Communications Server for Windows, Version 6.1
and
Personal Communications for Windows, Version 5.7

<|lI!

Client/Server Communications
Programming

SC31-8479-07

Communications Server for Windows, Version 6.1
and
Personal Communications for Windows, Version 5.7

<|lI!

Client/Server Communications
Programming

SC31-8479-07

Note
Before using this information and the product it supports, read the general information in [Appendix G, “Notices”, on

Eighth Edition (September 2003)

This level applies to Version 6.1 of IBM Communications Server for Windows, Version 5.7 of IBM Personal
Communications for Windows (program number: 5639-170), and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . Vii
Tables ix
About This Book. . Xi
Who Should Read This Book . xii
How to Use This Book . xii

Icons . . . xdii

Number Conventlons . . Xiii
Double-Byte Character Set Support . . Xiv
Where to Find More Information . . xiv
Part1. APPCAPI1

Chapter 1. Introducing APPC.
SNA Communications Support .
SNA LU Type 6.2 Support .

Chapter 2. Fundamental APPC Concepts

What Is a Transaction Program? .
APPC Transaction Programs . .o
CPI Communications Transaction Programs .
Client Transaction Programs .
Server Transaction Programs .
What Is a Logical Unit?.
LU Types
Dependent and Independent LUs
What Is an LU Name? . ..
What Is a Session?
What Is a Conversation? .
Relationships among Sessions, Conversatrons,
and LUs
Conversation Types.
Mapped Conversations
Basic Conversations .
Examples of APPC Operations .
Types of APPC Conversations .
One-Way Conversation
Confirmed-Delivery Conversatlon
Inquiry Conversation . .
Database Update Conversation .
Conversations That Have Errors
Summary .

Chapter 3. Using the Attach Manager
Differentiating between an Application and a
Transaction Program o
Transaction Program Defmrtrons .
Identifying the Transaction Program Name on Both
Machines . .
Defining Conversatlon Attrlbutes .

Synchronization Level .

Conversation Type and Style

Conversation Styles.

© Copyright IBM Corp. 1994, 2003

17

.18

. 19

.19
. 20
. 20
. 20
.21

Conversation Security for an Incoming Allocation
Request. .

Conversation Securlty for an Outgomg Allocatron
Request. .

Using the Attach Manager on Personal
Communications

Starting the Attach Manager

Starting Programs with the Attach Manager
Matching Incoming Allocation Requests with
RECEIVE_ALLOCATE Verbs

Nonqueued Programs .

Queued Programs . .
Using the Attach Manager on Communlcatlons
Server SNA API Clients

Defining Transaction Programs for SNA API

Clients . .

Starting the SNA API Chent Attach Manager .

Chapter 4. Writing a Transaction
Program . .
Application Protocols . .
Available Program LU 6.2 Servrces
Choosing a Conversation Type .
Consistency of Conversation Type .
Sending Data .
Receiving Data . .
Reporting Errors and Abnormal Termlnatlon .
Sending an Error Log Data Record .
Abnormally Terminating because of a Timeout
Requesting Confirmation .
Choosing between Half-Duplex and Full Duplex
Conversations S
Choosing a Transactron Program Name .
Using the Security Features .
Partner LU Verification (Sessmn—Level Securlty)
End-User Verification (Conversation-Level
Security)
Converting between EBCDIC and ASCII

Chapter 5. Implementing APPC
Transaction Programs .
Writing Transaction Programs
Option Sets Supported.
Full-Duplex VCBs . .
Queue-Level Nonblocking
Default Local LU .

Chapter 6. Implementmg CPI-C
Programs .
Writing CPIC Programs
CPI-C Versions
CPI-C Conformance Class Support
CPI-C Functions . . .
Specifying Service TP Names

.22
.22

.22
.22
.23

.23
.24
.24

. 26

. 26
.27

. 29
. 29
. 29
. 32
. 32
.32
. 33
. 33
. 34
. 34
. 34

. 35
. 35
. 35

35

. 35
. 36

. 37
.37
.37
. 38
.39
.41

. 43
.43
.43
.44
.47
.48

iii

Additional Options for Setting Local LU . 49
Chapter 7. APPC Entry Points. . 51
APPC . 52
WrnAsyncAPPC() . 53
WinAsyncAPPCEXx() . . 55
WrnAPPCCancelAsynCRequest() . 57
WinAPPCCancelBlockingCall() . . 58
WinAPPCCleanup() . 59
WinAPPCIsBlocking() . . 60
WinAPPCStartup() . . . 61
WrnAPPCSetBlockrngHook() . . 62
WinAPPCUnhookBlockingHook() . . 63
GetAppcConfig() . . . 64
GetAppcReturnCode() . . 65
Chapter 8. APPC Verbs. . 67
Verb Control Blocks . 67
Common Fields . . 67
APPC API Support . . 68
Verbs Supported. . 68
GET_TP_PROPERTIES. . 69
GET_TYPE .71
RECEIVE_ ALLOCATE .73
SET_TP_PROPERTIES . . 76
TP_ENDED .79
TP_STARTED. . 81
[MC_]JALLOCATE . . 83
[MC_]CONFIRM . 89
[MC_]JCONFIRMED .93
[MC_]DEALLOCATE . . .9
[MC_]JFLUSH . 100
[MC_]GET_ ATTRIBUTES . 102
[MC_]PREPARE_TO_RECEIVE . 105
[MC_]RECEIVE_AND_POST . . 108
[MC]RECEIVE_AND_WAIT . 113
[MC_]RECEIVE_EXPEDITED_DATA . 118
[MC_]RECEIVE_IMMEDIATE . 122
[MC_]REQUEST_TO_SEND . 127
[MC_]SEND_CONVERSATION . 129
[MC_]SEND_DATA . 134
[MC_]SEND_ERROR . . 138
[MC_]SEND_EXPEDITED_ DATA . 142
[MC_]JTEST_RTS . 145
[MC_]TEST_RTS_AND_ POST . 147
Part 2. LUA API. 149
Chapter 9. Fundamental Concepts of
the IBM Conventional LU Appllcatlon 151
Understanding LUA and SNA. . 151
Connection Capabilities . . 151
LUA Application Programs. . 151
LUA Verbs . 152
LUs, Local LUs, and Partner LUs . 152
System Services Control Point (SSCP) . 152
SNA Layers . . 152
Data Link Control Layer . 153
Path Control Layer . 153

iV Client/Server Communications Programming

Transmission Control Layer
Data Flow Control Layer
Presentation Services Layer.

Using SNA Sessions . .

Prerequisites to an SNA Sessron .
Starting Sessions .
Transferring Data on an LU LU Sessmn
Stopping Sessions . .
Disconnecting the Host Llnk

Message Numbers. . .

Restarting and Resynchroruzmg a Sessron

Using Protocols to Control Requests and Responses
. 157

Using the Pacing Protocol .

Using the Half-Duplex Contention/ th Flop

Protocol . .
Using the Bracket Protocol
Using the Data-Chaining Protocol
Data Exchange Control Methods .
Flow Protocols . .
Response Modes
LUA Correlation Tables . .
Exception Response Requests (RQEs)
Session Profiles. .
TS Profiles
EM Profiles .
Using RUI LUA Verbs
Verb Summary .
RUI Sessions
Issuing RUI Verbs . . .
Asynchronous Verb Complet1on .
Sample LUA Communication Sequence.
BIND Checking.
Negative Responses and SNA Sense Codes
Pacing. .o
Segmentation .
Courtesy Acknowledgments
Purging Data to End of Chain.
Configuration .
LUA LU Pool (Optlonal)
SNA API Client Considerations

Chapter 10. Features of the RUI LUA
Verbs . . .
Handling Exception Requests .
Changing the Verb Record .
Handling Bracket Bid Reject
Minimizing LAN Traffic .
Reducing RUI_BID Usage .
Dealing with Suspensions .
Canceling RUL_INIT .
Canceling RUL_WRITE .
Canceling RUI_READ
Ensuring Verb Completion .
Compressing Data.

Rules for Negotiating Data Cornpress1on Per

Session .
Recovering from Sessron Fallure .

Chapter 11. Implementlng LUA
Programs .

. 153
. 153
. 153
. 154
. 154
. 154
. 155
. 155
. 156
. 156

. 157
157

. 158
. 158
. 159
. 159
. 159
. 160
. 160
. 160
. 161
. 161
. 162
. 162
. 162
. 163
. 163
. 164
. 164
. 166
. 166
. 167
. 167
. 167
. 168
. 168
. 168
. 169

A7
. 171
. 171
. 172
. 172
. 172
. 172
. 173
. 173
. 173
. 173
. 173

. 174
. 175

. 177

Writing LUA Programs .

. 177

Calling LUA Services. . 177
Understanding Verb Record Contents . 178
Multiple Processes. . 178
Multiple Threads . . 178
LUA Verb Postings . . 178
Converting to EBCDIC from ASCH . . 179

Chapter 12. RUI LUA Entry Points . 181

RUI() . . 182

WinRUI . . . 183

WinRUICleanup() . . . 184

WmRUIGetLastIrutStatus() . 185

WinRUIStartup() . 187

GetLuaReturnCode() . . 188

Chapter 13. RUI Verbs. . 189

LUA Verb Control Block Format . . 189
Common Verb Header . 189
RUIL_BID Data Structure . . 193

RUI_BID . . 194

RUI_INIT. . 199

RUI_PURGE. . 203

RUI_READ . . 206

RUI_TERM . . 212

RUI_WRITE . . 215

Chapter 14. SLI Entry Points . . 221

SLI() . 222

WinSLI() . . . 223

WinSLICleanup() . . 224

WinSLIStartup() . 225

Chapter 15. SLI Verbs. . 227

SLI_BID . . 228

SLI_CLOSE . . 233

SLI_ OPEN . 236

SLI_PURGE . . 242

SLI_RECEIVE . 244

SLI_SEND . 249

SLI_BIND ROUTINE . 253

SLI_STSN_ROUTINE. . 255

SLI_SDT_ROUTINE . . 257

Part 3. Common Services APl . . . 259

Chapter 16. Common Services Entry

Points C e e . 261

Writing Common Services Programs. . 261

ACSSVC() . 262

WinCSV() . . 263

WinCSVCleanup() . . 264

WinAsyncCSV() . 265

WinCSVStartup() . . 266

GetCsvReturnCode() . . 267

Chapter 17. Common Services Verbs

(CSV). . 269

GET_CP_CONVERT_TABLE270
CONVERT274
TnsDt.277
Part 4. EHNAPPC API. 281
Chapter 18. EHNAPPC Appllcatlon
Program Interface 283
Writing EHNAPPC Programs283
EHNAPPC Routines283
EHNAPPC_Allocate283
EHNAPPC_Confirm284
EHNAPPC_Confirmed285
EHNAPPC_Deallocate285
EHNAPPC_ExtendedAllocate 286
EHNAPPC_Flush287
EHNAPPC_GetAttributes287
EHNAPPC_GetCapabilities. 288
EHNAPPC_GetDefaultSystem. 288
EHNAPPC_IsRouterLoaded 289
EHNAPPC_PrepareToReceive 289
EHNAPPC_QueryConfiguredSystems 290
EHNAPPC_QueryConvState290
EHNAPPC_QueryFullSystems.291
EHNAPPC_QueryUserid291
EHNAPPC_QuerySystems291
EHNAPPC_ReceiveAndWait292
EHNAPPC_Receivelmmediate. 293
EHNAPPC_RemoteProgramStart. 294
EHNAPPC_RgsToSend2%
EHNAPPC_SendData29
EHNAPPC_SendError29
EHNAPPC StartHostProgram ... 2%
EHNAPPC Structures297
AS400_SYS297
appcrtrcap_hdr.297
appcrtrcap_mult 297
appcrtrcap_query 298
Return Codes for the EHNAPPC API298
Running 16-Bit EHNAPPC Programs 300

Chapter 19. Data Transform Windows

Application Program Interface 301
Data Transform Windows API Routines 301
EHNDT_ANSIToEBCDIC301
EHNDT_ASCIToEBCDIC302
EHNDT_EBCDICToANSI302
EHNDT_EBCDICToASCIT303

Part 5. Java Programming
Interfaces305

Chapter 20. Introduction to the Host

Access Class Library for Java 307
What Is HACL?307
HACL Concepts308
Sessions308
Container Objects308

Contents V

List Objects308

Events. . . G [0
Error Handhng 309
Addressing (Rows, Columns Pos1t10ns) .. .309
Installing HACL on the Communications Server for
Windows Server 310
Installing HACL on the Commurucatlons Server
32-Bit Windows Client310
Setting the Classpath31
HACL Codepage Converters3I1
HACL Samples.31

Chapter 21. Using CPIC-C for Java 313

What is CPI-C for Java? 313
Installing CPI-C for Java (Commumcatlons Server) 313
CPIC for Java Samples314
Client Sample34
Server Sample316

Part 6. Appendixes 319

Appendix A. APPC Common Return
Codes31

Appendix B. LUA Verb Return Codes 325

Primary Return Codes 325
Secondary Return Codes326

Appendix C. APPC Conversation State
Transitions 343

Appendix D. Communications Server
Service Location Protocol 347

Vi Client/Server Communications Programming

Discovery and Load Balancing APIs.
Structure . e
Scenarios . .
DA-Discovery Tlmeout .

SA Multicast Timeout.

Administrator Help information .
Scope . . .

How Is Scope Used7 .
Load Balancing Weight Factor

Appendix E. Service Templates.
Commserver Service Template. .
Commserver Service Registration Message
Dependent LU Service Template . .
Dependent LU Service Registration Message .
TN3270 Service Template .
TN3270 Service Registration Message

TN5250 Service Template

TN5250 Service Registration Message

LU 6.2 Service Template .

LU 6.2 Service Registration Message

Appendix F. DLL Version Information
32-Bit Windows DLLs

Appendix G. Notices

Trademarks .

Index .

. 347
. 347
. 348
. 354
. 354
. 354
. 354
. 354
. 355

. 357
. 357
. 357
. 357
. 358
. 358
. 359
. 360
. 361
. 362
. 362

363

. 363

. 365
. 366

. 369

Figures

1. Personal Communications or Communications
Server APPC Implementation .

2. A Session between Two LUs

Parts of a Conversation . o

4, A Conversation between Two Transaction
Programs.

@

© Copyright IBM Corp. 1994, 2003

[o¢}

® N T

Parallel Sessions between LUs10
Relationships between Programs and LUs 11
Attach Manager Function in APPC.18
Testing Verb Completion.173

vii

viii Client/Server Communications Programming

Tables

NGOk ®h =

®

11.
12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

LU 6.2 Operations . . .
Actions in One-Way Conversatlon .
Actions in Confirmed-Delivery Conversatlon
Actions in Inquiry Conversation

Actions in Database Update Conversatlon
Inquiry Conversation with Error

Verb Processing and Transaction Program
Name Configuration

Header Files and Libraries for APPC

Header Files and Libraries for CPIC
Personal Communications Client Support of
CPI-C Functions .

Clearing of RQEs

TS Profile Characteristics.

FM Profile Characteristics

RUI Verb Conditions .

Header Files and Libraries for RUI APIs
Header Files and Libraries for SLI APIs
Parameter Settings Based on Message Type
Header Files and Libraries for Operating
Systems .
TrnsDT Code Page Conversron Support —
China . .
TrnsDT Code Page Converswn Support —
Japan . . .
TrnsDT Code Page Conversron Support —
Korea . . . L.

© Copyright IBM Corp. 1994, 2003

.12
.13

13

. 14

14

. 15

. 26
. 37
. 43

.. 47
. 161
. 161
. 162
. 164

177
177
251

. 261

. 277

. 277

. 277

22.

23.

24.
25.
26.

27.

28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.

39.

TrnsDT Code Page Conversion Support —
Taiwan. .
Header Files and L1brar1es for Operatmg
Systems o
Return Codes

Events for HACL . .)
APPC Half-Duplex Conversatlon State
Transitions

APPC Full-Duplex Conversatlon State
Transitions -
Service Type/Port Informat1on
CM_CSLIST_GETII Primitive
CM_CSLIST_GETII Primitive

Flags values (from cmi.h)

AgentType values (from csob]typ h)
FilterList_t (if Flags = CMCsLlstFlag_LBPool)
FilterList_t (if Flags = zero | Flags =
CMCsListFlag_LBFilters) . .

Filter_t. .

FilterType values (from cmi. h)
CM_CSLIST_GETII_ACK Primitive

Server Information structure in
CM_CSLIST_GETII_ACK Primitive

Valid dev_types for LU Pool Names .

. 277

. 283
. 298
. 308

. 343

. 345
. 349
. 351
. 351
. 352

. 352
352

. 352
. 353
. 353
. 353

. 353
. 358

ix

X Client/Server Communications Programming

About This Book

This book is for users of client and server applications provided by IBM®
Communications Server for Windows® and IBM Personal Communications for
Windows. Client APIs are provided for Windows 95, Windows 98, Windows NT®,
Windows Me, Windows 2000, and Windows XP (hereafter termed Win32 client
APIs).

IBM Communications Server for Windows is a communications services platform.
This platform provides a wide range of services for workstations that communicate
with host computers and with other workstations. Communications Server users
can choose from among a variety of remote connectivity options.

IBM Personal Communications for Windows is a full-function emulator. In
addition to host terminal emulation, it provides these useful features:

* File transfer

* Dynamic configuration

* An easy-to-use graphical interface

* APIs for SNA-based client applications

* An API allowing TCP/IP-based applications to communicate over an SNA-based
network.

