Open Blueprint

Intelligent Agent

Resource Manager

..ll!

Applications
and
Application
Enabling
Services

Distributed
Systems
Services

Network
Services

e

Systems Management

2 2
Present'n Data
Services Access
Services
Applications and
Development Tools
Application / Workgroup Services
Communication Object Mgmt Distribution
Services Services Services
P
Common Transport Semantics
Transport Services Signalling
and
Control
Plane
LAN WAN Channel ATM
P

@Z——-4>»2mM7TO —>»00rC

EmMmHdHn<®n

nomo-—<xumwu

Physical Network

\

G325-6592-00

..ll!

Open Blueprint

Intelligent Agent
Resource Manager

G325-6592-00

About This Paper

Open, distributed computing of all forms, including client/server and network computing, is the model that is driving the rapid
evolution of information technology today. The Open Blueprint structure is IBM's industry-leading architectural framework for
distributed computing in a multivendor, heterogeneous environment. This paper describes the Intelligent Agent resource manager
component of the Open Blueprint and its relationships with other Open Blueprint components.

The Open Blueprint structure continues to accommodate advances in technology and incorporate emerging standards and protocols
as information technology needs and capabilities evolve. For example, the structure now incorporates digital library, object-oriented
and mobile technologies, and support for internet-enabled applications. Thus, this document is a snapshot at a particular point in
time. The Open Blueprint structure will continue to evolve as new technologies emerge.

This paper is one in a series of papers available in the Open Blueprint Technical Reference Library collection, SBOF-8702
(hardcopy) or SK2T-2478 (CD-ROM). The intent of this technical library is to provide detailed information about each Open Blueprint
component. The authors of these papers are the developers and designers directly responsible for the components, so you might
observe differences in style, scope, and format between this paper and others.

Readers who are less familiar with a particular component can refer to the referenced materials to gain basic background knowledge
not included in the papers. For a general technical overview of the Open Blueprint, see the Open Blueprint Technical Overview,
GC23-3808.

Who Should Read This Paper
This paper is intended for audiences requiring technical detail about the Intelligent Agent Resource Manager in the Open Blueprint.
These include:

e Customers who are planning technology or architecture investments

¢ Software vendors who are developing products to interoperate with other products that support the Open Blueprint

¢ Consultants and service providers who offer integration services to customers

© Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Intelligent Agents in the Open Blueprint 1

Intelligent Agents 1

The Intelligent Agent Resource Manager 3

Distributed Intelligent Agent Support 7

Relationship To Other Open Blueprint Resource Managers 7

Appendix A. Future Extensions 9

Appendix B. Adapter Interface to the Intelligent Agent Resource Manager
Agent Binding and Instantiation 11

Agent Runtime 11

Agent Termination 12

Events 12

Appendix C. Notices 13
Trademarks 13

Appendix D. Communicating Your Comments to IBM 15
Figures

1. Intelligent Agent Scope 2

2. Intelligent Agent Life Cycle 3

3. Sub-Components of an Intelligent Agent 3

4. Internet News Reader Application 7

© Copyright IBM Corp. 1996

iv Intelligent Agent Resource Manager

Intelligent Agents in the Open Blueprint

Intelligent agents are software entities that perform a set of operations on behalf of a user or another
program with some degree of autonomy, and in so doing, employ some knowledge or representation of
the user's goals or desires. Intelligent agents help the user in the following ways:

¢ |n the network computing environment, an enormous amount of information is available to the user
from a wide variety of sources. Intelligent agents can filter this flood of information, passing on to the
user only those items in which the user is interested. Intelligent agents can automate the retrieval and
processing of information obtained from the network. In this way, intelligent agents reduce the
information complexity of the network computing environment.

¢ The sophistication and complexity of computer hardware and software continues to increase, and the
ever-expanding population of users (many of them novices) is clamoring for increased ease-of-use.
Intelligent agent technology applied to user interface design can provide smart user interfaces that can
detect when a user is having difficulty, and assist the user to resolve or bypass the problem. Smart
interfaces can observe and learn a user's preferences and habits, and automate actions that the user
routinely performs. In this way, intelligent agents reduce a task's complexity.

