
7&3���IRU�,%0�H1HWZRUN

&RPPXQLFDWLRQV�6HUYHU

9HUVLRQ���IRU�26���:DUS

,QWURGXFWLRQ�WR�7&3��

IBM TCP62 is an Application Programming Interface (API) that simplifies
configuration of AnyNet LU6.2 support over TCP/IP.

The TCP62 configuration can be thought of as a filter on top of the existing
Communications Server configuration API. It adds function by adding new
and extended verbs that are useful in meeting TCP62 requirements. In
particular, since many configuration files are identical except for the local LU
names, unique local LU names can be defined dynamically based on the local
IP address. Since TCP62 always implies LU 6.2 over IP, SNA and AnyNet
configurations can be simplified to one or two parameters.

TCP62 consists of the following four verbs:

y START_TN62

Builds a Communications Server configuration file based on the
parameters passed in the START_TN62 verb and starts
Communications Server using that configuration file

y DEFINE_PARTNER_LU_TN62

Generates a partner LU name and passes the define verb
to the Communications Server node

y DEFINE_LOCAL_LU_TN62

Generates a local LU name and passes the define verb to the
Communications Server node

y STOP_TN62

Stops Communications Server and immediately ends any
communication in progress

The START_TN62 verb can be used when another subsystem (for example, a
CICS client) wants to enable LU6.2 over IP communication. Since
START_TN62 may involve starting the underlying communications node, it
should be used infrequently due to the potentially long processing time. For
example, START_TN62 can be used when the subsystem is initialized and
should not be used on a per transaction basis. Similarly, it is expected that
both the DEFINE_LOCAL_LU_TN62 and DEFINE_PARTNER_LU_TN62
verbs would only be used during subsystem initialization. However, the
processing time for these two verbs is much less than for the START_TN62
verb.

Writing TCP62 Programs

Communications Server TCP62 provides a dynamic link library (DLL) file that
handles TCP62 verbs.

TCP62 verbs have a straight forward language interface. Your program fills in
fields in a block of memory called a verb control block (VCB). Then it calls
the TCP62 DLL and passes a pointer to the VCB. When the program is
complete, TCP62 returns, having used and then modified the fields in the
VCB. Your program can then read the returned parameters from the VCB.

The following table shows source module usage of supplied header files and
libraries needed to compile and link TCP62 programs. Some of the header
files may include other required header files.

Table 1. Header File and Library for TCP62

Operating System Header File Library DLL Name

OS/2 TN62API.H ACS32.LIB TN62API.DLL

TN62API() Entry Point

This provides a synchronous entry point for issuing the following TCP62 API
verbs:

• START_TN62

• STOP_TN62

• DEFINE_LOCAL_LU_TN62

• DEFINE_PARTNER_LU_TN62

Syntax

void APIENTRY TN62API(PVOID vcb);

Parameter Description

vcb Pointer to verb control block

Returns

No return value. The primary_rc and secondary_rc fields in the verb control
block indicate any error.

Remarks

This is the main synchronous entry point for the TCP62 services API. This
call blocks until the verb completes.

Migration Considerations

One common migration scenario involves the Communications Server node
communicating outside the scope of TCP62. For example, a user may have
previously installed Communications Server and used it for emulator or native
SNA communication. In this case, the user will have a default
Communications Server response file and Communications Server may be
running when START_TN62 is invoked. This section discusses the design
and use of the TCP62 API using this scenario.

When START_TN62 creates its response file, it takes as its starting point the
active or default response file. Therefore, any Communications Server
configuration, such as links, modes, or LUs performed outside of TCP62 is not
lost.

AnyNet support, (that is, whether or not a node can use AnyNet IP transport),
cannot be dynamically changed in a running node. For example, if a node is
running that is not configured to support AnyNet, the START_TN62 verb
cannot dynamically update the running node to support AnyNet and
START_TN62 will fail. In this case, Communications Server must be stopped
before START_TN62 can complete successfully.

The following node parameters cannot or should not be changed in a running
node:

y CP name

y CP alias

y SNA domain name suffix

y AnyNet timer values

If the node is running and START_TN62 is issued with parameters from the
above list that are different from those in the running node, the START_TN62
completes successfully. However, the values from the running node will be
unchanged and these values will be returned in the START_TN62 VCB. The
START_TN62 tells the caller that some values were not used by setting
primary_rc to 0 and secondary_rc to TN62_PARAMETERS_NOT_USED.

