Personal Communications for Windows, Version 5.5

and Version 4.3 for OS/2

<|lI!

Emulator Programming

SC31-8478-05

Personal Communications for Windows, Version 5.5

and Version 4.3 for OS/2

<|lI!

Emulator Programming

SC31-8478-05

Note
FBefore using this information and the product it supports, read the information in EEAppendix H Natices” on page 544,

Sixth Edition (September 2001)

This edition applies to Version 5.5 of IBM Personal Communications for Windows (program number: 5639-170), and
to Version 4.3 of IBM Personal Communications for OS/2, and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1989, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures.IX
TablesX
About This Book Xxiii
Who Should Read ThisBook xii
Where To Find More Information. xiii
What’s New in This EditionXiv
Notation XV
Chapter 1. Introduction to Emulator APIs 1
Cross Platform Support. .2
Using APl Header Files. .2
Critical Sections .3
Stack Size .3
Sample Programs. .3
Chapter 2. Introduction to IBM Standard
EHLLAPI, IBM Enhanced EHLLAPI and
WIinHLLAPI Programmlng .5
EHLLAPI Overviews .5
IBM Standard EHLLAPI .5
WinHLLAPI .5
WIinHLLAPI and IBM Standard EHLLAPI .5
IBM Enhanced EHLLAPI and IBM Standard
EHLLAPI . 6
Languages 6
EHLLAPI Call Format . . 6
Data Structures 7
Memory Allocation . . 8
EHLLAPI Return Codes . 8
Compiling and Linking. P
Static Link Method.10
Dynamic Link Method.10
Multithreading1
Presentation Spaces. . . . 11
IBM Enhanced 32-Bit Interface Presentatlon Space
IDs . . . e A |
Types of Presentatlon Spaces T 2
Size of Presentation Spaces12
Presentation Space IDs . . . L. 12
Host-Connected Presentation Space A
Presentation Space ID Handling13
Sharing EHLLAPI Presentation Space between
Processes14
ASCIlI Mnemonics17
Debugging 19
A Simple EHLLAPI Sample Program .o .19
Standard and Enhanced Interface Con3|derat|ons 21
Host Automation Scenarios22
Chapter 3. EHLLAPI Functions 27
Unicode Support for Code Pages 1390/1399 and
137. . . . A

© Copyright IBM Corp. 1989, 2001

Page Layout Conventions.

Prerequisite Calls
Call Parameters .
Return Parameters . .
Notes on Using This Functlon .

Summary of EHLLAPI Functions .

Allocate Communications Buffer (123)
Cancel File Transfer (92) .

Change PS Window Name (106)
Change Switch List LT Name (105)
Connect for Structured Fields (120)
Connect Presentation Space (1) .
Connect Window Services (101).
Convert Position or Convert RowCol (99)
Copy Field to String (34) .

Copy OIA (13) oo

Copy Presentation Space (5) .
Copy Presentation Space to String (8).
Copy String to Field (33) .

Copy String to Presentation Space (15)
Disconnect from Structured Fields (121) .
Disconnect Presentation Space (2) .
Disconnect Window Service (102) .
Find Field Length (32).

Find Field Position (31) .
Free Communications Buffer (124).
Get Key (51) . .

Get Request Completlon (125)

Lock Presentation Space API (60) .
Lock Window Services API (61)

Pause (18) . oo

Post Intercept Status (52) .
Query Additional Field Attribute (45)
Query Close Intercept (42) .

Query Communications Buffer Size (122) .

Query Communication Event (81)
Query Cursor Location (7) .
Query Field Attribute (14) .
Query Host Update (24).

Query Session Status (22)

Query Sessions (10)

Query System (20) . .o
Query Window Coordinates (103)
Read Structured Fields (126)
Receive File (91)

Release (12) .

Reserve (11) . .

Reset System (21) .

Search Field (30)

Search Presentation Space (6)
Send File (90)

Send Key (3)

Set Cursor (40) . .

Set Session Parameters (9) .

Start Close Intercept (41) .
Start Communication Notification (80) .

.27
. 28
. 28
. 28
. 28
. 28
. 30
.31
.31
. 33
. 34
. 35
. 37
. 38
. 40
. 48
. 56
. 64
.12
. 76
. 81
. 82
. 82
. 83
. 85
. 86
. 87
. 93
. 95
. 97
.. 98
. 100
. 101
. 102
. 103
. 104
. 105
. 105
. 107
. 108
. 110
11
. 113
. 115
. 119
121
. 122
. 123
. 124
. 128
. 131
. 134
. 145
. 145
. 155
. 157

Start Host Notification (23) .
Start Keystroke Intercept (50) .
Start Playing Macro (110)

Stop Close Intercept (43).

Stop Communication Notification (82) .

Stop Host Notification (25) .
Stop Keystroke Intercept (53)
Wait (4) .o

Window Status (104) .

Write Structured Fields (127)

Chapter 4. WinHLLAPI Extension

Functions .

Summary of WlnHLLAPI Functlons

WinHLLAPI Asynchronous Functions .
WinHLLAPIAsync.
W|nHLLAPICanceIAsyncRequest

Initialization and Termination Functions
WInHLLAPI Startup .

WInHLLAPI Cleanup.

Blocking Routines .
WinHLLAPIIsBlocking .
WinHLLAPISetBlockingHook .
WinHLLAPIUNnhookBlockingHook
WinHLLAPICancelBlockingCall

Chapter 5. PCSAPI Functions

How to Use PCSAPI .

Page Layout Conventions
Function Type . . .
Parameter Type and Descrlptlon .
Return Code.
pcsConnectSession.
pcsDisconnectSession.
pcsQueryConnectioninfo
pcsQueryEmulatorStatus
pcsQuerySessionList .
pcsQueryWorkstationProfile
pcsSetLinkTimeout
pcsStartSession .
pcsStopSession .

Chapter 6. DDE Functions for
Windows and OS/2 .

DDE Functions in a Windows 32-Bit EnV|ronment
Personal Communications DDE Data Items

DDE Functions .

Code Conversion .

Find Field

Get Keystrokes .

Get Mouse Input . .
Get Number of Close Requests
Get Operator Information Area
Get Partial Presentation Space .
Get Presentation Space

Get Session Status .

Get System Configuration .
Get System Formats .

Get System Status .

Get System Sysltems .

iV Emulator Programming

. 159
. 161
. 164
. 164
. 165
. 166
. 167
. 167
. 168
. 172

. 177
. 177
. 177
. 177
. 183
. 184
. 184
. 185
. 185
. 185
. 185
. 186
. 186

. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 190
. 191
. 192
. 192
. 194
. 194
. 195
. 196

. 197

197

. 197
. 198
. 200
. 201
. 204
. 205
. 208
. 209
. 210
. 212
. 214
. 215
. 216
. 217
. 218

Get System Topics.

Get Trim Rectangle

Initiate Session Conversation .
Initiate Structured Field Conversation
Initiate System Conversation
Put Data to Presentation Space
Search for String

Send Keystrokes

Session Execute Macro

Set Cursor Position .
Set Mouse Intercept Condltlon

Set Presentation Space Service Condltlon .

Set Session Advise Condition . .
Set Structured Field Service Condition .
Start Close Intercept .

Start Keystroke Intercept

Start Mouse Input Intercept

Start Read SF

Start Session Advise .

Stop Close Intercept .

Stop Keystroke Intercept.

Stop Mouse Input Intercept.

Stop Read SF

Stop Session Advise .

Terminate Session Conversatlon
Terminate Structured Field Conversation
Terminate System Conversation

Write SF . .

DDE Menu Item API ina Wlndows 32 Blt
Environment

DDE Menu Functlons ina Wlndows 32 B|t

Environment

DDE Functions in an OS/Z Enwronment .
Personal Communications DDE Data Items

(0s72).

DDE Functions .

Code Conversion .

Find Field

Get Keystrokes .

Get Mouse Input . .
Get Number of Close Requests
Get Operator Information Area
Get Partial Presentation Space .
Get Presentation Space

Get Session Status . .
Get System Configuration .
Get System Formats .

Get System Status .

Get System Sysltems .

Get System Topics.

Get Trim Rectangle

Initiate Session Conversation .
Initiate Structured Field Conversation
Initiate System Conversation
Put Data to Presentation Space
Search for String

Send Keystrokes

Session Execute Macro

Set Cursor Position

Set Mouse Intercept Condltlon

Set Presentation Space Service Condition .

. 219
. 220
. 220
. 221
. 222
. 222
. 223
. 224
. 226
. 233
. 234
. 236
. 238
. 239
. 240
. 241
. 242
. 245
. 247
. 248
. 249
. 249
. 250
. 250
. 251
. 2581
. 252
. 252

. 253

. 255
. 271

. 272
. 273
. 275
. 276
. 278
. 280
. 283
. 284
. 285
. 287
. 289
. 291
. 292
. 293
. 294
. 295
. 296
. 297
. 298
. 299
. 299
. 300
. 302
. 303
. 309
. 310
. 313

Set Session Advise Condition 314
Set Structured Field Service Condition 315
Start Close Intercept316
Start Keystroke Intercept 318
Start Mouse Input Intercept 319
StartReadSF322
Start Session Advise323
Stop Close Intercept325
Stop Keystroke Intercept.325
Stop Mouse Input Intercept. 326
StopRead SF327
Stop Session Advise328
Terminate Session Conversatlon N 2
Terminate Structured Field Conversation . . . 329
Terminate System Conversation 329
Write SF 330

DDE Menu Item API in an OS/2 Enwronment 331
DDE Menu Functions in an OS/2 Environment 332

Chapter 7. Using DDE Functions with

a DDE Client Application 351
Using the Personal Communications DDE Interface 351
System Conversation.352
Session Conversation. 352
Session Conversation (Hot L|nk)35
Personal Communications DDE Interface 354
DDE Functions for System Conversation 355
Get System Configuration 356
Get System Formats 356
Get System Status. 356
Get System Sysltems357
Get System Topics.357
Initiate System Conversation 358
Terminate System Conversation 358
DDE Functions for Session Conversation 358
Find Field358
Get Operator Informatlon Area360
Get Partial Presentation Space. 360
Get Presentation Space361
Get Session Status.362
Get Trim Rectangle362
Initiate Session Conversation 363
Put Data to Presentation Space 363
Search for String364
Session Execute Macro365
Set Cursor Position365
Terminate Session Conversatlon o . . 366
DDE Functions for Session Conversation (Hot
Link)366
Initiate Sessmn Conversatlon366
Start Close Intercept 366
Start Keystroke Intercept 367
Start Session Advise367
Stop Close Intercept 369
Stop Keystroke Intercept. 369
Stop Session Adviseo 369
Terminate Session Conversatlon370
Visual Basic Sample Program 370

Chapter 8. Server-Requester
Programming Interface (SRPI) Support 383

How to Use SRPI 383
SRPI Compatibility 383
Using the Server-Requester Programmlng Interface 384
SEND_REQUEST Parameters 386
Supplied Parameters 386
Returned Parameters.388
How PC/3270 Applications Use SRPI388
Invoking SEND_REQUEST. 389
Performance Considerations 389
Handling the Interrupt (Ctrl+Break) Key 389
C Requesters . . S 389
C send_request Functlon < 1 [0]
SRPI Record Definition39
SRPI Return Codes39

Appendix A. Query Reply Data

Structures Supported by EHLLAPI . . 391
The DDM Query Replyo .30
DDM Application Name Self- Deflnlng
Parameter 392
PCLK Protocol Controls Self Deflnlng Parameter 392
Base DDM Query Reply Formats. 392
The IBM Auxiliary Device Query Reply39
Optional Parameters3%
Direct Access Self-Defining Parameter3%
PCLK Protocol Controls Self-Defining Parameter 396
The OEM Auxiliary Device Query Reply 396
Direct Access Self-Defining Parameter 397

PCLK Protocol Controls Self-Defining Parameter 397
The Cooperative Processing Requester Query Reply 398

The Product-Defined Query Reply 398
Optional Parameters398
Direct Access Self-Defining Parameter 399

The Document Interchange Architecture Query

Reply400

Appendix B. Compatibility with

Communication Manager/2 403
Set Session Parameter 9)403

Set Options403

Return Parameters.403

EAB Option.403
CopyOIA(13)404
Copy StringtoPS(15)404
Storage Manager (17). 405
Copy Stringto Field 33)405
GetKey (51).405
Window Status (104)405
Query Sessions (10)405
Connect for Structured Fields (120) 405
Allocate Communications Buffer (123) 405
ASCIl Mnemonics. . . 10)
Get Request Completion (125)A406

Appendix C. DOS-Mode EHLLAPI
(Windows 95, Windows 98, Windows
NT, Windows Me, and Windows 2000) . 407

Contents V

Installation407

Appendix D. DOS-Mode EHLLAPI

(0S/2). 409
Installing DOS-Mode EHLLAPI e .. 409
Installing the DOS-Mode EHLLAPI V|rtual
Device Driver 409
Installing the PC/3270- 5250—W|ndows Interface
Module 409
Using DOS-Mode EHLLAPI Appllcatlons 409
Compatibility410
Appendix E. SRPI Return Codes . . . 411
Error Handling. . . Ty
Transport Layer Errors P N
Application Errors. . . e]
SEND_REQUEST Processrng Errors Lo 4n
Types of SRPI Return Codes41
Type 0 Return Code Definitions 412
Type 1 Return Code Definitions 412
Type 2 Return Code Definitions 414
Type 3 Return Code Definitions 415
Class Definitions for Type 2 and Type3 415
Exception Code Values for Type 2 and Type 3 . . 416
Exception Object Values for Type 2 and Type 3 . . 416
Server Return Codes . . . o .. L 417

Appendix F. DDE Functions in a 16-Bit

Environment. 419

Personal Communications DDE Data Items ina

16-Bit Environment . . . & K
Using System Topic Data Items 420
Using Session Topic Data Items 420
Using LU Topic Data Items (PC/3270 Only) . 420

DDE Functions in a 16-Bit Environment 420
Naming Conventions for Parameters 421
Find Field422
Get Keystrokes.423
Get Mouse Input B .2
Get Number of Close Requests N YX §
Get Operator Information Area 428
Get Partial Presentation Space. 428
Get Presentation Space431
Get Session Status.433
Get System Configuration 434
Get System Formats435
Get System Status.436
Get System Sysltems437
Get System Topics.438
Get Trim Rectangle438
Initiate Session Conversation 439
Initiate Structured Field Conversation 440
Initiate System Conversation 440
Put Data to Presentation Space 441
Search for String442
Send Keystrokes443
Session Execute Macro444
Set Cursor Position450
Set Mouse Intercept Condltlon .o .. .451
Set Presentation Space Service Condrtron .. . 454

Vi Emulator Programming

Set Session Advise Condition 455

Set Structured Field Service Condition 456
Start Close Intercept457
Start Keystroke Intercept 458
Start Mouse Input Intercept 459
Start Read SF462
Start Session Advise 464
Stop Close Intercept465
Stop Keystroke Intercept. 466
Stop Mouse Input Intercept. 466
StopRead SF467
Stop Session Advise468
Terminate Session Conversatlon468
Terminate Structured Field Conversation . . . 469
Terminate System Conversation 469
Write SF 470
DDE Menu Item APl in a 16 Blt EnV|ronment . . 470
DDE Menu Client in a 16-Bit Environment . . 471
DDE Menu Server, 32-Bit 47
DDE Menu Functions in a 16-bit Enwronment .. 472
Change Menu Item473
Create Menu Item.A478
Initiate Menu Conversatlon - v A
Start Menu Advise480
Stop Menu Advise. . . . Rt X
Terminate Menu Conversatlon 482
Summary of DDE Functions in a 16-Bit
Environment482

Appendix G. REXX EHLLAPI

Functions 489

Overview of REXX EHLLAPI Functlon Calls and

Return Values489
Installation489
Conventions. 489

Summary of Prerequisite Calls for Functlons .. .49

Summary of EHLLAPI and REXX EHLLAPI

Functions. . . e X
Change_ SWltch Name O e
Change_Window_Name.49
Connect49
Connect PM. 497
Convert_ Pos.498
Copy_Field_To Str499
Copy OIA500
Copy PS.bh01
Copy PS To Str502
Copy_Str_To_Field503
Copy Str ToPS504
Disconnect505
Disconnect PM.506
Find_Field Len.507
Find_Field Pos.508
Get Key . . . 10
Get_Window_ Statusbl0
Intercept_Status51
Lock PMSVCbl12
Lock PS53
Pause514
Query_Close Interceptb15
Query Cursor Pos516

Query_Emulator_Status .
Query_Field_Attr .
Query_Host_Update .
Query_Session_List
Query_Session_Status
Query_Sessions.
Query_System . .
Query_Window_Coord .

Query_Workstation_Profile .

Receive_File .
Release

Reserve
Reset_System
Search_Field.
Search_PS
Send_File.

Sendkey .
Set_Cursor_Pos.
Set_Session_Parms.
Set_Window_Status

. 517
. 518
. 519
. 520
. 521
. 522
. 523
. 524
. 525
. 526
. 527
. 528
. 529
. 530
. 531
. 532
. 533
. 534
. 535
. 536

Start_Close_Intercept .
Start_Communication
Start_Host_Notify .
Start_Keystroke_Intercept
Start_Session .
Stop_Close_Intercept .
Stop_Communication.
Stop_Host_Notify .
Stop_Keystroke_Intercept
Stop_Session
Wait .o
Programming Notes .
Sample Programs .

Appendix H. Notices
Trademarks .

Index .

. 537
. 538
. 539
. 540
. 541
. 542
. 543
. 544
. 545
. 546
. 547
. 547
. 547

. 549

. 550

. 553

Contents

Vii

Viii Emulator Programming

Figures

Keystroke Flow .

Host Presentation Space Characters
DDE Menu Server Conversation
DDE Menu Client Conversation
DDE Menu Server Conversation
DDE Menu Client Conversation

Nook~wdeE

Server .

© Copyright IBM Corp. 1989, 2001

Example of PC/3270 SRPI Requester and

. 25
. 50
. 254
. 255
. 331
. 332

. 384

10.
11.

IBM Workstation Requester and IBM Host
Computer Server Relationship . .
Example of an SRPI Requester and Server
Flow .

DDE Menu Server Conversatlon .

DDE Menu Client Conversation

. 385

. 386
. 471
. 472

ix

X Emulator Programming

Tables

akrwdE

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

24.
25.
26.

217.
28.
29.

30.
3L
32.

Emulator APl Support

Sample Program Files

Sample Program Subdirectories

EHLLAPI Return Codes. .
EHLLAPI Read and Write Sharing Optlon
Combinations . .

Prerequisite Functions and Assouated
Dependent Functions .

EHLLAPI Functions Summary .
Mnemonics with Uppercase Alphabetic
Characters

Mnemonics with Numbers or Lowercase
Characters .
Mnemonics with @A and @ Uppercase
Alphabetic Characters. .
Mnemonics with @A and @ Lowercase
Alphabetic Characters. .
Mnemonics with @A and @ Alphanumerlc
(Special) Characters .

Mnemonics with @S (Shift) and @ Alphabetlc
Characters .

Mnemonics Using @X and @Alphabetlc
Lowercase (For DBCS Only)

Mnemonics Using @M, @Q and @Alphabetlc
Lowercase (For VT Only) .
Mnemonics with Special Character Keys
BIDI Key Mnemonics . .
WinHLLAPI Function Summary .

Naming Scheme for Data Items

DDE Functions Available for Personal
Communications .

SENDKEY Command List

DDE Menu Item API Functions in a Wlndows
32-Bit Environment .

DDE Function Summary in a Wlndows 32 B|t
Environment.

Naming Scheme for Data Items (OS/2)
Application for Personal Communications
DDE Functions Summary for Personal
Communications Version 5.5

SENDKEY Command List

DDE Menu Item API Functions

DDE Function Summary in an OS/2
Environment. .

Naming Scheme for Data Items

Topics for Personal Communications
Parameters Supplied by the SRPI Requester

© Copyright IBM Corp. 1989, 2001

o b~ wnN

.15

. 16
. 28

. 136

. 136

. 137

. 138

. 138

. 138

. 138

. 139

142

. 142
. 177
. 197

. 199

. 228

. 255

. 266

272
272

. 273
. 305
. 333

. 343
. 351

351
386

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

48.

49.
50.

51.

52.

53.
54.
55.

56.
57.
58.
59.

60.
61.

Parameters Returned to the SRPI Requester
DDM Query Reply Base Format

DDM Application Name Self-Defining
Parameter. .

DDM PCLK Au><|I|ary DeV|ce Self Deflnlng
Parameter. .

Base DDM Query Reply Format Wlth Name
and Direct Access Self-Defining Parameters
Base DDM Query Reply Format with Direct
Access and Name Self-Defining Parameters
IBM Auxiliary Device Base Format with
Direct Access Self-Defining Parameter

IBM Auxiliary Device Direct Access
Self-Defining Parameter .

IBM Auxiliary Device PCLK Self- Deflnlng
Parameter.

OEM Auxiliary DeV|ce Base Format Wlth
Direct Access Self-Defining Parameter
OEM Auxiliary Device Direct Access
Self-Defining Parameter .

IBM Auxiliary Device PCLK Self- Deflnlng
Parameter. . .

CPR Query Reply Buffer Format .

IBM Product-Defined Query Reply Base
Format.

Valid REFID and SSID Values for the IBM
Product-Defined Query Reply .

IBM Product-Defined Direct Access
Self-Defining Parameter .

IBM DIA Base Format. .

IBM Product-Defined Direct Access
Self-Defining Parameter .

Type 1 Return Code Definitions and
Descriptions .

Type 3 Return Code Deflnltlons and
Descriptions .

Class Definitions for Type 2 and Type 3
Exception Code Values for Type 2 and Type 3
Exception Object Values for Type 2 and Type
3. . ..

Naming Scheme for Data Items .
DDE Functions in a 16-Bit Environment
SENDKEY Command List

Summary of DDE Functions in a 16- Blt
Environment.

Prerequisite Calls for Functlons .o
EHLLAPI and REXX EHLLAPI Functions

388

. 391

. 392

. 392

. 392

. 393

. 395

. 396

. 396

. 396

. 397

. 397
. 398

. 399

. 399

. 400
. 400

. 401

. 412

. 415

415
416

. 416
. 419

420

. 446

. 482
. 490

491

Xi

Xil Emulator Programming

About This Book

This book provides necessary programming information for you to use the IBM®
Personal Communications for Windows® and the IBM Personal Communications
AS/400® for Windows, and 0S/2®, Emulator High-Level Language Application
Program Interface (EHLLAPI), Dynamic Data Exchange (DDE), Personal
Communications Session APl (PCSAPI), and Server-Requester Programming
Interface (SRPI). The Host Access Class Library is described in IBM Personal
Communications Version 5.5 Host Access Class Library.

EHLLAPI/DDE/PCSAPI is used with Personal Communications to provide a way
for users and programmers to access the host presentation space with a set of
functions that can be called from an application program running in a workstation
session.

If you want only to get started using Personal Communications or have no interest
in using the programming interface, refer to Quick Beginnings or Personal
Communications Version 4.3 for OS/2 Quick Beginnings.

In this book, Windows refers to Windows 95, Windows 98, Windows NT, Windows
Me, and Windows 2000. When information is specific to only Windows 95,
Windows 98, Windows NT, Windows Me, or Windows 2000, this will be indicated
in the text.

Who Should Read This Book

This book is intended for programmers who write application programs that use
the APIs documented in this book.

A working knowledge of Windows or OS/2 is assumed. For information about
Windows and OS/2, refer to the list of publications under I'\Where To Find Mord
Information™

The programmer must also be familiar with connecting to a host system from a
terminal or from a workstation with terminal emulation software.

This book assumes you are familiar with the language and the compiler that you
are using. For information on how to write, compile, or link-edit programs, refer to
Where To Find Mare Information for the appropriate references for the specific
language you are using.

Where To Find More Information

The Personal Communications library includes the following publications:

* IBM Personal Communications for Windows, Version 5.5 CD-ROM Guide to
Installation, GC31-8079-06

* IBM Personal Communications AS/400 for Windows, Version 5.5 CD-ROM Guide to
Installation, GC31-8080-06

* IBM Personal Communications for Windows, Version 5.5 Quick Beginnings,
GC31-8679-02

* IBM Personal Communications for Windows, Version 5.5 Access Feature, SC31-8684-02

* |IBM Personal Communications for Windows, Version 5.5 5250 Emulator User’s
Reference, SC31-8837-00

© Copyright IBM Corp. 1989, 2001 Xiii

* IBM Personal Communications for Windows, Version 5.5 3270 Emulator User’s
Reference, SC31-8838-00

* IBM Personal Communications for Windows, Version 5.5 VT Emulator User’s
Reference, SC31-8839-00

* |IBM Personal Communications for Windows, Version 5.5 Administrator’s Guide and
Reference, SC31-8840-00

* IBM Personal Communications for Windows, Version 5.5 Emulator Programming,
SC31-8478-05

* IBM Personal Communications for Windows, Version 5.5 Client/Server
Communications Programming, SC31-8479-05

* IBM Personal Communications for Windows, Version 5.5 System Management
Programming, SC31-8480-05

* IBM Personal Communications for Windows, Version 5.5 CM Mouse Support User’s
Guide and Reference

* IBM Personal Communications for Windows, Version 5.5 Host Access Class Library,
SC31-8685-02

* IBM Personal Communications for Windows, Version 5.5 Configuration File Reference,
SC31-8655-04

In addition to the printed books, there are Hypertext Markup Language (HTML)
documents provided with Personal Communications:

Host Access Class Library
This HTML document describes how to write an ActiveX/OLE
2.0—-compliant application to use Personal Communications as an
embedded object.

Host Access Beans for Java
This HTML document describes Personal Communications emulator
functions delivered as a set of JavaBeans™ .

Open Host Interface Objects (OHIO) for Java
This HTML document describes how to write an OHIO-compliant
application to use Personal Communications as an embedded object.

Following is a list of related publications:
» Personal Communications Version 4.3 for OS/2 Quick Beginnings, GC31-8795
* Personal Communications Version 4.3 for OS/2 Reference, SC31-8796

* IBM 3270 Information Display System Data Stream Programmer’s Reference,
GA23-0059

* IBM 5250 Information Display System Functions Reference Manual, SA21-9247

Refer to the IBM Glossary of Computing Terms at
http://www.networking.ibm.com/nsg/nsgmain.htm for definitions of technical
terms used throughout this book.

What's New in This Edition

Support for Microsoft® Visual C++ 6.0
IBM Personal Communications Version 5.5 supports Microsoft Visual C++
4.0 and higher, including Version 5.5

EHLLAPI Unicode Support for Code Page 1390/1399 and 1137
IBM Personal Communications Version 5.5 supports Japanese code page
1390/1399 and Hindi code page 1137 on a Unicode session for certain

EHLLAPI functions. For more information see, Elnicade Support for Codd

Pages 1390/1399 and 1137” on page 27

XiV Emulator Programming

Notation

A table at the beginning of each section explains APl or DDE functions |n

Whether a function is supported for the products that provide the function
described in the section. Yes means it is supported for a host type, and No means
not supported. For example, the following table indicates that a function is
available for 3270 and VT sessions but not for 5250 sessions.

3270 5250 VT
Yes No Yes

About This Book

XV

XVi Emulator Programming

Chapter 1. Introduction to Emulator APIs

The IBM Personal Communications product supplies several application
programming interfaces (APIs). Each interface has a specific set of functions and
may be used for different purposes. Choose the programming interface that best
matches the functional requirements of your application. Some applications may
use more than one interface to achieve the desired results. The programming
interfaces are:

* Emulator High Level Language APl (EHLLAPI): This interface provides
functions to access emulator "presentation space” data such as characters on the
host screen. It also provides functions for sending keystrokes to the host,
intercepting user-entered keystrokes, querying the status of the host session,
uploading and downloading files, and other functions. This interface is often
used for automated operator applications which read host screens and enter

keystrokes without direct user intervention. See t‘Chapter 3 EHI | AP
— IBM Standard HLLAPI Support: This is a standard programming interface
which allows programmatic access to a host emulator session. See

— IBM Enhanced HLLAPI Support: This interface is based on the IBM
Standard HLLAPI interface. It provides all of the existing functionality but
uses modified data structures. See I‘Chapter 2 _Introduction to IRM Standard
EHLLAPI_IBM Enhanced EHI | API and WinHI | AP| Programming” on
hage .

— Windows High Level Language APl (WinHLLAPI): This interface provides
much of the same functionality of IBM Standard EHLLAPI and adds some
extensions that take advantage of the Windows environment. See

— REXX EHLLAPI: This allows programmers who are using EHLLAPI to write
REXX language application programs.

* Dynamic Data Exchange (DDE): This interface is similar to the EHLLAPI
interface in that it provides a programmable means to read the host screen, send
keystrokes, and perform related functions. It has some additional functions for
access to the emulator clipping rectangle, intercepting mouse events, and
addlng/removmg commands on the emulator menu bar. See t‘Chapter 6. DDH

* Personal Communications Session APl (PCSAPI): This interface is used to start,
stoE, and control emulator sessions. See EChapter 5 PCSAP| Functions” od

» Server-Requestor Programming Interface (SRPI): This interface is used in
cooperation with an IBM Enhanced Connectivity Facility (ECF) application
running on a host system. This API provides functions for writing synchronous
call-return interfaces to remote server programs. See

* IBM Personal Communications Host Access Class Library (ECL): ECL is a set
of objects that allow application programmers and scripting language writers to
access host applications easily and quickly. Personal Communications supports
three different ECL layers (C++ objects, ActiveAutomation (OLE), and

© Copyright IBM Corp. 1989, 2001 1

LotusScript Extension (LSX)). Refer to Personal Communications Version 5.5 Host
Access Class Library (HACL) for more details.

Cross Platform Support

The emulator programming interfaces are provided across a variety of workstation
platforms. On some platforms 16- and 32-bit interfaces may be provided. Note that
support for emulator APIs on a particular platform requires a licensed copy of IBM
Personal Communications for that platform.

The following table shows the emulator API support on various platforms:

Table 1. Emulator API Support

Supported PCOM Emulator APIs PCOM DOS PCOM 0OS/2 | PCOM Windows
IBM Standard EHLLAPI (16-bit) Yes Yes Yes
IBM Standard EHLLAPI (32-bit) Yes
IBM Standard EHLLAPI Yes Yes
(DOS-mode)*

IBM Enhanced EHLLAPI Yes Yes
(DOS-mode)*

EHLLAPI (WinOS/2-mode)** Yes

WinHLLAPI (16-bit) Yes
WinHLLAPI (32-bit) Yes
PCSAPI (16-bit) Yes
PCSAPI (32-bit) Yes Yes
DDE (16-bit) Yes Yes
DDE (32-bit) Yes Yes
DDE (WinOS/2-mode)** Yes

SRPI (16-bit) Yes Yes
SRPI (32-bit) Yes Yes
Host Access Class Library Yes
REXX Yes Yes
Notes:

1. * DOS-mode is support for DOS applications in a DOS-compatibility mode of
the operating system; for example the DOS emulation window of OS/2.

2. ** WinOS2-mode is support for 16-bit Windows applications in a Win-OS2
session on OS/2 using the Personal Communications for OS/2 product.

3. PCOM in this table refers to Personal Communications; PCOM Windows refers
to Personal Communications for Windows, Version 5.5.

Using API Header Files

The application program should include operating system header files before
including API header files. For example:

#include <windows.h> // Windows main header
#include "pcsapi.h" // PComm PCSAPI header

2 Emulator Programming

Critical Sections

Use critical sections (Windows EnterCriticalSection function, OS/2
DosEnterCritSec) carefully when your program calls emulator APIs. Do not make
emulator API calls within a critical section. If one thread of an application
establishes a critical section and another thread is within an emulator API call, the
call is suspended until you exit from the critical section.

During processing of an API call, all signals (except numeric coprocessor signals)
are delayed until the call completes or until the call needs to wait for incoming
data. Also, TerminateProcess issued from another process is held until the
application completes an API call it might be processing.

Stack Size

Emulator APIs use the calling program’s stack when they are executed. The
operating system, the application, and the API all require stack space for dynamic
variables and function parameters. At least 8196 bytes (8K) of stack space should
be available at the time of an API call. It is the responsibility of the application
program to ensure sufficient stack space is available for the API.

Sample Programs

Several sample programs are provided, each of which illustrates the use of one of
the Personal Communications APIs. If you choose to install the sample programs,
they will be installed in the default directory: \SAMPLES for Windows, or
\SDK\SAMPLES for OS/2.

Note: International Business Machines Corporation provides these files as is,
without warranty of any kind, either express or implied, including, but not
limited to, the implied warranties of merchantability or fitness for a
particular purpose.

