
Application-enabling features of DB2 10 and 11 for z/OS

The aim of this presentation

• To help ensure that your organization is aware of recently
delivered DB2 for z/OS features that can boost agility and
productivity with respect to application development

2

Agenda (1)

• DB2 10 application-enabling features
– Temporal data support
– Enhanced SQL user-defined functions
– RETURN TO CLIENT cursors
– OLAP moving aggregates
– LOB enhancements
– Implicit casting of character string and numeric values
– Timestamp extensions
– XML enhancements

3

Agenda (2)

• DB2 11 application-enabling features
– Autonomous native SQL procedures
– Array parameters (and variables) for SQL procedures (and

user-defined functions)
– Temporal special registers and temporal support for views
– Global variables
– DB2-managed data archiving
– New grouping options: GROUPING SETS, ROLLUP, CUBE
– DB2 integration with Hadoop-managed data
– XQuery support for XML data

4

5

Application enabling features
of DB2 10 for z/OS

Temporal data support

• Allows you to give a time dimension to data in a DB2 table
• Two flavors:

– System time: DB2 maintains a history table associated with a base table,
and will insert into the history table the “before” version of a row every time
a base table row is changed via update or delete

• DB2 also maintains “from” and “to” timestamp values in base and history
table rows, showing when a row in the history table was current, and when
a row in the base table became current

– Business time: a dimension that shows when data in a row is valid from a
business perspective (e.g., a product price that will go into effect next year)

• You maintain business time values, but DB2 can help by preventing FROM
and TO business time period “overlaps” (so one version of a given row will
be valid from a business perspective at any given time)

– You can combine system and business time in one table (“bi-temporal”)
6

More on temporal data support

• SELECT syntax extended to include the time dimension of a table
• Example: “What was the coverage associated with insurance policy

number 127348 at 10 AM on February 24, 2010?”

SELECT COL1, COL2,,,

FROM POLICY

FOR SYSTEM_TIME AS OF TIMESTAMP ‘2010-02-24 10.00.00’
WHERE POLICY_NUM = ‘127348’;

Can specify BUSINESS_TIME if
table has that dimension

Alternatively, can specify FROM and
TO, or BETWEEN two timestamp values

7

Advantages of temporal data support

• System time makes it easy to provide an audit history of data
changes in a DB2 table

• Business time enables “forward looking” data analysis possibilities
– Real-world example: forecasting future profit margins using prices

that will go into effect at a later time

• DB2-provided temporal capabilities GREATLY increase programmer
productivity versus “do it yourself” temporal data functionality

• DB2-implemented temporal table functionality delivers better
performance than the do-it-yourself alternative

8

Enhanced SQL user-defined functions (UDFs)

• Prior to DB2 10, the “logic” in a SQL scalar UDF was restricted to what
you could code in the RETURN part of CREATE FUNCTION, and that
was quite limited

– RETURN could not contain a SELECT statement
– RETURN could not include a column name

• You were basically limited to receiving a value (or values) as input,
transforming that value (or values) arithmetically and/or with scalar
functions, and returning the result of that transformation

– Example:
CREATE FUNCTION KM_MILES(X DECIMAL(7,2))

RETURNS DECIMAL(7,2)

LANGUAGE SQL

…
RETURN X*0.62;

You can still create a UDF like this
one, but DB2 10 enabled you to do
much more with UDFs written in SQL

9

Enhanced SQL UDFs (continued)

• Starting with DB2 10, the RETURN part of a SQL scalar UDF can contain
a scalar fullselect
RETURN(SELECT WORKDEPT FROM EMP WHERE EMPNO = P1);

• Also new with DB2 10: the RETURNS part of a SQL scalar UDF can
contain a compound SQL statement, in which variables can be declared
and which can include logic flow control statements such as IF and WHILE
BEGIN

DECLARE VAR1, VAR2 CHAR(10);

SET VAR1 = …;
IF P1 = …;
RETURN VAR2;

END@

• Also new with DB2 10: SQL table UDFs, which return a result set
10

RETURN TO CLIENT cursors

• Prior to DB2 10, a cursor in a stored procedure could be declared WITH
RETURN TO CALLER, allowing the result set rows to be directly fetched
only by the direct caller of the stored procedure

– Example: program PROG_A calls stored procedure PROC_B, which calls
procedure PROC_C, which has a WITH RETURN TO CALLER cursor

– PROC_B can directly fetch rows from the cursor, but PROG_A cannot
• If PROG_A needs the result set, PROC_C can put it in a temporary table,

and PROG_A can get the rows from that temp table
– Clunky from a programming perspective, and not optimal for

performance

• DB2 10: stored procedure can declare a cursor WITH RETURN TO CLIENT
– Makes result set rows directly FETCH-able by “top-level” program (i.e., the

one that initiated a chain of nested stored procedure calls)