In most instances, developing programs for Personal Communications and
Communications Server and their clients is very similar in that they each support
many of the same verbs. However, there are some differences. These differences are
denoted in this book with special icons; see [“Icons” on page xiii| for specific details.
Throughout this book, Personal Communications and Communications Server
program names are used when information applies to both. When only the
Personal Communications program or only the Communications Server program
applies, then the specific program name is used.

This book is divided into the following parts.

* [Part 1, “APPC API"} describes how to develop programs that use the Personal
Communications and Communications Server advanced program-to-program
communications (APPC) interface. APPC refers to an implementation of Systems
Network Architecture (SNA) for logical unit (LU) type 6.2. Throughout this
book, unless otherwise noted, APPC represents the Personal Communications
and Communications Server implementation of APPC.

APPC provides a distributed transaction processing capability in which two or
more programs cooperate to carry out some processing function. This capability
involves communication between the programs so they can share resources, such
as processor cycles, databases, work queues, and physical interfaces such as
keyboards and displays.

Part 2, “LUA API”} describes how to develop programs that use the IBM
conventional logical unit application (LUA) interface (in this book LUA also
refers to request unit interface {RUI}), which gives access to SNA LU types 0, 1,
2, and 3.

Part 3, “Common Services API”} includes the verbs that make up the Common
Services APL

© Copyright IBM Corp. 1994, 2003 xi

* |Part 4, “EHNAPPC API”| includes the functions, structures, and return codes for
the Enhanced APPC Interface.

* Part 5. Java ' Programming Interfaces, describes the IBM Host Access Class
Library (HACL) for Java as it relates to 3270 and 5250 applications.

In this book, Windows refers to Windows 95, Windows 98, Windows NT, Windows
Me, and Windows 2000. Throughout this book, workstation refers to all supported
personal computers. When only one model or architecture of the personal
computer is referred to, only that type is specified.

Who Should Read This Book

This book is intended for programmers and developers who are writing either
APPC or LUA applications.

This book assumes the reader is familiar with SNA Transaction Programmer’s
Reference Manual for LU Type 6.2.

How to Use This Book

* |Chapter 1, “Introducing APPC”} describes advanced program-to-program
communications (APPC).

+ |Chapter 2, “Fundamental APPC Concepts”} describes APPC transaction
programs.

* |Chapter 3, “Using the Attach Manager”} describes how to use the attach
manager.

+ |Chapter 4, “Writing a Transaction Program”} describes how to write a transaction
program.

* |Chapter 5, “Implementing APPC Transaction Programs”} describes the APPC
extensions.

* [Chapter 6, “Implementing CPI-C Programs”} describes CPI-C programs.
* [Chapter 7, “APPC Entry Points”}, describes the procedure entry points for the
APPC APL

* [Chapter 8, “APPC Verbs”} describes the syntax of each APPC verb. A copy of the
structure that holds the information for each verb is included and each entry is
described, followed by a list of possible return codes.

« |Chapter 9, “Fundamental Concepts of the IBM Conventional LU Application”}
describes the fundamental LUA programming concepts in this book.

« |Chapter 10, “Features of the RUI LUA Verbs”} describes the features of LUA
verbs.

Chapter 11, “Implementing LUA Programs”} describes some of the aspects of
writing LUA application programs.

* |Chapter 12, “RUI LUA Entry Points”} describes procedure entry points for LUA.
* |Chapter 13, “RUI Verbs”| describes details for each LUA verb.

* |Chapter 14, “SLI Entry Points”} describes the procedure entry points for SLI.

* [Chapter 15, “SLI Verbs”| describes details for each SLI verb.

* [Chapter 16, “Common Services Entry Points”} describes procedure entry points.

* |Chapter 17, “Common Services Verbs (CSV)”}| describes common services verbs.

* |Chapter 18, “EHNAPPC Application Program Interface”} describes the
EHNAPPC APL

xii Client/Server Communications Programming

[Chapter 19, “Data Transform Windows Application Program Interface”} describes

data transform Windows APIs.

[Chapter 20, “Introduction to the Host Access Class Library for Java”} describes

the Host Access Class Library for Java and its relationship to both 3270 and 5250
using Java classes.

|Chapter 21, “Using CPIC-C for]ava”|, describes the CPI-C for Java API.

[Appendix A, “APPC Common Return Codes”} contains descriptions of the

common return codes.

* |Appendix B, “LUA Verb Return Codes”} contains descriptions of the LUA

common return codes.

[Appendix C, “APPC Conversation State Transitions”} describes the conversation

states in which each APPC verb can be issued, and the state change that occurs
on completion of the verb.

[Appendix D, “Communications Server Service Location Protocol”} describes how

the application program developer can now locate services and load balance
among services using the TCP/IP protocol.

[Appendix E, “Service Templates”| describes details of commserver service types.

[Appendix E, “DLL Version Information”} contains 32-bit Windows DLL version

information.

Ilcons

This book uses icons in the text to help you find different types of information.

This icon represents information that applies to basic APPC verbs. See
[Chapter 8, “APPC Verbs”| for more information on basic verbs.

This icon represents information that applies to mapped APPC verbs.
See |Chapter 8, “APPC Verbs”|for more information on mapped verbs.

This icon represents a note, important information that can affect the
operation of Personal Communicationsor Communications Server, or the
completion of a task.

This icon appears when the information applies only to the Personal
Communications program.

This icon appears when the information applies only to the
Communications Server program.

Number Conventions

Binary numbers

Represented as BX'xxxx xxxx' or BX'x' except in certain
instances where they are represented with text (“A value of
binary xxxx xxxx is...”).

Bit positions

Start with 0 at the rightmost position (least significant bit).

About This Book Xiii

Decimal numbers Decimal numbers over 4 digits are represented in metric style.
A space is used rather than a comma to separate groups of 3
digits. For example, the number sixteen thousand, one hundred
forty-seven is written 16 147.

Hexadecimal numbers Represented in text as hex xxxx or X'xxxx' (“The address of the
adjacent node is hex 5D, which is specified as X'5d")

Double-Byte Character Set Support

Personal Communications and Communications Server support double-byte
character sets (DBCS), in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese, and Korean, which contain more symbols
than can be represented by 256 code points, require double-byte character sets.
Because each character requires 2 bytes, the typing, displaying, and printing of
DBCS characters require hardware and programs that support DBCS.

Where information applies specifically to DBCS, it is noted in this information unit.

ASCII refers to PC single-byte code in this book. ASCII should be considered as
JISCII in Japan.

Where to Find More Information

For more information, refer to Quick Beginnings, which contains a
/& complete description of both the Communications Server library and
= related publications.

To view a specific book after Communications Server has been
installed, use the following path from your desktop:

1. Programs

2. IBM Communications Server

3. Documentation

4. Choose from the list of books

The Communications Server books are in Portable Document Format
(PDF), which is viewable with the Adobe Acrobat Reader. If you do not

have a copy of this program on your machine, you can install it from
the Documentation list.

The Communications Server home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser such as IBM
Web Explorer, go to the following URL:

http:/ /www.ibm.com/software /network/commserver

xiv Client/Server Communications Programming

For more information, refer to Quick Beginnings, for Personal
Communications Version 5.7 which contains a complete description of
both the Personal Communications library and related publications.

The Personal Communications books are included on the CD-ROM in
Portable Document Format (PDF). Books can be accessed directly from
the Personal Communications CD-ROM or from the Install Manager
welcome panel.

To view the Personal Communications documentation using Install
Manager, select View Documentation from the main panel of the
Install Manager on the CD-ROM. Clicking View Documentation
invokes Adobe Acrobat Reader from your system to view the books. If
Acrobat Reader is not detected on your system, you are given the
opportunity to install it at this time. After installation of Acrobat Reader
is complete, a window opens displaying the books available on the
CD-ROM.

Notes:

1. You can copy the book files from the CD-ROM to a local or network
drive to view at a later time.

2. Quick Beginnings in HTML format is installed during installation of
Personal Communications.

The Personal Communications home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser such as IBM
Web Explorer, go to the following URL:

http:/ /www.ibm.com/software /network/pcomm /

The complete IBM Dictionary of Computing is available on the World
Wide Web at http://www.ibm.com/networking /nsg/nsgmain.htm.

About This Book XV

xvi Client/Server Communications Programming

Part 1. APPC API

© Copyright IBM Corp. 1994, 2003

2 Client/Server Communications Programming

Chapter 1. Introducing APPC

Personal Communications and Communications Server provide Advanced
Peer-to-Peer Networking® (APPN®) end-node support for workstations, enabling
them to communicate more flexibly with other systems in the network.

Personal Communications and Communications Server provide advanced
program-to-program communications (APPC) to support communications between
distributed processing programs, called transaction programs (TPs). APPN extends
this capability to a networking environment. The transaction programs can be
located at any node in the network that provides APPC.

Personal Communications and Communications Server improve APPC throughput
in local area network (LAN) environments and supports APPC over various
protocols such as: IBM Token-Ring Network, Synchronous Data Link Control
(SDLC), Twinaxial, and Ethernet.

Note: Included in the chapters of Part 1 of this book is information on the APPC
API provided by the following systems:

¢ Communications Server running on Windows

* SNA API clients for Windows that are delivered with Communications
Server

* Personal Communications for Windows
When there are differences between the support provided by these systems,
it is noted.

illustrates the functional structure of an implementation of APPC for
either Personal Communications or Communications Server.

LU 6.2

PU 2.1/2.0

LAN X.25 SDLC (XY}

Figure 1. Personal Communications or Communications Server APPC Implementation

SNA Communications Support

Personal Communications and Communications Server support Systems Network
Architecture (SNA) type 2.1 nodes (including SNA type 2.0 and SNA type 2.1
support for logical units [LUs] other than SNA LU 6.2). This support lets you write
programs to communicate with many other IBM SNA products.

© Copyright IBM Corp. 1994, 2003 3

You can write programs without knowing the details of the underlying network.
All you need to know is the name of the partner LU; you do not need to know its
location. SNA determines the partner LU location and the best path for routing
data. A change to the underlying network, the addition of a new adapter, or the
relocation of a machine, does not affect APPC programs. A program might,
however, need to establish link connections over switched SDLC connections.

When Personal Communications or Communications Server starts, it establishes
local LU and logical link definitions, which are stored in a configuration file. The
system management application programming interface (API) provides functions
that control configuration definition and adapter and link activation. Refer to
System Management Programming for information about these functions. Users can
use the configuration and node operations functions while runs. Refer to Quick
Beginnings and System Management Programming for more information about
configuration and node operations.

SNA LU Type 6.2 Support

LU 6.2 is an architecture for program-to-program communications. Personal
Communications and Communications Server support all base LU 6.2 functions.
Some of the optional SNA LU 6.2 functions are:

* Basic and mapped conversations

* Half-duplex or full-duplex conversation styles

* Synchronization level of confirm

* Security support at session and conversation levels
e Multiple LUs

* Parallel sessions, including the ability to use a remote system to change the
number of sessions

4 Client/Server Communications Programming

Chapter 2. Fundamental APPC Concepts

This chapter describes the APPC API supported by Personal Communications. Its
purpose is to provide:
* A brief overview of the structure of the APPC API

* Reference information about the specific syntax of the verbs that flow across the
interface

What Is a Transaction Program?

A transaction program is a block of code, or part of an application program, that
uses APPC communications functions. Application programs use these functions to
communicate with application programs on other systems that support APPC. A
transaction program has a 64-byte name (tp_name).

Your transaction program can obtain LU 6.2 services through either of the
following APIs:

* APPC—Advanced Program-to-Program Communication allows transaction
programs to exchange information across an IBM SNA network using the syntax
and verbs defined by IBM for using an LU 6.2 session.

* CPI-C—Common Programming Interface for Communications (CPI-C) allows
transaction programs to exchange information across an IBM SNA network
using the syntax, defined by IBM in the Common Programming Interface
component of the SAA®, for using an LU 6.2 session. Because this API is
implemented for many platforms, CPI-C applications can be easily ported.

Transaction programs issue APPC verbs to invoke APPC functions. See
[“Implementing APPC Transaction Programs”, on page 37} for details about how
transaction programs issue APPC verbs. Transaction programs can issue CPI
Communications calls to invoke CPI Communications functions. The CPI
Communications calls let application programs take advantage of the consistency
that SAA provides. See [“CPI Communications Transaction Programs” on page § for
information about the CPI Communications calls.

Programs do not need to be written to the same LU 6.2 API in order to
communicate with each other. In particular, a transaction program written to the
APPC API can communicate with a transaction program written to CPI-C.

APPC Transaction Programs

An APPC transaction program is not an application; it is a section of an
application. A single application can contain many transaction programs. Every
transaction program has a unique 8-byte identification number (tp_id).

APPC supplies verbs that start and stop transaction programs within applications.
APPC also supplies a full set of conversation verbs that you can use to implement
the function of your transaction program.

A transaction program issues a request to APPC, in the form of a verb, to perform

some action for an application program. A verb is a formatted request that a
transaction program issues and APPC executes. A program uses APPC verb

© Copyright IBM Corp. 1994, 2003 5

sequences to communicate with another program. Two programs that communicate
with each other can be located at different systems or on the same system.

When a transaction program exchanges data with another transaction program,
they are called partner transaction programs.

CPI Communications Transaction Programs

A CPI Communications transaction program is similar to an APPC transaction
program; both types of transaction programs use APPC support. Rather than
issuing verbs, however, a CPI Communications transaction program invokes each
CPI Communications function with a call to the function that passes the
appropriate parameters on the call.

Most CPI Communications calls correspond to APPC verbs. For example, the calls
that allocate outbound conversations and accept (receive) conversations, and the
calls that send and receive data on the conversation, provide functions that are
similar to those of the corresponding APPC verbs. The exceptions are the calls that
initialize a conversation before allocating the conversation and the calls that set
and extract individual conversation characteristics.

Refer to CPI Communications Reference for details about the support that
Communications Server provides for CPI Communications programs.

Client Transaction Programs

Typically, a program begins a conversation because it requires a service from
another program. This program is called a client transaction program. The client
transaction program requests the conversation through the LU 6.2 APIL.

Often the client transaction program is started by a human user; however, the
client transaction program could actually be a server transaction program
responding to another program’s request. In any conversation, the client
transaction program is always running before the conversation begins. The client
transaction program startup and termination are not directly related to the
conversation. The client transaction program initiates the conversation, and it can
continue to run after the conversation is over.

Server Transaction Programs

The server transaction program delivers the service that is requested by the client
transaction program.

The server transaction program can run continuously, waiting for clients to begin
conversations with it. But frequently, the server transaction program handles a
single transaction, and is started by the APPC API to handle one specific
conversation. The server transaction program begins execution when a
conversation is requested, and it terminates when the conversation is finished.

An important feature of the LU 6.2 architecture is that it can start server
transaction programs when client transaction programs request them. You can
design your server programs according to this model and arrange for them to be
started on demand.

6 Client/Server Communications Programming

What Is a Logical Unit?

Every transaction program gains access to an SNA network through a logical unit
(LU). An LU is SNA software that accepts verbs from your programs and acts on
those verbs. A transaction program issues APPC verbs to its LU. These verbs cause
commands and data to flow across the network to a partner LU. An LU also acts
as an intermediary between the transaction programs and the network to manage
the exchange of data between transaction programs. A single LU can provide
services for multiple transaction programs. Multiple LUs can be active
simultaneously.

LU Types

Personal Communications and Communications Server support LU types 0, 1, 2, 3,
and 6.2. LU types 0, 1, 2, and 3 support communication between host application
programs and different kinds of devices, such as terminals and printers. Refer to
[Part 2, “LUA API”} for details on writing these programs.

LU 6.2 supports communication between two programs located at type 5 subarea
nodes, type 2.1 peripheral nodes, or both, and between programs and devices.
APPC is an implementation of the LU 6.2 architecture, which is described in this
part of the book.

Communication occurs only between LUs of the same LU type. For example, an
LU 2 communicates with another LU 2; it does not communicate with an LU 3.

Dependent and Independent LUs

A dependent LU depends on a system services control point (SSCP) to activate a
session. A dependent LU needs an active SSCP-LU session, which the dependent
LU uses to start an LU-LU session with an LU in a subarea node. A dependent LU
can have only one session at a time with the subarea LU. For communications with
a transaction program at a subarea node, each dependent LU can have only one
conversation at a time, and each dependent LU can support communications for
only one transaction program at a time.

An independent LU does not depend on an SSCP to activate a session. An
independent LU supports multiple concurrent sessions with other LUs in a subarea
node, so you can have multiple conversations and support multiple transaction
programs for communications with subarea transaction programs. LUs between
peripheral nodes also use this support.

The distinction between a dependent LU and an independent LU is meaningful
only when discussing a session between an LU in a peripheral node and an LU in
a subarea node. Otherwise, dependent and independent LUs both support multiple
concurrent sessions and conversations when communicating between type 2.1
peripheral nodes (for example, between two workstations). Personal
Communications or Communications Server LUs can support a single session with
a dependent LU or multiple sessions with an independent LU.

What Is an LU Name?

An LU is a point of access to the Systems Network Architecture (SNA) network.
An LU has a name and other characteristics that are configured (formally recorded)
throughout the SNA network. Sometimes this configuration is static, done by the
network administrator and recorded in configuration files. Sometimes the
configuration is dynamic, prepared by programs from file or user input.