The sample program files include source and supporting files for the following
Personal Communications APIs:

* Emulator High-Level Language Programming Interface (EHLLAPI)
* Dynamic Data Exchange (DDE)

» Server-Requester Programming Interface (SRPI)

* PCSAPI Functions

The following files are installed in the \SAMPLES directory for Windows, or the
\SDK\SAMPLES directory for OS/2:

Table 2. Sample Program Files

File Name Description

DDE_C.H DDE include file

EHLAPI32.H IBM standard 32-bit EHLLAPI include file
WHLLAPI.H WInHLLAPI 16-bit include file

HAPI_C.H EHLLAPI include file

PCSAPI.H PCSAPI include file

PCSCALLS.LIB Import library for standard interface
PCSCAL32.LIB Import library for enhanced interface

Chapter 1. Introduction to Emulator APIs

4

Table 2. Sample Program Files (continued)

File Name Description

EHLAPI32.LIB Import library for IBM Standard 32-bit EHLLAPI interface
WHLLAPIL.LIB Import library for WinHLLAPI 16-bit interface
WHLAPI32.LIB Import library for WinHLLAPI 32-bit interface
UUCCPRB.H SRPI include file

The following subdirectories are created in the \SAMPLES directory for Windows,
or \SDK\SAMPLES directory for OS/2:

Table 3. Sample Program Subdirectories

File Name Description

DDXFER Shows how EHLLAPI can be used to create a “Drag and Drop”
application; in this case, for file transfer

ECL HACL sample files

HLLSMP Shows how to use EHLLAPI to request a keystroke and log on to a VM
system

LISTFILE Illustrates how DDE can make use of the LOAD button to transfer files
from the host

PCSMAIN Illustrates the use of PCSAPI to start and stop sessions, query the
session status, and query the profile for the session

SPL2FILE A program that uses DDE to save an AS/400 spool file as an ASCII file
on the PC

SRPSMP Illustrates the use of the Server Requester Programming Interface
(SRPI)

VBDDE VBDDE sample files

VBHLLAPI VBHLLAPI sample files

VBPCSAPI VBPCSAPI sample files

Emulator Programming

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM
Enhanced EHLLAPI and WinHLLAPI Programming

This chapter provides information needed to incorporate IBM Standard EHLLAPI
(16- and 32-bit), WinHLLAPI (16- and 32-bit), and IBM Enhanced 32-bit EHLLAPI
(EHLAPI32) functions into applications written in a high level language. It
provides details on call format, memory allocation considerations, initializing the
interfaces, and compiling and linking applications. Also included is a short sample
EHLLAPI program and the compile/link instructions used to build it. Finally, a set
of possible uses for the EHLLAPI interface (scenarios) is described.

An EHLLAPI application is any application program which uses the EHLLAPI
interface to access the host 3270/5250/VT presentation space. The presentation
space includes the visible emulator character data, fields and attribute data,
keystroke data, and other information.

EHLLAPI Overviews

Following are overviews for HLLAPI programming interfaces.

IBM Standard EHLLAPI

EHLLAPI is a standard programming interface which allows programmatic access
to a host emulator session. Functions are provided for reading host screen data
(such as the characters and attributes), for sending keystrokes, and performing
other emulator-related functions.

The EHLLAPI interface is a single call-point interface. There is a single callable API
through which all EHLLAPI functions are requested. On each call to the interface
the application provides a function number which identifies the function
requested, a pointer to a data buffer, a pointer to the length of the data buffer, and

a pointer to a return code (see FEHLLAPI Call Format” on page f).

WinHLLAPI

WInHLLAPI is based on the familiar EHLLAPIL.API. It encompasses all of the
existing functionality and adds extensions that take advantage of the Windows
message driven environment. Users of the IBM Personal Communications
EHLLAPI interface will notice no functional difference unless they incorporate the
WinHLLAPI extensions.

The WinHLLAPI extension functions and any functions that deviate from the
EHLLAPI form are described in EChapter 4 WinHLLAP| Extension Functions” on
m. For information on common functions, refer to LC.ha.p.teﬂ_EI:l.l_l_ARﬂ

WinHLLAPI and IBM Standard EHLLAPI

The entry symbol for WinHLLAPI, is appropriately, WinHLLAPI. EHLLAPI users
wishing to switch to the WinHLLAPI implementation must change from the hllapi
standard entry. New users should follow all of the directions in EqWJ

EHLLAPI Functions” on page 27, and use the WinHLLAPI entry in place of the

standard hllapi entry.

© Copyright IBM Corp. 1989, 2001 5

IBM Enhanced EHLLAPI and IBM Standard EHLLAPI

IBM Enhanced EHLLAPI is based on the familiar EHLLAPI API. It encompasses all
of the existing functionality but takes advantage of the 32-bit environment and
uses modified data structures. Standard interface users wishing to switch to IBM
Enhanced 32-bit EHLLAPI need to change only the entry symbol from LPWORD
to LPINT in the first, third, and fourth parameters. New users should use the
procedures in the following sections.

Languages

Any programming language which can invoke an entry point in a DLL with the
"Pascal” calling convention can be used to execute EHLLAPI functions. However,
the Personal Communications EHLLAPI toolkit provides header files and function
prototypes only for the C++ languages. A clear understanding of data structure
layout and calling conventions is required to use any other language. The
EHLLAPI toolkit supports the following C/C++ compilers:

+ IBM VisualAge® for C/C++ (for Windows and OS/2)

* Microsoft Visual C/C++ Version 4.0 and higher (Windows)

Most other C/C++ compilers will also work with the toolkit.

EHLLAPI C/C++ applications must include the Personal Communications
EHLLAPI header file (HAPI_C.H). This file defines the layout of data structures
and provides a prototype for the EHLLAPI entry point.

Note: The data structure layout for 16- and 32-bit applications are not the same

(see ‘'Standard and Enhanced Interface Cansiderations” on page 21).

EHLLAPI Call Format

The EHLLAPI entry point (hllapi) is always called with the following four
parameters:

1. EHLLAPI Function Number (input)
2. Data Buffer (input/output)

3. Buffer Length (input/output)

4. Position (input); Return Code (output)

The prototype for IBM Standard EHLLAPI is:
[Tong h1lapi (LPWORD, LPSTR, LPWORD, LPWORD);

The prototype for IBM Enhanced EHLLAPI is:
[Tong h1lapi (LPINT, LPSTR, LPINT, LPINT);

Each parameter is passed by reference not by value. Thus each parameter to the
function call must be a pointer to the value, not the value itself. For example, the
following is a correct example of calling the EHLLAPI Query Session Status
function:

#include "hapi_c.h"
struct HLDQuerySessionStatus QueryData;

int Func, Len, Rc;

long Rc;

memset (QueryData, 0, sizeof(QueryData)); // Init buffer
QueryData.qsst_shortname = 'A'; // Session to query
Func = HA_QUERY_SESSION_STATUS; // Function number

6 Emulator Programming

Len = sizeof(QueryData); // Len of buffer
Rc = 0; // Unused on input

h1lapi (&Func, (char *)&QueryData, &Len, &Rc); // Call EHLLAPI
if (Rc !=0) { // Check return code
// ...Error handling

}

All the parameters in the hllapi call are pointers and the return code of the
EHLLAPI function is returned in the value of the 4th parameter, not as the value
of the function. For example, the following is not correct:

if (h1lapi(&Func, (char x)&QueryData, &Len, &Rc) != 0) { // WRONG!

// ...Error handling
1

Although the hllapi function is defined to return a long data type for IBM
Standard and Enhanced EHLLAPI, and void data type for WinHLLAPI, its value is
undefined and should not be used.

The second through fourth parameters of the hllapi call can return information to
the application. The description of each EHLLAPI function describes what, if any,
information is returned in these parameters.

Data Structures

Many EHLLAPI functions use a formatted data structure to pass information to or
from the application program. The description of each function shows the layout of
the data structure. The data passed to or from the EHLLAPI function must exist in
storage exactly as documented, byte for byte. Note that the structure layout is the
same for all IBM Standard and WinHLLAPI 16- and 32-bit applications. Data
structures for the IBM Enhanced 32-bit applications are packed to a 4-byte
alignment.

It is highly recommended that the supplied header file and data structure definitions
be used to ensure proper data alignment and layout. Although it is technically
possible, the following is not recommended:

char QueryData[20]; // Not recommended

Func = HA_QUERY_SESSION_STATUS;
h1lapi(&Func, QueryData, &Len, &Rc);
if (QueryData[13] == 'F') {

// ...this is a 5250 session
1

The recommended way to write this function would be:

#include "hapi_c.h"
struct HLDQuerySessionStatus QueryData; // Recommended

Func = HA_QUERY_SESSION_STATUS;
h1lapi(&Func, (char *)&QueryData, &Len, &Rc);
if (QueryData.gsst_sestype == 'F') {
// ...this is a 5250 session
1

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 7

Memory Allocation

EHLLAPI functions do not allocate or free memory. The application program must
preallocate buffer space for EHLLAPI functions which require it before calling the
hllapi entry point. The buffer space may be pre-allocated as a dynamic variable
such as:

struct HLDQuerySessionStatus QueryBuff;

or it may be allocated by a call to a C library or operating system function such as:
struct HLDQuerySessionStatus *QueryBuff;

QueryBuff = malloc(sizeof(struct HLDQuerySessionStatus));

In any case, the application is responsible for allocating sufficient buffer space
before calling EHLLAPI functions and for freeing buffers when they are not
needed.

EHLLAPI Return Codes

8

EHLLAPI functions return a completion code or return codein the 4th parameter of
the hllapi function call (except for the Convert Position or RowCol (99) function).
The return code indicates the success or failure of the requested function.

Unless indicated otherwise in the description of each function, the following table
shows the meaning of each return code value. Some functions may have a slightly
different interpretation of these return codes; refer to the individual function
descriptions for details.

Table 4. EHLLAPI Return Codes

Return Code | Explanation

0 The function successfully executed, or no update since the last call was
issued.

1 An incorrect host presentation space ID was specified. The specified session
either was not connected, does not exist, or is a logical printer session.

2 A parameter error was encountered, or an incorrect function number was
specified. (Refer to the individual function for details.)

4 The execution of the function was inhibited because the target presentation
space was busy, in X CLOCK state (X []), or in X SYSTEM state.

5 The execution of the function was inhibited for some reason other than
those stated in return code 4.

6 A data error was encountered due to specification of an incorrect parameter
(for example, a length error causing truncation).

7 The specified presentation space position was not valid.

8 A functional procedure error was encountered (for example, use of
conflicting functions or missing prerequisite functions).

9 A system error was encountered.

10 This function is not available for EHLLAPI.

11 This resource is not available.

12 This session stopped.

24 The string was not found, or the presentation space is unformatted.

25 Keystrokes were not available on input queue.

Emulator Programming

Table 4. EHLLAPI Return Codes (continued)

Return Code [Explanation

26 A host event occurred. See Query Host Update (24) for details.

27 File transfer was ended by a Ctrl+Break command.

28 Field length was 0.

31 Keystroke queue overflow. Keystrokes were lost.

32 An application has already connected to this session for communications.

33 Reserved.

34 The message sent to the host was canceled.

35 The message sent from the host was canceled.

36 Contact with the host was lost.

37 Inbound communication has been disabled.

38 The requested function has not completed its execution.

39 Another DDM session is already connected.

40 The disconnection attempt was successful, but there were asynchronous
requests that had not been completed at the time of the disconnection.

41 The buffer you requested is being used by another application.

42 There are no outstanding requests that match.

43 The API was already locked by another EHLLAPI application (on LOCK) or
API not locked (on UNLOCK).

Compiling and Linking

Applications using EHLLAPI functions must include the appropriate header file to
obtain the proper function prototypes, constants, and data structure definitions.
These header files may be used with any of the supported C/C++ compilers (see

Languages” an page). If a different compiler or language is used, then you must

provide your own equivalent definitions and structures.

There are two possible ways to link the application program, depending on how
the entry point is to be resolved. The simplest way is to statically link the
application with the appropriate Personal Communications library. This will
resolve the entry point at link time. The operating system will load the correct DLL
with the application when it starts. Another way to link to the entry point is to
perform dynamic linking. In this case, the application uses operating system calls
to load the correct DLL and obtain the entry point address at run time.

The following table shows which header files to use, which .LIB should be used
for static linking, and which .DLL should be used for dynamic loading.

Interface Entry Point Header File LIB DLL
IBM Standard (16-bit) hllapi hapi_c.h PCSCALLS.DLL PCSHLL.DLL
IBM Standard (32-bit) hllapi ehlapi32.h EHLAPI32.LIB EHLAPI32.DLL
IBM Enhanced (32-bit) hllapi hapi_c.h PCSCAL32.LIB PCSHLL32.DLL
WInHLLAPI (16-bit) winhllapi whllapi.h WHLLAPI.LIB WHLLAPI.DLL
WinHLLAPI (32-bit) winhllapi whilapi.h WHLAPI32.LIB WHLAPI32.DLL

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 9

10

Static Link Method

Using the static link method the application can simply call the hllapi entry point
when needed such as:

#include "hapi_c.h"

int HFunc, HLen, HRc; // Function parameters
char HBuff[1]; // Function parameters
HFunc = HA_RESET_SYSTEM; // Run EHLLAPI function
HLen = 0;
HRc = 0;

h1lapi (&Func, HBuff, &HLen, &HRc);
if (HRc != 0) {

// ... EHLLAPI access error
}

When the application is linked, the appropriate Personal Communications library
files must be linked with the application executable code. For example, the
following link command might be used (IBM VisualAge C/C++):

ilink /de /noe pcscal32.1ib sample.obj

When the operating system loads an application constructed in this way, the
Personal Communications EHLLAPI module is loaded automatically.

Dynamic Link Method

Using the dynamic link method the application makes calls to the operating system
at run time to load the Personal Communications EHLLAPI module and to locate
the hllapi entry point within it. This method requires more code in the application
but gives the application greater control over error conditions. For example, the
application can display a specific error message to the user if the Personal
Communications EHLLAPI module cannot be found.

To use dynamic linking, the application needs to load the appropriate Personal
Communications module and locate the entry point. It is recommended that the
entry point be located by its ordinal number and not by name. The ordinal number
is defined in the header file. The following 32-bit Windows code loads the IBM
Standard 32-bit EHLLAPI module, locates the hllapi entry point, and makes an
EHLLAPI function call.

#include "hapi_c.h"

HMODULE Hmod; // Handle of PCSHLL32.DLL
long (APIENTRY hllapi)(int *, char %, int %, int *); // Function pointer

int HFunc, HLen, HRc; // Function parameters
char HBuff[1]; // Function parameters
Hmod = LoadLibrary("PCSHLL32.DLL"); // Load EHLLAPI module

if (Hmod == NULL) {
// ... Error, cannot Toad EHLLAPI module
}

h11api = GetProcAddress(Hmod, MAKEINTRESOURCE(ord_h1lapi));
// Get EHLLAPI entry point
if (h1lapi == NULL) {
// ... Error, cannot find EHLLAPI entry point
}

HFunc = HA_RESET_SYSTEM; // Run EHLLAPI function
HLen = 0;
HRc = 0;

Emulator Programming

(*h17api) (&Func, HBuff, &HLen, &HRc);
if (HRc != 0) {

// ... EHLLAPI access error
}

The following is similar code for 32-bit OS/2:
#include "hapi_c.h"

HMODULE Hmod; // ACS3EHAP.DLL handle
Tong (* APIENTRY hllapi) (int *, char *, int %, int *); // Func ptr

int HFunc, HLen, HRc; // Func parms

char HBuff[1]; // Func parms

if (DosLoadModule(NULL, 0, "ACS3EHAP", &HMod) != 0) { // Load HLLAPI module
// ...Error, cannot load EHLLAPI module
1

// Get EHLLAPI entry point

if (DosQueryProcAddr(Hmod, ord_hllapi, NULL, (PFN *)&hlappi) != 0) {
// ...Error, cannot find EHLLAPI entry point

1

HFunc = HA_RESET_SYSTEM; // Run HLLAPI function
HLen = 0;
HRc = 0;

(*h171api) (&HFunc, HBuff, &HLen, &HRc);
if (HRc != 0) {

// ... EHLLAPI access error
1

Multithreading

IBM Enhanced EHLLAPI (32-bit) and IBM Standard EHLLAPI 16-bit connect on a
per process basis. All threads access the same connected host session. The thread
that performs the connections must also perform the disconnection.

IBM Standard EHLLAPI (32-bit) and WinHLLAPI connect on a per thread basis.
Each thread must maintain its own connections. This allows a multithreaded
process to maintain connections to more than one connected host session at a time.
This eliminates the need for multi-process schemes when using a WinHLLAPI
program to coordinate data between different hosts. It also puts the burden of
connecting and disconnecting as necessary on the individual thread.

Presentation Spaces

Many EHLLAPI functions require a presentation space ID (PSID) to indicate which

host emulator session is to be used for the function. (This is also referred to as the
short session ID). A presentation space ID is a single character in the range A to Z.

There are a maximum of 26 sessions.

IBM Enhanced 32-Bit Interface Presentation Space IDs

For IBM Enhanced EHLLAPI applications, the session ID is extended with three
additional bytes. These extended session bytes must be set to zero for future
compatibility. This is most easily accomplished by setting the contents of EHLLAPI
buffers to all binary zero before filling them in with the required information. For
example, the following might be used to query the status of session B:

#include "hapi_c.h"

int HFunc, HLen, HRc; // Function parameters
struct HLDPMWindowStatus StatusData; // Function parameters

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 11

12

Func
HLen
HRc

HA_PM_WINDOW_STATUS;
sizeof(StatusData);
03

// Set data buffer to zeros and fill in request

memset (&StatusData, 0x00, sizeof(StatusData));
StatusData.cwin_shortname = 'B'; // Short session ID
StatusData.cwin_option = 0x02; // Query command

h1lapi(&Func, (char *)&StatusData, &HLen, &HRc);

Types of Presentation Spaces

An emulator session can be configured as a display session or a printer session.
EHLLAPI applications cannot connect to printer or router sessions of PC400. The
Query Sessions (10) function can be used to determine the type of a particular
session.

Size of Presentation Spaces

An emulator display session can be configured for a range of screen sizes from
1920 bytes (24x80 screen size) to 9920 bytes (62x160 screen size). Some EHLLAPI
functions such as Copy PS to String (8) require the application to allocate enough
storage to hold (possibly) the entire presentation space. The size of the presentation
space for a given session can be obtained using the Query Session Status (22)
function.

Presentation Space IDs

EHLLAPI functions interact with only one presentation space at a time. The
presentation space ID (PSID) is used to identify the particular presentation space in
which a function is to operate.

For some functions, the PSID is contained in a preceding call to the Connect
Presentation Space (1) function. For other functions, the PSID is contained in the
calling data string parameter.

Host-Connected Presentation Space

Connection to the host presentation space (or session) is controlled by using the
Connect Presentation Space (1) and Disconnect Presentation Space (2) functions.
The status of the connection determines whether some functions can be executed.
It also affects how the PSID is defined. The following text explains how to control
the status of the connection to the host presentation space:

« At any given time, there can be either no host-connected presentation space, or
there can be one and only one host-connected presentation space.

* There is no default host-connected presentation space.

* Following a connect, there is one and only one host-connected presentation
space. The host presentation space that is connected is identified in the calling
data string parameter of the connect function.

* A subsequent call to connect can be executed with no intervening disconnect. In
this case, there is still one and only one host-connected presentation space.
Again, the host presentation space that is connected is identified in the calling
data string parameter of the connect function.

» Following a disconnect, there is no host-connected presentation space. This rule
applies following multiple consecutive calls to connect or following a single call
to connect.

* You cannot connect to a logical printer session.

Emulator Programming

Presentation Space ID Handling

The PSID is used to specify the host presentation space (or session) in which you
desire a function to operate. The way the PSID is handled is affected by two
factors:

1. The method used to specify the PSID:

a. As the calling data string parameter of a preceding call to the Connect
Presentation Space (1) function

b. As a character in the calling data string of the function being executed.
Handling varies depending on whether the character is:

* A letter A through Z
* A blank or a null
2. The status of the connection to the host presentation space.

The following paragraphs describe how the PSID is handled for the various
combinations of these two factors.

PSID Handling for Functions Requiring Connect

Some functions interact only with the host-connected presentation space. These
functions require the Connect Presentation Space (1) function as a prerequisite
call. The PSID for these functions is determined by the Connect Presentation
Space (1) and the Disconnect Presentation Space (2) functions as follows:

* When there is no host-connected presentation space, these functions do not
interact with any presentation space. A return code of 1 is generated.

* When there is one host-connected presentation space, these functions interact
with the presentation space specified in the calling data string parameter of the
most recent call to the Connect Presentation Space (1) function.

PSID Handling for Functions Not Requiring Connect
Some functions can interact with a host presentation space whether it is connected

or not. These functions allow you to specify the PSID in the calling data string
parameter. They are as follows:

» Connect Presentation Space (1)
» Convert Position RowCol (99)
* Get Key (51)

* Post Intercept Status (52)

* Query Close Intercept (42)

* Query Host Update (24)

* Query Session Status (22)

» Start Close Intercept (41)

» Start Host Notification (23)

» Start Keystroke Intercept (50)
» Stop Close Intercept (43)

» Stop Host Notification (25)

» Stop Keystroke Intercept (53)

All except the first two of these functions allow you to specify the PSID using
either:

* A letter A through Z
¢ A blank or a null

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 13

The first two functions require that a letter be used to specify the PSID.

When there is no host-connected presentation space, the following rules apply:

» The function can interact with any host presentation space if a letter, not a blank
or a null, is used to specify the PSID.

* If a blank or a null is used to specify the PSID, a return code of 1 is generated.
The function does not execute.

* Using a letter to specify the PSID does not establish a host-connected
presentation space, except on a connect PS request.

When there is one host-connected presentation space, the following rules apply:

» The function can interact with any host presentation space if a letter is used to
specify the PSID.

» If a blank or a null is used to specify the PSID, the function operates in the
presentation space identified in the most recent call to the Connect Presentation
Space (1) function.

» Using a letter to specify the PSID does not change the established PSID of the
host-connected presentation space, except on a connect PS request.

The following functions are available for printer sessions:
» Start Host Notification (23)

* Query Host Update (24)

» Stop Host Notification (25)

Sharing EHLLAPI Presentation Space between Processes

More than one EHLLAPI application can share a presentation space if the
applications support sharing (that is, if they were developed to work together or if
they exhibit predictable behavior?). To determine which applications support
sharing, EHLLAPI applications are specified as one of following types:

* Supervisory

» Exclusive write with read privilege allowed

» Exclusive write without read privilege allowed

» Super write

* Read

The type of shared access can be defined by setting the following read and write
sharing options for each function in the Set Session Parameters (9) function call:

SUPER_WRITE

The application allows other applications that allow sharing and have write access
permissions to concurrently connect to the same presentation space. The
originating application performs supervisory-type functions but does not create
errors for other applications that share the presentation space.

WRITE_SUPER
The application requires write access and allows only supervisory applications to
concurrently connect to its presentation space. This is the default value.

1. This means that two EHLLAPI programs will not be vying for the same Presentation Space at the same time; or that there is logic
in those programs which will allow the program to wait until the PS is available; or that the applications never use the Session in
a way which would lock out other applications.

14 Emulator Programming

WRITE_WRITE
The application requires write access and allows partner or other applications with
predictable behavior to share the presentation space.

WRITE_READ

The application requires write access and allows other applications that perform
read-only functions to share the presentation space. The application is also allowed
to copy the presentation space and perform other read-only operations as usual.

WRITE_NONE

The application has exclusive use of the presentation space. No other applications
are allowed to share the presentation space, including supervisory applications.
The application is allowed to copy the presentation space and perform read-only
operations as usual.

READ_WRITE

The application requires only read access to monitor the presentation space and
allows other applications that perform read or write, or both, functions to share the
presentation space. The application is also allowed to copy the presentation space
and perform other read-only operations as usual.

Note: Sharing presentation space is not available between threads in a process.

Table 5. EHLLAPI Read and Write Sharing Option Combinations

Calling Super_Write Write_Super Write_Write Write_Read Write_None Read_Write
Application

Super_Write Yes Yes Yes No No Yes
Write_Super Yes No No No No No
(default)

Write_Write Yes No Yes No No Yes
Write_Read No No No No No Yes
Write_None No No No No No No
Read_Write Yes No Yes Yes No Yes

In addition to specifying compatible read and write access options, applications
that are designed to work together but cannot allow others to work in the same
presentation space can optionally define a keyword, KEY$nnnnnnnn, in the Set
Session Parameters (9) function call. This keyword allows only those applications
that use the same keyword to share the presentation space.

Notes:

1. The Start Keystroke Intercept (50) function is non-shareable. Only one
application at a time can trap keystrokes.

2. The Connect To Presentation Space (1) and Start Keystroke Intercept (50)
functions share common subsystem functions. Successful requests by an
application to share either of these functions can affect the requests of these
two functions by other applications. For example, if application A successfully
requests a Connect To Presentation Space (1) with Write_Read access and
KEY$abcdefgh as the keyword, a request by application B to Connect To
Presentation Space (1) or Start Keystroke Intercept (50) is successful only if
both applications have set compatible read and write options.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 15

16

Table 6. Prerequisite Functions and Associated Dependent Functions

Prerequisite Call Functions Access

Allocate Communications Free Communication Buffer (120) N/A

Buffer (120)

Connect Window Change PS Window Name (106)

Service (101) Change Switch List Name (105) Write
Disconnect Window Read
Service (102) Query=Read
Query Window Service (103) Set=Write
Window Status (104) Write

Connect Presentation Copy Field to String (34) Read

Space (1) Copy OIA (13) Read
Copy Presentation Space (5) Read
Copy Presentation Space to String (8) Read
Copy String to Field (33) Write
Copy String to Presentation Space (15) | Write
Disconnect Presentation Space (2) Write
Find Field Length (32) Read
Find Field Position (31) Read
Query Cursor Location (7) Read
Query Field Attribute (14) Read
Release (12) Write
Reserve (11) Write
Search Field (30) Read
Search Presentation Space (6) Read
Send key (3) Read
Set Cursor (40) Write
Start Playing Macro (110) Write
Wait (4) Read

Connect Structured Field (120) | Disconnect Structured Field (121) N/A
Get Request Completion (125)
Read Structured Field (126)
Write Structured Field (127)

Read Structured Field (126) Get Request Completion (125) N/A

Start Close Intercept (41) Query Close Intercept (42) N/A
Stop Close Intercept (43)

Start Host Notification (23) Query Host Update (24)
Stop Host Notification (25)

Start Keystroke Intercept (50) |Get Key (51) N/A
Post Intercept Status (52)
Stop Keystroke Intercept (53)

Write Structured Field (127) Get Request Completion (125) N/A

Locking Presentation Space
An application, even if specified with shared presentation space, can obtain

exclusive control of a presentation space by using the Lock Presentation Space

API (60) or the Lock Windows Services API (61) functions. Requests by the other
applications to use a presentation space locked by these functions are queued and
processed in first-in-first-out (FIFO) order when the originating application unlocks

the presentation space.

If the application that locked the presentation space does not unlock it by using the
same call with an Unlock option or Reset System (21) call, the lock is removed
when the application terminates or the session stops.

Emulator Programming

ASCIl Mnemonics

Keystrokes originating at a host keyboard might have a corresponding ASCII
value. The response of the Get Key (51) function to a keystroke depends on
whether the key is defined and also on whether the key is defined as an ASCII
value or an ASCII mnemonic.

The keyboard for one session might not be capable of producing some codes
needed by the another session. ASCII mnemonics that represent these codes can be
included in the data string parameter of the Send Key (3) function.

The capabilities of the Send Key (3) function and the Get Key (51) function allow
sessions to exchange keystrokes that might not be represented by ASCII values or
by an available key. A set of mnemonics that can be generated from a keyboard is
provided. These mnemonics let you use ASCII characters to represent the special
function keys of the workstation keyboard.

Mnemonics for unshifted keys consist of the escape character followed by an
abbreviation. This is also true for the shift keys themselves, Upper shift, Alt, and
Ctrl. Mnemonics for shifted keys consist of the mnemonic for the shift key
followed by the mnemonic for the unshifted key. Hence the mnemonic for a shifted
key is a 4-character sequence of escape character, abbreviation, escape character,
abbreviation.

The default escape character is @. You can change the value of the escape character
to any other character with the ESC=c option of the Set Session Parameters (9)
function. The following text uses the default escape character, however.

Shift indicators that are not part of the ASCII character set are represented to the
host application by 2-byte ASCII mnemonics as follows:

Upper shift @S
Alt @A
Ctrl @r

Mnemonics for these shift indicators are never received separately by an
application. Likewise, they are never sent separately by an application. Shift
indicator mnemonics are always accompanied by a non-shift-indicator character or
mnemonic.

The abbreviations used make the mnemonics for special keys easy to remember.
An alphabetic key code has been used for the most common keys. For example,
the Clear key is C; the Tab key is T, and so on. Please note that the uppercase and
lowercase alphabetic characters are mnemonic abbreviations for different keys.

The following text describes the use of these functions.

General
All defined keys are represented by either:

* A 1-byte ASCII value that is part of the 256-element ASCII character set, or
* A 2-, 4-, or 6-byte ASCII mnemonic

To represent a key defined as an ASCII character, a 1-byte ASCII value that
corresponds to that character is used.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 17

18

To represent a key defined as a function, a 2-, 4-, or 6-byte ASCII mnemonic that
corresponds to that function is used. For example, to represent the backtab key, @B
is used. To represent PF1, @1 is used. To represent Erase Input, @AGF is used. See
the following lists:

@B
ec
@D
@E
@F
@H

eI
@J

6L
@N
@0
@p
@R
eT
eu
ev
@x
0z

@AGC
@AGD
@AGE
@AGF
@ACH
@AGI
@AGJ
@AGL
@AeQ
@AGR
@AGT
@AGU
@AGY
@AeZ
@AG9
@A@b

@AGC
@Aed

Left Tab
Clear

Delete

Enter

Erase EOF
Help (PC400)
Insert

Jump

Cursor Left
New Line
Space

Print

Reset

Right Tab
Cursor Up
Cursor Down
DBCS
Cursor Right

Test (PC400)
Word Delete
Field Exit

Erase Input
System Request
Insert Toggle
Cursor Select
Cursor Left Fast
Attention
Device Cancel

Print Presentation Space

Cursor Up Fast

Cursor Down Fast

Cursor Right Fast
Reverse Video

@0
01
02
@3
Q4
@5
06
07
@8
@9
@a
@b
@c
ed
Qe
ef
g

Underscore (PC/3270)

Home

PF1/F1
PF2/F2
PF3/F3
PF4/F4
PF5/F5
PF6/F6
PF7/F7
PF8/F8
PF9/F9

PF10/F10
PF11/F11
PF12/F12

PF13
PF14
PF15
PF16

Reset Reverse Video (PC/3270)

Red (PC/3270)

Notes:
1. The first @ symbol in the first table represents the escape character. The first

Emulator Programming

@AGe
QART
QARg
@A@h
QA@i
QA@j
QA@T
QAGt
@AGu
GAGv
GAQy
ARz
QAG-
AR+
QAG<
OSEE

Sex
@Sey

@h PF17
@i PF18
@j PF19
@k PF20
@1 PF21
@m PF22
@n PF23
@o PF24
@q End

Qu Page UP (PC400)
Qv Page Down (PC400)

@x PA1
@y PA2
6z PA3

ee @ (at) symbol
e$ Alternate Cursor
0< Backspace

Pink (PC/3270)

Green (PC/3270)

Yellow (PC/3270)

Blue (PC/3270)

Turquoise (PC/3270)

White (PC/3270)

Reset Host Color (PC/3270)
Print (Personal Computer)
Rollup (PC400)

Rolldown (PC400)

Forward Word Tab
Backward Word Tab

Field - (PC400)

Field + (PC400)

Record Backspace (PC400)
Print Presentation Space on Host
(PC400)

Dup

Field Mark

and second @ symbol in the second table is the escape character. The @ symbol
is the default escape character. You can change the value of the escape character
using the ESC=c option of the Set Session Parameters (9) function.

If you change the escape character to #, the literal sequences used to represent
the Backtab, Home, and Erase Input keys become #B, #0, and #A#F, respectively.

Also, the literal sequence used to represent the @ symbol becomes #@.

If you send the mnemonic for print screen (that is, either @P or @A@T), place it at
the end of the calling data string.

3. If you send the mnemonic for device cancel (that is, GA@R), it is passed through
with no error message; however, local copy is not stopped.

Get Key (51) Function
If the terminal operator types a key defined as an ASCII character, the host

application receives a 1-byte ASCII value that corresponds to that character.

If the operator types a key defined as a function, the host application receives a 2-,
4-, or 6-byte ASCII mnemonic that corresponds to that function. For example, if the
Backtab key is typed, @B is received. If PF1 is pressed, @1 is received. If Erase
Input is pressed, @AGF is received.

If the operator types a defined shift key combination, the host application receives
the ASCII character, or the 2-, 4-, or 6-byte ASCII mnemonic that corresponds to
the defined character or function.

If the operator types an individual key that is not defined, the Get Key (51)
function returns a return code of 20 and nothing is sent to the host application.

The Get Key (51) function prefixes all characters and mnemonics sent to the host
application with two ASCII characters. The first ASCII character is the PSID of the
host presentation space to which the keystrokes are sent. The other character is an
A, S, or M for ASCII, special shift, or mnemonic, respectively. See

Send Key (3) Function
To send an ASCII character to another session, include that character in the data

string parameter of the Send Key (3) function.

To send a function key to another session, include the ASCII mnemonic for that
function in the data string parameter of the Send Key (3) function.

If the Send Key (3) function sends an unrecognized mnemonic to the host session
a return code rejecting the key might result.

Debugging
As an aid in debugging EHLLAPI applications, the Trace Facility of Personal
Communications may be used. This facility will produce a log of all EHLLAPI
calls, parameters, return values, and return codes. For more information on using
the Trace Facility, refer to Personal Communications Version 5.5 Administrator’s Guide
and Reference.

A Simple EHLLAPI Sample Program

The following sample Windows application will enter the character string "Hello
World!" in the first input field of host session "A’.

