

Open Blueprint

L
O
C
A
L

O
P
E
R
A
T
I
N
G

S
Y
S
T
E
M

S
E
R
V
I
C
E
S

Applications and
Development Tools

Systems Management

Application / Workgroup Services

Communication
Services

Object Mgmt
Services

Common Transport Semantics

Transport Services

Physical Network

Signalling
and

Control
Plane

Distribution
Services

Present'n
Services

Data
Access

Services

LAN WAN Channel ATM

Applications
and

Application
Enabling
Services

Distributed
Systems
Services

Network
Services

ÉÂÔ

Virtual Machine
Resource Manager

 G325-6588-00

Open Blueprint ÉÂÔ

Virtual Machine
Resource Manager

 G325-6588-00

About This Paper

Open, distributed computing of all forms, including client/server and network computing, is the model that is driving the rapid
evolution of information technology today. The Open Blueprint structure is IBM's industry-leading architectural framework for
distributed computing in a multivendor, heterogeneous environment. This paper describes the Virtual Machine resource manager
component of the Open Blueprint and its relationships with other Open Blueprint components.

The Open Blueprint structure continues to accommodate advances in technology and incorporate emerging standards and protocols
as information technology needs and capabilities evolve. For example, the structure now incorporates digital library, object-oriented
and mobile technologies, and support for internet-enabled applications. Thus, this document is a snapshot at a particular point in
time. The Open Blueprint structure will continue to evolve as new technologies emerge.

This paper is one in a series of papers available in the Open Blueprint Technical Reference Library collection, SBOF-8702
(hardcopy) or SK2T-2478 (CD-ROM). The intent of this technical library is to provide detailed information about each Open Blueprint
component. The authors of these papers are the developers and designers directly responsible for the components, so you might
observe differences in style, scope, and format between this paper and others.

Readers who are less familiar with a particular component can refer to the referenced materials to gain basic background knowledge
not included in the papers. For a general technical overview of the Open Blueprint, see the Open Blueprint Technical Overview,
GC23-3808.

Who Should Read This Paper

This paper is intended for audiences requiring technical detail about the Virtual Machine Resource Manager in the Open Blueprint.
These include:

¹ Customers who are planning technology or architecture investments

¹ Software vendors who are developing products to interoperate with other products that support the Open Blueprint

¹ Consultants and service providers who offer integration services to customers

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Open Blueprint Virtual Machine Resource Manager 1
Main Features of the Virtual Machine Resource Manager 2
The Virtual Machine: A Network Application Execution Environment 2
Virtual Machine Functional Description 4
Relationships to Other Resource Managers and Services 6
Application Development Support 6

Notices 7
Trademarks 7

Communicating Your Comments to IBM 9

 Copyright IBM Corp. 1996 iii

iv Virtual Machine Resource Manager

Open Blueprint Virtual Machine Resource Manager

The Virtual Machine resource manager implements the industry standard, object-oriented, Java execution
environment defined by the JavaSoft division of Sun Microsystems Inc. It provides a platform-independent
execution environment for Java programs such that the same binary programs will execute on all
Java-compliant hardware and software configurations. The Java object model, instruction set, and
standard interfaces are the same everywhere. The implementation is provided primarily by a mapping
onto the other resource managers and services of an Open Blueprint distributed system.

Background: The technology on which Java is based began life in 1989 as software for consumer
electronics. Java was released for public use in 1995 as Internet software that dramatically extends what
a PC or Unix workstation can do while browsing the World Wide Web (WWW).

Java-enabled applications have more animation and "sizzle"; and they do some of their computation in the
client system, for example checking input fields for valid data. The Web Browser resource manager is a
remote viewing program; it uses the HyperText Transfer Protocol (HTTP) resource manager to access a
Web server system across the Internet and displays a HyperText Markup Language (HTML) file or the
results of executing an application on a server. Using Java applets1 and the Virtual Machine resource
manager, this passive role changes; the Web browser can fetch (access and download) applets and
execute them in the local system as live, interactive elements within the current Web page.

The Java technology has evolved to become a binary-compatible cross-platform execution environment for
network applications on commercial client and server systems. Developers can create applications and
content with the same tools, in the same language, and using a consistent programming model on both
client and server; the resulting binary programs will execute on any Java-compliant virtual machine.

The Virtual Machine resource manager is a program that emulates a computer. This virtual computer has
its own set of instructions referred to as bytecodes. It also has libraries of predefined functions for some
frequently used utility functions such as accessing the network, accessing files, and creating dialogs with
the user using a mouse or a keyboard and windows.

The Virtual Machine resource manager design is:

¹ Small and fast : so that it fits in set-top boxes, personal digital assistants (PDAs), desktop and laptop
PCs, and high-end parallel servers; the virtual machine is scalable.

¹ Safe: providing a base on which to build a secure environment that has a measure of protection
against viruses and programming errors.

¹ Portable : so that efficient implementations can be developed for a wide variety of systems. There are
implementations for every major client and server platform.

¹ Object-oriented : the virtual machine and its predefined functions consist of methods and data
grouped into classes that are similar to, but simpler than, C++.

¹ Compact : Java programs are compact so that they travel quickly as they are fetched, just when
needed, across the Internet.

Java is the name for JavaSoft's new language, which is designed to fit the object model and function of
the virtual machine. Java is derived from C++ but it is much simpler and is designed to disallow the sort
of programming that directly manipulates memory addresses using pointers. The Java language, like the
virtual machine itself, is type-safe. The Java language was initially designed for ultra-reliable software to
be run in consumer electronics devices. It is now evolving rapidly into a full application development
language. The default compiler3 for the Java language is written in Java and runs on the virtual machine.
It's a good example of the less visible advantages of using Java. It has low development costs, because
only one executable form of the program is used on all the different hardware and operating system

 Copyright IBM Corp. 1996 1

platforms. It becomes reliable faster, because more of us are using the one identical binary executable
program.2

Main Features of the Virtual Machine Resource Manager

The two main features of the Virtual Machine resource manager are the interpreter and a set of class
libraries.

¹ The Interpreter . Interprets the industry standard set of Java bytecodes. The interpreter also provides
multitasking, exception handling, and the loading and execution of methods on objects. These
mechanisms implement the Java object model, a dynamically linking, single-inheritance model where
the objects, variables, and methods are all typed, that is, they are identified as belonging to specific
Java classes. The typing is enforced at execution time.

¹ Set of Classes (libraries). Provides the Java-defined implementations of functions for:

– A graphical user interface - graphics and windows
– Bytestream file input and output
– A communications interface based on IP sockets
– Collections, events, math, and other utility classes
– A range of other functions that are currently under industry development led by JavaSoft

The Virtual Machine resource manager provides documentation in HTML that is hyperlinked for easy
navigation using a Web browser, and a Java development kit (JDK) that includes a compiler and
debugging program.

For systems that are instances of the Open Blueprint, the implementations of Java classes comprise
mappings to other Open Blueprint resource managers and services wherever practical. For example, the
graphical user interface maps to the presentation service of the host operating system such as the OS/2
Presentation Manager or the Solaris Motif implementation.

The Virtual Machine resource manager is language independent; in addition to Java, languages such as
NetRexx4 target the Virtual Machine resource manager. However, because the Java object model is built
into the Virtual Machine resource manager and type-safety is enforced at execution time, not all languages
fit naturally. In particular, C++ and other languages using multiple-inheritance or exposing pointers are
unlikely to map efficiently to the Virtual Machine resource manager.

The Virtual Machine: A Network Application Execution Environment

Network applications, whether written to the client/server or peer-to-peer programming models, are
distinguished by a reliance on industry-standard TCP/IP network connectivity. They typically implement an
interaction that crosses administrative, security, and enterprise boundaries.

The Virtual Machine resource manager emphasizes integrated support for networking. It anticipates use
of World Wide Web technology through the use of the HTTP resource manager and HTML. The Virtual
Machine resource manager implements a distribution paradigm where the program to be executed is
generally fetched on demand from a server elsewhere on the network.

Programs that are retrieved from servers elsewhere on the network can be less trustworthy than programs
installed ahead of time under the supervision of enterprise software distribution processes. The Virtual
Machine resource manager incorporates safety features, beginning with type-safety enforcement, to
enhance the protection of the virtual machine and its underlying system under these conditions.

2 Virtual Machine Resource Manager

Supported Application Characteristics

The application characteristics that benefit from the Virtual Machine resource manager are described
below:

¹ The application consists of live content (a program running on the client that is animated and
interactive) as part of a Web page. This is generally referred to as a Java applet and is invoked
through the HTML APPLET tag. The APPLET tag is processed by the Web browser; the applet is
executed when the Web page is displayed.

¹ The application runs on many different sorts of clients, both personal computers and workstations. For
example, client programs that access online services can, if written for the virtual machine, be
compiled to a single binary program that can be executed on all the client systems. Such a program
can provide a distinctive or application-specific user interface on all those clients, and perhaps provide
continuing user dialog when the network is congested or unavailable.

¹ The application is distributed; different pieces run on multiple, different types of clients, or split
between client and server. The same tools, languages, and binary program can be run on any client
or server that has the Java-compliant bytecode interpreter and Java classes. The Java-to-Java
distributed method call, Remote Method Invocation (RMI), is provided for invoking methods on a Java
object running on a server across the network. Alternatively, by using Java Interface Definition
Language (IDL) to communicate between distributed objects that use an industry standard Object
Management Group (OMG) Common Object Request Broker Architecture (CORBA) object request
broker and its Internet Inter-ORB Protocol (IIOP), Java programs can invoke the services of other
CORBA objects including other Java programs.

Distribution techniques can effect economies in development by avoiding the need for different source
and binary programs for different hardware and software platforms. Distribution techniques can
decrease administrative costs by reusing the same binary program on all platforms. For Java
programs downloaded just-in-time from server to client, these distribution techniques can reduce the
cost of administering software installation and upgrade. The robustness of the application can improve
more rapidly, because all users are exercising the same binary program; bugs are found more quickly.

¹ The application runs on a server, either as a user-supplied subroutine extending the function of a Web
server (such as a CGI-BIN program), or as a Java application in its own right. Using the Virtual
Machine resource manager on a server combines the productivity of simple, powerful languages like
Java and NetRexx, (comparable with PERL or BASIC), with the higher performance and more
complete set of classes defined for Java.

¹ The application uses distributed resources on the network. In this case if the distributed resources are
accessed through the use of a CORBA Object Request Broker (ORB), then Java provides the IDL and
classes for that.

 Open Blueprint Virtual Machine Resource Manager 3

Virtual Machine Functional Description
This section describes the interpreter and lists the supported Java object classes.

 The Interpreter

The interpreter executes Java instructions that are known as bytecodes. The computer emulated by the
Java interpreter is stack-based, multithreaded, and object-oriented. It implements an object model with
single inheritance and exception handling similar to C++. A just-in-time (JIT) compiler can be used to
enhance the execution time performance of the interpreted bytecodes. The JIT compiler is invoked once
for each method in an application, the first time the method is used. It converts the bytecodes for the
method into the native machine code of the executing system. As methods are repeatedly used during
the execution of an application, overall performance can be significantly enhanced. The native machine
code is discarded at the end of the execution. Because the compilation is done on and for the specific
system and the results are later discarded, there is no impact on platform independence.

The Java Classes

The Java Virtual Machine resource manager contains three types of classes:

¹ Core classes , which are guaranteed to be in all virtual machine resource managers.

¹ Standard extension classes , which are not always present, but when present are accessible through
a standard, predefined API.

¹ User classes , which are all other classes that, by definition, do not implement a JavaSoft endorsed
Java API.

The list of core and standard extension classes will be extended over time; the classes described here
have already been shipped, or are projected to ship before the end of 1997.

Java Basic Utility Classes

Java basic utility classes are core classes that were made available in the first product release of Java in
early 1996. These include:

¹ Utility classes for typical operating system functions such as collections, exceptions, and file I/O.

¹ A set of classes providing sockets-like transport on top of TCP/IP.

¹ Presentation classes for containers, windows, graphics, and image. These classes are known as the
abstract windowing toolkit (AWT).

¹ Classes for the implementation of applets.

¹ Properties - persistent global values.

Java Enterprise Access Classes

Java enterprise access classes are core classes for:

¹ JDBC . Provides Java database connectivity (JDBC). JDBC is analogous to Open Data Base
Connectivity (ODBC), and it provides an interface that is supported by the Relational Database
resource manager.

¹ Java IDL . Supports communications between a Java object and a CORBA object using an Object
Request Broker (ORB) and the Object Management Group (OMG) language-neutral interface
specification.

4 Virtual Machine Resource Manager

¹ RMI and Object Serialization: . Supports remote method Invocation (RMI) between peers, or
between client and server, when both participants are Java applets or applications.

Java Beans (Software Components) Expected in 1997

Java Beans classes will be part of the core classes, providing portable, platform-neutral application
programming interfaces (APIs) for software components. Java Beans defines a component model that
describes how to implement software in small, reusable chunks. These chunks, knows as beans, can be
combined with other beans to form applications. Components can also be stored for later use - Java
Beans classes provide component persistence using the Open Blueprint Data Access Services.

Java Media Classes Expected in 1997

Core classes for media consist of: clocks, 2D, audio, and animation. Timing services (clocks) for
synchronization and media players are the foundation for the other time-based media classes. Audio
classes manage multiple audio streams and support a range of audio types including WAV and AU data
formats. Animation classes provide ways to add motion to visual elements such as text, graphics, and
images. The 2D graphics model and rendering services display and print color images from graphical
descriptions.

The media standard extension classes consist of: video and MIDI multimedia; team use of Java objects
through the Java Share collaboration services which enable team use of Java objects; telephony call
control, and 3D modeling and rendering.

Java Security Expected in 1997

Java security core classes are used to provide digital signatures, encryption, and authentication in
user-developed applications and applets.

 Java Management

Java management standard extension classes provide services for building applets that can manage an
enterprise network over the Internet or intranets.

Java System Integration Interfaces

Four core interfaces provide system-independent access to and from the Virtual Machine resource
manager:

¹ Virtual Machine Invocation . Defines the way instances of the Virtual Machine resource manager are
created and shut down. It provides a way for other resource managers and applications to create and
access their own instance of the Virtual Machine resource manager.

¹ Native Method Invocation . Methods that execute outside the virtual machine. Usually these are
object methods written in C++ or C. These APIs define how to call out and call back between a Java
applet or application running in the Virtual Machine resource manager and other objects in the same
process.

¹ Debugging Tool Interfaces . Provide ways for development tools to access running Java applications
and applets. By using these APIs, development tools written in Java can be deployed on all
implementations of the Virtual Machine resource manager.

¹ Just-in-Time Compilation Hooks . Defines the way the just-in-time compiler is invoked.

 Open Blueprint Virtual Machine Resource Manager 5

Virtual Machine Resource Manager Evolution

The Virtual Machine resource manager will continue to evolve rapidly, because the value of Java
technology is based on platform independence, reducing system administration, and being a preferred
environment for innovation on the World Wide Web. These are not static attributes; they require, and
JavaSoft anticipates, a sustained agenda for creating and enriching standard extension classes, and for
pushing additional functions into the core classes. In the future, new core functions will typically first
appear as standard extension classes.

Relationships to Other Resource Managers and Services

The Virtual Machine resource manager uses the services of other Open Blueprint resource managers.
Java applications and applets access these services through Java's platform-independent and
binary-compatible APIs. The Virtual Machine resource manager enables Java applications to use:

¹ Presentation Services . The Java AWT classes map to the underlying presentation services of the
host system and use the look and feel native to that system. The Virtual Machine resource manager
does not have a system-independent look and feel; it adopts the look and feel of the host presentation
services.

¹ Data Access Services . JDBC, the file I/O core classes, properties, and Java Beans persistence
component services map to the Open Blueprint Data Access Services.

¹ Transport Services . The Virtual Machine resource manager provides a sockets-like network interface
for basic communications, assuming that applets and applications communicate over the Internet. The
Open Blueprint Transport Services can provide multiple physical transports that underpin the sockets
API; the Virtual Machine resource manager maps its network classes onto that sockets interface.

¹ Object Management Services . Java programs can communicate with non-Java programs by using
Java IDL definitions supported by the Object Request Broker (ORB) and its IIOP protocols.

Application Development Support
Applications and applets can be developed for the Virtual Machine resource manager with integrated
development environment (IDE), and rapid application development (RAD) tools that are similar to, and in
many cases based on, the familiar tools already in use for development of other applications.

Industry leaders integrate their development tools so that an application can benefit from compositions of
existing platform-specific code and new Java code; so that significant composite applications can be
crafted from Java components (Java Beans) and other components, in particular: LotusScript Extension
(LSX) components from Lotus, ActiveX components from Microsoft, and OpenDoc components. The Java
Beans APIs are designed to allow this hybrid composition; the system integration interfaces ensure that
the beans interoperate in a platform-neutral manner.

1 Applets are Java programs written to run as macros or extensions to a Java-enabled Web browser.

2 The Java bytecode definition, the Java language definition, APIs, semantics, and applications and applets are documented in
books published by Sun Microsystems.

3 The compiler does not execute at run time; rather, it is used at build time to prepare the Java applets or applications for later
downloading and execution.

4 NetRexx is a derivative of the Rexx language that is optimized for use with the Virtual Machine resource manager. For additional
information about NetRexx, visit the URL: http://mfc.hursley.ibm.com/netrexx/netrexx.htm

6 Virtual Machine Resource Manager

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used.
Subject to IBM's valid intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or service. Evaluation
and verification of operation in conjunction with other products, except those expressly designated by IBM,
is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 USA

 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

IBM
IBMLink
Open Blueprint
OS/2
Presentation Manager

The following terms are trademarks of other companies:

ActiveX Microsoft Corporation
C++ American Telephone and Telegraph Company, Incorporated
CORBA Object Management Group, Incorporated
Java Sun Microsystems, Incorporated
Lotus Lotus Development Corporation
Microsoft Microsoft Corporation
Motif Open Software Foundation, Incorporated
OpenDoc Apple Computer, Incorporated
Solaris Sun Microsystems, Incorporated
Sun Microsystems Sun Microsystems, Incorporated

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

Microsoft is a registered trademark of Microsoft Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the U.S. and other countries.

 Copyright IBM Corp. 1996 7

8 Virtual Machine Resource Manager

Communicating Your Comments to IBM

If you especially like or dislike anything about this paper, please use one of the methods listed below to
send your comments to IBM. Whichever method you choose, make sure you send your name, address,
and telephone number if you would like a reply. Feel free to comment on specific error or omissions,
accuracy, organization, subject matter, or completeness of this paper.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

¹ If you prefer to send comments by FAX, use this number:

United States and Canada: 1-800-227-5088.

¹ If you prefer to send comments electronically, use one of these ID's:

 – Internet: USIB2HPD@VNET.IBM.COM
– IBM Mail Exchange: USIB2HPD at IBMMAIL
– IBMLink: CIBMORCF at RALVM13

Make sure to include the following in your note:

¹ Title of this paper
¹ Page number or topic to which your comment applies

 Copyright IBM Corp. 1996 9

10 Virtual Machine Resource Manager

ÉÂÔÙ

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

G325-6588-00