Dynamic Name Generation

TCP62 dynamically generates local LU or partner LU names if the input name
parameter is a template. That is, if it contains one or more replacement
characters (“*”). The name generation algorithm is also used by the SXMAP
program in Communications Server.

The following example shows how this algorithm is implemented.

static void
 SxMap(unsigned char *generatedName,
 unsigned char *nameTemplate,
 unsigned int templateLength,
 unsigned long addr,
 unsigned long mask)
{
 int I;
 unsigned long host_bits;
 unsigned long bit_pos;
 char chars[] = "0123456789ABCDFGHJKLMNPQRSTVWXYZEIOU@#$.";

 addr = ntohl(addr);
 mask = ntohl(~mask);
 host_bits = 0L;
 bit_pos = 0x00000001;
 for (i = 0; i < 32; i++)
 {
 if (mask & bit_pos)
 {
 host_bits |= (addr & bit_pos);
 bit_pos <<= 1;
 }
 else
 {
 addr >>= 1;
 mask >>= 1;
 }
 }
 for (i = templateLength; i >= 0; i--)
 {
 if (nameTemplate[i] == REPLACEMENT_CHAR)
 {
 generatedName[i] = chars[host_bits & 0x1F];
 host_bits >>= 5;
 }
 else
 generatedName[i] = nameTemplate[i];
 }
 return;
}

The algorithm selects bits from addr which is a local or remote IP address.
The selected bits are those where the corresponding bit in mask is 0. The
selected bits are then taken in groups of 5, right to left, to generate a
character for each replacement character in nameTemplate .

For example, if nameTemplate = “A*NAME*”, addr = 0x13.0x8f.0x22.0xa3
and mask = 0xff.0xff.0xff.0x00. The bits selected by mask are
0x00.0x00.0x00.0xa3. Since there are two replacement characters in
nameTemplate , the two groups of five bits are 0x05 and 0x03. Using these
as indices in chars yields a generatedName of “A2NAME4”.

7&3���$3,�6XSSRUW

Communications Server supports the following verbs using the TCP62 API.

START_TN62

The START_TN62 verb starts the Communications Server node.

VCB Structure
typedef struct start_tn62
{

unsigned short opcode; /* verb operation code */
unsigned char reserv1[6]; /* reserved */
unsigned short primary_rc; /* primary return code */
unsigned char reserv2[2]; /* reserved */
unsigned long secondary_rc; /* secondary return code*/
unsigned char reserv3[4]; /* reserved */
unsigned char key[8]; /* key (ASCII) */
unsigned char fqcp_name[17]; /* real fully-qualified */

/* name or a template */
/* for a fully-qualified*/
/* name */

unsigned char cp_alias[8]; /* ASCII CP alias */
unsigned char reserv4[3]; /* reserved */
unsigned long ip_address_mask; /* mask used in dynamic */

/* CP name generation */
unsigned short connection_retry_secs;

/*connection retry count*/
unsigned short unacked_dg_retry_secs;

/* unacknowledged data- */
/* gram retry interval */

unsigned short unsent_dg_retry_secs;
/* unsent datagram */
/* retry interval */

unsigned short inactivity_timer_secs;
/* remote node inactiv- */
/* ity poll interval */

unsigned short connwait_secs; /* connection wait time */
/* limit */

unsigned char domain_name_suffix[220];
/* domain name suffix */

} START_TN62;

Supplied Parameters

The application supplies the following parameters:

opcode AP_START_TN62.
key Specifies either the master or service key if the keylock

feature has been activitated.