#include <stdlib.h>
#include <stdio.h>
#include <windows.h>
#include "hapi_c.h"

int main(char **argv, int argc) {
int HFunc, HLen, HRc;
char HBuff[1];
struct HLDConnectPS ConnBuff;
// Send Key string for HOME+string+ENTER:
char SendString[] = "@OHello World!GE";

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 19

HFunc = HA_RESET_SYSTEM;
HLen = 0;
HRc = 0;

h1lapi (&HFunc, HBuff, &HLen, &HRc);

if (HRc != HARC_SUCCESS) {
printf("Unable to access EHLLAPI.\n");
return 1;

}

HFunc = HA_CONNECT_PS;
HLen sizeof (ConnBuff);
HRc 0;
memset (&ConnBuff, 0x00, sizeof(ConnBuff));
ConnBuff.stps_shortname = 'A';
h11api (&HFunc, (char x)&ConnBuff, &HLen, &HRc);
switch (HRc) {
case HARC_SUCCESS:
case HARC_BUSY:
case HARC_LOCKED: // A1l these are 0K
break;
case HARC_INVALID_PS:
printf("Host session A does not exist.\n");
return 1;
case HARC_UNAVAILABLE:
printf("Host session A is in use by another EHLLAPI application.\n");
return 1;
case HARC_SYSTEM_ERROR:
printf("System error connecting to session A.\n");
return 1;
default:
printf("Error connecting to session A.\n");
return 1;

}

HFunc HA_SENDKEY;
HLen strlen(SendString);
HRc 0;
h11api (&HFunc, SendString, &HLen, &HRc);
switch (HRc) {
case HARC_SUCCESS:
break;
case HARC_BUSY:
case HARC_LOCKED:
printf("Send failed, host session locked or busy.\n");
break;
default:
printf("Send failed.\n");
break;

}

HFunc
HLen 0;
HRc 0;

h1lapi (&HFunc, HBuff, &HLen, &HRc);

HA_DISCONNECT_PS;

printf("EHLLAPI program ended.\n");
return 0;

}

The following MAKEFILE file could be used to build this application with the IBM
VisualAge C/C++ for Windows compiler (assuming the source file is named
SAMPLE.C):

all: sample.exe

h1ldir
h111ib

C:\PCOMWIN\SAMPLES
C:\PCOMWIN\SAMPLES

20 Emulator Programming

.SUFFIXES: .C .0BJ

.c.obj:
icc.exe /Ti /Gh /Gm /Gd /C /I $(h11dir) /Tc $x.c

sample.exe: sample.obj
ilink.exe /de /noe $(h111ib)\pcscal32.1ib §xx

sample.obj: sample.c

The application could be built with the following command:

nmake /a all

Standard and Enhanced Interface Considerations

There is no functional difference between the standard and enhanced EHLLAPI
interfaces on a given platform. However there are other important differences:

* The enhanced EHLLAPI interface extends the presentation space ID (PSID) from
1 byte to 4 bytes. Currently the additional bytes are not used, but your
application should set them to binary zeros to ensure compatibility with future
versions of enhanced EHLLAPI.

» The position (offset) of data elements in memory buffers passed to and from
EHLLAPI functions are different. Data elements in enhanced EHLLAPI are
aligned to double-word boundaries. Data elements in standard EHLLAPI are not
aligned in any particular way. EHLLAPI applications should not be coded to set
or retrieve data in the buffers by offset (byte) values. Instead, the supplied data
structures in the HAPI_C.H file should be used to set and retrieve data
elements. This will ensure that data is set and retrieved from the correct position
for both 16- and 32-bit programs.

By prefilling EHLLAPI data buffers with binary zeros, and using the data
structures supplied in HAPI_C.H, an application can be compiled for standard or
enhanced operation without any source code changes. For example, the following
section of code would work for standard EHLLAPI but would fail for enhanced
EHLLAPI:

#include "hapi_c.h"
int Func, Len, Rc;

char Buff[18];
char SessType;

Func = HA_QUERY_SESSION_STATUS; // Function

Len = 18; // Buffer length

Rc = 03

Buff[0] = 'A' // Session to query

h1lapi (&Func, Buff, &Len, &Rc); // Execute function

SessType = Buff[9]; // Get session type

The above example would fail if compiled as a enhanced EHLLAPI application
because:

* The application does not set the extended session ID bytes to zero.
* The buffer length for this function is 20, not 18.
» The session type indicator is not at offset 9 in the data buffer, it is at offset 12.

The following is the same function written to work correctly if compiled for
standard or enhanced operation. Changed lines are indicated with a >:

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 21

22

#include "hapi_c.h"

int Func, Len, Rc;
> struct HLDQuerySessionStatus Buff;
char SessType;

Func = HA_QUERY_SESSION_STATUS; // Function
> Len = sizeof(Buff); // Buffer length
Rc = 0;
> memset (&Buff, 0x00, sizeof(Buff));// Zero buffer
> Buff.gsst_shortname = 'A'; // Session to query

h1lapi (&Func, (char *)&Buff, &Len, &Rc); // Execute function

> SessType = Buff.gsst_sestype; // Get session type

Host Automation Scenarios

The sample scenarios presented here provide conceptual information about
activities that can be facilitated by using EHLLAPI. The scenarios deal with the
duties your EHLLAPI programmed operator can perform in these areas:

» Host system operation, including:
— Search function
— Sending keystrokes

» Distributed processing, including:
— Data extraction
— File transfer

* Integrating interfaces

Scenario 1. A Search Function
There are four phases in a typical host system transaction:

1. Starting the transaction

2. Waiting for the host system to respond

3. Analyzing the response to see if it is the expected response
4. Extracting and using the data from the response

Your programmed operator can use a series of EHLLAPI functions to mimic these
actions. After determining the correct starting point for the host system transaction,
the programmed operator can call the Search Presentation Space (6) function to
determine which keyword messages or prompting messages are on the display
screen.

Next, the programmed operator can use the Send Key (3) function to type data
into a host system session and enter a host system transaction. Then the
programmed operator can:

* Use the Wait (4) function that waits for the X CLOCK, X [], or X SYSTEM
condition to end (or returns a keyboard-locked condition if the terminal has
locked up).

If the keyboard is inhibited, your EHLLAPI program can call the Copy OIA (13)
function to get more information about the error condition.

» Use the Search Presentation Space (6) function to look for an expected keyword
to validate that the proper response had been received.

* Use the Copy Presentation Space to String (8) function (or any of several data
access functions) to extract the desired data.

Emulator Programming

The Search Presentation Space (6) function is critical to simulate another task of
the terminal operator. Some host systems do not stay locked in X CLOCK, X [], or
X SYSTEM mode until they respond; instead, they quickly unlock the keyboard
and allow the operator to stack other requests. In this environment, the terminal
operator depends on some other visual prompt to know that the data has returned
(perhaps a screen title or label). The Search Presentation Space (6) function allows
your EHLLAPI program to search the presentation space while waiting. Also,
while waiting for a response, calling the Pause (18) function allows other DOS
sessions to share the central processing unit resource. The Pause (18) function has
an option that allows your EHLLAPI program to wait for a host system update
event to occur.

If no host system event occurs after a reasonable time-out period, your EHLLAPI
program could call a customized error message such as:

No Response From Host. Retry?

In this environment, program revisions become very important considerations,
because the programmed operator must be reprogrammed for even minor changes
in the display messages.

For example, if a terminal operator expects the message:
Enter Part Number:

as a prompt, he or she will probably be able to respond properly to an application
change that produces the message:

Enter Component Number:

However, because the programmed operator is looking for a literal keyword string,
subtle changes in message syntax, even as trivial as uppercase versus lowercase,
can make the program take a preprogrammed error action.

Scenario 2. Sending Keystrokes
There are several considerations that demand attention in designing programs that

send keystrokes to the host system. In some application environments, issuing a
command is as simple as typing a string and pressing Enter. Other applications
involve more complex formatted screens in which data can be entered into any one
of several fields. In this environment you must understand the keystrokes required
to fill in the display screen.

The Tab key mnemonic (@T; see [‘General” on page 17 for a full list of mnemonics)
can be used to skip between fields. When sending keystrokes to a field using the
Send Key (3) function, you should be aware of the field lengths and contents. If
you fill the fields completely and the next attribute byte is autoskip, your cursor
will then be moved to the next field. If you then issued a tab, you would skip to
yet another field.

Likewise, if your keystrokes do not completely fill the field, there might be data
left from prior input. You should use the Erase End of Field (EOF) command to
clear this residual data.

Scenario 3. Distributed Processing

Some applications fall into the category called collaborative. These applications
provide a single end-user interface, but their processing is performed at two or
more different physical locations.

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 23

24

An EHLLAPI application can interact with host system applications by intercepting
the communication between the host system and the terminal user. The host
system presentation space is the vehicle used to intercept this data. The local
application can request to be notified each time the presentation space is updated
or whenever an AID key is pressed by the operator.

This workstation application can then cooperate with a host system application in
any of the following ways:

» On a field or presentation space basis using either the copy functions that
address fields (Copy String to Field (33) function or Copy Field to String (34)
function) or the functions that let you copy from and into presentation spaces
(for example, Copy String to Presentation Space (15) function or Copy
Presentation Space to String (8) function).

* On a keystroke basis, using the Send Key (3) function.

* On a file basis, for large blocks of data. You can have your application use the
EHLLAPI file transfer capability (using Send File (90) function or Receive File
(91) function) to transfer data or functions (such as load modules) and have it
processed locally or remotely.

Scenario 4. File Transfer
In this scenario, assume that you want to automate a file transfer:

* You could begin by using the procedure discussed in the search scenario earlier
to log on to a host system session.

» Instead of using one of the copy functions (which are inefficient for copying
many screens of data), your EHLLAPI program could call file transfer functions
Send File (90) and Receive File (91) to transfer data.

* Upon successful completion:

— If the Send File (90) function finished executing, your EHLLAPI program
could submit a batch job using either a copy function or the Send Key (3)
function before logging off.

— If the Receive File (91) function finished executing, your EHLLAPI program
could start up a local application.

Scenario 5. Automation

An application can provide all the keystrokes for another application or can
intersperse keystrokes to the target destination with those from the keyboard.
Sometimes, to do this, the application must lock out other sources of keystroke
input that might be destined for a target application or presentation space (using
the Reserve (11) function) and the later unlock it (using the Release (12) function).

The origin of keystrokes presented to any application is determined by the design
of the application. Keystrokes can originate from:

* The keyboard

» Data integrated into the source application

» Secondary storage retrieved through the DOS interface
* The Personal Communications interface

In all cases the keystrokes that are provided to the target application are
indistinguishable from the ordinary operator input.

Scenario 6. Keystroke Filtering

An application that acts as a filter can intercept a keystroke coming from EHLLAPI
(either from the keyboard or a source application) that is targeted for another
destination. The keystroke can then be:

Emulator Programming

* Ignored (that is, deleted)

* Redirected to another application

* Validated

» Converted (for example, uppercase to lowercase)
* Enhanced (through keyboard macros)

m provides a simplified representation of the keystroke flow and the objects
within a keyboard enhancement environment.

Keystroke Source
(Keyboard or
Programmed Operator)

Filter
EHLLAPI Application
Host Host
Presentation Space Presentation Space
A (Typical) B (Typical)

Figure 1. Keystroke Flow

Scenario 7. Keyboard Enhancement

Scenario 8 makes use of filtering to create an enhancer application program. An
enhancer application program is one that monitors the data coming in from the
keyboard and changes it in some specified way. Typically, these application
programs use instructions called keyboard macros, which tell them what
keystrokes to look for and what changes to make. The change might involve
suppressing a keystroke (so it appears to the target application as though it was
never sent), replacing a keystroke with another, or replacing single keystroke with
a series of keystrokes.

To do this using EHLLAPI, you might construct this scenario:

1. Your EHLLAPI application program calls the Connect Presentation Space (1)
function to connect to the presentation space whose keystrokes are to be
filtered.

2. Your EHLLAPI program next calls the Start Keystroke Intercept (50) function
specifying the L option. This causes all keystrokes to be routed to the filtering
application program.

3. The filtering application program can now define a loop in which:

a. The Get Key (51) function intercepts all keystrokes being sent to the target
presentation space.

b. The filtering application examines each keystroke and performs a keyboard
macro task, such as:

* Abbreviating program commands so that three- or four-keystroke
command can be condensed into a single keystroke

Chapter 2. Introduction to IBM Standard EHLLAPI, IBM Enhanced EHLLAPI and WinHLLAPI Programming 25

* Customizing commands so that they are easier to remember or consistent
with other software packages

» Creating boiler plates for contracts or frequently used letters
» Rearranging the keyboard for concurrent applications that use the same
keys for differing functions

For example, the filtering application might convert a key combination such
as Alt+Y into a command to move the cursor to column 35 of the second
line in presentation space and write the string “XYZ Tool Corporation,
Dallas, Texas”.

c. If a keystroke is rejected, your EHLLAPI program can cause a beep to be
sounded, using the Post Intercept Status (52) function.

4. After your EHLLAPI program exits the filtering loop, Stop Keystroke Intercept
(53) function to end the filtering process.

26 Emulator Programming

Chapter 3. EHLLAPI Functions

This chapter describes each individual Personal Communications EHLLAPI
function in detail and explains how to use the EHLLAPI program sampler. The
functions are arranged alphabetically by name. The functions are explained for
both the standard and enhanced interfaces.

Note: Throughout this chapter WinHLLAPI, IBM Standard 32-bit HLLAPI and
16-bit EHLLAPI are referred to as Standard Interface, and IBM Enhanced
32-bit EHLLAPI is referred to as Enhanced Interface.

Unicode Support for Code Pages 1390/1399 and 1137

The following EHLLAPI functions are enabled for Japanese code page 1390/1399
and Hindi code page 1137 support on a Unicode session:

» Convert Position or Convert RowCol (1137 only)
* Copy Field to String

» Copy Presentation Space

» Copy Presentation Space to String
» Copy String to Field

» Copy String to Presentation Space
* Get Key

» Search Field

» Search Presentation Space

* Send Key

» Set Cursor (1137 only)

» Set Session Parameters

See the specific section for each function for details on Japanese code page
1390/1399 and Hindi code page 1137.

Notes:

1. EHLLAPI 1390/1399 and 1137 code page support on a Unicode session is
supported only for Windows NT and Windows 2000.

2. The string containing the Unicode characters to be sent to the PCOMM session
should be typecast to WCHAR * for code page 1390/1399 and to char * for code
page 1137.

3. EHLLAPI 1390/1399 Unicode functionality is available only for 3270 and 5250
sessions. EHLLAPI 1137 Unicode functionality is available only for 5250
sessions.

Page Layout Conventions
All EHLLAPI function calls are presented in the same format so that you can
quickly retrieve the information you need. The format is:
Function Name (Function Number)
Prerequisite Calls
Call Parameters

© Copyright IBM Corp. 1989, 2001 27

Return Parameters
Notes on Using This Function

Prerequisite Calls

“Prerequisite Calls” lists any calls that must be made prior to calling the function
being discussed.

Call Parameters

“Call Parameters” lists the parameters that must be defined in your program to
call the discussed EHLLAPI function and explains how those parameters are to be
defined. If a parameter is never used by a function, then NA (not applicable) is
listed. If a parameter can be overridden by certain values of session parameters
defined with calls to the Set Session Parameters (9) function, such session
parameters are hamed.

Return Parameters

“Return Parameters” lists the parameters that must be received by your program
after a call to the discussed EHLLAPI function and explains how to interpret those
parameters.

Notes on Using This Function

“Notes on Using This Function” lists any session options that affect the function
under discussion. It also provides technical information about using the function
and application development tips.

Summary of EHLLAPI Functions

28

[Table 7 is the summary of the EHLLAPI functions:
Table 7. EHLLAPI Functions Summary

No. Function 3270 5250 VT Page
1 Connect Presentation Space (1) Yes Yes Yes kg
2 Disconnect Presentation Space (2) Yes Yes Yes B2
3 m Yes Yes Yes fad
4 w Yes Yes Yes fed
5 Copy Presentation Space (5) Yes Yes Yes Ed
6 Bearch Presentation Space (6) Yes Yes Yes fd
7 RQuery Cursor Lacation (7) Yes Yes Yes flod
8 tz@.ap%acesemmmnﬁpace_to_sm@ Yes Yes Yes b4
9 Bet Session Parameters () Yes Yes Yes flad
10 RQuery Sessions (10) Yes Yes Yes fzd
11 m Yes Yes Yes 23
12 m Yes Yes Yes 21
13 m Yes Yes Yes
14 Query Field Attribute (14) Yes Yes Yes flod
15 %p%smug_m_ammspacd Yes Yes Yes
18 m Yes Yes Yes

20 RQuery System (20) Yes Yes Yes i1
21 m Yes Yes Yes fiod
22 Ruery Session Status (22) Yes Yes Yes
23 Btart Host Natification (23) Yes Yes Yes fi=d

Emulator Programming

Table 7. EHLLAPI Functions Summary (continued)

No. Function 3270 5250 VT Page
24 Ruery Host Update (24) Yes Yes Yes flod
25 Btop Host Notification (25) Yes Yes Yes [ed
30 m Yes Yes Yes f4
31 Eind Eield Position (31) Yes Yes Yes B3
32 Eind Eield | ength (32) Yes Yes Yes R3
33 Copy String to Field (33) Yes Yes Yes |
34 Copy Eield ta String (34) Yes Yes Yes 40
40 m Yes Yes Yes flad
41 Btart Close Intercept (41) Yes Yes Yes fisd
42 RQuery Close Intercept (42) Yes Yes Yes fiod
43 Btop Close Intercept (43) Yes Yes Yes fisd
45 %mdmm_aem_&mmud No Yes No fod
50 Btart Keystroke Intercept (50) Yes Yes Yes [T
51 BetKey (51) Yes Yes Yes 7
52 Past Intercept Status (52) Yes Yes Yes
53 Btop Keystroke Intercept (53) Yes Yes Yes [T
60 Lock Presentation Space API (0) Yes No No g
61 Lock Window Services API (61) Yes No No b7
80 %&Cﬂmm;mm&ﬂm.hmnﬂcanad Yes Yes Yes =2
81 RQuery Communication Fvent (81) Yes Yes Yes fod
82 %p.ﬁommmmanon_uonﬂnanod Yes Yes Yes T3]
90 Bend File (90) Yes Yes No a1
91 Receive File (91) Yes Yes No [T
92 Cancel File Transfer (92) Yes Yes Yes Rl
99 Convert Posifion or Converl Yes Yes Yes

RawCol (99)

101 Connect Window Services (101) Yes Yes Yes R7
102 i i i Yes Yes Yes B2
103 Query Window Coordinates (103) Yes Yes Yes [T
104 Window Status (104) Yes Yes Yes Led
105 tﬁge_s:uuch_l.usuluamd Yes Yes Yes B3
106 Change PS Window Name (106) Yes Yes Yes k1
110 Btart Playing Macra (110) Yes Yes Yes Y
120 bﬁmﬁi&d&u&&m&diwldd Yes No No b4
121 @bjsmmeu_tmmsumed_aew Yes No No Bl
122 Wﬂl i Yes No No flod
123 %cale_mmmmma.tmnsﬁl.lﬁed Yes No No R0
124 Eree Communications Buffer (124) Yes No No R6
125 [Get Request Completion (125) Yes No No
126 Read Structured Fields (126) Yes No No K|
127 Mrite Structured Fields (127) Yes No No iza

Chapter 3. EHLLAPI Functions

29

30

Allocate Communications Buffer (123)

3270

5250

VT

Yes

No

No

The Allocate Communications Buffer function obtains a buffer from the operating
system. A buffer address must be passed on both the Read Structured Fields (126)
and Write Structured Fields (127) functions.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface | Enhanced Interface

Function Number

Must be 123

Data String See the following table
Length Must be 6 | Must be 8
PS Position NA

The calling data string can contain:

Definition

Enhanced

32-bit or 16-bit buffer length. (0 < size = (64 KB-256
bytes)=X'FF00")

Byte

Standard

1-2 1-4
3-6 5-8

32-bit allocated buffer address (returned)

Return Parameters

Return Code

Explanation

0

The Allocate Communications Buffer function was successful.

2

An error was made in specifying parameters.

9

A system error occurred.

1

Resource unavailable (memory unavailable).

Notes on Using This Function

1. The EHLLAPI obtains a buffer from the operating system memory management
and places the buffer address into the return parameter string. The requested
buffer size (length) is also passed in the parameter string. The buffer size can
be from 1 byte to 64 KB minus 256 bytes (X'FF00' bytes) in length.

See “Query Communications Buffer Size (122)” for information regarding

buffer size.

2. Buffers obtained using this function must not be shared among different
processes. If this is attempted, the applications will experience unpredictable

results.

3. An EHLLAPI application must issue a Free Communications Buffer (124)
function to free the allocated memory.

Emulator Programming

4. A maximum of 10 buffers can be allocated to an application. If this limit is
reached, a return code for resource unavailable (RC=11) will be returned.

5. The Reset System (21) function frees buffers allocated by this function.

Cancel File Transfer (92)

3270 5250 VT

Yes Yes Yes

The Cancel File Transfer function causes any current EHLLAPI initiated Send File

or Receive File for the specified session to immediately return.

Prerequisite Calls
Send File (90) or Receive File (91)

Call Parameters

Enhanced Interface

Function Number Must be 92

Data String 1-character short name of the host presentation space. A blank or
null indicates request for updates to the host-connected
presentation space

Length 4 is implied

PS Position NA

The calling data structure contains these elements

Byte Definition
1 A 1-character presentation space short name (PSID)
2-4 Reserved

Return Parameters

Return Code Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function
was called for the PSID

9 A system error was encountered

Notes on Using This Function
Since both Send File (90) and Receive File (91) are blocking calls, this function

must always be issued on a different thread.

Change PS Window Name (106)

3270 5250 VT

Yes Yes Yes

Chapter 3. EHLLAPI Functions

31

The Change PS Window Name function allows the application to specify a new
name for the presentation space window or reset the presentation space window to
the default name.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface |Enhanced Interface
Function Number Must be 106
Data String See the following table
Length Must be specified (See note.) | Must be 68
PS Position NA

Note: The data string length must be specified (normally 3-63 for PC/3270, 4-63
for PC400, 68 for enhanced interface).

The calling data string can contain:

Byte Definition
Standard Enhanced
1 1 A 1-character presentation space short name (PSID)
2-4 Reserved
2 5 A change request option value, select one of:
« X'01' for changing the presentation space window
name.
» X'02' for resetting the presentation space window
name.
3-63 6-66 An ASCII string of from 1 (for PC/3270) or 2 (for PC400)

to 61 bytes including a terminator byte. The ASCII string
must end with a NULL character. This string must
contain at least one non-NULL character followed by a
NULL character.

67-68 Reserved

Return Parameters

Return Code Explanation
0 The Change PS Window Name function was successful.
1 An incorrect host presentation space short session ID was
specified, or the host presentation space was not connected.
2 An error was made in specifying parameters.
9 A system error occurred.
12 The session stopped.

Notes on Using This Function

A string is ended at the first NULL character found. The NULL character overrides
the specified string length. If the NULL character is not at the end of the specified
length, the last byte at the specified length is replaced by a NULL character, and

32 Emulator Programming

the remainder of the data string is lost. If the NULL character is found before the
specified length, the string is truncated at that point, and the remainder of the data
string is lost.

If the application fails to reset the presentation space name before exiting, the exit
list processing resets the name.

Change Switch List LT Name (105)

3270 5250 VT

Yes Yes Yes

The Change Switch List LT Name function allows the application to change or
reset a switch list for a selected logical terminal (LT). The application must specify
on the call the name to be inserted in the switch list.

Note: This is for compatibility with Communication Manager EHLLAPI, and has
the same result as the Change PS Window Name (106) function.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface |Enhanced Interface
Function Number Must be 105
Data String See the following table
Length Normally 4-63 | Must be 68
PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)
2-4 Reserved

2 5 A change request option; select:

« X'01' for changing a switch list LT name

» X'02' for resetting a switch list LT name

3-63 6-66 An ASCII string of 2 to 61 bytes including a terminator
byte. The ASCII string must end with a NULL character.

This string must contain at least one non-NULL character
followed by a NULL character.

67-68 Reserved

Return Parameters

Return Code Explanation

0 The Change Switch List LT Name function was successful.

Chapter 3. EHLLAPI Functions 33

34

Return Code Explanation

1 An incorrect host presentation space short session ID was
specified, or the host presentation space was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

12 The session stopped.

Notes on Using This Function

A string is ended at the first NULL character found. The NULL character overrides
the specified string length. If the NULL character is not at the end of the specified
length, the last byte at the specified length is replaced by a NULL character, and
the remainder of the data string is lost. If the NULL character is found before the
specified length, the string is truncated at that point, and the remainder of the data
string is lost.

If the application fails to reset the switch list LT name before exiting, the exit list
processing resets the name.

Connect for Structured Fields (120)

3270 5250 VT
Yes No No

The Connect for Structured Fields function allows an application to establish a
connection to the emulation program to exchange structured field data with a host
application. The workstation application must provide the Query Reply data field
and must point to it with in the parameter string. The destination/origin 1D
returned by the emulator will be returned to the application.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface |Enhanced Interface
Function Number Must be 120
Data String See the following table
Length 7orll | Must be 16
PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)
2-4 Reserved

2-5 5-8 Address of the Query Reply data buffer

6-7 9-10 Destination/origin unique ID. (16-bit word, returned)
11-12 Reserved

Emulator Programming

Byte Definition

8-11 13-16 The data in these position is ignored by EHLLAPI.

However, no error is caused if the migrating program has
data in these positions. This data is accepted to provide
compatibility with migrating applications.

Return Parameters

Return Code Explanation
0 The Connect for Structured Fields function was successful.
1 A specified host presentation space short session ID was not valid,
or the host presentation space was not connected.
2 An error was made in specifying parameters.
9 A system error occurred.
10 The function is not supported by the emulation program.
32 An application has already connected to this session for

communications (successful connect).

39 One DDM session is already connected to this session.

Notes on Using This Function
1. EHLLAPI scans the query reply buffers for the destination/origin ID (DOID)

self-defining parameter (SDP) to determine the contents of the DOID field of
the query reply. If this value is X'0000', the emulator will assign a DOID to the
application and EHLLAPI will fill in the DOID field of the query reply with the
assigned ID. If the value specified by the application in the DOID field of the
query reply is a nonzero value, the emulator will assign the specified value as
the application’s DOID, assuming that the ID has not been previously assigned.
If the specified DOID is already in use, a return code of 2 will be returned by
EHLLAPI.

The application should build the Query Reply Data structures in the
application’s private memory. Refer to [i

t‘Appendix A. Query Reply Data
Structures Supported by FHI | API” on page 391 for the detailed formats and

usages of the query reply data structures supported by EHLLAPI.

Only cursory checking is performed on the Query Reply Data. Only the ID and
the length of the structure are checked for validity.

Only one DDM base type connect is allowed per host session. If the DDM
connection supports the self-defining parameter (SDP) for the destination origin
ID (DOID), then multiple connects are allowed.

If return code RC=32 or RC=39 is received, an application is already connected
to the selected session and use of that presentation space should be approached
with caution. Conflicts with SRPI, file transfer, and other EHLLAPI applications
might result.

Connect Presentation Space (1)

3270

5250

VT

Yes

Yes

Yes

The Connect Presentation Space function establishes a connection between your
EHLLAPI application program and the host presentation space.

Chapter 3. EHLLAPI Functions 35

36

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface | Enhanced Interface

Function Number

Must be 1

Data String 1-character short name of the host presentation space
Length 1 is implied | Must be 4
PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)
2-4 Reserved

Return Parameters
The Connect Presentation Space function sets the return code to indicate the
status of the attempt and, if successful, the status of the host presentation space.

Return Code

Explanation

0

The Connect Presentation Space function was successful; the host
presentation space is unlocked and ready for input.

An incorrect host presentation space ID was specified. The
specified session either does not exist or is a logical printer session.
This return code could also mean that the API Setting for
DDE/EHLLAPI is not set on.

Successful connection was achieved, but the host presentation
space is busy.

Successful connection was achieved, but the host presentation
space is locked (input inhibited).

A system error was encountered.

11

This resource is unavailable. The host presentation space is already
being used by another system function.

Notes on Using This Function
1. The Connect Presentation Space function is affected by the CONLOG/CONPHYS

session option.

2. An EHLLAPI application cannot be connected to multiple presentation spaces
concurrently. Calls requiring the Connect Presentation Space function as a
prerequisite use the currently connected presentation space. For example, if an
application is connected to presentation space A, B, and C in that order, the
application must connect to B or A again to issue functions.

3. Each thread that requests a Connect Presentation Space must have a
corresponding Disconnect Presentation Space (2), or one of the threads must
issue a Reset System (21), which affects all threads and disconnects any
remaining connections.

Emulator Programming

4. More than one EHLLAPI application can share a presentation space, if the

applications support sharing (that is, if they were developed to work together
and if they exhibit predictable behavior) and have compatible read/write access
and keyword options as set in the Set Sessions Parameters (9) function. For

more information, see ESet Session Parameters (9)” on page 145,

Because the Connect Presentation Space and Start Keystroke Intercept (50)
functions share common subsystem functions, successful requests by an
application to share either of these functions for the same session can affect the
request of these two functions by other applications. For example, if application
A successfully requests a Connect Presentation Space for a session with
Write_Read access and KEY$abcdefgh as the keyword, a request by application
B to Connect Presentation Space for a session and Start Keystroke Intercept is

successful only if both applications have set compatible read/write options.

6. You cannot connect to a session that is defined as a logical printer session.
Refer to Personal Communications Version 5.5 Administrator’s Guide and Reference.

Connect Window Services (101)

3270 5250

VT

Yes Yes

Yes

The Connect Window Services function allows the application to manage the
presentation space windows. Only one EHLLAPI application at a time can be
connected to a presentation space for window services.

An EHLLAPI application can connect to more than one presentation space
concurrently for window services.

Prerequisite Calls

There are no prerequisite calls for this function.

Call Parameters

Standard Interface | Enhanced Interface

Function Number

Must be 101

Data String 1-character short session ID of the host presentation space
Length 1 is implied | Must be 4
PS Position NA

The calling data string can contain:

Byte

Definition

Standard Enhanced

1 1

A 1-character presentation space short name (PSID)

2-4

Reserved

Return Parameters

Return Code Explanation

0 The Connect Window Services function was successful.

Chapter 3. EHLLAPI Functions

37

38

Return Code Explanation

1 An incorrect host presentation space short session ID was
specified, or the Sessions Window Services manager was not
connected. This return code could also mean that the API Setting
for DDE/EHLLAPI is not set on.

9 A system error occurred.
10 The function is not supported by the emulation program.
1 This resource is unavailable. The host presentation space is already

being used by another system function.

Notes on Using This Function

1.

An EHLLAPI application can be connected to multiple presentation space
windows at the same time. The application can go back and forth between the
connected presentation space windows without having to disconnect. For
example, if an application is connected to presentation space windows A, B,
and C, the application can access all of A, B, and C at the same time, and the
other applications cannot access A, B, or C.

A Connect Window Services function is sufficient for the process. However,
each thread that requests a Connect Window Services must have a
corresponding Disconnect Window Services (102), or one of the threads must
issue a Reset System (21), which affects all threads and disconnects any
remaining connections.

Convert Position or Convert RowCol (99)

3270 5250 VT

Yes Yes Yes

The Convert Position or Convert RowCol function converts the host presentation
space positional value into the display row and column coordinates or converts the
display row and column coordinates into the host presentation space positional
value. This function does not change the cursor position.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 99
Data String Host presentation space short name and P for the Convert

Position function (for example, AP converts the presentation
space position of session A); or Host presentation space
short name and R for the Convert RowCol function (for
example, AR converts the row and column coordinates of
session A).

Emulator Programming

Standard Interface | Enhanced Interface

Length

Row, when R is specified as the second character in the data
string parameter. The lower limit for valid input is 1. The
upper limit for valid input depends on how your host

presentation space is configured. See ENates on Using Thid
Eunction” on page 40,

NA when P is specified as the second character in the data
string parameter.

PS Position

Column, when R is specified as the second character in the
data string parameter. The lower limit for valid input is 1.
The upper limit for valid input ranges from 24 to 43
depending on how your host presentation space is

configured. See ENotes an Using This Function” on page 44,

Host presentation space position, when P is specified as the
second character in the data string parameter. The lower
limit for valid input is 1. The upper limit for valid input
ranges from 1920 to 3564 depending on how your host
presentation space is configured. See F'Notes on Using Thid
Eunction” on page 40,

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)
2-4 Reserved

2 5 Convert option P or R
6-8 Reserved

Return Parameters
This function returns a length and a return code.

Length:

For the Convert Position function (P as the second character in the calling
data string), a number between 1 and 43 (for PC/3270) or 27 (for PC400) is
returned. This value is the number of the row that contains the PS position
contained in the calling PS position parameter. The upper limit can be
smaller than 43 (for PC/3270) or 27 (for PC400) depending on how the
host presentation space is configured.

For the Convert RowCol function (R as the second character in the calling
data string), a value of 0 indicates an error in the input value for row
(calling length parameter).

Return Code:

The Convert Position or RowCol function is the exception to the rule that
the fourth return parameter always contains a return code. For this
function, the value returned in the fourth parameter is called a status code.
This status code can contain data or a return code. Your application must
provide for processing of this status code to prevent unpredictable results
or an error.

 If the value of the fourth parameter is 0, 9998, or 9999, it is a return
code.

Chapter 3. EHLLAPI Functions 39

* For the Convert Position function (P as the second character of the
calling data string), a value in the range of 1-132 is the number of the
column that contains the PS position passed in the calling PS Position
parameter. The upper limit can be smaller than 132 depending on how
the host presentation space is configured.

* For the Convert RowCol function (R as the second character of the
calling data string), a value in the range of 1-3564 represents the host
presentation space position that corresponds to the row and column
values passed in the calling length and PS position parameters,
respectively. The upper limit can be smaller than 3564 depending on
how the host presentation space is configured.

The following status codes are defined:

Status Code Explanation

0 This is an incorrect PS position or column.

>0 This is the PS position or column.

9998 An incorrect host presentation space ID was specified or a system
error occurred.

9999 Character 2 in the data string is not P or R.

Notes on Using This Function
1. To configure your presentation space, refer to Personal Communications Version
5.5 Administrator’s Guide and Reference

2. To find out how many rows and columns are in your presentation space,
examine the returned data string parameter for the Query Session Status (22)

function. See [‘Query Session Status (22)” on page 108.

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

Convert Position or Convert RowCol is Hindi enabled in order to return the
beginning of the cluster. The usage of Convert Position or Convert RowCol is the
same as the SBCS session.

Copy Field to String (34)

3270 5250 VT

Yes Yes Yes

The Copy Field to String function transfers characters from a field in the
host-connected presentation space into a string.