¢ Advances in technology have made mobile computing a reality. Mobile users are not always
connected to the network, and, when they are connected, it can be over a variety of media with
different bandwidth, reliability, and security characteristics. Intelligent agent technology can be used to
create surrogates within the network that represent mobile users. These surrogates can do work on
behalf of the mobile users they represent, even when the mobile user is disconnected. When the
mobile user reconnects, agent technology can be used to tailor how data is transferred to the mobile
user to match the characteristics of the connections. Intelligent agents can reduce the complexity
associated with end user mobility.

The Intelligent Agent resource manager described in this document helps instantiate intelligent agents at
initialization time, helps manage intelligent agents at run time, and provides common services that
intelligent agents need.

Intelligent Agents

Intelligent agents can be characterized in terms of three dimensions: intelligence, agency, and mobility.

Intelligence reflects the degree of reasoning and learned behavior in an agent. Intelligence describes the
agent's ability to accept the user's statement of goals and carry out the task the user delegated to it. The
agent's goals and behaviors could be encoded in a simple script that is executed by an interpreter in
response to an event. Or, the reasoning could be provided by a set of rules that encodes strategy and
goals. Sophisticated agents could learn and adapt to their observed environment, both in terms of the
user's objectives and in terms of the resources available to the agent to carry out its task.

© Copyright IBM Corp. 1996 1

Agency

Agent Interactivity
Service Interactivity

Application Interactivity

Intelligence :

Degree of reasoning and
learned behavior exhibited
by the agent

Agency:
Degree of autonomy and
authority vested in the agent

Mobility :

Data Interactivity —
Degree of agent movement

User Representation]

Asynchrony —=
Threshold of Intelligent Agency

Mobility

Preference | Planning |

< Static Reasoning Learning
Mobile scripts Intelligence

Mobile objects

Figure 1. Intelligent Agent Scope

Agency is the degree of autonomy and authority that an agent possesses. Agents must run
asynchronously, and can interact to varying degrees with other applications, databases, and resource
managers. More sophisticated agents can actually collaborate and negotiate with other agents to
accomplish complicated tasks such as scheduling meetings or conducting electronic auctions.

Mobility is the degree to which agents actually travel through the network. At the low end of the mobility
axis are static agents, which do not travel. (The fact that an agent is static does not preclude it from being
distributed.) At the next level, scripts can be composed on one machine and shipped to another machine
for execution. Because the script travels before execution, no state information needs to accompany it.

At the highest level are mobile agents that can suspend themselves in mid-execution, travel to another
location, then resume execution where they left off. These agents must travel with state information.

Software must contain a minimal level of capability to be defined as an intelligent agent. This capability is
depicted by the L-shaped line in Figure 1 above. The oval-shaped area shows the kind of agents that are
commonly deployed (primarily static agents that contain some amount of reasoning). In the near future,
however, agent technology will expand along both the agency axis and the mobility axis. The topics of
agent interaction, collaboration, negotiation, and agent mobility are very active areas in both the research
community and in standards bodies. Appendix A, “Future Extensions” on page 9 discusses these areas.

There are several stages in the life cycle of an intelligent agent. Initially, the various components that
make up the agent need to be built (agent build). Later, the relationship among the various components
that make up the intelligent agent needs to be defined (agent bind). This definition is used to bind the
various components of the agent together when the agent is started up (agent instantiation). After
instantiation, the agent is operational (agent execution), until it is deactivated for some reason (agent
deactivation). The Intelligent Agent resource manager provides services to an intelligent agent at all
stages of its life cycle.