Chapter 2. Fundamental APPC Concepts 7

To open a conversation, a client transaction program must specify both the name of
the server transaction program and the name of the LU where the server
transaction program can be reached. Sometimes these names are embedded in the
client transaction program. In other cases, the names are stored externally to the
client transaction program or are specified dynamically.

What Is a Session?

Before transaction programs can communicate with each other, their LUs must be
connected in a mutual relationship called a session. A session connects two LUSs, so
it is called an LU-LU session. illustrates this communication relationship.
Multiple concurrent sessions between the same two LUs are called parallel LU-LU
sessions.

Sessions act as conduits that manage the movement of data between a pair of LUs
in an SNA network. Specifically, sessions deal with things such as the quantity of
data transmitted, data security, network routing, and traffic congestion.

Session

6.2 6.2

Figure 2. A Session between Two LUs

Sessions are maintained by their LUs. Normally, your transaction programs do not
deal with session characteristics. You define session characteristics when you:

* Configure your system

* Use the management verbs

What Is a Conversation?

The communication between transaction programs is called a conversation.
Conversations occur across LU-LU sessions. A conversation starts when a
transaction program issues an APPC verb or CPI Communications call that
allocates a conversation. The conversation style associated with the conversation
indicates the style of data transfer to be used, two-way alternate or two-way
simultaneous.

A conversation that specifies a two-way alternate style of data transfer is also
known as a half-duplex conversation. A conversation that specifies a two-way
simultaneous style of data transfer is referred to as a full-duplex conversation.

When a full-duplex conversation is allocated to a session, a send-receive
relationship is established between the transaction programs connected to the
conversation, and a two-way alternate data transfer occurs where information is
transferred in both directions, one direction at a time. Like a telephone
conversation, one transaction program calls the other, and they “converse”, one
transaction program talking at a time, until a transaction program ends the
conversation. One transaction program issues verbs to send data, and the other
transaction program issues verbs to receive data. When it finishes sending data, the

8 Client/Server Communications Programming

sending transaction program can transfer send control of the conversation to the
receiving transaction program. One transaction program decides when to end the
conversation and informs the other when it has ended.

When a duplex conversation is allocated to a session, both transaction programs
connected to the conversation are started in send-and-receive state, and a two-way
simultaneous data transfer occurs where information is transferred in both
directions at the same time. Both transaction programs can issue verbs to send and
receive data simultaneously with no transfer of send control required. The
conversation ends when both transaction programs indicate they are ready to stop
sending data, and each transaction program has received the data sent by the
partner. If an error condition occurs, one transaction program can decide to end
both sides of the conversation abruptly.

shows a conversation after it has been set up.

Transaction Program (TP)
LU6.2 API services

Logical Unit (LU) —
Lu1 Fﬂ

L J L J

Session Conversation

ALl

Figure 3. Parts of a Conversation

Conversations can exchange control information and data. The transaction program
should select the conversation style best-suited for its application.

Figure 4{shows a conversation between two transaction programs as it occurs over
a session.

TP1 TP2
LU Session LU
Conversation | g2 6.2 |Conversation

Figure 4. A Conversation between Two Transaction Programs

A session can support only one conversation at a time, but one session can support
many conversations in sequence. Because multiple conversations can reuse
sessions, a session is a long-lived connection compared to a conversation.

When a program allocates a conversation and all applicable sessions are in use, the
LU puts the incoming Attach (allocation request) on a queue. It completes the
allocation when a session becomes available. See [Chapter 3, “Using the Attach|
[Manager”, on page 17] for more information about Attach Manager.

Chapter 2. Fundamental APPC Concepts 9

Two LUs can also establish parallel sessions with each other to support multiple
concurrent conversations.

Figure 5|shows three parallel sessions between two LUs; each session carries a

conversation.
Parallel Sessions
™1 — —1 TP2
LU LU ™3
6.2 6.2
P4 |— 1 TP5

Figure 5. Parallel Sessions between LUs

An APPC conversation is a half-duplex conversation. At any instant, only one of the
two partner transaction programs has the right to send data. That transaction
program is insend state. The other transaction program has the responsibility to
receive data. It is said to be in receive state. At specified times, the transaction
programs exchange these duties. When the conversation is first set up, the client
transaction is in send state and the server program is in receive state.

Relationships among Sessions, Conversations, and LUs

A connection between LUs is called a session. This connection can pass through
intermediate network nodes. However, LU 6.2 programs do not need to account
for the details of the connection. It makes no difference to the client transaction
program whether the server transaction program is in the same room or thousands
of miles away. The LU 6.2 API is responsible for starting and ending sessions
between LUs of type 6.2.

Though a session can carry only one conversation at a time, it can be reused for
another conversation when the first one is finished. The LU 6.2 software
determines whether to terminate a session when the conversation ends, or to keep
the session open and reuse it.

Some LUs can handle multiple, parallel sessions. Each session is independent.
Some possible relationships among machines, LUs, sessions, and transaction
programs are illustrated in [Figure 6 on page 11}

10 Client/Server Communications Programming

@ @D
LUA1 LUB1
@ L J
System B
LUA2 \
System A @
/ LUC1
@ System C
LUD2
System D

Figure 6. Relationships between Programs and LUs

Figure 6| depicts two parallel sessions between LUA1 in System A and LUBI in
System B. One session carries a conversation between client TPC1 and server TPSI.
The other session is not in use for a conversation at this time.

In System C, LUC1 also supports two parallel sessions. Both are in use by client
TPC3, which is carrying on a conversation with server TPS2 in System A. TPC3
also has a conversation in progress with TPC4 in System D. This figure illustrates
that a transaction program is not limited to a single conversation. The figure also
shows that a program can be both a client and a server. A possible scenario for the
conversations could be that program TPC4 started program TPC3 in order to
request a service. To deliver that service, TPC3 requested a service from TPS2.

Conversation Types

Personal Communications and Communications Server LU 6.2 supports two types
of conversations, mapped and basic, and therefore provides a separate set of verbs
for each. The conversation type you use depends on whether you need full access
to the SNA general data stream (GDS) as provided by basic conversations. The GDS
defines what is known as a GDS variable. A GDS variable consists of one or more
logical records. Each logical record begins with a logical length (LL) field that
specifies the overall length of the logical record (data). The first logical record of a
GDS variable also includes, immediately after the logical length field, an
identification (ID) field that specifies the type of GDS variable.

Mapped Conversations

Use mapped conversations for transaction programs that are the final users of the
data exchanged. A mapped conversation enables advanced program-to-program
communication in an easy-to-use record-level manner. Because a transaction
program using mapped conversations does not require GDS headers to describe
the data, the program does not have to build or interpret these headers. When the
transaction program uses mapped conversations, Personal Communications LU 6.2
builds and interprets GDS variables.

In a mapped conversation, the programs exchange records in whatever format you
design.

Chapter 2. Fundamental APPC Concepts 11

* Each send operation takes a record of a specified length from 0 bytes to 65,535
bytes. Personal Communications and Communications Server formats the record
into a single GDS variable.

* A receive operation returns all or part of one sent record (GDS variable without
header fields), depending on how much buffer space the program allocates. The
return code indicates when the final part of a record sent by the partner
program has been received.

The APPC API takes full responsibility for the following tasks:
* Blocking and buffering multiple records

* Formatting data as SNA GDS variables

* Buffering at the receiving program

* Deblocking and delivery to the Receive operation

Basic Conversations
In a basic conversation, transaction programs exchange logical records from 0 to
32,765 bytes in length.

* Each send operation takes a buffer containing from 0 to 65,535 bytes of logical
records. The buffer can contain one or more logical records and parts of records.
Logical records can be broken across send calls.

* A receive operation can be used to accept either a single logical record or a
buffer filled with one or more logical records and parts of records.

Examples of APPC Operations
describes possible LU 6.2 operations in abstract terms.
Table 1. LU 6.2 Operations

Operation What the Operation Does
Send Sends a block of data to the other program.
Receive If currently in send state, transmits any buffered output data

and enters receive state. Waits for data to arrive and receives it.

Auwait confirmation Transmits any buffered output data. Waits until the partner
program confirms that it has received and processed all data.

Confirm Sends the partner program confirmation that all data has been
received and processed.

Error If in receive state, purges any buffered input data and enters
send state. If currently in send state, purges any buffered
output data. Causes the partner program’s current operation to
end with a special return code.

Close If currently in send state, transmits any buffered output data.
Ends the conversation.

Both LU 6.2 APIs offer these services (and others), and both offer services that
allow you to combine two or more of these basic operations to improve
performance. The following sections use these terms when discussing the types of
conversations to avoid contrasting the details of each APIL. For example, the term
Send used in can represent the APPC verbs SEND_DATA, or
MC_SEND_DATA, or the CPI-C function CMSEND.

12 Client/Server Communications Programming

Types of APPC Conversations

This section discusses the types of APPC conversations.
* One-way

* Confirmed-delivery

* Inquiry

 Database update

One-Way Conversation
In the one-way conversation, the simplest type of conversation, the client
transaction program passes some data to the server and the server notes it, as
summarized in

Table 2. Actions in One-Way Conversation

Client Actions Server Actions

Send one or more records.

Close. Receive and process the records.

Close.

This minimal sort of conversation is used with data whose delivery is not critical;
for example, to periodically update a status display, to record usage levels, or log a
condition.

Confirmed-Delivery Conversation

In the next simplest type of conversation, the confirmed-delivery conversation, the
client transaction program sends a record and the server confirms its receipt, as
summarized in [Table

Table 3. Actions in Confirmed-Delivery Conversation

Client Actions Server Actions

Send one or more records.

Await confirmation.

Receive and process the records.

Confirm the records.

Close. Close.

This type of conversation can be used in a credit-authorization system (the client
sends an account number and purchase amount, and the server’s confirmation
authorizes the sale) among its other uses. For example, the client transaction
program could send a database record of any kind, and the server could confirm
that the database had been updated. Because there is no upper limit on how much
data the client can send, this type of conversation could be used to send an entire
file of data in batch mode. In this type of conversation the client transaction
program receives only the confirmation; it needs no other data returned to it.

The difference between a Confirm operation and a Send is that Confirm transmits

only the shortest possible SNA message, the positive response that all data has
been received and processed.

Chapter 2. Fundamental APPC Concepts 13

Inquiry Conversation
In an inquiry conversation, the client sends one request for information and the
server generates one response, as summarized in (Both the inquiry and the
response can comprise any number of logical records.) This type of conversation
appears in many kinds of data processing applications.

Table 4. Actions in Inquiry Conversation

Client Actions Server Actions

Send one or more records.

Receive.
Receive and process the records.
Send a response consisting of one or more
records.

Continue to Receive until all response data Close.

has arrived.

Close.

When you design transactions to this model, the server transaction programs are
very simple. Each handles one instance of one type of query and then terminates.
The client transaction program requests a conversation with the server transaction
program that can answer the desired type of query. The LU 6.2 API services locate
and start a copy of that server transaction program.

Database Update Conversation

In the database update conversation, the client transaction program requests a copy
of data, modifies it, and returns it to be stored. The server transaction program
locks the data for the client’s use until the update is complete. summarizes
client and server actions.

Table 5. Actions in Database Update Conversation

Client Actions Server Actions

Send a request for data (a record key).

Receive.

Receive the key value.

Fetch the record and lock it.

Send a copy of the record.

Receive.

Process the received record.

Send the updated record.

Await confirmation.

Update the database with the received
record.

Confirm the update.

Close. Close.

Refer to[Table 1 on page 12| to clarify this process. When the client transaction
program first issues Receive, three things occur:

* LU 6.2 send buffer is flushed of any remaining logical records sent by the client.

14 Client/Server Communications Programming

* The client transaction program, that began in send state, switches to receive
state. The right to send passes to the server transaction program.

* The client transaction program waits until data arrives. (Nonblocking receive
operations are available also.)

Similarly, the second Receive issued by the server flushes its buffer and transfers
the right to send back to the client transaction program.

Conversations That Have Errors

Conversation errors are inevitable, and your transaction program must be prepared
to detect and respond to them. A transaction program uses the Report (Error)
operation, described in [Table 1 on page 12} to signal the discovery of an error.
_

le 6| summarizes an inquiry conversation in which the server finds a logical
error in the inquiry.

Table 6. Inquiry Conversation with Error

Client Actions Server Actions

Send one or more records.

Receive.
Receive and process some of the inquiry
records. Find a mistake.
Report (Error).
Send diagnostic error message.
Return code to Receive indicates Report Close.

(Error) by partner.

Receive diagnostic message, display to user
Close

The main purpose of the Report (Error) operation is to purge all data in transaction
program API buffers that was neither sent nor received. The Report (Error)
operation also gives the right to send to the transaction program which discovered
the error, so that the transaction program can transmit diagnostic data to its
partner. Your transaction program must specify the contents of the diagnostic
message and the operations that follow.

Summary

Two transaction programs use LU 6.2 to exchange data in a conversation. One, the
client transaction program, is typically started by a user. The other, the server
transaction program, can be started automatically to render a service to the client.
A transaction program uses one of two APIs: APPC, or CPI-C, which have different
styles and similar, but not identical, sets of services.

The conversation takes place over a session between two LUs. An LU represents a
point at which a transaction program can access the SNA network. A session
represents the connection between two LUs, without regard to their location or the
distance between them.

Chapter 2. Fundamental APPC Concepts 15

16 Client/Server Communications Programming

Chapter 3. Using the Attach Manager

An important LU 6.2 feature is the ability of a program in one node to start
corresponding programs in other nodes. The attach manager handles incoming
requests to start programs.

This chapter considers programs in your (local) workstation that start at the
request of partner programs. The local program is referred to as remotely started.
Workstation users and administrators want to control which programs can be
remotely started for security and resource control. Users at remote nodes should
not start programs that destroy data or use the local workstation’s memory at
critical times. The attach manager acts as a gate keeper, handling incoming
requests to start programs on the local workstation.

The attach manager takes its name from an SNA message, called an Attach, that
flows between a pair of LUs. An Attach flows when a program that uses the
partner LU initiates a conversation. The LU 6.2 component in the local workstation
passes any Attach it receives to its attach manager for handling. A received Attach
is called an incoming allocation request or incoming Attach. In this chapter, the phrase
incoming allocation request means that the SNA Attach is generated by a partner LU.

The attach manager does the following things:

* Enables remote nodes to start applications in the local workstation. Multiple
instances of a program can be started in series (queued) or in parallel
(nonqueued).

* Passes parameters to remotely started programs.

e Starts programs in Windows or in the background.

* Uses security guidelines to verify incoming allocation requests.

* Forwards the incoming allocation request to the client workstations.

* Checks the conversation type (that is, basic or mapped) and synchronization
level of incoming allocation requests.

 For server programs, specifies timeout values for holding incoming allocation
requests and locally issued APPC RECEIVE_ALLOCATE verbs or CPI
Communications Accept_Conversation or Accept_Incoming (CMACCP,
CMACCI) calls.

ﬂlustrates the attach manager function.

© Copyright IBM Corp. 1994, 2003 17

Remote Machine Local Workstation

Transaction Transaction
Program Program
[MC_] ALLOCATE RECEIVE_ALLOCATE
APPC APPC
Attach Attach
Manager Manager
Incoming Attach with TP Name

Figure 7. Attach Manager Function in APPC

In a communicating pair of transaction programs, only the node that receives
allocation requests needs the attach manager. The attach manager manages three
kinds of input:

* Incoming allocation requests (Attaches) from partner transaction programs

* APPC RECEIVE_ALLOCATE verbs or CPI Communications CMACCP and
CMACCI calls from local programs

* Configuration definitions for transaction programs, user IDs, and passwords

The TP name is a key piece of information in an incoming allocation request. The
attach manager uses the transaction program name to decide which program to
start in the local workstation. Programmers and administrators at both nodes need
to agree on each transaction program name. A program that issues an allocation
request supplies a transaction program name as a parameter to the APPC
[MC_]JALLOCATE or [MC_]SEND_CONVERSATION verb.

When an Attach is received, the transaction program name in the Attach is
matched against transaction program names from the transaction definitions. If a
match is found, the executable name from that definition is started or routed to a
client workstation. If a match is not found, then the name of the executable is
assumed to be the same as that which is specified in the Attach appended with
.EXE.

Differentiating between an Application and a Transaction Program

The term transaction program has a special meaning in APPC. A transaction
program is not an application; it is a section of an application.

A transaction program starts either when an application successfully issues an
APPC RECEIVE_ALLOCATE or TP_STARTED verb. Both of these methods
identify the transaction program as a new transaction program that APPC needs to
know about. APPC reserves a group of memory blocks for the transaction program
and creates a unique transaction program identifier, tp_id, which it returns to the
calling program.

When an application issues a TP_ENDED verb, APPC clears its buffers for that
transaction program and marks the tp_id as not valid. When an application
terminates, APPC ends any active transaction programs associated with that
process.

18 Client/Server Communications Programming

When the attach manager receives an allocation request and ensures it is valid, and
if a RECEIVE_ALLOCATE is not pending, it starts the application that
corresponds to the incoming transaction program name. Notice that it starts a
program, not a transaction program. Generally, the application then issues a verb
that establishes it as a transaction program. Given mutual consent between the
sending node and the local workstation, you can configure the attach manager to
start any application in the local workstation.