The Copy Field to String function translates the characters in the host source
presentation space into American National Standard Code for Information
Interchange (ASCII). Attribute bytes and other characters not represented in ASCII
normally are translated into blanks.

Prerequisite Calls
Connect Presentation Space (1)

40 Emulator Programming

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 34
Data String Preallocated target data string. When the Set Session

Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
at least twice the length of the field.

DBCS Only: When Extended Attributes Double-byte (EAD)
option is specified, the length of the data string must be at
least three times the length of the field. When both EAB and
EAD options are specified, the length of the data string
must be at least four times the length of the field.

Length Number of bytes to copy (the length of the data string).

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters
This function returns a data string, length, and a return code.

Data String:
A string containing data from the identified field in the host presentation
space. The first byte in the returned data string is the beginning byte of the
identified field in the host presentation space. The number of bytes in the
returned data string is determined by the smaller of:
* Number of bytes specified in the calling length parameter

* Number of bytes in the identified field in the host presentation space

Length:
The length of the data returned.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Copy Field to String function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

6 The data to be copied and the target field are not the same size.
The data is truncated if the string length is smaller than the field
copied.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function

1. The field position and length information can be found by using the Find Field
Position (31) and Find Field Length (32) functions. The Copy Field to String
function can be used with either protected or unprotected fields, but only in a
field-formatted host presentation space.

2. The copy is ended when one of the following conditions is encountered:

Chapter 3. EHLLAPI Functions 41

42

* When the end of the field is reached
* When the length of the target string is exceeded

DBCS Only: If the target string is ended at the higher byte of the DBCS
character, the byte is translated into a blank. If the EAD option is set to on,
three bytes are returned for each character. If both the EAB and EAD options
are set to on, four bytes are returned for each character.

Note: When the field wraps at the end of the presentation space, wrapping
occurs when the end of the presentation space is reached.

DBCS Only: The Set Session Parameters (9) function EAD option is used with
this function to return a 2-byte EAD. If the EAD option is specified instead of
the EAB option, EAD is returned preceding each character. If both the EAB and
EAD options are specified, EAD is returned preceding the EAB.

An EAB can be returned when the Set Session Parameters (9) function EAB
option is used. EAB is related to each character in the presentation space and is
returned preceding each character.

The Copy Field to String function is affected by the ATTRB/NOATTRB/NULLATTRB,
the EAB/NOEAB, the XLATE/NOXLATE, the DISPLAY/NODISPLAY, the DISPLAY/NODISPLAY,
the EAD/NOEAD (for DBCS only), and the NOSO/SPACES0/SO (for DBCS only) session
options. Refer to items ﬁm fd and 14.0n page 151; 17 on page 151

and kd and W for more information.

As previously stated, the return of attributes by the various Copy (5, 8, and 34)
functions is affected by the Set Session Parameters (9) function. The involved
set session parameters have the following effect:

Set Session Parameter
Effect on the COPY Function

NOEAB and NOEAD
Attributes are not returned. Only text is copied from the presentation
space to the user buffer.

EAB and NOXLATE
Attributes are returned as defined in the following tables.

EAB and XLATE
The colors used for the presentation space display are returned. Colors
can be remapped; so the attribute colors are not the ones returned by
the COPY functions when XLATE and EAB are on at the same time.

EAD Double-byte character set attributes are returned as shown in the
following tables.

The returned character attributes are defined in the following tables. The
attribute bit positions are in IBM format with bit 0 the left most bit in the byte.

3270 character attributes are returned from the host to the emulator. The
following table applies when EAB and NOXLATE are set.

Bit Position Meaning

0-1

Character highlighting
00 = Normal
01 = Blink
10 = Reverse video
11 = Underline

Emulator Programming

Bit Position

Meaning

2-4

Character color (Color remap can override this color definition.)
000 = Default

001 = Blue
010 = Red
011 = Pink
100 = Green
101 = Turquoise
110 = Yellow
111 = White
5-6 Character attributes
00 = Default value
11 = Double byte character
7 Reserved

5250 character attributes are returned from the host to the emulator. The
following table applies when EAB and NOXLATE are set.

Bit Position Meaning

0 Reverse image
0 = Normal image
1 = Reverse image

1 Underline
0 = No underline
1 = Underline

2 Blink
0 = Not blink
1 = Blink

3 Separator of columns
0 = No separator
1 = Separator

4-7 Reserved

The following table shows Personal Communications character color attributes.
The following table applies when EAB and XLATE are set.

Bit Position

Meaning

0-3

Background character colors

0000 = Black
0001 = Blue
0010 = Green
0011 = Cyan
0100 = Red

0101 = Magenta
0110 = Brown (3270), Yellow (5250)
0111 = White

Chapter 3. EHLLAPI Functions

43

Bit Position Meaning

4-7 Foreground character colors
0000 = Black
0001 = Blue
0010 = Green
0011 = Cyan
0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)
0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

* Double-byte character set attributes (for DBCS only)
— The first byte

Bit Position Character Position Field Attribute Position
0 Double-byte character Reserved
1 The first byte of the Reserved
double-byte character
2 SO Reserved
3-4 S| (Bit position 3) 5250 DBCS related field
When the value of bit
position 7 is 0:
00 = Default
01 = DBCS only
10 = Either DBCS or
SBCS
11 = Mixture of DBCS
and SBCS

When the value of bit
position 7 is 1:

00 = Reserved

01 = DBCS only
without SO/SI

10 = Reserved
11 = Reserved

5 Reserved SO/SI enable (3270 only)
6 Reserved Character attributes exist
(3270 only)

44 Emulator Programming

Bit Position Character Position Field Attribute Position

7 Reserved 5250 DBCS related extended
field

0 = Basic double-byte
field

1 = Extended double-byte
field

— The second byte

Bit Position Character Position Field Attribute Position

0 Reserved Left grid line (3270 only)

1 Reserved Upper grid line (3270 only)
2 Reserved Right grid line (3270 only)
3 Reserved Under grid line (3270 only)
4 Left grid line Left grid line

5 Upper grid line Upper grid line

6-7 Reserved Reserved

For a PS/2® monochrome display, the characters in the application
(workstation) session appear as various shades of gray. This is required to give
users their remapped colors in the EHLLAPI application session so they can get
what they see in their host application presentation spaces.

7. To use this function, preallocate memory to receive the returned data string
parameter. The statements required to preallocate this memory vary depending
on the language in which your application is written. Refer to Mﬁ

[Allacation” on page 8 for more information.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or
when the operator selects the SysReq key. Personal Communications
displays 25th row information on the status bar. By EXTEND_PS option, an
EHLLAPI application can use the same interface with Communication
Manager EHLLAPI and valid presentation space is extended when this
condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Chapter 3. EHLLAPI Functions 45

Call Parameters:

Standard Interface Enhanced Interface
Function Number Must be 34
Data String Preallocated target data string. When the Set Session

Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
at least twice the length of the EBCDIC field.

Length The length of the target data string in Unicode characters.

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters: This function returns a data string, length, and a return code.

Data String:
String containing the Unicode data is returned.

Length:
Number of Unicode characters copied into string.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Copy Field to String function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

6 The data to be copied and the target field are not the same size.
The data is truncated if the string length is smaller than the field
copied.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Field To String (34) and function in the same way as in DBCS:

* NOATTRB

* ATTRB

* NULLATTRB
* EAB

* NOEAB

* NOXLATE

* DISPLAY

* NODISPLAY

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

46 Emulator Programming

The XLATE option (that can be specified using the Set Session Parameters
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface |Enhanced Interface
Function Number Must be 34
Data String Preallocated target data string. The length should be twice

the number of EBCDIC bytes required to be copied from the
presentation space. When the Set Session Parameters (9)
function with Extended Attribute Bytes (EAB) option is
issued, the length of the data string must be at least four
times the length of the EBCDIC field.

Length The length of the target data string in bytes. This length
should be at least 2 in a Unicode session. If not, an error
code of 2 is returned.

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters: This function returns a data string, length, and a return code.

Data String:
String containing the Unicode data is returned.

Length:
Number of Unicode characters copied into string. To get the number of
bytes, multiply by 2.

Return Code:
The following codes are defined:

Return Code Explanation

0 The Copy Field to String function was successful.

1 Your program is not connected to a host session.

2 An error was made in specifying parameters.

6 The data to be copied and the target field are not the same size.
The data is truncated if the string length is smaller than the field
copied.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Field To String and function in the same way as in SBCS:

* NOATTRB

* ATTRB

* NULLATTRB
* EAB

Chapter 3. EHLLAPI Functions 47

48

* NOEAB

* NOXLATE

* DISPLAY

* NODISPLAY

Copy OIA (13)

3270 5250 VT
Yes Yes Yes

The Copy OIA function returns the current operator information area (OlA) data
from the host-connected presentation space.

The OIA is located under the bottom dividing line of the screen and is used to
display session status information about the connection between the workstation
and the host.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface |Enhanced Interface
Function Number Must be 13
Data String Preallocated target data string
Length 103 | 104
PS Position NA

Return Parameters
This function returns a data string and a return code.

Data String:
A 103-byte string for 16-bit and 104-byte string for 32-bit. See FEarmat of

the Returned OIA Data String” on page 49 for more information.

Return Code:
The following codes are defined:

Return Code Explanation

0 OIA data is returned. The target presentation space is unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length. OIA data was not
returned.

4 OIA data is returned. The target presentation space is busy.

5 OIA data is returned. The target presentation space is locked.
(Input inhibited)

9 An internal system error was encountered. OlA data was not
returned.

Emulator Programming

Notes on Using This Function

1. The OIA Group consists of the bits that show the status of the connected
sessions. The group is categorized by the represented host function. (For
example, Group 8 consists of the bits that show all conditions of the input
inhibit in the session.) The states of each group are ordered so that the
high-order bits represent the indicators of higher priority. That is, bit 7 has
priority over bit 0. Therefore, if more than one state is active within a group,
the state with the highest priority is the active state within that group.

2. To use this function, preallocate memory to receive the returned data string

parameter. The statements required to preallocate this memory vary depending
on the language in which your application is written. Refer to w

lallacation” on page 4 for more information.

Format of the Returned OIA Data String
The OIA data string contains the following information:

Byte Definition
Standard Enhanced
1 1 The OIA format byte. The value is 1 (PC/3270), 9
(PC400), or 5 (VT).
2-81 2-81 The OIA image in the host code points.
82-103 82-103 OIA group indicator meanings.
104 Reserved.

PC/3270 OIA Group Indicator Meanings and Its Image: The OIA image group
consists of an 80-byte ASCII character string with no attribute bytes that contains
the OIA image in host code points. [Eigure 2 on page 50 shows the hexadecimal
codes found in the host presentation space, and the characters they represent. The
returned data can be translated into OIA graphics characters. Refer to the Personal
Communications Version 5.5 Quick Beginnings for information on the OIA indicators.

To translate the returned data into OIA graphics characters, proceed as follows:
1. Print the data returned in bytes 2 through 81 to the screen or to a printer.

2. Using the code page chart applicable to the device on which the output
appears, find the hexadecimal value corresponding to each character.

3. Using Eigure 2 on page 50, find the OIA graphics character corresponding to
each hexadecimal value found in step 2.

Note: Group 8 (byte 0) machine, communications, and program check images are
followed by a three-digit number related to the type of check.

The online and screen ownership group images are for non-SNA 3274 controller
configurations. For SNA, the CD hex value is translated by CD (see

). If running on a 3174 controller or SDLC connection, the hex value X'F4' is
replaced by X'B2' or X'22'. The highlight indicator is a corresponding image (in the
first 80 bytes of the data string) of the “Group 5 (offset 86: Highlight group 1”
byte. The highlight indicator is followed by either X'F9' (blink), X'FC' (underscore),
X'D2' (reverse video), or X'80" (host default).

The short session ID followed by X'20' is in column 7.

All group images are represented by Main Frame Interactive (MFI) hex code
points.

Chapter 3. EHLLAPI Functions 49

Note: The OIA image data string position minus 1 position equals the OIA

column.

OX | 1x |2X|3x|4x |5x [6X | 7x|8x|9x |Ax |Bx|Cx|Dx|Ex|Fx
xONUL 'SPl 0 (& |alalAlAla|g|A|Q NIAPIX
x1|EM = |1 | —|e & |EEb|r |B|R|—|| |S[?
x2|FF| " |2 i1 T lcls|ic|s| = |B|» 4
x3|N 7 [3] [ololololdit DT [T
x4|STP| | | 4 uuUUeUEUrgi
x5|CR\ |5 |+ & a AAf v F v Z|+ 1~
x6| || |6 |6 &/ OEO|W GWX |
x7| 7Ty T Yy T h x| H X = e
x8|>?2/8[° a6/ AO|i |y || |Y|e|q|H|C
x9|<|1]9 @ 0|E|O|jlz|d|z w4 2=
xAl[|$/B|"|¢lalE A Kk|eK|Eo> g|3 T
xB[]1 €8~ 1 e/ 1 E|l |8 Li@mdrnN
xc|)|€l#||o|ilo]iim|amMal” = 0le=
xD| (¥ @ ~ule|u/On ¢/ NCBEI[]
XE[} IPtsiop |~ (O |U|Y|U|o |5 |0 ;| |2 |
xFl{ 3 _|, Clalc NP P+ 1o,

Figure 2. Host Presentation Space Characters

* Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning

0-1 Reserved

2 SSCP-LU session owns screen
3 LU-LU session owns screen

4 Online and not owned

5 Subsystem ready

6-7 Reserved

* Group 2 (Offset 83): Character Selection

Bit Meaning

0 Reserved

1 APL

2 Katakana (Japan only)
3 Alphanumeric

4-5 Reserved

6 Hiragana (Japan only)
7 Double-byte character

50 Emulator Programming

* Group 3 (Offset 84): Shift State

Bit Meaning

0 Upper shift
1 Numeric

2 CAPS

3-7 Reserved

* Group 4 (Offset 85): PSS Group 1

Bit

Meaning

0-7

Reserved

* Group 5 (Offset 86): Highlight Group 1

Bit Meaning

0 Operator selectable
1 Field inherit

2-7 Reserved

* Group 6 (Offset 87): Color Group 1

Bit Meaning

0 Operator selectable
1 Field inherit

2-7 Reserved

* Group 7 (Offset 88): Insert

Bit Meaning
0 Insert mode
1-7 Reserved

* Group 8 (Offset 89-93): Input Inhibited (5 bytes)
— Byte 1 (Offset 89)

Bit

Meaning

Non-resettable machine check

Reserved

Machine check

Communications check

AW |IN|PFL|O

Program check

Reserved

— Byte 2 (Offset 90)

Bit Meaning
0 Device busy
1 Terminal wait

Chapter 3. EHLLAPI Functions

51

Bit Meaning

2 Minus symbol

3 Minus function

4 Too much entered
5-7 Reserved

Byte 3 (Offset 91)

Bit Meaning

0-2 Reserved

3 Incorrect dead key combination, limited key.
4 Wrong place

5-7 Reserved

Byte 4 (Offset 92)

Bit Meaning
0-1 Reserved
2 System wait
3-7 Reserved

Byte 5 (Offset 93)

Bit Meaning

0-7 Reserved

* Group 9 (Offset 94): PSS Group 2

Bit Meaning

0-7 Reserved

» Group 10 (Offset 95): Highlight Group 2

Bit Meaning

0-7 Reserved

* Group 11 (Offset 96): Color Group 2

Bit Meaning

0-7 Reserved

* Group 12 (Offset 97): Communication Error Reminder

Bit Meaning
0-6 Communications error
1-7 Reserved

52 Emulator Programming

* Group 13 (Offset 98): Printer State

Bit

Meaning

0-7

Reserved

* Group 14 (Offset 99): Graphics

Bit

Meaning

0-7

Reserved

* Group 15 (Offset 100): Reserved

* Group 16 (Offset 101): Automatic Key Play/Record State

Bit

Meaning

0-7

Reserved

* Group 17 (Offset 102): Automatic Key Quit/Stop State

Bit

Meaning

0-7

Reserved

* Group 18 (Offset 103): Expanded State

Bit

Meaning

0-7

Reserved

PC400 OIA Group Indicator Meanings and Its Image: Details of the OIA group

are listed in the following tables.

* Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning Beginning Position of Data String
0-2 Reserved

3 System available 1

4 Reserved

5 Subsystem ready

6-7 Reserved

* Group 2 (Offset 83): Character Selection

Bit Meaning Beginning Position of Data String
0-1 Reserved
2 Katakana (Japan
only)
3 Alphanumeric
4-5 Reserved
6 Hiragana (Japan
only)
7 Double-byte
character

Chapter 3. EHLLAPI Functions

53

* Group 3 (Offset 84): Shift State

Bit Meaning Beginning Position of Data String
0 Reserved
1 Keyboard shift 39
2 CAPS
3-6 Reserved
7 Double-byte
character input
available

* Group 4 (Offset 85): PSS Group

1

Bit

Meaning

Beginning Position of Data String

0-7

Reserved

» Group 5 (Offset 86): Highlight Group 1

Bit

Meaning

Beginning Position of Data String

0-7

Reserved

* Group 6 (Offset 87): Color Group 1

Bit

Meaning

Beginning Position of Data String

0-7

Reserved

* Group 7 (Offset 88): Insert

Bit Meaning Beginning Position of Data String
0 Insert mode 68
1-7 Reserved

* Group 8 (Offset 89-93): Input Inhibited (5 bytes)
— Byte 1 (Offset 89)

Bit Meaning Beginning Position of Data String
0-7 Reserved

— Byte 2 (Offset 90)
Bit Meaning Beginning Position of Data String
0-7 Reserved

— Byte 3 (Offset 91)
Bit Meaning Beginning Position of Data String
0-4 Reserved
5 Operator input error |64
6-7 Reserved

54 Emulator Programming

— Byte 4 (Offset 92)

Bit Meaning Beginning Position of Data String
0-1 Reserved

2 System wait 64

3-7 Reserved

— Byte 5 (Offset 93)

Bit Meaning Beginning Position of Data String

0-7 Reserved

* Group 9 (Offset 94): PSS Group 2

Bit Meaning Beginning Position of Data String

0-7 Reserved

* Group 10 (Offset 95): Highlight Group 2

Bit Meaning Beginning Position of Data String

0-7 Reserved

* Group 11 (Offset 96): Color Group 2

Bit Meaning Beginning Position of Data String

0-7 Reserved

* Group 12 (Offset 97): Communication Error Reminder

Bit Meaning Beginning Position of Data String
Communications

0 Error

1-5 Reserved

7 Message wait 3

* Group 13 (Offset 98): Printer State

Bit Meaning Beginning Position of Data String

0-7 Reserved

* Group 14 (Offset 99): Graphics

Bit Meaning Beginning Position of Data String

0-7 Reserved

* Group 15 (Offset 100): Reserved
* Group 16 (Offset 101): Automatic Key Play/Record State

Bit Meaning Beginning Position of Data String

0-7 Reserved

Chapter 3. EHLLAPI Functions

* Group 17 (Offset 102): Automatic Key Quit/Stop State

Bit Meaning Beginning Position of Data String

0-7 Reserved

* Group 18 (Offset 103): Expanded State

Bit Meaning Beginning Position of Data String

0-7 Reserved

VT Host OIA Group Indicator Meanings and Its Image: Details of the VT Host
OIA group are listed in the following tables.

* Group 1 (Offset 82): Online and Screen Ownership

Bit Meaning

5 Subsystem ready

* Group 2 (Offset 83): Character Selection

Bit Meaning
0 Upper shift
2 CAPS

* Group 7 (Offset 88): Insert

Bit Meaning

0 Insert mode

Some columns on the OIA line display different messages for VT than those
messages displayed for 3270/5250. See the following table for specific details.

Column Symbol
1-7 VT220 7
VT220 8
VT100
VT52
VTANSI
9-12 LOCK
61 - 64 HOLD

Copy Presentation Space (5)

3270 5250 VT

Yes Yes Yes

The Copy Presentation Space function copies the contents of the host-connected
presentation space into a data string that you define in your EHLLAPI application
program.

56 Emulator Programming

The Copy Presentation Space function translates the characters in the host source
presentation space into ASCII. Attribute bytes and other characters not represented
in ASCII normally are translated into blanks. If you do not want the attribute bytes
translated into blanks, you can override this translation with the ATTRB option
under the Set Session Parameters (9) function.

Prerequisite Calls

Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number

Must be 5

Data String

Preallocated target string the size of your host presentation
space. This can vary depending on how your host
presentation space is configured. When the Set Session
Parameters (9) function with the EAB option is issued, the
length of the data string must be at least twice the length of
the presentation space.

DBCS Only: When the EAD option is specified, the length
of the data string must be at least three times the length of
the presentation space. When both the EAB and EAD
options are specified, the length of the data string must be
at least four times the length of the presentation space.

Length

NA (the length of the host presentation space is implied).

PS Position

NA.

Return Parameters

This function returns a data string, length, and a return code.

Data String:

Contents of the connected host presentation space.

Length:

Length of the data copied.

Return Code:

The following codes are defined:

Return Code

Explanation

0 The host presentation space contents were copied to the
application program. The target presentation space was active, and
the keyboard was unlocked.

1 Your program is not connected to a host session.

4 The host presentation space contents were copied. The connected
host presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

9 A system error was encountered.

Notes on Using This Function

1. An EAB can be returned when the Set Session Parameters (9) function EAB
option is used. EAB is related to each character in the presentation space and is
returned preceding each character.

Chapter 3. EHLLAPI Functions 57

58

2. DBCS Only: The Set Session Parameters (9) function EAD option is used with
this function to return a 2-byte EAD. If the EAD option is specified instead of
the EAB option, EAD is returned preceding each character. If both the EAB and
EAD options are specified, EAD is returned preceding the EAB.

If the start position of the copy is at the second byte in the double-byte
character, or the end position is at the first byte in the double-byte character,
the bytes are translated into blanks.

3. The Copy Presentation Space function is affected by the following session
options:
+ ATTRB/NOATTRB/NULLATTRB
+ EAB/NOEAB
+ XLATE/NOXLATE
+ BLANK/NOBLANK
* DISPLAY/NODISPLAY
+ EAD/NOEAD (for DBCS only)
*+ NOSO/SPACESO/SO (for DBCS only)
* EXTEND_PS/NOEXTEND_PS

Refer to items W; fd, b4 B4 and Wﬂli and bd and b1 od

for more information.

If the target data string provided is not long enough to hold the requested data,
unpredictable results can occur.

As previously stated, the return of attributes by the various Copy (5, 8, and 34)
functions is affected by the Set Session Parameters (9) function. The involved set
session parameters have the following effect:

Set Session Parameter
Effect on the COPY Function

NOEAB and NOEAD
Attributes are not returned. Only text is copied from the presentation space
to the user buffer.

EAB and NOXLATE
Attributes are returned as defined in the following tables.

EAB and XLATE
The colors used for the presentation space display are returned. Colors can
be remapped; so the attribute colors are not the ones returned by the Copy
functions when XLATE and EAB are on at the same time.

EAD Double-byte character set attributes are returned as shown in the following
tables.

NOSO/SPACESO/SO
When NOSO is specified, it works as SPACESO. The size of the
presentation space is hot changed.

The returned character attributes are defined in the following tables. The attribute
bit positions are in IBM format with bit 0 the left most bit in the byte.

3270 character attributes are returned from the host to the emulator. The following
table applies when EAB and NOXLATE are set.

Emulator Programming

Bit Position Meaning

0-1 Character highlighting
00 = Normal

01 = Blink

10 = Reverse video
11 = Underline

2-4 Character color (Color remap can override this color
definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise
110 = Yellow

111 = White

5-6 Character attribute

00 = Default value

11 = Double-byte character

7 Reserved

5250 character attributes are returned from the host to the emulator. The following
table applies when EAB and NOXLATE are set.

Bit Position Meaning

0 Reverse image

0 = Normal image
1 = Reverse image
1 Underline

0 = No underline

1 = Underline
2 Blink
0 = Not blink
1 = Blink
3 Separator of columns

0 = No separator
1 = Separator

4-7 Reserved

The following table shows Personal Communications character color attributes. The
following table applies when EAB and XLATE are set.

Chapter 3. EHLLAPI Functions 59

60

Bit Position

Meaning

0-3

Background character colors
0000 = Black
0001 = Blue
0010 = Green
0011 = Cyan
0100 = Red
0101 = Magenta
0110 = Brown (3270), Yellow (5250)
0111 = White

4-7

Foreground character colors
0000 = Black
0001 = Blue
0010 = Green
0011 = Cyan
0100 = Red
0101 = Magenta
0110 = Brown (3270), Yellow (5250)
0111 = White
1000 = Gray
1001 = Light blue
1010 = Light green
1011 = Light cyan
1100 = Light red
1101 = Light magenta
1110 = Yellow
1111 = White (high intensity)

* Double-byte character set attributes (for DBCS only)

— The first byte

Bit Position Character Position Field Attribute Position
0 Double-byte character Reserved
1 The first byte of the Reserved
double-byte character
2 SO Reserved

Emulator Programming

Bit Position Character Position Field Attribute Position

3-4 S| (Bit position 3) 5250 DBCS related field
- When the value of bit position 7 is
0:
00 = Default
01 = DBCS only
10 = Either DBCS or SBCS
11 = Mixture of DBCS and SBCS

- When the value of bit position 7 is
1

00 = Reserved
01 = DBCS only without SO/SI
10 = Reserved

11 = Reserved

5 Reserved SO/SI enabled (3270 only)
6 Reserved Character attributes exist (3270 only)
7 Reserved 5250 DBCS related extended field

0 = Basic double-byte field
1 = Extended double-byte field

— The second byte

Bit Position Character Position Field Attribute Position

0 Reserved Left grid line (3270 only)

1 Reserved Upper grid line (3270 only)
2 Reserved Right grid line (3270 only)
3 Reserved Under grid line (3270 only)
4 Left grid line Left grid line

5 Upper grid line Upper grid line

6-7 Reserved Reserved

For a PS/2 monochrome display, the characters in the application (workstation)
session appear as various shades of gray. This is required to give users their
remapped colors in the EHLLAPI application session so they can get what they see
in their host application presentation spaces.

If you want to copy only a portion of the host presentation space, use the Copy
Presentation Space to String (8) function.

To use this function, preallocate memory to receive the returned data string
parameter. The statements required to preallocate this memory vary depending on

the Ianguage in which your application is written. Refer to EMemaory Allacation’]

for more information.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or
when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For

Chapter 3. EHLLAPI Functions 61

information to be displayed on the status bar, the status bar must be
configured. Refer to Personal Communications Version 5.5 Quick Beginnings for
information on configuring the status bar. By the EXTEND_PS option, an
EHLLAPI application can use the same interface with Communication
Manager EHLLAPI and valid presentation space is extended when this
condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option

is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface |Enhanced Interface
Function Number Must be 5
Data String Preallocated target Unicode string. When the Set Session

Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
twice the size of the presentation space.

Length NA (the length of the host presentation space is implied).
PS Position NA

Return Parameters: This function returns a data string and a return code.

Data String:
String containing the Unicode representation of the contents of
presentation space is returned

Return Code:
The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the
application program. The target presentation space was active, and
the keyboard was unlocked.

1 Your program is not connected to a host session.

4 The host presentation space contents were copied. The connected
host presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Presentation Space (5) and function in the same way as in DBCS:

* NOATTRB

62 Emulator Programming

ATTRB
NULLATTRB
EAB

NOEAB
NOXLATE
DISPLAY
NODISPLAY
BLANK
NOBLANK

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)

format.

Prerequisite Calls:

Call Parameters:

Connect Presentation Space (1)

Standard Interface | Enhanced Interface

Function Number

Must be 5

Data String

Preallocated target Unicode data string. The length (in

space. When the Set Session Parameters (9) function with

presentation space.

bytes) should be twice the size (in bytes) of the presentation

Extended Attribute Bytes (EAB) option is issued, the length
of the data string must be at least four times the size of the

Length

NA (the length of the host presentation space is implied).

PS Position

NA

Return Parameters: This function returns a data string and a return code.

Data String:
String containing the Unicode representation of the contents of
presentation space is returned

Return Code:
The following codes are defined:

Return Code

Explanation

0 The host presentation space contents were copied to the
application program. The target presentation space was active, and
the keyboard was unlocked.

1 Your program is not connected to a host session.

4 The host presentation space contents were copied. The connected
host presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

Chapter 3. EHLLAPI Functions

63

64

Return Code Explanation

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Presentation Space (5) and function in the same way as in SBCS:

* NOATTRB

* ATTRB

* NULLATTRB
* EAB

* NOEAB

* NOXLATE

* DISPLAY

* NODISPLAY
* BLANK

* NOBLANK

Copy Presentation Space to String (8)

3270 5250 VT

Yes Yes Yes

The Copy Presentation Space to String function is used to copy all or part of the
host-connected presentation space into a data string that you define in your
EHLLAPI application program.

The input PS position is the offset into the host presentation space. This offset is
based on a layout in which the upper-left corner (row 1/column 1) is location 1
and the bottom-right corner is 3564, which is the maximum screen size for the host
presentation space. The value of PS Position + (Length — 1) cannot exceed the
configured size of your host presentation space.

The Copy Presentation Space to String function translates the characters in the
host source presentation space into ASCII. Attribute bytes and other characters not
represented in ASCII normally are translated into blanks. If you do not want the
attribute bytes translated into blanks, you can override this translation with the
ATTRB option under the Set Session Parameters (9) function.

Prerequisite Calls
Connect Presentation Space (1).

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 8

Emulator Programming

Standard Interface Enhanced Interface

Data String

Preallocated target string the size of your host presentation
space. When the Set Session Parameters (9) function with
the EAB option is issued, the length of the data string must
be at least twice the length of the presentation space.

DBCS Only: When the EAD option is specified, the length
of the data string must be at least three times the length of
the presentation space. When both the EAB and EAD
options are specified, the length of the data string must be
at least four times the length of the presentation space.

Length

Length of the target data string.

PS Position

Position within the host presentation space of the first byte
in your target data string.

Return Parameters
This function returns a data string and a return code.

Data String:

Contents of the host presentation space.

Return Code:

The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the
application program. The target presentation space was active, and
the keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of
(Length — 1) + PS position is greater than the size of the connected
host presentation space.

4 The host presentation space contents were copied. The host
presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function

1. An EAB can be returned when the Set Session Parameters (9) function EAB

option is used. EAB is related to each character in the presentation space and is
returned following each character.

DBCS Only: The Set Session Parameters (9) function EAD option is used with
this function to return a 2-byte EAD. If the EAD option is specified instead of
the EAB option, EAD is returned preceding each character. If both the EAB and
EAD options are specified, EAD is returned following the EAB.

If the start position of the copy is at the second byte in the double-byte
character, or the end position is at the first byte in the double-byte character,
the bytes are translated into blanks. If the EAD option is set to on, three bytes
are returned for each character. If both the EAB and EAD options are set to on,
four bytes are returned for each character.

The Copy Presentation Space to String function is affected by the following
options:

Chapter 3. EHLLAPI Functions 65

66

*+ ATTRB/NOATTRB/NULLATTRB

+ EAB/NOEAB

* XLATE/NOXLATE

* BLANK/NOBLANK

* DISPLAY/NODISPLAY

« EAD/NOEAD (for DBCS only)

* NOSO/SPACESO/SO (for DBCS only)
+ EXTEND_PS/NOEXTEND_PS

Refer to items . 13 and 14.0n page 151} 15 0n page 151; 17 0d

; and and

If the target data string provided is not large enough to hold the requested
number of bytes, the copy ends successfully (RC=0, 4, or 5) when the end of
the target data string is reached.

As previously stated, the return of attributes by the various Copy (5, 8, and 34)
functions is affected by the Set Session Parameters (9) function. The involved
set session parameters have the following effect:

Set Session Parameter
Effect on the Copy Function

NOEAB and NOEAD
Attributes are not returned. Only text is copied from the presentation
space to the user buffer.

EAB and NOXLATE
Attributes are returned as defined in the following tables.

EAB and XLATE
The colors used for the presentation space display are returned. Colors
can be remapped, so the attribute colors are not the ones returned by
the Copy functions when XLATE and EAB are on at the same time.

EAD Double-byte character set attributes are returned as shown in the
following tables.

The returned character attributes are defined in the following tables. The
attribute bit positions are in IBM format with bit 0 the left most bit in the byte.

» 3270 character attributes are returned from the host to the emulator. The
following table applies when EAB and NOXLATE are set.

Bit Position Meaning

0-1 Character highlighting
00 = Normal
01 = Blink
10 = Reverse video
11 = Underline

Emulator Programming

Bit Position

Meaning

2-4

Character color (Color remap can override
this color definition.)

000 = Default

001 = Blue

010 = Red

011 = Pink

100 = Green

101 = Turquoise

110 = Yellow

111 = White
5-7 Reserved

» 5250 character attributes are returned from the host to the emulator. The
following table applies when EAB and NOXLATE are set.

Bit Position Meaning

0 Reverse image
0 = Normal image
1 = Reverse image

1 Underline
0 = No underline
1 = Underline

2 Blink
0 = Not blink
1 = Blink

3 Separator of columns
0 = No separator
1 = Separator

4-7 Reserved

* VT character attributes are returned from the host to the emulator. The
following table applies when EAB and NOXLATE are set.

Bit Position Meaning
0-3 Reserved
4 Bold
1=0n
0 = Off
5 Underscore
1=0n
1 = Off
6 Blink
1=0n
0 = Off
7 Reverse
0=0n
1 = Off

Chapter 3. EHLLAPI Functions

67

68

» The following table shows Personal Communications character color
attributes. The following table applies when EAB and XLATE are set.