2 Intelligent Agent Resource Manager

Agent Life Cycle

Agent ~ Agent Agent ~ Agent . Agent
Build " Bind " |Instantiation "| Execution " | Deactivation

y

Figure 2. Intelligent Agent Life Cycle

The Intelligent Agent Resource Manager

The Intelligent Agent resource manager provides functions and facilities that an intelligent agent uses to
do its job. Object oriented technology is the base for the resource manager's sub-components. Specific

intelligent agents are composed of instances of the Intelligent Agent resource manager's subcomponents.

Figure 3 below illustrates the structure of the Intelligent Agent resource manager and shows how the
resource manager's subcomponents are also used as subcomponents of an intelligent agent. The five
major sub-components (adapters, engines, knowledge, libraries, and views) are described in the next
several sections.

Application

1
1
1| Application-Specific
1
1

|
|
Adapter 1
|
|
T +
| |
I : Views
|
| Adapters I
| |
i !
|
| ! . .
I 1 | Engines Knowledge Library
| |I |
| System !
| Adapters |
| f—— |
Intelligent Agent Resource Manager

Figure 3. Sub-Components of an Intelligent Agent

Intelligent Agents in the Open Blueprint

3

Adapters

An intelligent agent receives events from the outside world, and, based on some level of intelligence,
reacts to the event. The reaction could be as simple as "do nothing", or it could involve requesting more
information (sensing), or initiating some action (effecting). In the intelligent agent architecture, software
adapters interface to the outside world to communicate events to the agent, and to implement sensors and
effectors for the agent. (For additional information about the adapter interface, see Appendix B, “Adapter
Interface to the Intelligent Agent Resource Manager” on page 11.) In human terms, adapters are the
eyes, ears, and hands of the agent. There are two broad categories of adapters:

¢ Application-Specific Adapters

Detect events and perform actions within the domain of a particular application that an agent is
augmenting. An example is an adapter that interfaces to an Internet news reader application, and
provides news-related events such as "news article arrived" and actions such as "delete news", "save
news", and so on. These adapters are considered part of the agent-enabled application. In fact, they
are the glue used by the application to conform to the event/sensor/effector interface of the Intelligent

Agent resource manager.
e System Adapters

Provide connections to resources that are managed by other Open Blueprint resource managers such
as file services, timer services, telephony services, paging services, and user interfaces.

Adapters are objects, and are instances of an adapter base class. Although the Intelligent Agent resource
manager includes many adapter implementations, anyone (including application developers) can use the
adapter base class to develop new adapters that operate with the Intelligent Agent resource manager.

Engines

Engines are the brains of an intelligent agent. There are several different types of engines. One type of
engine is the inferencing engine. When notified of some event, inferencing engines operate on rule sets
and perform complex symbolic reasoning to determine how to react to the event and what action to
trigger.

Another type of engine is the executive engine. Executive engines execute a preprogrammed response
(reaction) to an event. (A preprogrammed response could be a LotusScript script or a Java program.)
The executive engine is only a proxy within the Intelligent Agent resource manager—the executive engine
either uses the Virtual Machine resource manager to support Java, or it invokes a script language
interpreter such as the LotusScript interpreter.

Another type of engine is the reflective engine. A reflective engine observes events and reflects upon the
state of the knowledge currently possessed by the agent.

An agent might depend on the services of multiple engines. For example, an agent might react to events
based on the operation of an inferencing engine, while at the same time, a reflective engine observes the
same events and modifies the rules that drive the inferencing engine (learning).

Like adapters, engines are objects. A specific engine implementation is derived from an engine base
class. The Intelligent Agent resource manager includes several engine implementations, but anyone can
use the engine base class to develop a new engine that conforms to all the Intelligent Agent resource
manager interfaces, and plugs into the Intelligent Agent resource manager.

4 Intelligent Agent Resource Manager

Knowledge

Engines rely on some representation of knowledge on which to operate. An inferencing engine's
knowledge is the set of the agent's rules and beliefs that encode the preferences and intent of the users
that the agent represents. An executive engine's knowledge is the script or program that procedurally
encodes the agent's goals and behavior. Other forms of knowledge (URLs the user recently visited,
inverted indexes containing subjects that a user has recently browsed, and so on) can be maintained by
reflective engines, and can also logically reside in the knowledge sub-component of the Intelligent Agent
resource manager.