A transaction program must be established before a conversation can be allocated.
An application must supply a tp_id on all conversation verbs that it issues while it
is a part of that transaction program. Many conversations can use a single tp_id
concurrently (such as in multiple threads) or sequentially (where one conversation
follows another). When a transaction program ends, APPC deallocates any active
conversations.

Transaction Program Definitions

Personal Communications and Communications Server configuration uses two
naming levels to identify the remotely started program:

* The 64-character name of the local program known by the partner transaction
program (tp_name)
¢ The file specification of the local program to be started (filespec)

Using two names enables flexible reconfiguration that can increase the portability
of your APPC programs among workstations.

TP name
The name that a partner transaction program sends in the allocation
request to the attach manager in the local workstation.

The partner transaction program and the local program must both know
the transaction program name. The transaction program name is a supplied
parameter for RECEIVE_ALLOCATE verbs in programs on local LUs.
Partner transaction programs supply a transaction program name with
APPC [MC_JALLOCATE or [MC_]SEND_CONVERSATION verbs.

Path name
The transaction program file specification (path name) names the program
to start locally. The transaction program file specification contains the
executable file’s drive, path, file name, and extension.

Multiple transaction program definitions can specify the same transaction
program file specification. The attach manager must determine whether to
run one or multiple instances of a program, so a given transaction program
file specification must be configured as either queued or nonqueued in all
definitions that name it. For example, if a definition that specifies
MYTP.EXE is configured as “queued—attach manager started”, MYTP.EXE
cannot be configured as nonqueued in another transaction program
definition. However, the transaction program filespec is case sensitive.

Identifying the Transaction Program Name on Both Machines

If the program identified by the attach manager cannot be started, the attach
manager rejects the allocation request; the program that issued an allocation
request is notified that the attach manager could not start the program.

Users or administrators define transaction programs during Personal
Communications configuration to build the list of defined transaction program

Chapter 3. Using the Attach Manager 19

names. Each unique transaction program name to be accepted from a partner
requires a transaction program definition in the local (accepting) workstation
unless you are willing to accept the default. The transaction program definition
contains information about the transaction program. Similarly, during
configuration, a list of security information (allowable passwords and user IDs) is
built from the LU 6.2 conversation security information. Refer to Quick Beginnings
configuration information. Following is a description of the configuration data that
must be specified to define a transaction program.

Defining Conversation Attributes

The conversation parameters sync_level, conv_type, and security_rqd do not
directly influence how the attach manager starts a program. However, the attach
manager uses the parameters to determine whether to reject an incoming allocation
request before queuing it, or checking for corresponding RECEIVE_ALLOCATE
verbs.

Synchronization Level

Specify whether your transaction program will support the verbs and parameters
for confirmation processing when you define sync_level. These APPC verbs are
[MC_]CONFIRM and [MC_JCONFIRMED. Certain parameters on the
[MC_JALLOCATE, [MC_]SEND_CONVERSATION,
[MC_]PREPARE_TO_RECEIVE, and [MC_]DEALLOCATE are for confirmation
processing. For Common Programming Interface Communications (CPIC) users,
sync_level can be set by the Set_Sync_Level (CMSSL) call.

Incoming allocation requests contain a field that indicates whether a partner
transaction program issues verbs or parameters for confirmation processing. The
attach manager checks the field on the incoming allocation request against the
configured value in its list of transaction program definitions. If the values do not
match, attach manager rejects the incoming allocation request. The possible
configuration choices are:

NONE
The transaction program does not issue any verb that relates to
confirmation processing, in any of its conversations.

CONFIRM
The transaction program can perform confirmation processing on its
conversations. The transaction program can issue verbs and recognize
returned values that relate to confirmation. If the transaction program
contains any of the verbs for confirmation processing, define
sync_level(CONFIRM) to guarantee a compatible session.

EITHER
The transaction program can participate in conversations with partners that
do or do not specify confirmation processing. Do not pick EITHER if the
transaction program being configured requires confirmation processing.

Conversation Type and Style

The conv_type parameter is used to determine both the conversation type and
conversation style of the program to be started. The conversation type attribute
determines whether the program to be started supports basic or mapped records
when it sends and receives data. The conversation style attribute determines

20 Client/Server Communications Programming

whether the program to be started supports half-duplex conversations. The attach
manager checks whether a transaction program uses basic or mapped verbs and if
it uses half-duplex or full-duplex.

The conversation types are:

BASIC
The transaction program issues only basic conversation verbs for its
conversations.

MAPPED
The transaction program issues only mapped conversation verbs for its
conversations.

EITHER
The transaction program issues either basic or mapped conversation verbs
for a conversation, depending on what arrives on the incoming allocation
request.

The conversation styles are:
HALF The transaction program supports half-duplex conversations only.

FULL The transaction program supports full-duplex conversations only.

EITHER
The transaction program supports either full or half duplex conversations.

Conversation Styles

The conversation style associated with the conversation indicates the style of data
transfer to be used, two-way alternate or two-way simultaneous. A conversation
that specifies a two-way alternate style of data transfer is also known as a
half-duplex conversation. A conversation that specifies a two-way simultaneous style
of data transfer is referred to as a full-duplex conversation.

When a full-duplex conversation is allocated to a session, a send-receive
relationship is established between the transaction programs connected to the
conversation, and a two-way alternate data transfer occurs where information is
transferred in both directions, one direction at a time. Like a telephone
conversation, one transaction program calls the other, and they “converse”, one
transaction program talking at a time, until a transaction program ends the
conversation. One transaction program issues verbs to send data, and the other
transaction program issues verbs to receive data. When it finishes sending data, the
sending transaction program can transfer send control of the conversation to the
receiving transaction program. One transaction program decides when to end the
conversation and informs the other when it has ended.

On a half-duplex conversation, only one of the two partner transaction programs
has the right to send data at a time. That transaction program is in send state. The
other transaction program has the responsibility to receive data. It is said to be in
receive state. At specified times, the transaction programs exchange these duties.
When the conversation is first set up, the client transaction is in send state and the
server program is in receive state.

When a duplex conversation is allocated to a session, both transaction programs
connected to the conversation are started in send-and-receive state, and a two-way
simultaneous data transfer occurs where information is transferred in both
directions at the same time. Both transaction programs can issue verbs to send and

Chapter 3. Using the Attach Manager 21

receive data simultaneously with no transfer of send control required. The
conversation ends when both transaction programs indicate they are ready to stop
sending data, and each transaction program has received the data sent by the
partner. If an error condition occurs, one transaction program can decide to end
both sides of the conversation abruptly.

Conversation Security for an Incoming Allocation Request

A transaction program definition can specify that incoming allocation requests
must supply a password and user ID. The password and user ID are optional
parameters on the [MC_JALLOCATE and [MC_ISEND_CONVERSATION verbs
or the CPIC calls Set_Conversation_Security_UserID (CMSCSU) and
Set_Conversation_Security_PassWord (CMSCSP). If a local transaction program
definition specifies conversation security, the attach manager validates the
password and user ID of incoming allocation requests. The attach manager rejects
the allocation request if a user ID and password are not present, or if they do not
match a valid combination of passwords and user IDs.

The attach manager checks the validity of any incoming allocation requests that
arrive with a password and user ID, even if the transaction program definition
specifies that conversation security is not required. The allocation request is
rejected if the password and user ID do not match a valid combination in the list.
Thus, if a password or user ID arrives in an allocation request, it is never ignored.

Conversation Security for an Outgoing Allocation Request

A remotely started transaction program (one started by another transaction
program) can validate a user ID and password before it allocates a conversation to
a third transaction program. In such a case, the security(SAME) parameter in the
[MC_JALLOCATE and [MC_ISEND_CONVERSATION verbs can indicate that
the conversation security is already verified. The second Attach automatically gets
the user ID from the first Attach, that started the first conversation.

APPC can obtain the current user ID and send it, with an indicator that the user
ID was validated. In the Attach for a locally started transaction program that uses
the security(SAME) parameter in either the [MC_JALLOCATE or the
[MC_ISEND_CONVERSATION verb, the partner must be able to accept the
already validated indication.

Refer to System Management Programming for more information about using the
user ID and password.

Using the Attach Manager on Personal Communications

The following sections describe how to start programs located on either the
Personal Communications or Communications Server machine.

Starting the Attach Manager

Users can start and stop the attach manager while the SNA node is active. Each
time the attach manager starts, it begins to process incoming Attaches. When the
attach manager stops, it purges any queued Attaches. Refer to System Management
Programming for the applicable verbs.

The attach manager needs to be started only in nodes that run remotely started
transaction programs. The attach manager does not need to be started in a node if

22 Client/Server Communications Programming

all transaction programs in the node initiate conversations (that is, they all issue
APPC [MC_JALLOCATE or [MC_JSEND_CONVERSATION verbs). Personal
Communications and Communications Server node operations facility enables
authorized users to start or stop the attach manager at any time. Authorized
programs issue the Enable Attach Manager and Disable Attach Manager node
operations verbs to start or stop the attach manager.

Starting Programs with the Attach Manager

When the attach manager starts a program on a workstation, it uses the load_type
field in the defined transaction program list to decide how to run the program. A
remotely started program can be configured to start in one of the following ways:

Console
An application that displays a window or runs as a full DOS application.

Background
The program starts in a background (detached) process. A background
process should not issue any input or output calls to the keyboard, the
mouse, or the display. If your program is completely debugged and
requires no interactive user input, this option provides the fastest
performance.

If the attach manager cannot start the program (for example, Personal
Communications and Communications Server cannot provide sufficient memory),
the attach manager rejects the incoming allocation request.

If a transaction program issues a RECEIVE_ALLOCATE call and specifies a
transaction program name that has not previously been defined, the system
performs an implicit definition of the transaction program and assigns default
values to the parameters.

The defaults used are:

Attach timeout =0 (no timeout is applied)

Receive Allocate timeout =0 (no timeout is applied)

Attach Manager dynamically |= Yes (the transaction program can

loaded be loaded by the attach
manager)

These defaults mean that if you issue a call to RECEIVE_ALLOCATE as
previously described, it will not complete until an attempt is made to attach to the
named transaction program, or you can cancel the call.

Matching Incoming Allocation Requests with RECEIVE_ALLOCATE

Verbs

A remotely started program in a local workstation normally issues an APPC
RECEIVE_ALLOCATE verb to start both a transaction program and a
conversation. The APPC RECEIVE_ALLOCATE verb specifies the same transaction
program name that the remote transaction program specified in its APPC
[MC_JALLOCATE or [MC_]JSEND_CONVERSATION verb. APPC passes the
RECEIVE_ALLOCATE verb to the attach manager for processing. When the attach
manager sees a RECEIVE_ALLOCATE verb that matches a received Attach (and

Chapter 3. Using the Attach Manager 23

the attach manager performs several cross-checks), it signals APPC that a
conversation can begin. At this point, the attach manager ends its involvement in
the conversation.

During transaction program configuration, you have two choices for handling
multiple incoming allocation requests for the same program. You can run multiple
instances of the same program concurrently in the local workstation (nonqueued
operation), or you can run one instance of the same program at a time (queued
operation). These values are configured in the queued and dynamic load
parameters, that have the following options:

* Nonqueued—attach manager started

* Queued—attach manager started

* Operator started

Nonqueued Programs

When a program is configured as nonqueued, each incoming allocation request
causes the attach manager to load and execute another instance of the program
associated with the incoming transaction program name.

The attach manager holds valid incoming allocation requests indefinitely, waiting
for a matching RECEIVE_ALLOCATE verb from the program it started. If that
program fails to issue a RECEIVE_ALLOCATE verb (for example, it loops in the
code that precedes the RECEIVE_ALLOCATE verb), the attach manager holds the
allocation request until the process terminates.

Queued Programs

Queued programs can start in one of two ways:

Attach manager started
The program is started by the attach manager.

Operator started
The program is to be started by another program in the workstation or by
an operator.

The attach manager maintains two queues for each queued transaction program
name in the defined transaction program list. One queue is for incoming allocation
requests; the other is for RECEIVE_ALLOCATE verbs. For example, when an
incoming allocation request arrives, the attach manager starts the corresponding
local program or sends a message to the operator. The node holds the incoming
allocation request until the program that the attach manager started issues a
matching RECEIVE_ALLOCATE verb or until a timeout occurs. The node uses the
value configured for the incoming_alloc_timeout parameter to determine when
time-outs occur. Other allocation requests can arrive for that transaction program
or for another transaction program. The other programs wait in their respective
queues until a matching RECEIVE_ALLOCATE verb is issued, or until they time
out.

Local programs can issue RECEIVE_ALLOCATE verbs before any matching
allocation request arrives. The attach manager holds the RECEIVE_ALLOCATE
verb on its respective queue and waits for an allocation request to arrive from a
partner LU. Each queue has a timeout value; the rcv_alloc_timeout parameter
specifies how long a RECEIVE_ALLOCATE verb can wait on a queue before the
verb times out. The attach manager returns queued RECEIVE_ALLOCATE verbs
to the associated programs with an ALLOCATE_NOT_PENDING return code. The

24 Client/Server Communications Programming

timeout value for RECEIVE_ALLOCATE verbs can be 0 to enable programs to
check whether any allocation requests are queued, and, if not, to continue other
processing.

The RECEIVE_ALLOCATE verb can be issued as a nonblocking verb. This enables
the transaction program to service multiple conversations from a single thread in a
single process.

When RECEIVE_ALLOCATE is issued as a nonblocking verb, the attach manager
returns control to the transaction program immediately; the transaction program
need not remain in a wait state while waiting for the matching incoming allocation
request to arrive. Instead, the transaction program can perform other work, and
choose when to wait for the matching incoming allocation request.

The transaction program can queue multiple nonblocking RECEIVE_ALLOCATE
verbs for different conversations. The maximum number of verbs that can be
queued is limited only by resource constraints. A nonblocking
RECEIVE_ALLOCATE verb will remain on the attach manager’s
RECEIVE_ALLOCATE verb queue until either the matching allocation request
arrives or the verb times out, that is, the rcv_alloc_timeout value has been reached.

The attach manager saves the information that identifies the transaction program
when a queued program issues a valid RECEIVE_ALLOCATE verb call for a
transaction program. When the queued program ends, the attach manager
examines the queue of allocation requests for that transaction program. If the
queue is not empty, the attach manager starts a new instance of the program, or
sends a message that directs the operator to start the program.

You should configure the maximum size of the incoming allocation request queue
for each transaction program. Resource constraints limit the number of queued
RECEIVE_ALLOCATE verbs.

The following two cases summarize queued operations:

Case 1:
One or more incoming allocation requests arrive before a
RECEIVE_ALLOCATE verb or CPI Communications CMACCP call is
issued for a given transaction program. The attach manager queues the
incoming allocation requests (for a time specified by a configured timeout
value) until a RECEIVE_ALLOCATE verb is issued. The first incoming
allocation request satisfies the RECEIVE_ALLOCATE verb.

Case 2:
A RECEIVE_ALLOCATE verb is issued before an incoming allocation
request arrives for a given transaction program. The attach manager
queues the RECEIVE_ALLOCATE verb (for a time specified by a
configured timeout value) until an incoming allocation request arrives. In
certain cases, more than one RECEIVE_ALLOCATE verb might be issued
and queued before an incoming allocation request arrives. Each new
incoming allocation request satisfies the next RECEIVE_ALLOCATE verb
in the queue.

[Table 7 on page 26| provides a summary of the verbs and incoming allocation
requests associated with queued and dynamic load parameter values.

Chapter 3. Using the Attach Manager 25

Table 7. Verb Processing and Transaction Program Name Configuration

Verb Processing

Transaction Program Operation

Nonqueued—attach
manager started

Operator started

Queued—attach manager
started

Incoming allocation request
with pending
RECEIVE_ALLOCATE
verb.

Cannot occur; no queue of
pending
RECEIVE_ALLOCATE
verbs.

OK RECEIVE_ALLOCATE
verb.

OK RECEIVE_ALLOCATE
verb.

Incoming allocation request
without pending
RECEIVE_ALLOCATE
verb.

Load and execute another
program instance.

Hold incoming allocation
request.

Wait for
RECEIVE_ALLOCATE
verb.

Put incoming allocation
request on queue unless
queue is full.

Wait for
RECEIVE_ALLOCATE
verb or for allotted time to
expire.

If program is not started,
load and execute it.

Put incoming allocation
request on queue unless
queue is full.

Wait for
RECEIVE_ALLOCATE
verb or for allotted time to
expire.

RECEIVE_ALLOCATE
verb with incoming
allocation request pending.

OK RECEIVE_ALLOCATE
verb.

OK RECEIVE_ALLOCATE
verb.

OK RECEIVE_ALLOCATE
verb.

RECEIVE_ALLOCATE
verb with no pending
incoming allocation request.

Cannot occur; pending
allocation requests for
nonqueued operations
cannot run out of time.

Hold
RECEIVE_ALLOCATE
verb.

Wait for incoming
allocation request or for
allotted time to expire.

Hold
RECEIVE_ALLOCATE
verb.

Wait for incoming
allocation request or for the
allotted time to expire.

Transaction program
operation ends.

Nothing happens.

Nothing happens.

If there is a pending
allocation request, reload
the program; otherwise,

reload on the next
incoming allocation request.

Using the Attach Manager on Communications Server SNA API Clients

=

——

This is only available on the Communications Server SNA API

clients.

The following sections describe how to start programs that are located on
Communications Server SNA API client machines.