Bit Position Meaning
0-3 Background character colors
0000 = Black
0001 = Blue
0010 = Green
0011 = Cyan
0100 = Red
0101 = Magenta
0110 = Brown (3270), Yellow (5250)
0111 = White
4-7 Foreground character colors
0000 = Black
0001 = Blue
0010 = Green
0011 = Cyan
0100 = Red

0101 = Magenta

0110 = Brown (3270), Yellow (5250)
0111 = White

1000 = Gray

1001 = Light blue

1010 = Light green

1011 = Light cyan

1100 = Light red

1101 = Light magenta

1110 = Yellow

1111 = White (high intensity)

* Double-byte character set attributes

— The first byte

Bit Position Character Position Field Attribute Position
0 Double-byte character Reserved
1 The first byte of the Reserved
double-byte character
2 SO Reserved

Emulator Programming

Bit Position

Character Position

Field Attribute Position

34

S| (Bit position 3)

5250 DBCS related field

When the value of bit
position 7 is 0:

00 = Default
01 = DBCS only

10 = Either DBCS or
SBCS

11 = Mixture of DBCS
and SBCS

When the value of bit
position 7 is 1:

00 = Reserved

01 = DBCS only
without SO/SI

10 = Reserved
11 = Reserved

Reserved

SO/SI enable (3270 only)

Reserved

Character Attributes exist
(3270 only)

Reserved

5250 DBCS related extended
field

0 = Basic double-byte
field

1 = Extended double-byte
field

— The second byte

Bit Position Character Position Field Attribute Position

0 Reserved Left grid line (3270 only)

1 Reserved Upper grid line (3270 only)
2 Reserved Right grid line (3270 only)
3 Reserved Under grid line (3270 only)
4 Left grid line Left grid line

5 Upper grid line Upper grid line

6-7 Reserved Reserved

For a PS/2 monochrome display, the characters in the application (workstation)
session appear as various shades of gray. This is required to give users their
remapped colors in the EHLLAPI application session so they can get what they

see in their host application presentation spaces.
To use this function, preallocate memory to receive the returned data string

parameter. The statements required to preallocate this memory vary depending
on the language in which your application is written. Refer to m

lallacation” on page 4 for more information.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or

Chapter 3. EHLLAPI Functions 69

when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For
information to be displayed on the status bar, the status bar must be
configured. Refer to Personal Communications Version 5.5 Quick Beginnings for
information on configuring the status bar. By the EXTEND_PS option, an
EHLLAPI application can use the same interface with Communication
Manager EHLLAPI and valid presentation space is extended when this
condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface |Enhanced Interface
Function Number Must be 8
Data String Preallocated target Unicode string. When the Set Session

Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
at least twice the length of the presentation space.

Length The length of the target Unicode string in Unicode
characters.
PS Position Position within the host presentation space of the first byte

in your target data string.

Return Parameters: This function returns a data string and a return code.

Data String:
String containing the Unicode data is returned

Return Code:
The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the
application program. The target presentation space was active, and
the keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of
(Length — 1) + PS position is greater than the size of the connected
host presentation space.

4 The host presentation space contents were copied. The host
presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

70 Emulator Programming

Return Code Explanation

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Presentation Space to String and function in the same way as in
DBCS:

* NOATTRB

* ATTRB

* NULLATTRB
* EAB

* NOEAB

* NOXLATE

* DISPLAY

* NODISPLAY
* BLANK

* NOBLANK

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

In a Unicode session, the characters in the host source presentation space are
translated into Unicode. Attribute bytes are normally translated into blanks.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface |Enhanced Interface
Function Number Must be 8
Data String Preallocated target data string. The length should be at least

twice the number of EBCDIC bytes required to be copied
from the presentation space. When the Set Session
Parameters (9) function with Extended Attribute Bytes
(EAB) option is issued, the length of the data string must be
at least four times the length of the EBCDIC string that is to
be copied from the presentation space.

Length The length of the target Unicode string in bytes. This length
should be at least 2 in a Unicode session. If not, an error
code of 2 is returned.

PS Position Position within the host presentation space of the first byte
in your target data string.

Return Parameters: This function returns a data string and a return code.

Chapter 3. EHLLAPI Functions 71

Data String:
Contents of the host presentation space.

Return Code:
The following codes are defined:

Return Code Explanation

0 The host presentation space contents were copied to the
application program. The target presentation space was active, and
the keyboard was unlocked.

1 Your program is not connected to a host session.

2 An error was made in specifying string length, or the sum of
(Length — 1) + PS position is greater than the size of the connected
host presentation space.

4 The host presentation space contents were copied. The host
presentation space was waiting for host response.

5 The host presentation space was copied. The keyboard was locked.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy Presentation Space to String and function in the same way as in
SBCS:

* NOATTRB

* ATTRB

* NULLATTRB
* EAB

* NOEAB

* NOXLATE

* DISPLAY

* NODISPLAY
* BLANK

* NOBLANK

Copy String to Field (33)

3270 5250 VT

Yes Yes Yes

The Copy String to Field function transfers a string of characters into a specified
field in the host-connected presentation space. This function can be used only in a
field-formattedhost presentation space.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 33

72 Emulator Programming

Standard Interface Enhanced Interface

Data String String containing the data to be transferred to a target field

in the host presentation space.

Length Length, in number of bytes, of the source data string.

Overridden if in EOT mode.

PS Position Identifies the target field. This can be the PS position of any

byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters

Return Code Explanation

0 The Copy String to Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target field was protected or inhibited, or incorrect data was
sent to the target field (such as a field attribute).

6 Copy was completed, but data is truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function

1.

4.

5.

The Copy String to Field function is affected by the following options:
* STRLEN/STREOT

+ EOT

+ EAB/NOEAB

* XLATE/NOXLATE

+ PUTEAB/NOPUTEAB

Refer to items [l and P-an page 147; i3 and [l4 on page 151; 18 on page 157 and

and B1.on page 159 for more information.

The string to be transferred is specified with the calling data string parameter.
The string ends when one of these three conditions is encountered:

* When an end-of-text (EOT) delimiter is encountered in the string if EOT
mode was selected using the Set Session Parameters (9) function. (See

* When the number specified in the length is reached if not in EOT mode.

* When an end-of-field is encountered in the field.

Note: If the field at the end of the host presentation space wraps, wrapping
occurs when the end of the presentation space is reached.

The keyboard mnemonics (see Send Key (3) function) cannot be sent using the
Copy String to Field function.

The first byte of the data to be transferred is always placed at the beginning of
the field that contains the specified PS position.

DBCS Only: Double-byte characters can be included as a part of the string.

Chapter 3. EHLLAPI Functions 73

Note: PC400 does not add SO and Sl to the string. When you write the strings,
including double-byte characters at the DBCS mixed field, generate SO
and Sl and create the area where double-byte characters are written by
using the Send Key (3) function in advance.

If both single-byte and double-byte characters exist in a string, the data might
be truncated because the data length in EBCDIC is longer than in JISCII. In this
case, only the first byte or the second byte of the double-byte character is not
written.

If the last character in the original string is the first byte of the double-byte
character, the character is not written and not counted in the length.

A control character is converted from single-byte character to double-byte
character, or from double-byte character to single-byte character depending on
the field condition. A pair of NULL+Control Character between SO and Sl is
treated as a double-byte control character. For example, the following strings
are copied into the single-byte character field or the double-byte character field:

Single-byte character | Double-byte
String Meanings field character field
X'000C' (NULL)(FF) (SB NULL)(SB FF) (DB NULL)(DB FF)
X'00'X'0C" X'00'X'0C X'0000'X'000C"
X'0EO00COF (SO)(DB FF)(SI) -S error (DB FF) X'000C'
X'0E'X'000C'X'0F'
Note: SB means single-byte characters and DB means double-byte characters.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or
when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For
information to be displayed on the status bar, the status bar must be
configured. Refer to Personal Communications Version 5.5 Quick Beginnings for
information on configuring the status bar. By the EXTEND_PS option, an
EHLLAPI application can use the same interface with Communication
Manager EHLLAPI and valid presentation space is extended when this
condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to ESet Sessiod

Parameters (9)” on page 145 for details.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

74 Emulator Programming

Call Parameters:

Standard Interface Enhanced Interface
Function Number Must be 33
Data String String containing the Unicode data to be transferred to a

target field in the host presentation space.

Length Length, in number of Unicode characters, of the source
Unicode string.

Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters:

Return Code Explanation
0 The Copy String to Field function was successful.
1 Your program is not connected to a host session.
2 Parameter error or zero length for copy.
5 The target field was protected or inhibited, or incorrect data was

sent to the target field (such as a field attribute).

6 Copy was completed, but data is truncated.

7 The host presentation space position is not valid.
9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy String to Field and function in the same way as in DBCS:

* STRLEN

* EAB

* NOEAB

* NOXLATE

* PUTEAB

* NOPUTEAB

1137 Code Page Support

Unicode functionality is supported only on 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to kSet Sessiod

Parameters (9)” an page 145 for details.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Chapter 3. EHLLAPI Functions 75

Call Parameters:

Standard Interface Enhanced Interface

Function Number

Must be 33

Data String

String containing the Unicode data to be transferred to a
target field in the host presentation space.

Length

Length, in number of bytes, of the source Unicode string.
The length should be at least 2 bytes. If not, an error code
of 2 is returned.

Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position

Identifies the target field. This can be the PS position of any
byte within the target field. Copy always starts at the
beginning of the field.

Return Parameters:

Return Code

Explanation

0 The Copy String to Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target field was protected or inhibited, or incorrect data was
sent to the target field (such as a field attribute).

6 Copy was completed, but data is truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 Unformatted host presentation space.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy String to Field and function in the same way as in SBCS:

* STRLEN

* EAB

* NOEAB

* NOXLATE

* PUTEAB

* NOPUTEAB

Copy String to Presentation Space (15)

3270

5250

VT

Yes

Yes

Yes

The Copy String to Presentation Space function copies an ASCII data string
directly into the host presentation space at the location specified by the PS position

calling parameter.

Prerequisite Calls
Connect Presentation Space (1)

76 Emulator Programming

Call Parameters

Standard Interface Enhanced Interface

Function Number

Must be 15.

Data String String of ASCII data to be copied into the host presentation
space.

Length Length, in number of bytes, of the source data string.
Overridden if in EOT mode.

PS Position Position in the host presentation space to begin the copy, a

value between 1 and the configured size of your host
presentation space.

Return Parameters

Return Code Explanation

0 The Copy String to Presentation Space function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target presentation space is protected or inhibited, or incorrect
data was sent to the target presentation space (such as a field
attribute byte).

6 The copy was completed, but the data was truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function
1. The Copy String to Presentation Space function is affected by the following

options:

* STRLEN/STREOT

« EOT
+ EAB/NOEAB

« XLATE/NOXLATE

- PUTEAB/NOPUTEAB

-« EAD/NOEAD (for DBCS only)

« NOSO/SPACESO/SO (for DBCS only)
« EXTEND_PS/NOEXTEND_PS

Refer to items [and B on page 147 (13 and l4.on page 157; [18.0n page 153 and

and

for more information.

The keyboard mnemonics (see Send Key (3) function) cannot be sent using the

Copy String to Presentation Space function.

The string ends when an end-of-text (EOT) delimiter is encountered in the

string if EOT mode was selected using the Set Session Parameters (9) function.

(See ESet Session Parameters (9)” on page 1435).

Although the Send Key (3) function accomplishes the same purpose, this

function responds with the prompt and enters a command more quickly.
Because the Send Key (3) function emulates the terminal operator typing the
data from the keyboard, its process speed is slow for an application operating
with a lot of data. This function provides a faster input path to the host.

Chapter 3. EHLLAPI Functions 77

5.

6.

The original data (the copied string) cannot exceed the size of the presentation
space.

DBCS Only: Double-byte characters can be included as a part of the string.

Note: PC400 does not add SO and Sl to the string. When you write the strings,
including double-byte characters at the DBCS mixed field, generate SO
and S| and create the area where double-byte characters are written by
using the Send Key (3) function in advance.

If both single-byte and double-byte characters exist in a string, the data might
be truncated because the data length in EBCDIC is longer than in JISCII. If only
the first byte or the second byte of the double-byte character must be written
into the string, a blank is written.

If the last character in the original string is the first byte of the double-byte
character, the character is not written and not counted in the length.

If the character to be written into the last character of the target presentation
space is SO/SI or the first byte of the double-byte character, the character is not
written and truncated, and not counted in the length.

A control character is converted from single-byte character to double-byte
character, or from double-byte character to single-byte character depending on
the field condition. A pair of NULL+Control Character between SO and Sl is
treated as a double-byte control character. For example, the following strings
are copied into the single-byte character field or the double-byte character field:

String

Meanings

Single-byte character
field

Double-byte
character field

X'0oocC!

(NULL)(FF)
X'00'X'0C

(SB NULL)(SB FF)
X'00'X'0C’

(DB NULL)(DB FF)
X'0000'X'000C"

X'0EO00COF

(SO)(DB FF)(SI)
X'0E'X'000C'X'0F'

=S error (DB FF) X'000C'

Note: SB means single-byte characters and DB means double-byte characters.

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns.
In some instances, Communication Manager 5250 emulation displays a
25th row. This occurs when either an error message from the host is
displayed or when the operator selects the SysReq key. Personal
Communications for Windows 95, Windows 98, Windows NT, Windows
Me, and Windows 2000 always displays the same information on the
24th row. By the EXTEND_PS option, an EHLLAPI application can use
the same interface with Communication Manager EHLLAPI and valid
presentation space is extended when this condition occurs.

7. This function call may cause a cursor movement to an unexpected position

with some host applications. A SendKey function may be a better choice for
filling a field than this function.

Note: This only occurs with VT sessions or connections to an ASCII host.

1390/1399 Code Page Support

Unicode functionality is supported only on 3270 and 5250 sessions.

Emulator Programming

STREOT option is not supported in a Unicode session. Please refer to FSet Sessiod

Parameters (9)” on page 144 for details.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)

format.
Prerequisite Calls:

Call Parameters:

Connect Presentation Space (1)

Standard Interface | Enhanced Interface

Function Number

Must be 15

Data String

String containing the Unicode data to be transferred into the
host presentation space.

Length

Length, in number of Unicode characters, of the source
Unicode string.

Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position

Position in the host presentation space to begin the copy, a
value between 1 and the configured size of your host
presentation space.

Return Parameters:

Return Code Explanation

0 The Copy String to Presentation Space function was successful.

1 Your program is not connected to a host session.

2 Parameter error or zero length for copy.

5 The target presentation space is protected or inhibited, or incorrect
data was sent to the target presentation space (such as a field
attribute byte).

6 The copy was completed, but the data was truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy String to Presentation Space and function in the same way as in

DBCS:

e STRLEN
 EAB

* NOEAB

* NOXLATE
+ PUTEAB

* NOPUTEAB

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

Chapter 3. EHLLAPI Functions 79

STREOT option is not supported in a Unicode session. Please refer to FSet Sessiod
Parameters (9)” on page 145 for details.

The XLATE option (that can be specified using the Set Session Parameters (9)
function) is not supported in a Unicode session. This means that even if this option
is issued, the EABs will not be translated to the PC color graphics adapter (CGA)
format.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface |Enhanced Interface
Function Number Must be 15
Data String String containing the Unicode data to be transferred into the

host presentation space.

Length Length, in number of Unicode characters, of the source
Unicode string. The length should be at least 2 bytes. If not,
an error code of 2 is retuned.

Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Position in the host presentation space to begin the copy, a
value between 1 and the configured size of your host
presentation space.

Return Parameters:

Return Code Explanation
0 The Copy String to Presentation Space function was successful.
1 Your program is not connected to a host session.
2 Parameter error or zero length for copy.
5 The target presentation space is protected or inhibited, or incorrect

data was sent to the target presentation space (such as a field
attribute byte).

The copy was completed, but the data was truncated.

7 The host presentation space position is not valid.

9 A system error was encountered.

Notes on Using This Function: The following options are supported in a Unicode
session for Copy String to Presentation Space and function in the same way as in
SBCS:

* STRLEN

* EAB

* NOEAB

* NOXLATE

* PUTEAB

* NOPUTEAB

80 Emulator Programming

Disconnect from Structured Fields (121)

3270

5250

VT

Yes

No

No

The Disconnect from Structured Fields function drops the connection between the
emulation program and the EHLLAPI application. The EHLLAPI application must
disconnect from the emulation program before exiting from the system. The
EHLLAPI application should issue this function request if a previous Connect for
Structured Fields was issued.

The Reset System (21) function will also disconnect any outstanding SF
connections.

Prerequisite Calls
Connect for Structured Fields (120)

Call Parameters

Standard Interface
Must be 121

| Enhanced Interface

Function Number

Data String See the following table
Length Must be 3 | Must be 8
PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).
2-4 Reserved.

2-3 5-6 Destination/origin unique ID returned by the Connect

for structured field (120) functions.

7-8 Reserved.

Return Parameters

Return Code Explanation
0 The Disconnect from Structured Fields function was successful.
1 A specified host presentation space short session ID was not valid
or was not connected.
2 An error was made in specifying parameters.
9 A system error occurred.
40 Disconnected with asynchronous requests pending.

Notes on Using This Function

1. When a Disconnect from Structured Fields function is called, any outstanding
asynchronous Read Structured Fields (126) or Write Structured Fields (127)
function requests are returned if the application issues the Get Request

Chapter 3. EHLLAPI Functions 81

82

Completion (125) function call. Use the asynchronous form of this function
when cleaning up after issuing a Disconnect call.

The Reset System (21) function will also free any outstanding asynchronous
requests (requests that have not been retrieved by the application using the Get
Request Completion (125) function).

Disconnect Presentation Space (2)

3270 5250 VT

Yes Yes Yes

The Disconnect Presentation Space function drops the connection between your
EHLLAPI application program and the host presentation space. Also, if a host
presentation space is reserved using the Reserve (11) function, it is released upon
execution of the Disconnect Presentation Space function.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 2
Data String NA
Length NA
PS Position NA
Return Parameters
Return Code Explanation
0 The Disconnect Presentation Space function was successful.
1 Your program was not currently connected to the host presentation
space.
9 A system error was encountered.

Notes on Using This Function

1.

3.

After the Disconnect Presentation Space function is called, functions that
interact with the host-connected presentation space are no longer valid (for
example, the Send Key (3), Wait (4), Reserve (11) and Release (12) functions).

Your EHLLAPI application should disconnect from the host presentation space
before exiting.

The Disconnect Presentation Space function does not reset the session
parameters to the defaults. Your EHLLAPI application must call the Reset
System (21) function to accomplish this.

Disconnect Window Service (102)

3270

5250

VT

Yes

Yes

Yes

Emulator Programming

The Disconnect Window Service function disconnects the window services
connection between the EHLLAPI program and the specified host presentation
space window.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface |Enhanced Interface
Function Number Must be 102
Data String See the following table
Length 1 |4
PS Position NA
Data String Contents
Byte Definition
Standard Enhanced
1 1 A 1-character presentation space short name (PSID)
2-4 Reserved
Return Parameters
Return Code Explanation
0 The Disconnect Window Service function was successful.
1 Your program is not connected for Window Services.
9 A system error occurred.

Notes on Using This Function
After the Disconnect Window Service function has been called, your application

no longer manages the presentation space window.

Before exiting the application, you should request a Disconnect Window Service
function for all presentation spaces that have been connected for Presentation
Manager® services. If the application exits with an outstanding connection for
window services, the subsystem cancels the outstanding connection.

Find Field Length (32)

3270 5250 VT
Yes Yes Yes

The Find Field Length function returns the length of a target field in the connected
presentation space. This function can be used to find either protected or
unprotected fields, but only in a field-formatted host presentation space.

This function returns the number of characters contained in the field identified

using the call PS position parameter. This includes all characters from the
beginning of the target field up to the character preceding the next attribute byte.

Chapter 3. EHLLAPI Functions 83

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface | Enhanced Interface

Function Number

Must be 32

Data String See the following table
Length NA INA
PS Position See note

Note: PS Position: Identifies the field within the host presentation space at which
to start the Find. It can be the PS position of any byte within the field in
which you desire the Find to start.

The calling 2-character data string can contain:

Code Explanation

bb or Tb This field

Pb The previous field, either protected or unprotected.
Nb The next field, either protected or unprotected

NP The next protected field

NU The next unprotected field

PP The previous protected field

PU The previous unprotected field

Note: The b symbol represents a required blank.

Return Parameters
This function returns a length and a return code.

Length:
The following lengths are valid:
Length Explanation
=0 When return code = 28, field length is 0. When return code = 24,
host presentation space is not field formatted.
>0 Required field length in the host presentation space.

Return Code:

The following codes are defined:

Return Code

Explanation

0 The Find Field Length function was successful.
1 Your program is not connected to a host session.
2 A parameter error was encountered.

7 The host presentation space position is not valid.
9 A system error was encountered.

24 No such field was found.

Emulator Programming

Return Code Explanation
28 Field length of 0 bytes.

Notes on Using This Function
Except when bb or Tb is used as the calling data string, if the field found is the

same as the field from which the Find started, a return code of 24 is returned.

Find Field Position (31)

3270 5250 VT

Yes Yes Yes

The Find Field Position function returns the beginning position of a target field in
the host-connected presentation space. This function can be used to find either
protected or unprotected fields but only in a field-formatted host presentation space.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface |Enhanced Interface
Function Number Must be 31
Data String See the following table
Length NA |NA
PS Position See note

Note: PS Position: Identifies the field within the host presentation space at which
to start the Find. It can be the PS position of any byte within the field in
which you want the Find to start.

The calling 2-character data string can contain:

Code Explanation

bb or TH This field

Pb The previous field, either protected or unprotected
Nb The next field, either protected or unprotected

NP The next protected field

NU The next unprotected field

PP The previous protected field

PU The previous unprotected field

Note: The b symbol represents a required blank.

Return Parameters
This function returns a length and a return code.

Length:
The following lengths are valid:

Chapter 3. EHLLAPI Functions 85

Length Explanation

= When return code = 28, field length is 0. When return code = 24,
host presentation space is not field formatted.

>0 Relative position of the requested field from the origin of the host
presentation space. This position is defined to be the first position
after the attribute byte.

Return Code:
The following codes are defined:

Return Code Explanation
0 The Find Field Position function was successful.
1 Your program is not connected to a host session.
2 A parameter error was encountered.
7 The host presentation space position is not valid.
9 A system error was encountered.
24 No such field was found.
28 Field length of 0 bytes.

Notes on Using This Function
Except when bb or Th is used as the calling data string, if the field found is the
same as the field from which the Find started, a return code of 24 is returned.

Free Communications Buffer (124)

3270 5250 VT
Yes No No

The Free Communications Buffer function returns to management memory a
buffer that is no longer required by the application. The application should free the
buffer prior to exiting the system.

Prerequisite Calls
Allocate Communications Buffer (123)

Call Parameters

Standard Interface |Enhanced Interface
Function Number Must be 124
Data String See the following table
Length Must be 6 | Must be 8
PS Position NA
Data String Contents
Byte Definition

Standard Enhanced

86 Emulator Programming

Byte Definition
1-2 1-4 Must be 0
3-6 5-8 The address of the buffer

Return Parameters

Return Code

Explanation

The Free Communications Buffer function was successful.

An error was made in specifying parameters.

A system error occurred.

The buffer is in use.

Notes on Using This Function

1. If the application attempts to free an in use buffer, the free request will be
denied and a return code of 41 will be returned.

2. An application should request the Free Communications Buffer (124) function
before exiting for all communication buffers that have been allocated using the
Allocate Communications Buffer (123) function.

3. The Reset System (21) function will free buffers allocated by the Allocate
Communications Buffer (123) function.

Get Key (b1)

3270

5250

VT

Yes

Yes

Yes

The Get Key function lets your EHLLAPI application program retrieve a keystroke

from a session specified by the Start Keystroke Intercept (50) function and either

process, accept, or reject that keystroke. By placing this function in a loop, you can

use it to intercept a string.

Prerequisite Calls

Start Keystroke Intercept (50)

Call Parameters

Standard Interface | Enhanced Interface

Function Number

Must be 51

Data String See the following table

Length 8 |12
PS Position NA

Data String Contents

Byte Definition

Standard | Enhanced

Chapter 3. EHLLAPI Functions

87

88

Byte

Definition

One of the following values:
* A l-character presentation space short name (PSID)

* A blank or null indicating a function call for the
host-connected presentation

2-4

Reserved

2-8

5-11

Blanks that hold space for the symbolic representation of
the requested data

12

Reserved

Return Parameters
This function returns a data string and a return code.

Data String:
See the following table:

Byte Definition

Standard Enhanced

1 1 One of the following values:
* A l-character presentation space short name (PSID)
» A blank or null indicating a function call for the

host-connected presentation
2-4 Reserved

2 5 An option code character, one of the following
characters:
» A for ASCII returned
» M for keystroke mnemonic
S for special mnemonic

3-8 6-11 These 6 bytes of the preallocated buffer space are used

internally to enqueue and dequeue keystrokes. Possible
combinations include:

* Byte 3 contains an ASCII character and byte 4
contains X'00'

* Bytes 3 and 4 contains a double-byte character

* Bytes 3 contains the escape character (either @ or
another character specified using the ESC=c option of
function 9) and byte 4 contains a 1-byte abbreviation

for a function. (See EASCL Mnemonics” an page 1)

* Bytes 5 through 8 might be similar to bytes 3 and 4 if
the returned ASCII mnemonic is longer than 2 bytes
(for example, if the ASCII mnemonic represents Attn
@A@Q, byte 5 contains @ and byte 6 contains Q). If not
used, bytes 5 through 8 are set to zero (X'00").

For clarification, some examples of returned data strings are provided below:

Note: The @ symbol is the default escape character. The value of the escape
character can be set to any keystroke represented in ASCII by using the
ESC=c option of the Set Session Parameters (9) function. If the escape
character has been changed to another character using this option, the @
symbol in the following examples is replaced by the other character.

Emulator Programming

16-Bit Interface

EAt

E is the presentation space short name. The keystrokes are returned as
ASCII (A), and the returned key is the lowercase letter t. (Bytes 4-8 =
X'00").

EM@G2 E is the presentation space short name. The keystrokes are returned as

mnemonics, and the returned key is PF2 (Bytes 5-8 = X'00").

32-Bit Interface

EbbbAt E is the presentation space short name. The keystrokes are returned as

ASCII (A), and the returned key is the lowercase letter t. (Bytes 7-11 =
X'00".

EbbbME2

E is the presentation space short name. The keystrokes are returned as
mnemonics, and the returned key is PF2 (Bytes 8-11 = X'00".

Return Code:

The following codes are valid:

Return Code Explanation
0 The Get Key function was successful.
1 An incorrect presentation space was specified.
5 You specified the AID only option under the Start Keystroke

Intercept (50) function, and non-AlD keys are inhibited by this
session type when EHLLAPI tries to write incorrect keys to the
presentation space.

8 No prior Start Keystroke Intercept (50) function was called for this
presentation space.

9 A system error was encountered.

20 An undefined key combination was typed.

25 The requested keystrokes are not available on the input queue.

31 Keystroke queue overflowed and keystrokes were lost.

Notes on Using This Function

1.

If a return code of 31 occurs for the Get Key function, either:

* Increase the value of the calling length parameter for the Start Keystroke
Intercept (50) function, or

* Execute the Get Key function more frequently.

An intercepted keystroke occupies 3 bytes in the buffer. The next intercepted
keystroke is placed in the adjacent three bytes. When the Get Key function
retrieves a keystroke (first in first out, FIFO), the three bytes that it occupied
are made available for another keystroke. By increasing the size of the buffer or
the rate at which keystrokes are retrieved from the buffer, you can eliminate
buffer overflow.

For the PC/3270, another way to eliminate return code 31 is to operate the
PC/3270 emulator in the resume mode.

You can use the Send Key (3) function to pass both original keystrokes and any
others that your EHLLAPI application might need to the host-connected
presentation space.

Chapter 3. EHLLAPI Functions 89

90

Keystrokes arrive asynchronously and are enqueued in the keystroke queue
that you have provided in your EHLLAPI application program using the Start
Keystroke Intercept (50) function.

The Get Key function behaves like a read. When keystrokes are available, they
are read into the data area that you have provided in your application.

In the case of field support for a session, the application might be interested
only in AID keys, for example the Enter key. If so, the Start Keystroke
Intercept (50) function option code should be set to D (meaning for AID Keys
only).

To use this function, preallocate memory to receive the returned data string
parameter. The statements required to preallocate this memory vary depending
on the language in which your application is written. Refer to m

lallocation” on page 8 for more information.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

The session option ESC is not supported in a Unicode session; using this option
you cannot set a Unicode character as an ESC character. Use the default ESC

character @ in a Unicode session. See [‘Set Session Parameters (9)” on page 144 for

details.

Prerequisite Calls: Start Keystroke Intercept (50)

Call Parameters:

Standard Interface |Enhanced Interface
Function Number Must be 51
Data String See the following table
Length 8 |12
PS Position NA
Data String Contents:
Byte Definition
Standard Enhanced
1 1 One of the following values:
* A l-character presentation space short name (PSID)
* A blank or null indicating a function call for the
host-connected presentation
2-4 Reserved
2-8 5-11 Blanks that hold space for the symbolic representation of
the requested data
12 Reserved

Return Parameters: This function returns a data string and a return code.

Data String:

Emulator Programming

See the following table for 32-bit interface:

Byte Definition
1 One of the following values:
* A l-character presentation space short name (PSID)
* A blank or null indicating a function call for the host-connected
presentation
2-4 Reserved
5 U is the option code character for a Unicode session.
6-11 The definition of these bytes is similar to the DBCS session; the only

difference is that the Unicode character value is stored in bytes 6 and 7
when the option code character is U. In a DBCS session, the ASCII
character value is stored in byte 3 and byte 4 contains 0X'00" when the
option code character is A.

Return Code:
The following codes are valid:

Return Code Explanation

0 The Get Key function was successful.

1 An incorrect presentation space was specified.

5 You specified the AID only option under the Start Keystroke
Intercept (50) function, and non-AlD keys are inhibited by this
session type when EHLLAPI tries to write incorrect keys to the
presentation space.

8 No prior Start Keystroke Intercept (50) function was called for this
presentation space.

9 A system error was encountered.

20 An undefined key combination was typed.

25 The requested keystrokes are not available on the input queue.

31 Keystroke queue overflowed and keystrokes were lost.

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

The session option ESC is not supported in a Unicode session; using this option
you cannot set a Unicode character as an ESC character. Use the default ESC

character @ in a Unicode session. See [‘Set Session Parameters (9)” on page 145 for

details.
Prerequisite Calls:

Call Parameters:

Start Keystroke Intercept (50)

Standard Interface | Enhanced Interface

Function Number

Must be 51

Data String See the following table
Length 8 |12
PS Position NA

Chapter 3. EHLLAPI Functions 91

92

Data String Contents:

Byte Definition
Standard Enhanced
1 1 One of the following values:
* A l-character presentation space short name (PSID)
» A blank or null indicating a function call for the
host-connected presentation
2-4 Reserved
2-8 5-11 Blanks that hold space for the symbolic representation of
the requested data
12 Reserved

Return Parameters: This function returns a data string and a return code.

Data String:

See the following table for 32-bit interface:

Byte

Definition

1

One of the following values:
« A l-character presentation space short name (PSID)

« A blank or null indicating a function call for the host-connected
presentation

2-4

Reserved

U is the option code character for a Unicode session.

6-11

The definition of these bytes is similar to the SBCS session, the only
difference is that the Unicode character value is stored in bytes 6 and 7
when the option code character is U. In a DBCS session, the ASCII
character value is stored in byte 3 and byte 4 contains 0X'00" when the
option code character is A.

Return Code:

The following codes are valid:

Return Code

Explanation

0

The Get Key function was successful.

1

An incorrect presentation space was specified.

5

You specified the AID only option under the Start Keystroke
Intercept (50) function, and non-AlD keys are inhibited by this
session type when EHLLAPI tries to write incorrect keys to the
presentation space.

No prior Start Keystroke Intercept (50) function was called for this
presentation space.

A system error was encountered.

20

An undefined key combination was typed.

25

The requested keystrokes are not available on the input queue.

31

Keystroke queue overflowed and keystrokes were lost.

Emulator Programming

Get Request Completion (125)

3270

5250

VT

Yes

No

No

The Get Request Completion function allows an application to determine the
status of a previous asynchronous function request issued to the EHLLAPI and to
obtain the function parameter list before using the data string again. This function
is valid only if the user specified asynchronous (A) completion on a previous
function call such as Read Structured Fields (126) or Write Structured Fields (127).

Each asynchronous request requiring the Get Request Completion function will

return a unique ID from the asynchronous request. The application must save this

ID. This ID is the identification used by the Get Request Completion function to

identify the desired request. The user has three request options using this function:

1. The application can query or wait for a specific asynchronous function request
by supplying the request ID of that function and a nonblank session short

name.

2. The application can query or wait for the first completed asynchronous
function request for a specified session by supplying a request ID of X'0000
and a nonblank session short name.

Prerequisite Calls
Connect Structured Fields (120) and Allocate Communications Buffer (123)

and

Read Structured Fields (126) or Write Structured Fields (127)

Call Parameters

Standard Interface | Enhanced Interface

Function Number

Must be 125

Data String See the following table

Length Must be 14 | Must be 24

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)
2-4 Reserved

2 5 N or W N=NOWAIT is required W=WAIT is required
6-8 Reserved

3-4 9-10 Function request ID.

5-6 11-12 Reserved

7-10 13-16 Reserved

11-12 17-20 Reserved

Chapter 3. EHLLAPI Functions

93

94

Byte

Definition

13-14

21-24 Reserved

The Get Request Completion function behaves differently depending upon the
second character of the parameter string, which is one of the following characters:

N

Nowait option: If a specific request ID was supplied and the function has
completed, control will be returned to the application with a return code of
zero and a completed data string as defined in EReturn Parameters’, If a
request ID of zero was supplied and any eligible asynchronous function
has completed, control will be returned to the application with a return
code of zero and a completed data string as defined in

Wait option: If a specific request ID was supplied and the function has not
completed, the call will wait until the function has completed before
returning to the application. If the supplied request ID was zero and no
eligible asynchronous function has completed, the call will wait until a
function completes before returning to the calling application. On return,
the return code value will be zero and the data string will be completed as

defined in EReturn Parameters’].

