
Managing Source Code and Unifying
Development Teams

Rational Team Concert
for System z Users

lTraditionally, each tool came with its
own:

lLogic – Workflow, process,
search, query, scale, security
and collaboration
lStorage – Availability,
traceability
lPrivacy, backup/archive

lResulting in:
lUI – Web and desktop
presentations of views and
takss.
lBrittle integrations
lSilos everywhere
lHigh cost to maintain and
administer
lProprietary API's

How do you solve this?

Organizations have invested in a diverse set of ALM tools...

UI

LOGIC

DB

UI

LOGIC

DB

UI

LOGIC

DB

UI

LOGIC

DB

UI

LOGIC

DB

Tool B
Planning

Tool D
Build Management

Tool C
Reporting

Tool A
Work Items

Tool E
SCM

Rational Team Concert provides …

Unified Work Items, Planning,
SCM, Build Mgmt, Reporting
Single UI, storage and
process
Reduces Cost of Ownership

Administrative costs
Training/Adoption
Customizations

Increases visibility &
collaboration

UI

Planning

Build
Management

Reporting

Work Items

SCM

A unified client

With unified storage

One Tool!

LOGICDB

Query
Storage

Collaboration

Discovery

Administration:
Users, projects,

process

JAZZ SERVICES
Business
Partner

Extensions

Your
Extensions

Rational Developer for z

Rational Software Architect

Rational Systems Developer

Rational Business Developer

Rational Developer for Power

IDE Clients Web Clients

Visual Studio

Enterprise Clients Rational Desktop Clients

Rational Team Concert

Web 2.0Eclipse

Best Practices
Presentation:

Mashups

Rational Team Concert - an open, extensible architecture

Supporting a broad range of desktop clients, IDE’s, languages and platforms

ISPF

Your Extensions

IBM Rational ExtensionsWindows Linux AIX

IBM i on Power Linux for System z z/OS zEnterprise

Jazz Team Server

Jazz.net

RDz - Eclipse Based zOS Development

Access resources on zOS
Manage PDS (PDSe) – allocate, migrate, search,
add members
Intelligent editors for COBOL, PL1, HLASM, JCL,
C/C++
Access JES (submit jobs, see job log)
TSO Command shell with content assist
USS file access & command shell

Team advisor for defining / refining “rules”
and enabling continuous improvement
Process enactment and enforcement
In-context collaboration enables team members to
communicate in context of their work

Single structure for project related artifacts
World-class team on-boarding / offboarding
including team membership, sub-teams and
project inheritance
Role-based operational control for flexible
definition of process and capabilities

Jazz Team Server

Component based SCM enables
reuse across projects
Change set based for easy
addition or removal of features
Server-based sandboxes
Use RTC SCM or co-exist with a
legacy SCM

SCM Work Items
Defects, enhancements
and conversations
View and share query results
Support for approvals and
discussions
Query editor interface
Connects to ClearQuest or
Change

Automated Work item and
change set traceability
Build definitions for team
and personal builds
Local or remote build servers
Multi-level continuous
integration
Can integrate with BuildForge

Build

Planning
Integrated release/iteration planning
Effort estimation & progress tracking taskboards
Out of the box process templates: formal or agile

Project Transparency
 Customizable web based dashboards
 Real time metrics and reports
 Project milestone tracking and status

Rational Team Concert:

A Closer Look

8

Open Services for Lifecycle Collaboration (OSLC)

Working to standardize the way software lifecycle tools share data

Community Driven – @ open-services.net
Specifications for numerous disciplines

•Such as, ALM, PLM and DevOps
•Defined by scenarios – solution oriented
Inspired by Internet architecture

A different approach to industry-wide proliferation

Open Services for Lifecycle Collaboration
Lifecycle integration inspired by the web

How does it work?

What is OSLC?