This is an 8-byte ASCII character string. If the name is
less than 8 bytes, it must be padded on the right with
ASCII blanks.

fqcp_name This is either a real fully-qualified CP name or a
template for a fully-qualified CP name. If there are no
template replacement characters (‘*’), it is a real name,
otherwise it is a template. The net ID must not contain
any template replacement characters and the CP name
must not begin with a replacement character. Except for
the replacement character, this must be a valid EBCDIC
fully-qualified CP name.

cp_alias The ASCII CP alias for the TCP62 node. If the node is
running when the START_TN62 is issued, this will
contain the CP alias of the running node on return. If
this field is all blanks or nulls, and the node is not
running when the START_TN62 is issued, the CP alias
is set to the (unqualified) CP name on return.

ip_address_mask This is the mask to be used in dynamic CP name
generation. It is ignored if fqcp_name is not a template.
The mask is encoded as a big-endian long; i.e., high-
order byte first to low-order byte last.

connection_retry_secs
The connection retry count is the maximum time, in
seconds, for LU6.2 over TCP/IP to set up a multiprotocol
transport network (MPTN) connection over TCP/IP.
When an MPTN connection setup fails, Communications
Server tries every IP address associated with an LU
name in the domain name server or HOSTS file until all
the addresses are exhausted or until the time specified
is reached.

Specify a value between 1 and 65535 seconds.

Default: 300

If you are unsure about what value to enter, use the
default.

unacked_dg_retry_secs
The unacknowledged datagram retry interval is the
maximum time, in seconds, that LU6.2 over TCP/IP
waits to resend an unacknowledged out-of-band (OOB)
or MPTN keepalive datagram.

When expedited data is sent over TCP/IP, this interval
is used to help control the delivery of expedited data in
congested situations. In SNA, some control messages
are sent over TCP/IP, this interval is used to help control
the delivery of expedited data in congested situations.
In SNA, some control messages are sent as expedited
data (for example, messages requesting the right to
send data or messages taking down a session).
Expedited data is not subject to congestion control and
can move ahead of normal, non-expedited data. To
assure delivery, AnyNet SNA over TCP/IP might send
expedited data as normal data and as an OOB
datagram.

Specify a value between 1 and 65535 seconds.

Default: 10

If you are unsure about what value to enter, use the
default.

unsent_dg_retry_secs
The unsent data gram retry interval is the maximum
time, in seconds, that Communications Server waits for
an acknowledgement after sending expedited data on a
TCP connection, before sending the data as an out-of-
band (OOB) datagram.

When expedited data is sent over TCP/IP, this interval
is used to help improve the delivery of expedited data in
congested situations. In SNA, some control messages
are sent as expedited data (for example, messages
requesting the right to send data or messages taking
down a session). Expedited data is not subject to
congestion control and can move ahead of normal, non-
expedited data. To assure delivery, AnyNet SNA over
TCP/IP might send expedited data as normal data and
as an OOB datagram.

Specify a value between 1 and 65535 seconds.

Default: 3

If you are unsure about what value to enter, use the
default.

inactivity_timer_secs
The remote node inactivity poll interval is the number of
seconds of inactivity allowed between two partner nodes
before LU6.2 over TCP/IP tries to determine whether the
partner node is still active.

Type a value between 1 and 65535 seconds.

Default: 30

Setting the interval below 10 seconds might seriously
affect system performance.

To calculate how long it takes before an inactive partner
is detected:

1. Multiply the value of the unsent datagram retry
interval by 5.

2. Add the remote node inactivity poll interval value.

The resulting value is the number of seconds it takes to
detect an inactive partner.

If you are unsure about what value to enter, use the
default.

connwait_secs The connection waittime limit is the maximum time, in
seconds, that LU6.2 over TCP/IP waits to receive a
multiprotocol transport network (MPTN) connection or
connection response packet after the TCP connection is
established. This limit prevents the connecting node
from waiting too long for a session partner to send a
packet.

Specify a value between 1 and 65535 seconds.

Default: 30

If you are unsure about what value to enter, use the
default.

domain_name_suffix
The SNA domain name suffix is used when a domain
name is created from the fully-qualified partner LU
name.
The SNA domain name suffix is a user-defined domain
name suffix created using the hierarchical-naming
format recognized by TCP/IP. For example,
SNA.IBM.COM is an SNA domain name suffix.

Consult your network administrator to obtain an SNA
doman name suffix. The suffix consists of strings
concatenated with periods. Each string must be less
than or equal to 63 characters, with the total length of
less than or equal to 237 characters.

Valid characters for each string are:

The first character must be an alphabetic character (A-
Z, a-z).

The last character must be an alphanumeric character
(A-Z, a-z, 0-9).

The remaining characters can be alphanumeric
characters (A-Z, a-z, 0-9) or the special character (-).