11

Previous slide’s point, in a picture…

• Before DB2 10:

• With DB2 10:

Program XYZ

Stored proc A

Stored proc B
DECLARE C1 CURSOR…

CALL

CALL

WITH RETURN TO CALLER

Program XYZ

Stored proc A

Stored proc B
DECLARE C1 CURSOR…

CALL

CALL

WITH RETURN TO CALLER

WITH RETURN TO CLIENT

Still an option with
DB2 10, if this is the
behavior you want

12

OLAP moving aggregates

• A new (with DB2 10) SQL syntax that allows:
– Partitioning of a result set (e.g., by name)
– Ordering of rows within result set partitions (e.g., by date)
– Generation of aggregate values based on the “moving” current

position within a set of rows (e.g., sum of sales for the current row
plus the two preceding rows)

– Example:
SELECT NAME, DATE, UNITS_SOLD,

SUM(UNITS_SOLD) OVER(PARTITION BY NAME

ORDER BY DATE

ROWS BETWEEN 2 PRECEDING AND CURRENT
ROW) SUM

FROM PRODUCT_SALES;

The desired
aggregate
function

The desired result
set partitioning value

The desired ordering
of rows within result
set partitions

The desired scope of aggregation as DB2
moves through the result set partitions

13

The result of the SELECT on the previous slide

NAME DATE UNITS_SOLD SUM

Jones 2015-01-10 7 7

Jones 2015-01-11 8 15

Jones 2015-01-12 5 20

Jones 2015-01-13 6 19

Smith 2015-01-10 4 4

Smith 2015-01-11 9 13

Smith 2015-01-12 8 21

Smith 2015-01-13 5 22

Sum of this row’s
UNITS_SOLD (5) plus the
UNITS_SOLD values of the
preceding two rows in the
result set partition (7 and 8)

14

LOB enhancements: inlining

• Prior to DB2 10, every bit of every value in a LOB column had to be
physically stored in a separate LOB table space (the LOB values logically
appear to be in the base table rows)

• With DB2 10, a LOB column’s definition can include a specification of the
amount of space in the base table that can be occupied by LOB values

– The portion (if any) of a value over the limit is stored in LOB table space

• Great for a LOB column for which relatively few values are truly large
– Can significantly improve the performance of LOB-reading and LOB-

inserting programs (and utilities) when most of a LOB column’s values
can be completely in-lined

– Also allows creation of index on expression on in-lined portion of a CLOB
column (using the SUBSTR)

• Example: if contracts are stored in a CLOB column, and if data in bytes
10 through 20 is always the contract number, can build index on that

15

LOB enhancements: utilities

• Variable-block spanned (VBS) record format now supported for data sets
used for table UNLOAD and LOAD (referring to SYSREC data set)

– What this means: you can unload a table with a LOB column (or
columns) and have ALL of the data – LOB and non-LOB – go into a
single data set

– And reverse is true for LOAD (i.e., data – LOB and non-LOB values –
can be loaded from a single input data set

• Before DB2 10, had to unload individual LOB values to members of a
PDS, or to individual files in the z/OS UNIX System Services file system
(and reverse was true for LOAD)

• DB2 10 spanned record support greatly simplifies use of UNLOAD and
LOAD for tables with LOB columns, and substantially boosts performance

• DB2 10 also delivered support for online REORG of LOB table space with
SHRLEVEL(CHANGE)

16

Implicit casting of character, numeric values

• Consider this statement:
SELECT 1 CONCAT ‘+’ CONCAT 1 CONCAT ‘=‘ CONCAT 2
FROM SYSIBM.SYSDUMMY1;

• In a pre-DB2 10 environment, that statement gets this result:
SQLCODE = -171, ERROR: THE DATA TYPE, LENGTH,

OR VALUE OF ARGUMENT 1 OF CONCAT IS INVALID

• In a DB2 10 (new-function mode) system, you get this:
• 1+1=2

• Works assignment (SET) statements, too (but not for special registers)
• Numeric values are implicitly cast to VARCHAR, character values are

implicitly cast to DECFLOAT(34)
– Why? Because VARCHAR and DECFLOAT(34) are compatible with

all other character and numeric data types, respectively
17

Timestamp extensions

• New with DB2 10: timestamp values down to the picosecond (that’s a
trillionth of a second)

– One reason this was needed: mainframe engines are so fast now
that microsecond-level timestamps (often defined as unique keys in
DB2 tables) can regularly produce duplicate values

• Also new with DB2 10: variable-precision timestamps
– From 0 (no fractions of a second) to 12 (picosecond-level precision),

with 6 being the default
– Syntax: TIMESTAMP(n)

