or IMS thread reuse eliminates cost of thread
allocation and deallocation
– Significant CPU saving with both REL(COMMIT) and

REL(DEALLOCATE)

REL(DEALLOC) becomes effective with the reused
thread by further reducing the cost
– Without thread reuse, REL(DEALLOCATE) still goes through

package deallocation at thread termination

16

© 2013 IBM Corporation17

NOTES: CICS Protected Threads Overview

Only entry threads can be protected by specifying
PROTECTNUM=n on the DB2ENTRY definition for an
entry thread
– A protected thread is not terminated when a transaction ends,

and the next transaction associated with the same
DB2ENTRY reuses the thread.

– If no eligible task to use thread then up to PROTECTNUM
threads will be kept idle

Thread idle for up to two purge cycles

Some confusion over thread reuse and protected
threads
– Any thread, pool and entry can be reused, if..

• It is a protected thread and is reused within the purge cycle time.
• It is an unprotected thread and there are transactions queue on

the readyq waiting to use it

© 2013 IBM Corporation18

High Performance DBATs

What is High Performance DBATs ?
– Support RELEASE(DEALLOCATE) bind option in DRDA
– Avoids processing to go inactive and then back to active at

every commit
• Continue to cut accounting at commit

How does it work ?
– A DBAT stays active with connection until 200 commits are

executed
– Connection turns inactive after 200 times to free up DBAT
– In-flight DBATs waiting for next message can be cancelled

after the IDTHTOIN value has expired
– DBATs with in completed unit-of-work status become inactive

after the POOLINAC value has expired

18

© 2013 IBM Corporation19

High Performance DBAT Capabilities

New -MODIFY DDF PKGREL(BNDOPT/COMMIT) command
– Effective only with ZPARM, CMTSTAT=INACTIVE
– PKGREL(BNDOPT) honors package bind option
– PKGREL(COMMIT) forces package bind option

RELEASE(COMMIT)
• Same as V9 inactive connection behavior and will be default processing

until a –MODIFY DDF PKGREL command issued

Switch to PKGREL(COMMIT) will occur gradually
– Any inflight high perf DBAT that commits and will be terminated if

RELEASE(DEALLOCATE) packages have been used
– Any active DBAT marked as high performance (no active UOW

pending) waiting for a new request from client will be terminated by
DDF service task after 2 to 4 minutes.

19

© 2013 IBM Corporation21

DB2 10 : Memory Usage With REL(DEALLOCATE)

Virtual and real storage usage
– Packages bound with DB2 9 or earlier as REL(DEALLOC) :

• Package tables are stored at below the 2GB bar
• Impact on DBM1 virtual below the bar and real storage just like DB2 9

– Packages bound with DB2 10 as REL(DEALLOC) :
• Package tables are stored in thread storage above the 2GB bar
• Some increase in DBM1 below the bar
• Impact on DBM1 above the bar = real storage usage

– Accumulated DB2 object information
• Potentially CPU cost for scanning the objects built up under the thread

21

© 2013 IBM Corporation22

CICS TS 4.2 Protected Threads Improvement

New REUSELIMIT(value) : Limit on the number of times that a thread can
be reused

– A value of 0 : no limit, this was the situation before CICS TS 4.2.

– Default of 1000 : provides sufficient protection against fat threads (over-allocating
thread storage and/or EDM pool storage with RELEASE(DEALLOCATE) BIND
option)

– Use default and monitor DB2 storage usage and adjust the number if needed

PURGECYCE change to the DB2CONN definition
– This controls how long protected threads are allowed to stay dormant before either

being reused or terminated. Again it contributes to the "fat thread" problem.

– PURGECYCLE now allows a lower limit of 5 seconds
• today it is 30 seconds which is also the default

• If the lower limit is used then on average a protected thread will be purged after 7.5 seconds,
as a protected thread has to be seen by two purge cycles before it is terminated.

• The default remains at 30 seconds meaning on average a protected thread will be purged after
45 seconds.

© 2013 IBM Corporation23

Considerations : Concurrency

Locks for packages and parent objects are held for the
life of threads
– BIND or REBIND operations against the packages :

• Timeout because S-locks are held against the packages used in the
persistent threads

– DDL operations such as DROP, ALTER against the objects used
any time in the thread life :
• Timeout because intent parent locks are held in the persistent threads

– Wit high perf DBATs, switching PKGREL to COMMIT solves the
issue
• In data sharing, switch has to be done in all members who are executing

the package with REL(DEALLOC)

Applications using LOCK TABLE statements
– TABLE locks are held across commit

• STOP DATABASE .. AT(COMMIT) can interrupt the persistent thread

23

© 2013 IBM Corporation24

Verification and Monitoring : Where To Look ?