Default: SNA.IBM.COM

Returned Parameters

primary_rc See TCP62 Return Codes for details on
secondary_rc primary_rc and secondary_rc verbs.
fqcp_name The real fully-qualified CP name. If the supplied

fqcp_name was a template, it is replaced with the
generated name.

STOP_TN62

The STOP_TN62 verb stops the Communications Server node. Any
communications that are in progress will end.

VCB Structure
typedef struct stop_tn62
{

unsigned short opcode; /* verb operation code */
unsigned char reserv1[6];; /* reserved */
unsigned short primary_rc; /* primary return code */
unsigned char reserv2[2];; /* reserved */
unsigned long secondary_rc; /* secondary return code*/
unsigned char reserv3[4]; /* reserved */
unsigned char key[8]; /* key (ASCII) */

} STOP_TN62;

Supplied Parameters

The application supplies the following parameters:

opcode AP_STOP_TN62.
key Specifies either the master or service key if the keylock

feature has been activitated.

This is an 8-byte ASCII character string. If the name is
less than 8 bytes, it must be padded on the right with
ASCII blanks.

Returned Parameters

primary_rc Success or failure of the verb. The primary and
secondary_rc secondary return codes are always zero on return.

DEFINE_LOCAL_LU_TN62

TCP62 extends the DEFINE_LOCAL_LU verb to allow definitions of LU
names that are generated dynamically, based on a supplied template, mask,
and the local IP address.

VCB Structure
typedef struct define_local_lu_tn62
{

unsigned short opcode; /* verb operation code */
unsigned char reserv1[6];; /* reserved */
unsigned short primary_rc; /* primary return code */
unsigned char reserv2[2];; /* reserved */
unsigned long secondary_rc; /* secondary return code*/
unsigned char reserv3[4]; /* reserved */
unsigned char key[8]; /* key (ASCII) */
unsigned char lu_name[8]; /* local Lu name */
unsigned char lu_alias[8]; /* Lu alias (ASCII) */
unsigned char nau_address; /* network addressable */

/* unit address */
unsigned char external_support; */

/*external support for sync point */
/*AP_NONE x’00’ */
/*AP_SYNCPT_PROVIDER x’80’ */
/*AP_REMOTE_TP_PROVIDER x’40’ */
/*AP_SYNCPT_AND_REMOTE_TP x’C0’ */

unsigned char host_link_name[8]; /* host link name */
/* 0 or 1-8 bytes */
/* (EBCDIC type A) */

unsigned char lu_model_name[7]; /* self-defining dep LU */
/* model name */

unsigned char reserv4[35]; /* reserved */
unsigned long ip_address_mask; /* mask used in CP name */
unsigned char reserv5; /* reserved */
} DEFINE_LOCAL_LU_TN62;

Supplied Parameters

The application supplies the following parameters:

opcode AP_DEFINE_LOCAL_LU_TN62.
key Specifies either the master or service key if the keylock

feature has been activitated.

This is an 8-byte ASCII character string. If the name is
less than 8 bytes, it must be padded on the right with
ASCII blanks.

lu_name This is either a real LU name or an LU name template.
If there are no template replacement characters (‘*’), it is
a real name, otherwise it is a template. Except for
replacement characters, lu_name must be a valid,
EBCDIC LU name. The first character must not be the
replacement character.

lu_alias The 8-byte ASCII name used locally for the LU. The
name is not sent outside the local node.

nau_address Specifies the network addressable unit (NAU) address
of the LU.

You can specify a value from 0 to 254, where:

0 Specifies that the NAU address is not used,
and the LU is an independent LU. Sessions
among APPN end nodes and network nodes
must use independent Lus. An LU type 6.2
is the only type of SNA LU that supports
independent sessions. An independent
session does not depend on an SSCP (that is,
the LU can send a BIND directly without the
help of an SSCP).

1-254 Specifies the NAU address of the LU, and that
the LU is a dependent LU for sessions to a
subarea node. If your network contains a
subarea that does not support an independent
session from a peripheral node, you will be
restricted to a single dependent session
between your APPC LU and that subarea.
In this case, the LU will need to be assigned
a unique NAU address.

An LU’s NAU address is the address used by
a subarea node for an LU dependent session.
A dependent session is a session that
depends on an SSCP to initiate it (that is, an
optional INIT_SELF request that flows on the
LU to SSCP session, the SSCP sends a CINIT
request to a subarea LU, and the subarea
LU sends the BIND).