• Another DB2 10 enhancement: TIMESTAMP(n) WITH TIME ZONE
– New data type
– Sample value: ‘2012-10-03-10.15.00.123456-05:00’ Difference between

local time and UTC

18

XML enhancements

• With DB2 10, you can specify in the definition of a table the XML schema
that is to be used to validate data inserted into an XML column

– No longer have to invoke DB2-supplied user-defined function to
accomplish schema validation

– Additionally, DB2 10 XML schema validation is done “in the DB2 engine”
• Better performance, and zIIP-eligible

• And, you can update part of an XML document (versus replacing the
whole thing) via new XMLMODIFY built-in function

– Can insert a node into an XML document, replace a node, delete a
node, or replace values of a node

• Also, the CHECK DATA utility can check on the structural validity of XML
documents in an XML table space

– Pre-DB2 10: only checked consistency between base table and XML
table space

19

20

Application enabling features
of DB2 11 for z/OS

Autonomous native SQL procedures

• A DB2 11 native SQL procedure can function as an autonomous transaction
– How it’s done: AUTONOMOUS option specified in CREATE PROCEDURE

(or ALTER PROCEDURE) statement
• Specified instead of COMMIT ON RETURN YES/NO

– An autonomous SQL procedure commits on returning to the calling
program, but (unlike the case when COMMIT ON RETURN YES is in
effect) that commit does NOT affect the calling program’s unit of work

– An autonomous SQL procedure’s unit of work (UOW) is independent of
the calling program’s UOW – if the calling program’s UOW is rolled back,
data changes made by autonomous SQL procedure will not be rolled back

• Very useful if you require that a data update be accomplished when a
transaction executes, and you need that update to persist even if the
transaction subsequently fails

– A restriction: one autonomous SQL procedure can’t call another
21

Array parameters (and variables) for SQL procedures (and UDFs)

• DB2 11: array parameters can be passed to (and/or received from),
and array variables can be declared in, native SQL procedures (and
the same is true for SQL user-defined functions)

– Call to SQL procedure with array input or output parameter can
come from a SQL PL routine, a Java program, or a .NET program
(for latter two, via IBM Data Server Driver type 4 driver)

• If .NET caller, array must be input parameter

– An array in this context is a form of a DB2 user-defined data type
(UDT) – you create it, then you use it

– Built-in functions are provided to:
• Construct arrays
• Derive tables from arrays
• Obtain information about arrays
• Navigate array elements

22

More on array parameters and variables

• There are two array types:
– Ordinary

• Has a user-defined upper bound on number of elements (defaults to
INTEGER high value)

• Elements referenced by their ordinal position in the array

– Associative
• No user-defined upper bound on number of elements
• Elements are ordered by and can be referenced via array index values
• Values in a given array index are INTEGER or VARCHAR, are unique,

and don’t have to be contiguous

CREATE TYPE PHONENUMBERS AS DECIMAL(10,0) ARRAY[50];

Max number of elements in ordinary
array (defaults to about 2 billion)

Data type of values in the array

This is an ordinary array – associative array would have data type
of index values (e.g., VARCHAR(8)) after ARRAY keyword

23

Temporal special registers

• The need: what if you want a program (or just a SQL statement) to
have an other-than-current view of temporal data, but you don’t want to
change the program’s code?

• Solution: two new special registers delivered with DB2 11
– CURRENT TEMPORAL SYSTEM_TIME
– CURRENT TEMPORAL BUSINESS_TIME

• When set to a non-null value, has the effect of adding the following to a
SELECT statement that targets a temporal-enabled table (in this case,
use of system time is assumed):

– FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

• Example of setting special register’s value:
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP – 1 YEAR;

(this would result in a program having a view of data that was current as of one year ago)

24

More on temporal special registers

• A special register non-null value, once set, remains in effect for that
particular session (thread) until it’s changed (setting to null has the
effect of “turning the special register off”)

– But if set within a routine (stored procedure or UDF), the new
value is not passed back to the invoking application

• SYSTIMESENSITIVE, BUSTIMESENSITIVE bind options
determine whether or not SQL statements (static or dynamic) issued
through a package will be affected by temporal special registers

– Default value is YES

• If CURRENT TEMPORAL SYSTEM_TIME is set to non-null value
for a thread, data modification statements targeting system time-
enabled tables are not allowed

25

Temporal support for views

Base table View

SQLCODE -4736

With DB2 11, you can use temporal predicates when referring to a view defined
on a temporal table (but you can’t use a temporal predicate in defining a view)

Temporal predicate

Temporal predicate
26

Global variables

• The need: how can you pass data values from one SQL statement to
another in the context of a thread?