1. Verify RELEASE(DEALLOCATE) is working as
expected

2. Identify the benefit
3. Monitor virtual and real storage

24

© 2013 IBM Corporation25

(1) Is REL(DEALLOC) Working ?
• Examples of simple workload SQLJ IRWW with REL(COMMIT)

vs REL(DEALLOC) when all transactions were bound w/ same
option

25

Statistics - EDM COMMIT DEALLOC
DBD Requests per commit 1 0.05
PT Requests per commit 6.3 0.2
Other Statistics COMMIT DEALLOC
Package Allocation Success 1 0.01
Package Authorization Success 1 0.01
Lock Requests 16 7.4

© 2013 IBM Corporation26

(2) Identify Benefit

General DB2 CPU time : Class 2 CPU time + non DDF address space time

For distributed threads, alternatively statistics total CPU time

26

Accounting (micro sec) V9
COMMIT

V10
COMMIT

V10
DEALLOC

Class 1 CPU time 1233 1012 982

Class 2 CPU time 835 650 608

Statistics CPU (micro sec)
DDF Address Space CPU per commit 1365 1131 1086
Non DDF Address Space CPU per
commit

77 45 45

Total Address Space CPU per commit 1442 1177 1132

V9 commit vs. V10 commit = 18% DB2 CPU reduction

V9 commit vs. V10 dealloc = 23% DB2 CPU reduction

• Examples of simple workload SQLJ IRWW with REL(COMMIT) vs
REL(DEALLOC) with 48 clients

© 2013 IBM Corporation27

(3) Memory Usage

DBM1 storage statistics (IFCID 225, statistics class 1)

27

• Examples of 450 threads with REL(COMMIT) vs REL(DEALLOC)
when all transactions were bound w/ same option in DB2 10

DBM1 Below (MB) COMMIT DEALLO
C

Total agent local storage (MB) 40 80
- Total system agent storage (MB) 10 10

- Total non-system agent storage (MB) 29 70
- Number of active user threads 447 453
- Per user thread (MB) 0.06 0.15
Real Storage
64 bit shared memory pages 506819 581111
Shared memory roughly per thread (MB) 4.43 5.01

© 2013 IBM Corporation28

When To use ?

RELEASE(DEALLOCATE) is NOT meant for all packages

Not recommended if
– Under real or virtual storage constraint
– Concurrency with DDL, REBIND is important for local connection
– Not for a thread which executes large variety of infrequently used packages

and statements
– Not for a thread which touches many DB2 objects

Effective when threads are reused and the programs are repeatedly
executed across commits
– Higher CPU reduction rate with the packages frequently issue commits
– Higher CPU time reduction with the large packages but storage impact is

higher, too

Continue to monitor the usage, benefit and storage impact

© 2013 IBM Corporation30

KEEPDYNAMIC

© 2013 IBM Corporation31

KEEPDYNAMIC - BIND and REBIND Option

Determines whether DB2 keeps dynamic SQL statements after commit
– KEEPDYNAMIC NO/YES
– YES : DB2 keeps dynamic SQL statements after commit until,

• Application process ends
• A rollback occurs
• An explicit PREPARE with same statement identifier

– KEEPDYNAMIC YES does not apply for “EXECUTE IMMEDIATE”

Default is NO
– BIND PLAN NO
– BIND PACKAGE NO
– REBIND PLAN/PACKAGE Existing value
– DB2Binder –keepdynamic for JDBC and SQLJ NO
– DB2BaseDataSource.NOT_SET(0)

Catalog
– KEEPDYNAMIC in SYSPLAN and SYSPACKAGE

31

© 2013 IBM Corporation32

Performance of Prepare

Full prepare vs. Short prepare
– No cache hit as opposed to global cache hit
– Immediate benefit by turning on CACHEDYN
– Magnitude of hundreds times difference

• Depends on complexity of the statement
• One example ; 200 times less CPU time

Short prepare vs. prepare avoidance via KEEPDYNAMIC
– Global cache hit as opposed to local cache hit MAXKEEPD > 0
– Application needs to avoid prepare
– A few % to tens of % difference