Library

While active, an engine can maintain its current working knowledge in an internal, optimized form.
However, this knowledge needs to be persistent so it can be recovered across agent activations. The
library sub-component provides the facilities required to make knowledge persistent. To facilitate the
sharing of knowledge among different engines of the same type, knowledge should be stored in the library
in some standard format. For example, to promote the sharing of rule sets among different inferencing
engines, rule sets are stored in the library in Knowledge Interchange Format (KIF) format. (KIF is a
proposed ANSI X3T2 standard.) A converter associated with each engine converts knowledge to and
from the standard KIF format stored in the library and the engine's optimized internal representation of
rules.

Prior to execution time, the knowledge bases used by the various engines can be initialized and
administered in several ways:

e Some base set of generally-applicable default knowledge can be provided as part of the agent's initial
knowledge base.

e System administrators can add knowledge items to the defaults such as:

— Knowledge that applies to groups of users
— Knowledge that applies to a particular organization such as company or departmental policy

¢ Users can modify their (and, if they have the proper authority, other) knowledge bases to tailor them to
their particular preferences.

The library sub-component of the Intelligent Agent resource manager relies on the Open Blueprint Security
resource managers to prevent unauthorized access or changes to the knowledge base.

Views

Users need a way to browse and edit rule sets and other types of knowledge to describe their preferences
and goals to the agent. These browse and edit capabilities are contained in the views sub-component of
the Intelligent Agent resource manager. Because rule sets are stored in KIF format in the library
sub-component, different rule editors and browsers are more likely to be compatible. The views
sub-component also contains a graphical user interface (GUI) that enables users to browse and edit other
types of knowledge, for example, the URL trails and inverted indexes that a reflective engine might
maintain.

Intelligent Agents in the Open Blueprint 5

Intelligent Agent Operation

When an intelligent agent is started (usually but not always when an application is started), the Intelligent
Agent resource manager creates the necessary association (binding) of engines and adapters for the
agent. If some of the adapters and engines required by the agent run as separate system processes, the
Intelligent Agent resource manager makes sure they are started.

Once the agent is active, the adapters associated with the agent can either wait passively for events of
interest to the agent, or they can actively poll the environment to see if any events of interest have
occurred. In either case, when an event is detected, the adapter calls the Intelligent Agent resource
manager to start the associated engine(s). In response to the event, the engine can ask an adapter
(either the adapter that originated the event, or another adapter associated with the intelligent agent) to
either sense or effect.

If the requested action fails or cannot be completed (for example, if the engine asks the pager adapter to
page an individual, and the operation is unsuccessful), the adapter that implements the requested action
notifies the engine using a failure event. The engine processes this event just like any other event. For
example, a rules-based inferencing engine processes its rule set to see if there are any rules (or
combination of rules) that specify what backup actions should be taken when such a failure occurs.

A Simple Example

An Internet news reader application is an ideal application for agent technology. In the example
(illustrated in Figure 4 on page 7 below), the timer adapter sub-component of the agent associated with
the news reader application generates an event to indicate that it is half-past the hour. This event is
passed to the engine associated with the news reader application which, in this case, is a rules-based
inferencing engine.

While processing its rules, the engine discovers a rule that says it should check for new news every
half-hour. Consequently, the engine generates a "refresh newsgroups" action and sends it to the
application-specific adapter associated with the news reader application. The adapter works with the news
reader application to refresh the newsgroups. While refreshing the newsgroups, the application detects
that new news has arrived. The application-specific adapter creates an event object (the format of which
is part of the definition of the interface to the Intelligent Agent resource manager) and passes it to the
Intelligent Agent resource manager. The event object contains some standard information: What is the
application domain of the event? (in this case, Internet news), what is the event type? (in this case, "news
item arrived"), what time did the event occur?, and so on. Other domain and event-type-specific data is
also provided in the event object which in this case is the name of the newsgroup to which the item was
posted (comp.lang.java), the author of the news item (John Doe), and the subject line (Java Security)
would be included.