On a given link, every LU that uses a
dependent session must be assigned a unique
NAU address. Every LU defined for an LUA
session, every LU defined for a 3270 session,
and every LU defined for a 3270 gateway
session, uses a dependent session and must
be assigned a unique NAU address.

host_link_name The 8-byte EBCDIC name of the local link station. This
logical link can be activiated by specifying this name on
the ACTIVATE_LOGICAL_LINKS verb.
Note : The host link name is ignored if nau_address

 equals 0 is specified. Otherwise, this parameter
 is optional. If a NAU address is specified, the LU

 definition is assigned to the CP-PU.
 special characters $, #, and @.

This is a Type A EBCDIC character string. If the name
is less than 8 bytes, it must be padded on the right with
EBCDIC blanks. In addition, the string cannot begin
with an EBCDIC “@” (X’7C’).

LU_model_name The 7-byte EBCDIC model name of the dependent LU
6.2 local LU. This is a 7-byte EBCDIC character string
consisting of uppercase A-Z and 0-9 only. If the
lu_model_name is not used, it must be filled with
EBCDIC blanks. It should match a model name on a
Host Model definition.

ip_address_mask This is the mask to be used in dynamic LU name
generation. It is ignored if lu_name is not a template.
The mask is encoded as a big-endian long; i.e., high-
order byte first to low-order byte last.

Returned Parameters

primary_rc See TCP62 Return Codes for details on
secondary_rc primary_rc and secondary_rc verbs.
lu_name The real name of the defined LU. If the supplied

lu_name was a template, it is replaced with the
generated name.

lu_alias If all blank or nulls on input, this will contain the LU
name (in ASCII) on output.

DEFINE_PARTNER_LU_TN62

TCP62 extends the DEFINE_PARTNER_LU verb to allow the definition of LU
names that are generated dynamically, based on a supplied template, mask,
and IP address. The verb is extended by using a new overlay structure. The
DEFINE_PARTNER_LU_TN62_OVERLAY is specified after all the
alt_alias_overlay structures (if any) in the DEFINE_PARTNER_LU VCB.

The opcode field in the DEFINE_PARTNER_LU VCB must be set to
AP_DEFINE_PARTNER-LU_TN62 before invoking the TCP62 API. For a
description of a DEFINE_PARTNER_LU verb, see Communications Server
for OS/2 Warp: System Management Programming Reference.

OVERLAY Structure
typedef struct define_partner_lu_tn62_overlay
{

unsigned long ip_address_mask; /* mask used in dynamic */
/* name generation */

unsigned long partner_ip_addr; /* IP address of the */
/* partner LU */

unsigned char partner_hostname[220];
/* host name of the */
/* partner LU */

} DEFINE_PARTNER_LU_TN62_OVERLAY;

Supplied Parameters

The application supplies the following parameters:

opcode AP_DEFINE_PARTNER_LU_TN62.
fq_partner_lu_name

This is either a real fully-qualified partner LU name or a
template for a fully-qualified partner LU name. If there
are no template replacement characters (‘*’), it is a real
name, otherwise it is a template. The net ID must not
contain any template replacement characters. Note that
the replacement character is ‘*’ instead of ‘.’ to avoid
confusion with the ‘.’ separating the net ID and partner
LU name.

ip_address_mask This is the mask to be used in dynamic partner LU name
generation. It is ignored if fqplu_name is not a
template. The mask is encoded as a big-endian long,
that is, high-order byte first to low-order byte last.

 If the fqplu_name is a template, one of the following two
 parameters must be specified. If both are specified,
 partner_ip_addr takes precedence.

partner_ip_addr This is the IP address of the partner LU. It is ignored if
fqplu_name is not a template. All zeros indicate
“unspecified”. The IP address is encoded as a big-
endian long; that is, high-order byte first to low-order
byte last.

partner_hostname This is the host name of the partner LU. It is ignored if
the fqplu_name is not a template. All blanks indicate
“unspecified”.

Returned Parameters

primary_rc See TCP62 Return Codes for details on
secondary_rc primary_rc and secondary_rc verbs.
fq_partner_lu_name

The real fully-qualified LU name. If the supplied
fq_partner_lu_name was a template, it is replaced with
the generated name.