• Depends on the size of statement
– With KEEPDYANMIC (YES), dynamic statements performs like static or

even better in term of CPU consumption
• Package and statements are kept in local thread like RELEASE(DEALLOCATE)
• Already prepared
• DBATs stay active

© 2013 IBM Corporation33

KEEDPDYNAMIC and Virtual/Real Storage

Statements are kept in user thread storage
– DB2 9 EDM and thread storage below the 2GB bar : virtual storage impact
– DB2 10 above the 2GB bar : real storage impact

Controlling the storage usage
– Use parameter markers (or literal replacement) to reduce the number of statements
– Cap with MAXKEEPD value

• Limits number of cached statements in system level
• Remove statements in local thread storage

– New execution of the removed statements results in “IMPLICIT” prepare
• MAXKEEPD =0 still benefit

– Package allocation avoidance
– Explicit prepare reduction

– Storage contraction via CONTSTOR and MINSTOR to reduce unused storage
footprint

– CACHEDYN_FREELOCAL
• Remove statements when threshold is reached
• New execution of the removed statements results in “IMPLICIT” prepare

© 2013 IBM Corporation34

Monitoring – Effectiveness of KEEPDYNAMIC
Dynamic SQL STMT COUNT Comments

PREPARE REQUESTED 98786 Explicit prepare requested

FULL PREPARE 19088 Explicit and Implicit prepare, not found
in global cache

SHORT PREPARE 79696 Found in global cache

GLOBAL CACHE HIT RATIO 80.68%

IMPLICIT PREPARES 10510 KEEPDYNAMIC(YES) but statements
not found in local cache

PREPARES AVOIDED 63834K Statements found in local cache

CACHE LIMIT EXCEEDED 40596 Statements are invalidated due to
MAXKEEPD or FREELOCAL

PREP STMT PURGED 0 Statements are purged from DDL or
runstats

LOCAL CACHE HIT RATIO 99.98%

© 2013 IBM Corporation35

0
2
4
6
8

10
12
14
16
18
20

8K 64K

MAXKEEPD values

Implicit prepare Prepare avoided per tran CPU time per transaction (ms)

0
2
4
6
8

10
12
14
16
18
20

8K 64K

MAXKEEPD values

Implicit prepare Prepare avoided per tran CPU time per transaction (ms)

MAXKEEPD 8K 64K

CPU time per transaction (ms) 6.55 5.18

#Concurrent thread 844 844

Prepare avoided per tran 8.95 19.37

Implicit prepare 10.43 0

DBM1 Below (MB) 93.39 92.53

Real storage usage (MB) 5861 5874

DB2 10 and Larger MAXKEEPD

26% CPU
reduction

© 2013 IBM Corporation36

KeepDynamic DBAT Refresh

KEEPDYNAMIC (YES) causes DBATs stay active

DB2 9 change (PK69339) to address long running DBATs with
KEEPDYNAMIC(YES)

Requires
– CMTSTAT = INACTIVE (Default)
– Client IBM Data Server Driver/Client for JAVA
– Sysplex Workload Balancing and /or Seamless Failover

• DataSrouce “enableSysplexWLB” or “enableSeamlessFailover” set true
– Data source KeepDynamic set

DDF will terminate the DBAT connection after
– Over one hour after it has been used OR
– Over 20 minutes remained idle

SAP servers no longer need be manually stopped to relieve
possible virtual storage constraint

© 2013 IBM Corporation37

DB2 10 New Function Performance

© 2013 IBM Corporation38

INCLUDE Indexes (NFM)

CPU saving in Insert
– 2 Index vs 1 index with INCLUDE columns shows 30% cpu

reduction in insert

More index only access

DASD space saving

More Stable Access Path Selection (ix1 or ix2 ???)

CPU saving in Insert
– 2 Index vs 1 index with INCLUDE columns shows 30% cpu

reduction in insert

More index only access

DASD space saving

More Stable Access Path Selection (ix1 or ix2 ???)