Return Parameters

Byte

Definition

Standard Enhanced

5-6

11-12 Function number of the completed asynchronous
function (126 or 127). (returned)

7-10

13-16 Address of the data string of the completed
asynchronous function call. (The application must not
reuse the data string until the request has completed).
(returned)

11-12

17-20 Length of the data string of the completed asynchronous
function call. (returned)

13-14

21-24 Return code of the completed asynchronous function
call. (returned)

Return Code Explanation

0 The Get Request Completion function was successful.

2 An error was made in specifying parameters.

9 A system error was encountered.

38 Requested function was not complete.

42 No matching request was found.

There are some differences between return codes 38 and 42:
1. Return code 38

a.

Emulator Programming

If a specific request ID and session were requested, both the session and 1D
were found but the request is pending (not in a completed state).

If a zero request ID and a specific session were requested, the specified
session has pending requests, but they are not satisfied (complete).

c. If a zero request ID and a blank session were requested, pending requests

were found but none were satisfied (complete).

2. Return code 42

a. If a specific request ID and session were requested, the specific request ID

was not found in either a pending or a completed state.

b. If a zero request ID and a specific session were requested, the specific
session contains no pending or completed requests.

c. If a zero request ID and a blank session were requested, no pending or
completed requests were found.

Notes on Using This Function
1. This function is valid only if the user specified asynchronous completion (A for

Asynchronous) on a previous function call such as Read Structured Fields or
Write Structured Fields.

2. If the return code is a 0, the application should check the returned data string

for information pertaining to the completion of the requested asynchronous

function.

Lock Presentation Space API (60)

3270 5250

VT

Yes No

No

The Lock Presentation Space API function allows the application to obtain or

release exclusive control of the presentation space window over other Windows
32-bit and OS/2 applications. While locked, no other application can connect to

the presentation space window.

Successful processing of this function with the Lock causes EHLLAPI presentation
space window functions requested from other EHLLAPI applications to be queued
until the requesting application unlocks the presentation space. Requests from the
locking application are processed normally.

Prerequisite Calls

Connect to Presentation Space (1)

Call Parameters

Standard Interface | Enhanced Interface

Function Number

Must be 60

Data String See the following table

Length Must be 3 | Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).
2-4 Reserved.

Chapter 3. EHLLAPI Functions

95

Definition

One of the following characters: « L to lock the API. < U
to unlock the API.

Byte
2 5
3 6

One of the following characters: * R to return if the
presentation space is already locked by an application. «
Q to queue the Lock request if the presentation space is
already locked by an application.

7-8 Reserved.
Return Parameters
Return Code Explanation

0 The Lock Presentation Space API function was successful.

1 An incorrect host presentation space short session ID was specified
or was not connected.

2 An error was made in specifying parameters.

9 A system error was encountered.

43 The API was already locked by another EHLLAPI application (on
LOCK) or API not locked (on UNLOCK).

Notes on Using This Function
The following EHLLAPI functions are queued when a lock is in effect:

* Send Key (3)

» Copy Presentation Space (5)
» Search Presentation Space (6)
» Copy Presentation Space to String (8)

* Release (11)
* Reserve (12)

* Query Field Attribute (14)
» Copy String to Presentation Space (15)

» Search Field (30)

» Find Field Position (31)
* Find Field Length (32)

* Copy String to Field (33)
* Copy Field to String (34)

» Set Cursor (40)
» Send File (90)

* Receive File (91)

* Connect to Presentation Space (1) with the CONPHYS parameter set in a
previous Set Sessions Parameter (9) function call.

These queued requests are not serviced until the lock is removed. When the lock is
removed, the queued requests are processed in first-in-first-out (FIFO) order.
EHLLAPI functions not listed are run as if there was no lock. The requesting
application unlocks the presentation space window by one of the following

methods:

» Disconnecting from the presentation space while still owning the Lock.
* Issuing the Reset System (21) function while still owning the Lock.

96 Emulator Programming

» Stopping the application while still owning the Lock.
» Stopping the session.
» Successfully issuing the Lock Presentation Space APl with the Unlock option.

Before exiting the application, you should unlock any presentation space windows
that have been locked with the Lock Presentation Space API function. If the
application exits with outstanding locks, or a Reset System (21), or Disconnect
Presentation Space (2) function is issued, the locks are released.

It is recommended that applications lock the presentation space only for short
periods of time and only when exclusive use of the presentation space is required.

Lock Window Services API (61)

3270 5250 VT
Yes No No

The Lock Window Services API function allows the application to obtain or
release exclusive control of the presentation space window over other Windows
32-bit and OS/2 applications. While locked, no other application can connect to the
presentation space window.

Successful processing of this function with the Lock causes EHLLAPI presentation
space window functions requested from other EHLLAPI applications to be queued
until the requesting application unlocks the presentation space. Requests from the
locking application are processed normally.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface
Must be 61

| Enhanced Interface

Function Number

Data String See the following table.

Length Must be 3 | Must be 8

PS Position NA

Data String Contents

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).

2-4 Reserved.

2 5 One of the following characters: * L to lock the API. « U
to unlock the API.

3 6 One of the following characters: ¢ R to return if the
presentation space is already locked by an application. ¢
Q to queue the Lock request if the presentation space is
already locked by an application.

Chapter 3. EHLLAPI Functions 97

98

Byte Definition

5-6 11-12 Function number of the completed asynchronous function
(126 or 127). (returned)
7-8 Reserved.

Return Parameters

Return Code Explanation

0 The Lock Window Services API function was successful.

1 An incorrect host presentation space short session ID was specified or
was not connected.

2 An error was made in specifying parameters.

9 A system error was encountered.

38 Requested function was not complete.

43 The API was already locked by another EHLLAPI application (on

LOCK) or API not locked (on UNLOCK).

Notes on Using This Function
The following EHLLAPI functions are queued when a lock is in effect:

* Window Status (104)
* Change Switch List Name (105)
* Change PS Window Name (106)

These queued requests are not serviced until the lock is removed. When the lock is
removed, the queued requests are processed in first-in-first-out (FIFO) order.

The requesting application unlocks the presentation space window by one of the
following methods:

» Successfully issuing the Lock Window Services APl with the UNLOCK option.
» Disconnecting from the presentation space while still owning the Lock.

* Issuing the Reset System (21) function while still owning the Lock.

» Stopping the application while still owning the Lock.

» Stopping the session.

Before exiting the application, you should Unlock any presentation space windows
that have been locked with the Lock Window Services APIfunction. If the
application exits with outstanding locks, the subsystem releases the locks.

It is recommended that applications lock the presentation space only for short
periods of time and only when exclusive use of the presentation space is required.

Pause (18)

3270 5250 VT
Yes Yes Yes

Emulator Programming

The Pause function waits for a specified amount of time. It should be used in place
of timing loops to wait for an event to occur. A Pause function can be ended by a
host event if a prior Start Host Notification (23) function has been called and the
IPAUSE option is selected.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 18
Data String NA
Length Contains the pause duration in half-second increments
PS Position NA
Return Parameters
Return Code Definition
0 The wait duration has expired.
9 An internal system error was encountered. The time results are

unpredictable.

26 The host session presentation space or OIA has been updated. Use
the Query Host Update (24) function to get more information.

Notes on Using This Function

1. Selecting the FPAUSE or IPAUSE option using the Set Session Parameters (9)
function affects the length of the pause you get when you call this function. See
item b.an_page 144 for more information.

2. The value entered in the calling length parameter is the maximum number of
half-second intervals that the Pause function waits. For a pause of 20 seconds, a
hex value of 0028 (decimal 40) must be passed in the calling length parameter.

3. If you use the IPAUSE option, once a pause has been satisfied by a host event,
you should call the Query Host Update (24) function to clear the queue prior
to the next Pause function. The Pause function will continue to be satisfied
with the pending event until the Query Host Update (24) function is
completed.

4. A practical maximum value for the Pause function is 2400. You should not use
the Pause function for these kinds of tasks:

» Delay for very long durations (of several hours, for example).

* Delay for more than a moderate length of time (20 minutes) before checking
the system time-of-day clock and proceeding with your EHLLAPI program
execution.

» With applications requiring a high-resolution timer because the time interval
created by a Pause function is approximate.

» Set the time interval to zero in a loop.

5. IPAUSE set and the interruptible pause allow an EHLLAPI application to
determine whether the specified host presentation space (PS) or operator
information area (OIlA) is updated. The following three functions are used:

» Start Host Notification (23)
* Query Host Update (24)

Chapter 3. EHLLAPI Functions 99

» Stop Host Notification (25)

By using IPAUSE when the Start function is called, you can make an
application wait until the host presentation space or OIA (or both) receives an
update. When the receive is completed and the application can issue the Query
function to determine the changes, Pause terminates. Then the application
issues the Search Presentation Space (6) to check whether the expected update
occurred.

Post Intercept Status (52)

3270 5250 VT
Yes Yes Yes

The Post Intercept Status function informs the Personal Communications emulator
that a keystroke obtained through the Get Key (51) function was accepted or
rejected. When the application rejects a keystroke, the Post Intercept Status
function issues a beep.

Prerequisite Calls
Start Keystroke Intercept (50)

Call Parameters

Standard Interface |Enhanced Interface
Function Number Must be 52
Data String See the following table
Length Must be 2 | Must be 8
PS Position NA

The calling data string can contain:

Byte Definition
Standard Enhanced
1 1 One of the following values:

e The 1-letter short name of the presentation space.

» A blank or null indicating a function call for the
host-connected presentation space.

2-4 Reserved

2 5 One of the following characters:
« A for accepted keystroke.
* R for rejected keystroke.

6-8 Reserved.

Return Parameters

Return Code Explanation
0 The Post Intercept Status function was successful.
1 An incorrect presentation space was specified.

100 Emulator Programming

Return Code Explanation

2 An incorrect session option was specified.

8 No prior Start Keystroke Intercept (50) function was called for this
presentation space ID.

9 A system error was encountered.

Query Additional Field Attribute (45)

3270 5250 VT
No Yes No

The Query Additional Field Attribute function returns additional information
about the 5250 field containing the input host presentation space position. This

information is returned in the data string parameter in the form of a defined
structure.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 45.
Data String 8 bytes long character string.
Length 8 is implied.
PS Position Identifies the target. This can be the PS position of any byte
within the target field.

The calling data string can contain:

Byte Definition

1-8 Reserved

Return Parameters
This function returns a data string and a return code.

Data String:
The function returns the following data string.

Byte Definition
1-6 Reserved
7-8 Two 8-bit unsigned characters that return:

« R if field is RTL and L if field is LTR.

» U if field is upper case and L if field is a normal case
field.

Return Code:
The following return codes are defined:

Chapter 3. EHLLAPI Functions 101

Return Code Explanation
0 The Query Additional Field Attribute was successful.
1 Your program is not currently connected to a host session.
7 The host presentation space position is not valid.
9 No field was found in this position.
24 Field is unformatted.

Query Close Intercept (42)

3270

5250

VT

Yes

Yes

Yes

The Query Close Intercept function allows the application to determine if the close
option was selected.

Prerequisite Calls
Start Close Intercept (41)

Call Parameters

Standard Interface |Enhanced Interface
Function Number Must be 42
Data String See the following table.
Length Must be 1 | Must be 4
PS Position NA

The calling data string can contain:

102

Byte Definition
Standard Enhanced
1 1 1-character short session ID of the host presentation
space, or a blank or null indicating request for querying
the host-connected session
2-4 Reserved
Return Parameters
Return Code Explanation
0 A close intercept event did not occur.
1 The presentation source was not valid.
2 An error was made in specifying parameters.
8 No prior Start Close Intercept (41) function was called for this
host presentation space.
9 A system error occurred.
12 The session stopped.
26 A close intercept occurred since the last query close intercept call.

Emulator Programming

Query Communications Buffer Size (122)

3270

5250

VT

Yes

No

No

The Query Communications Buffer Size function allows an application to
determine both the maximum and the optimum buffer sizes supported by the
emulation program.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface | Enhanced Interface

Function Number

Must be 122

Data String See the following table
Length Must be 9 | Must be 20
PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)

2-4 Reserved

2-3 5-8 16- or 32-bit field for the optimum supported inbound
buffer size (Returned value)

4-5 9-12 16- or 32-bit field for the maximum supported inbound
buffer size (Returned value)

6-7 13-16 16- or 32-bit field for the optimum supported outbound
buffer size (Returned value)

8-9 17-20 16- or 32-bit field for the maximum supported outbound
buffer size (Returned value)

Return Parameters

Return Code Explanation
0 The Query Communications Buffer Size function was successful.
1 A specified host presentation space short session ID was not valid
or was not connected.
2 An error was made in specifying parameters.
9 A system error occurred.
10 The function was not supported by the emulation program.

Notes on Using This Function

1. There is no way to require the user to use this function. It is not a required
function so that the application can be tailored to run on any system.

Chapter 3. EHLLAPI Functions 103

2. The buffer sizes returned represent the record sizes that are actually transmitted
across the medium. For a DDM connection, the 8-byte header supplied in the
Read and Write Structured Fields data buffer is stripped off and 1 byte
containing the structured field AID value is prefixed. The application should
compare the size of the actual data in the data buffer (which does not include
the 8-byte header) with the buffer sizes returned by the Query
Communications Buffer Size minus 1 byte. For destination/origin connections,
the 8-byte header supplied in the Read and Write Structured Fields data buffer
is stripped off and 9 bytes are then prefixed to the data. The application should
compare the size of the actual data in the data buffer (which does not include
the 8-byte header) with the buffer size returned by the Query Communications
Buffer Size minus 9 bytes.

3. The maximum buffer sizes returned represent the maximum number of bytes
supported by the workstation hardware and by the emulator. The maximum
buffer size can be used only if the host is also configured to accept at least
these maximum sizes.

4. The optimum buffer sizes returned represent the optimum number of bytes
supported by the both the workstation hardware and the emulator. Some
network configurations might set transmission limits smaller than these values.
In these cases, the data transfer buffer size override value in the emulator
configuration profile will be used for structured field support. The Query
Communications Buffer Size will reflect any buffer size override values
entered in the emulator configuration profile.

Query Communication Event (81)

3270 5250 VT

Yes Yes Yes

The Query Communication Event function lets the EHLLAPI program determine
whether any communication events have occurred.

Prerequisite Calls
Start Communication Notification (80)

Call Parameters

Enhanced Interface

Function Number Must be 81

Data String 1-character short name of the host presentation space or a blank or
null indicating request for updates to the host-connected
presentation space

Length 4 is implied
PS Position NA

The calling data structure contains these elements:

Byte Definition
1 A 1-character presentation space short name (PSID)
2-4 Reserved

104 Emulator Programming

Query

Return Parameters

Return Code

Definition

0 The function was successful

1 An incorrect PSID was specified

8 No prior call to Start Communication Notification (80) function
was called for the PSID

9 A system error was encountered

21 The indicated PSID was connected

22 The Indicated PSID was disconnected

Cursor Location (7)

3270

5250 VT

Yes

Yes Yes

The Query Cursor Location function indicates the position of the cursor in the
host-connected presentation space by returning the cursor position.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 7
Data String NA
Length NA
PS Position NA

Return Parameters
This function returns a length and a return code.

Length:

Host presentation space position of the cursor.

Return Code:

The following codes are defined:

Return Code Explanation
0 The Query Cursor Location function was successful.
1 Your program is not currently connected to a host session.
9 A system error was encountered.

Query Field Attribute (14)

3270

5250 VT

Yes

Yes Yes

Chapter 3. EHLLAPI Functions

105

106

The Query Field Attribute function returns the attribute byte of the field
containing the input host presentation space position. This information is returned

in the returned length

For the PC/3270, note
* The returned length

parameter.

also that:
parameter is set to 0 if the screen is unformatted.

» Attribute bytes are equal to or greater than hex CO.

Prerequisite Calls

Connect Presentation Space (1)

Call Parameters
Standard Interface Enhanced Interface

Function Number Must be 14.

Data String NA.

Length NA.

PS Position Identifies the target. This can be the PS position of any byte
within the target field.

Return Parameters
This function returns a length and a return code.

Length:

The attribute value if the screen is formatted, or O if the screen is

unformatted.

Return Code:
The following

codes are defined:

Return Code Explanation
0 The Query Field Attribute was successful.
1 Your program is not currently connected to a host session.
7 The host presentation space position is not valid.
9 A system error was encountered.
24 Attribute byte not found or unformatted host presentation space.

Notes on Using This Function
The returned field attributes are defined in the following tables. The bit positions

are in IBM format with bit 0 as the left most bit in the byte.

e 3270 field attribute:

Bit Position Meaning
0-1 Both = 1, field attribute byte
2 Unprotected/protected
0 = Unprotected data field
1 = Protected field
3 A/N
0 = Alphanumeric data
1 = Numeric data only

Emulator Programming

Bit Position Meaning
4-5 I/SPD
00 = Normal intensity, pen not detectable
01 = Normal intensity, pen detectable
10 = High intensity, pen detectable
11 = Nondisplay, pen not detectable
6 Reserved
7 MDT
0 = Field has not been modified
1 = Field has been modified

* 5250 field attributes:

Bit Position Meaning
0 Field attribute flag
0 = Nonfield attribute flag
1 = Field attribute flag
1 Visibility
0 = Nondisplay
1 = Display
2 Unprotected/protected
0 = Unprotected data field
1 = Protected field
3 Intensity
0 = Normal intensity
1 = High intensity
4-6 Field type
000 = Alphanumeric data: All characters are available
001 = Alphabet only: Uppercase and lowercase, comma, period,
hyphen, blank, or Dup key are available
010 = Numeric shift: Automatic shift for number
011 = Numeric data only: 0-9, comma, period, plus, minus,
blank, or Dup key are available
101 = Numeric data only: 0-9, or Dup key are available
110 = Magnetic stripe reading device data only
111 = Signed-numeric data: 0-9, plus, minus, or Dup key are
available
7 MDT
0 = Field has not been modified
1 = Field has been modified

Query Host Update (24)

3270 5250 VT

Yes Yes Yes

Chapter 3. EHLLAPI Functions

107

The Query Host Update function lets the programmed operator determine if the
host has updated the host presentation space or OIA because:

» The Start Host Notification (23) function was called (on first call to the Query
Host Update function only)

* The previous call to the Query Host Update function (for all calls to the Query
Host Update function except the first).

Prerequisite Calls
Start Host Notification (23)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 24

Data String 1-character short name of the host presentation space, or a
blank or null indicating request for updates to
host-connected presentation space

Length 1is implied 4 is implied

PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)
2-4 Reserved

Return Parameters

Return Code Definition
0 No updates have been made since the last call.
1 An incorrect host presentation space was specified.
8 No prior Start Host Notification (23) function was called for the
host presentation space ID.
9 A system error was encountered.
21 The OIA was updated.
22 The presentation space was updated.
23 Both the OIA and the host presentation space were updated.
44 Printing has completed in the printer session.

Notes on Using This Function
The target presentation space must be specified in the data string, even though a
connection to the host presentation space is not necessary to check for updates.

Query Session Status (22)

108

3270

5250

VT

Yes

Yes

Yes

Emulator Programming

The Query Session Status function is used to obtain session-specific information.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

16-bit 32-bit
Function Number Must be 22.
Data String An 18/20-byte string consisting of a 1-byte short name of

the target presentation space plus 17 bytes for returned
data. Position 1 can be filled with:

1. Anblank or a null to indicate a request for the
host_connected presentation space.

2. An * (asterisk) to indicate a request for the
keyboard-owner presentation space.

Length Must be 18 Must be 20
PS Position NA

Return Parameters
This function returns a data string and a return code.

Byte Definition
Standard Enhanced
1 1 A 1-character presentation space short name (PSID)
2-4 Reserved
2-9 5-12 Session long name (same as profile name; or, if profile
not set, same as short name)
10 13 .
Session Type
D 3270 display
E 3270 printer
F 5250 display
G 5250 printer
H ASCII VT
1 14 Session characteristics expressed by a binary number
including the following session-characteristics bits
Bit 0 EAB 0: Session has the basic attribute. 1:
Session has the extended attribute
Bit 1 PSS 0: Session does not support the
programmed symbols 1: Session supports the
programmed symbols
Bits 2-7
Reserved
12-13 15-16 Number of rows in the host presentation space,
expressed as a binary number
14-15 17-18 Number of columns in the host presentation space,
expressed as a binary number
16-17 19-20 Host code page expressed as a binary number

Chapter 3. EHLLAPI Functions 109

110

Byte

Definition

18

Reserved

Return Code:

The following codes are defined:

Return Code Explanation
0 The Query Session Status function was successful.
1 An incorrect host presentation space was specified.
2 An incorrect string length was made.
9 A system error was encountered.

Notes on Using This Function
1. To use this function, preallocate memory to receive the returned data string
parameter. The statements required to preallocate this memory vary dependmg
on the language in which your application is written. See L
for more information.

Query Sessions (10)

3270

5250

VT

Yes

Yes

Yes

The Query Sessions function returns a 16-byte (12-byte for standard interface) data
string describing each host session.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Function

Description

Standard Interface

Enhanced Interface

Function Number

Must be 10

Data String Preallocated string of 16n bytes long (12n for 16-bit) (n
=number of sessions) or more

Length 12n bytes 16n bytes

PS Position NA

Note: When the length is not matched to the number of sessions, the return code

is 2.

Return Parameters

This function returns a data string, a length, and a return code.

Data String:

The returned data string is 16n bytes long (12n for standard interface),
where n is the number of host sessions. The descriptors are concatenated
into the data string and each session type, and presentation space size of a
host session.

Emulator Programming

The format of each 16-byte (12-byte for standard interface) session
descriptor is as follows:

Byte Definition
Standard Enhanced
1 1 A 1-character presentation space short name (PSID)
2-4 Reserved
2-9 5-12 Session long name (same as profile name; or, if profile
not set, same as short name)
10 13 Connection type H=host
14 Reserved
11-12 15-16 Host presentation space size (this is a binary number and

is not in display format). If the session type is a print
session, the value is 0.

Length:
The number of host sessions started.

Return Code:
The following codes are defined:

Return Code Explanation
0 The Query Sessions function was successful.
2 An incorrect string length was made.
9 A system error was encountered.

Notes on Using This Function

1. If an application program receives RC=2 or RC=0, the number of the active
sessions is returned in the length field. The application program can recognize
the minimum string length by this number.

2. The Query Sessions function is affected by the CFGSIZE/NOCFGZISE session
option (see item [16 on page 151 for more information) and by the
EXTEND_PS/NOEXTEND_PS option (see item m for more
information).

Notes:

1. When NOCFGSIZE is set in Set Session Parameters (9) for a 5250 session, the
value of presentation space size returned in byte position 11 and 12 from Query
Sessions(10) will be changed in accordance with the selection of EXTEND_PS
or NOEXTEND_PS.

2. When EXTEND_PS is set in Set Session Parameters (9), presentation space size
returned from Query Sessions (10) will include the size of the message line, if
it exists.

3. When NOEXTEND_PS is set, the value will not change regardless of the
existence of a message line. In the case of 25 row, 80 column presentation space,
the value can be 1920 or 2000.

Query System (20)

3270 5250 VT

Yes Yes Yes

Chapter 3. EHLLAPI Functions 111

112

The Query System function can be used by an EHLLAPI application program to
determine the level of Personal Communications support and other system-related
values. This function returns a string that contains the appropriate system data.
Most of this information is for use by a service coordinator when you call the IBM
Support Center after receiving a return code 9 (a system error was encountered).

The bytes in this returned string are defined in EReturn Parameters’.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 20
Data String Preallocated string of 35 36 bytes
bytes
Length Must be 35 Must be 36
PS Position NA

Return Parameters
This function returns a data string and a return code.

Data String:
A data string of 35 bytes (for 16-bit) or 36 bytes (for 32-bit) is returned.
The bytes are defined as follows:

Byte Definition
Standard Enhanced
1 1 EHLLAPI version number
2-3 2-3 EHLLAPI level number
4-9 4-9 Reserved
10-12 10-12 Reserved
13 13 Hardware base, U=Unable to determine
14 14 Program type, where P=IBM Personal Communications
15-16 15-16 Reserved
17-18 17-18 Personal Communications version/level as a 2-byte
ASCII value
19 19 Reserved
20-23 20-23 Reserved
24-27 24-27 Reserved
28-29 28-29 Reserved
30 Reserved
30-31 31-32 NLS type expressed as a 2-byte binary number

Emulator Programming

Byte

Definition

32

1-byte printable ASCII code representing type of monitor
being used as follows:

» A=Personal System/2 Monochrome

* B=Personal System/2 Monochrome Model 30
* C=CGA

* E=EGA

« G=MCGA

« H=XGA

* M=Monochrome

* V=VGA

* U=Unknown

Note: This value is only returned when running
Personal Communications for OS/2.

33-35 34-36

Reserved

Return Code

The following codes are defined:

Return Code Explanation
0 The Query System function was successful; data string has been
returned.
1 EHLLAPI is not loaded. (PC/3270 only)
2 An incorrect string length was specified. (PC/3270 only)
9 A system error was encountered.

Notes on Using This Function
To use this function, preallocate memory to receive the returned data string

parameter. See [‘Memary Allocation” on page § for more information.

Query Window Coordinates (103)

3270

5250

VT

Yes

Yes

Yes

The Query Window Coordinates function requests the coordinates for the window
of a presentation space. The window coordinates are returned in pels.

Note: (0,0) indicates the top-left of the window.

Prerequisite Calls
Connect Window Services (101)

Call Parameters

Standard Interface | Enhanced Interface

Function Number

Must be 103

Data String

1-character short session ID of the host presentation space

Length

17 is implied |20 is implied

Chapter 3. EHLLAPI Functions 113

114

Standard Interface Enhanced Interface

PS Position

NA

The calling data string can contain:

Byte Definition
Standard Enhanced
1 1 One of the following values:
* A l-character presentation space short name (PSID)
* A blank or null indicating a function call for the
current connection presentation space
2-4 Reserved
2-17 5-20 Reserved

Return Parameters
This function returns a data string and a return code.

Byte Definition

Standard Enhanced

1 1 One of the following values:
* A l-character presentation space short session ID
» A blank or null indicating a function call for the

current connection presentation space
2-4 Reserved

2-17 5-20 Four 32-bit unsigned integers that return:

2-5 5-8 XLeft Long integer in pels of the left X coordinate of the
rectangular window relative to the desktop window

6-9 9-12 YBottom Long integer in pels of the bottom Y coordinate
of the rectangular window relative to the desktop
window

10-13 13-15 XRight Long integer in pels of the right X coordinate of
the rectangular window relative to the desktop window

14-17 16-20 YTop Long integer in pels of the top Y coordinate of the
rectangular window relative to the desktop window

Return Code:

The following codes are defined:

Return Code

Explanation

0

The Query Window Coordinates function was successful.

1

Your program was not currently connected to the host session.

9

A system error occurred.

12

The session stopped.

Emulator Programming

Read Structured Fields (126)

3270

5250

VT

Yes

No

No

The Read Structured Fields function allows an application to read structured field
data from the host application. If the call specifies S (for Synchronous), the
application does not receive control until the Read Structured Fields is completed.
If the call specifies A (for Asynchronous), the application receives control
immediately after the call. If the call specifies M (for Asynchronous, message
mode), the application receives control immediately after the call. The application
can wait for the message. In any case (S, A, or M), the application provides the
buffer address in which the data from the host is to be placed.

For a successful asynchronous completion of this function, the following
statements apply:

The return code field in the parameter list might not contain the results of the
requested 1/0. If the return code is not 0, the request failed. The application must
take the appropriate action based on the return code.

If the return code for this request is 0, the application must use the request ID
returned with this function call to issue the Get Request Completion function call
to determine the completion results of the function associated with the request ID.
The Get Request Completion function call returns the following information:

1. Function request ID

2. Address of the data string from the asynchronous request
3. Length of the data string

4. Return code of the completed function

Prerequisite Calls
Connect for Structured Fields (120) and Allocate Communication Buffer (123)

Call Parameters

Standard Interface
Must be 126

| Enhanced Interface

Function Number

Data String See the following table
Length 8, 10 or 14 |20
PS Position NA

The calling data string can contain:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).
2-4 Reserved.

Chapter 3. EHLLAPI Functions 115

Byte Definition

2 5 SorAorM
S= Synchronous. Control is not returned to the
application until the read is satisfied.
A= Asynchronous. Control is returned immediately
to the application, can wait for the event object.
M= Asynchronous. Control is returned immediately
to the application, can wait for the message.
6 Reserved.
3-4 7-8 2-byte destination/origin ID.
5-8 9-12 4-byte address of the buffer into which the data is to be

read. The buffer must be obtained using the Allocate
Communications Buffer (123) function.

9-10 13-16 Reserved.

11-12 17-20 When M is specified in position 2 the window handle of
the window that receives the message should be set. The
message is a return value of RegisterWindowMessage
(“PCSHLL”)(not equal 0).

13-14 The data in these positions is ignored by EHLLAPI.
However, no error is caused if the migrating program
has data in these positions. This data is accepted to
provide compatibility with migrating applications.

Return Parameters
This function returns a data string and a return code.

Data String:
If A (asynchronous) is specified in position 5, (2 for standard interface) and
the function is completed successfully, the following data string is

returned:
Byte Definition
Standard Enhanced
9-10 13-14 2-byte function request ID. It is used by the Get Request
Completion (125) function to determine the completion
of this function call.

15-16 Reserved.

17-20 4-byte value in which the event object address is
returned by EHLLAPI. The application can wait for this
event object. When the event object is cleared, the
application must issue the Get Request Completion
(125) function call (32-bit only).

Note: A event object address is returned for each successful asynchronous request.
The event object should not be used again. A new event object is returned
for each request and is valid for only the duration of that request.

Data String:
If “M” (asynchronous message mode) is specified in position 5 (2 for 16-bit
applications) and the function is completed successfully, the following data
string is returned:

116 Emulator Programming

Byte Definition

9-10 13-14 A 2-byte function request ID. It is used by the Get Request

Completion (125) function to determine the completion of
this function call.

15-16 Reserved.
11-12 17-18 Task ID of asynchronous message mode.
19-20 Reserved.

Note: If the function is completed successfully, an application window receive a

message. The message is a return value of RegisterWindowMessage
(PCSHLL). The wParam parameter contains Task ID returned by the
function call. The HIWORD of IParam parameter contains Return Code 0,
which shows the function was successful, and LOWORD of IParam
parameter contains function number 126.

Return Code:

The following codes are defined:

Return Code Explanation

0 The Read Structured Fields function was successful.

1 A specified host presentation space short session ID was not valid
or was not connected.

2 An error was made in specifying parameters.

9 A system error occurred.

11 Resource unavailable (memory unavailable).

35 Request rejected. An outbound transmission from the host was
canceled.

36 Request rejected. Lost contact with the host.

37 The function was successful, but the host is inbound disabled.

Notes on Using This Function

1.

Return code 35 will be returned when the first Read Structured Fields or Write
Structured Fields is requested after an outbound transmission from the host is
canceled. Corrective action is the responsibility of the application.

Return code 36 requires that the application disconnect from the emulation
program and then reconnect to reestablish communication with the host.
Corrective action is the responsibility of the application.

Return code 37 will be returned if the host is inbound disabled. The Read
Structured Fields function was successfully requested.

The EHLLAPI allows for a maximum of 20 asynchronous requests per
application to be outstanding. A return code for unavailable resources (RC=11)
is returned if more than 20 asynchronous requests are attempted.

If you are using an IBM Global Network® connection, the maximum number of
asynchronous requests is 10.

The structured field data contains the application structured fields received from
the host. Structured field headers are removed by the EHLLAPI before the
structured field data reaches the application.

Chapter 3. EHLLAPI Functions 117

The structured field data format is as follows:

Offset Length Contents
0 1 word X'0000".
2 1 word m (message length: The number of bytes of data in the

message, the number does not include the buffer header
prefix, which contains 8 bytes). This value is returned by
EHLLAPI.

4 1 word n (buffer size: the supplied length of the data buffer that does
include the 8-byte message header). This value must be set
by the application.

6 1 word X'C000'.

8 8 bytes Length of the first (or only) structured field message.
10 1 byte First nonlength byte of the structured field message.
m+7 1 byte Last byte in the structured field message.

Bytes 0 through 7 are the buffer header. These first 8 bytes are used by the
emulation program. The user section of the buffer begins with offset 8. Bytes 8 and
9 contain the number of bytes in the first structured field (a structured field
message can contain multiple structured fields), including 2 bytes for bytes 8 and
9. Bytes 8 through m+7 are used for the structured field message received from the
host (which could contain multiple structured fields).

The using application must furnish the complete buffer with the word at offset 0
set to zero. The buffer length must be in the word at offset 4. The word at offset 6
must be X'C000'. The emulation program will place the data message beginning at
offset 8 and place the length of the message in the word at offset 2. The buffer
length is not disturbed by EHLLAPI.

Synchronous Requests: When Read Structured Fields is requested synchronously
(the S option in the data string), control is returned to the application only after the
request is satisfied. The application can assume:

* The return code is correct.
* The data in the communications buffer (read buffer) is correct.
* The host is no longer processing the Read Structured Fields request.

Asynchronous Requests: When Read Structured Fields is requested
asynchronously (the A option in the data string), the application cannot assume:

* The return code is correct.
* The data in the communications buffer (read buffer) is correct.
* The host is no longer processing the Read Structured Fields request.

When requested asynchronously, EHLLAPI returns the following values:

* A 16-bit Request ID in positions 13-14 (9-10 for standard interface) of the data
string

* The address of a event object in positions 17—20 of the data string

These are used to complete the asynchronous Read Structured Fields call.

118 Emulator Programming

The following steps must be completed to determine the outcome of an
asynchronous Read Structured Fields function call:

» |If the EHLLAPI return code is not zero, the request failed. No asynchronous
request has been made. The application must take appropriate actions before
attempting the call again.