Inspired by the web Free to use and share Changing the industry

IBM Rational Lifecycle Integration Adapters

Integrate Rational with existing DevOps stacks

Rational Lifecycle
Integration Adapters

Work is done against a Work Item

Report

Work
Items

Plans
define &
organize
Work Items

Planning Source Control

Change-sets
implement
Work Items

Build
includes
change-sets

Build

Reports
show work
item activity

Work items
describe

the builds

Work Items: Central to Rational Team Concert

Know who did what, when
and why for every change!

12

Team and project breakdown

Easily re-balance and re-organize.

Transparency and Status for Everyone
Every stakeholder knows project status without having to ask

14

Development dashboard

15 15

Configurable Rules can be
run to enforce team or

organizational standards.
Can be refined “on the fly” for

an individual team for
continuous improvements

“Quick Fixes” can be specified to
simplify corrective action. Out of the

box processes include Scrum,
iterative, formal or any process

Establish the rules of the road & help your team work with them

Streams

Provide flexibility to meet any process

RTC Server

Sandbox
Eclipse

zOS

Sandbox
ISPF

build
engine PDSs

build
def

build
agent

HFS

Streams

Workspaces

zOS Source Control

Facilitates simultaneous development

18

Team of Team Stream

Team Streams

Developer Streams

Work on multiple product versions and teams

and maintain order

Parallel development needs visibility, control, and assistance to
merge code.



Promotion

Flow source code changes and build outputs through the development
hierarchy

Source

Outputs

Promotion & Deployment

Package build outputs and deploy to various runtimes

Test Machine 1

Jazz Team Server

Test Stream

Dev Stream

Build Machine

Test Library

Dev Library

Runtime Library

Test Machine 2

Test Machine 3

Package

Runtime Library

Runtime Library

Promote source
Promote outputs

Package

Still want a green screen?

Full function SCM client
Uses usual ISPF editor
to edit files and follows
common ISPF panel
standards for all
panels and actions
Designed to be used with
the Web client for planning
and work items

Don't abandon your ISPF experienced developers!

23

www.ibm.com/software/rational

www.ibm.com/software/rational

Backup Material

Delivery to Stream

General Compilation Structure

1.Define Data Definitions
2.Translators
3.Language Definitions
4.Build Definitions for the build

Build process details

Build
Engine

Build Def.

Language
Def. Translator

Translator
DS Def.
DS Def.
DS Def.
DS Def.

Repository
workspace

Build
Agent

{ Ant build process }

Build Administrator Tasks

Build Administrator
–Creates Data Set Definitions

•Used to describe the characteristics of the MVS data sets that will be
used in the build

–Creates Translators that describe some type of processing to be
done on a buildable file

•Similar to a JCL job step
•Defines

–Compiler or translator to be used in this step
–DD allocations needed by the compiler
–Maximum return codes

–Creates Language Definitions
•Collections of translators that can be applied to a buildable file

–Creates a Build Definition describing the build

Data Set Definitions

Container for information regarding a data set on the z/OS system.
All datasets referenced by a build process must have a corresponding Data Set
Definition.

Translators

Describes an
operation to be
performed on a file
during a build
Supports variable
substitution for data
set definitions
Supports build-
level and file-level
overrides for
compiler options
and ISPF/TSO
commands

Language Definition

Collection of tasks to be performed on a file
Tasks defined using Translators
Example: DB2 Preprocessor, CICS Translator, COBOL compile, and link-edit

Setup build definitions related to streams

Dependency Build

Build changed and impacted programs only
Options:

–Build subsets
–Personal build
–Preview build
–Ignore changes
–Rebuild

Source code data collection

 On delivery of code into the SCM a
scanner parses the code and mines for
code dependencies
 The scanner is associated to a
Language Definition and the Language
Definition is associated to the file being
delivered
The dependency data is stored in the
repository
Custom scanners can be contributed to
this framework and will also be invoked
Their output will also be stored in the
repository

Source code data

The Source Code Data editor allows
you to view the data collected by all the
scanners run against the file.
 You are also able to manually add
or edit data that the scanners have
collected

Source Code Data Query Editor

 We have a fully functional query editor

Works out of the box against
the data that the default scanner
produces
 Attributes - user defined scanners
produce can be added