TWO indexes
CREATE UNIQUE INDEX ix1 ON t1(C1,C2)
CREATE INDEX ix2 ON t1(C1,C2,C3,C4)

TWO indexes
CREATE UNIQUE INDEX ix1 ON t1(C1,C2)
CREATE INDEX ix2 ON t1(C1,C2,C3,C4)

One INCLUDE index
CREATE UNIQUE INDEX ix3 ON

t1(C1,C2) INCLUDE (C3,C4)

One INCLUDE index
CREATE UNIQUE INDEX ix3 ON

t1(C1,C2) INCLUDE (C3,C4)

Remember….
– Include index will be larger than original unique index
– If the majority of usage is index ix1, you may see

getpage, I/O impact

Remember….
– Include index will be larger than original unique index
– If the majority of usage is index ix1, you may see

getpage, I/O impact

© 2013 IBM Corporation39

Index to Data Access vs. Hash Access (NFM)
Hash Function

R
ID

Hash Access can provide CPU reduction
– DB2 locates a row without having to use an index

• 5 to 30% CPU reduction observed
– Better improvement with large tables with small rows

• IRWW workload shows average 8% CPU reduction with
subset of tables as Hash access

Hash Access can provide CPU reduction
– DB2 locates a row without having to use an index

• 5 to 30% CPU reduction observed
– Better improvement with large tables with small rows

• IRWW workload shows average 8% CPU reduction with
subset of tables as Hash access

Challenge to find the right objects
– Not ideal for sequential fetch nor insert
– Sync I/O increase if accessed in clustering order

• Impact on LOAD utility using input data with clustering order

Challenge to find the right objects
– Not ideal for sequential fetch nor insert
– Sync I/O increase if accessed in clustering order

• Impact on LOAD utility using input data with clustering order

© 2013 IBM Corporation41

Inline LOBs for Small LOBs (NFM)

0

10

20

30

40

50

60

70

80

Se
co

nd
s

OUTLINE INLINE

Select 10,000 x 200 byte LOBs

0

10

20

30

40

50

60

70

80

Se
co

nd
s

OUTLINE INLINE

Select 10,000 x 200 byte LOBs

Elapsed time in random select

Not ideal IF,
• Most of LOBs become “split LOB”
• Majority of SQLs do not touch the LOB columns anyway

Impact against base table access with Inline
• Buffer pool size needs adjustment with inline

Not ideal IF,
• Most of LOBs become “split LOB”
• Majority of SQLs do not touch the LOB columns anyway

Impact against base table access with Inline
• Buffer pool size needs adjustment with inline

Almost Completely Inline LOBs
– Save CPU and I/O

• Less objects, less getpages, less
I/Os for both LOB table space and
LOB auxiliary index

• Dynamic prefetch can be used
• Index Expression can be used

– Reduce DASD space
• No more one LOB per page
• Inline portion can be compressed

Almost Completely Inline LOBs
– Save CPU and I/O

• Less objects, less getpages, less
I/Os for both LOB table space and
LOB auxiliary index

• Dynamic prefetch can be used
• Index Expression can be used

– Reduce DASD space
• No more one LOB per page
• Inline portion can be compressed

© 2013 IBM Corporation42

UTS Performance

© 2013 IBM Corporation43

Some new features are UTS only …

DB2 9
– Clone tables

DB2 10
– Hash access
– Currently Committed bind option / prepare attribute.
– Inline LOB support

© 2013 IBM Corporation45

Insert Rate and CPU Time Comparisons DB210 vs. 9
Sequential Inserts – Page Level Locking

Insert Rate Comparisons CPU Time Comparisons

73
44

1

91
41

7

28
17

6

18
90

9

19
00

5

10
02

27

93
26

5

93
02

1

92
81

4

88
41

4

94
42

2 10
35

79

0

20000

40000

60000

80000

100000

120000

PTS PTS/MC PBR PBR/MC SEG PBG PBG/MC

Th
ro

ug
hp

ut
 R

at
e

(R
ow

s/
Se

c)

)

V9 V10

44
.6

12
.4

88
.4

15
6

14
8

9.
53

8.
57 10

.2
7

8.
6

19
.1

9

13
.3

11
.5

2

0

20

40

60

80

100

120

140

160

180

PTS PTS/MC PBR PBR/MC SEG PBG PBG/MC

C
PU

 ti
m

e
/ C

om
m

it
(m

se
c)

)

V9 V10

 Multi-Row Inserts (100)
 Page Level Locking

 240 concurrent threads
 Commit every 3 inserts with no delay

One Example of Insert Performance

© 2013 IBM Corporation46

UTS Usage Guidance

UTS Insert Performance in DB2 10
– Significant improvement from DB2 9 in concurrent insert