To handle this event, the engine processes its set of rules to define an action to perform which in this
example is to add the news item to a custom newsgroup for the user. The engine generates an "add to
newsgroup" action and sends it to the application-specific adapter, which carries out the action.

Other new news items that are discovered as a result of refreshing the newsgroups are handled in a
similar way.

6 Intelligent Agent Resource Manager

iknowledge —— d '
1 9 "If it's on the hour
: Rule or half-hour, refresh
: Set newsgroups."
| :
| "If newsgroup-comp.
| ' lang.java and subject-
1 | Java Security then
Nel/\r/]éeF\r’ggtder _____ ~ T T T % |SAVEinJava Security
Application L #_ ~ T T T Ty|newsgroupt
I :
el N ;
S 1
'\(\\)‘\\ .
\\?f;ef’ . |Inferencing I
" :
P Engine :
1
Engine |1
_________ bl
Adapter

Internet
News
Adapter

Timer

Intelligent Agent Resource Manager

Figure 4. Internet News Reader Application

Distributed Intelligent Agent Support

In some cases, the agent-enabled application operates on a client system, and the Intelligent Agent
resource manager operates on a different server system. The application-specific adapter in one system
and the Intelligent Agent resource manager in another system can use the Object Request Broker
resource manager on each platform to interact. Agent-enabled applications can also exploit the distributed
environment.

Relationship To Other Open Blueprint Resource Managers

The Intelligent Agent resource manager uses several other Open Blueprint services. The library
sub-component, which stores various forms of knowledge, uses the File resource manager. The library
sub-component also uses the Identification and Authentication resource manager and uses the Access
Control resource manager to control access to various forms of knowledge, and to prevent unauthorized
modifications.

The views sub-component uses Open Blueprint Presentation Services to enable the user to view and
modify various forms of knowledge. Views also interacts with the library sub-component and Open
Blueprint Security resource managers.

Intelligent Agents in the Open Blueprint 7

Adapters can use the Open Blueprint resource managers that provide the function they need. For
example, a relational database system adapter could use the Relational Database resource manager to
enable an agent to detect events in or to manipulate a relational database.

In another example, a telephony system adapter could use the Telephony resource manager to enable an
agent to call users when a particularly urgent piece of mail arrives.

A third example is a dialog adapter that can interact with a user. The dialog adapter might be a simple
pop-up dialog box, or as sophisticated as a "talking head" whose lips move in synchrony with computer
generated speech, and whose facial expressions (happy, sad, perplexed) indicate whether the agent is
able to meet its goals. The dialog adapter would use Open Blueprint Presentation Services.

The Intelligent Agent resource manager also interfaces to the Open Blueprint Local Operating System

Services to access functions such as memory management and process start-up and to the Systems
Management backplane to allow the Intelligent Agent resource manager to be managed.

8 Intelligent Agent Resource Manager

Appendix A. Future Extensions

Intelligent agent technology is changing rapidly. This section describes IBM's current thoughts on how the
Intelligent Agent resource manager might be extended to accommodate higher levels of agent function.

This paper describes the first level of agent technology, that is, intelligent, stationary, non-interacting
agents. The next level of agent function, agent interaction, will support more advanced applications.
However, this area is not mature, and there are several different approaches to agent interaction that are
being explored by the agent research community.

Using agent interaction, a user could subscribe to a new Internet news group. When a news article for
that newsgroup arrives, the agent would be informed. If the rules governing the operation of the agent are
comprehensive enough, the agent can determine what to do with the article. But this is a new newsgroup,
and suppose that the article contains a previously-unencountered subject line? What can the agent do in
response to this event?

The agent could ask the user what to do with the article. However, a more proactive agent could ask
other Internet news agents that represent other users with similar professions, backgrounds, and interests,
how they might handle news articles on this subject. Perhaps some of them have subscribed to this
newsgroup in the past and have some experience and advice they can share.