Defining Transaction Programs for SNA API Clients

The SNA API Client Attach Manager only supports operator started or nonqueued
attach manager started programs.

Transaction programs located at client machines require transaction program
definitions on both Communications Server and client machines in order to be
remotely started. Following is the transaction program information required on the
server:

26 Client/Server Communications Programming

¢ Transaction program name

* Conversation type

* Conversation style

* Synchronization level

* Whether or not conversation security is required

Communications Server will verify this information when the incoming allocate
arrives. In addition, the local LU that receives the incoming allocation request must
be enabled to route the request to the client machine.

The client attach manager must have a transaction program defined so that it
knows how to start the requested program. Following is the transaction program
information required on the client:

¢ Transaction program name

* The local LU that receives the incoming allocation request

¢ The path name of the program

* Any parameters that need to be passed to the transaction program

Once these definitions are complete and the client attach manager is started,
incoming allocates for transaction programs located on client machines will be
routed to the client for processing.

The default local LU alias for each user can be assigned using the appropriate
configuration utility, either INI configuration or LDAP.

Attach manager started programs can also choose to use a default local LU alias
rather than specify one directly. When the local_LU_alias field is left blank in the
attach manager record, the attach manager uses the configured default local LU
alias when processing incoming conversation requests.

Starting the SNA API Client Attach Manager

Users can start and stop the client attach manager while the SNA node is active.

The client attach manager needs to be started only in clients that run remotely
started transaction programs. The attach manager does not need to be started in a
node if all transaction programs in the node initiate conversations (that is, they all
issue APPC [MC_JALLOCATE or [MC_]SEND_CONVERSATION verbs).

To start the client attach manager, click the attach manager icon located in
Communications Server for SNA client folder. This will connect the attach manager
to the configured Communications Server and send the list of transaction
definitions that have been defined for that client.

The Attach Manager Panel displays the list of configured transaction programs and
the name of the configured Communications Server. To stop the attach manager,
select Quit.

Notes:

1. If you have the Windows taskbar active, please note the attach manager icon
(Attach Manager indicator) in the right corner next to the clock. A double
left-click displays the Attach Manager Panel; a single right-click hides the
Attach Manager Panel to reduce clutter from the screen. When the Attach
Manager is stopped, the indicator icon disappears.

Chapter 3. Using the Attach Manager 27

2. On Windows NT, Windows 2000, and Windows 95, you can also start the
attach manager from an MS-DOS prompt with one of the following command
line options to control whether the Attach Manager Panel is displayed, and
whether the Attach Manager indicator is displayed:

¢ The -i option causes the attach manager to start without the Attach Manager
Panel being displayed.

* The -h option causes the attach manager to start without the Attach Manager
Panel being displayed. The indicator is not provided, so only use this option
when your connectivity is good and you want to prevent others from using
the Attach Manager Panel.

* The -q option causes the Attach Manager to exit. This option is most useful
when the Attach Manager is started with the -h option.

28 Client/Server Communications Programming

Chapter 4. Writing a Transaction Program

This chapter describes issues to consider when planning and writing transaction
programs to APPC. When developing a transaction program, you must choose
between certain design alternatives. The following list describes the design issues
to consider:

* Choosing either basic or mapped conversations

¢ Choosing either half-duplex or full-duplex conversations

* Deciding whether to start conversations with or without confirmation

* Using the security features

* Providing for conversion of ASCII names and data (if necessary)

The first part of this chapter provides background information on the application
protocols, conversation states, Personal Communications support tasks, and data
formats. The rest of this chapter describes specific requirements for developing a
transaction program.

Note: Throughout this chapter, LU 6.2 refers to both Personal Communications
and Communications Server.

Application Protocols

The LU 6.2 enables program-to-program communication. The design of your
program depends on the protocols that you define and the communication that
your program must accomplish.

In addition to any rules that you define for your program, LU 6.2 defines rules
that your program must follow when using a conversation. To enforce these rules,
LU 6.2 manages the state of your conversation and allows your program to
perform certain operations only when the conversation is in the correct state. For
example:

* Your program cannot send data unless it has permission to send.

* Your program cannot receive data unless the partner program has permission to
send.

* Your program cannot use a conversation after it has been deallocated.

For more information, see the conversation state tables in|Appendix C, “APPC|
[Conversation State Transitions”, on page 343| or refer to Common Programming
Interface Communications CPI-C Reference Version 2.0 (5SC26-4399) for a complete list
of states and permissible operations.

Available Program LU 6.2 Services

This section describes the LU 6.2 services that your transaction program can use to
communicate with another transaction program.

Allocate a Conversation

Requests the local LU to start a conversation with a partner transaction program in
a partner LU.

© Copyright IBM Corp. 1994, 2003 29

Corresponding APPC verbs: ALLOCATE, and MC_ALLOCATE,
SEND_CONVERSATION, and MC_SEND_CONVERSATION.

Corresponding CPI-C call: CMALLC.

Send Data

Sends data to the partner program.

Corresponding APPC verbs: SEND_DATA and MC_SEND_DATA.
Corresponding CPI-C call: CMSEND.

Force Data in the Internal Buffers to Be Sent

Forces the LU to send to the partner program all data it is holding in an internal
buffer.

Note: You do not normally have to use this service to cause the LU to send the
data. The LU automatically sends the data it stores in an internal buffer
when the buffer is full or when it determines that your program has
finished sending.

Corresponding APPC verbs: FLUSH and MC_FLUSH.

Corresponding CPI-C call: CMFLUS.

Receive Data

Receives data from the partner program.

Corresponding APPC verbs: RECEIVE_AND_WAIT, RECEIVE_IMMEDIATE,
MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE.

Corresponding CPI-C call: CMRCV.
Send Expedited Data
Sends expedited data to the partner program.

Corresponding APPC verbs: SEND_EXPEDITED_DATA and
MC_SEND_EXPEDITED_DATA.

Corresponding CPI-C call: CMSNDX.
Receive Expedited Data
Receives expedited data to the partner program.

Corresponding APPC verbs: RECEIVE_EXPEDITED_DATA and
MC_RECEIVE_EXPEDITED_DATA.

Corresponding CPI-C call: CMRCVX.

Request Permission to Send

30 Client/Server Communications Programming

Requests from the partner program permission to send data.

Corresponding APPC verbs: REQUEST_TO_SEND and MC_REQUEST_TO_SEND.

Corresponding CPI-C call: CMRTS.
Grant Permission to Send
Gives the partner program permission to send data.

Corresponding APPC verbs: PREPARE_TO_RECEIVE and
MC_PREPARE_TO_RECEIVE.

Corresponding CPI-C call: CMPTR.
Request Confirmation

Requests the partner program to confirm that all data has been received and
processed successfully.

Corresponding APPC verbs: CONFIRM and MC_CONFIRM.
Corresponding CPI-C call: CMCFM.
Accept or Reject Confirmation

Sends a reply to a confirmation request.

Corresponding APPC verbs: CONFIRMED, MC_CONFIRMED, SEND_ERROR, and

MC_SEND_ERROR.
Corresponding CPI-C calls CMCEMD and CMSERR.
Request to Be Posted When Information Is Available

Requests that the LU post an event when the conversation has information
available to be received.

Corresponding APPC verb: RECEIVE_AND_POST.

Report an Error

Reports that an error has occurred.

Corresponding verbs: SEND_ERROR and MC_SEND_ERROR.
Corresponding CPI-C call: CMSERR.

Obtain Conversation Attributes

Obtains the attributes of a conversation. These attributes include
* Name of the local LU

* Name of the partner LU

e Name of the session’s transmission service mode

* Type of confirmation protocols supported by the conversation

¢ Type of conversation

Chapter 4. Writing a Transaction Program

31

Corresponding verbs: GET_ATTRIBUTES, MC_GET_ATTRIBUTES, and GET_TYPE.
Deallocate a Conversation
Ends a conversation with the partner program.

Corresponding verbs: DEALLOCATE and MC_DEALLOCATE.

Choosing a Conversation Type

This section discusses issues you should consider when choosing between basic
and mapped conversations.

Consistency of Conversation Type

The conversation type you use, designated by the ALLOCATE verb, must be
consistent for the entire conversation. You cannot use basic conversation verbs for
some requests and mapped conversation verbs for other requests. LU 6.2 rejects
the verbs if you change from one type of verb to another within a conversation. A
remotely initiated transaction program can issue the GET_TYPE verb to determine
the conversation type.

A program can issue only basic conversation verbs for a basic conversation. A
program using a mapped conversation can issue either basic or mapped verbs. It
must, however, issue verbs of only one format, either basic or mapped.

You can provide your own mapped conversation support using only basic
conversation verbs for a conversation designated as mapped. If you choose to
provide your own mapped conversation support, your program must conform to
the mapped conversation formats and protocols.

See the SNA Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2
and the Systems Network Architecture LU 6.2 Reference: Peer Protocols for more
information on mapped conversation formats and protocols.

Sending Data

Use a basic conversation when you need to optimize your program’s performance
by sending the data from a buffer that contains more than one logical record or a
partial logical record. Basic conversations can improve your program’s execution
efficiency by enabling your program to send several logical records with one
request.

To use the basic conversation, your program must provide a 2-byte logical length
field (LL field) at the beginning of every logical record where

* The last 15 bits of the LL field contain a binary value equal to the length of the
logical record, including the 2-byte length field. The 15-bit limit restricts the
value to a maximum of 32,767 (32,765 bytes of user data plus the 2-byte length
field). If you use a value larger than 32,767, LU 6.2 cannot detect the error and
uses the last 15 bits of the LL field anyway.

The smallest value possible is 2 (the LL field followed by no data). If you use a
value that is less than 2, LU 6.2 indicates an error.

* LU 6.2 ignores the first bit of the LL field. This bit is a concatenation indicator.
If the concatenation indicator is set, the transaction program must append the
data from the following logical record to the data received up to that point. This
concatenation process should continue until the transaction program receives a

32 Client/Server Communications Programming

record in which the concatenation indicator is not set. This definition allows you
to use higher level records (GDS variables) that are longer than 32,767 bytes.

* You must manage the reversal of byte values in your PC.

The PC stores all numeric 16- or 32-bit values with the low-order (least
significant) byte stored in the lower numbered address. Therefore, if a
transaction program computes the length of a logical message and stores that
value as the LL field, the 2 bytes appear in memory with the low-order byte
first, and your PC will send the bytes in this order (incorrectly) over the
communication line.

The transaction program is responsible for putting all transaction-level data,
including LL fields, in the correct order (high-order byte first).

Use a mapped conversation if you do not need to send partial logical records or
more than one logical record. When you send data with the mapped conversation
verbs, LU 6.2 assumes that the buffer contains exactly one complete higher level
record (GDS variable). The mapped conversation support automatically provides
length fields in the correct byte-reversed order and uses concatenated logical
records as needed.

Receiving Data

Use a basic conversation when you need to receive more than one logical record in
one buffer. This option can improve your program’s execution efficiency by
enabling it to receive several logical records with one request (the BUFFER option).

When you use this basic conversation feature, LU 6.2 places the logical records in
your buffer with the 2-byte LL fields intact. The bytes are reversed from normal
IBM-compatible PC order.

Your program must examine the returned fields of the verb to determine if it has
received a complete logical record and, if so, where the next logical record begins.
LU 6.2 provides the rest of an incomplete logical record after a subsequent request
to receive data.

If you want to receive one higher/user level record with a single request, use a
mapped conversation. As you receive data with the mapped conversation verbs,
LU 6.2 ends the receive operation when your program receives a complete
higher/user level record or when your buffer is full. LU 6.2 supplies a return code
when it fills your buffer before your program has received a complete logical
record.

Your program can receive the rest of the higher/user level record by issuing a
subsequent request to receive data. The LU 6.2 mapped conversation support
removes any length fields and automatically concatenates logical records as
necessary.

Reporting Errors and Abnormal Termination
Use a basic conversation for the following reasons:

* To distinguish between errors detected by your program and errors detected by
an application that is using your program

¢ To distinguish between an abnormal termination caused by your program and
one caused by an application using your program

When reporting an error or when abnormally terminating a conversation with an
LU service program, the basic conversation verbs enable you to indicate which

Chapter 4. Writing a Transaction Program 33

program detected the error. When the partner LU reports the error to the partner
program with a return code, the value of the return code indicates where LU 6.2
detected the error.

If you do not need to distinguish between errors detected by your program and
errors detected by other applications, use a mapped conversation. The mapped
conversation verbs assume that your program detected the error.

Sending an Error Log Data Record

Use a basic conversation to send a log record when you detect an error or
abnormally terminate a conversation. The basic conversation verbs enable you to
specify an error log GDS variable when you report an error or abnormally
terminate a conversation. LU 6.2 sends this log record to the local log and to the
partner LU to be recorded in that log. This feature is useful when your program
detects a critical or unrecoverable error and you want the program to record the
event to help determine the problem.

If you send an error log GDS variable, the format of the record must conform to
the formats defined by SNA. See the IBM Systems Network Architecture Formats for
more information on the error log GDS variable format.

Use a mapped conversation if you do not need to send a log record when you
detect an error or abnormally terminate a conversation. The mapped conversation
verbs assume that your program does not need to record error data in the log to
help determine the problem.

Abnormally Terminating because of a Timeout

To indicate that your program has abnormally terminated the conversation because
of a timeout, use a basic conversation. When abnormally terminating your
conversation, the basic conversation verbs enable you to indicate that your
program is abnormally terminating the conversation because the partner program
has not done the necessary processing in the time allowed. When LU 6.2 reports
the error to the partner transaction program, the return code value indicates that a
timeout caused the abnormal termination.

If you do not need to report the cause of an abnormal termination, use a mapped
conversation. The mapped conversation verbs assume that your program requested
the abnormal termination because of a critical or unrecoverable error.

Requesting Confirmation

Requesting confirmation is an efficient way to determine that the partner program
has received all the data sent so far. If you plan to request confirmation during the
conversation, the allocation transaction must indicate this fact when you request
the allocation of the conversation.

If you use conversation verbs that do not request confirmation, you should not
request the allocation of a conversation supporting confirmation services.

You can write a transaction program to participate in conversations that use
confirmation requests and in conversations that do not use confirmation requests.

34 Client/Server Communications Programming

Choosing between Half-Duplex and Full-Duplex Conversations

On a half-duplex conversation, only one program has the right to send data at a
time. The right to send data must be transferred to the partner program when the
program has finished sending and is ready to receive data. On a full-duplex
conversation, both programs have the right to send data at the same time and can
therefore send and receive data simultaneously. For example, the inquiry and
database update types of conversation are naturally half-duplex.

Use a half-duplex conversation if the data that your program receives next
depends on the partner program’s processing of the data your program is currently
sending. For example, the inquiry and database update types of conversations are
naturally half-duplex.

Use a half-duplex conversation if your program uses confirmation services.
Confirmation is not supported on full-duplex conversations.

Use a full- duplex if the data that your program sends is independent of the data
that the partner program sends. For example, an industrial process control
program that continuously sends information from sensory devices (for example,
temperature, pressure, concentration level) and simultaneously receives and
processes operational instructions from a manager program, should use a
full-duplex conversation.

You can write a transaction program to participate in conversations that use
confirmation requests and in conversations that do not use confirmation requests.

Choosing a Transaction Program Name

When you name a transaction program, choose a name that has a first character
with an EBCDIC code greater than an EBCDIC blank (X'40'). Transaction program
names containing first characters with EBCDIC codes less than X'40' are reserved
for service transaction programs. Transaction program names can include up to 64
characters.

Using the Security Features

LU 6.2 provides one of two types of security functions: partner LU verification and
end-user verification.Partner LU verification is a session-level security protocol that
takes place at the time the session is activated. End-user verification is a
conversation-level security protocol that takes place at the time a conversation is
started.

Partner LU Verification (Session-Level Security)

Partner LU verification is performed by an exchange of security information
between the two LUs. This exchange is called session-level security. This level of
security is generally required when the communications network is not physically
secure. The local LU and the remote LU each provide a password, and LU 6.2
performs encryption for password verification.It is recommended, but not required,
that each LU pair have a unique password.

End-User Verification (Conversation-Level Security)

End-user verification is used to enable the requested application subsystem to
verify the identity of the requester before providing access to the requested
transaction program and its resources. The security information exchanged can

Chapter 4. Writing a Transaction Program 35

include a user ID and a password. The user IDs provided by conversation-level
security can also be used for auditing and accounting purposes.

In conversation-level security, the requesting transaction program provides the
security information on the ALLOCATE verb, and the remote application
subsystem performs the verification. If the requesting transaction program has not
supplied the correct user ID and password, the remote application subsystem
rejects the request.

An intermediate transaction program (one started by another transaction program)
that requires conversation-level security can be used to access an additional
transaction program that requires conversation-level security. In this case, an
already-verified indicator is set in the allocation request for the additional
transaction program. The user ID saved from the first request, which initiated the
intermediate transaction program, is automatically supplied in the second request.

Converting between EBCDIC and ASCII

LU 6.2 assumes that the interface between it and the transaction program (or the
application subsystem) uses EBCDIC characters where specified by the verb. These
values include the transaction program name, the partner LU name supplied on
ALLOCATE, the mode name, the user ID, and the user password. If your program
stores the incoming names in ASCII, it must be prepared to perform conversions
between ASCII and EBCDIC.

Whether a transaction program needs to translate data depends on a private
agreement between the partner transaction programs. If your program is
communicating with a node that normally uses EBCDIC, you should convert data
to EBCDIC as appropriate.