• Insert algorithm change
• Member cluster support (NFM)

– Significant variation depending on #concurrency, insert pattern,
row size and number of indexes. In our workload,
• PGB is generally better performer than classic Segmented TS
• Page level locking : As good as classic table spaces
• Row level locking : Seq insert into non-MC UTS/SEG is soft spot

– Recommend specific test using own workloads

Partition By Growth Table Space
– Be aware of cost of high MAXPARTITIONS

• NUMPARTS vs. MAXPARTITIONS
• Recommend to specify realistic number of partitions, not 4096
• PM57001 - Allows ALTER TABLESPACE MAXPARTITIONS to lower

numbers (DB2 9 and 10)

© 2013 IBM Corporation47Slide 47 of 64

Top DB2 for z/OS Communities

World of DB2 for z/OS

DB2 10 LinkedIn

DB2 for z/OS What’s On LinkedIn

DB2 for z/OS YouTube

WW IDUG LinkedIn Group

IDUG.ORG

DB2 for z/OS Exchange Forum

http://db2forzos.ning.com/

http://linkd.in/kd05LH

http://linkd.in/IDUGLinkedIn

http://www.idug.org

http://www.youtube.com/user/IBMDB2forzOS

http://ibm.co/DB2zHotline

http://linkd.in/IBMDB210

http://db2forzos.ning.com/
http://linkd.in/kd05LH
http://linkd.in/IDUGLinkedIn
http://www.idug.com/
http://www.youtube.com/user/IBMDB2forzOS
http://ibm.co/DB2zHotline
http://linkd.in/IBMDB210

© 2013 IBM Corporation48

© 2013 IBM Corporation49

Acknowledgements and Disclaimers:

© Copyright IBM Corporation 2012. All rights reserved.

– U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

IBM, the IBM logo, ibm.com and DB2 are trademarks or registered trademarks of International Business Machines Corporation in the
United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information
with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Availability. References in this presentation to IBM products, programs, or services do not imply that they will be available in all
countries in which IBM operates.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are
provided for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice
to any participant. While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is
provided AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of,
or otherwise related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the
effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the
applicable license agreement governing the use of IBM software.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may
have achieved. Actual environmental costs and performance characteristics may vary by customer. Nothing contained in these
materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific
sales, revenue growth or other results.

http://www.ibm.com/legal/copytrade.shtml

	IBM zEnterprise Technology Summit
	IBM DB2 10 for z/OS �Performance Best Practice�Session Number
	Please note
	Topics
	DB2 for z/OS and zEC12
	zEnterprise EC12 and DB2 for z/OS
	DB2 10 Performance Tips and Lessons Learned
	DB2 10 Migration Performance – (1)
	DB2 10 Performance Experience – (2)
	DB2 10 Migration Performance – (3)
	DB2 10 Migration Performance – (4)
	DB2 CPU Time and RELEASE(DEALLOC)
	RELEASE DEALLOCATE
	RELEASE - BIND and REBIND Option
	What Are Resources Kept With REL(DEALLOC) ?
	Thread Reuse and REL(DEALLOC)
	NOTES: CICS Protected Threads Overview
	High Performance DBATs
	High Performance DBAT Capabilities
	DB2 10 : Memory Usage With REL(DEALLOCATE)
	CICS TS 4.2 Protected Threads Improvement
	Considerations : Concurrency
	Verification and Monitoring : Where To Look ?
	 (1) Is REL(DEALLOC) Working ?
	(2) Identify Benefit
	(3) Memory Usage
	When To use ?
	KEEPDYNAMIC
	KEEPDYNAMIC - BIND and REBIND Option
	Performance of Prepare
	KEEDPDYNAMIC and Virtual/Real Storage
	Monitoring – Effectiveness of KEEPDYNAMIC
	DB2 10 and Larger MAXKEEPD
	KeepDynamic DBAT Refresh
	DB2 10 New Function Performance
	INCLUDE Indexes (NFM)
	Index to Data Access vs. Hash Access (NFM)
	Slide Number 41
	UTS Performance
	Some new features are UTS only …
	Slide Number 45
	UTS Usage Guidance
	Top DB2 for z/OS Communities
	Slide Number 48
	�� � Acknowledgements and Disclaimers:

