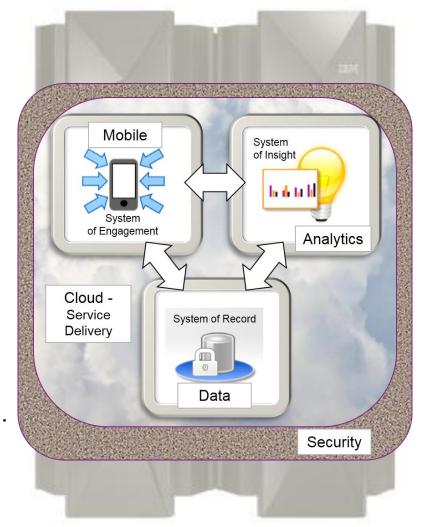


Positioning Your Enterprise for Cloud, Analytics and Mobile Computing

Building the Business Case for Cloud, Analytics and Mobile Computing on z Systems


We've covered a lot of information today about digital business and IBM z Systems...

Up to **40%** more capacity...

2x faster I/O bandwidth...

3x more memory...

38% improvement for zIIPs with SMT...

60% reduction in costs with Mobile Workload Pricing...

94% lower cost per throughput with BigInsights on z...

32% lower cost for z Systems private cloud than x86

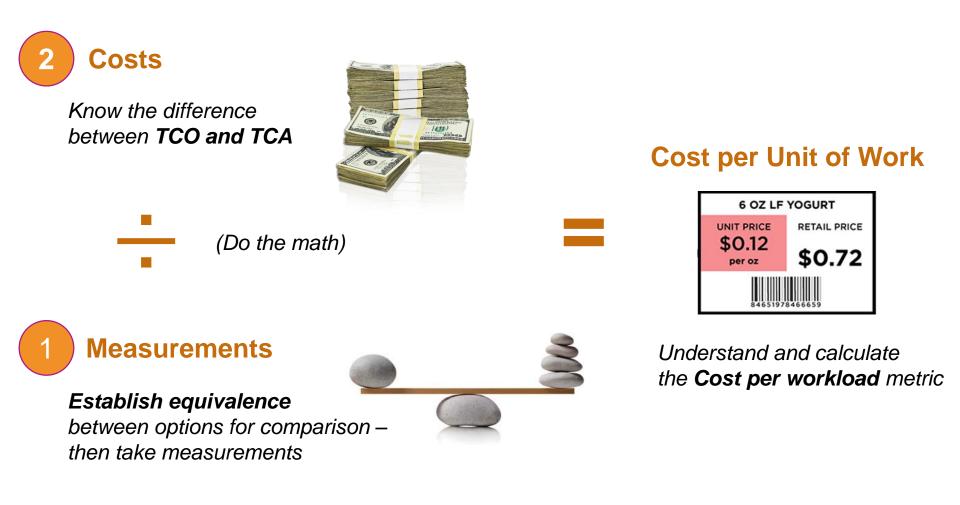
The challenge for you when creating a business case is to relate *IT value* to *business value*

"IBM has shown us several use cases for cloud, analytics and mobile computing on z Systems…"

"Okay, but what about our specific initiatives? Show me a business case!"

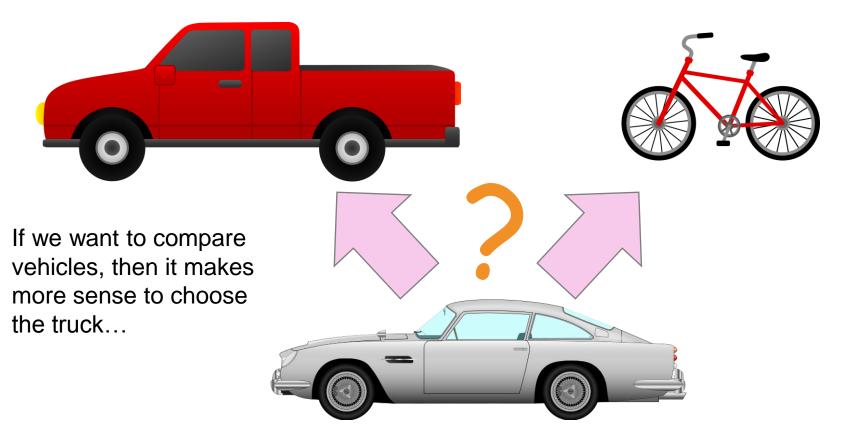
When planning strategy, businesses first and foremost look at the financials

Balanced Scorecard (Kaplan and Norton*)

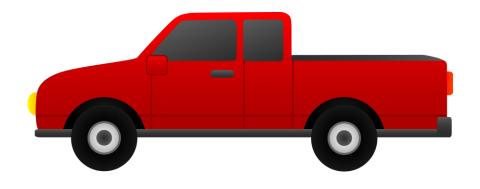

- Increase operating margin
- Grow shareholder value
- Reduce expenses
- Increase revenue

The best way to examine financials is to use **Cost per Unit of Work** metric

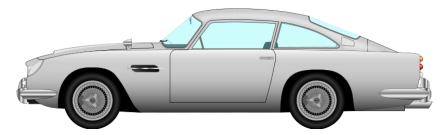
Kaplan, Robert S; Norton, D. P. (1992). "The Balanced Scorecard - Measures That Drive Performance". *Harvard Business Review*



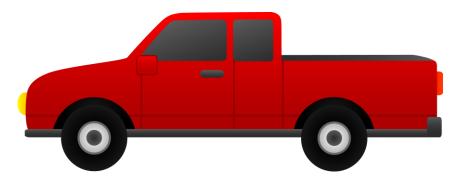
To calculate Cost per Unit of Work, focus on two key areas

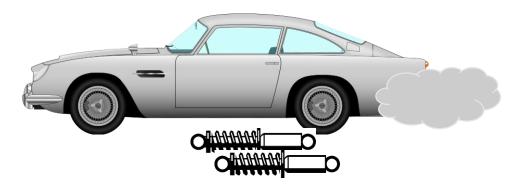


Establishing equivalence, step 1: Determine type of system needed to run the test



Establishing equivalence, step 2: Make sure each system has the same *capabilities*


Is it an apples to apples comparison yet?

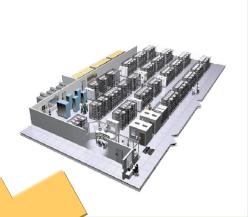

Establishing equivalence, step 2: Make sure each system has the same *capabilities*

Number of passengers

SPEED!

Engine horsepower

Hauling capacity


Establishing equivalence is critically important to making valid measurements

We are often asked to compare x86 to z Systems...

Atomic benchmarks and measures, analysts evaluations

App 1 App 2

Customer experience, real-world use cases

Consider all appropriate capabilities when making a comparison...

Does 1 z core equa	al 1 x86 core?
--------------------	----------------

	z Systems core	x86 cores (range)	
		Low end	High end
Chip architecture	1	1.3	1.3
I/O subsystem	1	1.25	1.67
Networking	1	1.11	2
High availability	1	1.2	1.7
Compiler efficiency	1	2	4.5
Workload consolidation	1	3.5	6
Disaster recovery	1	1	2
Totals (Multiply columns)	1	15	398

IBM Competitive Project Office

Establishing equivalence, step 3: Do the measurements! Collect the data!

Transactions

Acceleration speed

Weight

Transactions per second

Distance

Reports per minute Response time Queries per second

Capacity

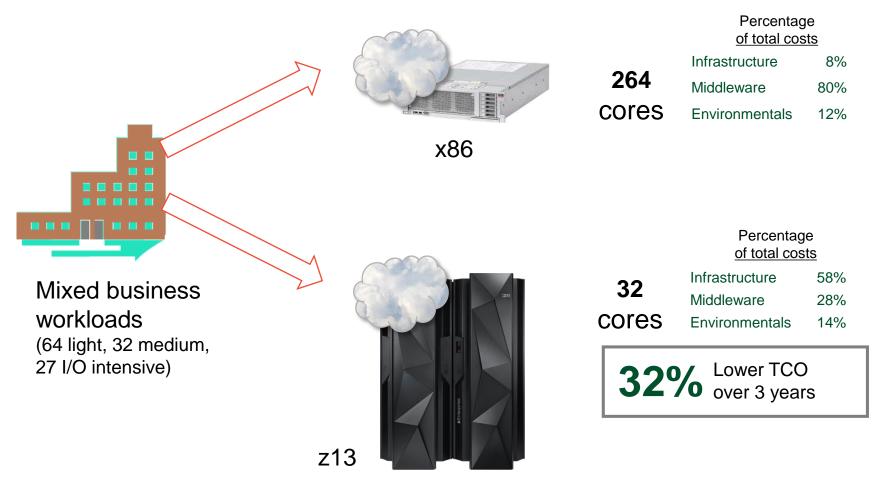
Height

Energy consumed

To understand costs, it's important to know the difference between TCO and TCA

Componente	Environments				Time	
Components	Prod					Time
Hardware	\$					
Software	\$					

Total Cost of Acquisition = Hardware + Software costs (over 3 years)


To understand costs, it's important to know the difference between TCO and TCA

Componente	Environments				Time	
Components	Prod	Dev	Test	QA	DR	Time
Hardware	\$	\$	\$	\$	\$	Planning
Software	\$	\$	\$	\$	\$	Upgrades
People	\$	\$	\$	\$	\$	Migration
Network	\$	\$	\$	\$	\$	Growth
Storage	\$	\$	\$	\$	\$	Parallel Costs
Facilities	\$	\$	\$	\$	\$	Net Present Value
QoS – Availability, Reliability, Security and Scalability						

Total Cost of Ownership is much more than Total Cost of Acquisition!

Our Cloud study was a good example of a TCO comparison

Source: IBM Internal Studies

Our Cloud TCO case used many different parameters to cover the full spectrum of costs

Three major categories

Infrastructure

Middleware

Environmentals

More than 30 cost variables

- System and IFL amount and costs
- Memory amount and costs
- Storage amount and costs
- PVU counts
- Cost of hypervisors
- Cost of cloud management software
- Cost of operating system
- Cost of middleware
- Cost of hypervisor maintenance
- Cost of cloud management maintenance
- Cost of operating system maintenance
- Cost of middleware maintenance

- Power consumption
- Cost of power
- Space taken
- Cost of space
- Admin rate
- Efficiency factors for labor
- Number of FTE
- Number and type of instances
- Cost of instances
- Amount of data out
- Cost of data out
- Enterprise support costs

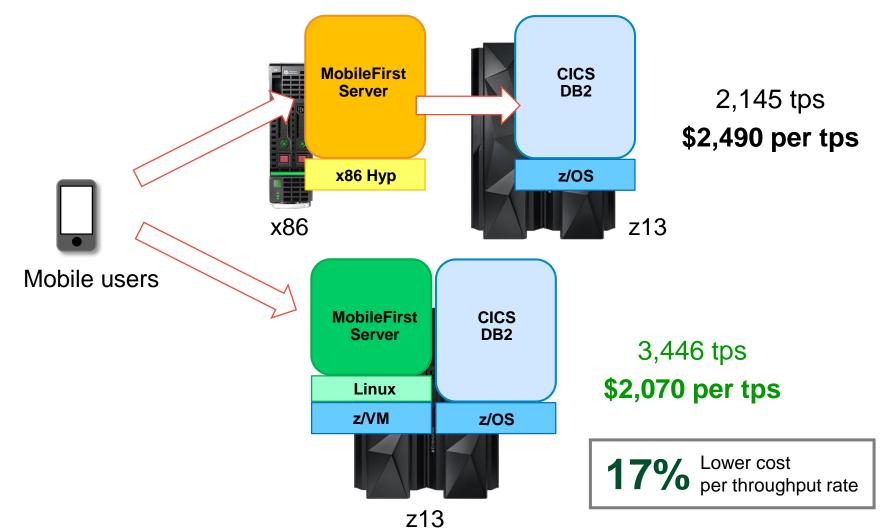
Cost per workload is probably the single most important value on which to focus

6 OZ LF YOGURT					
UNIT PRICE	RETAIL PRICE				
\$0.12 per oz	\$0.72				
84651978466659					

Which is the better buy?

Cost per Workload is a Unit Price

- For computing, these measurements are often based on
 - Quantity
 - Cost per report, cost per transaction (long running)
 - Capacity / Rate
 - Cost per transaction per second (short running, high volumes)


We talked about Cost per Workload when we talked about Analytics

Source: IBM Internal Studies. List prices used.

We also had a Cost per Workload example in the mobile discussion

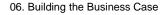
A simple example can illustrate the full picture

A recent IT Economic Study:

Costs

- Total infrastructure coats
- Mainframe costs
- Distributed costs

Workload


- Mainframe
 - 70% of mission critical apps
 - 80% of business transactions
 - 80% of the data
- Distributed
 - Remaining 30% of critical apps
 - Remaining 20% of business transactions

36x more

Remaining 20% of the data

Cost per workload was

21

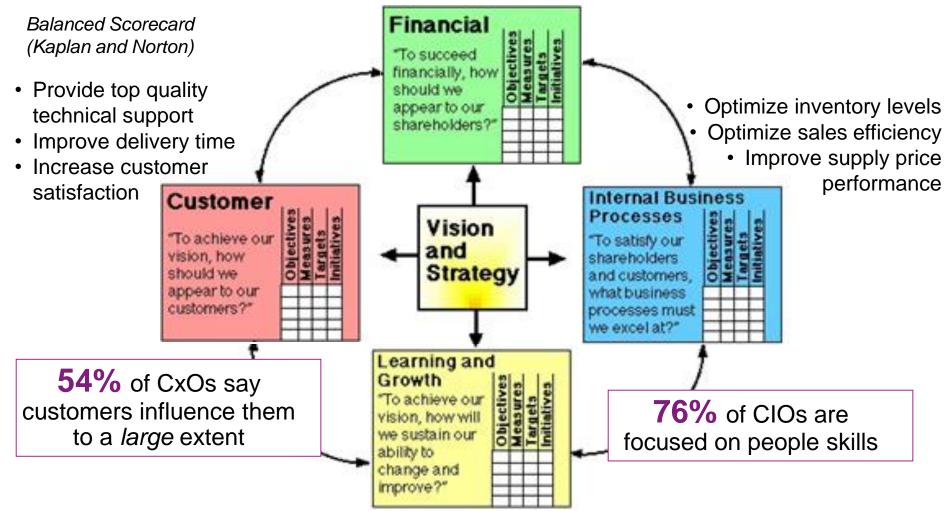
on distributed platform


than on z platform

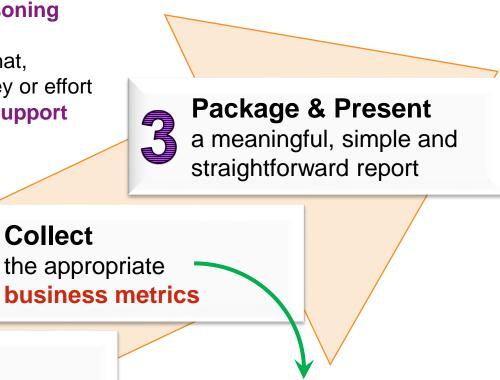
\$180M

\$162M

\$18M


Cost

A compelling business case will also address *more* than just the financial aspect


*Source: IBM Institute for Business Value, "The Customer-activated Enterprise"

A solid business case will make a compelling argument about *business value*

A business case captures **the reasoning for initiating a project** or task... The logic of the business case is that, whenever resources such as money or effort are consumed, they should be **in support of a specific business need.**

- Wikipedia

Understand

your specific corporate business targets

- Relevant business metrics point back to the business scorecard – give specific examples
- Solid business metrics will make understanding business value obvious

Mobile, analytics, and cloud top the list of CIOs' visionary plans*...

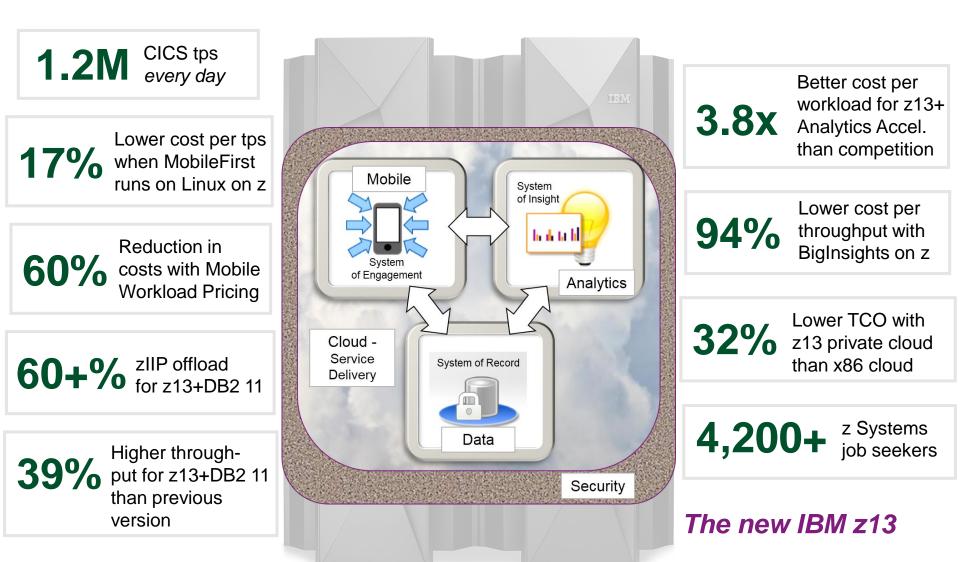
...so your challenge is to build a compelling case for z Systems as the platform of choice

IT data and metrics

The z Systems platform:

- High availability
- Reliability
- Scalability
- Security
- Performance
- Virtualization
- Consolidation
- Co-location

What Business Value can be derived from the known IT Value?


Relevant business metrics

Put it all together for a compelling business value argument for **Cloud**, **Analytics and Mobile** computing on z

*Source: IBM Institute for Business Value, "The Customer-activated Enterprise"

IBM z Systems – The heart of digital business

An IBM IT Economics Study provides a wealth of data supporting a z Systems business case – *at no charge*

An IT Economics study helps you build a business case for your enterprise

- Uses your information and costs
- Specifically tailored to your enterprise
- Shows your return on investment
- Allows you to make a financially based IT decision

Do you...

- Want to do more cloud?
- Need to simplify your IT environment?
- Want to reduce IT operating costs?
- Want to grow your business with open source applications?
- Have more than 25 x86, HP-UX or Sun servers running Oracle or Weblogic?
- Have more than three different platforms?

If the answer is yes to any one of these scenarios...

Use an IT Economics study to build a business case for your IT strategy

Contact the IBM Eagle Team at eagletco@us.ibm.com

IBM z Systems – The heart of digital business...

- The world's premier data and transaction engine enabled for the **mobile** generation
- The integrated transaction and analytics system for right-time insights at the point of impact
- The world's most efficient and trusted **cloud** system that transforms the economics of IT