Several important questions in the area of agent interaction are being resolved by agent research. For
example, there are at least two ways agents can interact. One way is for Agent A to invoke methods on
Agent B, and vice versa. If this approach to agent-to-agent interaction eventually emerges as the
preferred approach, the existing CORBA ORB capabilities specified in the Open Blueprint can provide the
required support.

An alternative way for Agent A to interact with Agent B is to exchange messages in some high-level
declarative language that expresses definitions, assumptions, beliefs, and so on. A leading candidate in
this area is the Knowledge Query Manipulation Language/Knowledge Interchange Format (KQML/KIF)
work that is part of the Defense Advanced Research Project Agency (DARPA) Knowledge Sharing Effort.
If this approach were to emerge as the preferred approach to agent interaction, IBM's current thinking is to
add agent interaction adapter function to the Intelligent Agent resource manager to support a function
protocol between Intelligent Agent resource managers instances. The function protocol would enable an
Intelligent Agent resource manager to ask other Intelligent Agent resource managers questions, to tell
them facts and rules, to request that they perform certain actions, and to subscribe to certain events.

(Ask, tell, perform, and subscribe are all KQML performatives).

As the preferred mode of agent interaction emerges, additional services will be provided by the Intelligent
Agent resource manager. For example, agents that can interact will need to be able to advertise their
existence, and to look each other up (using a Yellow Pages type of function). When two agents want to
interact, they might want to authenticate each other, and (if the mode of interaction is message passing) to
cryptographically protect their message exchange to prevent spying or tampering. Agents representing
servers or sellers will want to charge agents representing clients or buyers, so some electronic commerce
services will be needed.

These services need not be implemented by the Intelligent Agent resource manager. Agent authentication
would be based on Open Blueprint Security Services. The agent "Yellow Pages" will be based on the
Open Blueprint Directory Services, which include the Object Naming Services. The Intelligent Agent
resource manager might provide a higher level of agent-specific abstraction upon these services, however.

Mobile agents are another very active area, both in the research community and in various standards
bodies. IBM has conducted research and, based on that research, IBM has submitted a proposal for a

© Copyright IBM Corp. 1996 9

mobile agent facility standard to the Object Management Group (OMG). This mobile agent facility would
provide the capability to:

e Support the dynamic registration of various agent language interpreters such as Java, Telescript, and
TCL

¢ Flatten mobile agents, transport them through the network (encrypting them if secrecy is needed), and
reconstitute them at their destination

¢ Authenticate mobile agents that arrive, and cryptographically detect any tampering
¢ Monitor the execution of mobile agents for several purposes:
— billing
— preventing malicious or poorly-programmed agents from using all the system resources
— logging
¢ Provide status to the originator of a mobile agent when it terminates (normally or abnormally)
IBM is working with other leaders in the intelligent agent field to develop and promote standards that will

enable agents to operate across systems from different vendors. As these standards emerge and mature,
they will be incorporated into the Intelligent Agent resource manager.

10 Intelligent Agent Resource Manager

Appendix B. Adapter Interface to the Intelligent Agent
Resource Manager

This appendix describes how an adapter communicates with the Intelligent Agent resource manager. In
the IBM implementation of the resource manager, both the adapter and the Intelligent Agent resource
manager are objects, so the two communicate using method invocations. (The information in this
appendix is subject to change as the Intelligent Agent resource manager evolves.)

Agent Binding and Instantiation

The Intelligent Agent resource manager reads a configuration file to associate the adapter and engine that
comprise the agent and starts up the components. For each adapter, the resource manager calls the
identify() method of the adapter object, asking the adapter to register all its sensor and effector functions.
The adapter registers each function it provides by invoking its registerProcedure() call once for each
function.® Each function is identified by a token defined by the adapter writer. When all the components
have been started and all the adapter's have registered their functions, the Intelligent Agent resource
manager calls the start() method on each adapter, telling the adapter that it can start generating events.