As a convenience, LU 6.2 provides the CONVERT verb, which converts ASCII
codes to EBCDIC or EBCDIC codes to ASCII. For more information, see
[“CONVERT” on page 274

36 Client/Server Communications Programming

Chapter 5. Implementing APPC Transaction Programs

This chapter describes the implementation of APPC Transaction Programs using
the dynamic link library (DLL) file provided.

The implementation of APPC is designed to be binary compatible with Microsoft®
NT SNA Server on Windows machines, and similar to the implementation of the
APPC interface of OS/2® Communications Manager/2 Version 1.0.

Writing Transaction Programs
A dynamic link library (DLL) file is provided that handles APPC verbs.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

APPC verbs have a straightforward language interface. Your program fills in fields
in a block of memory called a verb control block (VCB). Then it calls the APPC DLL
and passes a pointer to the verb control block. When its operation is complete,
APPC returns, having used and then modified the fields in the VCB. Your program
can then read the returned parameters from the verb control block.

shows source module usage of supplied header files and libraries needed
to compile and link APPC programs. Some of the header files may include other
required header files.

Table 8. Header Files and Libraries for APPC

Operating
System Header File Library DLL Name
WIN32 WINAPPC.H WAPPC32.LIB WAPPC32.DLL

Option Sets Supported

Personal Communications and Communications Server support the following
APPC option sets. Refer to SNA Transaction Programmer’s Reference for LU type 6.2
for a fuller description of each option set.

101 Flush the LU send buffer.
102 Get attributes.

103 Post on receipt with test for posting (through the RECEIVE_AND_POST
verb).

104 Post on receipt with wait (through the RECEIVE_AND_POST verb).

105 Prepare to receive.
106 Receive immediate.
109 Get transaction program name and instance identifier.

110 Get conversation type.
112 Full-duplex conversation and expedited data.
113 Nonblocking support.

© Copyright IBM Corp. 1994, 2003 37

201
203
204
205
211
212
213
214
241
242
243
244
245
247
251
290
291
401
501
502
504
505
601
602
603
604
605
606
607
610
612
613
616

Queued allocation of a contention-winner session.
Immediate allocation of a session.
Conversations between programs located at the same LU.
Queued allocation or when session is free.
Session level LU-LU verification.

User ID verification.

Program-supplied user ID and password.
User ID authorization.

Send PIP data.

Receive PIP data.

Accounting.

Long locks.

Test for request-to-send received.

User control data.

Extract translation and conversation correlator.
Logging of data in a system log.

Mapped conversation LU services component.
Reliable one-way brackets.
CHANGE_SESSION_LIMIT verb.
ACTIVATE_SESSION verb.
DEACTIVATE_SESSION verb.

LU-definition verb.
MIN_CONWINNERS_TARGET parameter.
RESPONSIBLE(TARGET) parameter.
DRAIN_TARGET(NO) parameter.

FORCE parameter.

LU-LU session limit.

Locally known LU names.

Uninterpreted LU names.

Maximum RU size bounds.

Contention winner automatic activation limit.
Local maximum (LU, mode) session limit.

CPSVCMG mode name support.

Full-Duplex VCBs

To identify definitions for the format 1 VCB that are needed for full-duplex
conversations and to send and receive expedited data, the transaction program
must define a compiler constant called WINAPPC_FORMAT_1 before including
the WINAPPC.H header file. This can be achieved in C language as follows:

38 Client/Server Communications Programming

#define WINAPPC_FORMAT_1
#include <winappc.h>

If this constant is not defined, only the format zero versions of the VCBs will be
accessible from the application.

Queue-Level Nonblocking

Personal Communications and Communications Server APPC API support
queue-level nonblocking. This support is provided through the APPC entry point.

Nonblocking operation enables control to be returned to the application if
processing of a verb cannot be completed immediately, so that the application can
continue other processing until it is notified that the outstanding verb has
completed. Queue-level nonblocking means that the application can issue
nonblocking verbs for different queues and have the verbs processed
simultaneously by Personal Communications. The application can also issue a
succession of nonblocking verbs for a given queue without waiting for any of the
verbs to complete.

Personal Communications and Communications Server maintain six queues for
nonblocking verbs:

* An allocate queue (one for each active transaction program)

* A send/receive queue (one per conversation, half-duplex only)

* A send queue (one per full-duplex conversation)

* A receive queue (one per full-duplex conversation)

¢ A send-expedited queue (one per conversation)

* A receive-expedited queue (one per conversation)

All six queue types can hold an unlimited number of verbs. Nonblocking verbs are
queued if another (blocking or nonblocking) verb is being processed by either the
Personal Communicationsor Communications Server program. Verbs in an allocate
queue are processed concurrently, whereas verbs in the other queues are processed
one at a time, in the order in which they are received by either program.

The application notifies Personal Communications or Communications Server that
it wants a verb to be processed in nonblocking mode by setting a flag in the opext
field, AP_NON_BLOCKING. The application can supply an event handle with
any nonblocking verb that is used to notify the application of asynchronous verb
completion. This handle is passed to Personal Communications in the
SECONDARY_RC field. If no handle is specified, the application is notified that
the verb has completed when the next verb on that queue specifies that a handle
completes.

It is guaranteed that all preceding verbs with no handle are complete when the
event is signaled after completion of a verb on the same queue that does not
specify a handle.

When a nonblocking verb returns the flag
AP_OPERATION_INCOMPLETE_FLAG, it is set in the opext field.

The APPC verbs that can be issued in nonblocking mode on the allocate queue are:

(MC_ALLOCATE
(MC_SEND_CONVERSATION

Chapter 5. Implementing APPC Transaction Programs 39

The APPC verbs that can be issued in nonblocking mode on the send/receive

queue are:
(MC_)CONFIRM
(MC_)CONFIRMED
(MC_)DEALLOCATE
(MC_FLUSH
(MC_)PREPARE_TO_RECEIVE
(MC_RECEIVE_AND_WAIT
(MC_RECEIVE_IMMEDIATE
(MC_)SEND_DATA
(MC_)SEND_ERROR

The APPC verbs that can be issued in nonblocking mode on the send queue (for
full-duplex conversations) are:

(MC_)DEALLOCATE

(MC_FLUSH

(MC_SEND_DATA

(MC_)SEND_ERROR

The APPC verbs that can be issued in nonblocking mode on the receive queue (for
full-duplex conversations) are:

(MC)RECEIVE_AND_WAIT

(MC_)RECEIVE_IMMEDIATE

The APPC verb that can be issued in nonblocking mode on the receive-expedited
queue (for full-duplex conversations) is:
(MC_RECEIVE_EXPEDITED_DATA

The APPC verbs that can be issued in nonblocking mode on the send-expedited
queue are:

(MC)REQUEST_TO_SEND

(MC_)SEND_EXPEDITED_DATA

The following APPC verbs are always processed asynchronously but are not
associated with any queue:

(MC)RECEIVE_AND_POST

(MC)TEST_RTS_AND_POST

Personal Communications and Communications Server APPC verbs that cannot be
issued in nonblocking mode (and are processed in blocking mode if the application
sets the nonblocking flag) are:

(MC)GET_ATTRIBUTES

GET_TP_PROPERTIES

GET_TYPE

RECEIVE_ALLOCATE

TEST_RTS

TP_ENDED

TP_STARTED

CNOS

An application cannot issue verbs in nonblocking mode for the send/receive queue
or the send-expedited queue until an ALLOCATE or RECEIVE_ALLOCATE verb
has returned successfully (Personal Communications returns
AP_PARAMETER_CHECK, and AP_BAD_CONV_ID).

40 Client/Server Communications Programming

A nonblocking verb issued for the send/receive queue or the send-expedited
queue, with another (blocking or nonblocking) verb currently outstanding on the
same queue, is added to that queue, and is only processed when the outstanding
verb has completed.

A blocking verb issued when any other verb (for the same conversation) is
outstanding, is rejected by Personal Communications (with primary_rc
AP_TP_BUSY). Note that RECEIVE_AND_POST is treated as a blocking verb in
this respect, but TEST_RTS_AND_POST can be issued with other verbs
outstanding on the same conversation (and is not placed in any of the nonblocking
verb queues). A blocking verb issued when there are no verbs on the same queue
is processed as normal even though there may be verbs on other queues. Note that
TEST_RTS, GET_ATTRIBUTES, GET_STATE and GET_TYPE are not associated
with a queue and may be executed at any time and will never return
AP_TP_BUSY.

Default Local LU

Personal Communications and Communications Server support default local LUs
for both dependent and independent LU 6.2. The default LU is used when the
TP_STARTED verb (see ["TP_STARTED” on page 81) is issued with a blank
lu_alias field. For independent LU 6.2, the default LU is the control point LU.
Personal Communications also allows the specification of a default local LU to be
used instead of the control point LU. For dependent LU 6.2, a local LU pool is
used. Refer to System Management Programming for details on the
DEFINE_LOCAL_LU verb. Personal Communications choose an LU from the
default pool, or use the control point LU, as follows:

 If LUs have been configured as members of the default local LU pool, Personal
Communications choose an LU from the pool that is not in use. If all the LUs in
the pool are in use, the TP_STARTED verb fails.

* If no LUs have been configured as members of the default local LU pool,
Personal Communications use the control point LU.

* For Personal Communications, a default Local LU can be specified. Refer to
Configuration File Reference for details.

=

—

The following information only applies to Communications Server
Windows SNA API clients.

The default local LU alias for each user can be assigned using the appropriate
configuration utility, either INI configuration or LDAP.

APPC programs can choose to use a default local LU alias rather than specify one

directly. When an APPC program issues a TP_START verb with the local LU alias
field set to binary zeroes, the APPC API uses the configured default local LU alias.

Chapter 5. Implementing APPC Transaction Programs 41

42 Client/Server Communications Programming

Chapter 6. Implementing CPI-C Programs

This chapter documents the details of the Personal Communications support for
the CPI-C interface. It covers these main areas:

* Techniques for compiling and linking CPI-C programs

* Methods of preparing and executing CPI-C programs

* Features of the CPI-C versions supported by Personal Communications

The Personal Communications implementation of CPIC is designed to be binary
compatible with Microsoft NT SNA Server on Windows machines, and similar to
the implementation of the CPIC interface of OS/2 Communications Manager/2
and Communications Server/2.

Note: Included in this chapter is information on the CPIC API provided by the
following systems:

¢ Communications Server running on Windows

* SNA Win32 API clients platforms that are delivered with the
Communications Server product

e Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

Writing CPIC Programs

Personal Communications provide a dynamic link library (DLL) file that handles
CPIC calls.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

shows source module usage of supplied header files and libraries needed
to compile and link CPIC programs. Some of the header files may include other
required header files.

Table 9. Header Files and Libraries for CPIC

Operating System Header File Library DLL Name

WIN32 WINCPIC.H WCPIC32.LIB WCPIC32.DLL

CPI-C Versions

The CPI-C interface has gone through several version changes and extensions. You

should be aware of these versions for two reasons:

* If you are maintaining or porting an existing program, you need to know which
function calls are portable and which you might need to change if you change
versions.

 If you are writing a new program, you need to be aware when you are writing
code that is dependent on a particular version.

© Copyright IBM Corp. 1994, 2003 43

CPI-C Conformance Class Support

The following CPI-C 2.1 conformance classes are supported as defined by the IBM
document Common Programming Interface Communications CPI-C Reference Version
2.1 (5C26-4399-08).

For details on which classes are not supported by Communications Server clients,
see the notepad icon throughout this chapter.

This icon denotes important information.

The conversation conformance class allows programs to start and end half-duplex
conversations.
Starter Set calls:
CMACCP
Accept_Conversation
CMALLC
Allocate
CMDEAL
Deallocate
CMINIT
Initialize_Conversation
CMRCV
Receive
CMSEND
Send_Data
Advanced Function Calls:
CMCFM
Confirm
CMCFMD
Confirmed
CMECS
Extract_Conversation_State
CMECT
Extract_Conversation_Type
CMEMBS
Extract. Maximum_Buffer Size
CMEMN
Extract._ Mode_Name
CMESL
Extract_Sync_Level
CMFLUS
Flush
CMPTR
Prepare_To_Receive
CMRTS
Request_To_Send
CMSERR
Send_Error
CMSCT
Set_Conversation_Type
CMSDT
Set_Deallocate_Type

44 Client/Server Communications Programming

CMSF Set_Fill
CMSLD
Set_Log_Data
CMSMN
Set_Mode_Name
CMSPTR
Set_Prepare_To_Receive_Type
CMSRT
Set_Receive_Type
CMSRC
Set_Return_Control
CMSST
Set_Send_Type
CMSSL
Set_Sync_Level
Required sync_level values:
CM_NONE or CM_CONFIRM
CMSTPN
Set_TP_Name
CMTRTS
Test_Request_To_Send_Received

LU 6.2 conformance class allows a program to use LU 6.2 specific services:
CMEPLN
Extract_Partner_LU_Name
CMSED
Set_Error_Direction
CMSPLN
Set_Partner_ LU_Name

The conversation-level non-blocking conformance class allows a program to
regain control if a call cannot complete immediately.
CMCANC
Cancel_Conversation
CMSPM
Set_Processing_Mode
CMWAIT
Wait_For_Conversation

The server conformance class allows a program to register multiple transaction
program names with CPI-C, to accept multiple incoming conversations, and to
manage contexts for different clients.
CMACCI

Accept_Incoming
CMECTX

Extract_Conversation_Context

CMETPN
Extract_TP_Name
CMRLTP
Release_Local_TP_Name
CMINIC
Initialize_For_Incoming

Chapter 6. Implementing CPI-C Programs 45

CMSLTP
Specify_Local_TP_Name

The data conversion conformance class routine allows a program to call local
routines to change the encoding of a character string from the local encoding to
EBCDIC, or vice versa.
CMCNVI

Convert_Incoming
CMCNVO

Convert_Outgoing

The security conformance class allows a program to establish conversations that
use access security information in side information or set directly by the program.
CMESUI

Extract_Security_User_ID
CMSCSP

Set_Conversation_Security_Password
CMSCST

Set_Conversation_Security_Type

Required conversation_security_type values:

CM_SECURITY_NONE

CM_SECURITY_PROGRAM

CM_SECURITY_PROGRAM_STRONG

CM_SECURITY_SAME
CMSCSU

Set_Conversation_Security_User_ID

Queue-Level Non-Blocking for regain of control if a call cannot complete.
CMCANC
Cancel_Conversation
CMSQPM
Set_Queue_Processing_Mode
CMWCMP
Wait_For_Completion

Callback Function for regaining control if a call cannot complete.
CMCANC

Cancel_Conversation
CMSQCF

Set_Queue_Callback_Function

Secondary Information allows you to extract secondary error return information.
CMESI
Extract_Secondary_Information

The following Conformance Classes are not supported.
OSI TP services
Recoverable Transactions (for resource recovery interface)
Unchained Transactions (for recoverable transactions)
Distributed Security (user security services of distributed security server)
Directory (user designated information stored in a distributed directory)

46 Client/Server Communications Programming

CPI-C Functions

All the CPI-C functions supported by Personal Communications are listed in
able 10 Use this table for reference when you are maintaining an old program or
when you are writing a new program that must remain compatible with some

existing system.

Note: When writing a CPI-C application for the MS Windows SNA API client,
specify the local transaction program via the Specify_Local_TP-Name

(cmsltp) call before accepting an incoming conversation via the

Accept_Conversation (cmaccp) call.

Table 10. Personal Communications Client Support of CPI-C Functions

Win32
Function Long Name Clients
cmaccp Accept_Conversation X
cmacci Accept_Incoming X
cmalle Allocate X
cmcanc Cancel_Conversation X
cmefm Confirm X
cmefmd Confirmed X
cmenvi Convert_Incoming X
cmcnvo Convert_Outgoing X
cmdeal Deallocate X
xcmdsi Delete_CPIC_Side_Information X
cmectx Extract_Conversation_Context X
xcecst Extract_Conversation_Security_Type X
cmecst Extract_Conversation_Security_Type X
cmecs Extract_Conversation_State X
cmect Extract_Conversation_Type X
xcmesi Extract_CPIC_Side_Information X
cmembs Extract_Maximum_Buffer_Size X
cmemn Extract_Mode_Name X
cmepln Extract_Partner_LU_Name X
cmesi Extract_Secondary_Information X
cmesui Extract_Security_User_ID X
cmecsu Extract_Security_User_ID X
xcecsu Extract_Security_User_ID X
cmesrm Extract_Send_Receive_Mode X
cmesl Extract_Sync_Level X
xceti Extract_TP_ID X
cmetpn Extract_TP_Name X
cmflus Flush X
cminit Initialize_Conversation X
xcinct Initialize_Conversation_For_TP X
cminic Initialize_For_Incoming X
cmptr Prepare_To_Receive X
cmrcev Receive X
cmrevx Receive_Expedited X
cmrltp Release_Local_TP_Name X
cmrts Request_To_Send X
cmsend Send_Data X
cmsndx Send_Expedited X
cmserr Send_Error X
cmscsp Set_Conversation_Security_Password X

Chapter 6. Implementing CPI-C Programs

47

Table 10. Personal Communications Client Support of CPI-C Functions (continued)

Win32
Function Long Name Clients
Xcscsp Set_Conversation_Security_Password X
cmscst Set_Conversation_Security_Type X
xcscst Set_Conversation_Security_Type X
cmscsu Set_Conversation_Security_User_ID X
xcscsu Set_Conversation_Security_User_ID X
cmsct Set_Conversation_Type X
xcmssi Set_CPIC_Side_Information X
cmsdt Set_Deallocate_Type X
cmsed Set_Error_Direction X
cmsf Set_Fill X
cmsld Set_Log_Data X
cmsmn Set_Mode_Name X
cmspln Set_Partner_LU_Name X
cmsptr Set_Prepare_To_Receive_Type X
cmspm Set_Processing_Mode X
cmsqcf Set_Queue_Callback_Function X
cmsqpm Set-Queue_Processing_Mode X
cmsrt Set_Receive_Type X
cmsrc Set_Return_Control X
cmssrm Set_Send_Receive_Mode X
cmsst Set_Send_Type X
cmssl Set_Sync_Level X
cmstpn Set_TP_Name X
cmsltp Specify_Local_TP_Name X
xchwnd* Specify_Windows_Handle X
xestp Start_TP X
cmitrts Test_Request_To_Send_Received X
cmwcemp Wait_For_Completion X
cmwait Wait_For_Conversation X
xcendt End_TP X
WinCPICCleanup* X
WinCPICIsBlocking* -
WinCPICSetBlockingHook*
WinCPICStartup* X
WinCPICUnhookBlockingHook* -
* indicates: WOSA function for Microsoft Windows
x indicates: Supported function
- indicates: Unsupported function

Specifying Service TP Names

=

—

This function is only supported for Communications Server SNA
API clients.

You must use special conventions when specifying a service transaction program
name with the CMSTPN and CMSLTP functions. Usually, you specify standard TPs
with the CPI-C functions. Service transaction programs are specialized transaction

48 Client/Server Communications Programming

programs that provide common network and system services to other programs or
users. Examples of service transaction programs include scheduler programs,
directory services, and spoolers.

The conventions for specifying a service transaction program name with the
CMSTPN and CMSL transaction program functions are

* Specify the name with from two to five bytes of ASCII characters.

* Specify the first byte of the name, for example, 0x23, with two bytes of ASCII
characters.

— Split the first byte of the name into two nibbles, for example, 2 and 3, and
specify them in the low- order nibble of each ASCII byte.

— Set the high-order nibble of each ASCII byte to 1, which indicates that you are
specifying a service TP name. Continuing with the example, the first two
bytes specified are 0x12 and 0x13.

* Specify the remaining zero to three bytes of the name as ASCII characters. For
example, 007.

Therefore, specify a service transaction program name of 0x23 007, as 0x12 0x13
007.

Additional Options for Setting Local_LU

CPI-C applications rely on the DEFAULT_LOCAL_LU for use with TP_STARTED.
Unless set otherwise, this is always the LOCAL_LU which matches the LOCAL_CP
CP_NAME. This is not always what is desired. For Personal Communications, the
system environment APPCLLU may be used to refer to any defined LOCAL_LU.
The value for APPCLLU must match the LOCAL_LU_ALIAS exactly. It is case and
length sensitive. (Blanks are also counted in the length.) CPI-C functions use this
value for any Operator_Started TP.

Chapter 6. Implementing CPI-C Programs 49

50 Client/Server Communications Programming

Chapter 7. APPC

Entry Points

The following sections describe the procedure entry points for APPC.

Note:

© Copyright IBM Corp. 1994, 2003

Included in the chapters of Part 1 of this book is information on the APPC
API provided by the following systems:

¢ Communications Server running on Windows

* SNA API clients for Win32 platforms that are delivered with the
Communications Server product

e Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

51

APPC

APPC

You can use this as a synchronous entry point for all of the APPC verbs.
Alternatively, you can use this entry point to issue nonblocking verbs by putting
an event handle in the secondary return code field and setting the queue-level
nonblocking flag in the opext field (AP_NON_BLOCKING).

Syntax

void WINAPI APPC(long)

Input is a pointer to a verb control block.

Returned Values

Examine the primary return code and secondary return code for any errors.

Usage Notes

See also: [“WinAsyncAPPCEx()” on page 55

52 Client/Server Communications Programming

WinAsyncAPPC()

WinAsyncAPPC()

This is an asynchronous entry point for all of the APPC verbs. An application uses
this entry point if it chooses to be notified of completion through a Windows
message. Personal Communications and Communications Server provide this entry
point for compatibility with existing applications.

Syntax

HANDLE WINAPI WinAsyncAPPC(HWND hWnd,long vcb)

Parameters
hwnd Window handle to receive completion message.

vcb Pointer to verb control block.

Returned Values

The return value specifies whether the asynchronous request completed
successfully. If the request was successful, the actual return value is a handle. If the
function was not successful, Personal Communications returns a 0.

Usage Notes
APPC verbs that can block are as follows:
 [MC_JALLOCATE
* [MC_]CONFIRM
* [MC_]CONFIRMED
« [MC_IDEALLOCATE
* [MC_|FLUSH
* [MC_]PREPARE_TO_RECEIVE
* RECEIVE_ALLOCATE
e [MC_]JRECEIVE_AND_WAIT
* [MC_IRECEIVE_EXPEDITED_DATA
* [MC_IREQUEST_TO_SEND
* [MC_ISEND_CONVERSATION
 [MC_ISEND DATA
* [MC_ISEND_ERROR
* [MC_]SEND_EXPEDITED_DATA
 TP_ENDED
e TP_STARTED

The WinAsyncAPPC entry point permits the verb to be canceled, but does not
support queue-level nonblocking. The APPC entry point supports queue-level
nonblocking, but does not permit the application to cancel the verb.

This entry point does not support queue-level nonblocking. If the queue-level
nonblocking flag AP_NON_BLOCKING is specified on the asynchronous interface,
Personal Communications ignores it. When using the asynchronous entry point, an
application can have only one outstanding function in progress on a conversation
at a time. An attempt to initiate a second function results in the error code
AP_CONV_BUSY. If an application needs to be notified of asynchronous
completion through an event handle, it can use either the WinAsyncAPPCEx or

Chapter 7. APPC Entry Points 53

WinAsyncAPPC()

APPC entry point. The exceptions to the previous paragraph are
RECEIVE_AND POST and RECEIVE_AND_ WAIT. To enable full use to be made
of the asynchronous support, Personal Communications alters asynchronously
issued RECEIVE_AND_WAIT verbs to act like the RECEIVE_AND_POST verb.
Specifically, while an asynchronous RECEIVE_AND_POST or
RECEIVE_AND_WAIT is outstanding, an application can issue the following
verbs on the same conversation:

* REQUEST_TO_SEND

* GET_TYPE

* GET_ATTRIBUTES

 TEST_RTS

* DEALLOCATE (AP_ABEND_PROG, AP_ABEND _SVC, or AP_ABEND_TIMER)
 SEND_ERROR

 TP_ENDED

This enables an application, such as a server, to use an asynchronous
RECEIVE_AND_WAIT to receive data. While the RECEIVE_AND_POST or
RECEIVE_AND_WAIT is outstanding, the application can still use SEND_ERROR
and REQUEST_TO_SEND.

When the asynchronous operation is complete, the application’s window hWnd
receives the message returned by RegisterWindowMessage with
“WinAsyncAPPC” as the input string. The wParam argument contains the
asynchronous task handle returned by the original function call. The [Param
argument contains the original VCB pointer and can be used to determine the final
return code.

WinAPPCCancelAsyncRequest permits an application to cancel any asynchronous
APPC action, but terminates the related conversation or transaction program as
appropriate. Any outstanding operations return with AP_CANCELLED as the
return code.

If the function returns successfully, Personal Communications posts a
WinAsyncAPPC() message to the application when the operation completes or the
conversation is canceled.

See also:
‘WinAsyncAPPCEx()” on page 55}
‘WinAPPCCancel AsyncRequest()” on page 57}

54 Client/Server Communications Programming

WinAsyncAPPCEXx()

WinAsyncAPPCEX()

This is an asynchronous entry point for all of the APPC verbs. Use this call to
enable multiple sessions to be handled on the same thread.

Use this entry point if you want the application to be notified of completion
through an event and your application requires the ability to cancel outstanding
verbs; otherwise, use the APPC queue-level nonblocking entry point.

Syntax

HANDLE WINAPI WinAsyncAPPCEx (HANDLE handle,long vcb);

Parameters

handle
Handle of the event that the application will wait on.

vcb Pointer to verb control block.

Returned Values

The return value specifies whether the asynchronous request was successful. If the
function was successful, the actual return value is a handle. If the function was not
successful, Personal Communications returns a 0.

Usage Notes
This verb is intended for use with WaitForMultipleObjects in the Win32 APL

APPC verbs that can block are as follows:
* [MC_JALLOCATE

* [MC_I[CONFIRM

* [MC_ICONFIRMED

* [MC_]DEALLOCATE

* [MC_|FLUSH

* [MC_]PREPARE_TO_RECEIVE
* RECEIVE_ALLOCATE

* [MC_IRECEIVE_AND_WAIT

* [MC_]JREQUEST_TO_SEND

* [MC_ISEND_CONVERSATION
* [MC_ISEND_DATA

* [MC_]JSEND_ERROR

« TP_ENDED

 TP_STARTED

This entry point does not support queue-level nonblocking. If the queue-level
nonblocking flag AP_NON_BLOCKING is specified on the asynchronous interface,
Personal Communications ignores it. When using the asynchronous entry point, an
application can have only one outstanding function in progress on a conversation
at a time. An attempt to initiate a second function results in the error code
AP_CONV_BUSY.

Chapter 7. APPC Entry Points 55

WinAsyncAPPCEX()

The WinAsyncAPPCEXx entry point permits the verb to be canceled, but does not
support queue-level nonblocking. The APPC entry point supports queue-level
nonblocking, but does not permit the application to cancel the verb. The exceptions
to the previous paragraph are RECEIVE_AND_POST and RECEIVE_AND_WAIT.
To enable full use to be made of the asynchronous support, Personal
Communications alters asynchronously issued RECEIVE_AND_WAIT verbs to act
like the RECEIVE_AND_POST verb. Specifically, while an asynchronous
RECEIVE_AND_POST or RECEIVE_AND_WAIT is outstanding, an application
can issue the following verbs on the same conversation:

* REQUEST_TO_SEND

* GET_TYPE

* GET_ATTRIBUTES

 TEST_RTS

« DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)
* SEND_ERROR

« TP_ENDED

This enables an application, and in particular, a server application, to use an
asynchronous RECEIVE_AND_WAIT to receive data. While the
RECEIVE_AND_POST or RECEIVE_AND_WAIT is outstanding, the application
can still use SEND_ERROR and REQUEST_TO_SEND.

When the asynchronous operation is complete, Personal Communications notifies
the application by the signaling of the event. When the application receives the
signal, it examines the primary return code and secondary return code for any
error conditions.

See also:

‘WinAsyncAPPC()” on page 53|
‘WinAPPCCancel AsyncRequest()” on page 57
“APPC” on page 52|

56 Client/Server Communications Programming

WinAPPCCancelAsyncRequest()

WinAPPCCancelAsyncRequest()

This function cancels an outstanding WinAsyncAPPC-based request.

Syntax

int WINAPI WinAPPCCancelAsyncRequest (HANDLE handle);

Parameters

handle
Supplied parameter; specifies the handle of the request to be canceled.

Returned Values

The return value specifies whether the asynchronous request was canceled. If the
value is 0, Personal Communications canceled the request. Otherwise, the value is
one of the following error codes:

WAPPCINVALID
The specified asynchronous task ID was not valid.

WAPPCALREADY
The asynchronous routine to be canceled has already completed.

Usage Notes

An application program can cancel an asynchronous task that was previously
issued with one of the WinAsyncAPPC functions prior to completion, by issuing
the WinAPPCCancelAsyncRequest() call, and specifying the asynchronous event
as returned by the initial function in the handle.

If the outstanding verb relates to a conversation (for example, SEND_DATA or
RECEIVE_AND_WAIT), Personal Communications purges the verb and
deactivates the session. If the verb relates to a transaction program (for example,
RECEIVE_ALLOCATE or TP_STARTED), Personal Communications ends the
transaction program. In both cases, although Personal Communications deactivates
conversations and sessions as cleanly as possible, it does not flush send buffers or
waiting-for-confirmations or other pending actions. This call is synchronous. After
the previously described processing is complete, Personal Communications posts a
completion message for the canceled verb.

If an attempt to cancel an existing asynchronous WinAsyncAPPC routine fails with
an error code of WAPPCALREADY, the original routine has already completed.
Either the application has dealt with the resulting notification, or the application
has not dealt with the completion notification. It is not possible to cancel an
asynchronous verb issued through the APPC queue-level nonblocking entry point.

See also: [“WinAsyncAPPC()” on page 53}

Chapter 7. APPC Entry Points 57

WinAPPCCancelBlockingCali()

WinAPPCCancelBlockingCali()

This function cancels any outstanding blocking operation for its thread. If Personal
Communications cancels an outstanding blocked call, it generates an error code of
AP_CANCELLED. Use this call only from within a blocking hook function.
Personal Communications and Communications Server provides this function for
backward compatibility with existing applications.

Syntax

Int WINAPI WINAPPCCancelBlockingCall(void);

Returned Values

The return value specifies whether the cancellation request was successful. If the
value is 0, Personal Communications canceled the request. Otherwise, the value is
the following error code:

WAPPCINVALID
There is no outstanding blocking call.

Usage Notes

If the outstanding verb relates to a conversation (for example, SEND_DATA or
RECEIVE_AND_WAIT), Personal Communications purges the verb and
deactivates the session. If the verb relates to a transaction program (for example,
RECEIVE_ALLOCATE or TP_STARTED), Personal Communications ends the
transaction program. In both cases, although Personal Communications deactivates
conversations and sessions as cleanly as possible, it does not flush send buffers or
waiting-for-confirmations or other pending actions. This call is synchronous. After
the previously described processing is complete, the function is finished.

A multithreaded application can have multiple blocking operations outstanding,
but only one per thread. To distinguish between multiple outstanding calls,
WinAPPCCancelBlockingCall() cancels the outstanding operation on the current,
or calling, application thread if one exists; otherwise, it fails. APPC suspends the
calling application thread while an operation is outstanding. As a result, the thread
on which the blocking operation was initiated does not regain control (and
therefore, is not be able to issue a call to WinAPPCCancelBlockingCall()) unless
the application has previously registered a blocking hook for the thread by using
WinAPPCSetBlockingHook.

This is not supported for Win32 SNA API clients.

58 Client/Server Communications Programming

WinAPPCCleanup()

WinAPPCCleanup()

This function terminates and deregisters an application from the APPC APL

Syntax

BOOL WINAPI WinAPPCCleanup(void);

Returned Values

The return value specifies whether the deregistration was successful. If the value is
not 0, Personal Communications have successfully deregistered the application. If
Personal Communications have not deregistered the application, it returns a value
of 0.

Usage Notes

Use WinAPPCCleanup() to deregister Personal Communications application from
the APPC API.

Personal Communications and Communications Server terminates conversations
that are still active and ends transaction programs. This function is equivalent to
issuing TP_ENDED(HARD) on all transaction programs owned by the application.

See also: [“WinAPPCStartup()” on page 61}

Chapter 7. APPC Entry Points 59

WinAPPClsBlocking()

WinAPPClsBlocking()

This function determines if a thread is executing while waiting for a previous
blocking call to finish. Personal Communications and Communications Server
provides this function for backward compatibility with existing applications.

Syntax

BOOL WINAPI WinAPPCIsBlocking(void);

Returned Values

The return value specifies the outcome of the function. If the value is not 0, an
outstanding blocking call is awaiting completion. A value of 0 means there is no
outstanding blocking call.

Usage Notes

Personal Communications and Communications Server DLL prohibits more than
one blocking call per thread; it returns AP_THREAD_BLOCKING if this occurs. A
thread that is executing a blocking call is not reentered unless a blocking hook
function has been set. In this case, WinAPPClsBlocking returns true only from
within a blocking hook function.

See also:

‘WinAPPCCancelBlockingCall()” on page 58|
‘WinAPPCSetBlockingHook()” on page 62|
‘WinAPPCUnhookBlockingHook()” on page 63

This is not supported for Win32 SNA API clients.

60 Client/Server Communications Programming

WinAPPCStartup()

WinAPPCStartup()

This function enables an application to specify the version of Personal
Communications required and to retrieve version information from Personal
Communications. This call is not required.

Syntax

int WINAPI WinAPPCStartup(WORD wVersionRequired,
LPWAPPCDATA wappcdata);

Parameters

wVersionRequired
Specifies the version of Personal Communications support required. The
high-order byte specifies the minor version (revision) number; the
low-order byte specifies the major version number.

wappcdata
Returns the version of APPC API and a description of API implementation.

Returned Values

The return value specifies whether Personal Communications successfully
registered the application and whether it can support the specified version number.
If the value is 0, Personal Communications supports the specified version and it
successfully registers the application. Otherwise, one of the following values is
returned:

WAPPCSYSNOTREADY
The underlying network subsystem is not ready for network
communication.

WAPPCVERNOTSUPPORTED
This particular Personal Communicationsor Communications Server
implementation does not support the version of Personal
Communicationsor Communications Server support requested.

WAPPCINVALID
Personal Communications and Communications Server could not
determine the specified version.

Usage Notes

WinAPPCStartup() is intended to help with compatibility of future releases of the
APL This DLL supports Version 1.0.

See also: [“WinAPPCCleanup()” on page 59|

Chapter 7. APPC Entry Points 61

WinAPPCSetBlockingHook()

WinAPPCSetBlockingHook()

This function enables an APPC implementation of the APPC API to block APPC
function calls.

Personal Communications and Communications Server provides this function for
compatibility with existing applications.

Syntax

FARPROC WINAPI WinAPPCSetBlockingHook (FARPROC IpBlockFunc);

Parameters

IpBlockFunc
Specifies the procedure instance address of the blocking function to be
installed.

Returned Values

The return value points to the procedure instance of the previously installed
blocking function. The application or library that calls the SetBlockingHook
function should save this return value so that it can be restored if needed. (If
nesting is not important, the application can simply discard the value returned by
WinAPPCSetBlockingHook() and eventually use WinAPPCUnhookBlockingHook
to restore the default mechanism.)

Usage Notes

A blocking function returns FALSE if it receives a WM_QUIT message so that
Personal Communications can return control to the application to process the
message and terminate gracefully. Otherwise, the function returns TRUE.

No default blocking hook is implemented. If an application does not set a blocking
hook, the application thread waits indefinitely for the blocking call to return.

If the blocking hook function does not return TRUE, returns the blocking verb to
the application with the primary return code AP_CANCELLED.

This function is implemented by thread. It provides for a particular thread to
replace the blocking mechanism without affecting other threads.

See also:

‘WinAPPCCancelBlockingCall()” on page 58|
"WIinAPPClIsBlocking()” on page 6

‘Win APPCUnhookBlockingHook()” on page 63,

This is not supported for Win32 SNA API clients.

62 Client/Server Communications Programming

WinAPPCUnhookBlockingHook()

WinAPPCUnhookBlockingHook()

This function removes any previous blocking hook that has been installed.

Personal Communications and Communications Server provides this function for
backward compatibility with existing applications.

Syntax

BOOL WINAPI WinAPPCUnhookBlockingHook (void);

Returned Values

The return value specifies the outcome of the function. It is not 0 if Personal
Communications successfully reinstalled the default mechanism. The value is 0 if
Personal Communications did not reinstall the default mechanism.

Usage Notes

After the function is called, this application thread waits indefinitely for all future
blocking calls to complete.

See also: [“WinAPPCSetBlockingHook()” on page 62|

This is not supported for Win32 SNA API clients.

Chapter 7. APPC Entry Points 63

GetAppcConfig()

GetAppcConfig()

This function is not implemented. However, an entry point is provided for
backward compatibility. If a valid set of parameters is specified, Personal
Communications returns APPC_CFG_SUCESS_NO_DEFAULT_REMOTE and puts
a NULL terminator in the first byte of the RemLu buffer.

In many cases this call is not necessary because Personal Communications are
APPN capable nodes. The partner LU name can be specified on ALLOCATE and a
search for the LU will be initiated. However, applications can use the Node
Operator Facility (NOF) interface to retrieve this information. For information on
using the NOF interface, refer to the System Management Programming.

64 Client/Server Communications Programming

GetAppcReturnCode()

GetAppcReturnCode()

This function converts the primary and secondary return codes in the VCB to a
printable string. It provides a standard set of error strings for use by APPC
applications.

Syntax

int WINAPI GetAppcReturnCode (struct appc_hdr *vch,
UINT buffer_length,
unsigned char *buffer_addr);

Parameters
vcb Supplied parameter; specifies the address of the verb control block.

buffer_length
Supplied parameter; specifies the length of the buffer pointed to by
buffer_addr. The recommended length is 256.

buffer_addr
Supplied/returned parameter; specifies the address of the buffer that will
hold the formatted, null-terminated string. Length of the string in the
specified buffer.

Returned Values

0x20000001
The parameters are not valid; the function could not read from the
specified verb control block or could not write to the specified buffer.

0x20000002
The specified buffer is too small.

Usage Notes

The descriptive error string returned in buffer_addr does not terminate with a new
line character (\n).

Chapter 7. APPC Entry Points 65

GetAppcReturnCode()

66 Client/Server Communications Programming

Chapter 8. APPC Verbs

This chapter documents the syntax of each verb passed across the APPC API, and
describes the parameters passed in and returned for each verb.

This chapter also provides reference information for the APPC basic and mapped
conversation verbs that are provided for APPC duplex and half-duplex
conversations. As you read through this chapter, you will discover that the basic
and mapped verbs are very similar and that is why they have been combined into
one chapter. However, there are some differences. Those differences are denoted as
follows:

This symbol appears when information applies only to a basic
verb.

L

This symbol appears when information applies only to a mapped
verb.

When the conversation verb can be basic or mapped, it is denoted as follows:
[MC_]VERBNAME

Note: Included in chapters of Part 1 of this book is information on the APPC API
provided by the following systems:

* Communications Server running on Windows

* SNA API clients for Win32 platforms that are delivered with
Communications Server

* Personal Communications for Windows

When there are differences between the support provided by these systems,
it is noted.

Verb Control Blocks

This section contains a general description of the fields and indications for each
verb.

Common Fields

Each VCB has a number of common fields, as follows:

opcode
Verb operation code: an identifying field containing the name of the verb.

format
Identifies the format of the VCB. The value that this field must be set to in
order to specify the current version of the VCB is documented individually
under each verb.

© Copyright IBM Corp. 1994, 2003 67

primary_rc
Primary return code. Possible values for each verb are listed in the
following sections.

secondary_rc
Secondary return code. This supplements the information provided by the
primary return code. Possible values for each verb are listed in the
following sections. Some VCBs also contain the following fields.

opext Verb extension code. This supplements the information provided by the
verb operation code. If the verb signal is to be processed in nonblocking
mode, the flag AP_NON_BLOCKING must be set. In the signals described
below these common fields are included, but not explained individually.

TP Identifiers
An 8-byte transaction program identifier is assigned to each active
transaction program. This identifier is assigned by Personal
Communications.

The transaction program identifier is used to route TP_ENDED verbs and
as a correlator on conversation verbs.

The verb control blocks for each signal are described in the following section.

APPC API Support

Verbs Supported

Personal Communications supports the following verbs at the APPC APL

Type Independent Verbs

GET_TP_PROPERTIES
GET_TYPE
RECEIVE_ALLOCATE
SET_TP_PROPERTIES
TP_ENDED
TP_STARTED

Conversation Verbs

[MC_JALLOCATE
[MC_ICONFIRM
[MC_ICONFIRMED
[MC_IDEALLOCATE
[MC_JFLUSH
[MC_IGET_ATTRIBUTES
[MC_]PREPARE_TO_RECEIVE
[MC_IRECEIVE_AND_POST
[MC_IRECEIVE_AND_WAIT
[MC_IRECEIVE_EXPEDITED_DATA
[MC_IRECEIVE_IMMEDIATE
[MC_IREQUEST_TO_SEND
[MC_ISEND_CONVERSATION
[MC_ISEND_DATA
[MC_ISEND_ERROR
[MC_ISEND_EXPEDITED_DATA
[MC_ITEST_RTS
[MC_ITEST_RTS_AND_POST

68 Client/Server Communications Programming

GET_TP_PROPERTIES

GET_TP_PROPERTIES
GET_TP_PROPERTIES returns attributes associated with the transaction program.

VCB Structure

typedef struct get_tp_properties
{

unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned char reserv2[2] /* verb format x/
unsigned short primary rc; /* primary return code x/
unsigned Tlong secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned char tp_name[64]; /* TP name */
unsigned char Tu_alias[8]; /* LU alias */
Tuw_id_overlay Tuw_id; /* LUW identifier */

unsigned char fqlu_name[17]; /* fully qualified LU name */
unsigned char reserv3[10]; /* reserved */
unsigned char user_id[10]; /* user id */
} GET_TP_PROPERTIES;

typedef struct Tuw_id_overlay

{

unsigned char fqlu_name_Ten; /* fully qualified LU name length =*/
unsigned char fqlu_name[17]; /* fully qualified LU name */
unsigned char instance[6]; /* instance number */
unsigned char sequence[2]; /* sequence number */

} LUW_ID_OVERLAY;

Supplied Parameters

The transaction program supplies the following parameters to Personal
Communications:

opcode
AP_GET_TP_PROPERTIES

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

opext AP_BASIC_CONVERSATION

format

Identifies the format of the VCB. Set this field to one to specify the version
of the VCB listed above.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

tp_name
Name of the local transaction program, that is, the transaction program
issuing this verb. Personal Communications does not check the character
set of this field.

Chapter 8. APPC Verbs 69

GET_TP_PROPERTIES

lu_alias
Alias of the local LU associated with the transaction program. This is an
8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set.

The luw_id field is a Logical Unit of Work identifier associated with unprotected
conversations (conversations with sync_level of AP_NONE or
AP_CONFIRM_SYNC_LEVEL). The luw_id_overlay contains the following
parameters:

luw_id_overlay.fqlu_name_len
Length of fully qualified LU name associated with Logical Unit of Work.

luw_id_overlay.fqlu_name
Fully qualified LU name associated with Logical Unit of Work. This name
is up to 17 bytes long and is right-padded with EBCDIC blanks. It is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded blanks. If the network ID is not present, then omit the dot.) If
the name length is less than 17 bytes, instance and sequence immediately
follow the name (note that this means the fields of the LUW_ID_OVERLAY
structure cannot be used to access either instance or sequence).

luw_id_overlay.instance
Logical unit of work instance number. This is a binary string of length 6
bytes.

luw_id_overlay.sequence
Logical unit of work sequence number. This is a binary string of length 2
bytes.

If luw_id_overlay.fqlu_name_len is less than 17, luw_id_overlay is right padded
with EDCDIC blanks (after instance and sequence).

fqlu_name
Fully qualified name of the local LU associated with the transaction
program. This name is 17 bytes long and is right-padded with EBCDIC
blanks. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded blanks. If the network ID is not present, then
omit the dot.)

user_id
User ID of the initiator of the transaction. This is a 10-byte type-AE
EBCDIC character string, padded to the right with EBCDIC spaces.

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_TP_ID

The conditions generating the following possible primary return codes
primary _rc) are described in[Appendix A, “APPC Common Return Codes”, on|
page 321

AP_TP_BUSY
AP_UNEXPECTED_SYSTEM_ERROR

70 Client/Server Communications Programming

GET_TYPE

GET_TYPE

The GET_TYPE verb returns the conversation type (basic or mapped) of a
particular conversation.

VCB Structure

typedef struct get_type

{
unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned Tong secondary_rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned Tong conv_id; /* conversation identifier =/
unsigned char conv_type; /* conversation type */
unsigned char conv_style; /* conversation style */

} GET_TYPE;

Supplied Parameters

The transaction program supplies the following parameters to Personal
Communications:

opcode
AP_GET_TYPE

opext AP_BASIC_CONVERSATION

format
Identifies the format of the VCB. Set this field to one to specify the version
of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter
was returned by the TP_STARTED verb in the invoking transaction
program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id
Conversation identifier. The value of this parameter was returned by the
ALLOCATE verb in the invoking transaction program or by
RECEIVE_ALLOCATE in the invoked transaction program.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following
parameters:

primary_rc
AP_OK

conv_type
Conversation type of the conversation identified by conv_id.

AP_BASIC_CONVERSATION
AP_MAPPED_CONVERSATION

conv_style
Conversation style of the conversation identified by conv_id. This field
requires the format 1 version of the VCB. See [“Full-Duplex VCBs” on|

for more details on accessing format 1 VCBs.

Chapter 8. APPC Verbs 71

GET_TYPE

AP_HALF_DUPLEX
AP_FULL_DUPLEX

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_TP_ID

AP_BAD_CONV_ID

The conditions generating the following possible primary return codes
primary _rc) are described in[Appendix A, “APPC Common Return Codes”, on|
paze 2
AP_TP_BUSY
AP_UNEXPECTED_SYSTEM_ERROR

72 Client/Server Communications Programming

RECEIVE_ALLOCATE

RECEIVE_ALLOCATE

The RECEIVE_ALLOCATE verb requests information needed to establish a new
transaction program for a conversation with a partner transaction program that has
issued an ALLOCATE or MC_ALLOCATE verb.

VCB Structure

typedef
{

unsigned shor
unsigned char
unsigned char
unsigned shor
unsigned Tong
unsigned char
unsigned char
unsigned Tlong
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned Tong
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

struct receive_allocate

opcode;
opext;
format;
primary_rc;
secondary_rc;
tp_name[64] ;
tp_id[8];
conv_id;
sync_Tlevel;
conv_type;
user_id[10];
Tu_alias[8];
plu_alias[8];
mode_name[8];
reserv3[2];
conv_group_id;

pip_incoming;

reserv4[3];
password[10] ;
reserv5[2];
dload_id[8];

} RECEIVE_ALLOCATE;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

opext

format

AP_RECEIVE_ALLOCATE
AP_BASIC_CONVERSATION

fqplu_name[17];

conversation_style;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

verb operation code
verb extension code
format

primary return code
secondary return code
TP name

TP identifier
conversation identifier
sync Level
conversation type
user ID

LU alias

partner LU alias

mode name

reserved

conversation group ID

fully qualified partner LU name

received PIP data

conversation style
reserved

security password

reserved

user ID

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_name

Name of the transaction program. Personal Communications does not
check the character set of this field.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

tp_id

Identifier for the local transaction program. This value is assigned by

Chapter 8. APPC Verbs

73

RECEIVE_ALLOCATE

Personal Communications to the transaction program. The transaction
program passes this identifier to Personal Communications on all
subsequent APPC verbs.

conv_id
Conversation identifier. This value identifies the conversation established
between the two transaction programs.

sync_level
Synchronization level of the conversation.

AP_CONFIRM_SYNC_LEVEL

AP_NONE

conv_type
Conversation type of the conversation identified by conv_id.

AP_BASIC_CONVERSATION
AP_MAPPED_CONVERSATION

user_id
User ID supplied by the partner transaction program. This is a 10-byte
type-AE EBCDIC character string, padded to the right with EBCDIC

spaces.

lu_alias
Alias by which the local LU is known. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set.

plu_alias
Alias by which the partner LU is known to the local transaction program.
This is an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set.

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

conv_group_id
Conversation group identifier for the session being used by this
conversation.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC blanks. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded blanks. If the
network ID is not present, omit the dot.)

pip_incoming
Specifies whether the partner transaction program-supplied Program
Initialization Parameters (PIP) on the [MC_JALLOCATE request. Set to
AP_YES or AP_NO. If AP_YES, the PIP data will be received on the first
[MC_IRECEIVE_* verb issued on this conversation.

conversation_style
Conversation style of the conversation identified by conv_id.

AP_HALF_DUPLEX
AP_FULL_DUPLEX

74 Client/Server Communications Programming

RECEIVE_ALLOCATE

password
Password associated with user_id. This is a 10-byte type-AE EBCDIC
character string, padded to the right with EBCDIC spaces. This is required
if Security=Program (AP_PGM or AP_PGM_STRONG); otherwise, it is
optional.

dload_id
This field can only be set if the format field is set to 1. If the
RECEIVE_ALLOCATE is issued in response to a
DYNAMIC_LOAD_INDICATION, then this field can be used to correlate
the two signals in the following ways.

The RECEIVE_ALLOCATE will only be correlated with the
DYNAMIC_LOAD_INDICATION if the dload_id is set to one of the
following:

* All zeros

* The dload_id field on the DYNAMIC_LOAD_INDICATION.
Note: This parameter is not supported on the SNA API clients.

If the verb does not execute because of a parameter error, Personal
Communications returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_UNDEFINED_TP_NAME

The conditions generating the following possible primary return codes
primary_rc) are described in|Appendix A, “APPC Common Return Codes”, on|
page o2}
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 8. APPC Verbs 75

SET_TP_PROPERTIES

SET _TP_PROPERTIES
SET_TP_PROPERTIES sets attributes associated with the TP.

VCB Structure

typedef struct set_tp_properties

unsigned short opcode; /* verb operation code */
unsigned char opext; /* verb extension code */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char tp_id[8]; /* TP identifier */
unsigned char set_prot_id; /* set protected LUW identifier =/
unsigned char new_prot_id; /* new protected LUW identifier =*/
unsigned char prot_id[26]; /* protected LUW identifier */

unsigned char set unprot_id; /* set unprotected LUW identifier */
unsigned char new_unprot_id; /* new unprotected LUW identifier */
unsigned char unprot_id[26]; /* unprotected LUW identifier */

unsigned char set user id; /* */
unsigned char set_password; /* */
unsigned char user id[10]; /* */
unsigned char new_password[10];/x */

} SET_TP_PROPERTIES;

Supplied Parameters

The TP supplies the following parameters to Personal Communications:

opcode
AP_SET_TP_PROPERTIES

tp_id Identifier for the local TP. The value of this parameter was returned by the
TP_STARTED verb in the invoking TP or by RECEIVE_ALLOCATE in the
invoked TP.

opext AP _BASIC_CONVERSATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

set_prot_id
Specifies whether the protected Logical Unit of Work identifier should be
set.
AP_YES
AP_NO

new_prot_id
Specifies whether Personal Communications should generate a new
protected Logical Unit of Work identifier. Otherwise, prot_id is used to set
the protected LUW identifier. Reserved if set_prot_id is set to AP_NO.
AP_YES
AP_NO

The prot_id structure specifies the new protected LUW identifier if
set_prot_id is set to AP_YES and