» If the return code is zero, the application should wait until the event object is in
the signaled state by using the Get Request Completion (125) function or Wait
For Single Object. The event object should not be reused. The event object is
valid only for the duration of the Read Structured Fields function call through
the completion of the Get Request Completion (125) function call.

* Once the event object is in the signaled state, use the returned 16-bit Request ID
as the Request ID parameter in a call to the Get Request Completion (125)
function. The data string returned from the Get Request Completion (125)
function call contains the final return code of the Read Structured Fields
function call.

When Read Structured Fields is requested asynchronously (the M option in the
data string), the application cannot assume:

* The return code is correct.
» The data in the communications buffer (read buffer) is correct.
* The host is no longer processing the Read Structured Fields request.

When requested asynchronously with the M option, EHLLAPI returns the
following values:

* A 16-bit Request ID in positions 13-14 (9-10 for standard interface) of the data
string

* Task ID of asynchronous message mode in positions 17-18 (11-12 for standard
interface) of the data string.

These are used to complete the asynchronous Read Structured Fields call.

Receive File (91)

3270 5250 VT
Yes Yes No

The Receive File function is used to transfer a file from the host session to the
workstation session. It is used the same way as the RECEIVE command is used in
the PC/3270. The Receive File function can be called by an EHLLAPI application
program.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 91.

Data String Refer to the examples.

Length Length, in number of bytes, of the data string. Overridden if
in EOT mode.

Following are examples of the data strings for a single-byte character set (SBSC):

Chapter 3. EHLLAPI Functions 119

3270 Session

» To receive the file from the VM/CMS host system:
pc_filename [id:]1fn ft [fm] [(option]

* To receive the file from the MVS/TSO host system:
pc_filename[id:]dataset[(member)] [/password] [option]

* To receive the file from the CICS® host system:
pc_filename [id:]host_filename [(option]

5250 Session
* To receive the file from the AS/400 host system:
pc_filename [id:]1library file member [option]

Following are examples of the data strings for a double-byte character set (DBCS):

3270 Session

* To receive the file from the VM/CMS host system:
pc_filename [id:1fn ft [fm] [(option]

» To receive the file from the MVS/TSO host system:

pc_filename [id:]dataset[(member)] [/password]
[(option]

» To receive the file from the CICS host system:
pc_filename [id:]host filename [(option]

5250 Session
* To receive the file from the AS/400 host system:
pc_filename [id:]library file member [option]

Note: Parameters within [] are optional. Available options are listed below.

Host System Common Options

VM/CMS ASCII, JISCII, CRLF, APPEND, TIME n, CLEAR, NOCLEAR,
PROGRESS, QUIET

MVS/TSO ASCII, JISCII, CRLF, APPEND, TIME (n), CLEAR, NOCLEAR,
PROGRESS, QUIET, AVBLOCK | TRACKS|CYLINDERS

CICS ASCII, JISCII, CRLF, NOCRLF, BINARY, TIME n, CLEAR, NOCLEAR,
PROGRESS, QUIET

0S/400® ASCII, JISCII, CRLF, APPEND, TIME n, CLEAR, NOCLEAR,
PROGRESS, QUIET

Note: JISCII is valid in a DBCS session for Japan only and ASCII is valid for all other
SBCS and DBCS sessions.

Other options specified will be passed to the host transfer program. The file transfer
program on the host side either uses them, ignores them, or returns an error. Consult the
host transfer program documentation to see a complete list of the options supported.

Return Parameters

Return Code Explanation

2 Parameter error or you have specified a length that is too long
(more than 255 bytes) for the EHLLAPI buffer. The file transfer
was unsuccessful.

120 Emulator Programming

Return Code Explanation
3 File transfer complete.
4 File transfer complete with segmented records.
9 A system error was encountered.
27 File transfer terminated because of either a Cancel button or the
timeout set by the Set Session Parameter (9) function.
101 File transfer was successful (transfer to/from CICS).

If you receive return code 2 or 9, there is a problem with the system or with the
way you specified your data string.

Other return codes can also be received, which relate to message numbers
generated by the host transfer program. For transfers to a CICS host transfer
program, subtract 100 from the return code to give you the numeric portion of the
message. For example, a return code of 101 would mean that the message number
INWO0001 was issued by the host. For other host transfer programs, just use the
return code as the numerical part of the message. For example, a return of 34
would mean that message TRANS34 was issued by the host transfer program. The
documentation for your host transfer program should give more information about
the meanings of the specific messages.

Operating system error codes reported by EHLLAPI are greater than 300. To
determine the error code, subtract 300 and refer to the operating system
documentation for return codes.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are
related to this function. They are the STRLEN/STREOT, EOT=c,
QUIET/NOQUIET and the TIMEOUT=c/TIMEOUT=0 session options. See

items il and

and items @ and B.an page 144 for more information.

2. If no path is specified when the Receive File function is executed, the received
file is stored in the current subdirectory, which is the directory in which your

application is running.

Release (12)

3270

5250

VT

Yes

Yes

Yes

The Release function unlocks the keyboard that is associated with the host
presentation space reserved using the Reserve (11) function.

Prerequisite Calls

Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 12
Data String NA
Length NA

Chapter 3. EHLLAPI Functions 121

Standard Interface Enhanced Interface

PS Position NA

Return Parameters

Return Code Explanation
0 The Release function was successful.
1 Your program is not connected to a host session.
9 A system error was encountered.

Notes on Using This Function
If you do not Release a host presentation space reserved by using the Reserve (11)

function, you are locked out of that session until you call the Reset System (21)
function, you call the Disconnect Presentation Space (2) function, or you terminate
the EHLLAPI application program.

Reserve (11)

3270 5250 VT

Yes Yes Yes

The Reserve function locks the keyboard that is associated with the host-connected
presentation space to block input from the terminal operator.

The reserved host presentation space remains locked until one of the following
occurs:

* Connect (1) function is executed to a new session.

» Disconnect Presentation Space (2) function is executed.
* Release (12) function is executed.

» Reset System (21) function is executed.

» Start Keystroke Intercept (50) function is executed.

* EHLLAPI application program is terminated.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface

Function Number Must be 11

Data String NA

Length NA

PS Position NA

Return Parameters

Return Code Explanation
0 The Reserve function was successful.

122 Emulator Programming

Return Code Explanation
1 Your program is not connected to a host session.
5 Presentation space cannot be used.
9 A system error was encountered.

Notes on Using This Function
1. If your EHLLAPI application program is sending a series of transactions to the

host, you might need to prevent the user from gaining access to that session

until your application processing is complete.

2. The keyboard input that a user makes while the keyboard is locked by this

function is enqueued and processed after the session is terminated.

3. This function locks both the mouse and the keyboard input. The application

program must unlock the presentation space to enable either the mouse or the
keyboard input.

Reset System (21)

3270

5250

VT

Yes

Yes

Yes

The Reset System function reinitializes EHLLAPI to its starting state. The session

parameter options are reset to their defaults. Event notification is stopped. The

reserved host session is released. The host presentation space is disconnected.
Keystroke intercept is disabled.

You can use the Reset System function during initialization or at program
termination to reset the system to a known initial condition.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 21
Data String NA
Length NA
PS Position NA
Return Parameters
Return Code Definition

0 The Reset System function was successful.

1 EHLLAPI is not loaded.

9 A system error was encountered.

Chapter 3. EHLLAPI Functions

123

124

Notes on Using this Function
For the PC/3270, this function can be used to check whether EHLLAPI is loaded.

Place a call to this function at the start of your application and check for a return
code of 1.

Search Field (30)

3270 5250 VT

Yes Yes Yes

The Search Field function examines a field within the connected host presentation
space for the occurrence of a specified string. If the target string is found, this
function returns the decimal position of the string numbered from the beginning of
the host presentation space. (For example, in a 24-row by 80-column presentation
space, the row 1, column 1 position is numbered 1 and the row 5, column 1
position is numbered 321.)

This function can be used to search either protected or unprotected fields, but only
in a field-formatted host presentation space.

Note: If the field at the end of the host presentation space wraps, wrapping occurs
when the end of the presentation space is reached.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 30.
Data String Target string for search.
Length Length of the target data string. Overridden in EOT mode.
PS Position Identifies the target field. For SRCHALL, this can be the PS

position of any byte within the target field. For SRCHFROM, it
is the beginning point of the search for SRCHFRWD or the
ending Eoint of the search for SRCHBKWD. See note Bad

Return Parameters
This function returns a length and a return code.

Length:
The following codes are defined:
Length Explanation
=0 The string was not found.
>0 The string was found at the indicated host presentation space
position.

Return Code:
The following codes are defined:

Emulator Programming

Return Code Explanation

0 The Search Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error. Either the string length was zero, or EOT mode
was specified but no EOT character was found in calling data
string.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found, or the host presentation space
was unformatted.

Notes on Using This Function
1. Four sets of parameters under the Set Session Parameters (9) function are

related to this function. They are the SRCHALL/SRCHFROM,
STRLEN/STREOT, SRCHFRWD/SRCHBKWD, and the EOT=c session options.
See items m through m for more information.

. You can use the Set Session Parameters (9) function to determine whether your
searches proceed forward (SRCHFRWD) or backward (SRCHBKWD) in a field.

. The Search Field function normally checks the entire field (SRCHALL default
mode). However, you can use the function 9 to specify SRCHFROM. In this
mode, the calling PS position parameter does more than identify the target
field. It also provides a beginning or ending point for the search.

» If the SRCHFRWD option is in effect, the search for the designated string
begins at the specified PS position and proceeds toward the end of the field.

» If the SRCHBKWD option is in effect, the search for the designated string
begins at the end of the field and proceeds backward toward the specified PS
position. If the target string is not found, the search ends at the PS position
specified in the calling PS position parameter.

DBCS Only: If the start position of the specified search function is the second
byte in a double-byte character, the search is started from the next character for
SRCHFRWD and from the character for SRCHBKWD. If the last character of
the specified string is the first byte of a double-byte character, the character is
not searched for.

The search ignores a pair of SO and Sl in the presentation space. When you
search a double-byte control character, put SO (X'OE") before the character and
Sl (X'OF") after it. For example, X'0EOOO0COF' in the data string is treated as a
double-byte character FF (X'000C").

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In

some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or
when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For
information to be displayed on the status bar, the status bar must be
configured. Refer to Personal Communications Version 5.5 Quick Beginnings for
information on configuring the status bar. By the EXTEND_PS option, an
EHLLAPI application can use the same interface with Communication
Manager EHLLAPI and valid presentation space is extended when this
condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

Chapter 3. EHLLAPI Functions 125

STREOT option is not supported in a Unicode session. Please see [Set Sessior

Parameters (9)” on page 145 for details.

Prerequisite Calls:

Call Parameters:

Connect Presentation Space (1)

Standard Interface | Enhanced Interface

Function Number

Must be 30.

Data String

Target Unicode string for searching.

Length

Length of the target Unicode string in Unicode characters.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position

Identifies the target field. For SRCHALL, this can be the PS
position of any byte within the target field. For SRCHFROM, it
is the beginning point of the search for SRCHFRWD or the
ending point of the search for SRCHBKWD. See note

Return Parameters: This function returns a length and a return code.

Length:
The following codes are defined:
Length Explanation
=0 The string was not found.
>0 The string was found at the indicated host presentation space

position.

Return Code:
The following codes are defined:

Return Code

Explanation

0 The Search Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error. Either the string length was zero, or EOT mode
was specified but no EOT character was found in calling data
string.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found, or the host presentation space

was unformatted.

Notes on Using This Function: The following options are supported in a Unicode
session for Search Field and function in the same way as in DBCS:

STRLEN
SRCHALL
SRCHFROM
SRCHFRWD
SRCHBKWD

126 Emulator Programming

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

STREOT option is nhot supported in a Unicode session. Please see FSet Sessiod

Parameters (9)” on page 145 for details.

Prerequisite Calls:

Call Parameters:

Connect Presentation Space (1)

Standard Interface | Enhanced Interface

Function Number

Must be 30.

Data String Target Unicode string for search.

Length Length of the target Unicode string in bytes.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Identifies the target field. For SRCHALL, this can be the PS

position of any byte within the target field. For SRCHFROM, it
is the beginning point of the search for SRCHFRWD or the
ending point of the search for SRCHBKWD. See note

Return Parameters:

This function returns a length and a return code.

Length:
The following codes are defined:
Length Explanation
=0 The string was not found.
>0 The string was found at the indicated host presentation space

position.

Return Code:
The following codes are defined:

Return Code

Explanation

0 The Search Field function was successful.

1 Your program is not connected to a host session.

2 Parameter error. Either the string length was zero, or EOT mode
was specified but no EOT character was found in calling data
string.

7 The host presentation space position is not valid.

9 A system error was encountered.

24 The search string was not found, or the host presentation space

was unformatted.

Notes on Using This Function: The following options are supported in a Unicode
session for Search Field and function in the same way as in SBCS:

STRLEN
SRCHALL

Chapter 3. EHLLAPI Functions 127

128

* SRCHFROM
* SRCHFRWD
* SRCHBKWD

Search Presentation Space (6)

3270 5250

VT

Yes Yes

Yes

The Search Presentation Space function lets your EHLLAPI program examine the
host presentation space for the occurrence of a specified string.

Prerequisite Calls

Connect Presentation Space (1)
Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 6.

Data String Target string for search.
Length Length of the target data string. Overridden in EOT mode.
PS Position Position within the host presentation space where the search

is to begin (SRCHFRWD option) or to end (SRCHBKWD
option). Overridden in SRCHALL (default) mode.

Return Parameters
This function returns a length and a return code.

Length:
The following codes are defined:
Length Explanation
=0 The string was not found.
>0 The string was found at the indicated host presentation space
position.

Return Code:
The following

codes are defined:

Return Code Explanation
0 The Search Presentation Space function was successful.
1 Your program is not connected to a host session.
2 An error was made in specifying parameters.
7 The host presentation space position is not valid.
9 A system error was encountered.
24 The search string was not found.

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are
related to this function. They are the SRCHALL/SRCHFROM,

Emulator Programming

STRLEN/STREOT, SRCHFRWD/SRCHBKWD, and the EOT=c session options.
See items fLon page 147 through B-on page 147 through for more information.

2. You can use the Set Session Parameters (9) function to specify SRCHBKWD.
When this option is in effect, the search operation locates the last occurrence of
the string.

3. The Search Presentation Space function normally checks the entire host
presentation space. However, you can use the Set Session Parameters (9)
function to specify SRCHFROM. In this mode, the calling PS position
parameter specifies a beginning or ending point for the search.

» If the SRCHFRWD option is in effect, the search for the designated string
begins at the specified PS position and proceeds toward the end of the host
presentation space.

» If the SRCHBKWD option is in effect, the search for the designated string
begins at the end of the PS and proceeds backward toward the specified PS
position. If the target string is not found, the search ends at the PS position
specified in the calling PS position parameter.

4. The SRCHFROM option is also useful if you are looking for a keyword that
might occur more than once in the host presentation space.

5. The Search Presentation Space function is useful in determining when the host
presentation space is available. If your EHLLAPI application is expecting a
specific prompt or message before sending data, the Search Presentation Space
function allows you to check for a prompt message before continuing.

6. DBCS Only: If the start position of the specified search function is the second
byte in a double-byte character, the search is started from the next character for
SRCHFRWD and from the character for SRCHBKWD. If the last character of
the specified string is the first byte of a double-byte character, the character is
not searched for.

The search ignores a pair of SO and Sl in the presentation space. When you
search a double-byte control character, put SO (X'OE") before the character and
SI (X'OF") after it. For example, X'0EOO0COF' in the data string is treated as a
double-byte character FF (X'000C").

Note: 5250 emulation supports a presentation space of 24 rows by 80 columns. In
some instances, Communication Manager 5250 emulation displays a 25th
row. This occurs when either an error message from the host is displayed or
when the operator selects the SysReq key. Personal Communications
displays 25th row information on row 24, or on the status bar. For
information to be displayed on the status bar, the status bar must be
configured. Refer to Personal Communications Version 5.5 Quick Beginnings for
information on configuring the status bar. By the EXTEND_PS option, an
EHLLAPI application can use the same interface with Communication
Manager EHLLAPI and valid presentation space is extended when this
condition occurs.

1390/1399 Code Page Support
Unicode functionality is supported only on 3270 and 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to kSet Sessiod

Parameters (9)” an page 145 for details.

Prerequisite Calls: Connect Presentation Space (1)

Chapter 3. EHLLAPI Functions 129

Call Parameters:

Standard Interface Enhanced Interface
Function Number Must be 6.
Data String Target Unicode string for search.
Length Length of the target Unicode string in Unicode characters.

Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Position within the host presentation space where the search
is to begin (SRCHFRWD option) or to end (SRCHBKWD
option). Overridden in SRCHALL (default) mode.

Return Parameters: This function returns a length and a return code.

Length:
The following codes are defined:
Length Explanation
=0 The string was not found.
>0 The string was found at the indicated host presentation space
position.

Return Code:
The following codes are defined:

Return Code Explanation
0 The Search Presentation Space function was successful.
1 Your program is not connected to a host session.
2 An error was made in specifying parameters.
7 The host presentation space position is not valid.
9 A system error was encountered.
24 The search string was not found.

Notes on Using This Function: The following options are supported in a Unicode
session for Search Presentation Space (6) and function in the same way as in
DBCS:

* STRLEN

* SRCHALL
* SRCHFROM
* SRCHFRWD
* SRCHBKWD

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

STREOT option is not supported in a Unicode session. Please refer to kset Sessiod
i for details.

Prerequisite Calls: Connect Presentation Space (1)

130 Emulator Programming

Call Parameters:

Standard Interface Enhanced Interface

Function Number

Must be 6.

Data String Target Unicode string for search.

Length Length of the target Unicode data string in bytes.
Note: The EOT mode is not supported in a Unicode
session; therefore, length should be specified for proper
functioning of this function in a Unicode session.

PS Position Position within the host presentation space where the search

is to begin (SRCHFRWD option) or to end (SRCHBKWD
option). Overridden in SRCHALL (default) mode.

Return Parameters: This function returns a length and a return code.

Length:
The following codes are defined:
Length Explanation
=0 The string was not found.
>0 The string was found at the indicated host presentation space
position.

Return Code:

The following codes are defined:

Return Code Explanation
0 The Search Presentation Space function was successful.
1 Your program is not connected to a host session.
2 An error was made in specifying parameters.
7 The host presentation space position is not valid.
9 A system error was encountered.
24 The search string was not found.

Notes on Using This Function: The following options are supported in a Unicode
session for Search Presentation Space (6) and function in the same way as in

SBCS:

* STRLEN

* SRCHALL
* SRCHFROM
* SRCHFRWD
* SRCHBKWD

Send File (90)

3270

5250 VT

Yes

Yes No

Chapter 3. EHLLAPI Functions 131

132

The Send File function is used to transfer a file from the workstation session
where EHLLAPI is running to a host session.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 90.
Data String Refer to the examples.
Length Length of the target data string. Overridden in EOT mode.
PS Position Must be 0.

Following are examples of the data strings for SBCS

3270 Session

* To send the file to the VM/CMS host system:
pc_filename [id:]1fn ft [fm] [(option]

» To send the file to the MVS/TSO host system:
pc_filename [id:]dataset[(member)] [/password] [option]

* To send the file to the CICS host system:
pc_filename [id:]host_filename [(option]

5250 Session
» To send the file to the AS/400 host system:
pc_filename [id:]1library file member [option]

Following are examples of the data strings for DBCS:

3270 Session

* To send the file to the VM/CMS host system:
pc_filename [id:1fn ft [fm] [(option]

* To send the file to the MVS/TSO host system:

pc_filename [id:]dataset[(member)] [/password]
[(option]

» To send the file to the CICS host system:
pc_filename [id:]host filename [(option]

5250 Session
» To send the file to the AS/400 host system:
pc_filename [id:]library file member [option]

Note: Parameters within [] are optional. Available options are listed below. For
more information about the options, refer to Personal Communications Version
5.5 Administrator’s Guide and Reference.

Host System Common Options

VM/CMS ASCII, JISCII, CRLF, APPEND, LRECL n, RECFM v|f, TIME n, CLEAR,
NOCLEAR, PROGRESS, QUIET

Emulator Programming

Host System Common Options

MVS/TSO ASCII, JISCII, CRLF, APPEND, LRECL (n), RECFM (v]f]u), TIME (n),
CLEAR, NOCLEAR, PROGRESS, QUIET, BLKSIZE (n), SPACE (n[,m]),
AVBLOCK | TRACKS| CYLINDERS

CICS ASCII, JISCII, CRLF, BINARY, TIME n, CLEAR, NOCLEAR,
PROGRESS, QUIET
0S/400 ASCII, JISCII, CRLF, APPEND, SRC, LRECL n, TIME n, CLEAR,

NOCLEAR, PROGRESS, QUIET

Note:

JISCII is valid in a DBCS session for Japan only and ASCII is valid for all other SBCS and
DBCS sessions.

Note: Time, if specified, overrides the value in Set Session parameters.

Note:

Other options specified will be passed to the host transfer program. The file transfer
program on the host side either uses them, ignores them, or returns an error. Consult the
host transfer program documentation to see a complete list of the options supported.

Return Parameters

Return Code Explanation

2 Parameter error or you have specified a length that is too long
(more than 255 bytes) for the EHLLAPI buffer. The file transfer
was unsuccessful.

3 File transfer complete.

4 File transfer complete with segmented records.

5 Workstation file name is not valid or not found. File transfer was
canceled.

9 A system error was encountered.

27 File transfer terminated because of either a Cancel button or the

timeout set by the Set Session Parameter (9) function.

101 File transfer was successful (transfer to/from CICS).

If you receive return code 2 or 9, there is a problem with the system or with the
way you specified your data string.

Other return codes can also be received which relate to message numbers
generated by the host transfer program. For transfers to a CICS host transfer
program, subtract 100 from the return code to give you the numeric portion of the
message. For example, a return code of 101 would mean that the message number
INWO0001 was issued by the host. For other host transfer programs, just use the
return code as the numerical part of the message. For example, a return of 34
would mean that message TRANS34 was issued by the host transfer program. The
documentation for your host transfer program should give more information about
the meanings of the specific messages.

Operating system error codes reported by EHLLAPI are greater than 300. To

determine the error code, subtract 300 and refer to the operating system
documentation for return codes.

Chapter 3. EHLLAPI Functions 133

Notes on Using This Function

1. Four sets of parameters under the Set Session Parameters (9) function are
related to this function. They are the QUIET/NOQUIET, STRLEN/STREOT,
TIMEOUT=c/TIMEOUT=0, and the EOT=c session options. See items il and B

plus items [and m for more information.

Send Key (3)

3270 5250 VT

Yes Yes Yes

The Send Key function is used to send either a keystroke or a string of keystrokes
to the host presentation space.

You define the string of keystrokes to be sent with the calling data string
parameter. The keystrokes appear to the target session as though they were entered
by the terminal operator. You can also send all attention identifier (AID) keys such
as Enter and so on. All host fields that are input protected or are numeric only
must be treated accordingly.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 3.
Data String A string of keystrokes, maximum 255. Uppercase and

lowercase ASCII characters are represented literally.
Function keys and shifted function keys are represented by

mnemonics. See I‘Keyboard Mnemonics” on page 135

Length Length of the source data string. Overridden if in EOT
mode.
PS Position NA

Return Parameters

Return Code Explanation
0 The keystrokes were sent; status is normal.
1 Your program is not connected to a host session.
2 An incorrect parameter was passed to EHLLAPI.
4 The host session was busy; all of the keystrokes could not be sent.
5 Input to the target session was inhibited or rejected; all of the
keystrokes could not be sent.
9 A system error was encountered.

Notes on Using This Function

1. The parameters under the Set Session Parameters (9) function are related to
this function. They are the AUTORESET/NORESET, STRLEN/STREOT, EOT=c,
ESC ¢, and RETRY/NORETRY session options. See items i and m

M and lLoon page 14d, and [9.0n page 152 for more information.

134 Emulator Programming

2. Keystrokes cannot be sent to the host session when the keyboard is locked or
busy. You can check this condition with the Wait (4) function.

3. If the host is busy, input might be rejected.

4. The length of the data string must be explicitly defined by the default length
parameter, but it can be defined implicitly by the EOT=c option of the Set
Session Parameters (9) function.

When explicitly defining length (see item 1), the value for the length parameter
passed by the application must be calculated. For this calculation, allow 2 bytes
for compound keystrokes such as @E and allow 4 bytes for compound
keystrokes such as @AGC.

5. To send special control keys, a compound character coding scheme is used. In
this coding scheme, one keystroke is represented by a sequence of two to four
ASCII characters. The first and third character are always the escape character.
The second and fourth character are always a keycode.

To send the sequence LOGON ABCDE followed by the Enter key, you would code
the string LOGON ABCDEGE. A complete list of these keycodes is represented in
This compound coding technique allows an ASCII string representation of all
necessary keystroke codes without requiring the use of complex hexadecimal
key codes.

The default escape character is @. The value of the escape character can be
changed to any other character with the ESC=c option of the Set Session
Parameters (9) function.

6. Users needing higher levels of performance should use the Copy String to
Field (33) or Copy String to Presentation Space (15) function rather than send
keystrokes with the Send Key (3) function. But remember, only the Send Key
(3) function can send the special control keys.

7. Refer to Bet Session Parameters (9) session option [l0.on page 14d (NORESET

option) to improve the performance of this function.

Unless NORESET is required, the reset mnemonic is added to the keystroke
strings as a prefix. Therefore, all resettable status except input inhibit are reset.

The NORESET option is not the same as the Reset System (21) function.

8. The keystroke strings, including the AID key, are sent to the host via multiple
paths. Each path sends the strings before the first AID key (or including the
AID key). EHLLAPI adjusts the string length and the start position of each
path. For a host application program, any keystroke might be lost by the AID
key process. Therefore, you should not send a keystroke list that includes
plural AID keys.

9. During the @P (Print) or @A@T (Print Presentation Space) process, all requests
that update the presentation space are rejected. If the presentation space is busy
or the interruption request occurs during the print request, the mnemonic
@AQ@R (Device Reset — Cancel to print the Presentation Space) cancels the
request and resets the status.

Keyboard Mnemonics
The keyboard mnemonics provide the ASCII characters representing the special

function keys of the keyboard in the workstation. The abbreviation codes make the
mnemonics for special keys easy to remember. An alphabetic key code is used for
the most common keys. For example, the Clear key is C, and the Tab key is T.

Chapter 3. EHLLAPI Functions 135

[Table 8 shows the mnemonics using uppercase alphabetic characters:

Table 8. Mnemonics with Uppercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT
@B Left Tab Yes Yes No
@cC Clear Yes Yes No
@D Delete Yes Yes No
@E Enter Yes Yes No
@F Erase EOF Yes Yes No
@H Help No Yes No
@l Insert Yes Yes No
@J Jump (Set Focus) Yes Yes No
@L Cursor Left Yes Yes Yes
@N New Line Yes Yes Yes
@O Space Yes Yes Yes
@P Print Yes Yes Yes
@R Reset Yes Yes No
QT Right Tab Yes Yes Yes
@u Cursor Up Yes Yes Yes
av Cursor Down Yes Yes Yes
@x* DBCS (Reserved) Yes Yes No
@z Cursor Right Yes Yes Yes

frable d shows the mnemonics using a number or lowercase alphabetic characters.

Table 9. Mnemonics with Numbers or Lowercase Characters

Mnemonic Meaning 3270 5250 VT
@0 Home Yes Yes No
@1 PF1/F1 Yes Yes No
@2 PF2/F2 Yes Yes No
@3 PF3/F3 Yes Yes No
@4 PF4/F4 Yes Yes No
@5 PF5/F5 Yes Yes No
@6 PF6/F6 Yes Yes Yes
@7 PF7/F7 Yes Yes Yes
@8 PF8/F8 Yes Yes Yes
@9 PF9/F9 Yes Yes Yes
@a PF10/F10 Yes Yes Yes
@b PF11/F11 Yes Yes Yes
@c PF12/F12 Yes Yes Yes
@d PF13 Yes Yes Yes
@e PF14 Yes Yes Yes
@f PF15 Yes Yes Yes

136 Emulator Programming

Table 9. Mnemonics with Numbers or Lowercase Characters (continued)

Mnemonic Meaning 3270 5250 VT
@g PF16 Yes Yes Yes
@h PF17 Yes Yes Yes
@i PF18 Yes Yes Yes
@j PF19 Yes Yes Yes
@k PF20 Yes Yes Yes
@l PF21 Yes Yes No
@m PF22 Yes Yes No
@n PF23 Yes Yes No
@o PF24 Yes Yes No
@q End Yes Yes No
@u Page Up No Yes No
Qv Page Down No Yes No
@x PA1 Yes Yes No
@y PA2 Yes Yes No
@z PA3 Yes Yes No

franle 1d shows the mnemonics using the combination @A and @alphabetic
uppercase (A-Z) key.

Table 10. Mnemonics with @A and @ Uppercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT
@A@C Test No Yes No
@A@D Word Delete Yes Yes No
@AQE Field Exit Yes Yes No
@AQ@F Erase Input Yes Yes No
@AQ@H System Request Yes Yes No
@A@I Insert Toggle Yes Yes No
@AQ@J Cursor Select Yes Yes No
@A@L Cursor Left Fast Yes Yes No
@A@Q Attention Yes Yes No
@A@R Device Cancel Yes Yes No

(Cancels Print
Presentation
Space)

@AQ@T Print Yes Yes Yes
Presentation
Space

@AQ@QU Cursor Up Fast Yes Yes No

@A@QV Cursor Down Yes Yes No
Fast

@A@Z Cursor Right Yes Yes No
Fast

Chapter 3. EHLLAPI Functions

137

[Table 11 shows the mnemonics using the combination @A and @number or @A and
@alphabetic lowercase (a-z) key.

Table 11. Mnemonics with @A and @ Lowercase Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@A@9 Reverse Video Yes Yes No

@A@b Underscore Yes No No

@AQ@c Reset Reverse Yes No No
Video

@AQ@d Red Yes No No

@A@e Pink Yes No No

@AQf Green Yes No No

@AQ@g Yellow Yes No No

@A@h Blue Yes No No

@A@i Turquoise Yes No No

@AQ] White Yes No No

@A@I Reset Host Yes No No
Colors

QAQ@t Print (Personal Yes Yes No
Computer)

@AQyY Forward Word Yes Yes No
Tab

@AQ@z Backward Word Yes Yes No
Tab

franle 12 shows the mnemonics using the combination @A and @special character.

Table 12. Mnemonics with @A and @ Alphanumeric (Special) Characters

Mnemonic Meaning 3270 5250 VT

@AQ@- Field — No Yes No

@A@+ Field + No Yes No

@A@< Record No Yes No
Backspace

ffable 13 shows the mnemonics using the combination @S and @alphabetic
lowercase.

Table 13. Mnemonics with @S (Shift) and @ Alphabetic Characters

Mnemonic Meaning 3270 5250 VT

@S@E Print No Yes No
Presentation
Space on Host

@s@x Dup Yes Yes No
@S@y Field Mark Yes Yes No

DBCS Only: [Table 14 on page 139 shows the mnemonics using the combination @X
and @number or @alphabetic lowercase (a-z).

138 Emulator Programming

Table 14. Mnemonics Using @X and @Alphabetic Lowercase (For DBCS Only)

(1)

Mnemonic Meaning 3270 5250 VT

@x@1 Display SO/SI Yes Yes No

@xX@5s Generate SO/SI No Yes No

@X@6 Display No Yes No
Attribute

@x@7 Forward No Yes No
Character

@X@c Split vertical bar No Yes No

VT Only: Mahle 19 shows the mnemonics using the combination @M and @number
or @alphabetic lowercase (a-z)

Table 15. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT Only)

Mnemonic Meaning 3270 5250 VT

@M@o0 VT Numeric Pad No No Yes
0

aM@1 VT Numeric Pad No No Yes
1

@M@2 VT Numeric Pad No No Yes
2

@M@3 VT Numeric Pad No No Yes
3

aM@4 VT Numeric Pad No No Yes
4

@M@5 VT Numeric Pad No No Yes
5

@M@6 VT Numeric Pad No No Yes
6

@M@7 VT Numeric Pad No No Yes
7

@M@8 VT Numeric Pad No No Yes
8

@M@9 VT Numeric Pad No No Yes
9

@M@- VT Numeric Pad No No Yes

@M@, VT Numeric Pad No No Yes

aM@. VT Numeric Pad No No Yes

@M@e VT Numeric Pad No No Yes
Enter

@M@f VT Edit Find No No Yes

@M@i VT Edit Insert No No Yes

@M@r VT Edit Remove No No Yes

@M@s VT Edit Select No No Yes

Chapter 3. EHLLAPI Functions

139

Table 15. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT
Only) (continued)

Mnemonic Meaning 3270 5250 VT

@M@p VT Edit Previous No No Yes
Screen

@M@n VT Edit Next No No Yes
Screen

@M@a VT PF1 No No Yes

@M@b VT PF2 No No Yes

@M@c VT PF3 No No Yes

@M@d VT PF4 No No Yes

@M@h VT HOId Screen No No Yes

@M@(space) Control Code No No Yes
NUL

OM@A Control Code No No Yes
SOH

@M@B Control Code No No Yes
STX

a@mM@cC Control Code No No Yes
ETX

@M@D Control Code No No Yes
EOT

@M@E Control Code No No Yes
ENQ

@M@F Control Code No No Yes
ACK

aM@G Control Code No No Yes
BEL

@eM@H Control Code BS No No Yes

aM@l Control Code No No Yes
HT

aM@J Control Code LF No No Yes

@M@K Control Code VT No No Yes

@mM@L Control Code FF No No Yes

@mM@M Control Code No No Yes
CR

@M@N Control Code SO No No Yes

@M@O Control Code Sl No No Yes

@mM@P Control Code No No Yes
DLE

aM@Q Control Code No No Yes
DC1

@M@R Control Code No No Yes
DC2

@M@s Control Code No No Yes
DC3

140 Emulator Programming

Table 15. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT

Only) (continued)

Mnemonic Meaning 3270 5250 VT

aM@T Control Code No No Yes
DC4

@M@uU Control Code No No Yes
NAK

@M@V Control Code No No Yes
SYN

aMaw Control Code No No Yes
ETB

@M@x Control Code No No Yes
CAN

@M@y Control Code No No Yes
EM

oM@z Control Code No No Yes
SUB

@M@u Control Code No No Yes
ESC

a@mM@v Control Code FS No No Yes

@M@w Control Code GS No No Yes

@M@x Control Code RS No No Yes

@M@y Control Code US No No Yes

@M@z Control Code No No Yes
DEL

Q@Q@A VT User Defined No No Yes
Key 6

@Q@B VT User Defined No No Yes
Key 7

@Q@c VT User Defined No No Yes
Key 8

@Q@D VT User Defined No No Yes
Key 9

@QQE VT User Defined No No Yes
Key 10

@Q@F VT User Defined No No Yes
Key 11

@Q@G VT User Defined No No Yes
Key 12

@QaH VT User Defined No No Yes
Key 13

@Qa@I VT User Defined No No Yes
Key 14

@Q@J VT User Defined No No Yes
Key 15

@Q@K VT User Defined No No Yes
Key 16

@Qa@L VT User Defined No No Yes

Key 17

Chapter 3. EHLLAPI Functions

141

Table 15. Mnemonics Using @M, @Q and @Alphabetic Lowercase (For VT
Only) (continued)

Mnemonic Meaning 3270 5250 VT

@QaM VT User Defined No No Yes
Key 18

@Q@N VT User Defined No No Yes
Key 19

@Q@o0 VT User Defined No No Yes
Key 20

@Q@a VT Backtab No No Yes

@Qa@r VT Clear Page No No Yes

@Q@s VT Edit No No Yes

The following table shows the mnemonics using a special character.