Queries can be
saved and shared

Impact Analysis

Promotion Build Definition

Deployment

Installs packages to target system
Copies the binaries
Backup n-1 version for deployment for back out
Full back out of packages
Must have build agent on all target systems
Pre and Post processing is supported for deployment

Submitting a Deployment Request

There are 4 types of requests you can execute
on a Deployment Definition:

–Load: just load the specified package from
the Build Machine to the Deployment
Machine (to be deployed later)
–Deploy: deploy a previously-loaded
package
–Load and Deploy: load the specified
package and deploy it immediately
–Rollback: reverse the changes made by the
last Deploy request.

Deployment: Reporting

Deployment reports produced from deployment requests
contain detailed information on what was modified

Query Packages and Deployments

Run queries for your packages and deployments to discover
the state of your test and production machines

Automated dashboards

44

Role based dashboards - Personal, Team, Project dashboards
Dashboards populated with data from across the silos
Review status on-line – Stay informed – Automated Project Status w/o having to ask.

Personal Dashboard

Team Dashboard

Continuous Improvement

Embrace and use techniques in appropriate
way
Automation enables and enforces process
changes

Kanban Taskboard

Plans now feature a Kanban Taskboard. Configure your view mode to use
Kanban as display type, define limits, and off you go. By default, limits use counts,
but you are free to choose Complexity or Estimates. Deviations from the ideal are
shown as a small box in the column header. The further your goal is away, the more
red the box gets.

Package Definition

Deployment Build Definition

QA Stream

QA Package
Definition

QA Deployment
Definition

QA Build
File System

Jazz Team Server

Build Machine

QA Build
•BuildDefn
•Buildmaps + WS

BUILD

Deploy Machine

Deployment by steps:

Runtime
Environment

Package
Archive

Rollback
Archive

PGM2PGM1PGM1 PGM2

Step 1: something has been Built or Promoted

QA Stream

QA Package
Definition

QA Deployment
Definition

QA Build
File System

Jazz Team Server

Build Machine

Package
Archive

QA Build
•BuildDefn
•Buildmaps + WS

PACKAGE

Deploy Machine

Deployment by steps:

Package
Reports

Runtime
Environment

Package
Archive

Rollback
Archive

PGM2PGM1PGM1 PGM2

Step 2: A Package is Requested

PGM2

QA Stream

QA Package
Definition

QA Deployment
Definition

QA Build
File System

Jazz Team Server

Build Machine

Package
Archive

QA Build
•BuildDefn
•Buildmaps + WS

PKG
LOAD

Deploy Machine

Deployment by steps:

Package
Reports

Deployment
Reports

Runtime
Environment

Package
Archive

Rollback
Archive

Package
Archive

PGM2PGM1PGM1 PGM2

Step 3: Package is Loaded to Deploy Machine

PGM2 PGM2

QA Stream

QA Package
Definition

QA Deployment
Definition

QA Build
File System

Jazz Team Server

Build Machine

Package
Archive

QA Build
•BuildDefn
•Buildmaps + WS

Deploy Machine

Deployment by steps:

Package
Reports

Deployment
Reports

Runtime
Environment

DEPLOY

Package
ArchiveRollback

Archive

Package
Archive

PGM1 PGM2

Step 4: Package is Deployed

PGM2 PGM2

PGM2

PGM1 PGM2

QA Stream

QA Package
Definition

QA Deployment
Definition

QA Build
File System

Jazz Team Server

Build Machine

Package
Archive

QA Build
•BuildDefn
•Buildmaps + WS

Deploy Machine

Deployment by steps:

Package
Reports

Deployment
Reports

Runtime
Environment

ROLLBACK

Package
Archive

Rollback
Archive

PGM2PGM1PGM1 PGM2

Step 4 minus 1: A Package is Rolled Back

PGM2

PGM2

Merging Code



Merging Code



Merging Code



Merging Code



58

See and manage the big picture for releases, roll up progress
and work load