Agent Runtime

An adapter can generate an event and pass it to the resource manager to be processed by invoking its
notify() function. The event is a parameter on the notify() function. The information contained in the event
is described in “Events” on page 12.

In response to an event, the engine in the Intelligent Agent resource manager can request more
information (sensing), or it can initiate some action (effecting). For sensing, the resource manager can
invoke either the testCondition() method or the provideFacts() method on the adapter. The first method,
as its name implies, is boolean in nature - it requests the adapter to test some condition in its domain of
expertise, and to return TRUE or FALSE.

The second method asks the adapter to gather some information within its domain and return it to the
engine in the resource manager. The token passed in the method call identifies which condition to test or
what information to gather. These are the same tokens that the adapter registered with the Intelligent
Agent resource manager at agent start time using the registerProcedure() calls.

For effecting, the Intelligent Agent resource manager calls the performAction() method of the adapter
object. The call to performAction() specifies a token that tells the adapter what action to perform. These
are the same tokens that the adapter registered with the resource manager at agent startup time using the
registerProcedure() calls.

The Intelligent Agent resource manager calls the eventComplete() method on the adapter when all
processing of a previously-generated event is complete. This tells the adapter that no further sensing or
effecting will occur for the event, and that it can discard any data associated with the event.

1 . Methods that are used to communicate with the Intelligent Agent resource manager such as registerProcedure() and notify() are
actually adapter methods that are inherited from the adapter base class. The low-level details and mechanics of interacting with
the Intelligent Agent resource manager are hidden from the adapter writer.

© Copyright IBM Corp. 1996 11

Agent Termination

When the Intelligent Agent resource manager decides to terminate an agent, it invokes the stop() method
on all adapters. This tells an adapter to stop generating new events (but says nothing whether the
resource manager can send the adapter additional performAction(), testCondition(), or provideFacts()
calls). Eventually, the resource manager calls the adapter's shutdown() method, which tells the adapter to
cleanup and terminate.

Events

An events (passed from the adapter to the engine in the Intelligent Agent resource manager) has two
parts - a standard part which is called the event header, and an event-specific part which is called the
event body.

The event header contains information that is required for all events. For example, the domain of the
event (news, Web, and so on), the type of the event ("news arrived", "Web page changed"), a timestamp,
and a unique event ID are all carried in the event header.

The contents of the event body depend on the specific event. In the case of the "Web page changed"
event, the event body could contain information such as URL of the page that changed, the value of
various HTML tags associated with the page such as title, content type, content length, date of
modification, and so on. In the case of a "news arrived” event, the event body could contain information
such as the name of the newsgroup that an article belongs to.

12 Intelligent Agent Resource Manager

Appendix C. Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used.
Subject to IBM's valid intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or service. Evaluation
and verification of operation in conjunction with other products, except those expressly designated by IBM,
is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
USA

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

IBM
IBMLink
Open Blueprint

The following terms are trademarks of other companies:

CORBA Object Management Group, Incorporated
Java Sun Microsystems, Incorporated
LotusScript Lotus Development Corporation

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the U.S. and other countries.

© Copyright IBM Corp. 1996 13

14 Intelligent Agent Resource Manager

Appendix D. Communicating Your Comments to IBM

If you especially like or dislike anything about this paper, please use one of the methods listed below to
send your comments to IBM. Whichever method you choose, make sure you send your name, address,
and telephone number if you would like a reply. Feel free to comment on specific error or omissions,
accuracy, organization, subject matter, or completeness of this paper.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.
¢ If you prefer to send comments by FAX, use this number:
United States and Canada: 1-800-227-5088.
¢ |f you prefer to send comments electronically, use one of these ID's:

— Internet: USIB2ZHPD@VNET.IBM.COM
— IBM Mail Exchange: USIB2HPD at IBMMAIL
— IBMLink: CIBMORCF at RALVM13

Make sure to include the following in your note:

¢ Title of this paper
e Page number or topic to which your comment applies

© Copyright IBM Corp. 1996 15

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