Table 16. Mnemonics with Special Character Keys

Mnemonic Meaning 3270 5250 VT
@@ @ Yes Yes Yes
@$ Alternate Cursor Yes Yes Yes
(The
Presentation
Manager
Interface only)
@< Backspace Yes Yes Yes

The following table shows BIDI key mnemonics:

Table 17. BIDI Key Mnemonics

Mnemonic Meaning 3270 5250 VT
@:@s Screen Reverse Yes Yes No
@:@n Bidi Layer Yes Yes No
@:@l Latin Layer Yes Yes No
@:@QF Field Reverse Yes Yes No
@:@p Push Yes No No
@:@e End Push Yes No No
@:@a Auto Push Yes No No
@:@r Auto Reverse Yes No No
@:@d CSD Yes No No
@:.@f Final Yes No No
@:@i Isolated Yes No No
@:@m Middle Yes No No
@:@t Initial Yes No No
@:@h Field Shape Yes No No
@:@u Field Base Yes No No
@:@b Base No Yes No

142 Emulator Programming

Table 17. BIDI Key Mnemonics (continued)

Mnemonic

Meaning 3270 5250

VT

@:@o

Close No Yes

No

The following character keys are interpreted as they are.

a—z

vV A

(.
) /

~ 0]

+

1390/1399 Code Page Support

Unicode functionality is supported only on 3270 and 5250 sessions.

STREOT option is not supported in a Unicode session. Please see [Set Sessiod

Parameters (9)” on page 149 for details.

The session option ESC is not supported in a Unicode session; using this option,
you cannot set a Unicode character as an ESC character. Use the default ESC

character @ in a Unicode session. Please see [‘Set Session Parameters (9)” on

for details.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface |Enhanced Interface

Function Number Must be 3

Data String A Unicode string of keystrokes, maximum 255. Uppercase
and lowercase ASCII characters are represented literally.
Function keys and shifted function keys are represented by
mnemonics. See EKeyhoard Mnemonics” on page 138,

Length The length of the Unicode string in Unicode characters.

PS Position NA

Return Parameters:

Return Code Explanation

0

The keystrokes were sent; status is normal.

Your program is not connected to a host session.

An incorrect parameter was passed to EHLLAPI.

The host session was busy; all of the keystrokes could not be sent.

g |~ (N

keystrokes could not be sent.

Input to the target session was inhibited or rejected; all of the

A system error was encountered.

Notes on Using This Function: Before sending keystrokes to a PCOMM session,
be sure that the session is a Unicode session and that the current platform is

Chapter 3. EHLLAPI Functions

143

144

Windows NT or Windows 2000. If the session is an ANSI session or the current
platform is Windows 95, Windows 98, or Windows ME, and a Unicode string is
sent, junk characters will be displayed.

The string length should indicate the number of Unicode characters and not the
number of ANSI characters to be sent.

1137 Code Page Support
Unicode functionality is supported only on 5250 sessions.

STREOT option is not supported in a Unicode session. Please see kset Sessiod
” for details.

The session option ESC is not supported in a Unicode session; using this option,
you cannot set a Unicode character as an ESC character. Use the default ESC
character @ in a Unicode session. Please see t‘Set Session Parameters (9)” on

for details.

Prerequisite Calls: Connect Presentation Space (1)

Call Parameters:

Standard Interface |Enhanced Interface
Function Number Must be 3
Data String A Unicode string of keystrokes, maximum 255. Uppercase

and lowercase ASCII characters are represented literally.
Function keys and shifted function keys are represented by

mnemonics. See EKeyhoard Mnemonics” an page 135,

Length Length of the Unicode data string in bytes. If the length is
not a multiple of 2 then an error code of 2 is returned.
PS Position NA

Return Parameters:

Return Code Explanation
0 The keystrokes were sent; status is normal.
1 Your program is not connected to a host session.
2 An incorrect parameter was passed to EHLLAPI.
4 The host session was busy; all of the keystrokes could not be sent.
5 Input to the target session was inhibited or rejected; all of the
keystrokes could not be sent.
9 A system error was encountered.

Notes on Using This Function: Before sending keystrokes to a PCOMM session,
be sure that the session is a Unicode session. If the session is ANSI and a Unicode
string is sent, junk characters will be displayed.

The string length should indicate the number bytes and not the number of
Unicode characters to be sent. Therefore the length should be a multiple of 2. If
not, a parameter error will be returned by the function.

Emulator Programming

Set Cursor (40)

3270

5250

VT

Yes

Yes

Yes

The Set Cursor function is used to set the position of the cursor within the host
presentation space. Before using the Set Cursor function, a workstation application
must be connected to the host presentation space.

Prerequisite Calls
Connect Presentation Space (1)

Call Parameters

Standard Interface Enhanced Interface
Function Number Must be 40
Data String NA
Length NA
PS Position Desired cursor position in the connected host presentation
space
Return Parameters
Return Code Explanation
0 Cursor was successfully located at the specified position.
1 Your program is not connected to a host session.
4 The session is busy.
7 A cursor location less than 1 or greater than the size of the
connected host presentation space was specified.
9 A system error occurred.

Notes on Using This Function
DBCS Only: If the specified cursor is the second byte of the double-byte character,

the cursor moves to the first byte of the character and an error code is not

returned.

1137 Code Page Support
The usage of Set Cursor in a Unicode session is the same as that for a SBCS

session except:

* Unicode functionality is supported only on 5250 sessions.

* In a Unicode session only, if the specified cursor is in the middle of a cluster (for
example, a Hindi language cluster), then the cursor is positioned to the
beginning of the cluster automatically.

Set Session Parameters (9)

3270

5250 VT

Yes

Yes

Yes

Chapter 3. EHLLAPI Functions 145

146

The Set Session Parameters function lets you change certain default session
options in EHLLAPI for all sessions. When EHLLAPI is loaded, the default settings
for session options are as indicated by the underscored entries in the tables that

appear in [‘Session Options” on page 147. Any, some, or all of these settings can be

changed by including the desired option in the calling data string as explained
below. Specified settings remain in effect until:

* Changed by a subsequent Set Session Parameters (9) function that specifies a

new value.

* The Reset System (21) function is executed.

* The EHLLAPI application program is terminated.

The following table lists those EHLLAPI functions that are affected by session
options. Functions not listed in the table are not affected by any of the session
options. Session options that affect each function are indicated by corresponding
entries in the “See Items” column. These entries are indexed to the list that follows

Function
Number Function Name See Items
1 Connect Presentation Space EI, E, b4
3 Send Key [, B B, id, fd
4 Wait i
5 Copy Presentation Space B, i3 4, i3, i7 bd, b1, b3
6 Search Presentation Space bBEH
8 Copy Presentation Space to String B i3 64, 13, i3 B4 b1, b3
10 Query Sessions fd, b2
15 Copy String to Presentation Space i, B i3, 64, i, bd, b1, B3
18 Pause 3]
30 Search Field 0B B60Hed
33 Copy String to Field E|, E, E, E, @, , ﬁ, k2
34 Copy Field to String E, E, ﬂ, B, , E, %%
51 Get Key g bd
90 Send File bBae
91 Receive File E|, E, ﬂ, g
101 Connect Window Services kd, b4
Note: Items 20 and 21 in this table are for DBCS only

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface

Enhanced Interface

Function Number

Must be 9.

Emulator Programming

Standard Interface | Enhanced Interface

Data String

String containing the desired values of those session options
that are to be changed. The data string can contain any of
the values in the tables of ESession Qptions™. The values
should be placed on the data string line, separated by
commas or blanks. The sets of parameters are explained in
terms of the functions they affect.

Length

Explicit length of the source data string (the STREQT option
is not allowed).

PS Position

NA.

Session Options

The following tables show the session options. The default is underlined.

1. The values in the following table determine how the data string length is
defined for functions Send Key (3), Search Presentation Space (6), Copy
String to Presentation Space (15), Search Field (30), Copy String to Field
(33), Send File (90), and Receive File (91).

Value Explanation
STRLEN An explicit length is passed for all strings.
STREOT Lengths are not explicitly coded. Calling (source) data strings are

terminated with an EOT character.

2. The statement in the following table is used to specify the character that is
used as the end-of-text (EOT) delimiter in the calling (source) data string for
EHLLAPI functions Send Key (3), Search Presentation Space (6), Copy String
to Presentation Space (15), Search Field (30), Copy String to Field (33), Send
File (90), and Receive File (91).

Value

Explanation

EOT=c

Allows you to specify the EOT character for string terminators (in
STREOT mode). Binary zero is the default. Do not leave a blank
after the equal sign.

To be valid, ¢ must be entered as a 1-byte string literal character with no
preceding blanks. The EOT character specified by this statement is used to
determine the length of a calling data string only when the STREOT option
(see item 1) is in effect.

3. The values in the following table affect the Search Presentation Space (6) and
Search Field (30) search functions.

Value Explanation

SRCHALL The Search Presentation Space (6) function and Search Field (30)
function scan the entire host presentation space or field.

SRCHFROM The Search Presentation Space (6) function and Search Field (30)

function start from a specified PS position (for SRCHFRWD) or end at
a specified PS position (for SRCHBKWD).

4. The values in the following table affect the Search Presentation Space (6) and
Search Field (30) search functions. They determine the direction for the

search.

Chapter 3. EHLLAPI Functions 147

148

Value

Explanation

SRCHFRWD The Search Presentation Space (6) function and Search Field (30)
function perform in an ascending direction.
SRCHBKWD The Search Presentation Space (6) function and Search Field (30)

function perform in a descending direction. A search is satisfied if
the first character of the requested string starts within the bounds
specified for the search.

5. The values in the following table determine how attribute bytes are treated for
functions Copy Presentation Space (5), Copy Presentation Space to String
(8), and Copy Field to String (34).

Value Explanation

NOATTRB Convert all unknown values to blanks.

ATTRB Pass back all codes that do not have an ASCII equivalent as their
original values.

NULLATTRB Convert all field attributes to null characters.

6. The values in the following table affect the Pause (18) function.

Value Explanation

FPAUSE A full-duration pause lasts for however long you specified in the
Pause (18) function.

IPAUSE Interruptible pause. After the Start Host Notification (23) function

is executed, a host event satisfies a pause.

7. The values in the following table determine whether messages generated by
file transfer functions Send File (90) and Receive File (91) are displayed.

Value Explanation
NOQUIET SEND and RECEIVE messages are displayed.
QUIET SEND and RECEIVE messages are not displayed.

8. The statements in the following table determine how long Personal
Communications EHLLAPI waits before it automatically issues a Cancel
during execution of file transfer functions Send File (90) and Receive File
(91). To be valid, c must be an Arabic humber 0-9 or a capital letter J-N and
must not be preceded by a blank.

Value

Explanation

TIMEOUT=0

A Cancel is automatically issued following a 20-second
(approximate) delay.

Emulator Programming

Value

Explanation

TIMEOUT=c

A Cancel is automatically issued following a specified delay. A
1-character indicator from the table below tells Personal
Communications how many 30-second cycles it should accept
before issuing a Cancel itself.

Character Value (in minutes)
0.5
1.0
15
2.0
25
3.0
35
4.0
4.5

—~ ©O© 00 N oo o b~ W N P

5.0
5.5
6.0
6.5

z zr =X

7.0

9. The statement in the following table is used to define the escape character for
keystroke mnemonics. This session option affects functions Send Key (3) and
Get Key (51). The value of ¢ must be entered as a 1-byte literal character
string with no preceding blanks.

Value

Explanation

ESC=c

Specifies the escape character for keystroke mnemonics (@ is the
default). Do not leave a blank after the equal sign. A blank is not a
valid escape character.

10. The values in the following table determine whether EHLLAPI automatically
precedes strings sent using the Send Key (3) function with a reset.

Value Explanation

AUTORESET EHLLAPI attempts to reset all inhibited conditions by prefixing all
strings of keys sent using the Send Key (3) function with a reset.

NORESET Do not AUTORESET.

11. The values in the following table affect the manner in which the Connect
Presentation Space (1) command function.

Value

Explanation

CONLOG

Establishes a logical connection between the workstation session
and a host session. During Connect, does not jump to the
requested presentation space.

Chapter 3. EHLLAPI Functions 149

Value Explanation

CONPHYS Establishes a physical connection between the workstation session
and a host session. During Connect, jumps to the requested
presentation space.

12. The values in the following table affect the Wait (4) function and Get Key (51)
function. For each value, there are two different effects, one for each function.

Value Explanation

TWAIT For the Wait (4) function, waits up to a minute before timing out
on XCLOCK (X []) or XSYSTEM.

For the Get Key (51) function, does not return control to your
EHLLAPI application program until it has intercepted a key
(normal or AID key based on the option specified under the Start
Keystroke Intercept (50) function).

LWAIT For the Wait (4) function, waits until XCLOCK (X [])/XSYSTEM
clears. This option is not recommended, because control does not
return to your application until the host is available.

For the Get Key (51) function, does not return control to your
EHLLAPI application program until it has intercepted a key
(normal or AID key based on the option specified under the Start
Keystroke Intercept (50) function).

NWAIT For the Wait (4) function, checks status and returns immediately
(no wait).

For the Get Key (51) function, returns return code 25 (keystrokes
not available) in the fourth parameter if nothing is queued
matching the option specified under the Start Keystroke Intercept
(50) function.

Note: Use of NWAIT is recommended.

13. The values in the following table affect Copy Presentation Space (5), Copy
Presentation Space to String (8), Copy String to Presentation Space (15),
Copy String to Field (33), and Copy Field to String (34). Extended attribute
bytes (EAB) include extended character attributes and extended field

attributes.
Value Explanation
NOEAB Pass data only, no EABs.
EAB Pass the presentation space data with extended attribute bytes. For

each character that appears on the screen, 2 bytes of data are
passed. Therefore, a buffer twice the size of the presentation space
must be preallocated; for example 2 x 1920 = 3840 for a 24-row by
80-column presentation space.

Extended attributes for a string of characters may be reported as
attributes of the field byte, rather than as attributes of each
individual character in the field. In this case, to tell if a particular
character or set of characters on a screen is underscored, do a
CopyPStoString specifying the position of the field attribute byte
(the byte before the field that is displayed on the screen) to get the
EAB information that applies to all of the characters in that field.

150 Emulator Programming

Note: When using EHLLAPI Copy PS to String, text is copied which should
be invisible to the operator. Use the EHLLAPI Set Session Parameters
function to set the NODISPLAY option to determine if there is hidden
data. This causes EHLLAPI to return nondisplay fields as nulls.
Another common procedure for hiding data is to set the foreground
and background colors the same (BLACK, for instance) so the text is
displayed, but not visible to the human operator. The only way for
your application to detect this is to use the EAB and XLATE session
parameters and then copying the PS. The foreground/background color
of each position is returned and you can determine which characters
are invisible.

14. The values in the following table affect Copy Presentation Space (5), Copy
Presentation Space to String (8), Copy String to Presentation Space (15),
Copy String to Field (33), and Copy Field to String (34).

Value Explanation

NOXLATE EABs are not translated.

XLATE EABs are translated to the PC color graphics adapter (CGA)
format.

15. The values in the following table affect Copy Presentation Space (5) and
Copy Presentation Space to String (8) if NOATTRB and NOEAB are

specified.
Value Explanation
BLANK Convert all unknown values to X'20".
NOBLANK Convert all unknown values to X'00'".

The default value is BLANK. If you want to change the default value to
NOBLANK, add the following statement in the PCSWIN.INI file located in the
Personal Communications private subdirectory:

[API]

Nul1ToBTank=NO

16. The values in the following table affect the presentation space size that is
returned by the Query Sessions (10).

Value Explanation

CFGSIZE Returns the configured size of the connected presentation space.
This option ignores any override of the configured size by the host.

NOCFGSIZE Returns the current size of the connected presentation space.

17. The values in the following table affect Copy Presentation Space (5), Copy
Presentation Space to String (8), and Copy Field to String (34).

Value Explanation

DISPLAY Copy nondisplay fields in the presentation space to the target
buffer area in the same manner as display fields. Current
applications function normally.

NODISPLAY Do not copy nondisplay fields in the presentation space to the

target buffer area. Copy the nondisplay fields to the target buffer
as a string of null characters. This allows applications to display
the copied buffers in the presentation widow without displaying
confidential information, such as passwords.

Chapter 3. EHLLAPI Functions 151

18. The values in the following table affect Copy String to Presentation Space

(15) and Copy String to Field (33).

Value Explanation

NOPUTEAB EAB (or EAD for DBCS) is not contained in the data string of

Copy String to Presentation Space or Copy String to Field.

PUTEAB EAB is contained with character data in the data string of Copy

String to Presentation Space or Copy String to Field.

This option is used for the compatibility with Communication Manager/2. For
Communication Manager/2, the data string, which is specified in Copy String
to Presentation Space or Copy String to Field, must be contain EAB (or EAD)
with character data when EAB (or EAD) is valid in Set Session Parameters.
Whereas, for the previous Personal Communications, the data string specified
in these functions must consist of character data only even if EAB (or EAD) is
valid. But Personal Communications for Windows 95, Windows 98, Windows
NT, Windows Me, and Windows 2000 allows that the data string contains EAB
(or EAD) by setting PUTEAB to provide the compatibility with
Communication Manager/2.

19. The values in the following table affect the Send Key (3) function. Keystrokes
are not processed if the keyboard is blocked or in use. The options determine
whether the function tries to resend the keystrokes until a 4-minute timeout
occurs or if the function returns immediately after determining the keyboard
is blocked or in use.

Value Explanation

RETRY Continues to attempt to send keystrokes until they are sent or until
a 4-minute timeout occurs.

NORETRY Returns immediately after determining the keyboard is blocked or
in use.

20. DBCS Only: The values in the following table affect Copy Presentation Space
(5), Copy Presentation Space to String (8), Copy String to Presentation Space
(15), Copy String to Field (33), and Copy Field to String (34).

Value Explanation

NOEAD DBCS attribute characters are not passed.

EAD Pass the presentation space data and two attribute characters for
the double-byte character set (DBCS). (Users receive 2 bytes for
each character other than the data. Therefore, a buffer twice the
size of the presentation space must be preallocated.)

21. DBCS Only: The values in the following table affect Copy Presentation Space

(5), Copy Presentation Space to String (8), Copy String to Presentation Space
(15), Copy String to Field (33), and Copy Field to String (34).

Value Explanation

NOSO Pass the presentation space data except Shift-in (SI) and Shift-out

(SO) control characters.

SO

Pass the presentation space data including translated Sl control
character to X'0E' and SO control character to X'OF'. The allocated
buffer size depends on the length of the stored data.

Emulator Programming

Value

Explanation

SPACESO

Pass the presentation space data including translated SI and SO
control characters to X'20' (blank). The allocated buffer size
depends on the length of the stored data.

22. The values in the following table affect Copy Presentation Space (5), Copy
Presentation Space to String (8), Copy String to Presentation Space (15),
Copy String to Field (33), Copy Field to String (34) Search Field (30) and
Query Sessions. (10)

Value

Explanation

EXTEND_PS

5250 emulation supports a presentation space of 24 rows by 80
columns. In some instances, Communication Manager 5250
emulation displays a 25th row. This occurs when either an error
message from the host is displayed or when the operator selects
the SysReq key. Personal Communications displays 25th row
information on row 24, but EHLLAPI normally sees the real 24th
row. By EXTEND_PS option, an EHLLAPI application can use the
same interface with Communication Manager EHLLAPI and valid
presentation space is extended when this condition occurs.

NOEXTEND_PS

The presentation space is not extended when the above condition
occurs. This is the default value.

23. The values in the following table affect the Connect Presentation Space (1)
and Connect Window Services (101) functions. The options specify whether
an application can or will share the presentation space to which it is
connected with another application. Only one of the following values can be
specified with each Set Session Parameter call.

Value

Explanation

SUPER_WRITE

The application allows other applications that allow sharing and
have write access permissions to concurrently connect to the same
presentation space. The originating application performs
supervisory-type functions but does not create errors for other
applications that share the presentation space.

WRITE_SUPER

The application requires write access and allows only supervisory
application to concurrently connect to its presentation space. This
is the default value.

WRITE_WRITE

The application requires write access and allows partner or other
applications with predictable behavior to share the presentation
space.

WRITE_READ

The application requires write access and allows other applications
that perform read-only functions to share the presentation space.
The application is also allowed to copy the presentation space and
perform other read-only operations as usual.

WRITE_NONE

The application has exclusive use of the presentation space. No
other applications are allowed to share the presentation space,
including supervisory applications. The application is allowed to
copy the presentation space and perform read-only operations as
usual.

READ_WRITE

The application requires only read access to monitor the
presentation space and allows other applications that perform read
or write, or both, functions to share the presentation space. The
application is also allowed to copy the presentation space and
perform other read-only operations as usual.

Chapter 3. EHLLAPI Functions 153

154

24. The values in the following table allow applications that have presentation
space sharing requirements to limit the sharing to a partner application (an
application that was developed to work with it).

Value Explanation

NOKEY Allows the application to be compatible with existing applications
that do not specify the KEY parameter.

KEY$nnnnnnnn Uses a keyword to restrict sharing access to the presentation space
that it supports. The keyword must be exactly 8 bytes in length.

Return Parameters
This function returns a length and a return code.

Length:
Number of valid session parameters that are set.

Return Code:
The following codes are defined:

Return Code Explanation
0 The session parameters have been set.
2 One or more parameters were not valid.
9 A system error was encountered.

1390/1399 and 1137 Code Page Support
Code page 1390/1399 Unicode functionality is available only for 3270 and 5250
sessions. Code page 1137 Unicode functionality is available only for 5250 sessions.

The following session option differences must be noted for 1390/1399 and 1137
code page support in a Unicode session:

* The session option STREOT should not be used for Unicode strings for the
following reasons:

— The session option STREOT specifies that the length of the string is not
explicitly given. An EOT character indicates the end of the string. By scanning
for the EOT character, the length of the string can be found. This EOT
character is stored as a single-byte value. The single-byte EOT character
cannot be used for Unicode strings.

- Scenario: A user sets the EOT character as 'A’ whose ASCII value is 0X'41".
If the string buffer that the user passes to the function contains a Unicode
character, then the low byte of this Unicode character will be taken as the
string delimiter. Therefore, a single-byte EOT character cannot be used as a
string delimiter.

— The EOT character cannot be stored as a Unicode character since the Set
Session Parameter function is independent of the PCOMM session and the
same setting applies to all the sessions of PCOMM. If the EOT is to be stored
as a Unicode character, then SBCS and DBCS implementations will be affected
by the way the EOT character is passed. At present, the EOT character is
expected to be a single-byte value.

Note: If you use the session option STREOT, then the results may not be as
expected. You can use a single-byte delimiter with the Unicode strings

Emulator Programming

if you are certain that the single-byte delimiter will not be a part of the
Unicode values that you are passing in the buffer.

* The session option ESC is not supported in a Unicode session for the same

reason as listed for 'STREQT” on page 154.

* The session option XLATE is not supported in Unicode. Even if this option is
set, it will be ignored.

Start Close Intercept (41)

3270

5250

VT

Yes

Yes

Yes

The Start Close Intercept function allows the application to intercept close requests
generated when a user selects the close option from the emulator session window.
This function intercepts the close request and discards it until a Stop Close
Intercept (43) function is requested.

After using this function, your application program can use the Query Close
Intercept (42) function to determine when a close request has occurred.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Byte

Definition

Standard Interface | Enhanced Interface

Function Number

Must be 41

Data String See the following table
Length 50r6 | Must be 12
PS Position NA

The data string contains the following items.

Byte

Definition

Standard

Enhanced

1

1

A 1-character presentation space short name (PSID).

2-4

Reserved.

4-5

The data in these positions is ignored by EHLLAPI.
However, no error is caused if the migrating program
has data in these positions. This data is accepted to
provide compatibility with migrating applications.

Specify M to request asynchronous message mode
(Windows only).

6-8

Reserved.

2-3

9-12

When M is specified in position 5 (6 for 16-bit), the
window handle of the window that receives the message
should be set. The message is a return value of
RegisterWindowMessage (PCSHLL) (not equal 0).

Chapter 3. EHLLAPI Functions 155

Return Parameters
This function returns a data string and a return code.

Data String:
If asynchronous message mode is not specified in position 5 (6 for
standard interface) and the function is completed successfully, the
following data string is returned.

Byte Definition
Standard Enhanced
1 1 A 1-character presentation space short name (PSID).
2-8 Reserved.
9-12 4 byte value in which the event object (Windows) or
semaphore (OS/2) address is returned by EHLLAPI. The
application can wait for this event object. (32-bit only).

Data String:
If M (asynchronous message mode) is specified in position 5 (6 for
standard interface) and the function is completed successfully, the
following data string is returned.

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)
2-8 Reserved

2-3 9-10 Task ID of asynchronous message mode

Note: If a user selects the close option, an application window receives a message.
The message is a return value of RegisterWindowMessage (PCSHLL). The
wParam parameter will contain the Task ID returned by this function call.
The HIWORD of the IParam parameter will contain the Return Code 26,
which shows a close intercept occurred, and the LOWORD of the IParam
parameter will contain the function number 41.

Return Code:
The following codes are defined:

Return Code Explanation
0 The Start Close Intercept function was successful.
1 An incorrect host presentation space was specified.
2 A parameter error occurred.
9 A system error occurred.
10 The function is not supported by the emulation program.

Notes on Using This Function

1. The returned event object or semaphore is in a non-signaled state when the
start request function returns. The event object is in the signaled state each time
a close request occurs. To receive notification of multiple close request events,
put the event object into the signaled state each time using SetEvent or the
Query Close Intercept (42) function (Windows) or DosResetEventSem (OS/2).

156 Emulator Programming

2. After using this function, your application program can use the Query Close
Intercept (42) function to determine when a close request has occurred. The
application can wait on the returned event object to determine when the event

has occurred.

3. This is not an exclusive call. Multiple applications can request this function for
the same short session ID.

4. If there are no applications intercepting close requests for a session, any
subsequent close requests selected by the user from the emulator operations
dialog result in a normal stop requested for that session.

Start Communication Notification (80)

3270

5250

VT

Yes

Yes

Yes

The Start Communication Notification function begins the process by which your
EHLLAPI application can determine whether the specified session is connected to

a host.

After using this function, the application can use Query Communication Event
(81) to determine whether the session is connected or disconnected.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Enhanced Interface

Function Number

Must be 80

Data String Preallocated structure; see the following table
Length 16
PSPosition NA

The calling data structure contains these elements

Byte

Definition

1

A 1-character presentation space short name (PSID).

2-4

Reserved

5

One of the following values:

The character C asks for notification when the session either
disconnects or connects to the host.

The character A requests the asynchronous mode of notification.
When A is specified, position 9-12 returns the address of an
event object (Windows). The character C must be placed in
position 13.

The character M requests the asynchronous message mode of the
notification. When M is specified, the event selection character C
must be placed in position 13.

6-8

Reserved

Chapter 3. EHLLAPI Functions 157

158

9-12 When M is specified in position 5, the window handle of the
window that receives the message should be set. The message is a
return value of RegisterWindowMessage (PCSHLL)—(not zero).

13 This should contain the character C if position 5 is A or M.

14-16 Reserved

Data String

If A (asynchronous mode) is specified in position 5 of the calling data structure
and the function is completed successfully, the following data string is returned:

Byte Definition

1 A 1-character presentation space short-name (PSID)

2-8 Reserved

9-12 4-byte binary value in which the event object handle is returned by
EHLLAPI. The application can wait for this event object.

If M (asynchronous message mode) is specified in position 5 of the calling data
structure and the function is completed successfully, the following data string is

returned:

Byte Definition

1 A 1-character presentation space short-name (PSID)
2-8 Reserved

9-10 Task ID of asynchronous message mode

When the session connects or disconnects an application window receives a
message. The message is the return value of RegisterWindow Message (PCSHLL).
The wParam contains the Task ID returned by the function call. HIWORD of
IParam contains a 21 if the session is connected to the host or a 22 if the session is
disconnected. The LOWORD of IParam contains the function number 80.

Return Parameters

Return Code

Definition

0

The function was successful

An incorrect PSID was specified

An error was made in designating parameters

1
2
9

A system error was encountered

Notes on using this Function

1. An application program can issue this function for multiple host sessions. The
Query Communication Event (81) function can be used to determine the
session communication status.

2. If the application chooses the asynchronous option, it can use the Windows
SDK call WaitForSingleObject to wait until the sessions communication status

has changed.

3. The event object is initially in a non-signaled state. It is signaled each time an
event occurs. To receive notification for multiple events the application must

Emulator Programming

put the event object into the non-signaled state each time it is signaled, by
using the Windows SDK call ResetEvent, or by using function 81 Query
Communications Event.

4. Multiple calls to this function with the same options from the same application
will be ignored.

5. This is not exclusive to one application. Several applications can request this
function for the same Session ID.

Start Host Notification (23)

3270 5250 VT

Yes Yes Yes

The Start Host Notification function begins the process by which your EHLLAPI
application program determines if the host presentation space or OIA have been
updated.

After using this function, your application program can use the Query Host
Update (24) function to determine when a host event has occurred.

Prerequisite Calls
There are no prerequisite calls for this function.

Call Parameters

Standard Interface
Must be 23

| Enhanced Interface

Function Number

Data String Preallocated string; see the following table
Length 6 or 7 implied | 16
PS Position NA

The calling data string contains these elements:

Byte Definition
Standard Enhanced
1 1 One of the following values:
* A l-character presentation space short name (PSID)
* A blank or null indicating a request for the
host-connected host presentation space
2-4 Reserved.

Chapter 3. EHLLAPI Functions 159

160

Byte

Definition

One of the following values:

* The character B asking for notification of both host
presentation space and OIA updates.

* The character O asking for notification of only OIA
updates.

* The character P asking for notification of only host
presentation space updates.

e The character A requesting the asynchronous mode of
the notification When A is specified, position 9-12
returns the address of an event object (Windows) or the
address of a semaphore (0S/2). The event selection
character B, O, or P must be placed in position 13.

* The character M requesting the asynchronous message
mode of the notification.

When M is specified, the event selection character B, O,
or P must be placed in position 13 (7 for 16-bit).

* M is not supported on OS/2.

* E The character E asking for notification of completion
during a printer session.

6-8

Reserved.

34

9-12

When M is specified in position 5 (2 for 16-bit), the
window handle of the window that receives the message
should be set. The message is a return value of
RegisterWindowMessage (PCSHLL) (not equal 0).

13

One of the following values if position 5 (2 for 16-bit) is A
or M:

* The character B asking for notification of both host
presentation space and OIA updates

* The character O asking for notification of only OIA
updates

* The character P asking for notification of only host
presentation update.

14-16

Reserved.

Return Parameters
This function returns a data string and a return code.

Data String:

If A (asynchronous mode of notification) is specified in position 5 and the
function is completed successfully, the following data string is returned:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID).
2-8 Reserved.
9-12 4-byte value in which the event object (Windows) or

semaphore (OS/2) address is returned by EHLLAPI. The
application can wait for this event object. (32-bit only).
For 16-bit OS/2 this is a 16-bit semaphore.

Emulator Programming

Data String:
If M (asynchronous message mode) is specified in position 5 (2 for
standard interface) and the function is completed successfully, the
following data string is returned:

Byte Definition

Standard Enhanced

1 1 A 1-character presentation space short name (PSID)
2-8 Reserved

3-4 9-10 Task ID of asynchronous message mode

Note: If OIA or presentation space is updated, an application window receives a
message. The message is a return value of RegisterWindowMessage
(PCSHLL). The wParam parameter contains the Task ID returned by the
function call. HIWORD of IParam contains Return Code 21 (shows the OIA
is updated), 22 (shows the host presentation space is updated), or 23 (shows
both the OIA and the host presentation space are updated), and LOWORD
of IParam parameter contains function number 23.

Return Code:
The following codes are defined:

Return Code Definition
0 The Start Host Notification function was successful.
1 An incorrect host presentation space was specified.
2 An error was made in designating parameters.
9 A system error was encountered.

Notes on Using This Function

1. An application program can issue this function for multiple host sessions. The
Pause (18) function can notify the application when one or more host sessions
(PS, OIA, or both of them) are updated. The Query Host Update (24) function
can be used to determine wh