TCP62 Return Codes

The following section summarizes the unique TCP62 return codes. Note,
DEFINE_LOCAL_LU_TN62 and DEFINE_PARTNER_LU_TN62 may also
have return codes that are described in Communications Server for OS/2
Warp: System Management Programming Reference. Each subsection
heading lists both the primary and secondary return codes in parenthesis
(primary_rc, secondary_rc), using defined symbols located in tn62api.h or
appcdef.h .

(TN62_ERROR, TN62_NODE_RUNNING_NO_ANYNET)

returned by START_TN62
cause The Communications Server node is running and the

running configuration does not support AnyNet.
START_TN62 did not complete successfully.

corrective action Stop the node and reissue the START_TN62.

(TN62_ERROR, TN62_CONFIGURATION_FILE_ERROR)

returned by START_TN62
cause A TCP62 call to the Communications Server

configuration API failed. The most likely cause is a
TCP62 or Communications Server program defect.
START_TN62 did not complete successfully.

corrective action None. Collect problem determination data by turning on
all tracing and recreating the problem. Also, capture
any log data.

(TN62_ERROR, TN62_NODE_NOT_STARTED)

returned by START_TN62
cause The node failed to start. The most likely cause is a

TCP62 program defect. START_TN62 did not complete
successfully.

corrective action None. Collect problem determination data by turning on
all tracing and recreating the problem. Also, capture
any log data.

(TN62_ERROR, TN62_NODE_START_INCOMPLETE)

returned by START_TN62
cause The node started, but the configuration was not

successful. The most likely cause is the AnyNet
program is not installed. The node is running.

corrective action Ensure the AnyNet component is installed. If the
problem persists, collect problem determination data by
turning on all tracing and recreating the problem. Also,
capture any log data.

(AP_OK, TN62_PARAMETERS_NOT_USED)

returned by START_TN62
cause The AnyNet parameters (timers and

domain_name_suffix) or both the CP name and CP
alias from START_TN62 were not used. The node was
already running using different parameters. The
parameter values used by the running node are returned
in the START_TN62 VCB. START_TN62 completes
successfully.

corrective action None.

(TN62_ERROR, TN62_NAME_GENERATION_ERROR)

returned by START_TN62, DEFINE_LOCAL_LU_TN62,
DEFINE_PARTNER_LU_TN62

cause Dynamic name generation failed due to gethostname
(for START_TN62 and DEFINE_LOCAL_LU_TN62) or
gethostbyname (for DEFINE_PARTNER_LU_TN62).
The most likely causes are TCP/IP was not installed,
configured and active, or an incorrect
partner_hostname passed on
DEFINE_PARTNER_LU_TN62. The verb does not
complete successfully.

corrective action Ensure that TCP/IP is configured and active, and that
the partner_hostname on
DEFINE_PARTNER_LU_TN62 is correct.

(AP_PARAMETER_CHECK, INVALID_CP_NAME)

returned by START_TN62
cause The fqcp_name is not valid. The net ID must not

contain any template replacement characters and the
CP name must not begin with a replacement character.
Except for the replacement character, this must be a
valid EBCDIC fully-qualified CP name. START_TN62
does not complete successfully.

corrective action Correct the fqcp_name parameter.

(AP_PARAMETER_CHECK, INVALID_LU_NAME)

returned by DEFINE_LOCAL_LU_TN62
cause The lu_name is not valid. The LU name must not begin

with a replacement character. Except for the
replacement character, this must be a valid EBCDIC LU
name. DEFINE_LOCAL_LU_TN62 does not complete
successfully.

corrective action Correct the lu_name parameter.

(AP_PARAMETER_CHECK, INVALID_FQ_LU_NAME)

returned by DEFINE_PARTNER_LU_TN62
cause The fqplu_name is not valid. The net ID must not

contain any template replacement characters and the
partner LU name must not begin with a replacement
character. Except for the replacement character, this
must be a valid EBCDIC fully-qualified LU name. This
return code will also occur if the fqplu_name is a valid
template, but both partner_ip_addr and
partner_hostname are unspecified.
DEFINE_PARTNER_LU_TN62 fails.

corrective action Correct the fqplu_name parameter or the
(partner_ip_addr , partner_hostname) combination.