– Before DB2 11:
• Do it with application code (values placed into variables by one SQL

statement are copied to variables used as input to another SQL statement)
• Want a trigger to be able to access those values? Not easy…

– DB2 11: use global variables

• You can create your own global variables using the new CREATE
VARIABLE statement

– DB2 11 also provides a few built-in global variables:
• SYSIBM.CLIENT_IPADDR
• SYSIBMADM.GET_ARCHIVE
• SYSIBMADM.MOVE_TO_ARCHIVE

More on this archive stuff
momentarily…

27

Global variables
example

Assign value to a
(previously created)
global variable

Reference the global variable

28

DB2-managed data archiving
• NOT the same thing as system time temporal data

– When versioning (system time) is activated for a table, the “before” images
of rows made “non-current” by update or delete are inserted into an
associated history table

– With DB2-managed archiving, rows in archive table are current in terms of
validity – they’re just older than rows in associated base table

• The idea: when most access is to rows recently inserted into table, moving
older rows to archive table can improve performance of newer-row retrieval

• Particularly helpful when data clustered by non-continuously-ascending key
• People have long done this themselves – DB2 11 makes it easier

29

Before DB2-managed
data archiving

After DB2-managed
data archiving Newer, more

“popular” rows

Older rows,
less frequently
retrievedBase table Archive table

DB2-managed data archiving – how it’s done

1. DBA creates table (T1_AR, for example) to be used as archive for table T1
2. DBA tells DB2 to enable archiving for T1, using archive table T1_AR

ALTER TABLE T1 ENABLE ARCHIVE USE T1_AR;

3. Program deletes to-be-archived rows from T1
•If program sets built-in global variable SYSIBMADM.MOVE_TO_ARCHIVE to ‘Y’,
all it has to do is delete from T1 – DB2 will move deleted rows to T1_AR

4. Bind packages appropriately (bind option affects static and dynamic SQL)
•If a program is to ALWAYS access ONLY the base table, it should be bound with
ARCHIVESENSITIVE(NO)
•If a program is to SOMETIMES or ALWAYS access rows in the base table and
the archive table, it should be bound with ARCHIVESENSITIVE(YES)

• If program sets built-in global variable SYSIBMADM.GET_ARCHIVE to ‘Y’, and
issues SELECT against base table, DB2 will automatically drive that SELECT
against associated archive table, too, and will merge results with UNION ALL

30

New grouping option: GROUPING SETS
Example: determine average total compensation for WorkDept, Job, and EdLevel sets

Basically means, “group
by each of these
columns, in turn”

31

New grouping option: ROLLUP

Example: determine average total compensation for the various
hierarchies of WorkDept, Job, and EdLevel, and for overall set

• Column order in GROUP BY expression affects result set
• ORDER BY helps with readability

You get a grouping by all values of
column 1, column 2, and column 3; a
grouping by all values of column 1
and column 2; and a grouping by all
values of column 1

32

You also get an aggregate
over all qualifying rows

New grouping option: CUBE
 Example: determine average total compensation for various combinations of

WorkDept, Job, and EdLevel
– Column order in GROUP BY expression doesn’t matter
– ORDER BY helps with readability

You get grouping by all values of all three
columns, by all values of all combinations
of two of the three columns, and by all
values of each individual column

You also get an aggregate over all qualifying rows
33

DB2 integration with Hadoop-managed data

 Hadoop: an open source software framework that supports data-intensive
distributed applications

 Two main components
– Hadoop distributed file system
– MapReduce engine

• Powerful, but tedious from a development
perspective

• “Like the assembly language of Hadoop”

34

DB2 11: new UDFs for Hadoop integration

IBM BigInsightsA new user-defined function (UDF)
allows a data analytics job,
specified in JAQL, to be submitted
to a BigInsights server

A new table UDF reads the output
of the analytics job and returns it
in relational form

Available now for
Linux on z Systems

35

XQuery support for XML data

• Pre-DB2 11: XPath expressions can be used to navigate through
XML documents and to address parts of XML documents

– XPath is a subset of XQuery, which is a richer language for
accessing XML documents

– XPath limitations often necessitated using a mixture of XPath and
SQL, and that could make query coding more difficult

• DB2 11 includes XQuery support, providing a richer set of XML
expressions that can be used with the built-in functions
XMLQUERY, XMLEXISTS, and XMLTABLE

– Queries can be expressed purely using XQuery, versus a mixture
of XPath and SQL, and that can boost programmer productivity

• XQuery support was retrofitted to DB2 10 via APARS PM47617 and
PM47618

36

In conclusion…

• DB2 10 and 11 delivered a lot of new application-enabling features
– How many of these are being used at your site?
– How many could be put to good use at your site?

37

38

Thanks for your time!

